THÈSE

présentée en vue de l'obtention du titre de

DOCTEUR

de

L'ÉCOLE NATIONALE SUPÉRIEURE DE L'AÉRONAUTIQUE ET DE L'ESPACE

ÉCOLE DOCTORALE : SYSTÈMES

SPÉCIALITÉ : Dynamique du vol

Élodie ROUX

Pour une approche analytique de la dynamique du vol

Soutenue le 18 novembre 2005 devant le jury :

MM.

MARTÍNEZ-VAL PEÑALOSA Président - Rapporteur

President - Rapporteu Directeur de thèse

Rapporteur

J.L. BOIFFIER S. BONNET

R.

- A. FARCY
- F. MARANI
- D. SCHMITT

MM. J.J. BARRAU J.P. GUIBERGIA Membre invité - Rapporteur Membre invité

Thèse préparée au sein du département commande des systèmes et dynamique du vol (DCSD) de l'ONERA-centre de Toulouse.

présentée en vue de l'obtention du titre de

Docteur de l'École Nationale Supérieure de l'Aéronautique et de l'Espace

Spécialité : Dynamique du vol

Pour une approche analytique de la dynamique du vol

soutenue par

Élodie Roux

Membres du Jury :

Jean-Jacques BARRAU Alain FARCY Rodrigo MARTÍNEZ-VAL PEÑALOSA Serge BONNET Frédéric MARANI Dieter SCHMITT Jean-Luc BOIFFIER Jean-Pierre GUIBERGIA Rapporteur Rapporteur Examinateur Examinateur Directeur de thèse Membre invité

ONÉRA CERT Office National d'Études et de Recherches Aérospatiales Département Commande des Systèmes et Dynamique du vol : DCSD BP 4025 2, Avenue Édouard Belin 31055 Toulouse Cedex 4 Tél : +33 (0)5 62 25 25 61 Fax : +33 (0)5 62 25 25 64 http ://www.onera.fr

SupAéro

École Nationale Supérieure de l'Aéronautique et de l'Espace BP 54032 10, Avenue Édouard Belin 31055 Toulouse Cedex 4 Tél : +33 (0)5 62 17 80 80 http ://www.supaero.fr

Directeur de thèse : Jean-Luc BOIFFIER SupAéro : 10, Avenue Édouard Belin BP 54032 31055 Toulouse Cedex Tél : 33-(0)5.62.17.80.84 Fax : 33-(0)5.62.17.83.45 Jean-Luc.Boiffier@cert.fr

Doctorante :

Élodie Roux 4 ter, avenue des Tilleuls "Le Pileu" 91300 Massy Tél : 33-(0)1.60.14.50.14 Fax : 33-(0)1.69.34.95.35 Elodie.Roux@supaero.org

Remerciements

Je tiens à remercier messieurs Alain Farcy et Rodrigo Martínez-Val Peñalosa, d'avoir accepté d'être les rapporteurs de ma thèse; mais aussi monsieur Jean-Jacques Barrau qui a bien voulu accepter au "pied levé" d'être mon troisième rapporteur. Merci aussi à messieurs Serge Bonnet, Frédéric Marani et Dieter Schmitt d'Airbus, et monsieur Jean-Pierre Guibergia, de faire parti du jury.

Merci également à tout le personnel d'Airbus qui m'a aidé au cours de la thèse, en particulier messieurs Frédéric Marani pour avoir suivi mon travail sur les performances au décollage et m'avoir permis de valider mes modèles, Christophe Cros pour m'avoir conseillé sur mon travail de masse voilure, Jacques Rosay pour ses explications éclairées sur le décollage et les essais en vol, Guy Bousquet pour ses indications sur les vitesses caractéristiques au décollage, et Gilles Taquin pour son modèle de masse moteur. Merci à Éric Poquillon du CEV pour ses indications sur la vitesse "minimum unstick" V_{mu} , à Pierre Ladagnous d'ATR pour m'avoir éclairé sur le fonctionnement de l'ATTCS (Automatic Takeoff Thrust Control System), et au pilote AirFrance Jean-Yves Boiffier pour ses explications sur les procédures opérationnelles au décollage. Je remercie également le professeur Egbert Torenbeek, pour sa relecture du chapitre sur les modèles de masse voilure, et pour ses conseils avisés.

Et je tiens tout particulièrement à exprimer ma reconnaissance envers mon directeur de thèse, Jean-Luc Boiffier, dont le soutien et l'encadrement aussi bien scientifique qu'humain, ont été exceptionnels. Merci aussi à Pierre Vacher dont l'assistance MATLAB et LATEX m'a été précieuse, et pour avoir agrémenté nos pauses café de délicieux chocolats. De manière générale, merci à toute l'équipe de l'ONÉRA, ainsi qu'à l'office pour avoir financé ma thèse et m'avoir accueilli dans ses locaux.

Merci à Michel Correge pour son assistance du réseau informatique, à Ghyslaine Picchi et Maryvonne Stoll (au centre de documentation ONÉRA) qui sont d'une efficacité redoutable pour trouver rapidement les documents que l'on cherche, au personnel de la bibliothèque de SUPAÉRO, à Jean-Paul Nigoul dont le travail d'édition à l'ONÉRA est toujours d'excellente qualité, et d'avoir accepté les travaux même demandés à la dernière minute, et à tous les photographes qui m'ont donné l'autorisation d'utiliser leur photo pour illustrer la thèse.

Merci aussi à ma chère maman qui a relu mon travail et corrigé d'innombrables fautes d'orthographe...

Table des matières

Ι	\mathbf{Le}	sujet	9
1	Suje	et de la thèse	11
	1.1	Le contexte scientifique	11
	1.2	Choix des thèmes	12
	1.3	Méthode de travail	13
	1.4	Perspectives ouvertes par le développement de ces thèmes	15
		1.4.1 Modèles de propulsion	15
		1.4.2 Modèles de masse	16
		1.4.3 Performance au décollage	17
	1.5	Conclusion	18
	-		
11	\mathbf{N}	lodèles développés	19
2	Mo	dèles moteurs	21
	2.1	Consommation spécifique C_{SR}	24
		2.1.1 Bilan des modèles existants	25
		2.1.2 Elaboration de notre modèle de consommation spécifique C_{SR}	31
	2.2	Poussée maximale F_{max}	42
		2.2.1 Bilan des modèles existants	43
	2.2	2.2.2 Notre modèle	52
	2.3	Masse moteur M_m	64 67
		2.3.1 Bilan des modeles existants	65 60
		2.3.2 Nos modeles	69 75
		2.3.3 Resultats	61
3	Mo	dèle de masse voilure	77
	3.1	Bilan des modèles existants	80
		3.1.1 Modèles statistiques	81
		3.1.2 Modèles physiques	91
	3.2	Elaboration de notre modèle	95
		3.2.1 Modélisation de la voilure	95
		3.2.2 Masse des semelles dimensionnées en flexion	98
		3.2.3 Ame dimensionnee en cisaillement	100
		3.2.4 Revetement dimensionne en torsion 2.2.5 Normange	108
		3.2.3 INSTRUCTION AND A CONTRACT OF A CONT	$110 \\ 117$
		5.2.0 Irrangie d'empianture (physico-statistique)	11 <i>(</i>
		3.2. <i>i</i> masses statistiques de la structure secondaire	119

	3.3	Résultats	120
		3.3.1 Hypothèses de calcul	120
		3.3.2 Quelques remarques sur les résultats :	121
	3.4	Notre Modèle	129
4	Mo	dèle de longueur de piste au décollage/atterrissage	131
	4.1	Définition du décollage/atterrissage	133
		4.1.1 Définition de la longueur de piste	134
		4.1.2 Définition des vitesses caractéristiques	147
		4.1.3 Équations du décollage/atterrissage	150
	4.2	Élaboration de notre modèle.	160
		4.2.1 Modèle numérique de référence	160
		4.2.2 Modèle des vitesses	164
		4.2.3 Modèle du roulage	173
		4.2.4 Modèle de la phase aérienne	180
	4.3	Conclusion : Modèle proposé de longueur de piste	186
С	oncl	lusion : bilan et perspectives	191
C II	oncl I 4	lusion : bilan et perspectives Annexes	191 193
C II A	oncl I 4	lusion : bilan et perspectives Annexes	191 193 195
C II A	oncl I A Dor A.1	lusion : bilan et perspectives Annexes nnées expérimentales Base de données moteur	191 193 195 196
C II A	oncl I A Dor A.1 A.2	lusion : bilan et perspectives Annexes anées expérimentales Base de données moteur	191 193 195 196 202
C II A	oncl I A Dor A.1 A.2	lusion : bilan et perspectives Annexes anées expérimentales Base de données moteur	191 193 195 196 202
C II A B	oncl I A Dor A.1 A.2 Mo	lusion : bilan et perspectives Annexes anées expérimentales Base de données moteur	 191 193 195 196 202 207
C II A B	oncl I 2 Dor A.1 A.2 Mo B.1	Iusion : bilan et perspectives Annexes nnées expérimentales Base de données moteur	 191 193 195 196 202 207 207
C II A B	oncl I 2 Dor A.1 A.2 Mo B.1 B.2	Iusion : bilan et perspectives Annexes anées expérimentales Base de données moteur	 191 193 195 196 202 207 210
C II A B	oncl I 2 Dor A.1 A.2 Mo B.1 B.2 B.3	Iusion : bilan et perspectives Annexes anées expérimentales Base de données moteur	 191 193 195 196 202 207 207 210 210

Première partie

Le sujet

Chapitre 1

Sujet de la thèse

1.1 Le contexte scientifique

L'analyse et l'optimisation du comportement de l'avion constituent l'objectif de la Dynamique du Vol. Il s'agit des performances, des qualités de vol ou encore de la conception avion¹. Cette analyse se fait avec les moyens de calcul numériques ou grâce aux expérimentations. Les expérimentations en vol ne sont accessibles qu'aux services officiels et aux industriels. Pour leur part, les laboratoires ont accès à la simulation numérique, qui est une sorte d'expérimentation. Si cette dernière est limitée par le domaine de validité des modèles utilisés, elle présente en revanche, grâce à son coût réduit, l'avantage de permettre un large balayage de solutions possibles. Par ailleurs, dans cette discipline, coexiste avec cette approche numérique moderne, une tradition de "sens physique", pour justifier les résultats. Cette tradition apporte une grande richesse dans l'analyse. Son aspect le plus pertinent se retrouve dans le développement de modèles analytiques. Ces modèles permettent de mettre en évidence les phénomènes physiques en jeu et les principaux paramètres qui gouvernent ces phénomènes, toutes choses essentielles au développement des différents projets en Dynamique du Vol. Cette tradition n'est qu'une forme exacerbée de l'approche analytique présente dans toutes les disciplines. Cette approche analytique plus simple que l'approche numérique, donc moins coûteuse, soutient et complète l'approche numérique sur trois points.

- Elle permet d'orienter les études et d'évaluer ainsi les axes pertinents à développer.
 Le balayage des solutions possibles est encore plus large qu'avec l'approche numérique, de sorte que le sens physique inhérent à ces modèles analytiques, favorise l'intuition. Couplée avec l'expérience, ces deux facteurs peuvent créer des conditions d'une redoutable efficacité.
- Elle permet également d'interpréter les résultats numériques. Il est d'usage de pousser la simplification de modèles théoriques d'envergure jusqu'à pouvoir trouver une interprétation physique aux termes principaux afin de lutter contre le caractère anxiogène de ces modèles. Cette approche complète leur validation expérimentale, toutes deux donnant la conviction à l'ingénieur qu'il manipule un modèle fiable.

¹La conception pourrait être dénommée "performances conceptuelles" pour faire le pendant des "performances" qui correspondent aux performances opérationnelles, c'est-à-dire celles que l'on peut atteindre par un pilotage adapté, une fois que l'avion existe, donc sans modifier l'avion. À l'opposé pour le cas des performances conceptuelles, il est possible de modifier l'avion et ainsi d'optimiser les performances, par l'évolution de la définition de l'avion, comme la forme et la taille de la voilure, la taille et le type de moteur, etc. C'est la phase de conception.

 Enfin, elle favorise la réduction du temps de développement d'un sujet, soit par l'orientation des études évoquée au premier point, soit par des réductions de temps calculs lorsqu'une formule analytique remplace une forme non intégrée d'un modèle. Au passage, cela permet aussi d'améliorer la précision.

Ces trois points forts de l'approche analytique peuvent être exploités dans toutes les phases d'une étude :

- évidemment au début, pour structurer et orienter l'étude,
- en cours d'étude pour interpréter, vérifier et améliorer les temps de calcul,
- mais aussi en fin d'étude pour justifier les résultats.

Les modèles analytiques résultent nécessairement de simplifications et c'est leur point faible par rapport aux développements numériques. Mais ces dernières années, le numérique apporte son concours à l'approche analytique grâce aux logiciels de calcul formel, dont Maple est un bon exemple. Le sujet de cette thèse consiste à revisiter les modèles analytiques classiques avec la puissance du calcul formel pour apporter de nouveaux modèles beaucoup plus performants.

1.2 Choix des thèmes

Ces dernières années, nous avons ouvert la voie de l'approche analytique de la Dynamique du Vol sur plusieurs thèmes et nous les avons regroupés en performances dynamiques (qualités de vol), performances opérationnelles et performances conceptuelles. Le sujet de cette thèse consiste à développer les modèles analytiques associés à ces thèmes. L'étude de la dynamique du vol passe par la modélisation des trois efforts qui s'appliquent à l'avion à savoir les efforts aérodynamiques, les efforts propulsifs et les efforts massiques. Autant il est possible de trouver dans la littérature des modèles analytiques aérodynamiques, autant il n'y a pas ou peu de modèles analytiques appropriés à la propulsion et aux masses. C'est pourquoi, en début de thèse, nous nous sommes appliqués à développer des modèles analytiques de propulsion et de masse, en vue d'utiliser ces modèles par la suite pour l'étude analytique de performances telles que la longueur de piste au décollage.

Les modèles développés au cours de cette thèse sont :

Modèle des efforts :

- Modèles des efforts de propulsion :
 - **Consommation spécifique** C_{SR} (Table 2.8, p. 41) adaptée aux moteurs civils à fort taux de dilution. Précision de 3.6% par rapport aux données expérimentales (Appendix A, p. 195) en croisière et au point fixe de 52 moteurs double flux ($\lambda \geq 3$), soit un gain de précision de 3 à 13% par rapport aux meilleurs modèles existants.
 - **Poussée maximale** F_{max} adaptée aux réacteurs civils (Table 2.9, p. 57) à fort taux de dilution et adaptée aux moteurs militaires (Table 2.10, p. 60) avec ou sans post-combustion. Précision de l'ordre du pour-cent par rapport au modèle de référence ONÉRA et également par rapport à des données moteurs précises à la fois civils et militaires (avec ou sans post-combustion). Par exemple, la précision est de 1% par rapport à la famille des CFM56 pour laquelle nous disposons de données précises, soit un gain de précision de 28% par rapport aux modèles existants de J.Mattingly ou de l'Aérospatiale.

Modèles des efforts massiques :

- **Masse moteur** M_m (Table 2.21, p. 74) adaptée à tout type de moteurs (civils à fort taux de dilution ou militaire à faible taux de dilution). Précision de 7.2% par rapport à l'ensemble des moteurs (Appendix A, p. 195) et 6.5% par rapport aux moteurs d'avions civils. Soit un gain de 6% par rapport au meilleur modèle existant.
- **Masse voilure** M_W (Table 3.11, p. 129) adaptée aux ailes en flèches et avec effilement. Précision de 8.7% par rapport à la base de données expérimentales (Appendix A, p. 195) de masse voilure d'avions de transport civils, soit un gain de précision de 3% par rapport aux meilleurs modèles existants (d'E.Torenbeek ou d'I.Kroo).
- Modèles de performances : Modèle de la longueur de piste au décollage/atterrissage, et modèles des vitesses caractéristiques (vitesse de décision V_1 , vitesse de rotation V_R , vitesse de décollage ou lift-off V_{LOF} , vitesse de sécurité au décollage V_2 , etc ...).

1.3 Méthode de travail

Pour chacun des thèmes abordés, la méthode de travail est similaire, et se résume en 4 étapes principales :

- Synthèse bibliographique qui permet la constitution d'une base de données expérimentales (Appendix A, p. 195) à laquelle sera confrontés nos modèles, et qui permet de faire le bilan des modèles existants du thème que l'on cherche à traiter.
- Modèle de référence : Parmi les modèles existants que nous avons répertoriés, nous en choisissons un qui servira de référence.

Choix : C'est le modèle le plus sophistiqué (qui dépend des paramètres influents, qui est précis) que nous sommes capable de mettre en œuvre, qui est choisi.

- Validation : Ce modèle de référence est bien évidemment validé, c'est-à-dire que nous vérifions que ses résultats sont cohérents avec la base de données expérimentales (bonne précision), et par rapport aux autres modèles existants.
- Utilisation : Sa mise en œuvre permet la création d'une base de données du modèle de référence, issue de simulations par variation paramètrique dans le domaine utile.

Par exemple, pour les modèles des efforts propulsifs, c'est le modèle ONÉRA [TF97] pour la poussée maximale F_{max} , et le modèle d'E.Torenbeek [Tor86] pour la consommation spécifique C_{SR} , qui ont servi de référence et ont permis la simulation de moteurs fictifs ayant différents taux de dilution λ , taux de compression ε_c , température d'entrée turbine T_4, \ldots Pour la masse voilure M_W , ce sont les équations de Résistance Des Matériaux qui ont servi de modèle physique de référence. Pour le décollage, c'est l'intégration numérique d'un système d'équations différentielles issues du principe fondamental de la dynamique appliquée à la dynamique du vol de l'avion, qui a servi de référence et a permis la simulation de 327 avions fictifs au décollage ayant différents taux de propulsion, charge alaire et finesse.

Élaboration de notre modèle :

Création d'une structure analytique : Nous choisissons une structure analytique appropriée pour notre modèle.

Ce choix est quelquefois guidé par la physique du modèle de référence. C'est le

cas, par exemple, pour la longueur de piste au roulage d'un décollage/atterrissage $L_{p_r} = \frac{1}{2A} \ln \left(\frac{\Gamma_f}{\Gamma_i}\right) + V_{\Gamma_{min}} t_{p_r} + V_w t_{p_r}$, qui est déterminée par intégration analytique exacte des équations du roulage qui servent de modèle de référence.

Cette structure analytique de notre modèle peut également être inventée soit pour décrire au mieux la grandeur à modéliser dans un vaste domaine de définition, soit pour être propice à l'étude de performances dans un domaine de définition plus restreint. C'est par exemple le cas de la modélisation de la consommation spécifique C_{SR} . La structure analytique $C_{SR} = (a_2M + b_2)\sqrt{\theta}$ a été choisie (Table 2.8, p. 41) dans le but de décrire au mieux la base de données issues des simulations du modèle de référence d'E.Torenbeek, dans le plus vaste domaine de définition d'utilisation des réacteurs civils. Une structure analytique appropriée est également inventée pour les coefficients a_2 et b_2 en fonction des paramètres moteurs (taux de dilution, taux de compression, ...) et de l'altitude de vol.

Une autre structure analytique $C_{SR} = k\sqrt{\theta}M^n$ de type ESDU (Equation 2.6, p. 26) peut être inventée pour la modélisation de la consommation spécifique C_{SR} dans le but de faciliter l'étude analytique des performances en croisière. Notre modélisation de l'exposant n en fonction du taux de dilution moteur λ a notamment permis [Bov03] la détermination analytique du coefficient de portance optimal de croisière Cz_{opt} d'un avion de ligne équipé de réacteurs double flux (jusqu'à présent, faute d'un modèle approprié de consommation spécifique fonction du taux de dilution, la modélisation analytique du coefficient Cz_{opt} n'était possible que pour les réacteurs mono-flux $\lambda = 0$ ou pour les moteurs à hélice).

Identification : Si la structure analytique de notre modèle est inventée, alors elle comporte des coefficients dont la valeur est à déterminer. Par la méthode des moindres carrés, ces coefficients sont choisis pour minimiser l'erreur relative entre les estimations de notre structure analytique et les données simulées à l'aide du modèle de référence². On dit que ces coefficients sont déterminés par identification.

Par exemple, le facteur de charge n_z à l'arrondi, durant le décollage sans panne moteur, a une structure analytique inventée de la forme :

 $n_{z} = \left(K_{1}\left(\frac{m}{S}\right)^{2} + K_{2}\left(\frac{m}{S}\right) + K_{3}\right) \frac{F_{0}}{mg} + \left(K_{4}\left(\frac{m}{S}\right)^{2} + K_{5}\left(\frac{m}{S}\right) + K_{6}\right).$ Les valeurs des constantes K_{i} sont déterminées par identification sur la base de données issues des simulations du modèle de référence (le modèle de référence étant dans ce cas le système d'équations différentielles du décollage issues du principe fondamental de la dynamique).

Validation et recalage éventuel :

Confrontation avec les données expérimentales : Les prédictions du modèle ainsi développé, sont confrontés aux données expérimentales à disposition. La précision

 $^{^{2}}$ Le nombre de données constructeurs, qui constituent la base de données expérimentales, est plus restreint que la base de données simulées à partir du modèle de référence. Par ailleurs, la base de données expérimentale ne couvre généralement qu'une partie partielle du domaine de définition de la grandeur à modéliser, contrairement à la base de données du modèle de référence. C'est pourquoi, l'identification des coefficients de la structure analytique de notre modèle, se fait par rapport aux données issues des simulations du modèle de référence, et non pas par rapport à la base de données expérimentales.

du modèle peut ainsi être quantifiée, avec le critère d'erreur relative moyenne

$$\begin{split} Er_{moy\%} &= \frac{1}{N_{\rm donn\acute{e}s}} \sum_{i=1}^{N_{\rm donn\acute{e}s}} |Er_{\%i}| \\ Er_{\%} &= 100 \, \frac{\rm grandeur \, r\acute{e}elle - \, grandeur \, calcul\acute{e}e}{\rm grandeur \, r\acute{e}elle} \\ et de l'écart type \, \sigma &= \sqrt{\frac{1}{N_{\rm donn\acute{e}s}} \sum_{i=1}^{N_{\rm donn\acute{e}s}} \left(|Er_{\%i}| - Er_{moy\%} \right)^2}. \end{split}$$

Recalage éventuel : Si nécessaire, un recalage éventuel sur les données expérimentales peut être effectué. Il consiste à ajuster les coefficients de la structure analytique de notre modèle, par retouches successives faibles et ciblées de manière à ne pas remettre en cause le modèle mais en améliorant sa précision par rapport aux données expérimentales.

Par exemple, le modèle de consommation spécifique identifié par rapport au modèle de référence d'E. Torenbeek, présentait une précision de 12% au point fixe avec une tendance de sous-estimation moyenne, et de 6% en croisière avec une tendance de sur-estimation moyenne. En changeant légèrement la valeur de deux des coefficients de la structure analytique de notre modèle de C_{SR} , les tendances de sur et sous-estimation ont pu être éliminées et la précision a pu être sensiblement améliorée : 3.4% au point fixe et 3.7% en croisière.

Cette étape de recalage n'est pas systématiquement effectuée. Par exemple, aucun recalage n'a été fait pour le modèle de poussée maximale F_{max} dont la précision par rapport aux données expérimentales s'est avérée suffisante (erreur moyenne de moins d'un pour-cent par rapport à des données précises de moteurs de la famille des CFM56).

Les modèles analytiques ainsi développés ont été également programmés sous forme de fonctions MATLAB ce qui représente un véritable outil numérique, pour une mise en œuvre rapide et aisée.

1.4 Perspectives ouvertes par le développement de ces thèmes

Nous avons évoqué précédemment, les perspectives alléchantes qu'offre une approche analytique de la Dynamique du Vol. Concrètement, pour chacun des thèmes étudiés lors de cette thèse, nous allons à présent donner des exemples applicatifs directs des modèles que nous avons développés.

1.4.1 Modèles de propulsion

Un travail de modélisation des réacteurs modernes³ [Rou02] a été effectué pour exprimer analytiquement et très simplement l'évolution de la poussée et de la consommation spécifique en fonction de l'altitude et de la vitesse.

Ces lois sont paramétrées en fonction des caractéristiques du moteur, comme le taux de dilution, le taux de compression et la température turbine. La précision obtenue est

 $^{^3 \}rm Moteurs$ civils à fort taux de dilution, et moteurs militaires à faible taux de dilution avec ou sans post combustion.

dans la plupart des cas de l'ordre de quelques pour-cents. Pour le modèle de consommation spécifique, l'erreur relative moyenne de notre modèle est de 3.7% en croisière et 3.4% au point fixe par rapport à 52 moteurs civils (taux de dilution $\lambda > 3$), et pour le modèle de poussée maximale, elle est de 1.1% par rapport à des moteurs civils dont nous disposons de données précises.

Le modèle le plus simple qui existait auparavant était celui d'E. Torenbeek [Tor86], mais qui prenait environ deux pages de calculs et qui n'avait pas été réactualisé sur des moteurs récents. Son erreur relative moyenne d'estimation de la consommation spécifique était de 6.6% en croisière et 10.9% au point fixe. Notre modèle apporte un gain de précision de 3 à 7%!

Nous avons procédé à une identification à partir d'un modèle ONÉRA [TF97], modèle numérique qui simule la physique du réacteur. Nous avons ensuite effectué des recalages d'ensemble grâce à des bases de données de moteurs existants.

Les enjeux de tels modèles sont tels qu'ils permettent de modéliser analytiquement les croisières des Airbus et par conséquent, il est possible d'exprimer autour d'un nombre de Mach donné, le coefficient de portance optimal Cz_{opt} en croisière ce qui n'était pas possible jusqu'à présent. En croisière nous disposons de la formule analytique de Bréguet, généralisée par [Hal84] aux trois lois classiques de pilotage, à savoir la croisière opérationnelle, la croisière montante et la croisière de Bréguet. Francis Hale a montré que la différence relative de performances entre ces trois croisières ne dépend que du taux d'emport de carburant. Ce résultat remarquable s'exprime encore analytiquement. Jan Raška [Raš00] a poursuivi la modélisation analytique de ces croisières en introduisant l'influence de la montée, de l'accélération et du nombre de Reynolds. En effet, ces croisières ne sont que des pseudo-équilibres et les termes d'accélérations modifient le rapport des forces de propulsion et donc les performances. La précision est ainsi améliorée de quelques pour-cents. Mais l'ensemble de ces résultats ne s'applique qu'aux deux cas limites et académiques de propulsion : le moteur à hélice et le réacteur simple flux, et encore pour un modèle simplifié de la poussée et de la consommation spécifique. Si bien qu'il faut avouer que nous n'avions pas de forme analytique pour modéliser la croisière d'un avion de transport moderne de type Airbus. Pour ces avions, les réacteurs sont à fort taux de dilution et leur comportement se situe à mi-chemin entre l'hélice et le réacteur simple flux. Nos modèles de propulsion permettent désormais d'exprimer analytiquement le coefficient de portance optimal Cz_{opt} en croisière d'un Airbus, travail qui a été commencé par Laurent Bovet [Bov03].

Une autre application de nos modèles de propulsion est l'étude des performances en montée. Ce travail de modélisation des efforts propulsifs comporte deux volets : trouver un modèle simple assez précis, mais aussi définir une structure de modélisation qui permette d'accéder à une forme analytique des performances optimales. Il peut y avoir conflit entre ces deux objectifs. À terme, nous pourrons exprimer les performances, les vitesses et coefficient de portance optimal Cz_{opt} en montée et en croisière pour différents type de moteurs et d'avoins. Par exemple une structure de la poussée F fonction du nombre de Mach M, de la forme $F = \frac{a}{M^2} + b M^2 + c$ répond à ce genre de critère, mais pose un problème de modélisation à vitesse nulle.

1.4.2 Modèles de masse

Outre le développement d'un modèle de masse moteur, nous avons développé un modèle de masse voilure adapté aux ailes en flèche avec effilement. Quant à la masse fuselage, elle a été modélisée par Marco Adurno [Adu04] et Benoît Mathieu [Mat99].

La principale raison d'entreprendre un tel travail, est la nécessité d'avoir des modèles

massiques pour l'étude de performances conceptuelles⁴. En effet, en phase de conception, le fuselage est pratiquement fixé par le nombre de passagers, par contre le choix de la voilure change considérablement les performances. Ainsi, nous avons besoin de modèles simples mais pertinents. "Simple" dans le sens où la taille du modèle est raisonnable afin d'évaluer rapidement la masse (temps de calcul faible). Et "pertinent" : le modèle doit être représentatif des caractéristiques voilure, être fonction des paramètres conceptuels influents (surface, flèche, effilement, ...) ce qui permettra un domaine de validité étendu (contrairement aux modèles statistiques existants), et doit être assez précis par rapport à l'objectif visé c'est-à-dire pour une approche de type avant-projet. Ces modèles sont, dans la mesure du possible, analytiques, ce qui permet une meilleure interprétation physique. Nous introduisons cette notion physique dans nos modèles, par l'étude de la résistance des matériaux : dimensionnement en flexion, en cisaillement et en torsion.

Non content d'avoir une meilleure précision que les modèles voilures existants répertoriés dans la littérature, notre modèle a un domaine de définition également plus étendu de par son mode d'élaboration⁵.

- **plus précis** : avec un gain de 3% de précision par rapport aux meilleurs modèles existants d'I.Kroo [Kro01] et d'E.Torenbeek [Tor86], notre modèle présente une erreur relative moyenne de 8.7% par rapport aux données de 37 avions de transport civil (Appendix A, p. 195).
- **plus robuste** : par rapport aux différents paramètres voilure car physique : il est basé sur les résultats de la Résistance Des Matériaux.

Les perspectives qu'offrent un tel modèle de masse voilure sont de taille puisque cela a, entre autre, permis de montrer que la masse voilure rapportée à la masse de passagers transportée, était une fonction croissante de la taille de l'avion. Ce résultat est utilisé par Laurent Bovet [Bov03] dans l'étude de l'effet de taille des avions sur l'altitude optimale de croisière.

Cette modélisation a également l'avantage d'offrir d'autres applications, comme celle en cours de réalisation par Marco Adurno [Adu04] pour l'étude de la position du foyer et du point de manœuvre d'un avion souple. La souplesse de l'aile étant déduite des calculs de notre modélisation voilure.

1.4.3 Performance au décollage

Pour le calcul de la longueur de piste au décollage ou à l'atterrissage des modèles analytiques très simplifiés existent, fondés sur une application du théorème de l'énergie cinétique. Une forme plus générale résultant d'une intégration avec des modèles simplifiés de poussée et de frottement, est proposée par [Vin93]. Mais il semblait qu'une forme quasi générale [Pau97] soit accessible après une intégration délicate mais réalisable. Effectivement, la résolution délicate d'une équation différentielle de type Riccati nous a permis de mettre au point un modèle analytique du roulage qui permet d'"absorber" les modèles les plus complets de poussée, notamment les modèles de poussée que nous avons mis au point au cours de cette thèse.

 $^{^4}$ c'est-à-dire améliorer les performances d'un avion non construit, en jouant sur les choix de sa conception même et non pas en modifiant son cas de vol.

⁵Les modèles existants sont généralement des modèles statistiques basés uniquement sur la notion de résistance de l'aile en flexion (d'où leur terme en $\frac{b}{\cos\varphi}$) et sont ajustés statistiquement à quelques avions semblables. Leurs prédictions se détériorent pour les avions quelques peu différents, contrairement à un modèle physique.

Par ailleurs, et cela n'avait jamais été réalisé auparavant, notre modèle de roulage permet de tenir compte de l'évolution du coefficient de frottement pneu/piste en roue libre ou au freinage, avec la vitesse de roulage. C'est un point fort de notre modèle puisque le frottement est très influent sur la longueur de piste au roulage.

Bien entendu, un coefficient de frottement constant, moyen, peut être considéré. Dans ce cas, nous conseillons un moyen d'estimer la valeur moyenne judicieuse à prendre [Rou05], car il faut savoir qu'une mauvaise valeur moyenne de ce coefficient peut entraîner de lourdes erreurs sur l'estimation de la longueur de roulage.

Mais notre modèle a l'avantage de pouvoir tenir compte de modèles sophistiqués de ce coefficient comme celui d'A.Lausetti [Lau92], ou même les modèles de frottement que nous avons également élaborés.

Cette forme analytique de la longueur de piste est susceptible d'améliorer les temps de calculs, y compris pour des calculs embarqués. Elle peut également favoriser l'analyse des sensibilités paramétriques des performances au décollage et d'éclairer le choix des configurations optimales comme la configuration de becs/volets optimales ou encore l'incidence de roulage optimale, ...

1.5 Conclusion

Ces études donnent des résultats novateurs et montrent qu'il existe une réelle possibilité de développement de modèles analytiques en Dynamique du Vol qui améliorent sensiblement la précision et la robustesse des résultats. Ils constituent un très bel outil d'analyse. Ils ne sont évidemment pas limitatifs et le champ d'applications est largement ouvert, au bénéfice de ce projet de thèse. Deuxième partie Modèles développés

Chapitre 2

Modèles moteurs ...

FIG. 2.1 – Turbofan CFM56 5C équipant l'A340 (taux de dilution $\lambda = 6.5$)

Sommaire

2.1	Cons	sommation spécifique C_{SR}	24
	2.1.1	Bilan des modèles existants	25
		Consommation spécifique constante	25
		Modèle de J.Mattingly	26
		Modèle ESDU	26
		Modèle de A.Carrère	29
		Modèle Onéra	29
		Modèle d'E.Torenbeek	30
	2.1.2	Élaboration de notre modèle de consommation spécifique C_{SR}	31
		Validation du modèle d'E.Torenbeek et analyse des paramètres influents	31
		Identification de notre modèle sur celui d'E.Torenbeek	37
		Recalage sur des données de moteurs réels	38
		Modèle de consommation spécifique proposé	41
2.2	Pous	ssée maximale F_{max}	42
	2.2.1	Bilan des modèles existants	43
		Modèle de J-C. Wanner	43
		Modèle Aérospatiale	43
		Modèle de J.Mattingly	44
		Modèle d'E.Torenbeek	46
		Modèle Onéra	47
	2.2.2	Notre modèle	52
		Méthode d'élaboration	52
		Choix de la structure analytique	54
		Modèle de poussée maximale des moteurs civils	57
		Modèle de poussée maximale à sec des moteurs militaires $\ . \ .$	60
		Modèle de gain de poussée par post-combustion	62
2.3	Mas	se moteur M_m	64
	2.3.1	Bilan des modèles existants	65
		Lois statistiques	65
		Loi Torenbeek	65
	2.3.2	Nos modèles	69
		Loi statistique $M_m = kF_0^{\alpha}$ optimale	69
		Recalage du modèle d'E.Torenbeek	71
		Loi de masse moteur linéaire par morceaux	73
	2.3.3	Résultats	75

Introduction

La modélisation d'un problème est une étape primordiale au cours d'une étude. Les choix des modèles ont un grand impact sur les résultats obtenus et doivent donc être judicieux. En vue d'une modélisation analytique de performances conceptuelles¹ des avions de transport civils et d'avions militaires, nous avions alors besoin d'élaborer des modèles moteur "pertinents" et analytiques (C'est-à-dire fonction des paramètres influents et le plus simple possible avec une précision de l'ordre du pour-cent). Les modèles moteurs que nous mettrons au point seront alors adaptés aux réacteurs civils double flux (turbofan) équipant les avions de ligne (Mach M < 1 et taux de dilution $\lambda > 3$) et aux réacteurs militaires à faible taux de dilution (Mach M < 2 et taux de dilution $\lambda < 3$) avec ou sans post-combustion. Ces modèles ont d'ailleurs été utilisés par une autre thèse sur "l'altitude optimale des avions de transport civils" [Bov03].

Nous mettrons alors au point des modèles de propulsion, c'est-à-dire de consommation spécifique C_{SR} et de poussée maximale F_{max} du réacteur, et de masse M_m .

Comme pour chacun des thèmes abordés au cours de cette thèse, la modélisation des efforts propulsifs est faite en plusieurs étapes (Section 1.3, p. 13). Après avoir effectué le bilan des modèles existants et constitué une base de données expérimentales (Appendix A, p. 195), nous choisirons, parmi les modèles existants, un modèle de référence : celui d'E.Torenbeek pour la consommation spécifique et celui de l'ONÉRA pour la poussée maximale. Nous validerons ces modèles de référence (pertinent, fonction des paramètres influents et cohérent vis-à-vis des autres modèles existants et expérimentaux). Nous choisirons la structure analytique de notre propre modèle (linéaire si possible), dont les coefficients seront identifiés, c'est-à-dire déterminés par la méthode des moindres carrés afin de minimiser l'erreur relative moyenne, par rapport aux données simulées issues de la mise en œuvre du modèle de référence. Ensuite, nous procéderons éventuellement à un recalage de nos modèles sur les données expérimentales (moteurs réels) en procédant par "retouches" successives sans mettre en cause la structure même du modèle.

C'est ainsi que nous vous proposerons des modèles plus robustes que les modèles statistiques existants, par rapport aux différents paramètres moteurs (nos modèles restent assez "physiques" car identifiés sur des modèles numériques basés sur l'étude thermodynamique du cycle moteur), mais dont la mise en œuvre reste bien plus aisée qu'un modèle numérique, et dont la précision est remarquable.

- Le modèle de consommation spécifique (Table 2.8, p. 41) a une précision de 3.6% par rapport aux données expérimentales (Appendix A, p. 195) en croisière et au point fixe de 52 moteurs double flux ($\lambda \geq 3$), soit un gain de précision de 3 à 13% par rapport aux meilleurs modèles existants.
- Un modèle de poussée maximale civil (Table 2.9, p. 57) et militaire (Table 2.10, p. 60) ayant une précision de l'ordre du pour-cent par rapport au modèle de référence ONÉRA et également par rapport à des données moteurs précises civils et militaires (avec ou sans post-combustion). Par exemple, la précision est de 1% par rapport aux données précises à notre disposition de la famille CFM56, soit un gain de précision de 28% par rapport aux modèles existants de J.Mattingly ou de l'Aérospatiale.
- Un modèle de masse moteur (Table 2.21, p. 74) ayant une précision de 7.2% par rapport à l'ensemble des moteurs (Appendix A, p. 195) et 6.5% par rapport aux moteurs d'avions civils. Soit un gain de 6% par rapport au meilleur modèle existant.

La robustesse, la mise en œuvre simple et la précision de ces modèles les rendent particulièrement appréciables pour des études ayant une approche de type avant-projet.

 $^{^1\}mathrm{c'est-à-dire}$ améliorer les performances d'un avion non construit, en jouant sur les choix de sa conception même et non pas en modifiant son cas de vol.

2.1 Consommation spécifique C_{SR}

La consommation de carburant C (kg/s) d'un moteur s'exprime comme le produit d'une consommation spécifique C_{SR} (kg/s/N) ou C_{SH} (kg/s/W) et de la poussée moteur F pour les réacteurs (Equation 2.2, p. 24) ou de la puissance P_m (Equation 2.1, p. 24) pour les moteurs à pistons équipés d'hélice.

$$H\acute{e}lice: \quad C = C_{SH} P_m \tag{2.1}$$

Réacteurs :
$$C = C_{SR} F$$
 (2.2)

La relation (Equation 2.2, p. 24) est particulièrement adaptée aux moteurs simple flux (turbojet), c'est-à-dire des moteurs ayant un taux de dilution très faible ($\lambda \approx 0$). Pour les moteurs double flux (turbofan) à taux de dilution λ élevés, c'est-à-dire les moteurs équipant les avions de ligne actuels, la consommation spécifique C_{SR} n'est pas vraiment constante. En réalité, la consommation spécifique C_{SR} dépend des paramètres opérationnels de vol tels que le Mach M et l'altitude h, mais également des paramètres conceptuels du moteur (taux de dilution λ , taux de compression ε_c, \ldots).

Les modèles existants de C_{SR} sont soit trop simplistes, adapté à un réacteur donné et ne dépendant pas des paramètres conceptuels moteur, soit basé sur l'étude du fonctionnement moteur, tel que le modèle d'E.Torenbeek, mais dont la mise en œuvre n'est pas aisé et requiert l'aide du numérique.

Nous allons développer un modèle intermédiaire, c'est-à-dire relativement simple analytiquement, dépendant des paramètres opérationnels et conceptuels influents, et suffisamment précis pour des études de type avant-projet.

L'étude analytique de performances avion en croisière, se fait grâce aux formules de Bréguet, mais ces résultats ne s'appliquaient jusqu'à présent qu'aux deux cas limites et académiques de propulsion : le moteur à hélice et le réacteur simple flux, et encore pour un modèle très simplifié de la consommation spécifique C_{SR} . Si bien qu'il faut avouer que nous n'avions pas de forme analytique pour modéliser la croisière d'un avion de transport moderne de type Airbus. Pour ces avions, les réacteurs sont à fort taux de dilution λ et leur comportement se situe à mi-chemin entre l'hélice et le réacteur simple flux. Par exemple, nous ne pouvions pas exprimer analytiquement le coefficient de portance optimal Cz_{opt} en croisière d'un Airbus.

Pour élaborer notre modèle de consommation spécifique C_{SR} adapté aux réacteurs double flux ($\lambda \geq 3$), nous procéderons en plusieurs étapes :

- Validation du modèle de référence : Nous vérifierons que le modèle d'E.Torenbeek tient bien compte des paramètres influents sur la C_{SR} et est relativement précis par rapport aux données expérimentales de moteurs réels (Appendix A, p. 195).
- Simulation de moteurs fictifs : Nous mettrons en œuvre le modèle d'E.Torenbeek pour simuler les consommations spécifiques pour plusieurs points de vol (Mach Met altitude h) de moteurs fictifs ayant divers taux de dilution λ , taux de compression ε_c, \ldots
- Choix d'une structure analytique de notre modèle : Grâce à l'étude du comportement de la consommation spécifique C_{SR} en fonction des paramètres moteurs, nous pourrons choisir une expression analytique (Equation 2.10, p. 37) fonction des paramètres opérationnels (M, h) et conceptuels (λ, ε_c) influents, et qui décrit au mieux les simulations de C_{SR} faites à partir du modèle d'E.Torenbeek.
- Identification sur les données simulées du modèle d'E. Torenbeek : Les coefficients de la structure analytique choisie pour notre modèle sont optimisés par la méthode des moindres carrés (fonction "lsqnonlin" de MATLAB) pour minimiser l'erreur relative

moyenne entre les estimations de notre modèle et les simulations issues du modèle d'E.Torenbeek.

Recalage sur des données expérimentales : Afin d'améliorer la précision de notre modèle, nous procéderons par "retouches" successives sur des données expérimentales en croisière et au point fixe (Appendix A, p. 195), en prenant soin de ne pas pour autant remettre en cause la structure analytique du modèle ni son sens physique. Les retouches consistent à changer légèrement la valeurs de deux des coefficients de la structure analytique de notre modèle, afin d'éliminer la tendance de surestimation de la croisière et sous-estimation du point fixe.

Le modèle que nous obtiendrons (Table 2.8, p. 41), a une précision remarquable de 3.6% par rapport aux données expérimentales (Appendix A, p. 195) de 52 réacteurs double flux $(\lambda \geq 3)$. Sa précision, sa simplicité analytique, et sa dépendance aux paramètres moteur opérationnels et conceptuels influents, font de ce modèle un outil appréciable pour les études de type avant-projet.

2.1.1 Bilan des modèles existants

Nous allons présenter les modèles existants de consommation spécifique C_{SR} que nous avons répertoriés. Nous avons transformé leur expression afin que leurs variables soient en unités du système international (SI : N, kg, ...). Vous pourrez néanmoins retrouver leur expression d'origine dans les documents cités (cf. bibliographie).

Consommation spécifique constante

Le modèle le plus simple de consommation spécifique C_{SR} consiste à considérer celle-ci constante.

"In the limit, over infinitesimal segments of the flight path, this law is exact. In certain cases, the actual variation in C_{SR} over the whole or part of the cruise may be very small and results can be obtained to a satisfactory level of accuracy by using a suitable, mean of C_{SR} . This approach permits relatively simple expressions to be derived for both range and endurance and for the flight conditions necessary to achieve maximum specific range."

- ESDU Item 73019 [ESD82] -

Il faut alors considérer soit une valeur moyenne des consommations spécifiques de croisière² soit une moyenne de celles au point fixe³. Pour l'ensemble des moteurs civils de notre base de données expérimentales (Appendix A, p. 195), la moyenne des consommations spécifiques C_{SR} est de $C_{SR} = 1.11 \, 10^{-5} \, (kg/s)/N$ soit 0.4 kg/daN.h au point fixe (altitude et vitesse nulles), et de $C_{SR} = 1.75 \, 10^{-5} \, (kg/s)/N$ soit 0.63 kg/daN.h en croisière. Nous avons alors au sol et à l'arrêt :

$$C_{SR} = 1.11 \ 10^{-5} \ (kg/s)/N \tag{2.3}$$

Et en croisière :

$$C_{SR} = 1.75 \ 10^{-5} \ (kg/s)/N \tag{2.4}$$

$$C_{SR}$$
: Consommation Spécifique Réacteur moyenne $(kg/s)/N$
de réacteurs civils (à fort taux de dilution)

 $^{^2 {\}rm La}$ croisière des avions de transport civils se fait à une altitude h d'environ 10 km et à un MachM proche de 0.8

³Le point fixe désigne le fait d'être au sol (altitude nulle h = 0 m) et à l'arrêt (vitesse nulle : M = 0).

Modèle de J.Mattingly

Jack D. Mattingly nous propose un modèle de consommation spécifique [Mat96].

"The values of C_{SR} depends on the engine cycle, altitude, and Mach number. For preliminary analysis, the following equations can be used to estimate C_{SR} in units of (lbm/hr)/lbf and θ is the dimensionless temperature ratio $\theta = \frac{T}{T_0}$.

- High-bypass-ratio turbofan : $C_{SR} = (0.4 + 0.45M)\sqrt{\theta}$
- Low-bypass-ratio, mixed-flow turbofan : Military and lower power setting $C_{SR} = (1.0 + 0.35M)\sqrt{\theta}$ Maximum power setting $C_{SR} = (1.8 + 0.30M)\sqrt{\theta}$
- Turbojet :

Military and lower power setting $C_{SR} = (1.3 + 0.35M)\sqrt{\theta}$ Maximum power setting $C_{SR} = (1.7 + 0.26M)\sqrt{\theta}$

- Turboprop : $C_{SR} = (0.2 + 0.9M)\sqrt{\theta}$
- ,,

- Jack Mattingly [Mat96] -

(kg/s)/N

K

Puisque nous nous intéressons essentiellement aux réacteurs ayant un grand taux de dilution λ , nous retiendrons le modèle correspondant au "High-bypass-ratio turbofan" qui exprimé en unités du système international devient :

$$C_{SR} = (1.13\ 10^{-5} + 1.25\ 10^{-5}M)\sqrt{\theta}$$
(2.5)

- C_{SR} : Consommation Spécifique Réacteur
 - M: Mach de vol
 - θ : Rapport des températures en vol et au sol $\theta = \frac{T}{T_0}$
 - T: Température ambiante en vol (Appendix B.1, p. 207)
 - T_0 : Température au sol (Appendix B.1, p. 207) $T_0 = 288.15K = 15 \degree C$ K

REMARQUE 2.1 Au point fixe, le modèle de J.Mattingly évalue la consommation spécifique C_{SR} à 1.13 $10^{-5} (kg/s)/N$ ce qui correspond bien à une valeur moyenne étudiée précédemment : supérieure de 1.8% (Equation 2.3, p. 25). En croisière (M = 0.8 et h = 10000 m), ce modèle donne une consommation spécifique C_{SR} de 1.89 $10^{-5} (kg/s)/N$ ce qui est plutôt pessimiste (8% de plus) par rapport à la valeur moyenne de croisière que nous avions (Equation 2.4, p. 25).

Modèle ESDU

Un article de l'ESDU [ESD82], nous propose un modèle de consommation spécifique C_{SR} proportionnelle au nombre de Mach M à la puissance n.

$$C_{SR} = k\sqrt{\theta}M^n \tag{2.6}$$

 C_{SR} : Consommation Spécifique Réacteur

- M: Mach de vol
- k: Coefficient
- n: Coefficient (Figure 2.2, p. 27) $n = n(\lambda, h)$ (Equation 2.7, p. 27)
- θ : Rapport des températures en vol et au sol $\theta = \frac{T}{T_0}$
- λ : Taux de dilution
- h: Altitude de croisière

(kg/s)/N

m

"The equation (Equation 2.6, p. 26) neglects the variation of C_{SR} with the engine speed parameter $\left(\frac{N}{\sqrt{\theta}}\right)$. This law may be applied over limited ranges of Mach number but is, strictly speaking, valid at only value of $\frac{N}{\sqrt{\theta}}$. However, it is found that, within the limited range of engine speed appropriate to cruising flight, this equation (Equation 2.6, p. 26) gives a reasonable approximation to the specific fuel consumption of current turbo-jet and turbo-fan engines. To use this law for many particular engine, mean values of the constant k and n must be derived from the manufacturers' data for the range(s) of Mach number that are of interest. When such data are not available, values of n may be obtained from (Figure 2.2, p. 27). For the case of cruising flight in the range $0.6 \leq M \leq 0.9$, (Figure 2.2, p. 27) gives values of n for current turbojet and turbo-fan engines operating at their maximum cruise ratings. It is also possible to derive values of n that are applicable to other ranges of Mach number."

- ESDU Item 73019 [ESD82] -

FIG. 2.2 – Valeurs de n proposées par l'ESDU [ESD82] pour le modèle : $C_{SR} = k\sqrt{\theta}M^n$. L'ESDU a établi ses valeurs à l'aide de données moteurs réels.

La figure proposée par l'ESDU (Figure 2.2, p. 27) semble montrer que le coefficient n, est quasiment une fonction linéaire du taux de dilution λ , dépendante de l'altitude. C'est pourquoi, nous avons choisi d'adopter la loi⁴ suivante pour obtenir une expression du coefficient n:

$$n = 3.975 \ 10^{-2} \lambda + (47.69 \ 10^{-2} - 3.35 \ 10^{-5} h) \tag{2.7}$$

m

$$\begin{array}{rl} \lambda : & \text{Taux de dilution} \\ \text{Avec}: & h: & \text{Altitude de croisière} \\ & & 6000 \ m \leq h \leq 11000 \ m \end{array}$$

⁴Nous avons déterminé cette loi par identification à l'aide des données graphiques de l'ESDU (Figure 2.2, p. 27). Un autre modèle de l'exposant n, a également été développé, à partir de notre modèle de consommation spécifique C_{SR} (Table 2.8, p. 41).

REMARQUE 2.2 Le modèle ESDU présente une courbe croissante de consommation spécifique C_{SR} en fonction du Mach M. Nous verrons que c'est aussi le cas des modèles d'E. Torenbeek (Equation 2.9, p. 30) et de l'ONÉRA (Figure 2.3, p. 29). Par contre, les convexités des courbes de ces derniers, diffèrent du modèle ESDU.En effet, le coefficient n étant inférieur à 1, la dérivée seconde du modèle ESDU est négative :

$$\frac{\partial^2 C_{SR}}{\partial M^2} = n(n-1)k\sqrt{\theta}M^{n-2} < 0$$

Nous verrons que c'est le contraire pour les modèle d'E.Torenbeek et de l'ONÉRA.

Ainsi ce type de modèle (Equation 2.6, p. 26) en M^n n'est applicable que dans une fourchette de Mach réduite. Néanmoins, l'article ESDU propose aussi une loi linéaire en Mach applicable à un domaine plus étendu de Mach.

$$C_{SR} = a + bM$$

Par ailleurs, nous ne disposons pas de la valeur de k de la loi en M^n (Equation 2.6, p. 26). Ainsi, nous relions ces deux définitions (consommation spécifique linéaire en Mach et proportionnelle à M^n), en considérant une loi de consommation spécifique linéaire en Mach et dont la dérivée par rapport au Mach (c'est-à-dire le coefficient multiplicateur du Mach M: b) satisfait à la loi en M^n . Autrement dit :

$$b = \frac{\partial C_{SR}}{\partial M} = n \, k \sqrt{\theta} M^{n-1} = \frac{n}{M} \, k \sqrt{\theta} M^n$$
$$b = \frac{n}{M} C_{SR}$$

En prenant une consommation spécifique de référence C_{SRref} pour un Mach de croisière de référence $0.6 \leq M_{ref} \leq 0.9$, nous obtenons :

$$C_{SR} = a + bM = a + n C_{SRref} \frac{M}{M_{ref}}$$

En admettant que la fonction passe par le point de référence

$$C_{SRref} = a + bM_{ref} = a + n C_{SRref} \frac{M_{ref}}{M_{ref}}$$
$$C_{SRref} = a + n C_{SRref}$$

alors nous obtenons :

$$C_{SR} = C_{SRref} \left((1-n) + n \frac{M}{M_{ref}} \right)$$
(2.8)

C'est sur la base de cette équation d'ESDU linéarisée (Equation 2.8, p. 28), adaptée à un grand domaine de Mach M, que nous comparerons le modèle ESDU avec les autres modèles. Il faudra tout de même connaître un point de référence (C_{SRref}) . Il est toutefois souhaitable de prendre un Mach de référence M_{ref} entre 0.6 et 0.9 pour être dans le domaine recommandé par l'ESDU (un Mach de croisière M = 0.8).

Modèle de A.Carrère

Dans [CB00], Alain Carrère propose un modèle de consommation spécifique pour les turboréacteurs simple flux sec, de la forme :

$$C_{SR} = \frac{a}{b - \sqrt{\gamma rT}M}$$

	a et b :	Constantes adaptées au moteur	
	γ :	Constante des gaz parfaits $\gamma = 1.4$	
	r :	$r = \frac{R}{M_{min}} = 287.1 \ J/(kg \ K)$	J/(kg K)
Avec :	R:	Constante de Joules $R = 8.314 J/(mol K)$	$J/(mol \ K)$
	\mathcal{M}_{air} :	Masse volumique de l'air $\mathcal{M}_{air} = 0.02896 kg/mol$	kg/mol
	T:	Température de vol (Section B.1, p. 207)	K
	M:	Mach de vol	

Modèle Onéra

L'ONÉRA [TF97] a développé un modèle de moteur double flux basé sur l'étude du cycle moteur suivant les lois de l'aérodynamique et de la thermodynamique. Ce modèle permet d'estimer le comportement moteur dans n'importe quelle condition de vol pourvu que l'on connaisse au moins les caractéristiques d'un seul cycle. Le comportement général d'un moteur à fort taux de dilution est donné (Figure 2.3, p. 29).

FIG. 2.3 – Consommation Spécifique C_{SR} estimée par le modèle ONÉRA (figure ONÉRA [TF97]) en fonction du mach de vol M et de l'altitude h pour un moteur représentatif d'un CFM 56 : taux de dilution $\lambda = 6$, température d'entrée turbine $T_4 = 1500 \text{ K}$. Au décollage $C_{SR} = 0.372 \text{ kg}/(\text{daN } h)$ et $T_4 = 1600 \text{ K}$

Le modèle ONÉRA permet de voir le type de variations que subit la consommation spécifique C_{SR} avec le Mach M et l'altitude h de vol (Figure 2.3, p. 29).

Modèle d'E.Torenbeek

E.Torenbeek propose un modèle de consommation spécifique dans [Tor86] fondée sur l'analyse du fonctionnement du moteur. L'expression en unités du système international, pour un turbo-fan est donnée par :

$$C_{SR} = 2.01 \ 10^{-5} \frac{\left(\phi - \mu - \frac{K}{\eta_c}\right)\sqrt{\theta}}{\sqrt{5\eta_n(1 + \eta_{tf}\lambda)}\sqrt{G + 0.2M^2\frac{\eta_d}{\eta_{tf}}\lambda} - (1 + \lambda)M}$$
(2.9)

Avec la fonction G du générateur :

$$G = \left(\phi - \frac{K}{\eta_c}\right) \left(1 - \frac{1.01}{\eta_i^{\frac{\gamma-1}{\gamma}}(K+\mu)(1-\frac{K}{\phi\eta_c\eta_t})}\right)$$
$$K = \mu(\varepsilon_c^{\frac{\gamma-1}{\gamma}} - 1)$$
$$\mu = 1 + \frac{\gamma-1}{2}M^2$$

G : Gas generator power function

 G_0 : Gas generator power function (static, sea level)

- K : Temperature function of compression process
- M : Flight Mach number
- T_4 : Turbine Entry total Temperature
- T_0 : Ambient temperature at sea level
- T : Température de vol (Section B.1, p. 207)

TAB. 2.1 – Nomenclature des variables de performances moteurs

η_c	: Isentropic compressor efficiency $\eta_c = 0.85$	
η_d	: Isentropic fan intake duct efficiency $\eta_d = 1 - 1.3 \left(\frac{0.05}{R_0 \frac{1}{5}}\right)^2 \left(\frac{0.5}{M}\right)^2 \frac{L}{D}$	
L:	: Duct length	m
D :	: Inlet diameter	m
Re:	: nombre de Reynolds à l'entrée de la tuyère (Section B.3, p. 210)	
η_f	: Isentropic fan efficiency $\eta_f = 0.86 - 3.13 \ 10^{-2} M$	
η_i	: Gas Generator intake stagnation pressure ratio $\eta_i = \frac{1+\eta_d \frac{\gamma-1}{2}M^2}{1+\frac{\gamma-1}{2}M^2}$	
η_n	: Isentropic efficiency of expansion process in nozzle $\eta_n = 0.97$	
η_t	: Isentropic turbine efficiency $\eta_t = 0.88$	
η_{tf}	$:\eta_{tf}=\eta_t\eta_f$	

TAB. 2.2 – Nomenclature des rendements moteurs

Les rendements moteurs : E.Torenbeek [Tor86] propose des ordres de grandeur des rendements moteurs (Table 2.18, p. 69). Nous avons choisi d'adopter des valeurs moyennes (Table 2.2, p. 30). Afin d'assurer la continuité dans tout le domaine de Mach M, nous considérons une loi linéaire en Mach pour le rendement du fan η_f (nous disposions d'une valeur au décollage et d'une valeur en croisière (Table 2.18, p. 69)). Nous avons également

K

K

K

ε_c :	: Overall Pressure Ratio (compressor)
γ	: Ratio of specific heats $\gamma = 1.4$
λ	: Bypass ratio
μ	: Ratio of stagnation to static temperature of ambient air $\mu = 1 +$
	$\frac{\gamma-1}{2}M^2$
ϕ	: Nondimensional Turbine Entry Temperature $\phi = \frac{T_4}{T}$
θ	: Relative Ambient Temperature $\theta = \frac{T}{T_0}$

TAB. 2.3 – Nomenclature des variables grecques

borné le rendement de la tuyère (nozzle) $0 \le \eta_n \le 1$ de manière à retrouver un taux de pression à l'entrée du générateur $\eta_i = 1$ pour un Mach nul M = 0 (Résultat donné par E.Torenbeek [Tor68]). En effet nous verrons que ce rendement peut poser problème pour des nombres de Mach proche de zéro (Remarque 2.8, p. 68).

2.1.2 Élaboration de notre modèle de consommation spécifique C_{SR}

Ne disposant de données expérimentales qu'à deux points de vol particuliers : au sol et à l'arrêt (h = 0 m et M = 0) et en croisière $(h \approx 10668 m \text{ et } M \approx 0.8)$, il serait absurde de bâtir un modèle dépendant du Mach M, de l'altitude h, du taux de dilution λ , ..., uniquement sur ces données. C'est pourquoi nous utilisons le modèle d'E.Torenbeek qui est fondé sur l'étude du fonctionnement moteur, et qui tient compte de beaucoup de paramètres, tout en ayant un vaste domaine de définition. À partir des valeurs de consommations spécifiques données par le modèle d'E.Torenbeek pour un maillage de Mach, altitude, taux de dilution, taux de compression ..., sont optimisés les coefficients de l'expression analytique de notre modèle qui doit être judicieusement choisie (Equation 2.10, p. 37) pour minimiser l'erreur entre notre modèle et celui d'E.Torenbeek. Notre modèle ainsi obtenu par identification sur celui d'E.Torenbeek, subit ensuite un recalage (légère retouche qui ne remet pas en cause la structure même du modèle), sur les données expérimentales (Appendix A, p. 195) afin d'améliorer sa précision. Nous obtiendrons ainsi un modèle (Table 2.8, p. 41) de consommation spécifique, adapté aux moteurs civils, fonction des paramètres opérationnels (Mach et altitude de vol) et conceptuels (taux de dilution, taux de compression...) avant une précision de 3.6%.

Validation du modèle d'E. Torenbeek et analyse des paramètres influents

Décider d'identifier notre modèle sur celui d'E. Torenbeek nécessite de valider le modèle d'E. Torenbeek, c'est-à-dire vérifier qu'il est cohérent vis-à-vis des données expérimentales (Appendix A, p. 195) et des autres modèles existants. Le modèle d'E. Torenbeek s'est avéré être le plus précis des modèles existants (Table 2.5, p. 33) et (Table 2.4, p. 32) : une erreur relative moyenne d'estimation de 10.95% au point fixe et de 6.6% en croisière, alors que les autres modèles sont à 14 à 16% au point fixe et 10 à 12% en croisière.

	Au sol et à l'arrêt						
Données Moteurs (Appendix A, p. 195)			C_{SRmoy}	SRmoy J.Mattingly E.Torenbe		beek	
Modèle	λ	$10^5 C_{SR0}$	$Er_{\%}$	$10^{5}C_{SR0}$	$Er_{\%}$	$10^{5}C_{SR0}$	$Er_{\%}$
		(kg/s)/N	20	(kg/s)/N	70	(kg/s)/N	70
SPEY 5118	0.64	NaN	NaN	1.13	NaN	1.75	NaN
RB183 55515P	0.71	1.59	30.25	1.13	28.57	1.79	-12.61
JT8D 217	1.73	NaN	NaN	1.13	NaN	1.37	NaN
JT8D 219	1.77	1.47	24.73	1.13	22.93	1.38	6.03
D30KU II	2.42	NaN	NaN	1.13	NaN	NaN	NaN
TAY 611	3.04	1.22	9.16	1.13	6.98	1.21	0.34
TAY 651	3.07	1.27	13.19	1.13	11.11	1.2	6.12
RB183 TAY650	3.1	NaN	NaN	1.13	NaN	1.15	NaN
TFE731 5	3.15	NaN	NaN	1.13	NaN	1.1	NaN
FJ44	3.28	1.29	14.34	1.13	12.28	1.24	4.05
JT15D	3.3	1.59	30.25	1.13	28.57	1.13	28.74
BR710	4	1.1	-0.16	1.13	-2.56	0.99	10.45
RB211 524H	4.3	1.59	30.62	1.13	28.95	0.96	39.68
RB211 535E4	4.3	1.72	35.65	1.13	34.1	0.99	42.57
PS90	4.4	NaN	NaN	1.13	NaN	0.99	NaN
PW305B	4.5	1.11	0.1	1.13	-2.3	0.97	12.57
V2533 A5	4.6	1.05	-5.57	1.13	-8.11	0.89	15.23
PS 90A	4.6	NaN	NaN	1.13	NaN	0.88	NaN
PS90 Soloviev	4.6	NaN	NaN	1.13	NaN	NaN	NaN
CF6 80A2	4.66	0.99	-11.61	1.13	-14.29	0.92	7.06
BR715 55	4.7	1.05	-5.57	1.13	-8.11	0.89	15.26
V2525 D5	4.8	1.02	-8.51	1.13	-11.11	0.91	10.95
PW4052	4.85	0.99	-11.29	1.13	-13.96	0.91	8.9
PW4056	4.85	1.02	-8.81	1.13	-11.42	0.89	12.35
PW4152	4.85	0.99	-12.25	1.13	-14.94	0.91	8.12
TRENT 772	4.89	NaN	NaN	1.13	NaN	0.85	NaN
D 436T1	4.95	NaN	NaN	1.13	NaN	0.96	NaN
V2522 A5	5	0.96	-14.89	1.13	-17.65	0.91	5.12
CF6 80C2A5	5.05	0.96	-14.89	1.13	-17.65	0.94	2.38
PW4168	5.1	NaN	NaN	1.13	NaN	0.86	NaN
CF6 80C2B1F	5.15	0.91	-22.07	1.13	-25	0.94	-4.01
PW4358	5.2	NaN	NaN	1.13	NaN	0.91	NaN
CF6 80E1A2	5.3	0.93	-18.37	1.13	-21.21	0.85	9.56
CFE738	5.3	1.05	-5.86	1.13	-8.4	1	4.37
CF6 80C2B2	5.31	0.91	-22.07	1.13	-25	0.95	-4.82
V2500 A1	5.4	0.99	-11.61	1.13	-14.29	0.9	9.64
LF507	5.6	1.15	3.79	1.13	1.48	0.99	13.63
D 181	5.6	INAN	NaN	1.13	NaN	0.94	NaN 10.00
ALF 502R5	5.7	1.10	4.20	1.13	1.96	1.01	12.23 N. N.
TRENT 892	5.74	INAIN 1.00	INAIN 0.54	1.13	INAIN 11.14	0.78	NaN 9.64
CF M50 2A2	5.9	1.02	-0.04	1.15	-11.14	0.95	0.04
CFM50 501	6	0.93	-10.37	1.13	-21.21	0.93	0.45
DW2027	6	0.93	-10.37	1.13	-21.21	0.9	0.2
CEM56 2B1	6	0.95 NoN	-10.57 NoN	1.13	-21.21 NoN	0.85	0.00 NoN
DW4084	6.41	NeN	NaN	1.13	NoN	0.91	NoN
CEM56 5C2	6.6	0.01	-22.07	1.10	_25	0.70	5.84
TRENT 900	7.14	NaN	-22.07 NaN	1.13	-20 NaN	0.85	NoN
TRENT 556	7.32	NaN	NaN	1.13	NaN	NaN	NaN
GE90.85B	8.4	0.81	-37.06	1.13	-40.35	0.67	16.78
CFM56 7B20	NaN	1.02	-8.51	1.13	-11.11	NaN	NaN
CF34 3A/3B	NaN	0.99	-11.61	1.13	-14.29	NaN	NaN
AE3007	NaN	1.1	-0.16	1.13	-2.56	NaN	NaN
NK93	NaN	NaN	NaN	1.13	NaN	NaN	NaN
0	_ 1 11	10^{-5} (leg /g) /NT					
CSRmoy	= 1.11	$\frac{10}{10} \frac{(\text{kg/s})/\text{lN}}{10}$	4				
Ecart f	type : o	v =2.2442e-06	14.05	10.0	0	10.0	-
Erreur re	14.25	16.0	3	10.9	Э		

TAB. 2.4 – Confrontation des données expérimentales moteurs (Appendix A, p. 195) et des évaluations de consommations spécifiques C_{SR} au sol et à l'arrêt par les modèles existants : Modèle de C_{SR} constante (Equation 2.3, p. 25), Modèle de J.Mattingly (Equation 2.5, p. 26), Modèle d'E.Torenbeek (Equation 2.9, p. 30)

	En croisière						
Données Moteurs (Appendix A, p. 195)			C_{SRmoy}	moy J.Mattingly E.Torenbe			beek
Modèle	λ	$10^5 C_{SR}$	$Er_{\%}$	$10^{5}C_{SR}$	$Er_{\%}$	$10^{5}C_{SR}$	$Er_{\%}$
		(kg/s)/N	,,,	(kg/s)/N	70	(kg/s)/N	70
SPEY 5118	0.64	2.27	22.69	1.81	20.06	2.39	-5.4
RB183 55515P	0.71	2.27	22.69	1.89	16.62	2.45	-8
JT8D 217	1.73	NaN	NaN	NaN	NaN	NaN	NaN
JT8D 219	1.77	2.09	16.08	1.83	12.27	2.11	-1.31
D30KU II	2.42	1.98	11.64	1.87	5.86	NaN	NaN
TAY 611	3.04	1.95	10.36	1.88	4.02	2.06	-5.34
TAY 651	3.07	1.95	10.36	1.88	4.02	2.04	-4.31
BB183 TAY650	3.1	NaN	NaN	NaN	NaN	NaN	NaN
TFE731 5	3.15	NaN	NaN	NaN	NaN	NaN	NaN
FJ44	3.28	2.12	17.54	1.8	15.07	2.04	4.1
JT15D	3.3	1.53	-14.32	1.87	-21.81	2.04	-33.43
BR710	4	1.81	3.36	1.88	-3.48	1.84	-1.45
RB211 524H	4.3	1.61	-8.51	1.93	-19.63	1.84	-13.69
RB211 535E4	4.3	1.69	-3.43	1.88	-10.75	1.83	-8.18
PS90	4.4	NaN	NaN	NaN	NaN	NaN	NaN
PW305B	4.5	1.91	8.37	1.87	2.37	1.83	4.12
V2533 A5	4.6	1.63	-7.75	1.88	-15.38	1.75	-7.52
PS 90A	4.6	1.69	-3.95	1.87	-10.76	1.73	-2.63
PS90 Soloviev	4.6	NaN	NaN	NaN	NaN	NaN	NaN
CF6 80A2	4.66	1.76	0.72	1.88	-6.3	1.79	-1.35
BR715 55	4.7	1.76	0.24	1.88	-6.82	1.75	0.27
V2525 D5	4.8	1.63	-7.75	1.88	-15.38	1.78	-9.39
PW4052	4.85	NaN	NaN	1.88	NaN	1.78	NaN
PW4056	4.85	NaN	NaN	1.88	NaN	1.76	NaN
PW4152	4.85	NaN	NaN	NaN	NaN	NaN	NaN
TRENT 772	4.89	1.6	-9.47	1.9	-18.6	1.74	-8.71
D 436T1	4.95	1.73	-1.39	1.81	-4.83	1.76	-1.79
V2522 A5	5	1.63	-7.75	1.88	-15.38	1.79	-10.36
CF6 80C2A5	5.05	1.64	-7	1.88	-14.58	1.77	-8.07
PW4168	5.1	NaN	NaN	1.88	NaN	1.73	NaN
CF6 80C2B1F	5.15	1.6	-9.66	1.88	-17.42	1.78	-11.21
PW4358	5.2	NaN	NaN	NaN	NaN	NaN	NaN
CF6 80E1A2	5.3	1.59	-10.05	NaN	NaN	NaN	NaN
CFE738	5.3	1.83	4.11	1.87	-2.17	1.84	-0.7
CF6 80C2B2	5.31	1.63	-7.38	1.88	-14.98	1.79	-9.87
V2500 A1	5.4	1.65	-6.45	1.88	-13.99	1.75	-6.57
LF507	5.6	1.17	-49.39	NaN	NaN	NaN	NaN
D 18T	5.6	1.61	-8.51	1.81	-12.19	1.74	-7.79
ALF502R5	5.7	2.04	14.1	1.84	9.63	1.92	6.06
TRENT 892	5.74	1.58	-11.04	1.91	-21.01	1.7	-7.79
CFM56 2A2	5.9	1.88	6.98	1.88	0.39	1.79	5.15
CFM56 3C1	6	1.89	7.27	1.88	0.71	1.78	5.62
UFM56 5A1	b C	1.69	-3.77	1.88	-11.12	1.77	-4.59
P W 2037	b C	1.65	-6.27	1.93	-17.16	1.77	-1.44
CFM56 2B1	6	1.84	4.55	1.88	-2.2	1.79	2.73
PW4084	6.41 6.6	INAN 1.61	NaN 0.11	1.91	NaN 16.94	1.7	NaN C.4C
CF M30 3C2	0.0	1.01	-9.11	1.88	-10.84 17.76	1.(1	-0.40
TDENT 554	7.22	1.00	-1.00	1.92	-11.10	1.07 NoN	-2.30 NoN
CE00 SED	1.34	1.00	-0.00	1.92	-10.1	1 65	11 din 7 1 9
CEM56 7B20	0.4 NoN	1.04 NoN	-13.40 NoN	1.91 NoN	-23.00 NoN	1.00 NoN	-1.13 NoN
CF3/ 3/ /3P	NoN	IN AIN No N	NoN	NoN	NaN	NoN	NoN
ΔE3007	NoN	NoN	NoN	NoN	NoN	NoN	NoN
NK03	NoN	IN all No N	NoN	NoN	NaN	NoN	NoN
111230	INAIN	11a11	inain	inain	inain	inain	INAIN
C_{SRmoy}	= 1.75	$10^{-3} (kg/s)/N$	1				
Écart f	type : σ	r = 2.1484e-06					
Erreur relative moyenne $Er_{moy\%}$			9.53	11.9	3	6.6	

TAB. 2.5 – Confrontation des données expérimentales moteurs (Appendix A, p. 195) et des évaluations de consommations spécifiques C_{SR} en croisière par les modèles existants : Modèle de C_{SR} constante (Equation 2.4, p. 25), Modèle de J.Mattingly (Equation 2.5, p. 26), Modèle d'E.Torenbeek (Equation 2.9, p. 30)

L'analyse des modèles existants permet de mettre en évidence la sensibilité de la consommation spécifique aux différents paramètres moteur, paramètres dont devra dépendre le modèle que nous allons mettre au point.

La consommations spécifique C_{SR} est une fonction croissante et quasi-linéaire du Mach de vol M (Figure 2.4, p. 34).

FIG. 2.4 – Modèle de Torenbeek (Equation 2.9, p. 30) : Consommation spécifique C_{SR} fonction du Mach de vol M

FIG. 2.5 – Modèle de Torenbeek (Equation 2.9, p. 30) : Consommation spécifique C_{SR} fonction du taux de dilution λ

Le modèle confirme naturellement que plus le taux de dilution λ est élevé, moins la consommation spécifique C_{SR} est importante (Figure 2.5, p. 34). Et la consommation spécifique peut être considérée comme une fonction linéaire du taux de dilution si ce dernier est supérieur à $\lambda > 3$ (c'est-à-dire pour la plupart des gros moteurs civils).

La consommation spécifique C_{SR} décroît lorsque l'altitude croît pour des Mach de croisière. L'effet de l'altitude après 11 km est minime. La modélisation courante de l'effet de l'altitude en $\sqrt{\theta} = \sqrt{\frac{T}{T_0}}$ peut être envisagée mais n'est pas suffisante (Figure 2.6, p. 35).

FIG. 2.6 – Erreur relative du choix d'une correction de consommation spécifique C_{SR} en altitude de la forme $\sqrt{\theta}$ vis-à-vis du modèle Torenbeek dont les rendements moteurs sont affectés par l'altitude. $\ldots \lambda = 4, -\lambda = 6$

La consommation spécifique C_{SR} décroît fortement avec l'augmentation de la température d'entrée turbine T_4 , et c'est pourquoi, beaucoup d'efforts ont été faits durant ce siècle afin de développer des superalliages à base de Nickel (pour les aubes de la turbine), capables de résister à de telles températures. M.Ashby et D.Jones nous expliquent dans [AJ96] que la consommation varie beaucoup pour des températures d'entrée turbine T_4 inférieures à 1000°C (1273°K), et donc c'était un critère important dans les années 50 étant donnés les matériaux que l'on était capable de fabriquer. Mais qu'au-delà de 1000°C, la consommation n'est plus très sensible à la T_4 (c'est aussi ce que nous montre le modèle d'E.Torenbeek (Figure 2.7, p. 36)). Or les moteurs actuels ont des températures d'entrée turbine T_4 bien supérieures à 1000°C (de l'ordre de 1600°K pour les réacteurs civils modernes). Nous n'entacherons donc pas trop notre modèle en ne considérant pas l'influence de la T_4 . Rappelons que notre étude vise la conception de futurs avions avec des moteurs actuels, voir même de futurs moteurs. La consommation spécifique C_{SR} est donc peu influencée par la température d'entrée turbine T_4 des moteurs actuels.

FIG. 2.7 – Modèle de Torenbeek (Equation 2.9, p. 30) : Consommation spécifique C_{SR} fonction de la température d'entrée turbine T_4

La consommation spécifique C_{SR} est relativement sensible au rapport de pression entrée/sortie du compresseur ε_c . Ce phénomène est d'autant plus marqué pour les réacteurs simple flux. Pour des altitudes de croisière, il est possible de modéliser la consommation spécifique C_{SR} comme une fonction linéaire du taux de compression ε_c indépendante du Mach et éventuellement du taux de dilution ($\lambda > 3$).

FIG. 2.8 – Modèle de Torenbeek (Equation 2.9, p. 30) : Consommation spécifique C_{SR} fonction du rapport de pression entrée/sortie du compresseur ε_c

Identification de notre modèle sur celui d'E.Torenbeek

Le modèle d'E.Torenbeek étant validé, nous allons simuler à l'aide de ce modèle, les consommations spécifiques C_{SR} pour plusieurs Mach et altitude de vol, de divers réacteurs fictifs (ayant différents taux de dilution, taux de compression).

Mach M: entre 0 et 0.9 par pas de 0.05 (19 points)

Taux de dilution λ : entre 3 et 8 par pas de 0.1 (51 points)

Altitude h: entre 0 et 12000 m par pas de 100 m (121 points)

Température entrée turbine T_4 : constante prise à 1450 K.

Taux de compression⁵ ε_c : entre 10 à 40 par pas de 10 (4 points)

Soit un total de 468 996 points.

Pour mettre au point notre modèle, nous procédons par identification sur le modèle d'E.Torenbeek (Equation 2.9, p. 30). C'est-à-dire que nous chercherons à minimiser l'erreur d'estimation de notre modèle (une loi judicieusement choisie (Equation 2.10, p. 37) par rapport aux simulations issues du modèle d'E.Torenbeek. Pour se faire, nous utilisons la fonction "lsqnonlin" (fonction remplaçant "leastsq") de MATLAB, qui se base sur la méthode des moindres carrés pour estimer la valeur des coefficients optimaux de notre loi (Equation 2.10, p. 37).

La structure analytique choisie pour notre modèle, conformément aux observations précédentes, est :

$$C_{SR} = ((a_1(h)\lambda + a_2(h))M + (b_1(h)\lambda + b_2(h)))\sqrt{\theta} + c(\varepsilon_c - 30)$$
(2.10)

C_{SR}	: Consommation Spécifique Réacteur	(kg/s)/N
M	: Mach de vol	
h	: Altitude de vol	m
θ	: Rapport des températures en vol et au sol $\theta = \frac{T}{T_0}$	
T	: Température en vol (Section B.1, p. 207)	K
T_0	: Température au sol (Section B.1, p. 207)	K
ε_c	: Rapport de pression entrée/sortie du compresseur	
λ	: Taux de dilution $\lambda \geq 3$	
$a_1(h), a_2(h),$: Fonctions linéaires par morceaux de l'altitude	
$b_1(h), b_2(h)$		
с	: Constante	

L'optimisation des fonctions $a_1(h)$, $a_2(h)$, $b_1(h)$ et $b_2(h)$ et c par identification sur le maillage précédemment décrit, donne les fonctions linéaires par morceaux suivantes :

	Au sol	Troposphère	Stratosphère (basse)
	h = 0 m	$0 < h \leq 11 km$	$11 < h \leq 20 \; km$
a_1	6.5410^{-7}	$-7.4410^{-13}h + 6.5410^{-7}$	$6.45 \ 10^{-7}$
a_2	$1.18 10^{-5}$	$-2.8610^{-10}h + 1.1810^{-5}$	$8.7 10^{-6}$
b_1	-6.5810^{-7}	$-3.47 10^{-11} h - 6.58 10^{-7}$	-1.0410^{-6}
b_2	$1.19 \ 10^{-5}$	$4.04 10^{-10} h + 1.19 10^{-5}$	$1.63 \ 10^{-5}$
С	-1.0510^{-7}	$-1.05 \ 10^{-7}$	-1.0510^{-7}

		Au sol et à l'arrêt		êt En croisière			
Modèle	λ	$10^5 C_{SR0}$	$10^5 C_{SRopt}$	$Er_{\%}$	$10^5 C_{SRcr}$	$10^5 C_{SRopt}$	$Er_{\%}$
		(kg/s)/N	(kg/s)/N	,.	(kg/s)/N	(kg/s)/N	, .
TAY 611	3.04	1.22	1.13	6.92	1.95	2.03	-4.1
TAY 651	3.07	1.27	1.12	11.87	1.95	2.02	-3.6
RB183 TAY650	3.1	NaN	1.12	NaN	NaN	NaN	NaN
TFE731 5	3.15	NaN	1.09	NaN	NaN	NaN	NaN
FJ44	3.28	1.29	1.15	11.02	2.12	1.99	6.42
JT15D	3.3	1.59	1.15	27.76	1.53	2.04	-33.43
BR710	4	1.1	0.97	12.47	1.81	1.89	-4.16
RB211 524H	4.3	1.59	0.87	45.39	1.61	1.85	-14.52
RB211 535E4	4.3	1.72	0.95	44.97	1.69	1.87	-10.63
PS90	4.4	NaN	0.84	NaN	NaN	NaN	NaN
PW305B	4.5	1.11	0.96	13.11	1.91	1.89	1.38
V2533 A5	4.6	1.05	0.85	19.19	1.63	1.78	-9.54
PS 90A	4.6	NaN	0.83	NaN	1.69	1.75	-3.86
PS90 Soloviev	4.6	NaN	NaN	NaN	NaN	NaN	NaN
CF6 80A2	4.66	0.99	0.91	8.53	1.76	1.84	-4.39
BR715 55	4.7	1.05	0.85	18.52	1.76	1.79	-1.93
V2525 D5	4.8	1.02	0.89	12.39	1.63	1.83	-12.66
PW4052	4.85	0.99	0.89	10.26	NaN	1.83	NaN
PW4056	4.85	1.02	0.87	14.52	NaN	1.81	NaN
PW4152	4.85	0.99	0.89	9.49	NaN	NaN	NaN
TRENT 772	4.89	NaN	0.79	NaN	1.6	1.75	-9.53
D 436T1	4.95	NaN	0.91	NaN	1.73	1.79	-3.64
V2522 A5	5	0.96	0.91	5.56	1.63	1.85	-13.91
CF6 80C2A5	5.05	0.96	0.84	13.07	1.64	1.78	-8.77
PW4168	5.1	NaN	0.83	NaN	NaN	1.77	NaN
CF6 80C2B1F	5.15	0.91	0.85	6.52	1.6	1.79	-12.24
PW4358	5.2	NaN	0.85	NaN	NaN	NaN	NaN
CF6 80E1A2	5.3	0.93	0.81	13.2	1.59	NaN	NaN
CFE738	5.3	1.05	0.91	12.97	1.83	1.85	-1.22
CF6 80C2B2	5.31	0.91	0.87	4.45	1.63	1.82	-11.26
V2500 A1	5.4	0.99	0.84	15.66	1.65	1.79	-8.59
LF507	5.6	1.15	0.99	14.26	1.17	NaN	NaN
D 18T	5.6	NaN	0.87	NaN	1.61	1.76	-9.1
ALF502R5	5.7	1.16	1	13.8	2.04	1.92	5.98
TRENT 892	5.74	NaN	0.67	NaN	1.58	1.67	-5.57
CFM56 2A2	5.9	1.02	0.85	17.11	1.88	1.81	4.07
CFM56 3C1	6	0.93	0.84	10.64	1.89	1.8	4.78
CFM56 5A1	6	0.93	0.83	11.53	1.69	1.79	-6.07
PW2037	6	0.93	0.77	17.46	1.65	1.79	-8.61
CFM56 2B1	6	NaN	0.86	NaN	1.84	1.82	0.85
PW4084	6.41	NaN	0.7	NaN	NaN	1.7	NaN
CFM56 5C2	6.6	0.91	0.74	18.89	1.61	1.71	-6.61
TRENT 900	7.14	NaN	0.6	NaN	1.63	1.64	-0.5
TRENT 556	7.32	NaN	0.64	NaN	1.65	1.69	-2.06
GE90 85B	8.4	0.81	0.54	33.72	1.54	1.59	-2.8
CFM56 7B20	NaN	1.02	NaN	NaN	NaN	NaN	NaN
CF34 3A/3B	NaN	0.99	NaN	NaN	NaN	NaN	NaN
AE3007	NaN	1.1	NaN	NaN	NaN	NaN	NaN
NK93	NaN	NaN	NaN	NaN	NaN	NaN	NaN
		Er_{r}	noy%	12.44	Er_r	noy%	6.05

TAB. 2.6 – Confrontation des données expérimentales moteurs (Appendix A, p. 195) et des évaluations du modèle identifié (Equation 2.10, p. 37) sur le modèle d'E.Torenbeek, mais n'ayant pas encore subit de recalage.

Recalage sur des données de moteurs réels

Le modèle ainsi identifié a une précision (Table 2.6, p. 38) du même ordre de grandeur que celle du modèle d'E.Torenbeek (Table 2.5, p. 33) et (Table 2.4, p. 32) : 6% en croisière et 12.4% au point fixe.

Toutefois, l'erreur relative de ce modèle (Figure 2.9, p. 39) présente une sous-estimation des consommations spécifiques au point fixe et une sur-estimation des consommations

Modèle Simple de consommation spécifique de Csr

FIG. 2.9 – Erreur relative du modèle (Equation 2.10, p. 37) identifié sur celui d'E. Torenbeek, par rapport aux moteurs réels (Appendix A, p. 195) de taux de dilution λ supérieurs à 3.

spécifiques en croisière. Par ailleurs, l'erreur en croisière semble liée de manière "parabolique" au taux de compression ε_c .

C'est ainsi que nous avons procédé à deux retouches successives qui améliorent les estimations sans remettre en cause la structure même du modèle. La première retouche consiste à rendre indépendante l'erreur relative en croisière vis-à-vis du taux de compression ε_c . La deuxième retouche consiste à corriger la sur-estimation moyenne en croisière et la sous-estimation moyenne au point fixe, en ajustant la valeur des coefficients d'altitude a_2 et b_2 . Ces retouches permettent d'améliorer les estimations puisque l'erreur relative moyenne en croisière est désormais de 3.7% au lieu de 6.1% et au point fixe de 3.4% au lieu de 12.4%.

		Au sol et à l'arrêt		En croisière			
Modèle	λ	$10^{5}C_{SR0}$	$10^5 C_{SRopt}$	$Er_{\%}$	$10^5 C_{SR_{cr}}$	$10^5 C_{SRopt}$	$Er_{\%}$
		(kg/s)/N	(kg/s)/N		(kg/s)/N	(kg/s)/N	
TAY 611	3.04	1.22	1.27	-4.13	1.95	2.06	-5.6
TAY 651	3.07	1.27	1.26	1.31	1.95	2.04	-4.21
RB183 TAY650	3.1	NaN	1.26	NaN	NaN	NaN	NaN
TFE731 5	3.15	NaN	1.22	NaN	NaN	NaN	NaN
FJ44	3.28	1.29	1.28	0.6	2.12	2.09	1.57
BR710	4	1.1	1.1	0.28	1.81	1.77	2.19
PS90	4.4	NaN	0.98	NaN	NaN	NaN	NaN
PW305B	4.5	1.11	1.1	0.96	1.91	1.8	5.85
V2533 A5	4.6	1.05	0.98	6.34	1.63	1.66	-2.12
PS 90A	4.6	NaN	0.96	NaN	1.69	1.65	2.37
PS90 Soloviev	4.6	NaN	NaN	NaN	NaN	NaN	NaN
CF6 80A2	4.66	0.99	1.04	-5.04	1.76	1.72	2.64
BR715 55	4.7	1.05	0.99	5.67	1.76	1.66	5.26
V2525 D5	4.8	1.02	1.03	-0.81	1.63	1.71	-4.93
PW4052	4.85	0.99	1.03	-3.28	NaN	1.71	NaN
PW4056	4.85	1.02	1	1.29	NaN	1.68	NaN
PW4152	4.85	0.99	1.03	-4.17	NaN	NaN	NaN
TRENT 772	4.89	NaN	0.93	NaN	1.6	1.65	-3.32
D 436T1	4.95	NaN	1.04	NaN	1.73	1.7	1.83
V2522 A5	5	0.96	1.04	-8.41	1.63	1.74	-7.19
CF6 80C2A5	5.05	0.96	0.97	-0.91	1.64	1.65	-0.95
PW4168	5.1	NaN	0.96	NaN	NaN	1.65	NaN
CF6 80C2B1F	5.15	0.91	0.98	-8.33	1.6	1.66	-4.11
PW4358	5.2	NaN	0.98	NaN	NaN	NaN	NaN
CF6 80E1A2	5.3	0.93	0.95	-1.2	1.59	NaN	NaN
CFE738	5.3	1.05	1.04	0.1	1.83	1.76	3.45
CF6 80C2B2	5.31	0.91	1	-10.4	1.63	1.69	-3.71
V2500 A1	5.4	0.99	0.97	2.09	1.65	1.66	-0.72
LF507	5.6	1.15	1.12	2.56	1.17	NaN	NaN
D 18T	5.6	NaN	1	NaN	1.61	1.67	-3.35
ALF502R5	5.7	1.16	1.13	2.16	2.04	2	1.99
TRENT 892	5.74	NaN	0.81	NaN	1.58	1.65	-4.79
CFM56 2A2	5.9	1.02	0.98	3.91	1.88	1.69	10.08
CFM56 3C1	6	0.93	0.97	-3.76	1.89	1.68	10.87
CFM56 5A1	6	0.93	0.96	-2.87	1.69	1.67	1.04
PW2037	6	0.93	0.91	3.06	1.65	1.65	0.11
CFM56 2B1	6	NaN	0.99	NaN	1.84	1.72	6.21
PW4084	6.41	NaN	0.83	NaN	NaN	1.6	NaN
CFM56 5C2	6.6	0.91	0.87	4.05	1.61	1.58	1.36
TRENT 900	7.14	NaN	0.73	NaN	1.59	1.6	-0.43
TRENT 556	7.32	NaN	0.78	NaN	1.65	1.58	4.55
		Er_{i}	noy%	3.37	Er_r	noy%	3.68

TAB. 2.7 – Confrontation des évaluations de notre modèle (Table 2.8, p. 41), identifié sur le modèle d'E.Torenbeek et recalé sur les données expérimentales en croisière et au point fixe (Appendix A, p. 195).

Modèle de consommation spécifique proposé

	Modèle de Consommation spécifique C_{SR} à poussée maximale								
	$\begin{split} C_{SR}(F_{max}) &= \left((a_1(h)\lambda + a_2(h))M + (b_1(h)\lambda + b_2(h)) \right) \sqrt{\theta} \\ &+ (7.4 \ 10^{-13} (\varepsilon_c - 30)h + c) (\varepsilon_c - 30) \end{split}$								
Var	iable	es et Unités	: nous avons						
	C_{i}	SR : (Consommation Spécifique Ré	éacteur	(kg/s)/N				
	M : Mach de vol								
	h	: .	Altitude de vol		m				
	θ	:]	Rapport des températures er	n vol et au sol					
		e e	$\theta = \frac{T}{T_0}$						
	T	: [Température en vol (Section	B.1, p. 207)	K				
	T_0) :[Température au sol (Section	B.1, p. 207)	K				
	ε_c	: :]	Rapport de pression entrée/s	ortie du com-					
		1	presseur au sol et à l'arrêt						
	λ	:	Taux de dilution $\lambda \geq 3$						
	a_1	$(h), a_2(h), :]$	Fonctions linéaires par morce	eaux de l'alti-					
	b_1	$(h), b_2(h)$ (h)	cude						
	c	: (Constante						
Мо	de d pui rée	'obtention : s recalé (Equat ls en croisière	Identifié sur le modèle d'E.T tion 2.10, p. 37) sur les donnée et au point fixe (Appendix A	orenbeek (Equat es expérimentale , p. 195).	ion 2.9, p. 30) s de moteurs				
Pré	cisio	n : 3.6% sur 1	les moteurs à taux de dilutio	n $\lambda > 3$ (Append	lix A, p. 195).				
Doi	nain	e de définiti	on : Tous moteurs à taux d	e dilution $\lambda > 3$	•				
		Au sol	Troposphère	basse Stratos	sphère				
$h = 0 m$ $0 < h \le 11 km$ $11 < h \le 20 km$									
	$a_1 = 6.54 \ 10^{-7} = -7.44 \ 10^{-13} h + 6.54 \ 10^{-7} = 6.45 \ 10^{-7}$								
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
j	b_1	-6.5810^{-7}	$-3.47 10^{-11} h - 6.58 10^{-7}$	-1.04 10	-6				
	b_2	1.3210^{-5}	$4.2310^{-10}h + 1.3210^{-5}$	1.7910^{-1}	5				
	с	-1.0510^{-7}	$-1.05 \ 10^{-7}$	-1.0510^{-1}	-7				

TAB. 2.8 – Modèle de consommation spécifique C_{SR} à poussée max F_{max}

2.2 Poussée maximale F_{max}

Que ce soit pour l'étude de performances au décollage, du taux de montée, de taux de virage, de la marge de manœuvre, ou de la croisière, ... un modèle de poussée maximale F_{max} que peut délivrer le moteur est nécessaire. Les modèles de poussée moteur existants sont soit très complexes, basés sur l'analyse aérodynamique et thermodynamique du cycle moteur et nécessitant généralement une mise en œuvre numérique [TF97, Mat96], soit très simplistes, adaptés à un moteur donné dans des cas de vol particuliers [MHD87, Wan84]. Or pour les études de type d'avant-projet, il est utile d'avoir un modèle intermédiaire, c'est-à-dire un modèle moteur simple analytiquement tout en étant fonction des paramètres influents. Cette section présente l'élaboration de tels modèles de poussée, ou plus précisément le rapport $\frac{F_{max}}{F_0}$ de poussée maximale en vol sur la poussée au point fixe, pour des moteurs civils à fort taux de dilution et pour des moteurs militaires à très faible taux de dilution $\lambda < 1$ avec ou sans post-combustion (ce sont les moteurs des avions de combat). Nos modèles sont donc simples analytiquement pour une mise en œuvre aisée de type avant-projet, et dans la mesure du possible, permettent l'étude analytique de performances avion. Ils dépendent également des paramètres influents opérationnels (Mach de vol M, altitude de vol h, position de la manette des gaz δ_x) et conceptuels (taux de dilution λ , taux de compression ε_c , température d'entrée turbine T_4 , température de réchauffe T_{PC}), ce qui permet d'envisager l'étude de performances opérationnelles (comment piloter l'avion pour améliorer ses performances) et conceptuelles (comment concevoir l'avion pour améliorer ses performances).

Pour ce faire, le bilan des modèles existants est d'abord fait. L'analyse de ces derniers a permis de déterminer les paramètres influents et la structure analytique de nos modèles. Les coefficients de cette structure analytiques sont identifiés sur les données simulées issues du modèle de référence ONÉRA qui est l'un des modèles analytiques existants le plus complet, basé sur l'étude thermodynamique et aérodynamique du cycle moteur. Nous disposions de quelques données constructeurs précises de certains moteurs que nos modèles évaluent au pour-cent près. Par contre, la base de données expérimentales courantes à disposition (Appendix A, p. 195) étant trop incomplète, aucun recalage de nos modèles n'a été effectués sur ces données : nous ne disposons généralement que de la poussée au point fixe F_0 et rarement d'une poussée en vol pour les avions militaires, et des paramètres moteurs nécessaires à la mise en œuvre de notre modèle manquent généralement pour les moteurs civils. La bonne précision obtenue par rapport aux données constructeurs précises et le manque d'information sur les données courantes nous ont conforté dans l'idée de ne pas effectuer de recalages hasardeux de nos modèles.

La précision de nos modèles par rapport au modèle de l'ONÉRA, est de l'ordre du pour-cent (Erreur relative moyenne de 1.6% pour le modèle de poussée maximale à sec et de 1% pour le modèle de gain de poussée avec post-combustion).

2.2.1 Bilan des modèles existants

Modèle de J-C. Wanner

Un modèle simple et couramment utilisé, proposé par Jean-Claude Wanner [Wan84], définit la poussée de la manière suivante :

$$F = k_f \rho V^{\lambda_f} \delta_x \tag{2.11}$$

"L'exposant de la vitesse aérodynamique V, λ_f dépend du type de moteur. La poussée est proportionnelle à la masse volumique de l'air ρ . Ainsi, toutes choses égales par ailleurs, la poussée est divisée par trois à 10 km d'altitude. Le coefficient k_f est une constante et δ_x représente la position de la manette des "gaz", comprise entre 0 et 1."

 $\lambda_f \approx -1$ pour les propulsions à hélices $\lambda_f \approx 0$ pour les réacteurs simple flux $\lambda_f \approx 1$ pour les réacteurs simple flux avec post combustion $\lambda_f \approx 2$ pour les stato-réacteurs F: Poussée moteur N: Constante k_{f} : Masse volumique de l'air en vol (Section B.1, p. 207) $kg.m^{-3}$ ρ $m.s^{-1}$ V: Vitesse aérodynamique λ_f : Coefficient dépendant du type de moteur δx : Position de la manette des "gaz" $0 \le \delta_x \le 1$

Ainsi pour connaître la poussée maximale F_{max} , il suffit de considérer que la manette des "gaz" δx est au maximum, soit égale à $1 : \delta x = 1$.

Ce modèle présente l'inconvénient de ne pas tenir compte de l'effet du taux de dilution λ pour les moteurs civils.

Modèle Aérospatiale

Un modèle Aérospatiale⁶ donne pour un moteur d'avion de ligne, une évaluation de la poussée maximale F_{max} suivante :

	$\frac{F_{max}}{F_0} = \frac{\rho}{\rho_0} \left(1 - M + \frac{M^2}{2} \right)$		(2.12)
oussée	moteur maximale en croisière	N	

F_{max}	: Poussée moteur maximale en croisière	N
F_0	: Poussée maximale au sol et à l'arrêt	N
ρ	: Masse volumique de l'air en vol (Section B.1, p. 207)	$kg.m^{-3}$
$ ho_0$: Masse volumique de l'air au sol (Section B.1, p. 207)	$kg.m^{-3}$
	$\rho_0 = \rho(h = 0) = 1.225 kg/m^3$	
h	: Altitude de croisière	m
M	: Mach de vol	

⁶Le modèle d'origine prévoit un facteur multiplicatif 0.97 pour tenir compte des pertes de poussée entre un moteur sur banc d'essai et un moteur implanté sur l'avion. La poussée au point fixe F_0 que nous considérons étant celle du moteur installé, nous ne tiendrons donc pas compte de ce facteur

Ce modèle est visiblement fait pour les performances au décollage (faible Mach, altitude nulle) d'un moteur à taux de dilution moyen $\lambda \approx 6$ (Figure 2.10, p. 44). L'effet du Mach et de l'altitude sont dissociés. Il n'y a pas d'effet de l'altitude h sur la décroissance en Mach M.

FIG. 2.10 – L'effet de Mach des modèles de J.Matingly (Equation 2.13, p. 44) et de l'Aérospatiale (Equation 2.12, p. 43) étant fait pour les performances au décollage, se retrouvent inadaptées à la croisière. (modèle ONÉRA : CFM56 $\lambda = 6$, $\Delta T_4 = -100 \text{ K}$)

Modèle de J.Mattingly

J.Mattingly [MHD87] propose le modèle de poussée moteur maximale F_{max} suivant :

$$\frac{F_{max}}{F_0} = \left(\frac{\rho}{\rho_0}\right)^{0.6} \left(0.568 + 0.25 \left(1.2 - M\right)^3\right)$$
(2.13)

Ceci s'applique aux réacteurs double flux (turbofans) ayant un fort taux de dilution.

F_{max}	: Poussée moteur maximale en croisière	N
F_0	: Poussée maximale au sol et à l'arrêt	N
ρ	: Masse volumique de l'air en vol (Section B.1, p. 207)	$kg.m^{-3}$
$ ho_0$: Masse volumique de l'air au sol (Section B.1, p. 207)	$kg.m^{-3}$
	$\rho_0 = \rho(h=0) = 1.225 \ kg/m^3$	
h	: Altitude de croisière	m
M	: Mach de vol $M < 0.9$	

REMARQUE 2.3 J.Mattingly propose aussi dans [MHD87] un algorithme permettant la résolution d'un modèle plus complexe basé sur l'étude du cycle moteur et tenant compte de paramètres moteurs. Ce modèle est alors similaire à celui développé par l'ONÉRA (Section 2.2.1, p. 47).

Ce modèle est visiblement fait pour un taux de dilution moyen $\lambda \approx 6$ (Figure 2.10, p. 44). Les effets, du Mach et de l'altitude, sont aussi dissociés. Il n'y a pas d'effet de

l'altitude h sur la décroissance en Mach M. Nous verrons que ce modèle est adapté aux performances au décollage et que l'effet de l'altitude en $\left(\frac{\rho}{\rho_0}\right)^{0.6}$ ne fait que rattraper, en croisière (M = 0.8, h = 10 km), une loi de Mach inadaptée en altitude (Figure 2.10, p. 44).

Tout comme pour les moteurs d'avion civil, J.Mattingly propose [MHD87] un modèle de poussée maximale F_{max} pour les moteurs militaires avec et sans post-combustion.

"The variation of installed engine thrust with Mach number, altitude, and afterburner operation can be estimated by developing a simple algebraic equation that has been fit to either existing data of company-published performance curves or predicted data based on the output of off-design cycle analysis with estimates made for installation losses. The following algebraic equations for installed engine thrust lapse are based on the expected performance of advanced engines in the 1990 era and beyond :"

- J.Mattingly [MHD87] -

Low bypass ratio mixed turbofan engine with afterburner :

military power:

$$\frac{F_{max}}{F_0} = 0.72 \left(\frac{\rho}{\rho_0}\right)^{0.7} \left(0.88 + 0.245 \left|M - 0.6\right|^{1.4}\right)^{0.7}$$

maximal power :

$$\frac{F_{maxPC}}{F_{0PC}} = \left(\frac{\rho}{\rho_0}\right)^{0.7} \left(0.94 + 0.38 \left|M - 0.4\right|^2\right)$$

Advanced turbojet with afterburning :

military power :

$$\frac{F_{max}}{F_0} = 0.76 \left(\frac{\rho}{\rho_0}\right)^{0.7} \left(0.907 + 0.262 \left|M - 0.5\right|^{1.5}\right)$$

maximal power :

$$\frac{F_{maxPC}}{F_{0PC}} = \left(\frac{\rho}{\rho_0}\right)^{0.7} \left(0.952 + 0.3 \left|M - 0.4\right|^{1.5}\right)$$
(2.14)

La poussée à sec correspond à "military power" et celle avec réchauffe, c'est-à-dire avec la post-combustion allumée correspond à "maximal power".

F_{max}	: Poussée maximale à sec	N
$F_{max PC}$: Poussée maximale avec post-combustion	N
F_0	: Poussée maximale au point fixe à sec	N
F_{0PC}	: Poussée maximale au point fixe avec post-combustion	N
M	: Mach de vol	
h	: Altitude de vol	m
0	: Masse volumique de l'air en vol	$kg.m^{-3}$
<i>o</i> ₀	: Masse volumique au sol $\rho_0 = \rho(h=0) = 1.225 kg.m^{-3}$	$kg.m^{-3}$

La modélisation en $\rho^{0.7}$ de l'effet de l'altitude sur la poussée maximale n'est pas adaptée, tout comme celle en $\rho^{0.6}$ ne l'est pas pour les moteurs d'avions de transport

FIG. 2.11 – La variation de poussée maximale à sec (sans post-combustion) fonction du Mach du Modèle de J.Mattingly (Equation 2.14, p. 45) semble adaptée aux performances au décollage du M88-2. Ce n'est, par contre, pas le cas en croisière. L'exposant de la masse volumique $\rho^{0.7}$ semble recaler le modèle de J.Mattingly sur une valeur de croisière de h = 11 km et M = 0.5. Nous avons confirmé [Rou02] qu'une modélisation en $\rho^{0.7}$ n'est pas adaptée. Nous garderons de cette figure un ordre de grandeur de l'évolution de la poussée maximale : rien qu'en prenant de la vitesse pour décoller, un avion de combat va perdre ($M \approx 0.3$) presque 10% de sa poussée au point fixe F₀. En croisière à h = 11 km, il perd 65% de F₀ à M = 0.8, et 40% de F₀ à M = 2.

civils [Rou02], (Figure 2.17, p. 55). Cet exposant semble là pour rattraper les estimations, en vol supersonique (Mach $M \approx 1.5$, altitude $h \approx 11 \, km$), d'une modélisation de la poussée fonction du Mach adaptée aux faibles altitudes (Figure 2.11, p. 46).

Modèle d'E.Torenbeek

E.Torenbeek [Tor86] propose un modèle pour évaluer la perte de poussée moteur au décollage. C'est à dire la poussée maximale pour une altitude nulle h = 0 m.

" If F_0 represents the static thrust at sea level, and if at the same time we assume that the gross thrust and mass flow through the engine do not change appreciably over a speed range of up to about M = 0.15, we may write : "

- E. Torenbeek [Tor86] -

$$\frac{F_{max}}{F_0} = 1 - \frac{340.43M}{\left(\frac{F_{max}}{D_m\sqrt{\theta}}\right)_{to}}$$
(2.15)

Élodie Roux - novembre 2005

Or au décollage, l'expression de la poussée corrigée $\left(\frac{F_{max}}{D_m\sqrt{\theta}}\right)_{to}$ nous est donnée par (Equation 2.21, p. 68) :

$$\left(\frac{D_m}{F_{max}}\right)_{to} = 340.43 \frac{1}{1+\lambda} \sqrt{5\eta_n (1+\eta_{tf_{to}}\lambda)G_0}$$

L'expression proposée par E.Torenbeek (Equation 2.15, p. 46) devient alors :

$$\frac{F_{max}}{F_0} = 1 - \frac{\left(1 + \lambda\right)M}{\sqrt{5\eta_n(1 + \eta_{tf_{to}}\lambda)G_0}}$$

"This equation may be refined by taking account of the fact that the gross thrust increases with speed due to the dynamic pressure $\left(0.6 + \frac{0.11\lambda}{G_0}\right) M^2$ and that this is intensified as the bypass ratio increases. assuming the mass flow through the engine to be constant, we may deduce : "

- E. Torenbeek [Tor86] -

$$\frac{F_{max}}{F_0} = 1 - \left(\frac{1+\lambda}{\sqrt{5\eta_n(1+\eta_{tf_{to}}\lambda)G_0}}\right)M + \left(0.6 + \frac{0.11\lambda}{G_0}\right)M^2$$
(2.16)

D_m	: Débit massique d'air traversant le moteur (gas gene-	kg/s
	rator+fan)	
F_{max}	: Poussée moteur maximale au sol (altitude $h = 0 m$)	N
F_0	: Poussée maximale au sol et à l'arrêt	N
G_0	: Fonction du générateur de gaz (Equation 2.22, p. 68).	
	De l'ordre de 0.9 à 1.2 au décollage	
M	: Mach de vol $M < 0.3$	
λ	: Taux de dilution	
η_n	: Rendement moteur dans la tuyère (nozzle) $\eta_n = 0.97$	
	(Table 2.18, p. 69) $\frac{1}{\sqrt{5n_n}} \approx 0.45$	
η_{tf}	: Produit des rendements du fan η_f et de la turbine η_t	
	(Table 2.18, p. 69). $\eta_{tf_{to}} \approx 0.75$	
to	: Donnée relative au décollage (Takeoff)	

Modèle Onéra

L'ONÉRA a développé un modèle [TF97] basé sur l'étude du cycle moteur, selon les lois de l'aérodynamique et de la thermodynamique, permettant d'estimer les performances de réacteurs double flux, double corps, à flux séparés. Les différents rendements internes du moteur (rendements : du fan, des compresseurs, des turbines; et pertes : d'entrée d'air, dans la chambre de combustion, dans les tuyères de flux primaire et secondaire, de puissance des arbres basse et haute pression...) sont modélisés de façon empirique. Par une résolution itérative d'un système non linéaire de 35 équations, ce modèle permet de déterminer le comportement d'un turbofan dans n'importe quelles conditions de vol, pourvu que l'on connaisse au moins les caractéristiques d'un seul cycle. La connaissance de ce cycle peut se traduire par les paramètres conceptuels du moteur. Le moteur est conçu pour être nominal à une altitude h et un Mach M donnés. À ce point de vol particulier, ses paramètres moteur, dits "conceptuels", sont alors : le taux de dilution λ ,

FIG. 2.12 – Simulation Onérra de la perte de poussée avec le Mach M et l'altitude h de vol, pour différents moteurs.

le taux de compression⁷ ε_c , la température entrée turbine T_4 , le débit total du moteur D_m , divers rendements moteurs, les prélèvements de puissance ou de débit d'air⁸.

REMARQUE 2.4 Un moteur est conçu pour être optimum soit au décollage (pour satisfaire aux contraintes de décollage en cas de panne d'un des moteurs de l'avion), soit en croisière (la majeure partie d'un vol), ou encore un compromis entre les deux. Un travail en collaboration avec des motoristes permettrait d'en apprendre davantage sur ce cycle conceptuel optimal. En attendant, ne disposant généralement que de données au point fixe, ce sont ces données que nous considérerons comme paramètres conceptuels.

La connaissance de ces paramètres conceptuels permet de simuler le comportement du moteur (entre autre la poussée maximale F_{max}) d'un point de vue opérationnel, c'està-dire pour un autre cas de vol : pour un Mach M, une altitude h et une température d'entrée turbine T_4 opérationnelle, donnés.

⁷En réalité, le programme développé par l'ONÉRA, prend en entrée les différences de températures sortie/entrée de chaque étage de compression (fan, compresseur basse et haute pression) et non pas les taux de compression. Le passage de l'un à l'autre peut néanmoins se faire selon la méthode décrite dans [BV99] en fonction de la chaleur spécifique, de l'efficacité du compresseur, ...

⁸Des prélèvements [Lam90] sont effectués pour le refroidissement du moteur ou pour l'avion dans le but de pressuriser et conditionner le fuselage, de dégivrer le bord d'attaque des ailes, de faire tourner des pompes ou moteurs à air comprimé, ...

REMARQUE 2.5 La régulation d'un moteur se fait généralement soit par la température d'entrée turbine T_4 (avec comme limite maximale la température admissible par les matériaux des aubes de turbine : super-alliage Nickel [AJ96]) soit par le régime de rotation de l'arbre principal N_1 (limité mécaniquement par la rotation maximale admissible). Le modèle ONÉRA permet de considérer une régulation en température d'entrée turbine T_4 . En effet, en admettant comme entrée le paramètre opérationnel T_4 (Température d'entrée turbine opérationnelle), nous pouvons alors simuler plusieurs régimes moteur possibles (décollage, croisière, montée, ...) mais aussi, et c'est là toute la subtilité, faire fonctionner le moteur à régime réduit (c'est-à-dire à une poussée non maximale $F \leq F_{max}$). Or nous cherchons à mettre au point un modèle de poussée maximale F_{max} . Les motoristes définissent plusieurs poussées maximales : celles de décollage où la T_4 est maximale^{*a*}, celle de montée et celle maximale continue de croisière. Au décollage la température d'entrée turbine T_4 est maximale mais elle ne peut être maintenue au delà de quelques minutes sous peine de détériorer le moteur. Cette T_4 au décollage correspond à la T_4 conceptuelle autour de laquelle le moteur est conçu. La T_4 opérationnelle sera plus faible (de l'ordre de -100 K) mais pourra être maintenue en régime continu. Ce sera la T_4 de croisière ou de montée. La connaissance de la température d'entrée turbine maximale opérationnelle, c'est-à-dire la T_4 en croisière, nous est alors nécessaire. Malheureusement, c'est une donnée dont ne disposons pas en général. Cela dit, nous avons un ordre de grandeur : E.Torenbeek [Tor86], considère qu'en croisière^b, la température d'entrée turbine T_4 est de 50 à 100 K inférieure à celle du décollage pour les moteurs à forts taux de dilution λ et de 150 à 200 K pour les faibles taux de dilution λ . Mais quelle température considérer pour conserver tout de même la poussée maximale F_{max} ? Des spécialistes motoristes pourraient peut-être nous expliquer comment sont tarés les moteurs et comment sont choisis ces tarages ...

En attendant d'en apprendre davantage, nous mettrons au point un modèle fonction de cette différence de température opérationnelle et conceptuelle : $\Delta T_4 = T_{\rm 4opérationnelle} - T_{\rm 4conceptuelle}, \mbox{ entre des valeurs raisonnables de 0 à -100 K puisque notre étude concerne les gros réacteurs civils.}$

 $^a\mathrm{En}$ cas de panne d'un des moteurs au décollage, les autres moteurs peuvent tourner en sur-régime pendant 5 à 10 min [Lam90]

Clément Toussaint, qui avait participé à ce projet ONÉRA, a eu la gentillesse de reprendre ces travaux pour adapter ce modèle aux moteurs militaires avec et sans postcombustion. Il nous est alors possible de simuler (Figure 2.13, p. 50) le comportement de moteurs tels que le M88-2 (moteur du Rafale), le M53-P2 (moteur du Mirage 2000), le Larzac04C20 (moteur de l'AlphaJet) ou encore l'Olympus 593/610 (moteur du Concorde).

Efficacité de la prise d'air η_r : Sur un avion, l'entrée d'air a pour but de ralentir l'écoulement d'air arrivant au moteur de manière à ce que le Mach à l'entrée du compresseur soit subsonique. Or, en vol supersonique, les ondes de choc provoquées par ce ralentissement provoque des pertes qui sont liées au Mach de vol M et également à la conception même de l'entrée d'air (sa géométrie). La conception de l'entrée d'air peut être très différente d'un avion à l'autre.

"In the intake the air is decelerated to a very low velocity before it flows the compressor. Because, at least in principle, there is no heat transfer, the total temperature remains constant as the flow velocity reduces from the flight speed ahead of the intake to the low velocity at the compressor inlet. In the

 $[^]b\mathrm{Les}$ données d'E. Torenbeek tiennent-elles compte qu'en croisière, nous sommes généralement à 85% de la poussée maximale [Rou02] ? A priori non car ces 85% sont liés à une utilisation opérationnelle donc décorrelés d'un modèle moteur.

FIG. 2.13 - Modèle de C.Toussaint : Évolution de la poussée et de la consommation spécifique selon le Mach de vol pour des iso-altitudes, avec et sans post-combustion.

case of subsonic intakes, viscous effects result in a reduction of total pressure, whilst for supersonic intakes a further cause for total pressure loss is the occurrence of shock waves. To describe the efficiency of the intake, the ratio of total pressure at the compressor inlet to the freestream total pressure may be used."

- G.Ruijgrok [Rui96] -

Le modèle de Clément Toussaint ne tient pas compte de ces pertes. Pour l'étude de performances avion, il est néanmoins nécessaire de considérer ces pertes. Pour cela il faut, soit évaluer l'efficacité de la prise d'air de l'avion de combat considéré, soit utiliser un modèle classique tel que la MIL-E-5008B (Figure 2.15, p. 52).

La pression totale d'entrée du moteur P_1 (c'est-à-dire la pression totale devant le premier étage compresseur) est différente de celle, à l'extérieur, de l'atmosphère P. Le rapport η_r de ces deux pressions totales définit l'efficacité de la prise d'air (ou intake pressure recovery factor) :

$$\eta_r = \frac{P_1}{P}$$

"Installed Engine Thrust Corrections : The manufacturer's uninstalled engine thrust is based upon an assumed inlet pressure-recovery. For a subsonic engine, it is typically assumed that the inlet has perfect recovery i.e. 1. Su-

FIG. 2.14 – Le concorde : Les entrées d'air mises au point pour les quatres turbo-réacteurs Olympus 593/610 (Rolls-Royce/Snecma), les tuyères modulables à la sortie, permettent au Concorde, au delà de Mach M = 1.7, de voler sans post-combustion. L'Olympus est le premier moteur civil à avoir été homologué pour utilisation continue à Mach 2. (Photo : Philippe Noret, dessin : www.concorde-jet.com)

personic military aircraft engines are usually defined using an inlet pressurerecovery of 1 at subsonic speeds and the inlet recovery of (Equation 2.17, p. 51) MIL-E-5008B model at supersonic speeds. The external compression inlets are of movable ramp design with a perfectly optimized schedule of ramp angles as a function of Mach number. To determine the pressure recovery of a fixed or less-than-perfect inlet, the shock tables should be used."

- D.Raymer [Ray99] -

Plusieurs évolutions de η_r avec le Mach M sont proposées dans [Ray99] (Figure 2.15, p. 52) selon les types d'entrée d'air (forme, nombres de chocs, ...). Un modèle classique⁹ de cette perte η_r est proposée par la MIL-E-5008B :

$$\eta_r = \begin{cases} 1 & M \leq 1\\ 1 - 0.075 \ (M-1)^{1.35} & 1 \leq M \leq 5\\ \frac{800}{M^4 + 935} & 5 \leq M \end{cases}$$
(2.17)

 $^{^9{\}rm Cette}$ expression analytique est couramment utilisée dans la littérature. J.Mattingly [Mat96] l'utilise et en précise la source : Model Specification for Engines, Aircraft, Turbojet, Military Specification MIL-E-5008B, Department of Defense, January 1959

FIG. 2.15 – Modèles, proposés par D.Raymer [Ray99], de l'efficacité de la prise d'air η_r selon le type d'entrée d'air.

Cette perte de pression agit sur le débit moteur et donc directement sur la poussée F du moteur. La température d'arrêt est par contre, toujours égale à la température totale de l'atmosphère T. Ainsi, la poussée avionnée se déduit de la poussée du modèle de Clément Toussaint en multipliant celle-ci par l'efficacité de prise d'air η_r . Alors il suffit de considérer :

$$\left(\frac{F_{max}}{F_0}\right)_{\text{avionnée}} = \frac{\eta_r}{\eta_{r_0}} \left(\frac{F_{max}}{F_0}\right)_{\text{Modèle C.Toussaint}}$$

Avec la perte au point fixe $\eta_{r_0} = \eta_r (M = 0) \approx 1$.

2.2.2 Notre modèle

Méthode d'élaboration

Notre modèle de poussée moteur maximale F_{max} , a été élaboré par identification sur le modèle ONÉRA qui présente l'avantage d'être fonction des paramètres moteurs influents, et d'être précis. Plusieurs équipes de l'Office ont travaillé sur le modèle ONÉRA ([TF97], [BV99], [PSE00], ...), et l'ont déjà validé en comparant des données constructeurs précises aux simulations effectuées : que ce soit pour des moteurs civils à fort taux de dilution tels que les CFM56, ou des moteurs d'avions d'affaire, ou encore des moteurs militaires (Larzac). Les résultats étaient de 1.3% pour les moteurs de la famille des CFM56, de 2.6% pour les moteurs d'avions d'affaire (PW308A et PW535) et de 5% pour le Larzac 04C20. La mise en œuvre du modèle ONÉRA nous a permis de retrouver ces précisions de prédictions de performances moteur. Nous avons également validé le modèle ONÉRA adapté par Clement Toussaint pour les moteurs militaires avec post-combustion, ce qui n'avait pas été fait.

	$\mathbf{\dot{A} sec} $ F_0 (N)			A F	vec PC $_{0PC}$ (N)	
Moteur	donnée	calcul	$Er_{\%}$	donnée	calcul	$Er_{\%}$
M88-2	50000	48346	3.31	75000	74786	0.29
M53-P2	64000	61292	4.23	95000	94982	0.02
LARZAC 04-C20	14100	14535	-3.09	NaN	25285	NaN

	$\begin{array}{c} \mathbf{\hat{A} sec} \\ C_{SR} \ 10^5 \ (\mathrm{kg/s/N}) \end{array}$			\mathbf{A} C_{SRPC}	vec PC 10^5 (kg/	(s/N)
Moteur	donnée	calcul	$Er_{\%}$	donnée	calcul	$Er_{\%}$
M88-2	2.22	2.26	-1.59	5	4.74	5.23
M53-P2 LARZAC 04-C20	$2.5 \\ 2.11$	$2.61 \\ 2.15$	$-4.51 \\ -1.96$	5.83 NaN	$5.55 \\ 5.89$	4.82 NaN

Le modèle ONÉRA étant fonction des paramètres moteurs influents et étant suffisamment précis, nous utilisons ce modèle pour simuler plusieurs moteurs fictifs ayant différents taux de dilution λ , taux de compression ε_c , température d'entrée turbine T_4 , ..., pour différents points de vol (Mach M, altitude h, et régulation ΔT_4). À partir de ces simulations, notre modèle sera identifié c'est-à-dire que les coefficients d'une expression analytique, fonction de ces paramètres moteurs et judicieusement choisie, seront optimisés numériquement pour décrire au mieux les simulations.

Pour les moteurs civils, c'est à partir des rendements d'un moteur représentatif des CFM56 (qui sont des gros moteurs civils équipant des avions de ligne A320, A340), que nous avons fait varier les paramètres moteurs pour simuler nos moteurs fictifs. Nous ferons varier les trois paramètres conceptuels suivants :

- Le taux de dilution λ (3,4,5 et 6)
- Le taux de compression ε_c (20,30,40)
- La température d'entrée turbine (1400, 1500 et 1600 K)

À partir de ces cycles conceptuels, nous avons simulé les performances opérationnelles de ces moteurs fictifs aux points de vol désirés. Nous avons alors envisagé plusieurs altitudes h, plusieurs Mach M (subsonique M < 1) et deux températures d'entrée turbine opérationnelles : $\Delta T_4 = 0 K$ (typique du décollage) et $\Delta T_4 = -100 K$ (typique de la croisière). Cela revient à simuler 36 moteurs à deux ΔT_4 différentes, soit 72 simulations. Nous n'avons pas considéré de prélèvements d'air du moteur.

REMARQUE 2.6 Nous n'avons pas cherché à prendre un maillage plus fin en considération du temps de calcul. Nous avons aussi fait le choix de garder les autres paramètres conceptuels du CFM56. Cette méthode n'a pas la prétention de simuler des moteurs qui pourraient fonctionner de la sorte, mais de donner une idée de l'influence des différents paramètres moteur. D'ailleurs, le programme n'a pas convergé pour certains des moteurs. Les motoristes pourraient alors discuter ces choix et nous expliquer les différents couplages qu'il existe pour les moteurs réels, entre ces paramètres conceptuels (notamment sur le débit d'air D_m).

Pour les moteurs militaires, les rendements internes du moteur considérés sont ceux représentatif du M88-2 qui équipe l'avion de combat Rafale. Nous ferons varier les paramètres conceptuels suivants :

- Le taux de dilution λ (0.2, 0.4, 0.6, 0.8, 1)
- Le taux de compression ε_c (10.5, 15.8, 21.2 et 26.5)
- La température d'entrée turbine T_4 (1500, 1700 et 1900 K)

Thèse : Pour une approche analytique de la Dynamique du Vol

– La température de réchauffe T_{PC} (1950, 2050 et 2150 K)

À partir de ces cycles conceptuels, nous avons simulé les performances opérationnelles de ces "Faux moteurs" aux points de vol désirés. Nous avons alors envisagé plusieurs altitudes h (de 0 à $h = 20 \, km$), plusieurs Mach M (de 0 à M = 2), plusieurs températures d'entrée turbine opérationnelles : $\Delta T_4 = 0 K$ (typique du décollage), $\Delta T_4 = -100 K$ et $\Delta T_4 = -200 K$ (typique de la croisière), et plusieurs Température de réchauffe opérationnelles $\Delta T_{PC} = 0 K$, $\Delta T_{PC} = -25 K$ et $\Delta T_{PC} = -50 K$. Cela revient à simuler 180 moteurs à trois ΔT_4 et trois ΔT_{PC} différentes, soit 1620 simulations pour la postcombustion, et donc 540 simulations à sec. Nous n'avons pas considéré de prélèvements d'air du moteur.

Choix de la structure analytique

L'étude des modèles existants et des simulations du modèle ONÉRA permet de mettre en évidence des caractéristiques de la poussée F_{max} qui aide au choix de la structure analytique de notre modèle.

C'est ainsi que nous avons pu remarquer que, pour un moteur donnée (c'est-à-dire pour λ , T_4 , ε_c donnés), l'évolution en fonction du Mach M du rapport de poussée $\frac{F_{max}(M,h,\Delta T_4)}{F_{max}(M=0,h,\Delta T_4)}$, que nous appelons loi de Mach \mathbf{M} , est identique quelle que soit l'altitude si $h \geq 11 \ km$ (Figure 2.16, p. 54).

FIG. 2.16 – Le modèle Onéra met en évidence que l'effet du Mach $\frac{F_{max}(M,h)}{F_{max}(M=0,h)}$ dépend de l'altitude jusqu'à h = 11 km

Par ailleurs, le rapport de poussée à Mach nul $\frac{F_{max}(M=0,h,\Delta T_4)}{F_{max}(M=0,h=0,\Delta T_4=0)} = \frac{F_{max}(M=0,h,\Delta T_4)}{F_0}$, que nous appelons loi d'altitude **H**, est proportionnelle à la masse volumique de l'air ρ pour des altitudes $h \geq 20 \ km$.

FIG. 2.17 – Simulations numériques du modèle ONÉRA pour mettre en évidence l'effet de l'altitude : $\frac{\rho}{\rho_0}$ est le mieux adapté et décrit très bien les altitudes $h \ge 11 \text{ km}$ puisque l'erreur relative est constante.

Thèse : Pour une approche analytique de la Dynamique du Vol

55

La meilleure modélisation existante de l'effet de l'altitude $\frac{F_{max}(M=0,h)}{F_0}$ est celle proportionnelle à la masse volumique ρ (et non $\rho^{0.6}$ comme le proposait J.Mattingly, ou encore $\delta = \frac{P}{P_0}$). L'effet de l'altitude est véritablement proportionnelle à ρ après 11 km (Figure 2.17, p. 55). Ce facteur de proportionnalité dépend de paramètres moteurs. Avant 11 km, il est possible d'envisager une loi en ρ^n avec n légèrement inférieur à 1 et dépendant de paramètres moteurs. Ainsi, l'effet de l'altitude est proportionnelle à ρ^n avec $n \leq 1$ si $h < 11 \ km$ n = 1 si $h \geq 11 \ km$. Pour notre modélisation, nous l'avons davantage améliorée (Figure 2.18, p. 56) par une correction supplémentaire en sinus pour les altitudes $h \leq 11 \ km$ (Equation 2.18, p. 58) qui permet d'obtenir une erreur relative d'estimation de l'effet d'altitude, inférieure de 5%.

FIG. 2.18 – Erreur relative d'estimation de l'effet de l'altitude par notre modèle (Table 2.9, p. 57), qui est encore mieux adapté qu'une modélisation en $\frac{\rho}{\rho_0}$ (Figure 2.17, p. 55).

Modèle de poussée maximale des moteurs civils

Modèle de Poussée Maximale F_{max} :					
	$\frac{F_{max}}{F_0} = \mathbf{M} \mathbf{H} \mathbf{R}$				
Loi de Mach	$\mathbf{M} = \frac{F_{max}(M, h, \Delta T_4)}{F_{max}(M = 0.05, h, M_4)}$	$\frac{1}{\Delta T_4)}$			
Loi d'altitude	$\mathbf{H} = \frac{F_{max}(M = 0.05)}{F_{max}(M = 0.05, h = 0.05)}$	$\frac{5, h, \Delta T_4)}{= 0, \Delta T_4 = 0)}$			
Résidus	$\mathbf{R} = \frac{F_{max}(M = 0.05, h = 0.0$	$\frac{0, \Delta T_4 = 0}{0, \Delta T_4 = 0}$			
Variables et Unités : n	ous avons				
F_{max} : Pou	ssée moteur maximale	N			
h : Alti	tude de vol $h \le 20 \ km$	m			
M : Mac	ch de vol $0.05 \le M < 1$				
T_4 : Tem	pérature d'entrée turbine	K			
ΔT_4 : Diff d'en	ceptuelle érence entre la température atrée turbine opérationnelle et contuelle (Remergue 2.5, p. 40);	K			
	$T_{1} = T_{1}$ T_{2}				
ε_{-} : Bar	$1 - 1_{4ops}$ 1_4				
	compresseur conceptuel				
λ : Tau	x de dilution conceptuel				
ρ : Mas	se volumique de l'air (Section	ka/m^3			
Р В.1,	p. 207)				
ρ_0 : Mas	sse volumique de l'air au sol	kg/m^3			
$ ho_0$ =	$= \rho(h=0) = 1.225 \ kg/m^3$ (Sec-				
tion	B.1, p. 207)				
$ \rho_{11} \qquad : Mas $	sse volumique de l'air à 11 km	kg/m^3			
$ ho_{11}$	$= \rho(h = 11000) = 0.364 kg/m^3$				
(Sec	tion B.1, p. 207)				
Mode d'obtention : Ide	entifié sur le modèle Onéra par si	mulation de moteurs			
$(3 \le \lambda \le 6, 1400 \le 7)$	$T_4 \le 1600 K, \ 20 \le \varepsilon_c \le 40, \ -100$	$\leq \Delta T_4 \leq 0 \ K)$			
Précision : 1.1% par ra	pport aux gros moteurs civils (CFM56) dont nous			
disposons de données précises et 13.5% sur l'ensemble de notre base de					
données moteurs cou	urantes $(14.7\% \text{ pour les moteurs })$	$\lambda \lambda \geq 3$).			
Domaine de définition	: Mach de vol $0.05 \le M < 1$ et a	altitude $h \leq 20 km$			
	—				

TAB. 2.9 – Modèle de Poussée maximale F_{max}

$\mathbf{M} = \alpha \left(M - M_s \right)^2 + \overline{F_m}$	
$\alpha = \frac{1 - \overline{F_m}}{M_s^2}$	
$M_s = \begin{cases} M_{s11km} + f_{Ms}(h - 11000)^2 + g_{Ms}(h - 11000) \\ M_{s11km} \end{cases}$	$\begin{split} h &\leq 11 \; km \\ h &\geq 11 \; km \end{split}$
$\overline{F_m} = \begin{cases} \overline{F_m}_{11km} + f_{Fm}(h - 11000)^2 + g_{Fm}(h - 11000) \\ \overline{F_m}_{11km} \end{cases}$	$\begin{aligned} h &\leq 11 \; km \\ h &\geq 11 \; km \end{aligned}$
$M_{s11km} = a_{Ms}T_4 + b_{Ms}\lambda + c_{Ms}(\varepsilon_c - 30) + d_{Ms}\Delta T_4 + e_{Ms}$ $\overline{F_{m11km}} = a_{Fm}T_4 + b_{Fm}\lambda + c_{Fm}(\varepsilon_c - 30) + d_{Fm}\Delta T_4 + e_{Fm}$	
$\mathbf{H} = k \left(\frac{\rho}{\rho_0}\right)^n \frac{1}{1 - 0.04 \sin \frac{\pi h}{11000}} \qquad h \le 11 \ km$ $= k \left(\frac{\rho_{11}}{\rho_0}\right)^n \frac{\rho}{\rho_{11}} \qquad h \ge 11 \ km$	(2.18)
$k = 1 + 1.2 \ 10^{-3} \Delta T_4$ $n = 0.98 + 8 \ 10^{-4} \Delta T_4$	
$\mathbf{R} = -4.5110^{-3}\lambda + 2.1910^{-5}T_4 - 3.0910^{-4}(\varepsilon_c - 30) + 0$.945

 $\begin{array}{ll} a_{Ms}=-2.74\,10^{-4}, \ b_{Ms}=1.91\,10^{-2}, \ c_{Ms}=1.21\,10^{-3}, \ d_{Ms}=-8.48\,10^{-4}, \ e_{Ms}=8.96\,10^{-1}, \\ a_{Fm}=-2.67\,10^{-4}, \ b_{Fm}=-2.35\,10^{-2}, \ c_{Fm}=-1.32\,10^{-3}, \ d_{Fm}=-3.14\,10^{-4}, \ e_{Fm}=5.22\,10^{-1}, \\ \end{array}$

Les coefficients $f_{Ms},\,g_{Ms},\,f_{Fm}$ et g_{Fm} étant de la forme :

 $\left(\alpha_1(\varepsilon_c - 30)^2 + \alpha_2(\varepsilon_c - 30) + \alpha_3 + \alpha_4 T_4 + \alpha_5 \Delta T_4\right)\lambda + \beta_1(\varepsilon_c - 30)^2 + \beta_2(\varepsilon_c - 30) + \beta_3 + \beta_4 T_4 + \beta_5 \Delta T_4$

	α_1	α_2	$lpha_3$	α_4	α_5
f_{Ms}	1.7910^{-12}	$4.29 \ 10^{-13}$	-5.2410^{-14}	-4.5110^{-14}	-4.5710^{-12}
g_{Ms}	1.1710^{-8}	-8.8010^{-8}	-5.2510^{-9}	-3.1910^{-9}	5.5210^{-8}
f_{Fm}	-5.3710^{-13}	-1.2610^{-12}	1.2910^{-14}	2.3910^{-14}	2.3510^{-12}
g_{Fm}	-3.1810^{-9}	$2.76 \ 10^{-8}$	$1.97 \ 10^{-9}$	$1.17 \ 10^{-9}$	-2.2610^{-8}
	β_1	β_2	β_3	β_4	eta_5
fac	1 = 0 = 10 - 12	19	0		
JMs	1.70 10 12	$1.51 \ 10^{-12}$	1.4810^{-9}	-7.5910^{-14}	-1.0710^{-11}
$\frac{JMs}{g_{Ms}}$	$\frac{1.70\ 10^{-12}}{-3.48\ 10^{-9}}$	$\frac{1.51\ 10^{-12}}{-8.41\ 10^{-8}}$	$\frac{1.4810^{-9}}{2.5610^{-5}}$	$\frac{-7.5910^{-14}}{-2.0010^{-8}}$	$\frac{-1.0710^{-11}}{-7.1710^{-8}}$
$\frac{f_{Ms}}{g_{Ms}}$	$ \begin{array}{r} 1.70\ 10^{-12} \\ -3.48\ 10^{-9} \\ -3.89\ 10^{-13} \end{array} $	$ \begin{array}{r} 1.51 \ 10^{-12} \\ -8.41 \ 10^{-8} \\ -2.05 \ 10^{-12} \end{array} $	$\frac{1.48 10^{-9}}{2.56 10^{-5}}$ $-9.28 10^{-10}$	$\frac{-7.5910^{-14}}{-2.0010^{-8}}$ 1.3010^{-13}	$\frac{-1.0710^{-11}}{-7.1710^{-8}}$ 5.3910^{-12}

Pour un réacteur d'avion civil moyen (taux de dilution $\lambda = 5$, température d'entrée turbine conceptuelle $T_4 = 1500 K$, taux de compression $\varepsilon_c = 30$), l'expression de la poussée maximale en croisière (altitude $h \ge 11 km$, régulation $\Delta T_4 = -100 K$) revient à :

$$\frac{F_{max}}{F_0} = 0.93 \frac{\rho}{\rho_0} \left(1 - 0.73 M + 0.53 M^2 \right)$$

et au décollage (altitude $h \approx 0 \, km$, régulation $\Delta T_4 = 0 \, K$) :

$$\frac{F_{max}}{F_0} = 0.95 \frac{\rho}{\rho_0} \left(1 - 0.76 \ M + 0.35 \ M^2 \right)$$

FIG. 2.19 – Le modèle obtenu : Évolution du rapport de la poussée maximale en vol F_{max} , rapportée à la poussée au point fixe F_0 , pour un moteur d'avion de transport civil moyen.

Modèle de poussée maximale à sec des moteurs militaires

TAB. 2.10 – Modèle de Poussée maximale des moteurs d'avion de combat F_{max}

F_{max}	: Poussée moteur maximale à sec $F_{max} = F_{max}(h, M, \Delta T_4)$	N
F_0	: Poussée moteur maximale au point fixe $F_0 = F_{max}(M = 0, h = 0, \Delta T_4 = 0)$	N
h	: Altitude de vol $h \leq 20 \; km$	m
$H_{\rm 11km}$: Loi d'altitude à $h = 11 \ km \left[\mathbf{H}_{11km} \right] = \left(a \left(\frac{\rho_{11}}{\rho_0} \right)^2 + b \left(\frac{\rho_{11}}{\rho_0} \right) + c \right) \left(\frac{\rho}{\rho_{11}} \right)$	
M	: Mach de vol $M < 2$	
T_4	: Température d'entrée turbine conceptuelle	K
ΔT_4	: Différence entre la température d'entrée turbine opérationnelle et concep-	K
	tuelle (Remarque 2.5, p. 49) : $\Delta T_4 = T_{4ops} - T_4$	
ε_c	: Rapport conceptuel de pression sortie/entrée du compresseur.	
λ	: Taux de dilution conceptuel $\lambda < 1$	
ρ	: Masse volumique de l'air correspondant à l'altitude h selon l'atmosphère	kg/m^3
	standard (Appendix B.1, p. 207)	- ,
$ ho_0$: Masse volumique de l'air au sol $\rho_0 = \rho(h=0) = 1.225 \ kg/m^3$	kg/m^3
ρ_{11}	: Masse volumique de l'air à $h = 11 \ km \ \rho_{11} = \rho(h = 11000) = 0.364 \ kg/m^3$	kg/m^3
	-	

TAB. 2.11 – Variables et unités du modèle de poussée maximale à sec ${\cal F}_{max}$ (Table 2.10, p. 60)

Pour un moteur d'avion de combat moyen de type M88-2 ($\varepsilon_c = 24.5, \lambda = 0.3, T_4 = 1850 K$), le modèle revient à l'expression suivante :

Performances au décollage à sec : $\Delta T_4 = 0 K$

$$\frac{F_{max}}{F_0} = \left(-0.237 \left(\frac{\rho}{\rho_0}\right)^2 + 1.26 \left(\frac{\rho}{\rho_0}\right) - 0.0244\right) \left(1 + e^{-0.337(M-0.332)} \left(0.337 \ M^2 - 0.378 \ M\right)\right)$$
Performances en croisière à sec : $\Delta T_4 = -100 \ K, \ h \ge 11 \ km$

$$\frac{F_{max}}{F_0} = 0.32 \frac{\rho}{\rho_{11}} \left(1 + e^{-0.374(M-1.3)} \left(0.403 \ M^2 - 0.231 \ M\right)\right)$$

FIG. 2.20 – Le modèle obtenu : Évolution du rapport de la poussée maximale en vol F_{max} à sec, rapportée à la poussée au point fixe F_0 pour un moteur d'avion de combat moyen.

Modèle de gain de poussée par post-combustion

Modèle du gain de la Post-Combustion : F_{0PC} $= \alpha M^2 + \beta M + \gamma$ $\frac{F_{max}}{F_0}$ $= (\alpha_{11km_1} \lambda + \alpha_{11km_2} \varepsilon_c + \alpha_{11km_3}) (\Delta T_4 + T_4)^2$ α + $(\alpha_{11km4} \lambda + \alpha_{11km5} \varepsilon_c + \alpha_{11km6}) (\Delta T_4 + T_4)$ + $(\alpha_{11km7} \lambda + \alpha_{11km8} \varepsilon_c + \alpha_{11km9}) + \left(\frac{\rho}{\rho_{11}} - 1\right) \alpha_h$ $= \beta_{11km_1} \lambda + \beta_{11km_2} \left(\Delta T_4 + T_4 \right) + \beta_{11km_3} + \left(\frac{\rho}{\rho_{11}} - 1 \right) \beta_h$ β $\gamma = \gamma_{11km_1} \, \Delta T_4 + \gamma_{11km_2} \, T_4 + \gamma_{11km_3} \, \Delta T_{PC} + \gamma_{11km_4} \, T_{PC} + \gamma_{11km_5}$ $\alpha_h = (\alpha_{h1} \lambda + \alpha_{h2} \varepsilon_c + \alpha_{h3}) (\Delta T_4 + T_4)^2$ + $(\alpha_{h4} \lambda + \alpha_{h5} \varepsilon_c + \alpha_{h6}) (\Delta T_4 + T_4) + (\alpha_{h7} \lambda + \alpha_{h8} \varepsilon_c + \alpha_{h9})$ $\beta_h = (\beta_{h_1} T_4 + \beta_{h_2} \Delta T_4 + \beta_{h_3} \lambda + \beta_{h_4}) \varepsilon_c^2$ + $(\beta_{h_5}T_4 + \beta_{h_6}\Delta T_4 + \beta_{h_7}) \varepsilon_c + (\beta_{h_8}T_4 + \beta_{h_9}\Delta T_4 + \beta_{h_{10}})$ $\forall h \geq 11 \, km, \quad \alpha_h = \beta_h = 0$ $\alpha_{11km1} = -1.20 \ 10^{-7}$ $\alpha_{11km2} = 3.75 \, \overline{10^{-9}}$ $3.97 \, 10^{-8}$ $\alpha_{11km3} =$ $\alpha_{11km4} = 1.97 \, 10^{-4}$ $\alpha_{11km5} = -2.00 \ 10^{-5}$ $\alpha_{11km\,6} = -8.69\,10^{-5}$ $\alpha_{11km8} = 2.44 \, 10^{-2}$ $\alpha_{11km7} = 3.99 \, 10^{-2}$ $3.64 \ 10^{-2}$ $\alpha_{11km9} =$ $\beta_{11km_1} = 1.17 \, 10^{-1}$ $\beta_{11km2} = -3.99 \, 10^{-5}$ $1.19 \ 10^{-1}$ $\beta_{11km3} =$ $\gamma_{11km_1} = -5.03 \, 10^{-4}$ $\gamma_{11km_2} = -1.05 \, 10^{-4}$ $4.94 \ 10^{-4}$ $\gamma_{11km3} =$ $\gamma_{11km\,4} = 7.58\,10^{-5}$ $\gamma_{11km5} =$ 1.02 $= -\overline{2.88 \, 10^{-8}}$ $6.\overline{48}\,10^{-9}$ $\alpha_{h_2} =$ $2.53 \ 10^{-8}$ α_{h1} α_{h3} = $\alpha_{h5} = -2.4 \, 10^{-5}$ $= 3.65 \ 10^{-5}$ $\alpha_{h6} = -6.3 \, 10^{-5}$ α_{h4} = 2.83 10^{-2} $\alpha_{h8} = 2.35 \, 10^{-2}$ $\alpha_{h9} =$ $2.44 \ 10^{-2}$ α_{h7} $= -8.47 \, 10^{-9}$ $= -3.38 \, 10^{-7}$ $5.31 \ 10^{-5}$ β_{h_3} β_{h_1} β_{h_2} = β_{h_6} β_{h_4} $= -4.95 \, 10^{-5}$ β_{h_5} $= -7.82 \, 10^{-7}$ = 8.74 10⁻⁶ = 1.01 10⁻³ $= 5.71 \, 10^{-6}$ $= -9.02 \, 10^{-5}$ β_{h_7} β_{h8} β_{h9} $3.31\,10^{-3}$ = $\beta_{h 10}$

Variables et Unités : cf. (Table 2.13, p. 63)

Mode d'obtention : Identifié sur le modèle C. Toussaint par simulation de moteurs ($\lambda \leq 1, 10 \leq \varepsilon_c \leq 27, 1500 \leq T_4 \leq 1900 K, -200 \leq \Delta T_4 \leq 0 K$, $1950 \le T_{PC} \le 2150 K, -50 \le \Delta T_{PC} \le 0 K$

Précision : 1.28% d'erreur relative moyenne par rapport aux simulations numériques issues du modèle ONÉRA (1.1% pour $h \ge 11 \ km$).

Domaine de définition : Mach M < 2, altitude $h \le 20 \ km$, dilution $\lambda < 1$

TAB. 2.12 – Modèle de gain de Poussée (PC/sec) des moteurs d'avion de combat

F_{max}	: Poussée moteur maximale à sec (Table 2.10, p. 60)	N
F_0	: Poussée maximale à sec (sans post-combustion) au point fixe	N
	$F_0 = F_{max}(M = 0, h = 0, \Delta T_4 = 0)$	
F_{maxPQ}	$_{C}$: Poussée moteur maximale avec post-combustion PC	N
F_{0PC}	: Poussée maximale avec post-combustion PC au point fixe	N
	$F_{0PC} = F_{maxPC}(M = 0, h = 0, \Delta T_4 = 0, \Delta T_{PC} = 0)$	
h	: Altitude de vol $h \leq 20 \ km$	m
M	: Mach de vol $M < 2$	
T_4	: Température d'entrée turbine conceptuelle	K
ΔT_4	: Différence entre la température d'entrée turbine opérationnelle et	K
	conceptuelle (Remarque 2.5, p. 49) : $\Delta T_4 = T_{4ops} - T_4 \leq 0$	
T_{PC}	: Température de réchauffe conceptuelle	K
ΔT_{PC}	: Différence entre la température de réchauffe opérationnelle et concep-	K
	tuelle	
ε_c	: Rapport de pression sortie/entrée du compresseur conceptuel.	
λ	: Taux de dilution conceptuel $\lambda < 1$	
ρ	: Masse volumique de l'air correspondant à l'altitude h selon l'at-	kg/m^3
	mosphère standard (Appendix B.1, p. 207)	0,
ρ_{11}	: Masse volumique de l'air, selon l'atmosphère standard (Appendix B.1,	kg/m^3
•	p. 207), à $h = 11 \ km : \rho_{11} = \rho(h = 11000) = 0.364 \ kg/m^3$	

TAB. 2.13 – Variables du modèle de poussée avec post combustion (Table 2.12, p. 62)

Pour un moteur d'avion de combat moyen de type M88-2 ($\varepsilon_c = 24.5, \lambda = 0.3, T_4 = 1850 K, T_{PC} = 2061 K$), le modèle revient à l'expression suivante : Gain de la post-combustion : $\Delta T_4 = 0 K, \Delta T_{PC} = 0 K, h \leq 11 km$

$$\frac{\left(\frac{F_{maxPC}}{F_{0PC}}\right)}{\left(\frac{F_{max}}{F_{0}}\right)} = \left(1.71 + 2.4\left(\frac{\rho}{\rho_{11}} - 1\right)\right) 10^{-2} M^{2} + \left(8.04 - 2.64\left(\frac{\rho}{\rho_{11}} - 1\right)\right) 10^{-2} M + 0.982$$

Gain de la post-combustion : $\Delta T_4 = 0 K$, $\Delta T_{PC} = 0 K$, h > 11 km

$$\frac{\left(\frac{F_{max PC}}{F_{0 PC}}\right)}{\left(\frac{F_{max}}{F_{0}}\right)} = 0.0171 M^{2} + 0.0804 M + 0.982$$

2.3 Masse moteur M_m

Il existe plusieurs modèles pour déterminer la masse moteur. Ces modèles peuvent être classés en deux types : des lois statistiques qui dépendent uniquement de la poussée au point fixe d'un moteur F_0 , et sont de la forme $M_m = kF_0^{\alpha}$, et la loi Torenbeek qui tient compte de paramètres moteurs supplémentaires. Nous avons transformé leur expression afin que leurs variables soient dans le système d'unités internationales (SI : N, kg, \ldots), vous pourrez néanmoins retrouver leur expression d'origine dans les documents cités (cf. bibliographie).

Ces modèles disent déterminer la masse d'un seul moteur avionné M_m (c'est-à-dire la somme de la masse moteur brut M_{mbrut} et des masses de la nacelle, du mât, et des équipements nécessaires à l'implantation sur l'avion). Pour comparer ces modèles aux données constructeurs qui sont des données de masse moteur brut M_{mbrut} , il faut faire l'hypothèse d'une modélisation de la masse des nacelles, mâts et équipements.

Nous pouvons considérer que la masse moteur avionné M_m est 1.2 fois celle de la masse moteur brut M_{mbrut} . C'est une valeur couramment utilisée par les auteurs de modèles de masse moteur.

$$M_m = k_{\rm av/br} M_{mbrut}$$
 $(k_{\rm av/br} \approx 1.2)$

Le modèle de masse moteur que nous mettons au point est un modèle de masse moteur brut M_{mbrut} . Ainsi, il vous sera aisé d'utiliser votre propre modèle de la masse des nacelles et équipements, si vous en disposez d'un, à la place du modèle proposé $(k_{av/br} \approx 1.2)$.

FIG. 2.21 – Installation de la nacelle sur le CF6 80C2 de General Electric. Ce moteur sera implanté sur le Boeing 767.

Nous allons d'abord faire le bilan des modèles existants de masse moteur, que nous confronterons ensuite à des moteurs réels. Nous verrons alors que la meilleure loi statistique est un simple modèle de masse spécifique (c'est-à-dire que la masse moteur M_m est proportionnelle à la poussée F_0) et que la loi d'E.Torenbeek donne des estimations de masse du même ordre de précision. Nous élaborerons ensuite nos propres modèles et obtiendrons un modèle statistique très simple avec une précision remarquable de 6.5% par rapport aux moteurs civils.

2.3.1 Bilan des modèles existants

moteur sur l'avion (nacelle, mât, \ldots).

Lois statistiques

Nous avons recensé 5 lois statistiques existantes. Toutes peuvent se mettre sous la forme :

$$M_m = k F_0{}^{\alpha}$$

 M_m : Masse d'un moteur avionné (moteur brut, nacelle, mât, et équipement) kg F_0 : Poussée au point fixe (maximale, au sol et à l'arrêt) d'un seul moteur N

Ces lois donnent l'expression de la masse moteur avionné (Figure 2.21, p. 64), c'est-à-dire la somme des masses du moteur brut et des équipements nécessaires à l'implantation du

Modèle	référence bibliographique	Expression analytique	Erreur relative
			moyenne
Masse moteur spécifique	[Boi01]	$M_{mS} = 0.024 F_0^{-1}$	12%
J.Roskam	[Ros 85]	$M_{mR} = 0.02626 F_0^{0.98}$	14%
W.P Dupont	[Dup92]	$M_{mD} = 0.0542 \ F_0^{\ 0.939}$	16%
G.Taquin	[Taq]	$M_{mT} = 0.1018 F_0^{0.86}$	15%
F.Leclerc	[Lec02]	$M_{mL} = 0.5289 F_0^{0.75}$	27%

TAB. 2.14 – Lois statistiques existantes en $M_m = kF_0^{\alpha}$, avec leur précision (erreur relative moyenne) par rapport à l'ensemble des données expérimentales moteurs dont nous disposons (Appendix A, p. 195).

REMARQUE 2.7 Les modèles en $k(F_0)^{\alpha}$ avec $\alpha < 1$ valident le résultat intuitif, contrairement au modèle de masse spécifique ($\alpha = 1$), que N_m moteurs délivrant chacun une poussée $\frac{F_0}{N_m}$, pèsent plus lourd qu'un seul moteur délivrant F_0 (Les rendements des gros moteurs sont meilleurs).

Loi Torenbeek

Le professeur Torenbeek propose dans [Tor86], une évaluation de la masse moteur sec (c'est-à-dire non avionné) dépendante du débit massique du générateur et de la poussée du fan (Vous trouverez un éclaté (Figure 2.22, p. 66) représentant les divers composants d'un réacteur double flux).

"It may be explained by assuming that the dry engine weight comprises that of the gas generator and the propulsive device. Assuming the first component proportional to the gas generator weight flow per unit time D_{mg} and the second proportional to the fan thrust F_f , we may write :"

- E. Torenbeek [Tor86] -

$$M_{To} = m_g + m_f$$

= $C_1 D_{mg} + C_2 F_f$ (2.19)

FIG. 2.22 – Éclaté du moteur PW4000 ($\lambda = 5.2$)

kg
kg
kg
kg/s
N

La masse moteur est la somme de la masse du générateur $m_g = C_1 D_{mg}$ et de la masse du fan $m_f = C_2 F_f$.

A l'aide de [GR70], le professeur E. Torenbeek donne l'expression des coefficients $C_1 = 10\varepsilon_c^{\frac{1}{4}}$ et $C_2 = 0.0122$. En ramenant à une masse moteur avionné M_{mTo} (facteur $k_{\rm av/br}$ devant l'expression totale), et dans les unités du Système International SI (forces en N, masse en kg, débit en kg/s), nous obtenons :

$$M_{mTo} = k_{\rm av/br} M_{To}$$
$$= k_{\rm av/br} \left(10\varepsilon_c^{\frac{1}{4}} D_{mg} + 0.0122 F_f \right)$$

Le taux de dilution λ représente la proportion d'air passant à travers le fan par rapport à celui traversant le générateur $\lambda = \frac{D_{mf}}{D_{mg}}$. Nous pouvons alors écrire :

$$D_m = D_{mg} + D_{mf}$$
$$= (1 + \lambda) D_{mg}$$
$$D_{mg} = \frac{D_m}{1 + \lambda}$$

Par ailleurs le rapport entre la poussée du fan et celle du moteur au sol et à l'arrêt est donnée par [Tor86] :

$$\frac{F_f}{F_0} = 1 - \frac{1}{\sqrt{1 + 0.75\lambda}}$$

La masse du moteur peut alors s'écrire :

$$\frac{M_{mTo}}{F_0} = k_{\rm av/br} \left(\frac{10\varepsilon_c^{\frac{1}{4}}}{1+\lambda} \left(\frac{D_m}{F} \right)_{to} + 0.0122 \left(1 - \frac{1}{\sqrt{1+0.75\lambda}} \right) \right)$$
(2.20)

Avec:

G	: Gas generator power function	
G_0	: Gas generator power function (static, sea level)	
K	: Temperature function of compression process	
M	: Flight Mach number	
T_4	: Turbine Entry total Temperature	Κ
T_0	: Ambient temperature at sea level	Κ
F	: Thrust	N
F_0	: Take-off Thrust (Static, Sea Level)	N
to	: Take-Off (Static, Sea Level)	
M_{To}	: Dry Engine Weight	kg
M_{mTo}	: Equipped Engine Weight $M_{mTo} = k_{\rm av/br} M_{To} (k_{\rm av/br} \approx 1.2)$	kg
D_m	: Weight Flow per unit time of engine air $(gas generator+fan)$	kg/s

m	· Igontropia comprossor officionau
η_c	. Isentropic compressor enciency
η_d	: Isentropic fan intake duct efficiency
η_f	: Isentropic fan efficiency
η_i	: Gas Generator intake stagnation pressure rational contract rational contract rational contract rational contract rational contract rates and respectively.

- η_i : Gas Generator intake stagnation pressure ratio η_n : Isentropic efficiency of expansion process in nozzle
- η_t : Isentropic turbine efficiency
- $\eta_{tf} \qquad : \eta_{tf} = \eta_t \, \eta_f$

TAB. 2.16 – Nomenclature des rendements moteurs

ε_c :	: Overall Pressure Ratio (compressor)	
γ	: Ratio of specific heats $\gamma = 1.4$	
λ	: Bypass ratio	
μ	: Ratio of stagnation to static temperature of ambient air	
	$\mu = 1 + \frac{\gamma - 1}{2}M^2$	
ϕ	: Nondimensional Turbine Entry Temperature $\phi = \frac{T_4}{T}$	
ψ	: Corrected Specific Thrust $\psi = \frac{F}{D_{m}\sqrt{\theta}}$	ms^{-1}
θ	: Relative Ambient Temperature $\theta = \frac{T}{T_0}$	

TAB. 2.17 – Nomenclature des variables grecques

À l'aide de [Tor86], [Tor68] et [Tor73], exprimons la formule proposée par le professeur Torenbeek (Equation 2.20, p. 67) en fonction de paramètres connus. L'expression de $\left(\frac{D_m}{F}\right)_{to}$ peut se déduire de celle de ψ (Corrected Specific Thrust) qui nous est donnée dans [Tor86].

Nous avons ramené la formulation de cette expression en unités du système international.

$$\psi = \frac{F}{D_m \sqrt{\theta}}$$

$$= 340.43 \left(\frac{1}{1+\lambda} \sqrt{5\eta_n (1+\eta_{tf}\lambda)} \sqrt{G+0.2M^2 \frac{\eta_d}{\eta_{tf}}\lambda} - M \right)$$

$$\left(\frac{D_m}{F} \right)_{to} = 340.43 \frac{1}{1+\lambda} \sqrt{5\eta_n (1+\eta_{tf} t_o \lambda) G_0}$$
(2.21)

Avec la fonction G du générateur :

$$G = \left(\phi - \frac{K}{\eta_c}\right) \left(1 - \frac{1.01}{\eta_i^{\frac{\gamma-1}{\gamma}}(K+\mu)(1-\frac{K}{\phi\eta_c\eta_t})}\right)$$
$$K = \mu(\varepsilon_c^{\frac{\gamma-1}{\gamma}} - 1)$$
$$\mu = 1 + \frac{\gamma-1}{2}M^2$$

Ce qui revient au sol et à l'arrêt (h = 0 et M = 0) :

$$\begin{aligned} (\phi)_{to} &= \frac{T_4}{T_0} \\ (\mu)_{to} &= 1 \\ (K)_{to} &= \varepsilon_c \frac{\gamma - 1}{\gamma} - 1 \end{aligned}$$

Donc:
$$G_0 = \left((\phi)_{to} - \frac{\varepsilon_c \frac{\gamma-1}{\gamma} - 1}{\eta_c} \right) \left(1 - \frac{1.01}{\varepsilon_c \frac{\gamma-1}{\gamma} (1 - \frac{\varepsilon_c \frac{\gamma-1}{\gamma} - 1}{(\phi)_{to} \eta_c \eta_t})} \right)$$
 (2.22)

L'expression du taux de pression à l'entrée du générateur η_i étant :

$$\eta_i = \frac{1 + \eta_d \frac{\gamma - 1}{2} M^2}{1 + \frac{\gamma - 1}{2} M^2}$$

Pour un nombre de Mach nul M = 0 (à l'arrêt), $\eta_i = 1$.

REMARQUE 2.8 Il est à noter que l'on aurait pu douter du fait que $\eta_i = 1$ pour un nombre de Mach nul M = 0. En effet, si l'on prend la définition du rendement dans la tuyère η_d (Isentropic fan intake duct efficiency), nous nous apercevons que celui-ci diverge pour des nombres de Mach proche de zéro :

$$\eta_d = 1 - 1.3 \left(\frac{0.05}{Re^{\frac{1}{5}}}\right)^2 \left(\frac{0.5}{M}\right)^2 \frac{L}{D}$$

L: Duct length Avec: D: Inlet diameter

Re: nombre de Reynolds à l'entrée de la tuyère (pour $M \simeq 0.5$)

En réalité un rendement est toujours compris entre 0 et 1. Donc le produit $\eta_d M^2$ est bel et bien nul à l'arrêt (M = 0). E. Torenbeek [Tor68] donne d'ailleurs un exemple d'application numérique pour les conditions du moteur au sol et à l'arrêt (donc pour un nombre de Mach nul) où ce taux de pression η_i est pris égal à 1.

Finalement la masse moteur s'évalue par :

$$\frac{M_{mTo}}{F_0} = k_{\rm av/br} \left(\frac{10\varepsilon_c^{\frac{1}{4}}}{340.43\sqrt{5\eta_n(1+\eta_{tf}\lambda)G_0}} + 0.0122 \left(1 - \frac{1}{\sqrt{1+0.75\lambda}} \right) \right)$$
(2.23)

Avec l'expression de G_0 donnée précédemment (Equation 2.22, p. 68). Des valeurs courantes de rendements sont données dans [Tor86] :

 $\begin{array}{ll} \text{Rendement compresseur} & : 0.84 \leq \eta_c \leq 0.86 \\ \text{Rendement fan} & : 0.85 \leq \eta_f \leq 0.87 \\ & : 0.82 \leq \eta_f \leq 0.85 \\ \text{Rendement tuyère (nozzle)} : 0.96 \leq \eta_n \leq 0.98 \\ \text{Rendement turbine} & : 0.87 \leq \eta_t \leq 0.89 \\ \end{array}$

TAB. 2.18 – Valeurs courantes de rendements moteur

Le modèle d'E.Torenbeek présente une erreur relative moyenne de 14% pour l'estimation de l'ensemble des données expérimentales moteurs à disposition (Appendix A, p. 195). Pour les moteurs civils (implantés sur des avions de type Airbus, Boeing, Mc-Donnell Douglas, Fokker), sa précision est de 17%.

2.3.2 Nos modèles

Loi statistique $M_m = kF_0^{\alpha}$ optimale

Puisque les modèles statistiques existants sont tous de la forme $M_m = kF_0^{\alpha}$, il est intéressant de chercher les coefficients k et α optimaux, c'est-à-dire ceux qui minimisent l'erreur relative moyenne d'estimation de ce modèle par rapport à l'ensemble des données expérimentales moteurs à disposition (Appendix A, p. 195). L'erreur moyenne minimale obtenue¹⁰ est de 11% (Table 2.19, p. 70).

 $^{^{10}\}mathrm{Pour}$ trouver ce minimum, la méthode des moindres carrés est utilisée : fonction "lsq
nonlin" de MATLAB

FIG. 2.23 – Modèles en $M_m = kF_0^{\alpha}$ et données expérimentales moteurs (Appendix A, p. 195). Les TRENT 900, PW4168 et GE90 85B ne sont pas pris en compte (Remarque A.2, p. 197).

TAB. 2.19 – Modèle de masse moteur $M_m = k_{opt} F_0^{\alpha_{opt}}$ optimal.

Recalage du modèle d'E.Torenbeek

Contrairement aux autres modèles existants, le modèle d'E. Torenbeek ne dépend pas uniquement de la poussée du moteur F_0 , mais dépend également des paramètres moteurs tels que le taux de dilution, le taux de compression, la température d'entrée turbine, ... Mais ce modèle n'est pas pour autant plus précis (précision de 17% sur l'ensemble des moteurs). Les erreurs relatives d'estimation par le modèle d'E. Torenbeek des masses de chaque moteur (Appendix A, p. 195) ne montre pas de tendance particulière, ni en fonction des paramètres moteur (taux de compression ε_c , taux de dilution λ , température d'entrée turbine T_4), ni en fonction de l'année de mise en service ou du constructeur.

FIG. 2.24 – Relation entre l'Erreur et la masse moteur estimée par le modèle d'E. Torenbeek. Les TRENT 900, PW4168 et GE90 85B ne sont pas pris en compte (Remarque A.2, p. 197).

REMARQUE 2.9 Il est à noter que le modèle d'E. Torenbeek prédit des masses moteur plus faibles qu'en réalité, pour les petits moteurs (erreur relative positive). Ceci est relativement logique. En effet, il est plus difficile de concevoir des petits moteurs. La taille des pièces par rapport à la taille du moteur, est plus importante que celles de gros moteurs (difficultés à réaliser de petites pièces qui résistent aux contraintes mécaniques et thermiques). Les rendements moteurs sont également meilleurs pour les gros moteurs que pour les petits.

Par contre, l'erreur semble liée à la masse estimée par le modèle d'E. Torenbeek (Figure 2.24, p. 71). Si on considère le rapport entre la taille et la poussée (liée au débit d'air) du moteur, on a proportionnellement un poids des pièces plus faible pour un gros moteur (gros diamètre) délivrant un fort débit que pour un petit moteur délivrant un faible débit. En somme, il est plus facile de concevoir de gros moteurs performants que des petits (ça n'est jamais évident de concevoir de petites pièces). Par ailleurs, le rendement des gros moteurs est meilleur. En effet, la précision des pièces agissent aussi sur la qualité du
déroulement du processus. Par exemple, les jeux entre pales et bâti sont aussi, proportionnellement à la taille, moins précis sur des petits moteurs que sur les gros. Le tracé de l'erreur d'estimation du modèle d'E.Torenbeek (Figure 2.24, p. 71) montre une corrélation avec la masse moteur estimée par le modèle. Il semblerait qu'effectivement, ce critère de taille moteur a bien des répercussions sur l'erreur du modèle d'E.Torenbeek. C'est donc à partir de cette observation que nous proposerons une correction du modèle d'E.Torenbeek. Nous modélisons l'erreur relative $Er_{\%}$ du modèle d'E.Torenbeek en fonction de la masse moteur M_{mTo} estimée par le modèle d'E.Torenbeek, sous forme d'une droite dont l'ordonnée à l'origine et la pente sont optimisées numériquement : $Er_{\%} = -7.26 \ 10^{-3} M_{mTo} + 20.8$. Cette correction sur l'erreur relative, équivaut à une correction non linéaire en masse.

TAB. 2.20 – Modèle de masse moteur d'E. Torenbeek avec correction linéaire en er
reur relative $% \mathcal{A}^{(1)}$

Loi de masse moteur linéaire par morceaux

Les tracés des données expérimentales (Appendix A, p. 195) de masse moteur M_m en fonction des différents paramètres moteurs montrent que la poussée au point fixe F_0 est le paramètre influent de la masse moteur (Figure 2.26, p. 74). Il n'y pas pas de correlation aussi explicite entre la masse moteur et les autres paramètres moteurs (Figure 2.25, p. 73) : taux de dilution λ , taux de compression ε_c , température d'entrée turbine T_4 , année de mise en service qui pourrait traduire l'avancement technologique,... La masse moteur M_m croît lorsque la poussée du moteur F_0 croît. Cette croissance est quasi-linéaire, avec une pente plus élevée pour les petits moteurs ($F_0 < 80 \ kN$) que pour les gros moteurs.

Correlation des données de masses et paramètres moteur

FIG. 2.25 – Correlation des paramètres de notre base de données expérimentales moteurs (Appendix A, p. 195)

Un modèle de masse moteur (Table 2.21, p. 74), linéaire par morceaux en fonction de la poussée du moteur F_0 peut ainsi être défini.

FIG. 2.26 – Masse moteur avionné, linéaire par morceaux (Table 2.21, p. 74). Les TRENT 900, PW4168 et GE90 85B ne sont pas pris en compte (Remarque A.2, p. 197).

	Modèle de masse moteur linéaire par morceaux $M_m = k_{\rm av/br} \; M_{mbrut}$:
	$ \begin{aligned} M_{mbrut} &= 22.2 \ 10^{-3} \ F_0 & F_0 < 80 \ kN \\ &= 14.1 \ 10^{-3} \ F_0 + 648 & F_0 \ge 80 \ kN \end{aligned} $	
Mode d ² don pur	Pobtention : Identification par les moindres carrés sur l'entrées expérimentales moteurs à disposition (Appendix A, per choisie graphiquement à $F_0 = 80\ 000\ N$.	ensemble des p. 195). Cou-
Domain	e de définition : Tous les réacteurs simple ou double flu	ıx.
Précision teur plan	n : 7.2% par rapport à l'ensemble des données expérin rs (Appendix A, p. 195), et 6.45% par rapport aux moteu ntés sur Airbus, Boeing, McDonnell Douglas, Fokker,)	nentales mo- rs civils (im-).
Variable		TT •/ /
Бу	M_m : Masse moteur avionné (avec nacelle, mât, équipements)	kg
	M_{mbrut} : Masse moteur brut	kg
	F_0 : Poussée au point fixe (poussée maximale au sol et à l'arrêt) <i>d'un seul moteur</i> .	N
	$k_{\rm av/br}$: Proportion entre la masse moteur avionné et la masse moteur brut $(k_{\rm av/br} \approx 1.2)$	

TAB. 2.21 – Modèle de masse moteur linéaire par morceaux

2.3.3 Résultats

Étant données la précision remarquable et la simplicité de l'expression analytique du modèle (Table 2.21, p. 74) de masse moteur linéaire par morceaux, c'est ce modèle que nous retiendrons pour notre étude.

	M_{s_1}	pe	De M _{speLPM}		$k_{opt} F_0^{\alpha_{opt}}$			
Modèle	F_0	M_m	M_{mS}	E_S	M_{mS}^{\star}	E^{\star}	M_{mopt}	E_{opt}
	(N)	(kg)	(kg)	(%)	(kg)	(%)	(kg)	(%)
FJ44	8452	242	203	16	225	7	325	-34
JT15D	13545	344	325	6	360	-5	478	-39
TFE731 5	20000	481	480	0	532	-11	658	-37
PW305B	23424	541	562	-4	623	-15	748	-38
CFE738	26325	721	632	12	700	3	823	-14
ALF502R5	31004	727	744	-2	825	-13	941	-29
LF507	31138	754	747	1	828	-10	944	-25
AE3007	31805	861	763	11	846	2	961	-12
CF34 3A/3B	41013	909	984	-8	1091	-20	1183	-30
RB183 55515P	44037	1245	1057	15	1171	6	1254	-1
SPEY 5118	50710	1352	1217	10	1349	0	1407	-4
TAY 611	61608	1606	1479	8	1639	-2	1649	-3
BR710	66034	1916	1585	17	1756	8	1746	9
RB183 TAY650	67150	1818	1612	11	1786	2	1770	3
TAY 651	68503	1840	1644	11	1822	1	1799	2
D 436T1	75019	1740	1800	-3	1995	-15	1937	-11
BR715 55	88444	2474	2123	14	2270	8	2216	10
JT8D 217	90000	2444	2160	12	2296	6	2248	8
CFM56 7B20	91633	2849	2199	23	2324	18	2282	20
JT8D 219	96526	2458	2317	6	2406	2	2381	3
V2522 A5	97861	2859	2349	18	2429	15	2407	16
CFM56 2B1	97900	2543	2350	8	2430	4	2408	5
CFM56 3C1	104533	2341	2509	-7	2542	-9	2541	-9
D30KU II	106090	2781	2546	8	2568	8	2572	8
CFM56 2A2	106757	2623	2562	2	2579	2	2585	1
V2500 A1	111206	2836	2669	6	2654	6	2673	6
V2525 D5	111206	2859	2669	7	2654	7	2673	7
CFM56 5A1	113500	2645	2724	-3	2693	-2	2717	-3
CFM56 5C2	138785	3103	3331	-7	3119	-1	3203	-3
V2533 A5	146791	2847	3523	-24	3255	-14	3353	-18
PS90	156800	3540	3763	-6	3423	3	3539	0
PS90 Soloviev	156800	3900	3763	4	3423	12	3539	9
PS 90A	156911	3540	3766	-6	3425	3	3541	0
PW2037	170144	3897	4083	-5	3649	6	3783	3
NK93	176000	4380	4224	4	3747	14	3889	11
RB211 535E4	191718	3954	4601	-16	4013	-1	4171	-5
D 18T	229795	4920	5515	-12	4655	5	4836	2
PW4152	231308	5117	5551	-8	4680	9	4862	5
PW4052	232197	5117	5573	-9	4696	8	4877	5
CF6 80C2B2	233532	5116	5605	-10	4718	8	4900	4
PW4056	252437	5117	6058	-18	5037	2	5222	-2
CF6 80C2B1F	257997	5170	6192	-20	5131	1	5316	-3
PW4358	258000	5008	6192	-24	5131	-2	5316	-6
CF6 80A2	266893	4624	6405	-39	5281	-14	5465	-18
RB211 524H	269562	5263	6469	-23	5326	-1	5510	-5
CF6 80C2A5	272676	4972	6544	-32	5378	-8	5562	-12
CF6 80E1A2	300255	5838	7206	-23	5844	õ	6017	-3
PW4168	302479	7811	7259	7	5881	25	6054	22
TRENT 772	316269	5742	7590	-32	6114	-6	6278	-9
TRENT 900	340289	9573	8167	15	6519	32	6665	30
PW4084	373651	7457	8968	-20	7082	5	7195	4
GE90 85B	400340	9060	9608	-6	7532	17	7612	16
TRENT 892	406123	7148	9747	-36	7630	-7	7701	-8
Erreur relative	movenn	e (%)		12		8		11

TAB. 2.22 – Estimations des modèles statistiques de masse moteur : Masse spécifique M_{mS} [Boi01], Modèle de masse linéaire par morceaux M_{mS}^{*} (Table 2.21, p. 74) et Modèle en $M_{mopt} = k_{opt} F_0^{\alpha_{opt}}$ (Table 2.19, p. 70). La donnée de masse moteur avionné M_m a été considérée à 1.2 fois la donnée constructeur de masse brut de notre base de données expérimentales (Appendix A, p. 195).

Élodie Roux - novembre 2005

Chapitre 3

Modèle de masse voilure

FIG. 3.1 – Aile gauche d'A320. Photo Henry Lidster

Sommaire

3.1	Bila	n des modèles existants $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 80$
	3.1.1	Modèles statistiques
		Modèle de F.Leclerc
		Modèle de W.Dupont
		Modèle de General Dynamics
		Modèle de I.Kroo
		Modèle de J.Martin
		Modèle de Stender-Morelli (planeur)
		Modèle d'E.Torenbeek
		Modèles Onéra
	3.1.2	Modèles physiques
		Modèle de M.Ardema
		Modèle de P.Viou
		Modèle de S.Palluel et J.Raška
3.2	Élab	oration de notre modèle
	3.2.1	Modélisation de la voilure
	3.2.2	Masse des semelles dimensionnées en flexion
		Critère de contrainte
		Critère de déformation
	3.2.3	Âme dimensionnée en cisaillement 106
	3.2.4	Revêtement dimensionné en torsion $\dots \dots \dots$
		Critère de déformation
		Critère de contrainte
	3.2.5	Nervures
	3.2.6	Triangle d'emplanture (physico-statistique) 117
	3.2.7	Masses statistiques de la structure secondaire \ldots 119
3.3	\mathbf{R} ési	ltats
	3.3.1	Hypothèses de calcul
	3.3.2	Quelques remarques sur les résultats :
		Commentaires spécifiques à chaque modèle 123
		Commentaires généraux
		Comparaison Airbus/Boeing :
3.4	Notr	re Modèle

Introduction

Après avoir développé des modèles moteurs dans le chapitre précédent, pour envisager l'étude analytique de performances conceptuelles¹ des avions de transport civil, nous avions également besoin d'élaborer un modèle de masse voilure simple mais pertinent (c'est-à-dire fonction des paramètres influents tels que la surface voilure S, la flèche φ_e , l'effilement ε, \ldots) et si possible analytique (ce qui est propice aux interprétations physiques).

Le modèle de masse que nous mettons au point dans ce chapitre, est adaptés aux voilures d'avions de transport civil, c'est-à-dire des voilures en flèche ($0 \le \varphi_e \le 41^\circ$), avec effilement ($0 \le \varepsilon \le 1$). Il est dans la mesure du possible modélisé analytiquement à l'aide des résultats de la Résistance des Matériaux pour le caisson voilure reprenant les efforts de flexion, torsion et cisaillement. Le reste de la voilure est modélisé statistiquement. Ce modèle sera particulièrement utile pour les études de type avant-projet.

Les efforts que subit une voilure ne sont repris que par une partie de l'aile, appelée structure primaire. En réalité, c'est un ensemble d'éléments complexes que nous modéliserons par plusieurs systèmes reprenant chacun un type de sollicitations : les semelles du longeron équivalent reprenant la flexion (Table 3.1, p. 102), l'âme du longeron équivalent reprenant l'effort tranchant (Table 3.3, p. 107), et le revêtement de la voilure (du caisson) reprenant la torsion (Table 3.4, p. 112). À l'aide des résultats de la Résistances Des Matériaux, nous dimensionnons chacun de ces systèmes de la structure primaire pour qu'ils soient capables de supporter les efforts critiques définis par la norme FAR 25.

À l'emplanture, du fait de la flèche de la voilure, cette approche est difficile à appliquer car la théorie des poutres n'est plus vraiment vérifiée, ce qui mène à des calculs de type éléments finis, et c'est pourquoi nous élaborerons un modèle physico-statistique de cette partie que nous appelons "triangle d'emplanture" (Table 3.8, p. 118).

Les nervures (Table 3.7, p. 116), quant à elles, sont principalement dimensionnées en flambage, mais notre modélisation sera statistique (le pas géométrique des nervures est supposée être une donnée, et constant le long de l'aile).

La somme des masses de tous ces systèmes représente la masse de structure primaire.

Le reste des éléments de la voilure, s'appelle la structure secondaire (siège des dispositifs hypersustentateurs, hydraulique, ...). C'est par une approche statistique que nous déterminerons sa masse (Table 3.9, p. 119). Elle est modélisée comme une proportion d'une puissance de la surface voilure, dont les valeurs sont ajustées par identification sur les données expérimentales d'avions civils à disposition (Appendix A, p. 195).

Cette modélisation de masse voilure (somme des masses de structure primaire et secondaire), est aussi précise que les meilleurs modèles existants, c'est-à-dire 12.6% d'erreur relative moyenne par rapport à la base de données d'avions de transport civil dont nous disposons, mais sous-estime les masses voilure des avions de types Airbus. En fait, nous verrons que ces avions ont une conception différente notamment par le choix de répartition de portance, ce qui fait que les voilures des avions Airbus sont plus lourdes que celles des avions Boeing. C'est pourquoi nous proposons un recalage (retouche qui ne remet pas en cause la structure du modèle, ni son sens physique), de la masse de structure primaire pour les avions de type Airbus qui permet de tenir compte de cette différence de conception. Ceci permet à notre modèle d'avoir une précision remarquable de 8.7% par rapport aux 37 avions de transport civils de notre base de données expérimentales (Appendix A, p. 195). Cela représente un gain de précision de 3% par rapport aux meilleurs modèles existants.

 $^{^{1}}$ c'est-à-dire améliorer les performances d'un avion non construit, en jouant sur les choix de sa conception même et non pas en modifiant seulement son cas de vol.

Notre modèle utilise des paramètres d'entrée qui ne sont pas toujours connus (données manquantes de notre base de données, comme par exemple la profondeur du caisson \tilde{d} , ou la proportion de hauteur du caisson e_r , ...). Pour tester notre modèle, des valeurs moyennes par défaut ont été considérées pour pallier la méconnaissance de ces données (Section 3.3.1, p. 120). Une meilleure connaissance de ces paramètres d'entrée améliorerait davantage les prédictions de notre modèle.

Les modèles existants ont une précision de 11.8% pour le meilleur d'entre eux (I.Kroo), 12.1% pour E.Torenbeek, de 12 à 16% pour l'ONÉRA, sur une plus faible quantité d'avions (testés sur une vingtaine d'avions contre 37 pour le test de notre modèle). Si l'on compare notre modèle par rapport à ces mêmes avions, la précision est de 3% meilleure que les meilleurs modèles existants (modèles d'E.Torenbeek et I.Kroo).

Non comptant d'avoir une meilleure précision que les modèles existants répertoriés dans la littérature, notre modèle a un domaine de définition également plus étendue de par son mode d'élaboration, car la physique de la résistance des matériaux est respectée. Les modèles existants sont généralement des modèles statistiques basés uniquement sur la notion de résistance de l'aile en flexion (d'où leur terme en $\frac{b}{\cos \varphi_e}$) et sont ajustés statistiquement à quelques avions semblables. Leurs prédictions se détériorent pour des avions quelques peu différents, contrairement à un modèle physique.

Par contre, il est de mise en œuvre un peu plus lourde (environ 7 lignes de calculs) que les modèle statistiques qui tiennent sur une ligne.

3.1 Bilan des modèles existants

Les modèles existants de masse voilure que nous avons trouvés dans la littérature sont répertoriées dans cette section. Nous les avons classés en deux catégories :

- les modèles statistiques : modèles dont la structure analytique est souvent basée uniquement sur le dimensionnement en flexion, et dont plusieurs coefficients identifiés sur les données de quelques avions permettent de recaler le modèle.
- les modèles analytiques : modèles estimant la masse de la structure primaire (partie de voilure reprenant les efforts) analytiquement selon les lois de la Résistance Des Matériaux (RDM). Les épaisseurs des différents éléments sont dimensionnés de manière à pouvoir reprendre les efforts que la voilure est susceptible de subir (flexion, cisaillement, torsion ...). La structure secondaire est, quant à elle, estimée statistiquement.

Pour chaque modèle, leur expression analytique originelle est exposée puis, nous les transformons de manière à ce qu'elle soit dans le système d'unités international (SI : mètre, kilogramme, ...). La nomenclature des variables, et les diverses remarques liées au modèle sont également données. Cela a pour but de donner au lecteur la possibilité d'utiliser les modèles sans avoir à chercher les documents d'origine, qui sont toutefois référencés dans la bibliographie.

Les estimations de ces modèles seront par la suite (Section 3.3, p. 120) confrontées aux données de masse voilure d'avions existants.

REMARQUE 3.1 Les modèles statistiques existants sont essentiellement fondés sur le dimensionnement en flexion. Or, la rigidité en flexion est donnée par l'écartement de matière (ici les semelles) par rapport à l'axe élastique : plus l'épaisseur relative est grande, meilleure est la rigidité en flexion. Par conséquent, l'épaisseur relative utilisée dans les expressions des modèles est un paramètre très influent auquel il faut prendre garde. Donc, pour mettre en œuvre ces modèles statistiques, nous vous conseillons de prendre de grandes précautions par rapport à l'épaisseur relative que vous utiliserez, et de bien respecter les directives des modèles (épaisseur relative à l'emplanture ?, à la cassure ?, ou équivalente ?). Car, selon l'épaisseur relative utilisée, vous obtiendrez des résultats très différents : aussi bien des estimations correctes que catastrophiques.

3.1.1 Modèles statistiques

Modèle de F.Leclerc

Dans [Lec02], F.Leclerc propose un modèle statistique d'évaluation de la masse voilure M_W adapté aux avions de transports civils de type Airbus.

$$M_W = 4.73 \left(\frac{M_{MTOW}b}{100 \, e_{r \, \text{eq}} C_{emp} \cos \varphi_{25}} \right)^{0.6} S^{0.3}$$

Avec l'épaisseur relative équivalente $e_{réq}$ définie comme un barycentre des épaisseurs relatives maximales à l'emplanture e_{remp} , à la cassure e_{rCAS} , et à l'extrémité e_{rext} de l'aile :

$$e_{r\acute{e}q} = \frac{3 er_{emp} + 2 e_{rCAS} + e_{rext}}{6} \tag{3.1}$$

En remarquant que pour une aile trapézoïdale, $S = b C_{emp} \frac{\varepsilon+1}{2}$, et que par définition de l'allongement $\lambda = \frac{b^2}{S}$, le modèle de F.Leclerc devient :

$$M_{W} = 0.197 \left(\frac{M_{MTOW} \lambda \left(\varepsilon + 1\right)}{e_{r \acute{e}q} \cos \varphi_{25}}\right)^{0.6} S^{0.3}$$

b : Envergure de la voilure (distance entre les deux extrémités) m

e_r	: Épais	seur relative, c'est-à-dire rapport de l'épaisseur maxi-	
	\mathbf{male}	du profil et de la corde. De l'ordre de 12% pour les	
	avion	s de transport civils modernes $e_r \approx 0.12$	
e_{rCAS}	: Épais	seur relative maximale à la cassure de l'aile	
$e_{r \circ q}$: Épais	seur relative équivalente (Equation 3.1, p. 81)	
er_{emp}	: Épais	seur relative maximale à l'emplanture	
e_{rext}	: Épais	seur relative maximale à l'extrémité	
M_{MTOW}	: Masse	e Maximale au décollage	kg
S	: Surfa	ce de la voilure	m^2
ε	: Effile	ment de la voilure c'est-à-dire rapport entre les cordes	
	à l'ex	trémité et à l'emplanture	
λ	: Allon	gement de la voilure $\lambda = \frac{b^2}{S}$	

 φ_{25} : Flèche à 25% de la corde

Thèse : Pour une approche analytique de la Dynamique du Vol

rad

Modèle de W.Dupont

Dans [Dup
92], W.Dupont propose deux modèles de devis de masse voilur
e $M_{\scriptscriptstyle W}.$ L'un simple, de la forme :

$$M_{W} = 5.7 \, 10^{-3} \left(\frac{n_{z_{ce}} M_{ch} bS}{C_{emp} e_{r \neq q} \cos \varphi_{25}} \right)^{\frac{2}{3}}$$

Et l'autre considérant le poids de chacun des éléments de la voilure :

	$\left(5.92210^{-5}K_{voil}\left(\frac{n_{z_{ce}}M_{ch}}{C_{emp}e_{r_{eq}}}\left(\frac{b}{\cos\varphi_{25}}\right)^2\right)^{0.9}\right)$	Flexion
$M - \lambda$	$+5.18410^{-4}K_{voil}\left(n_{z_{ce}}M_{ch}\frac{b}{\cos\varphi_{25}}\right)^{0.9}$	Cisaillement
$M_W = \gamma$	$+K_{voil} \left(1.7009 S + 10^{-3} n_{z_{ce}} M_{ch}\right)$	Nervures
	$+4.410^{-3}K_{voil}\left(M_{MLW}\right)^{1.0169}$	Renforts si train sur voilure
	$(+0.3285 K_{voil} (M_{MTOW})^{0.35} S_{pf} K_{vmo})$	Parties secondaires

La masse de carburant contenue dans la voilure diminuant le moment de flexion à l'emplanture, ce n'est pas la masse totale de l'avion qui est pénalisante mais la masse de chargement donnée par :

$$M_{ch} = max(1.05M_{MZFW}, M_{MTOW} - 0.55M_{Fuelpf})$$

$$M_{Fuelpf} = min(\underbrace{\text{capacité max. du porte-à-faux}}_{\approx 80\%M_{Fuelmax}}, M_{MTOW} - M_{MZFW})$$
(3.2)

Le premier cas correspondant au délestage minimum de la voilure, et le deuxième cas à la masse maximale au décollage moins la masse de carburant dans la voilure, favorable à la diminution du moment de flexion à l'emplanture.

$$K_{voil} = \begin{cases} 1 & \text{quadri-moteur,} \\ 1.05 & \text{bi ou tri-moteur,} \\ 1.1 & \text{si moteurs sur fuselage.} \end{cases}$$

C_{emp}	: Corde à l'emplanture	m
b	: Envergure de la voilure (distance entre les deux extrémités)	m
$e_{r \circ q}$: Épaisseur relative équivalente (Equation 3.1, p. 81)	
M_{Fuelp}	: Masse de carburant dans le porte-à-faux de la voilure	kg
K_{vmo}	: Coefficient de l'ordre de 1.39 pour les Airbus	
$M_{\scriptscriptstyle MLW}$: Maximum Landing Weight	kg
M_{MTOW}	: Maximum Take-Off Weight	kg
M_{MZFW}	: Maximum Zero Fuel Weight	kg
M_W	: Masse de la voilure	kg
M_{ch}	: Masse de chargement (Equation 3.2, p. 82)	kg
$n_{z_{ce}}$: Facteur de charge extrême	
S	: Surface de la voilure	m^2
S_{pf}	: Surface de porte-à-faux de la voilure (porte-à-faux : partie	m^2
	de voilure située à l'extérieur du fuselage)	
φ_{25}	: Flèche à 25% de la corde	rad

REMARQUE 3.2 Un avion peut être, dans certaines phases de vol, soumis à plusieurs fois son poids. On définit alors ce coefficient multiplicateur comme étant le facteur de charge. La structure de l'avion restera dans un domaine de déformation élastique tant que le facteur de charge est inférieur au facteur de charge limite $n_{z_{cl}}$. En pratique, des sécurités automatiques empêche l'avion de dépasser le facteur de charge limite. Si l'on dépassait ce facteur, il y aurait déformation plastique : la structure se déformerait et ne reviendrait plus dans sa configuration d'origine. Si la sollicitation augmentait encore, il y aurait rupture. On aurait alors atteint le facteur de charge extrême $n_{z_{ce}}$. Le terme $n_{z_{ce}}M_{ch}$ prend alors tout son sens : l'avion supportera au maximum $n_{z_{ce}}$ fois sa masse de charge limite (limite structurale d'élasticité de l'avion) : $n_{z_{ce}} = 1.5n_{z_{cl}} = (1.5)(2.5) = 3.75$. La présence du facteur de charge extrême dans un devis de masse voilure semble alors intuitivement justifiée : plus $n_{z_{ce}}$ est grand, plus la structure est "solide" donc plus lourde (épaisseur des longerons et de la peau).

Pour une aile trapézoïdale, on montre [Rou03] que la surface voilure est géométriquement liée à l'effilement, l'envergure, et la corde à l'emplanture, comme suit :

$$S = b C_{emp} \left(\frac{1+\varepsilon}{2}\right)$$

En transformant le modèle simple de W.Dupont à l'aide de cette relation géométrique, il est ainsi possible de comparer ce modèle avec le modèle précédent de F.Leclerc. Le modèle simple de masse voilure Dupont devient pour une aile trapézoïdale :

$$M_{\rm W} = 5.7 \, 10^{-3} \left(\frac{1+\varepsilon}{2}\right)^{0.67} \left(\frac{n_{z_{ce}} M_{ch}}{e_{r\,{\rm \acute{e}q}}\cos\varphi_{25}}\right)^{0.67} \, b^{1.33}$$

La masse voilure de F.Leclerc est proportionnelle à l'envergure $b^{1.2}$ alors que celle de W.Dupont est proportionnelle à $b^{1.3}$. Les deux modèles se différencient par l'exposant du terme en $\cos \varphi_{25}$, de l'épaisseur relative équivalente $e_{réq}$, et surtout par la considération différente de la surface voilure S et de la masse prise en compte (facteur de charge extrême multiplié par la masse de chargement ou masse maximale au décollage).

Modèle de General Dynamics

General Dynamics propose un modèle de masse voilure d'avion de transport (exposé dans [Ros85]) :

$$M_W = 0.00428 \frac{S^{0.48} \lambda M_D^{0.43} (M_{MTOW} n_{z_{ce}})^{0.84} \varepsilon^{0.14}}{(100e_r)^{0.76} (\cos \varphi_{50})^{1.54}}$$

avec les masses en lb, les distances en ft. Ce qui s'écrit dans les unités du système international à :

$$M_W = 3.56 \, 10^{-4} \, \frac{S^{0.48} \, \lambda \, M_D^{0.43} \, (M_{MTOW} \, n_{z_{ce}})^{0.84} \, \varepsilon^{0.14}}{e_r^{0.76} \, (\cos \varphi_{50})^{1.54}}$$

M_W	: Masse de la voilure d'avion de transport	kg
φ_{50}	: Flèche à 50% de la corde	rad
e_r	: Épaisseur relative maximale (entre 0.08 et 0.15)	
ε	: Effilement de l'aile	
λ	: Allongement de l'aile (entre 4 et 12)	
S	: Surface de la voilure	m^2
M_D	: Mach maximal au niveau de la mer (entre 0.4 et 0.8)	
M_{MTOW}	: Masse Maximale au décollage (Maximum Take-Off	kg
	Weight)	
n_{zce}	: Facteur de charge extrême	

Modèle de I.Kroo

I.Kroo [Kro01] propose un modèle de masse voilure adapté aux avions de transports civils.

"The wing weights index is related to the fully-stressed bending weight of the wing box. It includes the effect of total wing load (at the ultimate load factor $n_{z_{ce}}$), span b, **average** airfoil thickness e_r , taper ε , sweep of the structural axis φ_e , and gross wing area S. The total wing weight is based on this bending index and actual data from 15 transport aircraft."

- Irlan Kroo - [Kro01] -

Le modèle est donnée en lb avec les distances en ft :

$$M_W = 4.22 S + 1.642 \, 10^{-6} \, \frac{n_{z_{ce}} \, b^3 \, \sqrt{M_{MTOW} \, M_{MZFW}} (1+2 \, \varepsilon)}{e_r \, \cos^2 \varphi_e \, S \, (1+\varepsilon)}$$

Ce qui revient en unités du système international à :

$$M_{W} = 20.6 S + 5.387 \, 10^{-6} \, \frac{nz_{ce} \, b^3 \, \sqrt{M_{MTOW} \, M_{MZFW}} (1+2 \, \varepsilon)}{e_r \, \cos^2 \varphi_e \, S \, (1+\varepsilon)}$$

Modèle de J.Martin

J.Martin propose dans un article [Mar92] un modèle statistique permettant d'évaluer la masse de la voilure (en unités de lb et de ft).

$$M_W = \begin{cases} 0.419 \ \Gamma^{0.442} & \text{si } 18120 \le M_{MTOW} \le 95300 \ kg \\ 9.26 \ 10^{-4} \ \Gamma^{0.698} & \text{si } 95300 \le M_{MTOW} \end{cases}$$

Ce qui revient en unités SI (du Système International : kg et m)

$$M_W = \begin{cases} 0.771 \ \Gamma^{0.442} & \text{si } 18120 \le M_{MTOW} \le 95300 \, kg \\ 3.83 \ 10^{-3} \ \Gamma^{0.698} & \text{si } 95300 \le M_{MTOW} \end{cases}$$

$$\Gamma = \frac{M_{MTOW} \, n_{z_{ce}} \, b^2 \, (1+\varepsilon)}{4 \, \cos^2 \varphi_{25} \, e_r}$$

kg

b	: Envergure de la voilure (distance entre les deux extrémités)	m
e_r	: Épaisseur relative	
M_{MTOW}	: Maximum Take-Off Weight	kg
M_W	: Masse de la voilure	kg
nz_{ce}	: Facteur de charge Extrême	
ε	: Effilement	
φ_{25}	: Flèche à 25% de la corde	rad

Modèle de Stender-Morelli (planeur)

Messieurs Stender et Morelli [Ste69, Mor58] ont développé un modèle de masse voilure adapté aux planeurs :

$$M_{W} = Cw \left(\frac{nz_{ce} M_{ch} S}{\sqrt{e_r \varepsilon}}\right)^{0.64} \lambda^{0.96}$$

b : Envergure de la voilure (distance entre les deux extrémités) m

 e_r : Épaisseur relative

M_{ch}	: Masse de chargement : masse totale de l'avion moins les	kg
	masses voilure, carburant et moteurs (si montés sous l'aile)	

 M_W : Masse de la voilure

 nz_{ce} : Facteur de charge Extrême

 λ : Allongement de la voilure $\lambda = \frac{b^2}{S}$

 ε : Effilement

Historiquement, ce sont les premiers a avoir introduit la masse de chargement M_{ch} (masses de l'avion qui ne contribuent pas à atténuer le moment de flexion à l'emplature, c'est-àdire la masse totale de l'avion moins la masse voilure, la masse carburant, et la masse des moteurs si ceux-ci sont montés sous voilure : $M_{ch} = M_{MTOW} - M_W - M_{Fuel} - M_m$. Autrement dit, la masse de chargement est la masse du fuselage, de la charge utile, de l'empennage, de la dérive, ...) dans le devis de masse voilure, ce qui a réduit sensiblement la dispersion des estimations de masse voilure. Pour l'étude d'avion Hale de type Condor une valeur de $Cw = 3.6 \ 10^{-3}$ a été choisie. Pour les avions de transport civil nous avons remarqué qu'une valeur de $Cw = 8.28 \, 10^{-3}$ conviendrait davantage. Cet écart de valeur de Cw peut s'expliquer par le fait que ce modèle ne tient pas compte de la flèche de la voilure : l'avion Condor est sans flèche et un avion de transport civil a une flèche de l'ordre de 30° (en moyenne). Par conséquent, ce modèle peut être réajusté sur un type d'avion donné par l'intermédiaire de la constante Cw (pour une flèche φ_e moyenne donnée) mais ne permet pas d'envisager des formes nouvelles de voilure puisqu'il ne tient pas compte de l'effet de la flèche sur la masse voilure. Il ne pourra donc pas être utilisé en stade avant-projet pour la conception de nouveaux avions sensiblement différents de ceux existants. Ce modèle est exposé ici pour son aspect historique.

Modèle d'E.Torenbeek

E.Torenbeek [Tor86] propose un devis de masse voilure pour des avions de transports civils.

"The derivation of the present method is based on a generalized expression for the material required to resist the root bending moment due to wing lift in specific operational condition. The average stress is related to the loading index of compression structure. A correction is made for the extra weight to provide the torsional stiffness required to withstand wing flutter. Separate contributions for high-lift devices, spoilers and speed brakes are given. Statistical analysis of wing weight of many aircraft types actually built has yielded the necessary factors of proportionality. The method is applicable to light and transport category aircraft with wing-mounted engines in front of the elastic axis or engines not mounted on wing."

- E. Torenbeek - [Tor86] -

La masse voilure se compose de deux parties : la masse de la structure primaire M_{WSP} c'est-à-dire les longerons, le caisson travaillant, et la structure secondaire M_{WSS} c'est-à-dire les becs, volets, spoilers, ...

$$M_W = M_{W_{\rm SP}} + M_{W_{\rm SS}}$$

La masse de la structure primaire du modèle d'E.Torenbeek a pour expression :

$$M_{W_{\rm SP}} = 4.58 \ 10^{-3} k_{no} \ k_{\varepsilon} \ k_{e} \ k_{uc} \ k_{st} \frac{\left(k_{b} \ nz_{ce} \ (M_{des} - M_{w})\right)^{0.55} b^{1.675}}{\left(er_{emp}\right)^{0.45} \left(\cos\varphi_{50}\right)^{1.325}}$$

n_s	: Rapport de la distance entre l'emplanture et l'attache du	
	hauban, sur la demi-envergure $\frac{b}{2}$.	
M_{des}	: Masse avion de conception $M_{des} \approx M_{MZFW}$	kg
M_w	: Masse voilure	kg
V_D	: Vitesse maximale en piqué (EAS) cf.FAR 25.335	m/s
b	: Envergure de la voilure (distance entre les deux extrémités)	m
er_{emp}	: Épaisseur relative maximale à l'emplanture	
nz_{ce}	: Facteur de charge extrême $nz_{ce} = 1.5 nz_{cl}$	
nz_{cl}	: Facteur de charge limite $nz_{cl} \approx 2.5$	
φ_i	: Flèche à $i\%$ de la corde (0% est au bord d'attaque, 100% est	rad
	au bord de fuite)	

 k_{no} : Weight penalties due to skin joints, non-tapered skin, minimum jauge, ...:

$$k_{no} = 1 + \sqrt{\frac{1.905\cos\varphi_{50}}{b}}$$

- k_{ε} : Weight penalties due to wing taper ratio : $k_{\varepsilon} = (1+\varepsilon)^{0.4}$
- k_e : Bending moment relief factor due to the engine and nacelle installation :

 $k_e = \begin{cases} 1 & \text{engines not wing mounted,} \\ 0.95 & \text{two wing-mounted engines in front of the elastic axis,} \\ 0.9 & \text{four wing-mounted engines in front of the elastic axis.} \end{cases}$

: Correction factor for undercarriage suspension : k_{uc}

$$k_{uc} = \begin{cases} 1 & \text{wing-mounted undercarriage,} \\ 0.95 & \text{undercarriage not mounted to wing.} \end{cases}$$

 k_{st} : Correction factor for extra weight required to provide stiffness against flutter :

$$k_{st} = \begin{cases} 1 & \text{four wing-mounted jet engines,} \\ 1 + 9.06 \ 10^{-8} \frac{(b \cos \varphi_0)^3}{M_{des}} \left(\frac{V_D}{er_{emp}}\right)^2 \cos \varphi_{50} & \text{Engines not mounted to the wing} \\ & \text{or } 2 \text{ wing mounted} \end{cases}$$

 k_b : Correction factor for strut location on braced wings :

$$k_b = \begin{cases} 1 & \text{cantilever wings (pour les voilures classiques),} \\ 1 - n_s^2 & \text{braced wings (pour les voilures haubanées)} \end{cases}$$

La masse de la structure secondaire M_{WSS} dépend de la masse des dispositifs hypersustentateurs (High-lift devices $M_{W_{SS}}^{hld}$) et des spoilers (Spoiler and speed brake $M_{W_{SS}}^{sp}$).

$$M_{WSS} = 1.2 \left(M_{WSS}^{\ hld} + M_{WSS}^{\ sp} \right)$$

La masse des dispositifs hypersustentateurs est elle-même composée de la masse des becs (dispositifs du bord d'attaque : leading edge M_{lef}) et des volets (dispositifs du bord de fuite : trailing edge flap M_{tef}).

$$M_{W_{\rm SS}}^{\ hld} = M_{lef} + M_{tef}$$

La masse des volets M_{tef} peut être calculée par :

$$M_{tef} = 2.706 k_f S_f \left(S_f b_{fs}\right)^{\frac{3}{16}} \left(\left(\frac{V_{att}}{100}\right)^2 \frac{\sin \delta_f \cos \varphi_f}{e_{rf}}\right)^{\frac{3}{4}}$$

Dans le cas où tous les paramètres utilisés dans cette dernière équation ne sont pas connus, la masse spécifique des volets, c'est-à-dire la masse des volets rapportée à leur surface, peut s'estimer graphiquement (Figure 3.2, p. 88). Cette figure représente la masse spécifique des volets selon la masse maximale de l'avion au décollage M_{MTOW} . Par exemple pour un avion de $M_{\rm \scriptscriptstyle MTOW}$ = 200000 kg équipé de volets "Fowler", la masse spécifique lue sur la figure est d'environ $40kq/m^2$. Si la surface des volets est de $S_f = 120 m^2$ alors la masse des volets est de 40 * 120 = 4800 kg.

FIG. 3.2 – Specific weight of leading and trailing edge high lift devices. E. Torenbeek [Tor86].

$\begin{array}{c} b_{fs} \\ e_{rf} \end{array}$: Structural flap span (cf.[Tor86] Fig.C-1 p.453 ou p.220) : Flap relative thickness, i.e. (Flap thickness)/(flap chord) ra- tio measured streamwise	m
k_f	: Correction factor : effect of the flap configuration $k_f = k_{f1} k_{f2}$	
M_{tef}	: The trailing edge flap weight	kg
S_f	: Projected area of flaps	m^2
V _{att}	: Design speed for flaps in landing configuration (EAS). If V_{att} is not known, 1.8 times the stalling speed in the landing configuration may be assumed as a first guest.	m/s
φ_f	: average sweep angle of flap structure (cf.[Tor86] Fig.C-1 p.453)	rad
δ_f	: Maximum flap deflection angle at V_{att} , measured streamwise (cf.[Tor86] p.220)	rad

k_{f}	=	$k_{f1} k_{f2}$	
k_{f1}	=	$\begin{cases} 1 \\ 1.15 \\ 1.30 \\ 1.45 \end{cases}$	single slotted; double slotted, fixed hinge doubled slotted, 4-bar movement; single slotted Fowler double slotted Fowler triple slotted Fowler
k_{f2}	=	$\begin{cases} 1\\ 1.25 \end{cases}$	slotted flaps with fixed vane double slotted flaps with "variable geometry", i.e. extending flaps with separately moving vanes or auxiliary flaps

La masse des becs M_{lef} peut être estimée à l'aide de la figure proposée par E.Torenbeek (Figure 3.2, p. 88) qui représente la masse spécifique des becs (masse des becs rapportée à la surface des becs) en fonction de la masse maximale avion au décollage M_{MTOW} .

Quand à la masse des spoilers et des speed brakes $M_{W_{SS}}^{sp}$, elle peut s'exprimer par le produit de la masse spécifique des spoilers (environ 12 kg/m^2) et de la surface des spoilers S_{sp} :

$$M_{W_{\rm SS}}^{sp} = 12.2 \, S_{sp}$$

ou par un pourcentage de la masse voilure :

$$M_{WSS}^{sp} = 0.015 M_W$$

Les flèches utilisées dans ce modèle sont celles au milieu de l'aile φ_{50} et au niveau des volets φ_f . Mais les données d'avion sont généralement des flèches à 25% de la corde. Pour une aile trapézoïdale, il est possible de relier géométriquement ces différentes flèches selon les caractéristiques géométriques de la voilure [Rou03].

Modèles Onéra

L'ONÉRA déjà confronté à l'estimation de masse voilure, a développé des modèles dans le cadre du projet COMPACT [PDM00]. Deux types de modèles sont proposés : l'un statistique identifié sur des données de 13 avions, l'autre basé sur des considérations géométriques de la voilure, de la constitution interne et sur les considérations technologiques.

Le premier modèle a pour expression :

$$M_W = k_1 n z_{cl}^{k_2} M_{MZFW}^{k_3} \left(\frac{b}{\cos \varphi_{25}}\right)^{k_4} S^{k_5} e^{k_6} M_{MO}^{k_7}$$

Avion	k_1	k_2	k_3	k_4	k_5	k_6	k_7
Court-Courrier	1.5476	-0.01137	0.4314	1.159	-0.0667	0.2337	-0.05
Moyen-Courrier	0.02866	0.33825	0.72827	0.91441	0.17713	-0.20168	0.51096
Long-Courrier	0.05	0.3148	0.66	1.296	-0.065	-0.098	0.5
Gros-Porteur	0.005	0.4	0.805	2.72	-0.98	-0.135	0

M_W	: Masse de la voilure d'avion de transport	kg
φ_{25}	: Flèche à 25% de la corde	rad
e	: Épaisseur absolue maximale de l'aile	m
b	: Envergure de la voilure	m
S	: Surface de la voilure	m^2
M_{MO}	: Maximum Mach Operating	
M_{MZFW}	: Maximum Zero Fuel Weight	kg
nz_{cl}	: Facteur de charge limite	

Le deuxième modèle dont la mise en œuvre est numérique, détermine la masse de la structure primaire (travaillante) par éléments finis de type poutre, connaissant la géométrie et les caractéristiques élastiques (rigidités en flexion et torsion). La masse de la structure secondaire (becs, volets ...) est considérée proportionnelle à la masse de la structure primaire. Cet algorithme permet donc d'évaluer la masse d'une voilure donnée mais ne permet pas de dimensionner celle-ci.

"Il reste à identifier les valeurs des grandeurs géométriques caractéristiques des longerons, parois, lisses et revêtement qui composent la structure interne de la voilure. Dans une démarche de conception classique, on recherche les différentes épaisseurs de métal que doivent avoir ces composants afin de satisfaire aux conditions d'utilisation de l'appareil (entre autres la déflexion maximale de la voilure sous charge).

Dans le cas des appareils classiques, il est inutile de refaire ces calculs, sachant que l'on peut transposer, à l'aide de simples règles de proportionnalité, ces différentes épaisseurs d'un appareil à l'autre sans commettre une erreur importante, principalement en raison du fait que la technologie de fabrication reste identique.

Bien qu'une telle tâche n'ait pas été envisagée dans le cadre de ce travail, il est tout à fait possible de coupler, avec le module de masse, un module de dimensionnement permettant de déterminer ces épaisseurs."

- B. Paluch, F. Descatoire, F. Morel [PDM00] -

3.1.2 Modèles physiques

Modèle de M.Ardema

M.Ardema propose [ACP⁺96] un modèle de masse voilure dont l'expression de la masse de la structure travaillante est basée sur trois termes : une masse de structure résistant à la flexion, une autre au cisaillement et une troisième à la torsion.

"For the wing, only a quasi-static pull-up maneuver condition at load factor n is considered for determining loads. At each spanwise station along the quarter chord, from the wingtip to the wing-fuselage intersection, the lift load, center of pressure, inertia load, center of gravity, shear force, and bending moment are computed. For the inertia load, it is assumed that the fuel weight M_{Fuel} is distributed uniformly with respect to the wing volume.

The wing structure is assumed to be a rectangular multi-web box beam with the webs running in the direction of the structural semispan.

The ideal weight of the carrythrough structure is computed from a summation of the bending shear ans torsion material : "

- Mark Ardema - [ACP+96] - -

M_{WSP}	=	$M_{Wbend} + M_{Wshear} + M_{Wtorsion}$
$M_{Wbending}$	=	$\rho_{Alu} \epsilon \left(\frac{M f_0 \cos \varphi}{e r_{emp}^2 C_{emp_{RDM}} E} \right)^e e r_{emp} C_{emp_{RDM}} w_C$
M_{wshear}	=	$ ho_{Alu} \frac{F\dot{s}_0}{\sigma s} w_C$
$M_{wtorsion}$	=	$\rho_{Alu} \frac{Mf_0 \sin \varphi \ (er_{emp} + C_{emp_{RDM}})}{er_{emp} \ C_{emp_{RDM}} \ \sigma_s} w_C$

Avec l'exposant e qui a pour valeur e = 0.556 pour un revêtement non raidi et e = 0.6 pour un revêtement renforcé.

Covers	Webs	ϵ
Unstiffened	Truss	2.25
Unstiffened	Unflanged	2.21
Unstiffened	Z-stiffened	2.05
Truss	Truss	2.44
Truss	Unflanged	2.40
Truss	Z-stiffened	2.25

ϵ	: Shell buckling efficiency	
Mf_0	: Root bending moment	Nm
Fs_0	: Root shear strength	N
φ	: Wing sweep	rad
er_{emp}	: Root thickness of wing box	
$C_{emp_{BDM}}$: Structural root chord of wing	m
E	: Young's modulus of shell material	N/m^2
e	: Wing buckling exponent	
w_C	: Width of carrythrough structure of the wing	m
ρ_{Alu}	: Structural material density	kg/m^3
σs	: Allowable shear stress for wing	N/m^2

Modèle de P.Viou

Pascal Viou [Vio92] a mis en place le formalisme de la masse d'une voilure de forme trapézoïdale (avec de l'effilement), et ayant de la flèche φ . Son algorithme permet alors de dimensionner les différentes parties de la structure primaire : le revêtement ayant une épaisseur minimale technologique, les semelles étant dimensionnées en rupture ou en déformation, l'âme étant dimensionnée pour supporter les efforts tranchants. Le devis de masse proposé est néanmoins pessimiste puisqu'il néglige la masse de l'aile par rapport à l'effort aérodynamique : le moment de flexion ainsi calculé est donc plus important qu'en réalité et par conséquent le dimensionnement des semelles, donc leur masse est plus important qu'en réalité.

Modèle de S.Palluel et J.Raška

S.Palluel et J.Raška ont élaboré un modèle de devis de masse voilure adapté aux Hales [Pal98, Raš00], pour une aile rectangulaire sans flèche.

Cette masse est composée de la masse des semelles, des âmes, des nervures, du revêtement, et du reste (becs, volets, ...).

$$M_W = M_{W \text{sem}} + M_{W \hat{a} \text{me}} + M_{W \text{ner}} + M_{W \text{rev}} + M_{W \text{rest}}$$

Masse des semelles : Les semelles sont dimensionnées pour reprendre l'intégralité des efforts de flexion voilure. Deux critères de dimensionnement sont proposés :

Critère de contrainte : détermine la loi d'évolution des surfaces semelles le long de l'aile, nécessaire pour assurer la non-rupture sous facteur de charge extrême. Avec l'intrados dimensionné en traction, l'extrados dimensionné en compression, et un rapport de facteur de charge extrême négatif/positif adapté aux avions Hales de $\frac{nz_{ce}}{nz_{ce}} = -0.17$, l'expression de la surface des semelles est :

$$S_{sem} = \left(\frac{1}{-\sigma_{maxc}} + \frac{1}{\sigma_{maxt}}\right) nz_{ce} \oplus M_{ch} g \frac{\left(\frac{b}{2} - y\right)^2}{4 e_r C \frac{b}{2}}$$
$$M_{Wsem} = 2 \int_0^{\frac{b}{2}} \rho_m S_{sem} dy$$
$$= 4 k_1 \left(\frac{1}{-\sigma_{maxc}} + \frac{1}{\sigma_{maxt}}\right) \frac{\rho_m nz_{ce} \oplus M_{ch} g}{e_r C} \left(\frac{b}{2}\right)^2$$

$$M_{W \text{sem}} = k_1 \left(\frac{1}{-\sigma_{maxc}} + \frac{1}{\sigma_{maxt}} \right) \frac{\rho_m \, n_{z_{ce}} \oplus M_{ch} \, g}{e_r} \, \lambda^{\frac{3}{2}} \sqrt{S}$$

Avec k_1 , le coefficient de dimensionnement en résistance : $\frac{1}{8}$ pour des semelles à section constante en envergure, $\frac{1}{24}$ pour une évolution des semelles optimale en non-rupture.

Critère de déformation : limite de déplacement vertical en bout d'aile Uz_{ext} lors de la croisière (facteur de charge $n_z = 1$) au déplacement maximal admissible Uz_{max} .

$$Uz_{ext} = -\int_0^y \int_0^{\xi} \frac{M_{ch} g}{b} \frac{\left(\frac{b}{2} - \zeta\right)^2}{2} \frac{1}{E e_r^2 C^2} \frac{S_E + S_I}{S_E S_I} d\zeta d\xi$$

$$M_{W\text{sem}} = k_2 \, \frac{\rho_m M_{ch} \, g}{E \, e_r^2 \, \left(\frac{U z_{max}}{b/2}\right)} \, \lambda^{\frac{5}{2}} \, \sqrt{S}$$

Avec k_2 , le coefficient de dimensionnement en déformation : $\frac{1}{16}$ pour des semelles à section constante en envergure, $\frac{1}{24}$ pour une évolution des semelles optimale en non-rupture.

Masse du revêtement : Le revêtement est supposé dimensionné non pas en rupture mais en faisabilité technologique. Son épaisseur est supposé être le minima technologique (environ 1mm pour les composites). Ainsi la masse surfacique ϖ_{san} est donnée par le produit de la masse volumique du matériau et de cette épaisseur minimale technologique. Pour l'étude des Hales, J.Raška a considéré du nid d'abeille de 15 mm à 35 kg/m^3 entre deux peaux de 0.5 mm à 1590 kg/m^3 , ce qui fait une masse surfacique de $\varpi_{san} = 2.1 kg/m^2$.

$$M_{Wrev} = \varpi_{san} S_{rev}$$

la surface de revêtement S_{rev} se calcule par intégration de la circonférence du profil (l) le long de la voilure :

$$S_{rev} = 2 \, \int_0^b l \, dy$$

En supposant la circonférence du profil l proportionnelle à la corde C du profil, la surface de revêtement est proportionnelle à la surface de la voilure :

 $\begin{array}{rcl} l &=& K\,C\\ K &\approx& 2.077 & ({\rm cf.[Raš00]~p.73~profil~Liebeck~LD-17A})\\ S_{rev} = l\,b &=& K\,C\,b = K\,S \end{array}$

La masse du revêtement est donnée finalement par :

$$M_{\rm w\,rev} = \varpi_{san} \; K \, S$$

Masse des âmes : Par analogie, la masse des âmes est proportionnelle au produit de l'épaisseur relative du profil e_r que multiplie la surface de la voilure S, par le nombre de longerons N_{long} .

$$S_{\hat{a}me} = 2 \int_{0}^{\frac{b}{2}} e_{r} C \, dy = e_{r} S$$
$$M_{W\hat{a}me} = \varpi_{san} S_{\hat{a}me}$$
$$M_{W\hat{a}me} = N_{long} \, \varpi_{san} \, e_{r} S$$

Masse des nervures : La masse des nervures est calculée par des considérations géométriques. Elles sont supposées d'épaisseur constante : le minima technologique en structure composite. Le pas des nervures δ_{ner} est supposé constant et connu. La loi de corde est prise comme ellitique :

$$C = C_{emp} \sqrt{1 - \left(\frac{y}{b/2}\right)^2}$$

Les cloisons, intercalées entre les nervures, ont une masse évaluée à un tiers de celle des nervures.

$$M_{W ner} = \varpi_{san} \, s_{prof} \, e_r \, \frac{128}{9\pi^2} \frac{S^{\frac{3}{2}}}{\sqrt{\lambda} \, \delta_{ner}}$$

Masse du reste : La masse du reste est estimée statistiquement :

$M_{W \text{rest}} = 0.35 \ (M_{W \text{rev}} + M_{W \hat{\text{a}}\text{me}})$

b	: Envergure de la voilure	m
E	: Module d'Young	N/m^2
e_r	: Épaisseur relative du profil	
K	: Coefficient de proportionnalité entre le périmètre du profil et la corde du profil. Pour le profil Liebeck LD-17A J.Raška avait calculé $K = 2.077$	
k_1	: Coefficient de dimensionnement en résistance : $\frac{1}{8}$ pour des semelles à section constante en envergure, $\frac{1}{24}$ pour une évolution des semelles optimale en non-rupture.	
k_2	: Coefficient de dimensionnement en déformation : $\frac{1}{16}$ pour des semelles à section constante en envergure, $\frac{1}{24}$ pour une évolution des semelles optimale en non-rupture.	
M_{ch}	: Masse de chargement de la voilure : Masse totale de l'avion moins la masse voilure, carburant	kg
M_{ZFW}	: Masse avion sans carburant	kg
N_{long}	: Nombre de longerons	
nz_{ce}	: Facteur de charge extrême	
$\left(\frac{Uz_{max}}{b/2}\right)$: Déplacement vertical maximale admissible en bout d'aile	
\hat{S} '	: Surface de la voilure	m^2
S_{rev}	: Surface de revêtement	m^2
s_{prof}	: Surface relative du profil	
δ_{ner}	: Distance entre les nervures	m
σ_{maxc}	: Contrainte maximale en compression (valeur algébrique donc négative)	Pa
σ_{maxt}	: Contrainte maximale en traction	Pa
λ	: Allongement de la voilure : $\lambda = \frac{b^2}{S}$	
ϖ_{san}	: Masse surfacique du revêtement : par exemple $\varpi_{san} = 2.1 \ kg/m^2$ (nid d'abeille de 15 mm à $35kq/m^3$ entre deux peaux de 0.5 mm à $1590kq/m^3$)	kg/m^2
$ ho_m$: Masse volumique du matériau utilisé	kg/m^3

L'expression de la masse de la voilure totale M_W peut alors se simplifier en posant :

$$K_{n} = \varpi_{san} s_{prof} e_{r} \frac{128}{9 \pi^{2}} \frac{1}{\delta_{ner}}$$

$$K_{ra} = (1+0.35) \varpi_{san} (N_{long} e_{r} + K)$$

$$K_{s} = \begin{cases} k_{1} \left(\frac{1}{-\sigma_{maxc}} + \frac{1}{\sigma_{maxt}}\right) \frac{\rho_{m} nz_{ce} \oplus g}{e_{r}} & \text{Critère de contrainte,} \\ k_{2} \frac{\rho_{m} g}{E e_{r}^{2} \left(\frac{Uz_{max}}{b/2}\right)} & \text{Critère de déformation.} \end{cases}$$

$$x = \begin{cases} \frac{3}{2} & \text{Critère de contrainte,} \\ \frac{5}{2} & \text{Critère de déformation.} \end{cases}$$

Élodie Roux - novembre 2005

En extrayant la masse de chargement de l'expression de la masse des semelles, la masse voilure devient :

$$M_{ch} = M_{MTOW} - M_W - M_{Fuel} = M_{ZFW} - M_W$$
$$M_W = K_s \lambda^x \sqrt{S} (M_{ZFW} - M_W) + K_n \frac{S^{\frac{3}{2}}}{\sqrt{\lambda}} + K_{ra} S$$
$$M_W \left(1 + K_s \lambda^x \sqrt{S}\right) = K_s \lambda^x \sqrt{S} M_{ZFW} + K_n \frac{S^{\frac{3}{2}}}{\sqrt{\lambda}} + K_{ra} S$$
$$M_W = \frac{K_s \lambda^x \sqrt{S} M_{ZFW} + K_n \frac{S^{\frac{3}{2}}}{\sqrt{\lambda}} + K_{ra} S}{1 + K_s \lambda^x \sqrt{S}}$$

3.2 Élaboration de notre modèle

3.2.1 Modélisation de la voilure

La masse de la voilure M_W est la somme des masses des structures primaire $M_{W\rm\,SP}$ et secondaire $M_{W\,\rm SS}.$

$$M_W = M_{WSP} + M_{WSS}$$

La structure primaire qui reprend les efforts appliqués à la voilure,

La structure secondaire qui comprend tous les dispositifs hypersustentateurs, l'hydraulique, les vérins . . .

La masse de la structure secondaire sera évaluée statistiquement, la masse de la structure primaire sera, dans la mesure du possible, estimée analytiquement selon les lois de la Résistance Des Matériaux (RDM).

La structure primaire est composée de longeron(s) (ayant des semelles et une âme), d'un revêtement et de nervures. Le caisson central, partie de voilure dans le fuselage, en fait également partie.

En pratique, ces éléments ne sont pas toujours distincts physiquement et par conséquent reprennent des efforts combinés. Afin de simplifier l'approche physique, nous considérerons que chaque élément a une fonction qui lui est propre, celle de reprendre un certain type de sollicitation. Dans la mesure du possible, nous considérerons des systèmes indépendants répondant chacun à des critères de dimensionnement différents. La voilure sera assimilée à l'ensemble de ces systèmes.

FIG. 3.3 – Structure primaire (qui reprend les efforts) et structure secondaire (dispositifs hypersustentateurs...) de l'aile. Il est intéressant de remarquer que pour une voilure ayant une flèche φ non nulle, il existe une différence entre le plan de profil aérodynamique (dans le sens du fuselage avion) et le plan de la section au sens RDM. Il faudra donc effectuer les projections nécessaires pour étudier les moments de torsion et flexion induits par les efforts aérodynamiques.

Pour la structure primaire :

- Les semelles des longerons reprennent les moments de flexion.
- Les âmes des longerons supportent les efforts tranchants.
- Le revêtement assume l'essentiel des moments de torsion.
- Les nervures servent au cloisonnement en regard du flambage, au maintien de la forme (pour que la forme des profils aérodynamiques ne se modifie pas sous la contrainte). Elles sont également présentes à chaque introduction d'efforts locaux (par exemple, la nervure forte à l'endroit de l'attache du moteur), ou encore à l'endroit où le caisson travaillant présente une ouverture (par exemple, à l'attache du train d'atterrissage).
- Le caisson central reçoit les efforts de chacune des ailes et les transmet au fuselage par l'intermédiaire des cadres forts.
- La partie du caisson travaillant proche du fuselage que nous appellerons triangle d'emplanture (triangle dont l'un des côtés se superpose avec l'emplanture et dont l'autre côté est perpendiculaire à l'axe élastique.). Il reprend les efforts à l'emplanture provoqués par la présence de la flèche de la voilure (Ce triangle n'existe pas si la flèche de la voilure est nulle.).

FIG. 3.4 – Vue en coupe de la modélisation du caisson travaillant réel par un ensemble de systèmes dimensionnés indépendamment, à savoir : un revêtement (dimensionné en torsion) et un longeron (semelles dimensionné en flexion + âme dimensionné en cisaillement).

Les masses des semelles $M_{W \text{sem}}$, des âmes $M_{W \text{ ame}}$, du revêtement $M_{W \text{rev}}$ et du caisson central $M_{W \text{cc}}$, sont exprimées analytiquement. Les masses des nervures $M_{W \text{ner}}$, et du triangle d'emplanture $M_{W \triangleright}$ sont estimées de manière physico-statistique.

$$M_{W_{SP}} = M_{W_{sem}} + M_{W_{ame}} + M_{W_{rev}} + M_{W_{ner}} + M_{W_{cc}} + M_{W_{P}}$$

REMARQUE 3.3 Dans notre étude, nous appelons "revêtement" la peau et les raidisseurs (tôle d'épaisseur équivalente e) du caisson travaillant uniquement. La tôle recouvrant la structure secondaire (bord de fuite et d'attaque) n'est pas prise en compte ici et sera comptée ultérieurement avec la structure secondaire. Le dimensionnement de cette dernière répond à d'autres critères que le revêtement du caisson travaillant. Cette démarche nous permet de bien séparer les problèmes.

REMARQUE 3.4 L'âme du longeron doit en réalité être calculée au cisaillement, puis à la torsion. Dans la décomposition que nous avons choisie d'adopter, ce qui reprend le cisaillement est notre système "âme", et ce qui reprend la torsion est repris par notre système "revêtement". En pratique, les côtés latéraux de notre système "revêtement" sont compris dans l'âme du longeron. L'épaisseur de l'âme réelle sera la somme des deux épaisseurs de nos systèmes "âme" et "revêtement". C'est le principe de superposition.

Pour la structure secondaire : Composée des vérins, de l'hydraulique, de tous les dispositifs hypersustentateurs (becs et volets) ,... Sa masse M_{WSS} sera estimée statistiquement à partir des données expérimentales dont nous disposons (Appendix A, p. 195).

Démarche analytique et statistique : Pour chaque élément de voilure étudié analytiquement, le cas de sollicitation dimensionnant, en regard de la norme FAR 25 en vigueur, sera d'abord déterminé. Puis, la géométrie de l'élément sera choisi afin de satisfaire strictement ce critère de norme : l'élément permettra la certification de l'avion tout en étant le plus petit possible, soit de masse minimale. Enfin, connaissant la géométrie de cet élément, sa masse sera déterminée.

Pour chaque élément de voilure étudié statistiquement, nous tenterons toujours de rapprocher l'évaluation statistique, d'une notion physique. L'expression de la masse de l'élément, dont nous identifierons² les coefficients inconnus, devra être choisie judicieusement. En effet, cette expression doit être fonction des paramètres influents de conception voilure (la surface S, la flèche φ , l'effilement ε , ...) en respectant le sens physique des gradients.

3.2.2 Masse des semelles dimensionnées en flexion

La masse des semelles du longeron est calculée analytiquement à l'aide des résultats de Résistance Des Matériaux. Ces semelles sont dimensionnées en flexion selon un critère de contrainte maximale admissible σ_{max} ou selon un critère de déformation de l'aile. Le dimensionnement choisi sera bien entendu le plus contraignant. Le cas le plus important de sollicitation en flexion est la ressource symétrique sous facteur de charge nz. C'est donc ce cas que nous étudierons soit en contrainte, soit en déformation.

Critère de contrainte

La norme avion en vigueur, FAR 25.305(a), requiert la capacité de l'avion à supporter les charges limites (charges maximales susceptibles d'être rencontrées en service) sans déformations permanentes nuisibles, que ce soit sous facteur de charge limite³ n_{zcl} positif ou négatif.

La norme FAR 25.305(b) requiert également qu'il n'y ait ni rupture ni effondrement de la structure jusqu'aux charges extrêmes⁴.

Le critère de contrainte consiste à dimensionner les semelles de manière à ce qu'elles puissent supporter en tout point, les moments de flexion voilure. Ainsi sous facteur de

$$x = \frac{nz_{cl}}{nz_{cl}} \oplus \approx -0.4 \qquad \text{pour les avions de transport civil}$$
(3.3)

 4 Les charges extrêmes se déduisent linéairement des charges limites (FAR 25.301) par un facteur de sécurité de 1.5 (FAR 25.303).

 $nz_{ce} = 1.5 nz_{cl}$

Pour un avion de transport civil, le facteur de charge extrême est de l'ordre de :

$$nz_{ce}^{\oplus} \approx 1.5(2.5) \approx 3.75$$

²Identification sur les données d'avions dont nous disposons (cf. base de données expérimentales (Appendix A, p. 195))

³Pour un avion de transport civil (FAR 25.337), le facteur de charge limite positif est de l'ordre de $nz_{cl}^{\oplus} \approx 2.5$ et le facteur de charge limite négatif est de l'ordre de $nz_{cl}^{\ominus} \approx -1$. Nous poserons x le rapport entre le facteur de charge limite négatif et positif :

charge limite $n_{z_{cl}}$, les contraintes σ_{cl} subies par les semelles doivent être inférieures ou égales à la limite élastique du matériau σ_e .

De même, sous facteur de charge extrême $n_{z_{ce}}$ les contraintes σ_{ce} doivent être inférieures ou égales à la contrainte limite de rupture σ_{rupt} .

à
$$nz = nz_{cl}, \quad \sigma_{cl} \leq \sigma_{e}$$

à $nz = nz_{ce}, \quad \sigma_{ce} \leq \sigma_{rupt}$

Pour un dimensionnement optimal, c'est-à-dire pour une masse de semelle minimale, il faut considérer l'égalité de l'inégalité la plus contraignante. En pratique, c'est le cas de la contrainte en rupture σ_{rupt} sous facteur de charge extrême nz_{ce} qui est la plus contraignante. En effet, comme nous le montrons [Rou03], la plupart des matériaux aéronautiques ont un rapport entre la contrainte de rupture et la contrainte de limite élastique $\frac{\sigma_{rupt}}{\sigma_e} \leq 1.5$ inférieur au rapport des contraintes sous charges limite et extrême $\frac{\sigma_{ce}}{\sigma_{cl}} = \frac{nz_{ce}}{nz_{cl}} = 1.5$. La contrainte de rupture du matériau σ_{rupt} est donnée pour des matériaux purs en

La contrainte de rupture du matériau σ_{rupt} est donnée pour des matériaux purs en conditions de laboratoire. Par sécurité, en raison des dispersions des caractéristiques des matériaux industriels et des imprécisions de calculs, un coefficient de sécurité matériau⁵ α_s doit être appliqué à cette contrainte maximale de laboratoire σ_{rupt} (notée R_m par la norme AFNOR). La contrainte maximale admissible σ_{max} de la pièce réelle est donnée par :

$$\sigma_{max} = \frac{\sigma_{rupt}}{\alpha_s}$$

REMARQUE 3.5 Par exemple pour l'alliage AZ5GU avec un coefficient de sécurité matériau de $\alpha_s = 1.7$, la contrainte maximale admissible en traction est de $\sigma_{max} = \frac{500 MPa}{1.7} = 294 MPa$.

Dans le cas de matériaux composites, il n'y a pas ou peu de domaine plastique : la rupture se fait à la contrainte limite élastique σ_e . Par contre, le coefficient de sécurité matériau α_s est généralement plus élevé pour les composites que pour les alliages métalliques. En effet, les composites ont leurs propriétés qui se dégradent sensiblement en cas de chocs (outils tombés accidentellement sur l'aile lors de la maintenance, choc, délaminage), à l'usinage (trou, perçage pour assemblage), ...

Pour des contraintes négatives (compression) la limite de rupture est la contrainte limite de flambage puisqu'on ne tolère pas le flambage des semelles. Par exemple [Feh91] pour une plaque plane à bords encastrés : $\sigma_{max} = 6.31E \left(\frac{e}{d}\right)^2$ avec d la largeur semelle, e l'épaisseur semelle.

REMARQUE 3.6 Un dimensionnement en fatigue peut également être envisagé. Pour cela, il suffit de considérer le facteur de charge $n_z = 1$, et la contrainte maximale admissible en fatigue σ_a . Pour indication, F.Leclerc [Lec02] indique pour le dimensionnement de l'intrados en AU4G1, une contrainte maximale admissible en fatigue de $\sigma_a = 330 MPa$ issue des courbes de Woelher (110 MPa multipliée par le coefficient de cycle de durée de vie avion, à savoir 3). Cependant, nous avons montré [Rou03] que le critère de rupture semble plus dimensionnant que la fatigue pour les voilures d'avions de transport civil.

⁵Ce coefficient de sécurité matériau α_s prend en compte que le matériau industriel n'est pas pur, qu'il a été usiné (trou...) et des imprécisions de calculs. Par exemple, un coefficient de sécurité matériau $\alpha_s = 2$ a été considéré pour l'étude d'une aile d'un avion HALE en matériaux composites [Pal98, Raš00, PB99]. Nous verrons que la valeur adaptée à notre modélisation est de $\alpha_s = 1.64$. Vous trouverez des précisions sur ce coefficient de sécurité dans [Rou03, Gui03].

FIG. 3.5 – Diagramme des contraintes normales σ subies par les semelles intrados et extrados lors de l'application d'un moment de flexion $M_{\rm f}$.

Le calcul [Rou03] de la contrainte maximale que subissent les semelles soumises à un moment de flexion M_f créé par les efforts aérodynamiques et massiques sous facteur de charge extrême $n_{z_{ce}}$, permet de déterminer l'évolution de la surface des semelles intrados S_I et extrados S_E le long de la voilure.

À l'intrados :
$$\sigma^i_{max} = \frac{M_f}{h S_I}$$
 et à l'extrados : $\sigma^e_{max} = -\frac{M_f}{h S_E}$

Avec le moment de flexion voilure M_f donné [Rou03] pour chaque abscisse $Y = \frac{y}{b/2}$, pour une répartition de masse de chargement M_{ch} elliptique (c'est-à-dire une répartition de masse voilure et carburant, et de portance elliptique), et pour un moteur de masse avionnée M_m monté sur la voilure à une distance $Y_m = \frac{y_m}{b/2}$ du fuselage :

$$M_{f}(Y) = \left(\frac{2}{3}\frac{1}{\pi}\frac{b/2}{\cos\varphi_{e}} \ n_{z_{ce}}M_{ch}g\right) \ \overline{M_{f}}(Y) - \begin{cases} 0 & \text{si } Y > Y_{m} \\ n_{z_{ce}} \ M_{m} \ g \ (Y_{m} - Y) \frac{b/2}{\cos\varphi_{e}} & \text{si } Y \le Y_{m} \end{cases}$$
$$\overline{M_{f}}(Y) = \left(1 - Y^{2}\right)^{\frac{3}{2}} - \frac{3}{2} \ Y \ \left(\frac{\pi}{2} - Y \sqrt{1 - Y^{2}} - \arcsin Y\right)$$

FIG. 3.6 – Pour un moment de flexion voilure positif M_f^{\oplus} , la semelle intrados est sollicitée en traction alors que la semelle extrados est sollicité en compression.

Semelle	Extrados	Intrados	
Sous facteur de charge	compression	traction	
extrême positif $n_{z_{ce}}^{\oplus}$	$ \sigma_{max}^e = \frac{M_f^{\oplus}}{h S_E} \le \sigma_{maxc} $	$\sigma_{max}^{i} = \frac{M_{f}^{\oplus}}{h S_{I}} \leq \sigma_{maxt}$	
Sous facteur de charge	traction	compression	
extrême négatif $n_{z_{ce}} \ominus$	$\sigma^e_{max} = -rac{M_f^{\ominus}}{hS_E} \leq\sigma_{maxt}$	$\left \sigma_{max}^{i}\right = rac{\left M_{f}^{\ominus} ight }{h S_{I}} \leq \left \sigma_{maxc} ight $	

Le cas le plus contraignant est celui qui dimensionne la surface semelle.

Semelle extrados :
$$S_E = \max\left(-\frac{M_f^{\oplus}}{h\sigma_{maxc}}, -\frac{M_f^{\ominus}}{h\sigma_{maxt}}\right)$$

Semelle intrados : $S_I = \max\left(\frac{M_f^{\oplus}}{h\sigma_{maxt}}, \frac{M_f^{\ominus}}{h\sigma_{maxc}}\right)$

En pratique, puisque dans le matériau, la contrainte maximale admissible de traction est supérieure à celle de compression $\sigma_{maxt} \geq |\sigma_{maxc}|$, et que le moment de flexion sous facteur de charge extrême positif est supérieur à celui sous facteur de charge extrême négatif $M_f^{\oplus} > |M_f^{\ominus}|$ (puisque $n_{z_{ce}}^{\ominus} = -0.4 n_{z_{ce}}^{\ominus}$ cf. FAR 25.337), alors c'est ce cas de chargement extrême positif qui dimensionne en compression l'extrados.

Semelle extrados :
$$S_E = -\frac{M_f^{\oplus}}{h \sigma_{maxc}}$$

Pour l'intrados, il est dimensionné en compression sous facteur de charge négatif si $\frac{|\sigma_{maxc}|}{\sigma_{maxt}} \leq |x|$ et en traction sous facteur de charge positif si $\frac{|\sigma_{maxc}|}{\sigma_{maxt}} \geq |x|$, avec $x = \frac{nz_{cl}}{nz_{cl}} = -0.4$ (Equation 3.3, p. 98).

Semelle intrados :
$$S_I = \frac{1}{h} \max\left(\frac{M_f^{\oplus}}{\sigma_{maxt}}, \frac{M_f^{\ominus}}{\sigma_{maxc}}\right)$$

Connaissant le moment de flexion voilure M_f et l'écartement⁶ des semelles h en tout point de la voilure, la loi d'évolution des surfaces semelles le long de l'aile est ainsi connue, et permet de déterminer par intégration (le long de l'axe élastique d'abscisse notée η) la masse des semelles.

$$M_{W \text{sem}} = 2 \ \rho_m \ \int_{\eta=0}^{\eta=\frac{b/2}{\cos \varphi_e}} \left(S_E + S_I\right) d\eta$$

La résolution de cette intégration (développée dans [Rou03]), pour une répartition de portance elliptique sur une aile trapézoïdale en flèche, permet d'obtenir un modèle de masse des semelles dimensionnées en contrainte (Table 3.1, p. 102).

$$C = C_{emp} \left(1 + (\varepsilon - 1)\frac{y}{b/2}\right)$$

⁶l'écartement des semelles h, est une proportion $\overline{h} \approx 0.93$ [Rou03] de l'épaisseur maximale du profil, c'est-à-dire du produit de l'épaisseur relative e_r et de la corde C. Pour une aile trapézoïdale d'effilement ε et d'envergure b, l'expression analytique de la corde est donnée géométriquement

 ${m \atop m}$

Modèle de masse semel	les e	dimensionnées en contrainte :
$\frac{\overline{h} e_r C_{emp} M_{W \text{sem}}}{2 \rho_m \left(\frac{b/2}{\cos \varphi_e}\right)^2 n_{zce} \oplus M_{ch} g K_{crit}}$	=	$\frac{2}{3} \frac{1}{\pi} \int_0^1 \frac{\overline{M_f}(Y) dY}{1 + (\varepsilon - 1)Y}$
	_	$\frac{\left(Y_m + \frac{1}{(\varepsilon - 1)}\right) \ln \left(1 + (\varepsilon - 1) Y_m\right) - Y_m}{(\varepsilon - 1)}$

$$\int_{0}^{1} \frac{M_{f}(Y) \, dY}{1 + (\varepsilon - 1)Y} \approx -0.125 \, \varepsilon^{0.656} + 0.417$$

$$\overline{M_{f}}(Y) = (1 - Y^{2})^{\frac{3}{2}} - \frac{3}{2} \, Y \left(\frac{\pi}{2} - Y \sqrt{1 - Y^{2}} - \arcsin Y\right)$$

$$K_{crit} = \max\left(\frac{x}{\sigma_{maxc}}, \frac{1}{\sigma_{maxt}}\right) - \frac{1}{\sigma_{maxc}}$$

Variables : b : Envergure de l'aile (distance entre les deux extrémités d'aile) C_{emp} : Corde à l'emplanture e_r : Épaisseur relative du profil, ratio épaisseur maximale/corde

e_r : Epaisseur relative du profil, ratio épaisseur maximale/corde	0
\underline{g} : Constante de gravité $g = 9.81 m s^{-2}$	$m s^{-2}$
h: Écartement des semelles rapportée à l'épaisseur maximale du pro- fil : $\overline{h} \approx 0.93$ [Rou03]	
M_{ch} : Masse de chargement $M_{ch} = M_{MTOW} - M_{Fuel} - M_W = M_F + M_{train} + M_{P/L} + M_m + \dots$	kg
M_m : Masse d'un moteur avionné (moteur brut + nacelle + équipements)	kg
$M_{W \text{ com}}$: Masse des semelles (des deux demi-ailes)	ka
n_{zce}^{\oplus} : Facteur de charge extrême positif $n_{zce}^{\oplus} \approx 3.75$	
x : rapport facteur de charge négatif/positif : $x = \frac{nz_{ce}}{nz_{ce}} = -0.4$	
pour les avions de transport civil FAR 25.337 et $x = -0.17$ pour les hales	
Y_m : Distance de l'attache du moteur par rapport au centre fuselage, rapportée à la demi-envergure $\frac{b}{2} \cdot Y_m - \frac{d_m}{2m}$	
c. Effloment de le veilure c'est à dire represt entre le corde à	
E : Enflement de la vonde, c'est-a-dife rapport entre la corde à	
σ_{max} : Contrainte maximale admissible : σ_{maxc} de compression (valeur	Nm^{-2}
$(a_{-} : Flèche de la voilure au niveau de l'ave élastique$	rad
$ \rho_m :$ Masse volumique du matériau des semelles	$kg m^{-3}$
Mode d'obtention : Analytique selon les résultats de Résistance	e Des
Matériaux. Dimensionnement en contrainte maximale admissible	σ_{max} .
Le modèle de l'intégrale $\int_0^1 \frac{\overline{M_f(Y)} dY}{1 + (\varepsilon - 1)Y}$ est identifiée avec une précisi	ion de
0.4% par rapport à l'expression analytique exacte pour ε de 0 à 1.	
Précision : La rigidité en flexion est très fortement liée à l'écartement	at des
semelles. Par conséquent, une imprecision sur la donnée de l'épa	isseur
relative e_r ou l'écartement adimensionné \overline{h} est source d'erreurs.	

Domaine de définition : Voilure trapézoïdale, avec flèche, vrillée de manière à obtenir une répartition de portance elliptique. Effilement $0 \le \varepsilon \le 1$.

TAB. 3.1 – Modèle de masse semelles dimensionnées en contrainte.

Critère de déformation

Une aile qui résiste aux contraintes qu'elle subit (critère de contrainte satisfait), peut néanmoins présenter en croisière (nz = 1) une déformation en flexion très importance qui nuit aux performances de l'avion.

FIG. 3.7 – Planeur eta (allongement $\lambda = 51.33$) : Les moments de flexion voilure peuvent déformer considérablement l'aile. Ceci est d'autant plus remarquable sur les avions de grand allongement λ , tels que les planeurs. (Photo : Gerhard Marzinzik - Arokurier magazine http://www.leichtwerk.de/eta/en/gallery/photos.html)

FIG. 3.8 – La déformation de l'aile en flexion implique une diminution de la portance utile et provoque une traînée due à la force latérale inutile. Ce qui réduit les performances de l'avion. Le critère de déformation limite la flèche en extrémité d'aile Uz_{ext} à la flèche maximale admissible Uz_{max} . (Pour l'étude du condor, la flèche maximale admissible de $Uz_{max} = 0.16\frac{b}{2}$ a été considérée).

Le critère de déformation, qui concerne particulièrement les voilures ayant un fort allongement λ , limite la flèche⁷ en extrémité d'aile Uz_{ext} , à la flèche maximale admissible Uz_{max} , en vol de croisière, c'est-à-dire à facteur de charge unitaire $n_z = 1$.

$$|Uz_{ext}| \le |Uz_{max}|$$

⁷À ne pas confondre flèche en extrémité d'aile Uz_{ext} qui est le déplacement selon l'axe "vertical" descendant \vec{Z} de la section RDM de l'extrémité de l'aile (Figure 3.8, p. 103), et flèche φ_e de la voilure au niveau de l'axe élastique qui est l'angle entre l'axe avion y_b (perpendiculaire au plan de symétrie avion) et l'axe élastique η (Figure 3.3, p. 96).

Par les relations données par la théorie des poutres en Résistance Des Matériaux, la flèche Uz s'exprime par :

$$\frac{d^2 U z(\eta)}{d\eta^2} = -\frac{M_f}{E I_Y}$$

La flèche en extrémité Uz_{ext} se calcule par la double intégration de l'équation précédente :

$$Uz_{ext} = Uz(\eta = \frac{b/2}{\cos\varphi_e}) = \int_0^{\frac{b/2}{\cos\varphi_e}} \int_0^{\overline{\eta}} \frac{d^2 Uz}{d\eta^2} d\eta \ d\overline{\eta}$$

En supposant une loi d'évolution des surfaces semelles le long de l'aile de la même forme que celle imposée par le critère de contrainte, cela revient à calculer le facteur de proportionnalité $k_{\text{déf}/\sigma}$ qu'il existe entre une surface semelle dimensionnée en déformation et une surface semelle dimensionnée en rupture. La masse des semelles dimensionnée en déformation est dans ce cas une simple proportion $k_{\text{déf}/\sigma}$ de la masse des semelles dimensionnée en rupture (Table 3.2, p. 105).

TAB. 3.2 – Modèle de masse semelles dimensionnées en déformation.

3.2.3 Âme dimensionnée en cisaillement

De même que pour le dimensionnement des semelles, l'âme du longeron doit être capable de supporter en tout point de l'aile, l'effort tranchant T (somme des forces verticales aérodynamiques et massiques) provoqué par une ressource symétrique sous facteur de charge extrême.

FIG. 3.9 – Âme du longeron de surface $S_{\hat{a}me}$ définie dans la section RDM c'est-à-dire perpendiculaire à l'axe élastique η .

La loi d'évolution de la surface de l'âme S_{ame} le long de l'aile s'exprime à l'aide des lois de la Résistance Des Matériaux, en fonction de la contrainte de cisaillement maximale admissible τ_{max} :

$$S_{\hat{a}me} = \frac{|T|}{\tau_{max}}$$

Avec l'effort tranchant voilure T donné [Rou03] pour chaque abscisse $Y = \frac{y}{b/2}$, pour une répartition elliptique de masse de chargement (c'est-à-dire une répartition elliptique de portance et de masse voilure et carburant), et pour un moteur de masse M_m monté sur la voilure à une distance $Y_m = \frac{y_m}{b/2}$ du fuselage :

$$T(Y) = -(n_{zce} M_{ch} g) \overline{T}(Y) + \begin{cases} 0 & \text{si } Y > Y_m, \\ n_{zce} M_m g & \text{si } Y \le Y_m. \end{cases}$$
$$\overline{T}(Y) = \frac{1}{2} \left(1 - \frac{2}{\pi} Y \sqrt{1 - Y^2} - \frac{2}{\pi} \operatorname{arcsin} Y \right)$$

La masse de l'âme des 2 demi-ailes est donnée par le double de l'intégration le long de l'axe élastique (d'abscisse notée η) de la surface de l'âme.

$$M_{W\hat{a}me} = 2\rho_m \int_{\eta=0}^{\eta=\frac{b/2}{\cos\varphi_e}} S_{\hat{a}me} d\eta$$

Pour une aile trapézoïdale en flèche, avec une répartition de portance elliptique, la résolution de cette intégration (développée dans [Rou03]) permet d'aboutir au modèle de masse de l'âme (Table 3.3, p. 107).

Modèle de masse de l'âme dimensionnée en cisaillement :	
$-$ 1 n_{zq} (21)	
$M_{\text{W}\hat{a}\text{me}} = \rho_m \sqrt{\lambda} S \frac{M_s}{\cos \varphi_e} \frac{M_s}{\tau_{max}} \left(M_{ch} \frac{1}{3\pi} - M_m Y_m \right)$	
Variables : b : Envergure c'est-à-dire distance entre les deux extrémités de la	m
voilure	
g : Constante de gravité $g=9.81ms^{-2}$	$m s^{-2}$
M_{ch} : Masse de chargement voilure :	kg
$M_{ch} = M_{MTOW} - M_{Fuel} - M_W = M_F + M_{train} + M_{P/L} + M_m + \dots$	
M_m : Masse d'un moteur avionné (masse du moteur brut, de sa nacelle, de ses équipements hydrauliques)	kg
$M_{W\hat{a}me}$: Masse de l'âme (des deux demi-ailes)	kg
n_z : Facteur de charge. Il faut considérer soit le facteur de charge extrême <i>FacteurCharge</i> = $n_{z_{ce}}$ et la contrainte de rupture $\tau_{max} = \frac{\tau_{rupt}}{\alpha_s}$, soit un facteur de charge unitaire (croisière) $n_z = 1$	
et une contrainte maximale de l'atigue $\tau_{max} = \tau_a$.	
$n_{z_{ce}}$: Facteur de charge extreme $n_{z_{ce}} = 1.5 n_{z_{cl}} \approx 5.75$ S : Surface voilure	m^2
Y_m : Distance de l'attache du moteur par rapport au centre fuselage, rapportée à la demi-envergure $\frac{b}{2}: Y_m \approx \frac{1}{3}$	111
φ_e : Flèche de la voilure au niveau de l'axe élastique λ : Allongement de la voilure $\lambda = \frac{b^2}{\sigma}$	rad
τ_{max} : Contrainte de cisaillement maximale admissible	Nm^{-2}
$ au_a$: Contrainte de rupture en fatigue de cisaillement : déterminée par les courbes de Woelher	Nm^{-2}
τ_{rupt} : Contrainte de rupture statique cisaillement laboratoire	Nm^{-2}
α_s : Coefficient de sécurité matériaux pour tenir compte de la disper- sion des caractéristiques entre matériau laboratoire/industriel et de l'usinage (trous). Valeur conseillée $\alpha_s = 1.64$ cf.[Rou03].	
$ \rho_m $: Masse volumique du matériau de l'âme k	$cg m^{-3}$
Mode d'obtention : Analytique selon les résultats de Résistance	Des
Matériaux. Dimensionnement en cisaillement : Prendre le cas le plu	s di-
mensionnant entre la rupture statique $(nz = nz_{ce} \text{ et } \tau_{max} = \frac{1}{\alpha_s}$ rupture en fatigue $(nz = 1 \text{ et } \tau_{max} = \tau_a)$.	-) et
Précision : Résolution exacte analytique, donc si erreur il y a, c'est dan modélisation : la manière de poser le problème.	ns la
Domaine de définition : Voilure avec (ou sans) flèche à répartition de	por-
tance elliptique (vrillage adéquat).	Por

TAB. 3.3 – Modèle de masse de l'âme dimensionnée en cisaillement.
3.2.4 Revêtement dimensionné en torsion

La masse du revêtement se calcule comme l'intégrale le long de l'axe élastique, du double (car il y a 2 demi-ailes) du produit de l'épaisseur de peau e, par le périmètre du caisson l, et par la masse volumique du matériau ρ_m .

$$M_{\rm W\,rev} = 2 \, \rho_m \, \int_0^{\frac{b/2}{\cos \varphi_e}} e \, l \, d\eta$$

Le périmètre du caisson l s'exprimant entièrement en fonction des paramètres géométriques de la voilure, pour calculer la masse de revêtement il faut connaître l'épaisseur de peau du caisson e. Pour cela, deux critères de dimensionnement sont envisageables : un dimensionnement en déformation qui n'est autre qu'un critère d'efficacité des gouvernes de roulis (FAR 25.349), et un dimensionnement en contrainte qui assure la non rupture de la structure (FAR 25.333) quels que soient les moments de torsion que la voilure est susceptible de subir.

Critère de déformation

Ce dimensionnement consiste à satisfaire le critère d'efficacité des gouvernes de roulis imposé par la FAR 25.349. En mettant le manche en butée latérale δl_{\max} à la vitesse de manœuvre⁸ V_A (au facteur de charge $n_z = 0$ ou $n_z = \frac{2}{3}n_{zcl}$), l'avion prend une vitesse de roulis p_A . Pour être certifié, l'avion doit être capable d'au moins atteindre cette vitesse de roulis par braquage des ailerons δl à la vitesse de croisière V_C et $\frac{1}{3}$ de p_A à la vitesse maximale en piqué V_D (pour ces deux facteurs de charges).

$$p_C \geq p_A$$

 $p_D \geq \frac{1}{3}p_A$

Pour relier ce critère d'efficacité de gouvernes de roulis à l'épaisseur e de revêtement nécessaire, il faut exprimer le moment de torsion dû au braquage des gouvernes.

L'étude du vol latéral de la dynamique du vol avion permet d'écrire⁹ :

$$A\dot{p} - (B - C)qr - E(\dot{r} + rq) = \frac{1}{2}\rho V_a^2 S \ell C \ell$$

Dans le cas de la manœuvre de roulis (r = q = 0), ailerons braqués, en vol équilibré $(\dot{p} = 0)$ l'équation précédente se simplifie :

$$Cl = 0 = \underbrace{Cl_{\beta} \beta}_{=0} + Cl_p \frac{p\ell}{V} + \underbrace{Cl_r \frac{r\ell}{V}}_{=0} + Cl\delta l \delta l + \underbrace{Cl_{\delta n} \delta_n}_{=0} = Cl_p \frac{p\ell}{V} + Cl\delta l \delta l$$

⁸La FAR 25.335 "Design Airspeed" définit les encadrements de vitesses entre la vitesse de manœuvre V_A , la vitesse de croisière V_C , et la vitesse maximale en piqué V_D .

$$\sqrt{nz_{cl}}V_{S1} \lesssim V_A \le V_C \le 0.8V_L$$

⁹C'est l'application du principe fondamental de la dynamique : la somme des moments appliqués à l'avion selon $\overrightarrow{X_b}$. Pour le détail de l'établissement des équations de dynamique du vol, se référer à [Boi98]. A, B, C, E sont des composantes de la matrice d'inertie de l'avion. p, q, r sont respectivement les vitesses angulaires de roulis, tangage et lacet, β l'angle de dérapage, δl la commande de roulis, δn la commande de lacet.

Finalement la vitesse angulaire de roulis est donnée par :

$$p = -\frac{Cl_{\delta l}}{Cl_p} \frac{\delta l}{\ell} V \tag{3.4}$$

Le coefficient aérodynamique de roulis provoqué par la vitesse de roulis Cl_p , peut s'évaluer à l'aide de la théorie de la ligne portante $(Cl_p = -\frac{\pi}{8}\frac{\lambda^3}{4+\lambda} < 0)$ et nous supposerons Cl_p constant pour un avion donné quelle que soit sa configuration de vol.

Par contre le coefficient $Cl \delta l$ varie selon le point de vol et ce, à cause de la déformation de l'aile lors du braquage δl des gouvernes. Ce coefficient $Cl \delta l \delta l = \frac{M_{x_b}^t(\delta l)}{\frac{1}{2}\rho V_a^2 S \ell}$ s'exprime en fonction du moment de roulis $M_{x_b}^t$ qui est la somme d'un moment de roulis rigide $M_{\delta l}$ (moment de roulis que subirait l'avion si celui-ci était rigide) et d'un moment de roulis souple $M_{\Delta F_z}$ (supplément de moment de roulis due à la déformation des ailes).

$$M_{x_b}^t = M_{\delta l} + M_{\Delta F_z}$$

Moment rigide de roulis : Soit un avion dont le pilote incline le manche, à gauche par exemple : $\delta l > 0$. L'aileron droit s'abaisse créant localement une force de portance $-F_{\delta l}$

FIG. 3.10 - Le pilote incline le manche à gauche : $\delta_l > 0$. L'aileron droit s'abaisse alors que le gauche se lève, créant un moment de roulis négatif. L'avion tourne autour de l'axe $-x_b$.

à une distance $L_{\delta l}$ du centre du fuselage. Inversement, l'aileron gauche se lève créant localement une force déportante $F_{\delta l} = \frac{1}{2}\rho V_a^2 S_{aileron}Cz_{\delta l}\delta l$. Ce braquage d'ailerons provoque un moment rigide de roulis $M_{\delta l}$ selon l'axe du fuselage¹⁰ $\overrightarrow{x_b}$:

$$M_{\delta l} = -2 L_{\delta l} F_{\delta l} = -2 L_{\delta l} \frac{1}{2} \rho V_a^2 S_{aileron} C z_{\delta l} \delta l$$

Moment souple de roulis : En réalité les ailes sont souples et se déforment, à la fois en torsion et en flexion, sous l'application des forces $F_{\delta l}$. Cette déformation provoque une modification de la répartition de portance (par modification des incidences locales $\Delta \alpha_l$) qui va à l'encontre de l'effet escomptée par les ailerons). Le moment souple de roulis

¹⁰Selon le repère R_b lié à l'avion [Boi01, Boi98]. $\vec{x_b}$ est l'axe élément du plan de symétrie de l'avion, orienté vers l'avant. L'axe $\vec{z_b}$, perpendiculaire, est également dans le plan de symétrie de l'avion mais orienté vers le ventre de l'avion. $\vec{y_b}$ étant porté par l'aile droite. Ainsi un avion dont l'aile droite s'enfonce et l'aile gauche se lève est en roulis positif.

 $M_{\Delta F_z}$ dû à la différence de répartition de portance créé par ce braquage d'ailerons, se détermine par :

$$M_{\Delta F_z} = 2 \int_{R_{fus}}^{\frac{b}{2}} y \frac{1}{2} \rho V_a^2 C z_\alpha \Delta \alpha_l(y) C(y) dy$$
$$= 2 \frac{1}{2} \rho V_a^2 C z_\alpha \int_{R_{fus}}^{\frac{b}{2}} y \Delta \alpha_l(y) C(y) dy$$

L'expression de la corde étant géométriquement déterminée pour une aile trapézoïdale $C(y) = C_{emp} \left(1 + (\varepsilon - 1) \frac{y - R_{fus}}{\frac{b}{2} - R_{fus}}\right)$, il reste à calculer la variation d'incidence locale due à la déformation de l'aile par braquage des ailerons (Figure 3.11, p. 110) :

$$\Delta \alpha_l = \frac{f_B - f_A}{AB}$$

FIG. 3.11 - Le caisson travaillant est représenté par la surface grisée foncée. L'aile ayant une flèche φ , le profil aérodynamique ne correspond pas à la section au sens structure. Le plan de définition des profils est considéré dans cette section, parallèle au plan de symétrie avion.

Les levées respectives f_A et f_B des bords d'attaque A et de fuite B se calculent à l'aide des résultats de la Résistance Des Matériaux :

$$f_A = \underbrace{f_{A'}}_{\text{due à la flexion}} + \underbrace{\overline{A'A} \,\theta_{\eta}(A')}_{\text{due à la torsion}} \qquad (\text{idem pour B})$$

Le terme dû à la flexion $f_{A'}$ s'exprime en fonction du moment de flexion Mf provoqué par le braquage de la gouverne, du module d'Young E du matériau, et du moment quadratique I_Z déterminé par le dimensionnement en flexion des semelles.

$$\frac{d^2f}{d\eta^2} = \frac{Mf}{E I_Z} = \frac{F_{\delta l}(\frac{b/2}{\cos\varphi_e} - \eta)}{E I_Z(\eta)}$$

FIG. 3.12 – Moment de torsion induit par le braquage des ailerons : $Mt = d_{\delta l} F_{\delta l} = d_{\delta l} \frac{1}{2} \rho V_a^2 S_{aileron} C z_{\delta l} \delta l$ (et un moment $Mt = -d_{\delta l} F_{\delta l}$ pour l'autre aile). La détermination des positions du foyer de l'aileron et du centre de torsion du caisson C_t est développée dans [Rou03].

Le terme dû à la torsion $\overline{A'A} \theta_{\eta}(A')$ s'exprime par la relation qui lie l'angle de rotation des sections θ_{η} , au moment de torsion Mt provoqué par le braquage de la gouverne de roulis, au module de cisaillement¹¹ G du matériau du revêtement, et à la constante de rigidité¹² J:

$$\frac{d\theta_{\eta}}{d\eta} = \frac{Mt}{GJ} = \frac{d_{\delta l} F_{\delta l}}{GJ(\eta)}$$

Le moment souple de roulis $M_{\Delta F_z}$, créé par la torsion et la flexion dues au braquage des gouvernes de roulis, est fonction de l'épaisseur du revêtement *e*. Son expression, ainsi que celle du moment rigide de roulis $M_{\delta l}$, permet de calculer le moment total de roulis $M_{x_b}^t = M_{\delta l} + M_{\Delta F_z}$ qui est lui même relié à la vitesse de roulis *p* (Equation 3.4, p. 109). Ainsi, respecter le critère d'efficacité des gouvernes de roulis qui contraint *p*, permet de déterminer l'épaisseur de revêtement *e* nécessaire et donc la masse de revêtement $M_{W rev}$ par intégration [Rou03].

Les applications numériques sur un avion de type A300, ont montré que les épaisseurs nécessaires pour satisfaire le critère de déformation était de l'ordre du minima technologique (c'est-à-dire de l'épaisseur de tôle minimale admissible opérationnellement, de l'ordre de 1.45 mm). Ce critère impose des épaisseurs de peau variant le long de l'aile, avec des valeurs nulles à l'extrémité de l'aile, et de l'ordre du minima technologique à l'emplanture.

$$G = \frac{E}{2(1+\nu)}$$

$$J = \frac{4 A^2}{\oint \frac{dl}{e}}$$
$$= \frac{4 A^2 e}{l}$$
si épaisseur de peau constante

A étant l'aire du caisson travaillant, l sa circonférence et e l'épaisseur de peau.

¹¹Pour garder en tête un ordre de grandeur, ce module vaut $G=2.7\,10^{10}~Pa$ pour de l'Aluminium AU4G. Il peut également se calculer à l'aide du module d'Young E et du coefficient de Poisson ν par la relation :

Le module d'Young E de l'Aluminium AU4G étant de 7.2410¹⁰ Pa, et le coefficient de poisson $\nu = 0.34$. 12 La constante de rigidité en torsion J (de dimension m^2) est donnée par la relation :

٦

Modèle de masse du revêtement dimensionné en déformatio	on:				
$M_{W rev} = 2 \ \rho_m \ e \ k_l \ \left(e_r + \widetilde{d} \ \cos \varphi_e \ f_{\varphi_e}\right) \ \left(\frac{b}{2} - R_{fus}\right) (1 + \varepsilon) \ \frac{C_{emp}}{\cos \varphi_e}$					
Maniahlan at IInitén					
b : Envergure (distance entre les deux extrémités de la voilure)	m				
C : Corde à l'emplanture	m				
C_{emp} : Corde a reinplanture	110				
$C_{2\alpha}$: Gradient de coefficient de portance selon l'angle de bre					
$C_{2\delta l}$: Gradient de coencient de portance selon rangie de bra- quage aileron δl .					
\widetilde{d} : Ratio profondeur du caisson travaillant/corde du profil					
e : Épaisseur de peau du revêtement	m				
e : Épaisseur relative du profil ratio épaisseur maximale/corde					
f_r : Bapport de la corde BDM sur $C \cos(\alpha + f_r) \approx 0.98$ [Bou03]					
G : Modulo do ciscilloment du matériau $(G = 2.7 \ 10^{10} \ N/m^2)$	N/m^2				
(0 = 2.110 M/m)	14/11				
k_{\star} : Batio de l'aire du caisson travaillant et l'aire du rectangle					
κ_A . Italio de l'ane du caisson travamant et l'ane du rectangle					
de menie profondeur <i>u</i> et de nauteur repaisseur maximale du profil o $C_{-}k_{+} \approx 0.02$ [Pou02]					
du prom $e_r \subset \kappa_A \sim 0.92$ [nou05] k. : Batia du párimàtra ráal du caiscon travaillant l cur calui du					
κ_l . Ratio du perimetre reel du casson travamant i, sur centi du roctangle de longueur $d = \tilde{d} C_{RRK} = \tilde{d} \cos(\alpha - f_{RRK})$					
rectangle de longueur $u = u C_{RDM} = u \cos \varphi_e \int \varphi_e C$ (lon-					
du profil). $k_l \approx 0.97$ [Rou03]					
l: Périmètre du caisson travaillant	m				
$L_{\delta l}$: Distance entre l'axe de symétrie fuselage et une gouverne	m				
Distance entry l'erre de facelere et l'erre leutere de l'eile					
R_{fus} : Distance entre l'axe du fuselage et l'emplanture de l'alle	m_{2}				
$S_{aileron}$: Surface d'un alleron des gouvernes de rouns	m_{μ}				
V_A : Design Maneuvering speed FAR 25.335	m/s				
V_C : Design Cruising speed FAR 25.335	m/s				
V_D : Design Dive speed FAR 25.335	m/s				
$\delta l_{\rm max}$: Braquage maximal des gouvernes de roulis	rad				
φ_e : Fleche de la vollure au niveau de l'axe elastique	rad				
ε : Effilement de la vollure, c'est-a-dire ratio des cordes a l'extrémité et à l'emplanture					
$ \rho_m $: Masse volumique du matériau utilisé pour le revêtement	kg/m^3				
(Aluminium : $\rho_m = 2700 \ kg/m^3$)					
Mode d'obtention : Analytique. Sur critère en déformation d'efficacité des roulis FAR 25.349	ailerons				
Précision : Non évaluable, par manque de données expérimentales de m	asse de				
revêtement. Nous ne disposons que de données de la masse voilure tota	le.				
Domaine de définition : Avions de transports civils.					
· · · · · · · · · · · · · · · ·					

TAB. 3.4 – Modèle analytique de masse du revêtement dimensionné en torsion (critère de déformation)

L'épaisseur de peau est de l'ordre du minima technologique $1.45\ mm$ mais peut s'évaluer plus finement par :

$$e = \frac{1}{12} C_{Z\alpha} \left(\frac{b}{2} - R_{fus}\right)^2 \frac{\begin{pmatrix} 6 \ln(\varepsilon) \left(\frac{b}{2} - R_{fus} \varepsilon\right) \\ + \frac{b}{2} \left(2 \varepsilon^3 - 3 \varepsilon^2 - 6 \varepsilon + 7\right) \\ + R_{fus} \left(\varepsilon^3 + 3 \varepsilon - 4\right) \end{pmatrix}}{L_{\delta l} S_{aileron} C_{Z\delta l} \delta_{l_{\max}} \cos \varphi_e C_{emp}^2 \left(\varepsilon - 1\right)^3} K_{max}}$$

$$K_{max} = \max\left(\frac{V_C^3 f_{\theta}(V_C) - V_A^3 f_{\theta}(V_A)}{(V_C - V_A) \left(V_C^2 + V_C V_A + V_A^2\right)}, \frac{27 V_D^3 f_{\theta}(V_D) - V_A^3 f_{\theta}(V_A)}{(3 V_D - V_A) \left(9 V_D^2 + 3 V_D V_A + V_A^2\right)}\right)$$

$$= \frac{27 V_D^3 f_{\theta}(V_D) - V_A^3 f_{\theta}(V_A)}{\left(3 V_D - V_A\right) \left(9 V_D^2 + 3 V_D V_A + V_A^2\right)} \qquad (Avion de transport civil)$$

$$f_{\theta}(V_a) = \frac{k_l \left(e_r + \tilde{d} \cos \varphi_e f_{\varphi_e}\right)^2}{2 \left(k_A \tilde{d} e_r \cos \varphi_e f_{\varphi_e}\right)^2} \frac{d_{\delta l} \frac{1}{2} \rho V_a^2 S_{aileron} C_{Z\delta l} \delta_{l_{\max}}}{G}$$

Critère de contrainte

La norme FAR 25 requiert que la structure soit capable de supporter les efforts qu'elle subit dans tout le domaine de vol (FAR 25.333). Il faut donc vérifier que le revêtement soit capable de supporter les moments de torsion dans les deux configurations suivantes :

- FAR 25.349 : facteur de charge $n_z = 0$ ou bien $n_z = \frac{2}{3}n_{zcl}$ avec les gouvernes de roulis δl braquées telles que la vitesse de roulis obtenue soit supérieure à celle minimale exigée par la norme.
- FAR 25.333 : facteur de charge limite $n_z = n_{z_{cl}}$ en lisse (pas de braquage de gouvernes de roulis : $\delta l = 0$).

En pratique (du moins pour le cas de l'aile A300 testée numériquement) c'est la deuxième configuration qui est la plus contraignante : d'une part parce que le moment de torsion est proportionnel au facteur de charge (donc plus il est élevé, plus le moment de torsion est important), et d'autre part parce que le braquage des gouvernes de roulis provoque un moment de torsion selon l'axe élastique bien plus faible que le moment de torsion due à la portance de l'aile. Rappelons que les gouvernes de roulis sont là pour créer un moment de roulis autour de l'axe fuselage $\vec{x_b}$ et non pas de la torsion autour de l'axe élastique. La force de l'aileron est faible (par rapport à la portance) et le bras de levier également $d_{\delta l}$ (distance entre le centre de torsion C_t et le foyer local aileron environ à une demi-corde aileron devant l'aileron), (Figure 3.12, p. 111).

Le calcul analytique du moment de torsion subi par la voilure [Rou03], permet d'aboutir au modèle de masse de revêtement M_{Wrev} dimensionné en contrainte (Table 3.5, p. 114). Nos applications numériques ont toutefois montré qu'un revêtement dimensionné selon le critère de déformation, satisfaisait le critère de contrainte. Or, nous avons vu que le critère de déformation aboutissait à des épaisseurs de peau de l'ordre du minima technologique (1.45 mm). Ainsi, le dimensionnement du revêtement en torsion ne s'avère pas pertinent, il suffit de considérer une épaisseur de peau constante e donnée par le minima technologique.

Modèle de masse du revêtement dimensionné en contrainte :
$M_{Wrev} = 2 \rho_m \frac{b/2}{\cos^2 \varphi_e} \frac{1}{\tau_{max}} \frac{k_l \left(e_r + \widetilde{d} f_{\varphi_e} \cos \varphi_e\right)}{k_A \widetilde{d} e_r f_{\varphi_e}} \int_0^1 \frac{-M_t(Y)}{C(Y)} dY$
$\int_0^1 \frac{-M_t(Y)}{C(Y)} dY = f_{\varphi_e} \cos \varphi_e n_{z_{cl}} \left(l_{C_t F} M_{MTOW} - l_{C_t G} \left(M_W + M_{Fuel} \right) \right) g$
$-\frac{1}{2}\left(\frac{\mathrm{in}\varepsilon}{\varepsilon-1}+b_1\ln\varepsilon+b_2\varepsilon+b_3\right)$ $-\frac{1}{2}\rhoSV^2\cos^3\varphi_ef_{\varphi_e}^2\frac{1}{1+\varepsilon}Cm_{oprofil}\frac{1}{9}\frac{\varepsilon^3\left(3\ln\varepsilon-1\right)+1}{(\varepsilon-1)^2}$
$- (d_M n_{z_{cl}} M_m g - d_F F) \frac{1}{C_{emp}} \frac{1}{\varepsilon - 1} \ln (1 + Y_m(\varepsilon - 1))$
variables et Unites : b : Envergure (distance entre les deux extrémités de la voilure) m b_i : Valeurs identifiées : $b_1 = 0.895$, $b_2 = -0.389$ et $b_3 = -0.207$. C_{emp} : Corde à l'emplanture m \tilde{d} : Ratio profondeur du caisson travaillant/corde du profil e_r : Épaisseur relative du profil, ratio épaisseur maximale/corde f_{φ_e} : Fonction de projection entre section RDM et section // au fuselage [Rou03] $f_{\varphi_e} \approx 0.98$ k_A : ratio de l'aire réelle du caisson travaillant A, sur celle du rectangle de longueur $d = \tilde{d} C_{RDM} = \tilde{d} \cos \varphi_e f_{\varphi_e} C$ (longueur du caisson) et de largeur $e_r C$ (épaisseur maximale du profil). $k_A \approx 0.92$ [Rou03] k_l : ratio du périmètre réel du caisson travaillant l, sur celui du rectangle de longueur d et de largeur $e_r C$. $k_l \approx 0.97$ [Rou03] n_{z_cl} : Facteur de charge limite (avions de transport civil : $n_{z_cl} \approx 2.5$)
φ_e : Flèche de la voilure au niveau de l'axe élastique rad ε : Effilement de la voilure, ratio corde à l'extrémité/emplanture ρ_m : Masse volumique du matériau utilisé pour le revêtement kg/m^3
Mode d'obtention : Analytique (excepté le calcul de la masse due à la portance qui est une loi identifiée pour des effilements $0 < \varepsilon \le 1$ avec une précision de 0.9%).
Précision : Non évaluable, par manque de données expérimentales de masse de revêtement. Nous ne disposons que de données de la masse voilure totale.
Domaine de définition : Aile en flèche φ_e , avec effilement ε , à répartition de por- tance elliptique.

TAB. 3.5 – Modèle analytique de masse du revêtement dimensionné en contrainte

3.2.5 Nervures

Les nervures sont généralement dimensionnées en flambage, mais le modèle ici proposé de la masse des nervures est en réalisé basé sur des considérations statistiques pour une aile avec effilement ε et flèche φ . Notre modèle suppose que les nervures sont toutes de même épaisseur (de même masse surfacique $\overline{\omega}_{ner}$) et que le pas géométrique δ_{ner} des nervures, défini selon l'axe élastique $\overline{\eta}$, est constant et connu (environ $\delta_{ner} \approx 0.7 m$ pour les gros avions civils).

La masse des nervures est le double (car il y a 2 demi-ailes) de la somme de i=1 à N_{ner} des masses nervures M_{Wneri} .

$$M_{W \operatorname{ner}} = 2 \sum_{i=1}^{N_{ner}} M_{W \operatorname{ner}i}$$

(Avec $N_{ner} = \frac{b/2}{\cos \varphi_e \delta_{ner}}$, le nombre de nervures dans la demi-aile.) Nous supposerons le pas géométrique des nervures δ_{ner} choisi de manière à ce que cette fraction soit un nombre entier, que N_{ner} soit un entier. Dans le cas contraire, il faudrait considérer la partie entière.

La masse $M_{W neri}$ de la i^{ème} nervure s'exprime par le produit de la masse surfacique ϖ_{ner} qui est connue¹³ et de la surface S_{neri} de la nervure i.

$$M_{W \operatorname{ner} i} = \varpi_{ner} S_{ner}$$

Quelques considérations géométriques [Rou03] permettent d'exprimer la surface S_{neri} de la ième nervure, et donc d'aboutir au modèle de masse des nervures (Table 3.7, p. 116).

FIG. 3.13 – Surface des nervures selon la forme de celles-ci

Profil	Épaisseur relative e_r	Taux de surface profil $\overline{S_{profil}}$
BOEING 737 ROOT AIRFOIL	0.15	0.596
BOEING 737 MIDSPAN AIRFOIL	0.13	0.619
BOEING 737 MIDSPAN AIRFOIL	0.10	0.617
BOEING 737 OUTBOARD AIRFOIL	0.11	0.631
KC-135 BL52.44 AIRFOIL	0.15	0.630
KC-135 BL124.32 AIRFOIL	0.13	0.640
KC-135 BL200.76 AIRFOIL	0.11	0.650
KC-135 BL351.6 AIRFOIL	0.09	0.654
NACA 0012 AIRFOILS	0.12	0.680

TAB. 3.6 – Taux de surface profil $\overline{S_{profil}}$: Surface du profil S_{profil} rapportée à la surface du rectangle de longueur C_{profil} (la corde du profil) et de hauteur $e_r C_{profil}$ (l'épaisseur maximale du profil : produit de l'épaisseur relative du profil e_r par la corde du profil C_{profil}). Le taux de surface profil $\overline{S_{profil}}$ est de l'ordre de $\overline{S_{profil}} = \frac{S_{profil}}{e_r C_{profil}^2} \approx 0.635$

¹³La masse surfacique ϖ_{ner} de nervures en composite considérée dans l'étude de Hale par J.Raška [Raš00], était de 2.1 kg m⁻² (nid d'abeille de 15 mm à 35 kg m⁻³ entre deux peaux de carbone de 0.5 mm à 1590 kg m⁻³). À ceci s'ajoute une pondération due aux cloisons intercalées entre les nervures, dont la masse est supposée valoir 1/3 de celle des nervures. La masse surfacique considérée était alors de $\varpi_{ner} = 1.3$ (2.1) kg m⁻².

Modèle de masse des nervures :	
$\frac{M_{w\text{ner}}}{\varpi_{ner} F_{ner} e_r C_{emp}^2} = \frac{2}{3} \left(\varepsilon^2 + \varepsilon + 1\right) N_{ner} + \left(\varepsilon^2 - 1\right) + \frac{(\varepsilon - 1)^2}{3 N_{ner}}$ $N_{ner} = \frac{b/2}{\cos \varphi_e \delta_{ner}}$	
Variables : b: Envergure c'est-à-dire distance entre les deux extrémités de voilure C_{emp} : Corde à l'emplanture \widetilde{d} : Profondeur du caisson travaillant adimensionnée par la corde du profil. Si cette donnée n'est pas connue, la valeur moyenne $\widetilde{d} = 0.40$	${m \atop m}$
peut être utilisée. e_r : Épaisseur relative du profil f_{φ_e} : Rapport de la corde RDM sur $C \cos \varphi_e$: $f_{\varphi_e} \approx 0.98$ [Rou03]. F_{ner} : Fonction du choix d'implantation des nervures. Dans le cas de ner- vures perpendiculaires à l'axe élastique et contenue uniquement dans le caisson travaillant $F_{ner} = k_A \tilde{d} \cos \varphi_e f_{\varphi_e}$. Dans le cas plus atypique de nervures épousant la forme complète des pro- fils définis dans le plan RDM (perpendiculaire à l'axe élastique), $E_{ener} = \frac{1}{2} \sum_{i=1}^{2} (ace_i e_i - t_i)^2$	
$F_{ner} = S_{profil} (\cos \varphi_e J \varphi_e)^{-}$. $g: \text{Constante de gravité } g \approx 9.81 m s^{-2}$ $k_A: \text{Rapport de l'aire du caisson sur l'aire du rectangle de hauteur l'épaisseur maximale du profil et de longueur la profondeur du caisson. k_A \approx 0.92 [\text{Rou03}]$	$m s^{-2}$
$\frac{M_{W \text{ ner}}}{S_{profil}}: \text{Masse des nervures de la voilure}$: Masse des nervures de la voilure : Rapport de la surface du profil S_{profil} et de la surface du rectangle de longueur C_{profil} (la corde du profil) et de largeur $e_r C_{profil}$. $\overline{S_{profil}} \approx 0.635$ (Table 3.6, p. 115)	kg
δ_{ner} : Pas géométrique des nervures supposé être une donnée. Pour les avions de transport civil il est d'environ $\delta_{ner} = 0.7 m$ ε : Effilement de la voilure (rapport corde extrémité/emplanture) φ_e : Flèche de la voilure au niveau de l'axe élastique ϖ_{ner} : Masse surfacique des nervures : J.Raška [Raš00] a, par exemple, utilisé pour les Hales $\varpi_{ner} \approx 1.3$ (2.1) kg m ⁻²	m rad kg/m^2
Mode d'obtention : déduction géométrique des surfaces nervures se géométrie de l'aile pour un pas δ_{ner} de nervures donné. La mas nervures est déduite en multipliant la surface des nervures par la surfacique.	lon la se des masse
Domaine de définition : Voilure trapézoïdale avec flèche. Le pas géomé δ_{ner} des nervures est connu et constant.	trique

TAB. 3.7 – Modèle de masse des nervures.

3.2.6 Triangle d'emplanture (physico-statistique)

Au voisinage de l'emplanture, plus la flèche est grande, plus les flux d'efforts passent davantage par la partie arrière du caisson (bord de fuite) que par la partie avant (bord d'attaque). Ce phénomène est accentué par la cassure de l'aile dont notre modèle ne tient pas compte. La modélisation du "triangle d'emplanture", zone près de l'emplanture (Figure 3.3, p. 96) dont l'existence tient au fait que l'aile ait de la flèche φ_e , permet de tenir compte de l'augmentation de masse dû à l'ajout d'éléments nécessaires à la tenue structurale proche de l'emplanture.

La modélisation analytique de la structure primaire que nous avons faite jusqu'à présent était basée sur les résultats de la résistance des matériaux : la théorie des poutres. Malheureusement, près de l'emplanture, les hypothèses d'une telle théorie ne sont plus vérifiées (l'emplanture n'est pas vraiment un corps élancé). À défaut de pouvoir faire une approche analytique, nous élaborerons un modèle physico-statistique du triangle d'emplanture.

L'idée est de dire que cette nouvelle répartition de contraintes à l'emplanture provient essentiellement du moment de torsion Mt que l'emplanture subie selon l'axe avion $\overrightarrow{y_b}$, et qui est d'autant plus important que la flèche est grande. En effet, plus l'aile a de

FIG. 3.14 – Moment de torsion créé à l'emplanture selon y_b est proportionnel à tan φ_e .

la flèche, plus la résultante des forces qu'elle subie se retrouve en arrière par rapport à l'emplanture : plus exactement, le bras de levier du moment de torsion ainsi créé est en tan φ_e . Globalement, la voilure est soumise à la masse de chargement (force $n_{z_{ce}} M_{ch} g$) à une distance d'environ $\frac{4}{3} \frac{1}{\pi} \frac{b}{2}$ (soit environ 42% de la demi-envergure : résultat de l'étude en flexion [Rou03]). Cette force crée un moment de torsion selon l'axe $\overline{y_b}$ (axe perpendiculaire au plan de symétrie avion) à l'emplanture d'environ :

$$Mt = \frac{4}{3} \frac{1}{\pi} \frac{b}{2} \tan \varphi_e \ n_{z_{ce}} M_{ch} g$$

Un tel moment crée un flux d'effort $\phi = \frac{Mt}{2\Omega} = \tau e$ (avec *e* l'épaisseur peau du caisson, et τ la contrainte). Donc l'épaisseur du caisson à l'emplanture e_{emp} peut donc s'exprimer en fonction de la contrainte maximale admissible τ_{max} .

$$e_{emp} = \frac{1}{\tau_{max}} \frac{Mt}{2\,\Omega} \tag{3.5}$$

Thèse : Pour une approche analytique de la Dynamique du Vol

117

FIG. 3.15 – Coupe du caisson voilure à l'emplanture.

L'aire Ω du caisson à l'emplanture peut être exprimé par une proportion k_A (d'après une étude sur divers profils [Rou03] : $k_A \approx 0.92$) de la surface du rectangle de hauteur $er_{emp} C_{emp}$ et de largeur $\tilde{d} C_{emp}$ (profondeur du caisson (Figure 3.15, p. 118)) : $\Omega = k_A \tilde{d} er_{emp} C_{emp}^2$. Autrement dit, l'aire du caisson Ω est donc proportionnelle au carré de la corde à l'emplanture : C_{emp}^2 . Ainsi, l'épaisseur du caisson à l'emplanture est proportionnelle à $\frac{Mt}{C_{emp}^2}$.

La masse du triangle d'emplanture $M_{W \triangleright}$ peut être modélisée par une proportion du produit de l'épaisseur du caisson à l'emplanture e_{emp} et du périmètre l.

Le périmètre du caisson à l'emplanture $l = k_l 2 \left(\tilde{d} + er_{emp}\right) C_{emp}$ (avec $k_l \approx 0.97$ d'après une étude sur les profils [Rou03]), pouvant s'exprimer comme proportionnel à la corde à l'emplanture C_{emp} , la masse du triangle d'emplanture M_{W} est donc comme proportionnel à $2\frac{Mt}{C_{emp}}$ (le 2 vient du fait qu'il y ait 2 demi-ailes). La valeur de cette proportion k_{\blacktriangleright} est déterminée par identification sur notre base de données expérimentales voilure (Appendix A, p. 195), et permet d'aboutir au modèle physico-statistique de la masse du triangle d'emplanture (Table 3.8, p. 118).

TAB. 3.8 – Modèle de masse triangle d'emplanture.

3.2.7 Masses statistiques de la structure secondaire

Dans les sections précédentes, un modèle de masse de la structure primaire (semelles, âme, revêtement, nervures, ...) de la voilure a été élaboré. Un modèle de masse de la structure secondaire (becs, volets, spoilers, divers dispositifs ...) est nécessaire pour obtenir un modèle complet de masse voilure.

Étant donné la complexité des divers dispositifs de la structure secondaire, il semble difficile d'en estimer la masse analytiquement. Une approche statistique est donc adoptée.

Les données expérimentales voilure (Appendix A, p. 195) montrent que la structure secondaire représente entre 20 et 30% de la masse voilure totale. Après plusieurs tentatives de modélisation, une modélisation proportionnelle à une puissance de la surface voilure S est apparue le plus judicieux, car elle permet à notre modèle complet de masse voilure d'avoir une précision remarquable par rapport à l'ensemble des données de masse voilure. Par exemple, un gain de près de 2% sur la précision du modèle voilure total peut être observé, entre une modélisation de masse de structure secondaire proportionnelle à celle de la structure primaire ($M_{WSS} = K M_{WSP}$), et la modélisation que nous avons finalement adoptée en $M_{WSS} = k S^n$.

TAB. 3.9 – Modèle de masse de structure secondaire.

3.3 Résultats

Dans cette section, les estimations des modèles existants exposés précédemment (Section 3.1, p. 80), et ceux de notre modèle (Table 3.11, p. 129) sont confrontées aux données expérimentales de masse voilure dont nous disposons (Appendix A, p. 195). Pour valider la pertinence des modèles, le critère d'erreur relative $Er_{\%}$ sera utilisé.

$$Er_{\%} = 100 \frac{M_{W \text{Donnée}} - M_{W \text{Calculée}}}{M_{W \text{Donnée}}}$$

L'erreur relative moyenne $Er_{moy\%}$ de chaque modèle sera calculée. C'est la moyenne des valeurs absolues des erreurs relatives des estimations de chaque avion.

$$Er_{moy\%} = \frac{1}{N_{avions}} \sum_{i=1}^{N_{avions}} |Er_{\%i}|$$

Cela permettra de qualifier la pertinence des modèles les uns par rapport aux autres. Nous calculerons également l'écart type des erreurs :

$$\sigma = \sqrt{\frac{1}{N_{avions}}\sum_{i=1}^{N_{avions}} \left(|Er_{\%_i}| - Er_{moy\%}\right)^2}$$

Nous nous intéresserons plus particulièrement aux avions de transport civil à savoir les avions de la base de données "Passagers" (17 avions) et "Fret+Passagers" (22 avions) qui correspondent aux deux premières parties de nos tableaux. Toutefois, nous exclurons le Concorde (qui a une structure particulière) et la Caravelle-6R (dont les données semblent étranges par rapport aux autres avions), pour calculer l'erreur relative moyenne des avions de transport civil (soit 37 avions).

Nous commencerons par inventorier les diverses hypothèses et définir le cadre d'étude dans lequel nous avons testé les modèles de masse voilure. Puis, nous ferons quelques remarques sur les résultats des estimations de masse voilure, des modèles existants et des différentes versions de notre modèle, par rapport aux données expérimentales. Vous trouverez ensuite les divers tableaux détaillés des estimations des modèles.

3.3.1 Hypothèses de calcul

Les calculs qui suivent ont été faits sous couvert de plusieurs hypothèses qui sont :

- Les caractéristiques des matériaux utilisés sont ceux de l'Aluminium AU4G1 (qui est d'ailleurs utilisé pour l'intrados des voilures Airbus) ayant une contrainte maximale de traction de $\sigma_{rupt} = 470 \ MPa$ (notée Rm par la norme AFNOR) et de contrainte maximale de cisaillement $\tau_{rupt} = 280 \ MPa$, avec un coefficient¹⁴ de sécurité matériau de $\alpha_s = 1.64$, ce qui fait une contrainte maximale admissible de $\sigma_{max} = = \frac{\sigma_{rupt}}{\alpha_s} = 287 \ MPa$ en traction et de $\tau_{max} = \frac{\tau_{rupt}}{\alpha_s} = 171 \ MPa$ en cisaillement.
- Les propriétés géométriques du caisson : souvent méconnues, ont dans ce cas été assimilées aux valeurs moyennes calculées pour quelques profils
 - $\overline{h} \approx 0.93$: espacement adimensionné entre les surfaces semelles intrados et extrados. Valeur moyenne issue d'une étude sur plusieurs profils [Rou03].

 $^{^{14}\}mathrm{Conformément}$ à la modélisation proposée par A.Guillot [Gui
03, Rou 03] : $\alpha_s=1.05*1.3*1.2=1.64$

 $\overline{S_{profil}} \approx 0.635$: surface du profil adimensionné (Table 3.6, p. 115).

- $k_l \approx 0.97$: circonférence du caisson rapportée à celle d'un caisson rectangulaire de même profondeur et d'épaisseur max du profil. Valeur moyenne issue d'une étude sur plusieurs profils [Rou03].
- d: profondeur adimensionnée du caisson travaillant, c'est-à-dire rapport de la profondeur du caisson travaillant par la corde. Si inconnue dans notre base de données, prise égale à $\tilde{d} \approx 0.4$ (Valeur moyenne issue d'une étude sur plusieurs profils [Rou03]).
- $x_e \approx 0.6$: position relative de l'axe élastique par rapport au bord de fuite.
- Le pas des nervures : pour les voilures de gros avions civils, le pas des nervures a été pris égal à $\delta_{ner} \approx 0.7 m$ sous les conseils d'Airbus.
- **Géométrie voilure :** Elles sont normalement connues, mais à défaut, les caractéristiques géométriques de la voilure ont été considérées comme suit : L'effilement $\varepsilon = 0.3$, épaisseur relative $e_r = 12\%$, et corde à l'emplanture $C_{emp} = \frac{S}{b} \frac{2}{\varepsilon+1}$ (relation démontrée [Rou03] pour les ailes trapézoïdales). La flèche à 25% considérée est celle avant la cassure (si elle est inconnue, c'est la flèche après cassure qui est prise en compte).
- Attaches moteurs : si les moteurs sont montés sous voilure, le premier moteur est supposé accroché à $Y_{m1} \approx 1/3$ de l'envergure en partant du fuselage et le deuxième moteur (pour les avions quadri-moteurs) est supposé accroché à $Y_{m2} = 2/3$ (Ce sont les ordres de grandeurs relevés sur les avions Airbus et Boeing [Rou03]).
- le rapport facteur de charge extrême négatif/positif est celui des avions de transport civil $x = \frac{nz_{ce}}{nz_{ce}} = -0.4$ conformément à la FAR 25.337.
- **Type de dimensionnement :** Pour notre modèle, les semelles ont été dimensionnées selon le critère de contrainte. (Table 3.1, p. 102), la peau a été dimensionnée en torsion selon le critère de déformation (efficacité des gouvernes de roulis (Table 3.4, p. 112)).

3.3.2 Quelques remarques sur les résultats :

Pour l'ensemble des avions de transport civil, les estimations des différents modèles sont :

Modèle	Erreur relative moyenne	Écart Type	Nombre d'avions civils
	$Er_{\%}$	σ	utilisables pour le calcul
Notre modèle	8.7	5.9	37
F.Leclerc	51.8	42.8	37
W.Dupont	12.2	9	37
W.Dupont Complet	18.5	11.6	37
General Dynamics	42.4	10.7	33
I.Kroo	11.8	8.4	23
J.Martin	19.9	16.3	28
Stender-Morelli	13.5	10.1	37
E.Torenbeek	12.1	9.5	19
ONERA Court Courrier	14.9	17.5	19
ONERA Moyen Courrier	12.7	9	19
ONERA Long Courrier	15.7	7.9	19
ONERA Gros Porteur	14	9.4	19
J.Raška	21.1	11	37

Si nous comparons notre modèle aux mêmes avions que ceux utilisables par le modèle d'I.Kroo (23 avions), l'erreur relative moyenne de notre modèle est de 8.9% et l'écart type de 5.7%. De même en comparant notre modèle aux avions utilisables par le modèle

	Votre modèle	'.Leclerc	V.Dupont	V.Dupont (complet)	Jeneral Dynamics	.Kroo	.Martin	tender-Morelli	J. Torenbeek)NÉRA Court courrier)néra Moyen courrier)NÉRA Long courrier)NÉRA Gros Porteur	.Raška
Nom de l'avion	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz	Eroz
NORD 262-20	-7.4	-116.5	-13.7	-21.4	47	NaN	NaN	-17.5	NaN	NaN	NaN	NaN	NaN	1
ATR-42-200	-0.7	-130.1	-9.9	-19.1	47	NaN	NaN	-24.1	NaN	NaN	NaN	NaN	NaN	5.8
FOKKER-27 DC 9-10	-22.2	-82.9	3.9	-19.4	51.3	-12.1	-33.9	-31.2	-30.7	-83.1	24.7	16.3	-38.4	9.6
B 737-100	3.3	-55.3	3.2	-15	47.1	NaN	-13.7	-24.5	NaN	NaN	NaN	NaN	NaN	15.5
B 737-200	17.4	-41.1	12.5	-3.5	52.7	13	-2	-5.8	6.7	-16.8	14.2	13.1	1.8	27.2
CARAVELLE-6R	-43.5	-42.6	-55.4	-59.4	16.6	NaN 7.6	-20.6	-59.9	NaN -0.6	-4 9	NaN 8 3	NaN 10.5	-6 9	-38
TRIDENT 1	0	-50.1	-14.8	-28.9	34.4	NaN	-17.2	-11.5	NaN	NaN	NaN	NaN	NaN	16.6
MERCURE IT	-0.3	-46.3	-11.6	-19.8	36.4	-2.3	-8	-19.6	-10.5	-1.1	6.8	9.8	-2.3	8.1
DC 8-20	8.7	-37.5	-1.4	-22.5	43 36.3	7.9 NaN	-10.9	-0.7	-19.9 NaN	-6.4 NaN	8.6 NaN	NaN	12.6 NaN	30.7
DC 8-63	-9	-34.9	-26.6	-31.6	25.8	-6.1	-27.1	-20.8	8.2	10.2	4.1	13	12.7	9.2
L-1011 TRIST DC 10-10	-4.5	-2.5	-7	-21.8	48.2	13.3	-4.2	-6.1	0.4	2.3	4.1	12.8	21.1	23.3
DC 10-10 DC 10-30	-4.7	-11.5	-17.7	-33.4	30.3	-3.8	-27.3	-14.2	-11.4	14	5.7	14.0	18.4	8.1
B 747-100	-10	12.9	-7.9	-27.8	43.6	-6.1	-31	5.1	15.4	-6.9	-1.6	3.3	-1.6	23.8
CITATION 1	-14.6	-162.2	-24.9	-45.4	18.1	NaN	NaN	-49	NaN	NaN	NaN	NaN	NaN	-8.2
FALCON 10	-5.3	-104.7	0.7	-8.6	38.7	NaN	NaN	-20.1	NaN	NaN NaN	NaN	NaN	NaN	29.2
HS 125-3 B	-3.8	-126.8	14.1	-9	58.3	NaN	NaN	15.1	NaN	NaN	NaN	NaN	NaN	32.5
HS 125-600 B FALCON 20	14.3	-87.9	24	6.4	57.4 47.6	NaN	NaN NaN	20.3	NaN	NaN NaN	NaN	NaN NaN	NaN NaN	40.4
FALCON 50-B	5.6	-77.3	0.3	-13.3	38.3	3.5	NaN	20.3	1 1	-5.6	29.4	23.9	13.1	33.4
FALCON 900	-7.6	-94.4	-10.3	-24.7	32.4	-7.8	-71.1	-3.3	-13	-20.4	13	8.3	-6.6	28.5
VFW-614-G6	20.5	-57	8.4	-1.6	55.4	NaN	-24.9	8.2	NaN	NaN NaN	NaN	NaN	NaN	29.9
CARAVELLE 12	-3.4	-42	-15.5	-31.2	19.7	NaN	-11.7	-11.7	NaN	NaN	NaN	NaN	NaN	11.8
A320-100	11.8	-1.6	31.1	10.8	60.1	33.1	29.6	-7.8	30.5	-2.9	25.5	24.2	9.2	32.2
A310-200 B 707-328	14.2	10.3 -54.1	-34 5	-43 6	53.8	24.6 -16.8	22.5 -47.7	8.8	-1.4	-10.8	23.5 =2.4	27.3	18.9	33.6
A310-300	16	9.9	23.4	5.3	51.6	25.9	22	10.9	23.4	15.2	23.4	26.9	17.3	37
A300 B4	0	-1.8	4.4	-3.9	38.9	12.6	3.4	9.8	1.7	29.2	20.7	30.3	29.2	21.3
A300-600 CONCORDE	-17.6	-3	-64.4	-10.8	41.4	9.8 NaN	-202.8	-6.5	7.1 NaN	19.6 NaN	16.7 NaN	24.6 NaN	19.4 NaN	9.4
A330-300	9.6	5.7	-7.2	-21.6	NaN	-13.8	-8	8.3	NaN	NaN	NaN	NaN	NaN	19.7
A340-300	4.5	-4	-11.1	-21.9	NaN	-19.2	-21.4	3.8	NaN	NaN	NaN	NaN	NaN	14.1
	20	24.2	20	0 2	N o M		16 5			N _o N	N _D N	N _o N	NoN	22.6
B 747-400	-2.8 -14.7	34.3 -0.4	2.8 -23.5	-8.3 -39.6	NaN NaN	4.1 -23.6	-16.5 -52.6	-4.5	NaN NaN	NaN NaN	$_{NaN}$	NaN NaN	NaN NaN	$32.6 \\ 8.3$
B 747-400 Erreur relative	-2.8 -14.7	34.3 -0.4	2.8 -23.5	-8.3 -39.6	NaN NaN	4.1 -23.6	-16.5 -52.6	-4.5	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	32.6 8.3
B 747-400 Erreur relative moyenne Er _{moy} %	-2.8 -14.7 8.7	34.3 -0.4 51.8	2.8 -23.5 12.2	-8.3 -39.6 18.5	NaN NaN 42.4	4.1 -23.6 11.8	-16.5 -52.6 19.9	18.8 -4.5 13.5	NaN NaN 12.1	NaN NaN 14.9	NaN NaN 12.7	NaN NaN 15.7	NaN NaN 14	32.6 8.3 21.1
B 747-400 Erreur relative moyenne Er _{moy} %	-2.8 -14.7 8.7 indicat	34.3 -0.4 51.8	2.8 -23.5 12.2	-8.3 -39.6 18.5	NaN NaN 42.4	4.1 -23.6 11.8	-16.5 -52.6 19.9	18.8 -4.5 13.5	NaN NaN 12.1	NaN NaN 14.9	NaN NaN 12.7	NaN NaN 15.7	NaN NaN 14	32.6 8.3 21.1
A sou B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BREGUET 941	-2.8 -14.7 8.7 indicat	34.3 -0.4 51.8	2.8 -23.5 12.2 NaN	-8.3 -39.6 18.5 NaN	NaN NaN 42.4 NaN	4.1 -23.6 11.8 NaN	-16.5 -52.6 19.9 NaN	-4.5 13.5	NaN NaN 12.1 NaN	NaN NaN 14.9 NaN	NaN NaN 12.7 NaN	NaN NaN 15.7 NaN	NaN NaN 14 NaN	32.6 8.3 21.1
B 747-400 Erreur relative moyenne Er _{moy%} Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL	-2.8 -14.7 8.7 indicat NaN -6.4 -18	34.3 -0.4 51.8 :if -78.5 -56.8	2.8 -23.5 12.2 NaN -21.1 -30.1	-8.3 -39.6 18.5 NaN -39.8 -38.6	NaN NaN 42.4 NaN 30.6 35	4.1 -23.6 11.8 NaN NaN	-16.5 -52.6 19.9 NaN -26.5 -13.2	-23.7 -36.4 -32.6	NaN NaN 12.1 NaN NaN -28.6	NaN NaN 14.9 NaN NaN -30 4	NaN NaN 12.7 NaN NaN 6 4	NaN NaN 15.7 NaN NaN 8 2	NaN NaN 14 NaN NaN NaN	32.6 8.3 21.1 -4.4 1.2 -5.5
Autres avious à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALLCI60	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3	34.3 -0.4 51.8 iif NaN -78.5 -56.8 -43.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6	NaN NaN 42.4 NaN 30.6 35 35.2	4.1 -23.6 11.8 NaN NaN -14.4 NaN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6	-23.7 -36.4 -32.6 -17	NaN NaN 12.1 NaN NaN -28.6 NaN	NaN NaN 14.9 NaN NaN -30.4 NaN	NaN NaN 12.7 NaN NaN 6.4 NaN	NaN NaN 15.7 NaN NaN 8.2 NaN	NaN NaN 14 NaN NaN -7.4 NaN	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9
Autres avions à titre Bratzante avions à titre BR. ATLANTIC TRANSALL TRANSALLCI60 BOEING C-135	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6	34.3 -0.4 51.8 51.8 -78.5 -56.8 -43.2 -62.2 -22.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6 -39.2	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.2	4.1 -23.6 11.8 NaN NaN -14.4 NaN NaN NaN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8	-23.7 -36.4 -32.6 -17 -10.3	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN	NaN NaN 14.9 NaN NaN NaN NaN NaN	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN	NaN NaN 15.7 NaN NaN 8.2 NaN NaN NaN	NaN NaN 14 NaN NaN -7.4 NaN NaN NaN	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7
Autres avions à titre Br47400 Erreur relative moyenne Er _{moy} % Autres avions à titre BR. AtLANTIC TRANSALL TRANSALL TRANSALL TRANSALL BOEING C-135 C-141 B 52 H	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4	34.3 -0.4 51.8 51.8 51.8 51.8 51.8 51.8 -78.5 -56.8 -43.2 -62.2 -62.2 -23.2 -60.5	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6 -28.6 -39.2 -23.2 -53.3	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8	4.1 -23.6 11.8 NaN NaN NaN NaN NaN NaN NaN -26.7	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7	18.8 -4.5 13.5 -23.7 -36.4 -32.6 -17 -10.3 -7.4 7.2	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN -2.7	NaN NaN 14.9 NaN -30.4 NaN NaN NaN NaN NaN -13.3	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN -5.2	NaN NaN 15.7 NaN NaN 8.2 NaN NaN NaN NaN NaN -1.9	NaN NaN 14 NaN NaN -7.4 NaN NaN NaN NaN -9.9	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7
Autres avions à titre Br47-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BR. ATLANTIC TRANSALL TRANSALL TRANSALL TRANSALL C160 BOEING C-135 C-141 B 52 H C-5A GALAXY	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4 -30.3	34.3 -0.4 51.8 if -78.5 -56.8 -43.2 -62.2 -62.2 -60.5 -27	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2	-8.3 -39.6 18.5 18.5 -39.8 -39.8 -39.2 -23.2 -53.3 -39.6	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN -26.7 -10.2	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8	18.8 -4.5 13.5 -23.7 -36.4 -32.6 -17 -10.3 -7.4 7.2 -9.7	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN -2.7 -8.2	NaN NaN 14.9 NaN -30.4 NaN NaN NaN NaN -13.3 1.1	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN -5.2 -6.4	NaN NaN 15.7 NaN NaN 8.2 NaN NaN NaN NaN -1.9 9.1	NaN NaN 14 NaN NaN -7.4 NaN NaN NaN NaN -9.9 11.8	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -3.9
Autres avions à titre Br47-400 Erreur relative moyenne Er _{moy%} Autres avions à titre BR. ATLANTIC TRANSALL TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP WID ACE C	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4 -30.3 -42.3 -42.3	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -93.5	-8.3 -39.6 18.5 18.5 -39.8 -38.6 -28.6 -39.2 -23.2 -53.3 -39.6 -94.7 -94.7	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7 -25.8	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN	-23.7 -36.4 -32.6 -10.3 -7.4 7.2 -9.7	NaN NaN 12.1 NaN -28.6 NaN NaN NaN -2.7 -8.2 NaN NaN	NaN NaN 14.9 NaN -30.4 NaN NaN NaN -13.3 1.1 NaN	NaN NaN 12.7 NaN NaN 6.4 NaN NaN -5.2 -6.4 NaN	NaN NaN 15.7 NaN NaN NaN NaN -1.9 9.1 NaN	NaN NaN 14 NaN -7.4 NaN NaN -9.9 11.8 NaN N-N	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -3.9 -23.6 26.7
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALL TRANSALL TRANSALL C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4 -30.3 -14.4 -30.3 -317 -50.6	34.3 -0.4 51.8 if -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -251.1 -251.1 -120.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -93.5 -192 -112.5	-8.3 -39.6 18.5 18.5 -39.8 -39.8 -39.6 -28.6 -39.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN	NaN NaN 42.4 42.4 8 35 35.2 37.9 28.3 16.8 27.7 -25.8 -268.2 -8.8	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN	-23.7 -36.4 -32.6 -10.3 -7.4 7.2 -9.7 -61.1 -83.4 -48.1	NaN NaN 12.1 NaN -28.6 NaN NaN NaN -2.7 -8.2 NaN NaN NaN NaN	NaN NaN 14.9 NaN -30.4 NaN NaN NaN -13.3 1.1 NaN NaN NaN NaN	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN NaN NaN	NaN NaN 15.7 NaN NaN NaN NaN -1.9 9.1 NaN NaN NaN NaN	NaN NaN 14 NaN NaN -7.4 NaN NaN -9.9 11.8 NaN NaN NaN NaN	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -3.9 -23.6 -26.7 9.4
Asso B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-54 GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -4.9 -14.4 -30.3 -18.6 -4.9 -14.4 -30.3 -18.6 -4.9 -14.4 -30.3 -11.7	34.3 -0.4 51.8 iif NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -120.2 -121.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -93.5 -192 -112.5 -103.1	-8.3 -39.6 18.5 18.5 -38.6 -28.6 -28.6 -29.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN NAN	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7 -25.8 -268.2 -8.8 -9.3 -9.3	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN	18.8 -4.5 13.5 -23.7 -36.4 -32.6 -17 -10.3 -7.4 -7.2 -9.7 -61.1 -83.4 -48.1 -29	NaN NaN 12.1 NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 14.9 NaN NaN -30.4 NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -3.9 -23.6 -26.7 9.4 19.8
Asso B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL 160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TOBNADO GR 1	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -4.9 -14.4 -30.3 -18.6 -4.9 -14.4 -30.3 -18.6 -4.9 -14.4 -30.3 -11.7 -50.6 -31.9 11.7	34.3 -0.4 51.8 iif NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -251.1 -251.1 -120.2 -120.2 -121.2 -44.5 -83.6	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -93.5 -192 -112.5 -103.1 -23.4 -45.4	-8.3 -39.6 18.5 18.5 -38.6 -28.6 -28.6 -29.2 -23.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7 -25.8 -268.2 -8.8 -9.3 29.2 11 1	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN	-23.7 -36.4 -32.6 -17 -10.3 -7.4 -7.2 -9.7 -61.1 -83.4 -48.1 -29 39 -38	NaN NaN 12.1 NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 14.9 NaN NaN -30.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 1.3 7.7 19.7 -3.9 -23.6 -26.7 9.4 19.8 42.7 -9.1
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A	$\begin{array}{c} -2.8\\ -14.7\\ \hline 8.7\\ \hline 8.7\\ \hline 8.7\\ \hline 8.7\\ \hline 8.7\\ -6.4\\ -18\\ -5.3\\ -18.6\\ -4.9\\ -14.4\\ -30.3\\ \hline -42.3\\ -317\\ -50.6\\ -31.9\\ 11.7\\ -33.9\\ -3.9\end{array}$	34.3 -0.4 51.8 51.8 if -78.5 -56.8 -43.2 -62.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -121.2 -44.5 -8.3.6 -146.8	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -93.5 -192 -112.5 -103.1 -23.4 -45.4 -95.5	-8.3 -39.6 18.5 18.5 -39.8 -38.6 -28.6 -39.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN -69.5	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7 -25.8 -268.2 -8.8 8-9.3 29.2 11.1 3.4	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN -60.7 -78.6	-23.7 -36.4 -32.6 -17 -10.3 -7.4 7.2 -9.7 -61.1 -83.4 -48.1 -29 39 -18.1 35.4	NaN NaN 12.1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 1.3 7.7 19.7 -3.9 -23.6 -26.7 9.4 19.8 42.7 -9.5
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BR. ATLANTIC TRANSALL TR	-2.8 -14.7 8.7 indicat NaN -6.4 -188 -5.3 -18.6 -4.9 -14.4 -30.7 -50.6 -31.9 -11.7 -31.9 -39.3	34.3 -0.4 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.951.9 51.9 51.9 51.951.9 51.9 51.9 51.9 51.9 51.9 51.951.9 51.9 51.9 51.951.9 51.9 51.9 51.9 51.951.9 51.9 51.9 51.9 51.9 51.951.9 51.9 51.9 51.951.9 51.9 51.9 51.951.951.9 51.951.9 51.951.951.9 51.951.	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -193.5 -192 -112.5 -103.1 -23.4 -45.4 -95.3 -145.7	-8.3 -39.6 18.5 18.5 -39.8 -38.6 -28.6 -39.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN -69.5 -121.8	NaN NaN 42.4 NaN 30.6 355 35.2 37.9 28.3 268.2 -25.8 -9.3 29.2 11.1 3.4 -46.2	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN -60.7 -78.6 -149.8 -149.8 -179	-23.7 -36.4 -32.6 -17 -10.3 -7.4 7.2 -9.7 -61.1 -83.4 -48.1 -29 39 -18.1 35.4 -7.3	NaN NaN 12.1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	32.6 8.3 21.1 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -3.9 -23.6 -26.7 9.3 9.5 42.7 -9.1 39.5 19.6
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALL TRANSALL C160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B	-2.8 -14.7 8.7 indicat NaN -6.4 -188 -5.3 -18.6 -4.9 -14.4 -30.9 -14.4 -30.7 -50.6 -31.9 -31.9 -11.7 -39.3 -39.3 -39.3 -36.5	34.3 -0.4 51.8 if -76.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -120.2 -1251.1 -120.2 -1251.1 -120.2 -146.8 -146.8	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -192 -112.5 -192 -112.5 -192 -112.5 -193.5 -192 -115.8	-8.3 -39.6 18.5 18.5 -28.6 -28.6 -39.2 -23.2 -23.2 -53.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN -12.4 NaN -22.8 -	NaN NaN 42.4 NaN 30.6 355 35.2 37.9 28.3 268.2 -25.8 -9.3 29.2 11.1 3.4 -46.2 -16.1	4.1 -23.6 111.8 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN -60.7 -78.6 -149.8 -179 -146.9	$\begin{array}{c} -3.8 \\ -4.5 \\ \hline 13.5 \\ \hline 32.6 \\ -32.6 \\$	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN -30.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NAN NA	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ \textbf{21.1}\\ \hline \\ \textbf{-4.4}\\ 1.2\\ \textbf{-5.5}\\ 8.9\\ 1.3\\ 7.7\\ 19.7\\ \textbf{-3.9}\\ \textbf{-23.6}\\ \textbf{-26.7}\\ \textbf{-9.4}\\ 19.8\\ 42.7\\ \textbf{-9.1}\\ 39.5\\ 19.6\\ \hline \\ \textbf{0.1}\\ \end{array}$
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy} % Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE G MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE G MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A	-2.8 -14.7 8.7 8.7 1 1 1 1 1 1 1 1 1 1	34.3 -0.4 51.8 if -76.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -120.2 -1251.1 -120.2 -1251.1 -120.2 -1251.2 -44.5 -83.6 -146.8 -146.6 -146.6	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -40 -30.2 -192 -112.5 -102 -192 -112.5 -103.1 -23.4 -45.4 -95.3 -145.7 -115.8 0.7 -320.8	-8.3 -39.6 18.5 18.5 -28.6 -28.6 -28.6 -28.2 -23.2 -23.2 -23.2 -33.3 -39.6 -94.7 -343.5 NaN N-12.4 NaN -12.4 NaN -12.4 S- -121.8 -92.8 -5.5 -499.5 -5.5	NaN NaN 42.4 NaN 30.6 352 37.9 28.3 -268.2 -8.8 -9.3 29.2 11.1 3.4 -46.2 -16.1 -366.4	4.1 -23.6 111.8 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN -60.7 -78.6 -149.8 -179 -146.9 -146.9 NaN	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ -23.7\\ -32.6\\ -32.6\\ -17\\ -10.3\\ -7.4\\ \hline 7.2\\ -9.7\\ -61.1\\ -83.4\\ -48.1\\ -83.4\\ -48.1\\ -29\\ -39\\ -39\\ -18.1\\ -29\\ -39\\ -16.2\\ \hline 45.8\\ -99.5\\ $	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN -30.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NAN NA	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 1.3 7.7 19.7 -3.9 -23.6 -26.7 9.4 19.8 42.7 -9.1 39.5 19.6 0.1 50.9 -60.6
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 10-C HUNTER F MK1 NORTHROP F5A MIRAGE III-C	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4 -30.3 -317 -50.6 -31.9 11.7 -33 -3.9 -39.3 -39.3 -36.5 -489.9 -17	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -62.2 -23.2 -62.2 -23.2 -62.2 -23.2 -62.2 -23.2 -62.2 -23.2 -62.2 -22 -23.2 -196.1 -120.2 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -146.8 -136.9 -136.2 -136.2 -136.8 -146.8 -146.8 -146.8 -136.9 -136.2 -136.2 -136.2 -136.2 -146.5 -146.8 -146.8 -136.6 -146.8 -136.6 -136.6 -136.8 -13	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -30.2 -93.5 -192 -112.5 -103.1 -23.4 -45.4 -95.3 -145.7 -115.8 0.7 -320.8 -96.5	-8.3 -39.6 18.5 NaN -39.8 -28.6 -28.6 -28.6 -23.2 -33.2 -343.5 NaN NaN -69.5 -121.8 -92.8 -499.5 -77.2	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 168 27.7 -25.8 -9.3 29.2 11.1 3.4 -16.1 -366.4 10.6	4.1 -23.6 NaN NaN -14.4 NaN NAN NAN NAN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN -60.7 -7.8.6 -149.8 -179 -146.9 -146.9 NaN NaN NaN	-4.5 -4.5 -23.7 -36.4 -32.6 -17 -10.3 -7.4 7.4 -7.4 -9.7 -61.1 -83.4 -48.1 -29 -39 -18.1 35.4 -7.3 -16.2 -16.2 -16.2 -16.2 -20.4	NaN NaN 12.1 NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ \textbf{21.1}\\ \hline \\ \textbf{-4.4}\\ 1.2\\ \textbf{-5.5}\\ \textbf{-5.5}\\ \textbf{8.9}\\ \textbf{13}\\ \textbf{7.7}\\ \textbf{19.7}\\ \textbf{-23.6}\\ \textbf{-26.7}\\ \textbf{9.4}\\ \textbf{19.8}\\ \textbf{42.7}\\ \textbf{-9.1}\\ \textbf{39.5}\\ \textbf{19.6}\\ \textbf{0.1}\\ \hline \\ \textbf{50.9}\\ \textbf{-60.6}\\ \textbf{30.7}\\ \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TANTIC TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE JU-E	-2.8 -14.7 8.7 indicat NaN -6.4 -18 -5.3 -18.6 -4.9 -14.4 -30.3 -31.7 -50.6 -31.9 -33.9 -36.5 8.4 -489.9 -17.7 -79.6 -31.1	34.3 -0.4 51.8 51.8 51.8 -78.5 -56.8 -43.2 -62.2 -62.2 -62.2 -62.2 -62.2 -62.2 -62.2 -62.2 -23.1 -120.2 -196.1 -125.1 -120.2 -121.2 -24.5 -83.66 -146.6 -146.6 -146.6 -146.6 -146.6 -132.3 -596.2 -134.8 -2016	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -1.1 -21.7 -21.1 -240 -30.2 -93.5 -192 -112.5 -192 -103.1 -23.4 -45.4 -95.3 -145.7 -320.8 -96.5 -98.3 -139.6	-8.3 -39.6 18.5 18.5 -39.6 -28.6 -28.6 -28.6 -23.2 -33.6 -94.7 -343.5 NaN NAN -12.4 NaN -12.4 NaN -12.4 S.5 -499.5 -77.2 -91.1 -77.2 -91.1	NaN NaN A2.4 NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 27.7 -258.8 -9.3 29.2 11.11 3.4 -46.2 -16.1 49.2 -366.4 10.6 3.1 12	4.1 -23.6 NaN NaN -14.4 NaN NAN NAN NAN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NAN NAN NAN NAN NAN	18.8 -4.5 13.5 -36.4 -32.6 -17 -10.3 -7.4 -7.2 -9.7 -61.1 -83.4 -48.1 -29.7 -161.1 -83.4 -48.1 -5.4 -9.7 -16.2 -16.2 -2.1	NaN NaN 12.1 NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ \textbf{21.1}\\ \hline \\ \textbf{-4.4}\\ 1.2\\ 5.5\\ 8.9\\ 1.5\\ 8.9\\ 1.5\\ 7.7\\ 19.7\\ -3.9\\ -23.6\\ -26.7\\ 9.4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ \hline \\ \textbf{0.1}\\ \hline \\ \textbf{50.9}\\ -60.6\\ 30.7\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL 160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C	-2.8 -14.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.6 -4.9 -14.4 -30.3 -18.6 -31.9 -14.4 -30.3 -14.4 -30.3 -14.6 -4.9 -14.4 -30.3 -14.6 -4.9 -14.4 -30.3 -14.6 -4.9 -14.4 -30.3 -31.7 -50.6 -31.9 -31.9 -39.3 -36.5 -31.9 -39.3 -36.5 -35.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.3 -36.5 -39.9 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5-39.5 -39.5-39.5 -39.5-39.5-39.5-39.5	34.3 -0.4 51.8 51.8 -0.4 51.8 -78.5 -56.8 -43.2 -62.2 -23.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -21.2 -121.2 -44.5 -8.36.6 -146.6 -146.6 -32.3 -596.2 -134.8 -32.3 -596.2 -133.4 -143.2 -211.2 -213.2 -134.8	$\begin{array}{c} 2.8\\ -23.5\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 13.01\\ -21.1\\ -30.1\\ -21.7\\ -21.1\\ -21.7\\ -21.1\\ -40\\ -30.2\\ -192.5\\ -192.5\\ -192.5\\ -192.5\\ -102.5\\ -102.5\\ -102.5\\ -20.5\\$	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6 -39.2 -53.3 -39.2 -53.3 -39.6 -54.5 -53.5 -39.6 -54.5 -53.5 -121.8 -55.5 -121.6 -55.5 -121.	NaN NaN A2.4 NaN 30.6 35 35.2 37.9 28.3 27.7 -268.2 -8.8 -9.3 29.2 11.1 3.4 -46.2 -66.4 10.6 3.1 12.1 -29.8	4.1 -23.6 111.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NAN NAN NAN NAN	18.8 -4.5 13.5 -23.7 -36.4 -32.6 -17 -10.3 -7.4 -9.7 -61.1 -83.4 -7.2 -9.7 -61.1 -83.4 -7.3 -7.4 -9.7 -61.1 -83.4 -7.3 -7.4 -7.3 -7.4 -7.4 -8.1 -8.4 -7.4 -7.4 -8.4 -7.4 -8.4 -7.4 -8.4 -7.4 -8.4 -7.4 -8.4 -7.4 -8.4 -7.4 -8.5 -7.4 -7.4 -8.5 -7.4 -7.4 -8.5 -7.4 -7.4 -8.5 -7.4 -7.4 -8.5 -7.4 -7.4 -8.5 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4	NaN NaN 12.1 NaN 28.6 NaN NaN 28.6 NaN -935.1 NaN -29.6 -167.8 NaN	NaN NaN NaN NaN -30.4 NaN -30.4 NaN -30.4 NaN -130.8 NaN -12 18.7 NaN	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN	NaN NaN NAN 14 14 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 19.7 -23.6 -26.7 -9.4 19.8 42.7 -9.1 39.5 19.6 0 1 39.5 19.6 0 0 20.8 11.1
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy%} Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE II-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LICHTYNGC W	-2.8 -14.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 10 10 10 10 10 10 10 10	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -244.5 -83.6 -146.8 -147.8 -1	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -400 -30.2 -193.5 -192.5 -103.1 -23.4 -45.4 -95.3 -145.7 -320.8 -96.5 -98.3 -112.6 6-112.6 -1	-8.3 -39.6 18.5 NaN -39.8 -39.8 -39.2 -23.2 -23.2 -23.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN -12.4 NaN -12.4 NaN -12.4 S.5 -5 -121.8 -99.8 -97.2 -91.1 -104.6 -97.3 -97.2	NaN NaN A2.4 NaN 30.6 30.7 352 352 37.9 28.3 16.8 27.7 -268.2 -268.2 -9.3 29.2 11.1 3.4 -46.2 -366.4 10.6 3.1 -29.8 -268.2 -66.4 10.6 3.1 -268.2 -66.2 -366.4 10.6 3.1 -29.8 -265.5	4.1 -23.6 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ -36.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -9.7\\ -61.1\\ -83.4\\ -7.3\\ -9.7\\ -61.1\\ -83.4\\ -7.3\\ -9.7\\ -83.4\\ -7.3\\ -7.3\\ -16.2\\ -20.4\\ -22.6\\ -21.8\\ -99.5\\ -20.4\\ -24.6\\ -21.8\\ -9.5\\ -20.4\\ -33.3\\ $	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NAN NAN NAN NAN NAN NAN NAN	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 14 NaN NAN NAN NAN NAN NAN NAN NAN NAN NAN	32.6 8.3 21.1 -4.4 1.2 -5.5 8.9 13 7.7 -3.9 -23.6 -26.7 9.4 19.8 42.7 -9.1 39.5 19.6 0.1 50.6 30.7 0 20.8 11.1 -1.3 4 2.2 -2.5 19.6 30.7 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Autres avions à titre B 747-400 Erreur relative moyenne Er _{moy%} Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE II-C JAGUAR A LIGHTNING M1 MIRAGE 2000C	$\begin{array}{c} -2.8\\ -14.7\\ \hline 8.7\\ -6.4\\ -18\\ -5.3\\ -18.6\\ -4.9\\ -18\\ -5.3\\ -18.6\\ -4.9\\ -3.13\\ -18.6\\ -4.9\\ -3.13\\ -3.9\\ -39.3\\ $	34.3 -0.4 51.8 if -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -44.5 -83.6 -146.8 -146.8 -146.8 -296.2 -134.8 -211.2 -205 -189.8 -197.5 -61.8 -120.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -400 -30.2 -112.5 -103.1 -23.4 -45.4 -95.3 -145.7 -115.8 0.7 -320.8 -96.5 -96.5 -98.3 -139.6 -121 -46.5 -112.6	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6 -28.6 -28.6 -28.6 -39.2 -53.3 -39.6 -94.7 -343.5 -343.5 -343.5 -343.5 -343.5 -121.8 -92.8 -5 -121.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -92.8 -93.5 -121.8 -92.8 -93.5 -121.8 -92.8 -93.5 -121.8 -92.8 -93.5 -121.8 -94.7 -93.8 -121.8 -94.7 -94.8 -94.7 -94.8 -94.7 -94.7 -94.8 -94.7 -	NaN NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 27.7 -268.2 -8.8 -9.3 29.2 11.1 3.4 -266.3 11.1 12.1 -29.8 -26.5 3.4 -8.8	4.1 -23.6 111.8 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -31.8 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NAN NAN NAN NAN NAN	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ -23.7\\ -36.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -7.2\\ -9.7\\ -61.1\\ -83.4\\ -48.1\\ -7.3\\ -9.7\\ -61.1\\ -83.4\\ -48.1\\ -7.3\\ -16.2\\ \hline 15.4\\ -7.3\\ -16.2\\ \hline 9\\ -33.3\\ -66\\ -21.8\\ 9\\ -33.3\\ -66\\ -47.$	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NAN NAN NAN NAN NAN NAN NAN NAN	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ 21.1\\ \hline \\ 25.5\\ 8.9\\ 13\\ 7.7\\ 19.7\\ 9.4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ \hline \\ 0.1\\ \hline \\ 50.9\\ -60.6\\ 30.7\\ 0\\ 20.8\\ 11.1\\ -13.4\\ 57.6\\ 9.7\\ \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 10 MIRAGE III-C HARRIER GR 1 MIRAGE 1000C F 16 A	$\begin{array}{r} -2.8\\ -14.7\\ 8.4\\ 8.8\\ 9.9\\ 9.7\\ 7.79.6\\ 8.4\\ \mathbf{-33.11}\\ \mathbf{-19.8}\\ 8.4\\ 489.9\\ 9.77\\ 7.79.6\\ 8.4\\ \mathbf{-33.11}\\ \mathbf{-19.8}\\ 40.8\\ 9.03\\ \mathbf{-50.1}\\ \mathbf{-248.6}\\ 1.22\\ 8.7\\ 1.22\\ 8.7\\ 1.22\\ \mathbf$	34.3 -0.4 51.8 iff NaN -78.5 -56.8 -43.2 -60.5 -23.2 -60.5 -196.1 -251.1 -120.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -121.2 -134.8	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.7 -21.7 -30.5 -192 -112.5 -103.1 -23.4 -45.4 -95.3 -145.7 -115.8 0 .7 -320.8 -96.5 -98.3 -121.6 -121 -46.5 -112.6 -121 -229.2 2	-8.3 -39.6 18.5 -39.8 -39.8 -39.8 -38.6 -28.6 -39.2 -23.2 -53.3 -39.6 -23.2 -53.3 -39.4 -12.4 NaN NaN -12.4 NaN -12.4 NaN -69.5 -121.8 -92.8 -25.5 -499.5 -77.2 -91.1 -104.6 -81.6 -97.3 NaN -228.5 -33 NaN -228.5 -33 -33 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -33 -34.5 -34.5 -35 -35 -35 -35 -35 -35 -35 -35 -35 -3	NaN NaN A2.4 NaN 30.6 35.2 37.9 28.3 268.2 -88 -25.8 -268.2 -16.1 49.2 -16.1 12.1 -29.8 -26.5 -3.4 -26.8 -26.8 -26.8 -26.8 -26.8 -26.8 -26.8 -26.8 -26.8 -26.8	4.1 -23.6 -2	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 6-23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NAN NAN NAN	$\begin{array}{c} 18.8\\ -4.5\\ \hline \\ 13.5\\ \hline \\ 13.5\\ \hline \\ 13.5\\ \hline \\ 13.5\\ \hline \\ 10.3\\ -7.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -7.3\\ -7.4\\ -7.3\\ -7.4\\ -28\\ -9\\ -39\\ -16.2\\ \hline \\ 15.2\\ -20.4\\ -24.6\\ -21.8\\ -9\\ -21.8\\ -9\\ -21.8\\ -9\\ -21.8\\ -21.6\\$	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NaN NaN NaN -30.4 NaN NaN -13.3 1.11 NaN -130.8 -18.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 12.7 NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ -4.4\\ 1.2\\ -5.5\\ 8.9\\ 13\\ 7.7\\ 19.7\\ 9.4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ \hline \\ 0.1\\ \hline \\ 50.9\\ -60.6\\ 30.7\\ 0.20.8\\ 11.1\\ -1.3.4\\ 57.6\\ 9.125\\ \hline \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TANTIC TRANSALL CI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A	$\begin{array}{c} -2.8\\ -14.7\\ \hline 8.7\\ -6.4\\ -18\\ -5.3\\ -18\\ -5.3\\ -18\\ -5.3\\ -18\\ -4.8\\ -3.3\\ -$	34.3 -0.4 51.8 51.8 51.8 -78.5 -56.8 -43.2 -62.2 -62.2 -22.2 -22.2 -22.2 -22.2 -22.2 -21.2 -25.1 -120.2 -121.2 -244.5 -83.6 -146.6 -146.6 -146.6 -146.6 -146.6 -146.6 -146.8 -132.3 -596.2 -134.8 8 -2015 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -120.2 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2055 -138.8 -2012 -2012 -2012 -2012 -2015 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2012 -2015 -2012 -2012 -2012 -2012 -2012 -2012 -2015 -2012 -2012 -2012 -2015 -2012 -2012 -2015 -2012 -2012 -2015 -2012 -2015 -2012 -2015 -2012 -2015 -2012 -2015 -2012 -2015	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -16.1 -21.7 -21.7 -21.7 -30.2 -192 -112.5 -192 -103.1 -23.4 -45.4 -95.3 -145.7 -320.8 -96.5 -98.3 -112.6 -112.6 -112.6 -112.6 -12.6 -292.2 -206.5	-8.3 -39.6 18.5 -39.8 -39.8 -39.8 -39.8 -39.8 -39.8 -39.6 -28.6 -28.6 -28.6 -39.2 -53.3 -39.6 -94.7 -343.5 NaN -12.4 NaN -12.4 NaN -121.8 5.5 -499.5 -77.2 -91.1 -104.6 -81.6 -81.6 -97.3 NaN -228.5 NaN	NaN NaN NaN 42.4 NaN 30.6 35; 35; 37,9 28,3 27,7 -25,8 -9,3 268,2 -8,8 -911,1 49,2 -16,1 49,2 -366,4 10,6 3,1 12,11 -29,8 -26,5 3,4 -26,5 3,4 -29,8 -126,18 -101,1	4.1 -23.6 NaN NaN -14.4 NaN NaN NaN NaN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 6-23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 10.3\\ -3.6\\ -17\\ -10.3\\ -7.4\\ -7.2\\ -9.7\\ -61.1\\ -83.4\\ -7.3\\ 39\\ -7.4\\ -83.4\\ -48.1\\ -83.4\\ -83.4\\ -83.4\\ -83.4\\ -29\\ -39\\ -33.3\\ -16.2\\ \hline 15.8\\ -99.5\\ -20.4\\ -24.6$	NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ \textbf{21.1}\\ \hline \\ \textbf{21.1}\\ \hline \\ \textbf{22.5.5}\\ 8.9\\ \textbf{13}\\ \textbf{7.7}\\ \textbf{-3.9}\\ \textbf{13}\\ \textbf{7.7}\\ \textbf{-3.9}\\ \textbf{-23.6}\\ \textbf{-26.6}\\ \textbf{-26.7}\\ \textbf{9.4}\\ \textbf{19.8}\\ \textbf{42.7}\\ \textbf{-9.1}\\ \textbf{39.5}\\ \textbf{19.6}\\ \textbf{0.1}\\ \hline \\ \textbf{50.9}\\ \textbf{-60.6}\\ \textbf{30.7}\\ \textbf{0.1}\\ \hline \\ \textbf{50.9}\\ \textbf{-60.6}\\ \textbf{30.7}\\ \textbf{-13.4}\\ \textbf{57.6}\\ \textbf{9.7}\\ \textbf{-125}\\ \textbf{-52}\\ \textbf{-52}\\ \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL TANTIC TRANSALL C160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALFHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE 1II-C HARRIER GR 1 MIRAGE 1II-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD	-2.8 -14.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 10 10 10 11 11 11 11 11	$\begin{array}{r} 34.3\\ -0.4\\ \hline \\ 51.8\\ \hline \\ 51.8\\ \hline \\ 81.5\\ -56.8\\ -43.2\\ -62.2\\ -23.2\\ -62.2\\ -23.2\\ -62.2\\ -23.2\\ -62.5\\ -27\\ -196.1\\ -251.1\\ -120.2\\ -146.8\\ -160.6\\ \hline \\ -146.8\\ -160.6\\ \hline \\ -146.8\\ -160.6\\ \hline \\ -32.3\\ -596.2\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -134.8\\ -211.2\\ -205\\ -345.3\\ -3191.5\\ \hline \\ -79.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -70.8\\ -7$	$\begin{array}{c} 2.8\\ -23.5\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 12.2\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 22.2\\ -20.5\\ \hline\\ 25.4\\ -7.01\\ \hline\\ 12.2\\ -20.5\\ \hline\\ 25.4\\ -2.2\\ -2.2\\ -2.2\\ -2.2\\ -2.2\\ -7.01\\ \hline\\ 12.2\\ -2.2\\ -7.01\\ \hline\\ 12.2\\ -7.01\\ \hline$	-8.3 -39.6 18.5 -39.8 -39.8 -39.8 -39.8 -38.6 -28.6 -28.6 -39.2 -53.3 -39.2 -53.3 -39.2 -343.5 NaN -12.4 NaN -69.5 -121.8 5.5 -499.5 -77.2 -91.1 -104.6 -81.6 -97.3 NaN -228.5 NaN -228.5 NaN -228.5 NaN -228.5 -3 NaN -228.5 -3 NaN -228.5 -3 NaN -228.5 -3 NaN -228.5 -3 NaN -228.5 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	NaN NaN A2.4 NaN 30.6 35 35.2 35.2 35.2 36.8 27.7 -258.8 -9.3 -268.2 -8.8 -9.3 -16.1 49.2 -366.4 10.6 3.1 -26.5 3.4 -26.5 3.4 -26.5 3.4 -26.5 3.4 -26.5 3.4 -26.5 3.4 -26.8 -10.11 -21.2 -8.8 -10.11 -21.2 -8.8 -10.11 -6.3 13.4	4.1 -23.6 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN -26.7 -10.2 NaN NaN NaN NaN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ 13.5\\ \hline 13.5\\ -36.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -48.1\\ -83.4\\ -48.1\\ -29.7\\ -61.1\\ -29.9\\ -39.3\\ -7.3\\ -7.3\\ -7.4\\ -24.6\\ -21.8\\ -99.5\\ -20.4\\ -24.6\\ -21.8\\ -99.5\\ -20.4\\ -24.6\\ -21.8\\ -99.5\\ -20.4\\ -24.6\\ -21.8\\ -99.5\\ -20.4\\ -24.6\\ -21.8\\ -20.4\\ -24.6\\ -21.8\\ -20.4\\ -24.6\\ -21.8\\ -20.4\\ -24.6\\ -21.8\\ -20.4\\ -24.6\\ -21.8\\ -20.4\\ -22.8\\ -20.4\\ -22.8\\ -20.4\\ -20.4\\ -22.8\\ -20.4\\ -20.$	NaN NaN NaN 12.1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NAN NAN NAN NAN NAN NAN NAN NAN	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ 2-5.5\\ 8.9\\ 13\\ 7.7\\ -3.9\\ -23.6\\ 7.7\\ -3.9\\ -26.6\\ -3.6\\ 7.9, 4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ 0.1\\ \hline \\ 30.7\\ -9.5\\ 19.6\\ 0.1\\ \hline \\ 50.9\\ -60.6\\ 30.7\\ -9.1\\ 13.4\\ 57.6\\ 9.7\\ -125\\ -52\\ \hline \\ 32\\ \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL 160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE 11-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD	$\begin{array}{r} -2.8\\ -14.7\\ \hline 8.7\\ -6.4\\ -4.9\\ -4.9\\ -18\\ -5.3\\ -31.9\\ -31.9\\ -31.9\\ -31.9\\ -31.9\\ -31.9\\ -39.3\\ -36.9\\ -31.9\\ -39.3\\ -36.9\\ -31.9\\ -39.3\\ -36.9\\ -31.1\\ -79.6\\ -31.1\\ -19.8\\ -40.8\\ 0.3\\ -50.1\\ -248.6\\ -114.1\\ \hline 10\\ -13.6\\ -98.4\\ \end{array}$	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -2121.2 -2121.2 -2121.2 -44.5 -83.6 6 -146.6 -146.6 -146.6 -146.8 -160.6 -148.8 -32.3 -596.2 -133.4 8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -197.5 -61.8 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -79	$\begin{array}{c} 2.8\\ -23.5\\ \hline\\ 12.2\\ \hline\\ 12.2\\ \hline\\ 13.5\\ \hline\\$	-8.3 -39.6 18.5 NaN -39.8 -38.6 -28.6 -28.6 -39.2 -23.2 -23.3 -39.6 -343.5 NaN -12.4 NaN -69.5 -121.8 5.5 -499.5 -77.2 -91.1 -92.8 5.7 -77.2 -91.1 -104.6 -97.3 -33 NaN -228.5 NaN -28.5 NaN -21.5 -41.6 -51.8 -51	NaN NaN NaN 30.6 352 352 352 37.9 28.3 27.7 -268.2 -8.8 -9.3 29.2 11.1 -3.4 -46.2 -66.3 10.6 3.1 -26.5 3.4 -8.8 -101.1 -6.3 13.4 -31.3.4	4.1 -23.6 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN -28.5 -43.7 NaN NaN NaN NaN NaN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NaN NaN NAN NA	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ 13.5\\ \hline 13.5\\ -23.7\\ -36.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -10.3\\ -7.4\\ -9.7\\ -9.7\\ -10.3\\ -9.7\\$	NaN NaN NaN 12.1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 14 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	$\begin{array}{c} -4.4\\ -4.4\\ 1.2\\ -5.5\\ 8.9\\ 13\\ 7.7\\ -3.9\\ -23.6\\ -26.6\\ -9.4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ 0.1\\ 50.9\\ -60.6\\ 30.7\\ -9.1\\ 13.4\\ 57.6\\ 9.7\\ -125\\ -52\\ -52\\ -55.7\\ \end{array}$
Autres avions à titre moyenne Er _{moy%} Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL 160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37	-2.8 -14.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.6 4.9 -6.4 -6.4 -6.4 -6.4 -6.4 -6.6 4.9 -6.4 -6.6 -4.9 -14.4 -30.3 -14.4 -30.3 -14.4 -30.3 -14.4 -30.3 -31.9 -14.4 -30.3 -31.9 -14.4 -30.3 -31.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.9 -33.5 -36.4 -4.8 -4.8 -0.7 -79.6 -31.1 -11.9 -11.9 -8.8 -40.8 -0.3 -50.3 -50.3 -50.1 -11.9 -11.9 -11.9 -11.9 -11.9 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -121.2 -44.5 -83.6 -146.8 -146.8 -146.8 -146.8 -125.1 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -134.8 -125.2 -135.2	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.1 -30.2 -112.5 -192. -112.5 -192. -112.5 -192. -12.3.4 -45.4 -95.3 -145.7 -320.8 -96.5 -98.3 -139.6 -112.6 -112.2 -292.2 -292.2 -202.5 -54.2 -70.1 -162.9 -41.8	-8.3 -39.6 18.5 NaN -39.8 -39.8 -38.6 -28.6 -28.6 -39.2 -23.3 -39.6 -39.2 -23.3 -39.6 -39.2 -33.3 -39.6 -343.5 NaN N-12.4 NaN -12.4 NaN -12.4 NaN -12.4 NaN -22.8 - NaN -97.3 -37.3 -37.2 -91.1 -04.6 -51.8 -51.8 -55.2 -55.2	NaN NaN A2.4 NaN 30.6 30.79 28.3 35.2 37.9 28.8 27.7 -268.2 -68.2 -9.3 9.2 11.1 34.4 -46.2 -366.4 10.6 3.1 -28.8 -26.5 3.66.4 10.6 3.1 -24.8 -26.5 3.1 -4.2 -366.4 10.6 3.1 -29.8 -26.5 31.3.4 -31.3 32.3	4.1 -23.6 NaN NaN -14.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NAN NAN NAN	$\begin{array}{c} 18.8\\ -4.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 13.5\\ \hline 10.3\\ -7.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -7.2\\ -9.7\\ -61.1\\ -83.4\\ -7.3\\ -9.7\\ -9.7\\ -83.4\\ -48.1\\ -29\\ -39\\ -39\\ -38.1\\ -52.4\\ -7.3\\ -20.4\\ -7.3\\ -20.4\\ -7.3\\ -36.6\\ -47.6\\ -120.4\\ -62.4\\ -38.9\\ -38.9\\ -38.8\\ -36.1\\ -25.5\\ -$	NAN NAN NAN 12.1 NAN NAN -28.6 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	NaN NaN 14.9 NaN NaN -30.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NAN NAN NAN NAN NAN NAN NAN NAN	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ 2.5.5\\ 8.9\\ 13\\ 7.7\\ -3.9\\ -23.6\\ -26.6\\ -26.6\\ -26.6\\ -30.7\\ -9.1\\ 39.5\\ 19.6\\ 0.1\\ \hline \\ 50.9\\ -9.1\\ 39.5\\ 19.6\\ 0.1\\ \hline \\ 50.9\\ -9.1\\ 39.5\\ 19.6\\ 0.1\\ -13.4\\ 57.6\\ -5.2\\ -125\\ -52\\ -13.1\\ \hline \end{array}$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALLCI60 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B MIRAGE 10-4 T.S.R.2 PHANTOM F4B HUNTER F MK1 MIRAGE 111-E MIRAGE	$\begin{array}{c} -2.8\\ -14.7\\ \hline 8.7\\ -50.6\\ -4.9\\ -4.4\\ -30.3\\ -18.6\\ -4.9\\ -4.4\\ -30.3\\ -31.9\\ -39.3\\ \hline -31.9\\ -39.3\\ \hline -39.3\\ -39.3\\ \hline -39.3\\ -39.3\\ -39.3\\ \hline -39.3\\$	34.3 -0.4 51.8 if NaN -78.5 -56.8 -43.2 -62.2 -23.2 -60.5 -27 -196.1 -251.1 -120.2 -121.2 -244.5 -83.6 -146.8 -146.8 -146.8 -146.8 -146.9 -291.2 -21.2 -205 -138.8 -197.5 -61.8 -129.2 -138.8 -129.2 -138.9 -195.5 -61.8 -197.5 -61.8 -199.5 -100.5 -199.5 -100.5	$\begin{array}{c} 2.8\\ -23.5\\ \hline\\ 12.2\\ \hline\\ NaN\\ -21.1\\ -30.1\\ -16.1\\ -21.7\\ -21.1\\ -400\\ -30.2\\ \hline\\ -30.2\\ -30.2\\ -112.5\\ -103.1\\ -23.4\\ -45.4\\ -95.3\\ -112.5\\ -103.1\\ -23.4\\ -45.4\\ -95.3\\ -112.6\\ -121\\ -23.4\\ -45.4\\ -95.3\\ -139.6\\ -121\\ -46.5\\ -112.2\\ -292.2\\ -292.2\\ -292.2\\ -54.2\\ -70.1\\ -16.9\\ -54.2\\ -59.1\\ -41.8\\ -59.1\\ -46.8\\ -59.1\\ -50.8$	-8.3 -39.6 NaN -39.8 -39.8 -39.8 -39.8 -39.2 -23.2 -23.3 -39.6 -94.7 -343.5 NaN NaN -12.4 NaN -12.4 NaN -12.4 NaN -12.4 -99.5 -121.8 -99.5 -77.2 -91.1 -104.6 -97.3 -33 NaN -228.5 NaN -228.5 NaN -41.6 -58.2 -59.2 -59.2 -59.5 -59.	NaN NaN NaN 30.6 30.7.9 28.3 35.2 37.9 28.8 -268.2 9.2 11.1 34.4 -46.2 -16.1 -268.8 -9.3 -26.5 3.4 -26.5 3.4 -26.5 3.4 -8.8 -101.1 -6.3 13.4 -32.3 13.4 -32.3 13.7 16.7	4.1 -23.6 -23.6 NaN NaN NAN NAN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 19.9 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NAN NAN NAN	$\begin{array}{c} 18.8\\ -4.5\\ 13.5\\ \hline \\ 13.5\\ \hline \\ 13.5\\ \hline \\ 13.5\\ \hline \\ 10.3\\ -36.4\\ -32.6\\ -17\\ -10.3\\ -7.4\\ -32.6\\ -17.3\\ -7.4\\ -32.6\\ -9.7\\ -7.3\\ -7.4\\ -24.6\\ -21.8\\ -9.9\\ -21.8\\ -20.4\\ -24.6\\ -22.4.6\\ -22.4.6\\ -22.4.6\\ -22.4.6\\ -22.4.6\\ -22.4.6\\ -22.4.6\\ -22.5\\ -$	NaN NaN NaN 12.1 NaN NaN -28.6 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 12.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ -4.4\\ 1.2\\ -5.5\\ 8.9\\ 1.3\\ 7.7\\ -3.9\\ \hline \\ -23.6\\ -26.6\\ -26.7\\ 9.4\\ 19.8\\ 42.7\\ -9.1\\ 39.5\\ 19.6\\ \hline \\ 0.1\\ \hline \\ 30.9\\ -23.6\\ 10.9\\ -23.6\\ 10.9\\ -23.6\\ 10.9\\ -23.6\\ -24.6\\ 10.9\\ -23.6\\ -24.6\\ -26.6\\ -26.7\\ -21.2\\ -3.2\\ -23.6\\ -26.6\\ -26.7\\ -21.2\\ -23.6\\ -26.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -23.6\\ -26.7\\ -21.2\\ -26.7\\ -21.2\\ -26.7\\ -21.2\\ -26.7$
Asou B 747-400 Erreur relative moyenne Ermoy% Autres avions à titre BREGUET 941 BR. ATLANTIC TRANSALL TRANSALL 160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 111-C HARNIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARAFALE - A SUPETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1	$\begin{array}{c} -2.8\\ -14.7\\ 8.7\\ $	34.3 -0.4 51.8 51.8 5-56.8 -78.5 -56.8 -43.2 -60.5 -23.2 -60.5 -23.2 -60.5 -23.2 -23.2 -60.5 -196.1 -120.2 -121.2 -44.5 -83.6 -146.8 -146.8 -120.2 -134.8 -2015 -134.8 -134.8 -197.5 -189.8 -105.4 -79.8 -2015 -169.4 -716.9 -183.7 -169.4 -137.5 -189.1	2.8 -23.5 12.2 NaN -21.1 -30.1 -16.1 -21.7 -21.7 -21.7 -30.5 -192 -112.5 -192 -103.1 -23.4 -45.4 -95.3 -145.7 -320.8 -96.5 -121 -46.5 -121 -46.5 -121 -46.5 -121 -46.5 -121 -46.5 -122 -202.2 -206.5	-8.3 -39.6 -39.6 -39.8 -39.8 -39.8 -38.6 -28.6 -39.2 -23.2 -53.3 -39.6 -39.4 -343.5 NaN NaN -12.4 NaN NaN -12.4 NaN -69.5 -121.8 -92.8 -5.5 -4.99.5 -77.2 -91.1 -104.6 -81.6 -97.3 NaN -228.5 NaN -228.5 NaN -228.5 -3.3 -3.3 -3.5 -4.99.5 -77.2 -91.1 -14.6 -51.8 -58.2 -3.8.7 -48.1 -58.2 -89.2 -88.2 -89.2 -53.	NaN NaN 42.4 NaN 30.6 35 35.2 37.9 28.3 16.8 -25.8 -268.2 -8.8 -9.3 29.2 11.1 34. -46.2 -16.1 49.2 -366.4 10.1 -29.8 -26.8 -101.1 -29.8 -26.8 -101.1 -29.8 -34. -31.3 32.3 31.3.7 16.7 -27.8	4.1 -23.6 NaN NaN NAN NAN NAN NAN NAN NAN NAN NAN	-16.5 -52.6 NaN -26.5 -13.2 -3.6 -23.8 -24.2 -61.7 -31.8 NaN NaN NaN NaN NaN NaN NaN NAN NAN NAN	$\begin{array}{c} 18.8\\ -4.5\\ -4.5\\ 13.5\\ \end{array}$	NAN NAN NAN 12.1 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	NANN NAN NAN NAN NAN NAN NAN NAN NAN NA	NaN NaN 12.7 NaN 6.4 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 15.7 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN	$\begin{array}{c} 32.6\\ 8.3\\ \hline \\ 21.1\\ \hline \\ 1.2\\ 5.5\\ 8.9\\ 1.3\\ 7.7\\ 1.7\\ 1.7\\ 9.4\\ 1.3.9\\ \hline \\ 23.6\\ -26.7\\ 9.4\\ 19.8\\ 42.7\\ -9.1\\ 3.9\\ 19.6\\ \hline \\ 0.1\\ \hline \\ 50.9\\ -60.6\\ 30.7\\ 0\\ 20.8\\ 11.1\\ -3.6\\ 1.3.4\\ 57.6\\ 3.2\\ -55.7\\ -125\\ -52\\ -52\\ -52\\ -3.2\\ 1.3.1\\ 24.9\\ 3.6\\ -13.1\\ 24.9\\ 3.6\\ -19.5\\ \end{array}$

d'E. Torenbeek (19 avions), l'erreur relative de notre modèle est de 9.2% et l'écart type de 5.9%.

Élodie Roux - novembre 2005

Commentaires spécifiques à chaque modèle

- Modèles Aérospatiale : Dans l'ensemble, les modèles Aérospatiale estiment bien leur voilure ce qui semble logique : leur modèles sont certainement identifiés sur leur propres données. Par contre, ils surestiment la masse des voilures Boeing : à caractéristiques égales (mis à part la flèche plus prononcée des Boeing), les voilures Boeing semblent plus légères que celle des Airbus (environ 1.27 fois plus lourdes selon les comparaisons (Appendix A, p. 195)).
 - Modèle de F.Leclerc : Ce modèle est très précis sur les Airbus : il estime leur masse à 5% près (A380 mis à part). Par contre, les estimations de ce modèle sur les autres voilures d'avions se détériorent (51.8%) : ce modèle semble vraiment liée à la technologie Airbus.
 - Modèles W.Dupont : Le modèle simple de W.Dupont donne de meilleurs estimations que celui de F.Leclerc pour l'ensemble des avions de transport civil. Par contre, il présente une mauvaise estimation des A320 et A310 (qui sont pourtant des Airbus?) et d'autres avions tels que B707, DC10...Le modèle complet de W.Dupont donne des estimations curieusement moins précises alors qu'il tient compte de davantage de paramètres.
- Modèle General Dynamics : Il sous-estime fortement la masse voilure. Il faudrait multiplier par 1.6 l'estimation de ce modèle pour obtenir des résultats plus cohérents. (Je soupçonnais une erreur de conversion d'unités (lb/kg et ft/m) mais ça ne semble pas être le cas...).
- Modèle d'I.Kroo : C'est le modèle qui présente la meilleure erreur relative moyenne. L'ignorance de la masse maximale sans carburant M_{MZFW} de plusieurs avions de notre base de données, entraîne malheureusement une non-estimation de pas mal d'avions. Mis à part le B707 et le B747-400, une bonne estimation des Boeing (erreur relative moyenne 9%. Avec les B747-400 et B707, l'erreur relative moyenne est de 13.5%) et McDonnell Douglas (4.46%) est remarquable et ceci, sans tendance de sur ou sous-estimation (la moyenne des erreurs relatives, en tenant compte du signe de celles-ci, est nulle). Par contre, excepté pour les deux récents Airbus A340 et A330, tous les Airbus sont sous-estimés (18.3% en moyenne).
- Modèle J.Martin : Il donne de bonnes estimations des B737-200 (-2%), B727-100 (1.5%), MercureIT (-8%), L1011-Trist (-4.2%), Fokker 28 (-6.8%), A300 B4 (3.4%), A300-600 (1%), A330-300 (-8%). Certains de ces avions sont mentionnés sur l'un des graphiques de l'article de J.Martin [Mar92], avions sur lesquels il a probablement effectué l'identification de son modèle statistique, ce qui explique que leurs estimations soient si bonnes. Par contre, pour les autres avions les estimations sont détériorées (19.9%). Par l'identification, on peut faire "coller" un modèle statistique à quelques données expérimentales, mais pour d'autres données un peu différentes, le modèle peut vite devenir inadapté : preuve qu'un modèle physique et non statistique peut être appréciable...
- Modèle Stender-Morelli : J'ai été surprise par ce modèle car il ne tient pas compte de la flèche voilure φ mais donne néanmoins de bonnes estimations des avions de transport civil "Passagers+Fret". Peut-être que l'effet de flèche est noyé dans la constante C_w du modèle : les avions de transport civil ayant des flèches similaires de l'ordre de 30°. Il sur-estime néanmoins la masse des voilures de petits avions civil "Passagers".
- Modèle d'E.Torenbeek : Il donne les meilleures estimations de masse voilure avec le modèle d'I.Kroo. Les Boeing sont estimés à 10.8% et les Mc Donnel Douglas à

9.2%. Mis à part l'A300, les masses des Airbus sont sous-estimées. Ne connaissant pas le type de volets et becs de chacun des avions de la base de données, pour estimer la masse de structure secondaire du modèle d'E.Torenbeek les courbes (Figure 3.2, p. 88) "slat" pour les becs et "fowler" pour les volets ont été considérées. La connaissance de ces données permettrait sans doute d'améliorer encore plus les estimations du modèle d'E.Torenbeek.

- Modèles Onéra : C'est un modèle statistique par type d'avion. Il donne de bons résultats dans la catégorie spécifiée d'avions, mais rappelons que ces modèles ont été identifiés sur la même base de données que nous utilisons aujourd'hui pour tester les modèles, et que de plus, pour chaque catégorie (avion court/moyen/long courier ou gros porteur) 7 coefficients sont identifiés à chaque fois. Etant donné le nombres d'avions par catégorie, cela aurait été décevant que le modèle ne soit pas précis.
- Modèle J.Raška : Ce modèle est fait pour les ailes sans flèche, sans effilement, et non vrillée (à l'origine pour l'étude de Hales et donc pas pour les avions de transport civil). Autant pour les Hales, c'est un bon modèle, autant pour les avions de transport civil, il sous-estime les masses voilure (23.4% pour les Airbus et Boeing). Néanmoins, il fonctionne bien pour l'ATR 42 (5.8%) qui a une voilure qui satisfait presque les critères du modèle (aile sans flèche, effilement faible), et le N262 (1%). Il est curieux de constater que ce modèle est à 9% environ pour les Fokker 27, mercure IT, DC 8-63, DC 9-40, DC 10-30, et A300-600.
- Notre modèle : Non seulement notre modèle est le plus précis (gain de précision de 3% par rapport aux meilleurs modèles existants d'I.Kroo et d'E.Torenbeek), 8.7% d'erreur relative moyenne par rapport à l'ensemble des données des 37 avions de transport civil, mais a également l'avantage d'être "physique" : il est plus précis sur les gradients, c'est-à-dire sur les variations de paramètres. Étant basé sur les résultats de résistances des matériaux, le modèle a toutes les chances de bien mieux se comporter pour l'estimation de nouveaux concepts voilure que les modèles statistiques qui ont été ajustés aux avions existants de paramètres de conception semblables. Pour une approche conceptuelle de type avant-projet, ce modèle pourra donc être utile.

Commentaires généraux

Il est intéressant de constater qu'il y a un "effet" des familles d'avions. Pour un même avion, la masse voilure peut varier sensiblement selon ses versions (par ex. le B737-100 a une masse de 4.5t ce qui représente 10.3% de la masse avion M_{MTOW} et le B737-200 a une masse voilure de 5 t ce qui représente 11.1% de la M_{MTOW}) alors que leurs caractéristiques géométriques ne sont pas si différentes que cela. Leur masse M_{MTOW} est par contre légèrement différente : 44 t pour le B737-100, et 45.3 t pour le B737-200. Les modèles estimeront bien une version de l'avion et moins bien une autre.

L'un des paramètres les plus influents des modèles est l'épaisseur relative e_r . Il suffit de se tromper entre l'épaisseur relative maximale ou l'épaisseur relative équivalente (définition de F.Leclerc ou W.Dupont (Equation 3.1, p. 81)) pour que les modèles aient des estimations complètement différentes. Ceci est surtout vrai pour les modèles statistiques. En effet, ceux-là estiment la masse voilure pratiquement uniquement sur la masse due à la flexion (d'où le terme en $\frac{b}{\cos \varphi_e}$). Or, la rigidité en flexion est fortement liée à l'écartement de la matière autour de l'axe élastique, c'est-à-dire l'écartement des semelles, donc très dépendant de l'épaisseur relative e_r du profil. Pour notre modèle, nous obtenions de meilleurs résultats en considérant l'épaisseur relative équivalente (Equa-

tion 3.1, p. 81), qu'en utilisant l'une des autres épaisseurs relatives dont nous disposions (emplanture/cassure/extrêmité).

FIG. 3.16 - ATR 72 : Le "capuchon aérodynamique" au niveau de la liaison voilure-fuselage est pour les ailes hautes, comptabilisé dans la masse voilure, alors que ce n'est pas le cas pour les ailes basses (ce qui correspondrait au ventre mou est comptabilisé dans la masse fuselage).

Comparaison Airbus/Boeing :

Les données expérimentales (Appendix A, p. 195), montrent qu'une voilure Airbus est en moyenne 1.27 fois plus lourde qu'une voilure de Boeing (La masse voilure M_W de l'ordre de 13.8% de la masse totale M_{MTOW} pour les Airbus, alors qu'elle est de 10.9% pour les Boeing ou de 10.8% pour les McDouglas).

Nous allons montrer que les deux grands constructeurs d'avions de ligne ont des méthodes différentes pour étudier, définir et concevoir leur voilure, ce qui fait que des différences notables entre leur voilure peuvent être observées.

Dans ce paragraphe, nous allons faire le bilan des causes probables de ces différences et nous les quantifierons de manière à pouvoir effectuer sur notre modèle un recalage selon le type d'avion.

Différentes définitions de la surface voilure : Selon les constructeurs, la définition de la surface de référence voilure diffère. En effet, pour la partie de voilure traversant le fuselage, la surface comptabilisée est une surface fictive qui est différente selon les constructeurs (Figure 3.17, p. 126). Pour Airbus, cette surface est rectangulaire avec les côtés du rectangle coïncidant avec l'emplanture. Pour Boeing, c'est en général, la surface hexagonale définie par le prolongement imaginaire des bords d'attaque et de fuite des deux demi-ailes. La flèche de la voilure au bord d'attaque étant supérieure à la flèche au bord de fuite, la surface de référence de la voilure, selon la définition Boeing, est légèrement supérieure à celle selon Airbus.

Or, les surfaces des voilures de notre base de données sont celles données par les constructeurs. Par ailleurs, c'est un paramètre assez influent pour les modèles de masse voilure. Ainsi, à envergure donnée, ces différences de définition de surface voilure peuvent contribuer aux différences d'estimations des modèles selon le constructeur de l'avion.

FIG. 3.17 – Différence de définition des surfaces de référence voilure entre Airbus et Boeing. Dans les deux cas, la surface comptabilisée dans le fuselage est différente de la surface projetée du caisson central réel. Airbus prend la perpendiculaire à l'emplanture, tandis que Boeing considère quelquefois le prolongement des ailes.

Qu'entend-on par masse voilure? Pour définir les éléments de chacun des postes de masse avion, on se réfère à des normes telles que norme MIL, norme 2001D (Table 3.10, p. 127), norme Airbus, etc. ... Selon la norme utilisée, la valeur de la masse voilure est donc différente. Or, notre base de données est assez hétéroclite, ce qui peut expliquer une partie des différences que l'on retrouve dans les résultats.

Par exemple, selon les normes, la masse des amorces des cadres forts est comptabilisée ou non dans la masse voilure (Figure 3.18, p. 126).

FIG. 3.18 – Caisson central voilure [Lec02]. Quelquefois, l'amorce des cadres forts liant la voilure au fuselage est comptabilisée dans la masse voilure.

Un autre exemple : la norme Airbus tient compte de la masse des supports fixes dans le devis de masse voilure, ce qui n'est pas le cas de la norme MIL.

De même pour le troisième longeron : entre l'emplanture et la cassure de l'aile, un troisième longeron est parfois ajouté pour supporter l'attache du train d'atterrissage. Ce longeron est attaché au longeron arrière du caisson travaillant pour les Airbus et est comptabilisé dans la masse voilure, alors que pour Boeing, il est attaché au fuselage et est comptabilisé dans la masse fuselage. Là encore, ceci tend à accentuer le fait que les voilures de Boeing sont plus légères que celles des Airbus.

A1 Vollure	INDEX
A 1.1. Caisson	A1.
A 1.1.1 Caisson central	– La visserie, support et protection
A $1.1.2$ Caisson porte à faux	d'equipement, etc. sont ventiles dans les
A 1.1.3 Renfort train	 Y compris les pièces fixes spécifiques à
A 1.1.4 Ferrures d'emport de charge	la fonction réservoir
A 1.1.5 Renfort fixation moteur	A 1.1 Y compris les portes de visite tra-
A 1.2 Bord d'attaque	vaillantes ou non
A 1.2.1 Partie fixe	A 1.1.1 Plan central intérieur fuselage
A 1.2.2 Hypersustentateur	A 1.1.2 Aile extérieure au fuselage
A 1.2.3 Aérofrein	A 1.1.3 Pièce spécifique (dans le cas d'ac-
A 1.3 Bord de fuite	crochage sous voilure)
A 1.3.1 Partie fixe	A 1.1.5 Pièce spécifique (dans le cas d'ac-
A 1.3.2 Aileron, élevon	crochage sous/sur voilure)
A 1.3.3 Hypersustentateur	A 1.2
A 1.3.4 Aérofrein, déporteur	- Compter les rails d'éléments mobiles
A 1.3.5 Hyposustentateur	 Y compris structure pour dégivrage
A 1.4 Aérofrein et déporteur de caisson	A 1.3 Compter les rails d'éléments mobiles avec
A 1.4.1 Aérofrein	la partie où ils sont fixés
A 1.4.2 Déporteur	A 1.3.1 Avec carénage fixe
A 1.5 Liaison train-voilure	A 1.3.2 Avec volet de compensation
A 1.6 Trappe de train	éventuellement
A 1.7 Parties secondaires fixes	A 1.3.4 Déporteur : spoiler
A 1.7.1 Capot et saumon	A 1.5 Pièce spécifique (paliers, triangula-
A 1.7.2 Partie fixe de raccordement	A 16 Avec méconismes
voilure-fuselage	A 1.7.1 Example : caránago de la ligison
A 1.7.3 Contrôle passif de la couche li- mite	voilure-mât, voilure-train
A 1.7.4 Contrôle actif de la couche limite	A 1.7.2 Partie non démontable
A 1.8 Blindage contre endommagement	A 1.7.3
A 1.9 Particularités	- cloison de decrochage (stall vane,
	– générateur de tourbillon
	A 1.7.4 Pièce structurale (le système cor- respondant étant compté en C4)
	A 1.8 Pièce spécifique (autre que le blindage contre projectile compté en C 8.12)
	A 1.9
	 A 1.3 A Ailes pliantes, pivotantes, basculantes, winglets, bolonnet de bout d'aile) Pour les moteurs intégrés dans la voilure, utiliser la décomposition A 2.6 du fuselage Pièce de liaison empennage verticalvoilure (dans le cas d'empennage vertical monté sur voilure) Etc.

TAB. 3.10 – Exemple de décomposition en poste de la masse voilure : norme 2001D

Airbus/Boeing : un choix de conception voilure différent : La répartition de portance le long de l'aile est un choix important de la conception d'un avion car elle influence bien entendu l'aérodynamique mais également la structure.

L'aérodynamique, car la traînée de l'avion est liée à la répartition de portance, et elle influence les performances avion. Plus la traînée est faible, moins la poussée F que doivent délivrer les moteurs doit être importante (à l'équilibre : $F = \frac{1}{2}\rho V_a^2 SCx$), donc moins on consomme de carburant (la consommation $C = C_{SR}F$), plus on a de chance d'aller loin. Le minimum de traînée est donnée pour une répartition de portance elliptique. C'est le choix qu'a fait Airbus jusqu'à présent.

Seulement, il faut ajouter à ce raisonnement l'influence de la répartition de portance sur la structure. Plus la portance est répartie vers l'extrémité de l'aile, plus le moment de flexion à l'emplanture est important, et plus la masse voilure est grande. En raisonnant à masse avion constante M_{MTOW} , plus la masse à vide est grande (M_{OWE} : masse voilure, fuselage, moteur, ...), moins l'avion peut emporter de carburant et donc moins il a de chance d'aller loin.

La répartition de portance elliptique ne correspondant pas à l'optimum de masse voilure, il y a donc deux effets contradictoires et pour optimiser les performances de l'avion complet, il faut faire un compromis entre l'aérodynamique et la structure. C'est ce que Boeing a choisi de faire : ses voilures ne sont pas à répartition de portance elliptique, donc traîne un peu plus, mais sont par contre plus légères. Il semblerait qu'Airbus change de politique et conçoive ses nouvelles voilures sur ce principe d'optimum de l'avion global : c'est le cas de l'A380.

Là encore ce choix différent de conception, tend à expliquer la différence de masse voilure entre les deux constructeurs.

Recalage Airbus/Boeing de notre modèle En attribuant la différence de masse voilure entre Airbus et Boeing, essentiellement à la différence de conception du caisson travaillant (choix d'une répartition de portance elliptique), nous avons choisi de recaler la masse de la structure primaire de notre modèle selon le type d'avion étudié. Ainsi, un coefficient de recalage Airbus/Boeing $k_{Airbus/Boeing}$ est mis en facteur de la masse de structure primaire (somme des masses du longeron, du revêtement, des nervures, et du triangle d'emplanture) élaborée par nos modèles analytiques. Ce coefficient est considéré égal à 1 excepté pour les avions Airbus, Fokker et Falcon.

La valeur de ce coefficient $k_{Airbus/Boeing}$ a été optimisé sur les avions Airbus, Fokker et Falcon, de manière à minimiser l'erreur relative moyenne d'estimation de la masse voilure totale de notre modèle pour ces avions.

Ainsi, la précision de notre modèle, tous les avions de transport civil confondus, est passée de 12.6% (modèle sans recalage : $k_{Airbus/Boeing} = 1$ quel que soit l'avion) à 8.7% ($k_{Airbus/Boeing} = 1.34$ pour les Airbus, Fokker et Falcon, et $k_{Airbus/Boeing} = 1$ pour les Boeing, McDonnell Douglas, et autres avions). La valeur de recalage va donc dans le sens des observations expérimentales que nous avions faites à savoir que le rapport de masse voilure sur masse totale $\frac{M_W}{M_{MTOW}}$ est en moyenne de 10% pour les Boeing alors qu'il est de 13% pour les Airbus.

3.4 Notre Modèle

Modèle final de masse voilure M_w :	
$M_W = M_{W\rm SP} + M_{W\rm SS}$	
$M_{WSP} = k_{Airbus/Boeing} (M_{Wsem} + M_{W\hat{a}me} + M_{Wrev} + M_{Wner} + M_{W})$)
$k_{\text{A}} = \begin{cases} 1.34 & \text{Airbus, Fokker, Falcon,} \end{cases}$	
1 Boeing, McDonnell Douglas et autres avions.	
$M_{WSS} = 2.14 S^{1.378}$	
Variables :	
 k_{Airbus/Boeing}: Coefficient de recalage Airbus/Boeing. (Section 3.3.2, p. 128). Ce coefficient k_{Airbus/Boeing}, identifié sur les données expérimentales Airbus, Fokker et Falcon (Appendix A, p. 195), permet de tenir compte statistiquement de la différence de conception voilure entre les constructeurs (répartition de portance elliptique pour Airbus qui minimise la traînée induite, et répartition de portance Boeing qui maximise les performances avions tout en allégeant la masse voilure). M_{WSP}: Masse de la structure primaire M_{WSS}: Masse de la structure secondaire M_{Wsem}: Masse des semelles dimensionnées en flexion : en contrainte (Table 3.1, p. 102) ou en déformation (Table 3.2, p. 105) M_{W fame}: Masse du l'âme dimensionnée en cisaillement (Table 3.3, p. 107) M_{W rev}: Masse du revêtement dimensionnée en torsion : en déformation (Table 3.4, p. 112) ou en contrainte (Table 3.5, p. 114) M_{W ner}: Masse des renvures (modélisée selon des critères géométriques) (Table 3.7, p. 116) M_W: Masse des triangles d'emplanture (modèle physico-statistique : reprend 	kg kg kg kg kg kg
le moment de torsion emplanture) (Table 3.8, p. 118) S : Surface de la voilure	m^2
Mode d'obtention : Structure primaire est déterminée analytiquement se	elon
les lois de résistance des matériaux, excepté pour les nervures dont la ma est simplement déduite selon des critères géométriques (pas géométri des nervures supposé donné et constant), et le triangle d'emplant (modèle physico-statistique identifié par les moindres carrés sur notre le de données expérimentales d'avions de transport civil (Appendix A, p. 19 La structure secondaire est obtenue statistiquement par identification l'ensemble des données des 37 avions de transport civil dont nous dis sons.	asse que sure base 5)). sur spo-
Domaine de définition : Voilure d'avions de transport civil (avec flèche $\varphi_e \leq 41$, effilement $0 \leq \varepsilon \leq 1$).	$0 \leq$
Précision : par rapport aux 37 avions de transport civil de notre base données expérimentales (Appendix A, p. 195), le modèle présente une err relative moyenne de 8.7% pour un écart type de 5.9%. (NB : En considérant $k_{Airbus/Boeing} = 1$ pour tous les avions, l'erreur est de 12.6%)	de eur

TAB. 3.11 – Modèle de masse voilure proposé.

Chapitre 4

Modèle de longueur de piste au décollage/atterrissage

FIG. 4.1 – Premier décollage de l'A380 à Toulouse Blagnac le 27 avril 2005. Photo Sam Chui

Sommaire

4.1	Défi	nition du décollage/atterrissage
	4.1.1	Définition de la longueur de piste
		Distance de décollage/atterrissage L_p au passage de la hauteur
		de sécurité h_s
		Les différentes phases au décollage/atterrissage \ldots 134
		Longueur de piste réglementaire $L_{p_{\text{FAR }25}}$
		Quelles pistes d'aéroports l'avion pourra-t-il utiliser? 145
	4.1.2	Définition des vitesses caractéristiques
		Récapitulatif des encadrements imposés par la norme FAR 25 $$ 148 $$
		Vitesse de sécurité au décollage V_2 :
	4.1.3	Équations du décollage/atterrissage
		Modélisation des efforts appliqués à l'avion
		Loi d'assiette, ou comment piloter la rotation et l'arrondi? . 154
		Équations du décollage issues du Principe Fondamental de la
		Dynamique
4.2	Élab	ooration de notre modèle
	4.2.1	Modèle numérique de référence
		Validation de notre modèle numérique sur des données Airbus 160
		Base de données simulées par notre modèle numérique 160
	4.2.2	Modèle des vitesses
		Modèle de la vitesse de décision V_1
		Modèle de la vitesse de rotation V_R
		Modèle de la vitesse de décollage "lift-off" V_{LOF} 169
	4.2.3	Modèle du roulage
	4.2.4	Modèle de la phase aérienne
		Définition de la phase aérienne
		Modélisation de la phase aérienne sous forme d'arrondi circu-
		laire et de montée rectiligne
		Modèles du facteur de charge à l'arrondi n_z et de la pente de
		montée γ_{dec}
4.3	Con	clusion : Modèle proposé de longueur de piste 186

Introduction

Le décollage est l'un des points clef de l'étude de performances des avions de transport civil. Il existe des modèles très simplifiés, fondés sur une application du théorème de l'énergie cinétique, permettant d'estimer la longueur de piste au décollage, pour une famille d'avions restreinte. L'enjeu de notre étude est d'élaborer un modèle analytique, de forme plus généraliste, intégrant des modèles de poussée et de frottement plus sophistiqués, ce qui lui confère un domaine d'application plus étendu.

Ce modèle présente les avantages d'améliorer les temps de calculs par rapport à des simulations numériques de décollage (y compris pour les calculs embarqués), et de favoriser l'analyse des sensibilités paramétriques des performances au décollage.

La résolution analytique des équations de la mécanique nous ont permis d'élaborer un modèle de roulage intégrant un modèle de poussée très complet de la même forme que celui que nous avons élaboré (Table 2.9, p. 57). Outre le gain en précision apportée par une modélisation de poussée adaptée, cela permet d'envisager les études conceptuelles visant à choisir les moteurs optimaux (notamment par le choix du taux de dilution optimal). Notre modèle de roulage (Table 4.11, p. 175) permet également de tenir compte de la variation du coefficient de frottement pneu/piste en fonction de la vitesse, ce qui n'avait jamais été fait auparavant. Nous proposons également une adaptation du modèle classique de la Magic Line.

La modélisation de la phase aérienne (Section 4.2.4, p. 180) consiste à assimiler la trajectoire de l'avion à un arrondi circulaire et une montée rectiligne. C'est une modélisation couramment utilisée dans la littérature. L'innovation que nous apportons est de proposer un modèle du facteur de charge à l'arrondi n_z et de la pente de montée γ_{dec} , qui sont nécessaire à la mise en œuvre du modèle aérien. Non seulement de tels modèles n'existaient pas jusqu'à présent, mais nous montrons également que les constantes proposées dans la littérature peuvent entraîner de mauvaises prédictions.

La mise en œuvre des modèles de longueur de piste au décollage nécessite la connaissance des vitesses au décollage qui se déterminent par calcul numérique itératif. Afin de conserver le caractère analytique de nos modèles, nous avons également élaboré des modèles de ces vitesses : vitesse de décision V_1 (Table 4.7, p. 165), vitesse de rotation V_R (Table 4.8, p. 167), vitesse de décollage 'lift-off'' V_{LOF} avec (Table 4.10, p. 170) ou sans (Table 4.9, p. 169) panne moteur, vitesse de sécurité au décollage V_2 (Table 4.3, p. 149), en fonction des paramètres avions tels que la charge alaire, le taux de propulsion, la finesse.

Les modèles analytiques de décollage que nous proposons sont validés par rapport à des simulations numériques complètes du décollage. Ils sont fonction des paramètres avion permettant d'envisager l'étude conceptuelle de performances au décollage pour une approche de type avant projet.

4.1 Définition du décollage/atterrissage

Pour élaborer des modèles de décollage/atterrissage, ce qui est le but de cette étude, encore faut-il bien définir en quoi consiste exactement un décollage/atterrissage. C'est l'objet de cette première partie. En nous basant sur la norme avion FAR 25 relative aux avions de transport civil, et sur les informations recueillies¹ auprès des ingénieurs Airbus, de pilote et ingénieur d'essais, de pilote AirFrance, nous donnerons la définition de la longueur de piste et des vitesses caractéristiques au décollage. Nous établirons également les équations qui régissent un avion au décollage par le principe fondamental

 $^{^1 \}rm{Un}$ grand merci à cette occasion à messieurs Frédéric Marani [Mar05], Jacques Rosay [Ros05], Guy Bousquet [Bou04], et Jean-Yves Boiffier [Boi05], pour leur précieuse aide.

de la dynamique. Ceci permettra d'aboutir à une base de travail à partir de laquelle nous élaborerons nos modèles dans la section suivante.

4.1.1 Définition de la longueur de piste

L'objet de ce chapitre étant de modéliser la longueur de piste nécessaire pour faire décoller ou atterrir un avion, nous allons préciser la définition de la longueur de piste.

Nous commencerons par définir la distance de décollage/atterrissage jusqu'au passage de la hauteur de sécurité h_s .

Puis, nous détaillerons chacune des phases du décollage et de l'atterrissage pour les quatre cas d'études qui serviront au dimensionnement de l'avion, à savoir² : le décollage sans panne moteur L_{pAEO} , le décollage avec panne³ moteur L_{pOEI} , le décollage interrompu L_{pBTO} , et l'atterrissage L_{pAtt} .

Nous exposerons ensuite la définition de la longueur de piste réglementaire. La norme FAR 25 relative aux avions de transport civil, prévoit une marge de sécurité par rapport à ces distances de décollage/atterrissage, pour définir la longueur de piste réglementaire L_{pFAR} 25, qui sert de référence pour la certification des avions et l'étude de performances.

Pour finir, à partir de cette longueur de piste réglementaire, nous pourrons faire le rapprochement avec les longueurs des pistes goudronnées des aéroports, pour déterminer si un avion est susceptible d'emprunter telle ou telle piste existante.

Distance de décollage/atterrissage L_p au passage de la hauteur de sécurité h_s

Au décollage, l'avion qui est à l'arrêt en début de piste, accélère, roule sur la piste puis prend son envol, et s'élève au dessus de la piste à une hauteur h_s dite "hauteur de sécurité". L'avion continue ensuite son ascension mais le décompte de la distance nécessaire pour décoller s'arrête au passage de la hauteur de sécurité ($h_s = 35ft$ ou 15ft si l'avion décolle sur piste mouillée avec une panne moteur). Cette distance de décollage sera notée L_{PAEO} pour un décollage sans panne moteur. En cas de panne d'un des moteurs, la panne apparaissant au moment le plus critique est celle qui nécessite autant de longueur de piste pour continuer le décollage jusqu'au passage de la hauteur de sécurité, que de longueur de piste pour interrompre le décollage en freinant jusqu'à l'arrêt complet de l'avion en bout de piste. La distance de décollage avec panne moteur, notée L_{POEI} , est alors égale à la distance du décollage interrompu L_{PRTO} .

Pour l'atterrissage, l'avion en approche, passe au dessus de la hauteur de sécurité $(h_s = 50 ft)$ à partir de laquelle la distance d'atterrissage est comptabilisée jusqu'à l'arrêt de l'avion en bout de piste. La distance d'atterrissage est notée L_{pAtt} .

Les différentes phases au décollage/atterrissage

Le décollage et l'atterrissage sont composés d'une phase de roulage où l'avion est en contact avec la piste, et d'une phase aérienne délimitée par la vitesse de lift-off V_{LOF} au décollage (ou la vitesse de toucher des roues V_{TD} pour l'atterrissage) et par le passage

³La panne moteur ici considérée est la panne d'un des moteurs intervenant à la vitesse critique de panne moteur V_{EF} (Engine Failure), amenant le pilote à prendre sa décision de continuer ou d'interrompre le décollage à la vitesse la plus critique, c'est-à-dire la vitesse de décision V_1 .

²Les notations utilisées signifient :

AEO : All Engines Operating (pas de panne moteur)

OEI : One Engine Inoperative (panne moteur)

RTO : Rejected Take-Off (décollage interrompu)

de la hauteur de sécurité h_s . La longueur de piste parcourue durant la phase de roulage est notée L_{p_r} , et la projection selon la piste de la distance parcourue durant la phase aérienne est notée $L_{p_{air}}$.

FIG. 4.2 – La distance L_p de décollage/atterrissage au passage de la hauteur de sécurité h_s , est composée d'une phase de roulage de longueur L_{p_r} et d'une phase aérienne de longueur $L_{p_{air}}$.

Au décollage, le roulage commence en début de piste (Vitesse par rapport au sol V = 0) jusqu'à ce que l'avion atteigne la vitesse de décollage "lift-off" V_{LOF} où il quitte complètement la piste. La phase aérienne est comprise entre V_{LOF} et le passage de la hauteur de sécurité $h_s = 35 ft$ (ou 15ft en cas de panne moteur sur piste mouillée).

À l'atterrissage, l'avion en approche a une vitesse V_{REF} . La phase aérienne commence lorsque l'avion passe la hauteur de sécurité $h_s = 50 ft$, et se termine lorsque les roues de l'avion touchent la piste à la vitesse "touch down" V_{TD} . L'avion effectue ensuite un roulage de V_{TD} jusqu'à l'arrêt complet de l'avion (V = 0) en bout de piste.

La phase de roulage peut elle même être scindée en deux phases distinctes : l'une où l'avion a toutes ses roues en contact avec le sol, et l'autre dite de "rotation" où l'avion pivote autour du train principal qui touche encore la piste alors que la roulette de nez est en l'air. La longueur de piste parcourue durant la rotation sera notée $L_{p_T \cap}$.

La phase aérienne peut également être scindée en un arrondi qui représente la partie de trajectoire courbe, et une montée/descente rectiligne. Il se peut que la phase de montée rectiligne soit occultée si l'avion passe la hauteur de sécurité h_s pendant l'arrondi, c'est le cas de la plupart des décollages sans panne moteur. La distance piste parcourue durant l'arrondi est notée L_{par} , et durant la montée rectiligne est notée L_{par} .

FIG. 4.3 – AC25-7A ([FAA98] chap2.sec2 Performances). Définition des segments et configuration du train, des hypersustentateurs, de la poussée,...

Décollage sans panne moteur (AEO All Engine Operating)

Le décollage sans panne moteur (AEO All Engine Operating) est le cas de décollage

FIG. 4.4 – Décollage sans panne moteur (AEO : All Engines Operating)

le plus fréquent. Tous les moteurs fonctionnent et délivrent une poussée totale F_{max} . L'avion est en configuration bec/volet de décollage. Aucun changement de poussée ou de configuration de becs et volets ne devra être actionné par le pilote avant que l'avion n'est atteint 400ft (cf.FAR 25.111.c.4). Par conséquent, jusqu'au passage de la hauteur de sécurité h_s , l'avion est dans la même configuration d'hypersustentateurs et de poussée.

Le roulage L'avion est au point d'arrêt en début de piste (V=0). Il se met à accélérer et atteint la vitesse de rotation V_R (Table 4.8, p. 167). À ce moment là, la distance parcourue sur la piste est de $L_{p_rAEO}(0 \rightarrow V_R)$. Durant cette première partie de la phase de roulage, toutes les roues restent toujours en contact avec la piste, et l'incidence de roulage α_r reste constante (donnée par la géométrie de l'avion). Le coefficient de frottement est celui en roue libre, c'est-à-dire μ_r .

Commence ensuite la rotation. A la vitesse de rotation V_R , le pilote tire sur le manche δ_m et la roulette de nez quitte le sol. L'avion pivote autour de son train principal, augmentant progressivement son assiette θ et son incidence α . La phase de rotation et ainsi le roulage, prennent fin lorsque l'avion, qui continue d'accélérer, atteint la vitesse de décollage "lift-off" V_{LOF} (Table 4.9, p. 169) où il quitte totalement la piste, est entièrement sustenté. La longueur de piste parcourue durant la rotation est de $L_{p_T \circlearrowleft AEO}$.

La longueur de piste du roulage L_{p_r} est donc donnée par la somme :

$$L_{p_{rAEO}} = L_{p_{rAEO}}(0 \to V_R) + L_{p_{r(\bigcirc AEO}}$$

La phase aérienne À la vitesse de décollage "lift-off" V_{LOF} commence la phase aérienne jusqu'au passage de la hauteur de sécurité h_s . L'avion doit atteindre la vitesse de sécurité au décollage V_2 (Table 4.3, p. 149) avant de passer h_s . Durant cette phase aérienne, le pilote commande la rentrée du train dès que le variomètre (vitesse ascensionnelle V_z) est positif, mais celui-ci n'est pas encore rentré quand l'avion passe h_s . Pour un décollage sans panne moteur, le passage de la hauteur de sécurité se fait pendant l'arrondi ce qui fait qu'il n'y a généralement pas de phase de montée rectiligne avant le passage de la hauteur de sécurité.

La longueur de piste parcourue durant la phase aérienne (jusqu'au passage de h_s) est notée $L_{p_{\text{air}}}$.

REMARQUE 4.1 La phase aérienne et la rotation dépendent de la manière dont est piloté l'avion. Le pilote vise à atteindre une assiette de montée θ_2 [Rou05] et cela se fait à vitesse de tangage q quasi-constante.

Longueur de piste AEO La longueur de piste totale L_p , qui est la somme de la longueur de roulage L_{p_r} et de la longueur de la phase aérienne $L_{p_{\text{air}}}$, pour un décollage sans panne moteur, est finalement donnée par :

$$L_{p_{AEO}} = L_{p_{rAEO}}(0 \to V_R) + L_{p_r \circlearrowright AEO} + L_{p_{airAEO}}$$

Décollage avec panne moteur (OEI One Engine Inoperative)

Ce décollage consiste à réussir un décollage malgré une panne d'un des moteurs qui

FIG. 4.5 – Décollage avec panne moteur (OEI : One Engine Inoperative)

survient au moment le plus critique, c'est-à-dire au moment où il faudrait autant de longueur de piste pour continuer le décollage que pour l'interrompre.

Le roulage L'avion à l'arrêt en début de piste, accélère à l'aide de tous ses moteurs délivrant une poussée totale de F_{max} , jusqu'à la vitesse de panne critique⁴ moteur V_{EF} (Engine Failure) où l'un des N_m moteurs tombe en panne. La distance parcourue sur la piste jusqu'à la panne moteur est notée $L_{p_{rAEO}}(0 \rightarrow V_{EF})$. Le moteur en panne se

⁴C'est la vitesse où l'apparition d'une panne moteur entraîne autant de longueur de piste pour continuer le décollage que pour l'interrompre, sachant qu'il faut un certain temps, durant lequel l'avion continue d'accélérer, pour que le pilote prenne conscience de la panne et agisse en conséquence. On appelle vitesse de décision V_1 , la vitesse à laquelle le pilote prend sa décision d'interrompre ou non le décollage au moment le plus critique.

met à tourner en "moulinet" créant une augmentation de la traînée de $\Delta Cx_{omoulinet}$. L'avion continue d'accélérer avec un moteur de moins, c'est-à-dire une poussée totale de $\frac{N_m-1}{N_m}F_{max}$. Le pilote s'aperçoit de la panne et décide de tout de même continuer le décollage. L'avion est à la vitesse de décision V_1 . L'accélération de l'avion continue et sa vitesse atteint la vitesse de rotation V_R . La distance parcourue durant cette accélération jusqu'à V_R avec un moteur en moins, est notée $L_{prOEI}(V_{EF} \rightarrow V_R)$. Jusqu'à présent, le roulage s'était effectué avec toutes les roues en contact avec le sol, à incidence constante. À V_R , le pilote tire sur le manche et la roulette de nez quitte le sol. C'est la rotation. L'avion pivote selon son axe de tangage, son assiette et son incidence croissent. Le roulage se termine quand l'avion quitte complètement le sol à la vitesse de décollage "lift-off" V_{LOF} . La longueur de piste durant la rotation avec panne moteur est notée L_{prOEI} . Le roulage de V = 0 à V_{LOF} s'est fait avec les roues libres, avec un coefficient de frottement pneu/piste μ_r , et la distance de roulage est de :

$$L_{p_{rOEI}} = L_{p_{rAEO}}(0 \to V_{EF}) + L_{p_{rOEI}}(V_{EF} \to V_R) + L_{p_{rOOEI}}$$

La phase aérienne Avec une poussée $\frac{N_m-1}{N_m}F_{max}$ amoindrie par la panne moteur, l'avion sustenté depuis V_{LOF} , entame une trajectoire courbe quasi-circulaire, appelée arrondi. Cet arrondi se fait sous un facteur de charge n_z légèrement plus faible que pour le cas d'un décollage sans panne moteur. Puis l'avion effectue ensuite une montée rectiligne de pente γ_{dec} . La pente que l'avion peut atteindre, dépend bien évidemment du taux de propulsion de l'avion, et donc en cas de panne moteur est plus faible.

Le pilote commande la rentrée du train dès que le variomètre (vitesse ascensionnelle V_z) est positif, mais le train n'a pas le temps de rentrer avant le passage de la hauteur de sécurité h_s . Il ne sera rentré qu'au cours du second segment. Au moins jusqu'à h_s , le coefficient de traînée de frottement sera augmenté par la sortie du train $\Delta C x_{oTrain}$.

Un des moteurs étant toujours en panne, le coefficient de traînée ser a également augmentée de $\Delta Cx_{omoulinet}.$

La norme FAR 25.111.c.4 impose de garder la même configuration des becs et des volets durant tout le décollage. Ne sachant pas à l'avance si un moteur va tomber en panne ou non durant le décollage, il faut que la configuration d'hypersustentateurs choisie convienne à la fois à un décollage avec panne et un décollage sans panne. C'est le cas de décollage avec panne moteur (OEI One Engine Inoperative) qui dimensionne la configuration d'hypersustentateur qui sera adoptée même pour les décollages sans panne.

La longueur de piste par courue durant la phase aérienne du décollage avec panne moteur est notée par $L_{p_{\rm air}OEI}.$

Longueur de piste OEI Ainsi, la longueur de piste totale L_p , qui est la somme de la longueur de roulage L_{p_r} et de la longueur de la phase aérienne $L_{p_{\text{air}}}$, pour un décollage avec panne moteur, est finalement donnée par :

$$L_{pOEI} = L_{prAEO}(0 \to V_{EF}) + L_{prOEI}(V_{EF} \to V_R) + L_{prOOEI} + L_{pairOEI}$$

Décollage interrompu (RTO Rejected Take-Off)

Le décollage interrompu ou accélération-arrêt, est uniquement du roulage toutes roues au sol, c'est-à-dire à incidence constante. Le pilote commence un décollage en accélérant, puis l'interrompt et arrête l'avion en bout de piste après avoir freiné. Le cas le plus critique est lorsque le décollage est interrompu à la vitesse de décision V_1 , comme nous allons le voir. Ce décollage peut-être interrompu soit à la suite d'une panne moteur, soit pour une autre raison. Il y a donc 2 cas de décollage interrompu (RTO) à étudier : un avec panne et un autre sans panne. Mais c'est le cas de décollage interrompu avec panne moteur qui est le plus dimensionnant.

FIG. 4.6 – Décollage interrompu avec panne moteur (RTO : Rejected Take-Off)

Décollage interrompu dû à une panne moteur Tout se passe comme pour un décollage avec panne moteur jusqu'à la vitesse de décision V_1 où le pilote décide d'interrompre le décollage au lieu de le continuer. L'avion part donc du point d'arrêt en début de piste et accélère à l'aide de tous ses moteurs jusqu'à la vitesse V_{EF} où l'un des moteurs tombe en panne. L'avion continue d'accélérer avec une poussée de $\frac{N_m-1}{N_m}F_{max}$, jusqu'à ce que le pilote prenne conscience de la panne moteur et agisse pour interrompre le décollage à V_1 . Jusqu'à V_1 , la distance parcourue sur la piste sera $L_{prAEO}(0 \rightarrow V_{EF}) + L_{prOEI}(V_{EF} \rightarrow V_1)$. Les actions du pilote pour arrêter l'avion sont de freiner ce qui modifie la valeur du coefficient de frottement pneu/piste en μ_f (au lieu de μ_r en roue libre), de réduire la poussée par la manette des gaz $\frac{N_m-1}{N_m}F_{red}$, et sortir les spoilers qui crée une augmentation de traînée de frottement ΔCx_{oSP} et une perte de portance ΔCz_{oSP} . La réverse qui est utilisée opérationnellement, ne peut être utilisée pour la certification que pour un décollage interrompu sur piste mouillée.

De V_{EF} jusqu'à l'arrêt complet V = 0 de l'avion en bout de piste, puisqu'un des moteurs est en panne et tourne en "moulinet", le coefficient de traînée est augmenté de $\Delta Cx_{omoulinet}$.

En notant $L_{p_{rRTO}}(V_1 \to 0)$ la longueur de piste parcourue durant le freinage depuis la vitesse de décision jusqu'à l'arrêt de l'avion, la longueur de piste parcourue durant un décollage interrompu avec panne moteur est donnée par :

 $L_{p_{RTO}panne} = L_{p_{rAEO}}(0 \rightarrow V_{EF}) + L_{p_{rOEI}}(V_{EF} \rightarrow V_1) + L_{p_{rRTO}}(V_1 \rightarrow 0)$

En pratique c'est le décollage interrompu avec panne moteur qui est le plus dimensionnant, car l'accélération entre V_{EF} et V_1 se fait plus difficilement lorsqu'un des moteurs est en panne.

Décollage interrompu sans panne moteur Tout se passe comme pour un décollage sans panne moteur jusqu'à la vitesse de décision V_1 où le pilote, pour une raison autre qu'une panne moteur, décide d'interrompre le décollage au lieu de le continuer. L'avion à l'arrêt en début de piste accélère avec tous ses moteurs jusqu'à la vitesse de décision V_1 . La longueur de piste parcourue durant cette accélération est de $L_{p_{rAEO}}(0 \to V_1)$. Puis le pilote freine (coefficient de frottement au freinage μ_f), réduit la poussée (poussée F_{red}) et sort les spoilers (augmentation de traînée de frottement ΔCx_{oSP} et perte de portance ΔCz_{oSP}) pour arrêter l'avion. Durant cette phase de freinage, la longueur de piste parcourue est de $L_{p_{rRTO}}(V_1 \to 0)$. La longueur de piste parcourue au total durant cette accélération-arrêt est de :

$$L_{p_{RTO\,sans\,panne}} = L_{p_{rAEO}}(0 \rightarrow V_1) + L_{p_{rRTO}}(V_1 \rightarrow 0)$$

Atterrissage

FIG. 4.7 – Atterrissage

L'atterrissage est composée d'une phase aérienne suivie d'une phase de roulage. L'avion qui est en configuration d'atterrissage (hypersustentateurs déployés), est en approche à une vitesse V_{REF} , avec une pente de descente donnée par l'ILS : $\gamma_{ILS} = -3^{\circ}$. La poussée de l'avion n'est pas maximale, et est choisie pour pouvoir effectuer cette approche de descente rectiligne. Le pilote effectue un arrondi sous facteur de charge n_z et touche la piste à la vitesse V_{TD} . La distance de la phase aérienne $L_{pairAtt}$ est comptabilisée entre le point où l'avion passe à $h_s = 50 ft$ de hauteur, et le point où le train d'atterrissage principal touche le sol à la vitesse V_{TD} . Puis, l'avion commence le roulage, il effectue une longueur de piste de rotation de $L_{pr \odot Att}$. Une fois toutes les roues au sol, il se peut que le pilote mette un laps de temps avant de freiner, ce qui fait que l'avion roulera en roue libre (coefficient de frottement pneu/piste en roue libre μ_r). Le pilote freine, réduit la poussée pour arrêter l'avion. L'avion effectue donc un roulage en freinage (coefficient de frottement pneu/piste au freinage μ_f) à poussée réduite F_{red} (la réverse qui est autorisée opérationnellement, ne l'est pas pour la certification). La longueur de piste parcourue durant cette phase de roulage avec toutes les roues au sol, est notée L_{p_rAtt} .

La longueur de piste à l'atterrissage est la somme des longueurs aérienne et de roulage :

$$L_{p_{Att}} = L_{p_{\text{air}Att}} + L_{p_{r \bigcirc Att}} + L_{p_{r \land Att}}$$

Récapitulatif des caractéristiques des phases de roulage

Pour calculer :	(considérez (Table 4.11, p. 175) avec :
$L_{p_{rAEO}}$	$F_{ref} = F_0,$	$\Delta Cx_{omoulinet} = 0, \ \Delta Cx_{oSP} = 0, \ \Delta Cz_{oSP} = 0, \ \mu = \mu_r$
$L_{p_{rOEI}}$	$F_{ref} = \frac{N_m - 1}{N_m} F_0,$	$\Delta C x_{oSP} = 0, \ \Delta C z_{oSP} = 0, \ \mu = \mu_r$
$L_{p_{rRTO}}$	$F_{ref} = \frac{N_m - 1}{N_m} F_{red},$, $\mu = \mu_f$
$L_{p_{r(2,Att)}}$	$F_{ref} = F_{red},$	$\Delta Cx_{omoulinet} = 0, \ \Delta Cx_{oSP} = 0, \ \Delta Cz_{oSP} = 0, \ \mu = \mu_r$
$L_{p_{rAtt}}$	$F_{ref} = F_{red},$	$\Delta Cx_{omoulinet} = 0, \qquad \qquad \mu = \mu_f$

TAB. 4.1 – Expressions de la poussée F_{ref} , de l'augmentation de traînée due au moteur en panne $\Delta Cx_{omoulinet}$, de l'augmentation de traînée de frottement ΔCx_{oSP} et de portance ΔCz_{oSP} dues à la sortie des spoilers, et du coefficient de frottement pneu/piste μ , à considérer pour le calcul des différentes phases du décollage/atterrissage

À partir de ces distances de décollage et d'atterrissage ainsi calculées au passage de la hauteur de sécurité, la norme avion FAR 25 définit, avec des marges de sécurité, une longueur de piste réglementaire $L_{p\rm FAR,25}$ sur piste sèche et sur piste mouillée, qui serviront à la certification de l'avion et à déterminer si celui-ci pourra emprunter tel ou tel aéroport. La définition de la longueur de piste réglementaire fait l'objet du paragraphe suivant.

Longueur de piste réglementaire $L_{pFAR 25}$

La norme avion FAR 25 définit une longueur de piste réglementaire $L_{p_{\text{FAR 25}}}$ de décollage ou décollage interrompu, sur piste sèche et sur piste mouillée, en prenant des marges de sécurité par rapport aux distances de décollage au passage de la hauteur de sécurité ($L_{p_{AEO}}$, $L_{p_{OEI}}$ et $L_{p_{RTO}}$).

Décollage sur piste sèche ou mouillée

La FAR 25 définit la longueur de piste réglementaire d'un décollage $L_{p_{\text{FAR}} 25}$ en fonction des distances de décollage avec panne moteur L_{pOEI} ou sans panne moteur L_{pAEO} . Par exemple, la longueur de piste réglementaire d'un décollage sur piste sèche considère une marge de 15% supplémentaire par rapport au calcul de la distance de décollage sans panne moteur L_{pAEO} (AEO : All Engines Operating).

"FAR 25.113 : Takeoff distance and takeoff run :

- (a) [Takeoff distance on a dry runway is the greater of-
 - (1) The horizontal distance along the takeoff path from the start of the takeoff to the point at which the airplane is 35 feet above the takeoff surface, determined under Sec. 25.111 for a dry runway; or]
 - (2) 115 percent of the horizontal distance along the takeoff path, with all engines operating, from the start of the takeoff to the point at which the airplane is 35 feet above the takeoff surface, as determined by a procedure consistent with Sec. 25.111.
- (b) [Takeoff distance on a wet runway is the greater of-
 - (1) The takeoff distance on a dry runway determined in accordance with paragraph

 (a) of this section; or
 - (2) The horizontal distance along the takeoff path from the start of the takeoff to the point at which the airplane is 15 feet above the takeoff surface, achieved in a manner consistent with the achievement of V_2 before reaching 35 feet above the takeoff surface, determined under Sec. 25.111 for a wet runway.

(c) ...

Amdt. 25-92, Eff. 3/20/98"

- FAR 25.113 : Takeoff distance and takeoff run [FAA03] -

La longueur de piste réglementaire au décollage sur piste sèche $L_{p\text{FAR }25,dry}$ est définie par la norme FAR 25 comme la valeur maximale entre les distances de décollage sur piste sèche au passage de $h_s = 35 ft$, avec panne moteur L_{pOEI} et 1.15 fois celle sans panne moteur L_{pAEO} :

$$L_{p_{\text{FAR }25,dry}} = \max\left(L_{p_{OEI}}, \ 1.15 \ L_{p_{AEO}}\right)$$

La longueur de piste réglementaire au décollage sur piste mouillée $L_{p\text{FAR 25,wet}}$ est définie par la valeur maximale entre la longueur de piste réglementaire au décollage sur piste sèche $L_{p\text{FAR 25,dry}}$ et la distance $L_{pOEIwet,h_s=15ft}$ de décollage au passage de la hauteur de sécurité de $h_s = 15ft$ (au lieu de 35ft), sur piste mouillée, avec panne moteur :

 $L_{p \text{FAR } 25, wet} = \max \left(L_{p \text{FAR } 25, dry} , \ L_{p OEI wet, h_s = 15 ft} \right)$

REMARQUE 4.2 Sur piste sèche, la longueur de piste au décollage d'un bimoteur avec panne moteur (OEI One Engine Inoperative) est plus grande que 1.15 fois la longueur de piste d'un décollage sans panne moteur (AEO All Engines Operating). Le cas de panne moteur est dimensionnant pour le décollage des bimoteurs. Pour les quadrimoteurs, ces longueurs sont du même ordre.

FIG. 4.8 – AC25-7A ([FAA98] chap.2, sec.2 Performances) : Takeoff distance and Takeoff run

REMARQUE 4.3 Pour un même avion, augmenter sa masse au décollage M_{TOW} , a pour conséquence de rendre la longueur de piste avec panne moteur (OEI), encore plus importante que 1.15 fois celle sans panne moteur (AEO).

Décollage interrompu (RTO Rejected Take-Off)

Le décollage interrompu (RTO Rejected Take-Off), consiste à accélérer l'avion jusqu'à la vitesse de décision V_1 (Table 4.7, p. 165), vitesse à laquelle le pilote prend la première mesure pour interrompre le décollage, et freiner l'avion jusqu'à l'arrêt complet.

Là encore, la norme avion, FAR 25.109, prévoit une marge de sécurité supplémentaire, correspondant à la distance que parcourrait l'avion durant 2 secondes à la vitesse V_1 . Avec la vitesse de décision V_1 exprimée en m/s, cette marge de sécurité supplémentaire sur la longueur de piste, revient à $2V_1$.

La longueur de piste réglementaire d'un décollage interrompu (RTO) sur piste sèche $L_{p_{RTOFAR 25,dry}}$ est définie par la norme FAR 25, comme la distance maximale entre un décollage interrompu avec panne moteur $L_{p_{RTO}}$ (avec panne) et un décollage interrompu sans panne moteur $L_{p_{RTO}}$ (sans panne), majorée d'une distance supplémentaire de sécurité de 2 V_1 (avec V_1 en m/s):

$$L_{p_{RTO}\text{FAR }25, dry} = \max\left(L_{p_{RTO}}(\text{avec panne}), L_{p_{RTO}}(\text{sans panne})\right) + 2V_1$$

La longueur de piste réglementaire d'un décollage interrompu sur piste mouillée $L_{pRTOFAR\ 25,wet}$ est définie comme le maximum entre la longueur de piste réglementaire sur piste sche $L_{pRTOFAR\ 25,dry}$ et la distance de décollage interrompu calculée sur piste mouillée $L_{pRTOwet}$:

$$L_{p_{RTOwet}} = \max\left(L_{p_{RTOwet}}(\text{avec panne à } V_{EFwet}), L_{p_{RTOwet}}(\text{sans panne})\right) + 2 V_{1wet}$$
$$L_{p_{RTOFAR 25,wet}} = \max\left(L_{p_{RTOFAR 25,dry}}, L_{p_{RTOwet}}\right)$$

Accelerate-stop speed vs. distance

FIG. 4.9 – Graphique proposé par le guide des essais en vol AC25-7A ([FAA98] chap2.sec2 Performances), représentant l'évolution de la vitesse selon la distance parcourue pour un décollage interrompu (RTO : Rejected Take-Off). On remarquera la distance supplémentaire de sécurité correspondant à une vitesse V_1 maintenue durant 2 secondes.

- $``FAR \ 25.109: Accelerate-stop \ distance.$
- (a) [The accelerate-stop distance on a dry runway is the greater of the following distances :
 - (1) The sum of the distances necessary to-
 - (i) Accelerate the airplane from a standing start with all engines operating to V_{EF} for takeoff from a dry runway;
 - (ii) Allow the airplane to accelerate from V_{EF} to the highest speed reached during the rejected takeoff, assuming the critical engine fails at V_{EF} and the pilot takes the first action to reject the takeoff at the V_1 for takeoff from a dry runway; and
 - (iii) Come to a full stop on a dry runway from the speed reached as prescribed in paragraph (a)(1)(ii) of this section; plus
 - (iv) A distance equivalent to 2 seconds at the V_1 for takeoff from a dry runway.
 - (2) The sum of the distances necessary to-
 - (i) Accelerate the airplane from a standing start with all engines operating to the highest speed reached during the rejected takeoff, assuming the pilot takes the first action to reject the takeoff at the V_1 for takeoff from a dry runway; and
 - (ii) With all engines still operating, come to a full stop on dry runway from the speed reached as prescribed in paragraph (a)(2)(i) of this section; plus
 (iii) A distance equivalent to 2 seconds at the V₁ for takeoff from a dry runway.
- (b) The accelerate-stop distance on a wet runway is the greater of the following distances :
 - (1) The accelerate-stop distance on a dry runway determined in accordance with paragraph (a) of this section; or
 - (2) The accelerate-stop distance determined in accordance with paragraph (a) of this section, except that the runway is wet and the corresponding wet runway values of V_{EF} and V_1 are used. In determining the wet runway accelerate-stop distance, the stopping force from the wheel brakes may never exceed :

- (i) The wheel brakes stopping force determined in meeting the requirements of Sec. 25.101(i) and paragraph (a) of this section; and
- (ii) The force resulting from the wet runway braking coefficient of friction determined in accordance with paragraphs (c) or (d) of this section, as applicable, taking into account the distribution of the normal load between braked and unbraked wheels at the most adverse center-of-gravity position approved for takeoff.

(c) ...

Amdt. 25-92, Eff. 3/20/98 "

- FAR 25.109 : Accelerate-stop distance. [FAA03] -

"Although the requirement for the distance increment equivalent to two second at V_1 is explicitly stated in the "dry runway" criteria of FAR 25.109, it is also applied to the "wet runway" accelerate-stop distances by reference in FAR 25.109(b)."

- AC25-7A [FAA98] -

REMARQUE 4.4 En pratique, le décollage interrompu (RTO Rejected Take-Off avec panne moteur est plus dimensionnant que la RTO sans panne.

Pour chaque avion, vont être calculées les longueurs de piste réglementaires $L_{p_{\text{FAR }25}}$ qui lui sont associées sur piste mouillée et piste sèche, et qui permettront de déterminer si l'avion serait susceptible ou non d'être autorisé à décoller/atterrir sur telle ou telle piste d'aéroport.

Quelles pistes d'aéroports l'avion pourra-t-il utiliser?

Les pistes des aéroports, généralement revêtues de béton ou de bitume, ont en moyenne une longueur d'environ 3km et une largeur de 50m. Vous trouverez dans [Rou05] les données de longueur des pistes d'aéroport, ainsi que leur altitude.

Un avion certifié pour décoller avec une longueur de piste réglementaire $L_{p_{\text{FAR 25}}}$, peut décoller sur une piste d'aéroport de longueur goudronnée $L_{p_{\text{aéroport}}}$ supérieure à la longueur de piste réglementaire : $L_{p_{\text{aéroport}}} \ge L_{p_{\text{FAR 25}}}$. L'avion peut également décoller sur des pistes d'aéroport moins longues à condition

L'avion peut également décoller sur des pistes d'aéroport moins longues à condition que la longueur de piste goudronnée $L_{p_{aéroport}}$ soit au moins aussi grande que la distance entre le point de départ du décollage et le point équidistant entre l'endroit où l'avion atteint V_{LOF} et l'endroit où l'avion passe la hauteur de sécurité h_s (Figure 4.10, p. 146). Il faut également qu'une surface aménagée en bout de piste, appelée "clearway", soit suffisamment grande pour que sa longueur ajoutée à la longueur de piste goudronnée soit au moins égale à la longueur de piste réglementaire de l'avion.

Pour être plus précis, selon le cas dimensionnant (avec ou sans panne moteur) de la longueur de piste réglementaire, la condition sur la longueur de piste goudronnée par rapport au point équidistant entre V_{LOF} et h_s diffère un petit peu.

$$L_{p_{a\acute{e}roport}} \geq L_{p_{FAR 25,dry}} - \frac{1}{2}L_{p_{air}OEI}$$

$$\geq L_{p_{FAR 25,dry}} - \frac{1.15}{2}L_{p_{air}AEO}$$

$$\geq L_{p_{FAR 25,wet,OEI,h_s=15ft}}$$

$$\geq L_{p_{FAR 25,wet}} - \frac{1.15}{2}L_{p_{air}wet,AEO}$$

- "
- (c) [If the takeoff distance does not include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes a clearway-
 - (1) The takeoff run on a dry runway is the greater of-
 - (i) The horizontal distance along the takeoff path from the start of the takeoff to a point equidistant between the point at which V_{LOF} is reached and the point at which the airplane is 35 feet above the takeoff surface, as determined under Sec. 25.111 for a dry runway; or
 - (ii) 115 percent of the horizontal distance along the takeoff path, with all engines operating, from the start of the takeoff to a point equidistant between the point at which V_{LOF} is reached and the point at which the airplane is 35 feet above the takeoff surface, determined by a procedure consistent with Sec. 25.111.
 - (2) The takeoff run on a wet runway is the greater of-
 - (i) The horizontal distance along the takeoff path from the start of the takeoff to the point at which the airplane is 15 feet above the takeoff surface, achieved in a manner consistent with the achievement of V₂ before reaching 35 feet above the takeoff surface, as determined under Sec. 25.111 for a wet runway; or
 - (ii) 115 percent of the horizontal distance along the takeoff path, with all engines operating, from the start of the takeoff to a point equidistant between the point at which V_{LOF} is reached and the point at which the airplane is 35 feet above the takeoff surface, determined by a procedure consistent with Sec. 25.111.]
- Amdt. 25-92, Eff. 3/20/98"

- FAR 25.113 : Takeoff distance and takeoff run [FAA03] -

"Clearway means :

- (1) For turbine engine powered airplanes certificated after August 29, 1959, an area beyond the runway, not less than 500 feet wide, centrally located about the extended centerline of the runway, and under the control of the airport authorities. The clearway is expressed in terms of a clearway plane, extending from the end of the runway with an upward slope not exceeding 1.25 percent, above which no object nor any terrain protrudes. However, threshold lights may protrude above the plane if their height above the end of the runway is 26 inches or less and if they are located to each side of the runway.
- (2) For turbine engine powered airplanes certificated after September 30, 1958, but before August 30, 1959, an area beyond the takeoff runway extending no less than 300 feet on either side of the extended centerline of the runway, at an elevation no higher than the elevation of the end of the runway, clear of all fixed obstacles, and under the control of the airport authorities.

- FAR 1.1 : General definitions -

FIG. 4.10 - AC25-7A ([FAA98] chap.2, sec.2 Performances) : Takeoff distance and Takeoff run

Définition des vitesses caractéristiques 4.1.2

L'étude de la longueur de piste au décollage/atterrissage, nécessite l'utilisation de différentes vitesses caractéristiques.

La définition de ces vitesses est donnée par la norme FAR 1 (Definitions and abbreviations) dont nous avons répertoriées les principales :

- V_{EF} : Speed at which the critical engine is assumed to fail during the takeoff
- V_{FTO} : Final takeoff speed
- V_{LOF} : Lift-off speed
- V_{MC} : Minimum control speed with the critical engine inoperative
- V_{mu} : Minimum unstick speed
- V_R : Rotation speed
- V_{REF} : Reference landing speed
- V_S : Stalling speed or minimum steady flight speed at which the airplane is controllable
- V_{S1} : Stalling speed or minimum steady flight speed obtained in a specific configuration
- V_{SR} : Reference stall speed
- : Maximum speed in the takeoff at which the pilot must take the first action (e.g., apply brakes, V_1 reduce thrust, deploy speed brakes) to stop the airplane within the accelerate-stop distance. V_1 also means the minimum speed in the takeoff, following a failure of the critical engine at V_{EF} , at which the pilot can continue the takeoff and achieve the required height above the takeoff surface within the takeoff distance.
- V_2 : Takeoff safety speed

FIG. 4.11 – Procédure de décollage selon la norme FAR 25.

Thèse : Pour une approche analytique de la Dynamique du Vol

Certaines de ces vitesses sont les vitesses minimales de sécurité de l'avion, c'est-à-dire les vitesses de décrochage $(V_S, V_{mu}, V_{MC}, ...)$. Les autres sont des vitesses opérationnelles par lesquelles l'avion passera durant le décollage $(V_R, V_{LOF}, V_2, ...)$ et dont une marge de sécurité doit être prise par rapport aux vitesses de décrochage.

Nous allons répertorier les contraintes réglementaires de sécurité imposées par la norme avion sur ces différentes vitesses. Si vous désirez avoir un ordre de grandeur pratique des valeurs opérationnelles de ces vitesses, ou bien des explications plus détaillées, vous les trouverez dans [Rou05]. Nous donnerons tout de même la définition de la vitesse de sécurité au décollage V_2 dont nos modèles de décollage dépendent explicitement.

Récapitulatif des encadrements imposés par la norme FAR 25

La norme FAR 25 en vigueur pour les avions de transport civil, impose des encadrements réglementaires des vitesses caractéristiques du décollage que nous récapitulons ci-dessous :

Vitesses maîtresses	Vitesses opérationnelles
vitesses minimales, de décrochage	fonction des vitesses maîtresses
Longitudinales (décrochage aile)	FAR 25.107.e $V_{LOF} \ge 1.05 V_{mu}$ avec panne (OEI) $> 1.10 V_{mu}$ sans panne (AEO)
V_{mu} minimum unstick speed	AC25-7A $\geq 1.08 V_{mu}$ AEO, geometry-limited
V_{SR} reference stall speed	FAR 25.107.b $V_2 \geq 1.13 V_{SR}$ bi ou trimoteurs
FAR 25.103.a : $V_{SR} \gtrsim V_{S1}$	$\geq 1.08 V_{SR}$ quadrimoteurs
$V_{S1} = \sqrt{\frac{mg}{1/2\rho SCz_{max}}}$, décrochage à 1-g	FAR 25.125.a. 2 $V_{REF}\!\geq\!1.23V_{SR}$ conf. d'atterrissage
Latérales (décrochage dérive)	
V_{MC} minimum control speed with	FAR 25.107.a $V_{EF} \geq V_{MCG}$
the critical engine inoperative	FAR 25.107.e $V_R \ge 1.05 V_{MC}$
FAR 25.149.c : $V_{MC} \le 1.13 V_{SR}$	FAR 25.107.b $V_2 \ge 1.10 V_{MC}$

TAB. 4.2 – Récapitulatif [Boi01] des contraintes de la norme FAR 25 [FAA03] des vitesses au décollage

Afin de prévoir le cas critique du décollage avec panne moteur, la norme FAR 25.107(e) impose également : $V_R \ge V_1$. Ce qui permet, si besoin est, d'interrompre le décollage avant que la rotation de l'avion ait commencé.

Vitesse de sécurité au décollage V_2 :

La vitesse de sécurité au décollage V_2 (FAR 25.107.c) est la vitesse permettant de satisfaire au gradient de montée minimal imposé par la norme FAR 25.121.b. C'est-àdire qu'à V_2 , en cas de panne moteur, quand le train est rentré, la pente doit être au moins de 0.024 rad = 1.38° pour les bimoteurs, 0.027 rad = 1.55° pour les trimoteurs, et 0.03 rad = 1.72° pour les quadrimoteurs.

Cette vitesse doit être atteinte avant le passage de la hauteur de sécurité à $h_s = 35 ft$, et, entre 35ft et 400ft, la vitesse de l'avion doit être maintenue à V_2 ou du moins une valeur supérieure proche (FAR 25.111.c.2).

La norme FAR 25.107.b/c impose une marge minimale de sécurité par rapport au décrochage V_{S1} . La vitesse de sécurité au décollage V_2 doit être supérieure à 1.13 V_{S1} (ce qui correspond à $1.2V_S$ de l'ancienne norme) pour les bimoteurs/trimoteurs et $1.08V_{S1}$ pour les quadrimoteurs (au lieu de $1.15V_S$ de l'ancienne norme).

$$V_2 \geq V_{2min} = 1.13 V_{S1}$$
 bi ou trimoteurs
 $\geq V_{2min} = 1.08 V_{S1}$ quadrimoteurs

Ainsi la vitesse de sécurité au décollage est égale au maximum de la vitesse $V_{2\gamma_{mini}}$ permettant le gradient minimal de montée et de la vitesse minimale V_{2min} . En pratique la vitesse de sécurité au décollage est généralement contrainte par la V_{2min} .

TAB. 4.3 – Modèle analytique de la vitesse de sécurité au décollage V_2

4.1.3 Équations du décollage/atterrissage

Les équations de la dynamique du vol de l'avion au décollage vont être exposées ici. C'est à partir de ces équations, que vont être bâties nos simulations numériques.

Pour obtenir ces équations, le principe fondamental de la dynamique (PFD) est utilisé, sur le système avion (de masse m supposée constante (Remarque 4.5, p. 152)), dans le référentiel terrestre supposé Galiléen. Ce dernier consiste à étudier la somme des forces appliquées à l'avion qui est égale au produit de la masse avion m et de l'accélération absolue Γ de l'avion en son centre de gravité G par rapport à la terre, et à étudier la somme des moments égale au moment dynamique en G. Les équations cinématiques sont aussi utilisées.

Les modèles des efforts appliqués à l'avion seront d'abord rappelés. Puis, comme le décollage dépend de la manière dont est piloté l'avion, nous exposerons la loi de pilotage considérée, représentative des directives de pilotage AirFrance [Rou05]. Ceci nous permettra ensuite d'établir les équations du décollage.

Modélisation des efforts appliqués à l'avion

Les efforts appliqués à l'avion sont de plusieurs natures : les efforts propulsifs, aérodynamiques, massique, et de contact avec la piste.

FIG. 4.12 – Forces appliquées à l'avion au décollage

Les prochains paragraphes ont pour but d'exposer les modèles de ces efforts, que nous avons utilisés pour notre étude.

 $(m/s)^{-1}$ et $(m/s)^{-2}$

m/s

La poussée des moteurs :

La modélisation de la poussée moteur a été choisie pour être précise en dépit d'une expression analytique sophistiquée. Elle est de la forme :

$$F_{max} = F_0 \frac{\rho}{\rho_0} \left(1 + q_1 V + q_2 V^2 \right) \tag{4.1}$$

 F_0 : Poussée au point fixe (vitesse et altitude nulles) de tous les moteurs de l'avion

 q_1, q_2 : Coefficients : $q_1 = -2.94 \ 10^{-3} \ s/m, q_2 = 4.33 \ 10^{-6} \ s^2/m^2$, d'après J.Mattingly [Mat96], et $q_1 = -2.23 \ 10^{-3} \ s/m, q_2 = 3.03 \ 10^{-6} \ s^2/m^2$ d'après notre modèle [Rou02] pour un moteur civil moyen (taux de dilution $\lambda = 5$, taux de compression $c_c = 30$, température d'entrée turbine $T_4 = 1500 K$)

V: Vitesse de l'avion par rapport à l'air.

 ρ : Masse volumique de l'air à l'altitude de la piste

 kg/m^3 ρ_0 : Masse volumique de l'air à altitude nulle $\rho_0 = 1.225 \ kg/m^3$ kg/m^3

C'est la forme analytique des modèles moteurs civils que nous avons mis au point [Rou02], qui est représentative du comportement moteur (notre modèle moteur a une précision de l'ordre du pour-cent par rapport aux données de moteurs civils de la famille des CFM56). Elle procure également l'avantage notable d'offrir la possibilité d'études futures du choix optimal des moteurs puisque nous avons élaboré les modèles des coefficients q_1 et q_2 en fonction des paramètres moteurs (taux de dilution, taux de compression, température d'entrée turbine...). La détermination du taux de dilution optimal pourra être désormais envisagée.

La complexité analytique de la forme de la poussée que nous avons adoptée, ne facilite certes pas la résolution analytique du décollage, notamment au roulage. Nous y sommes néanmoins même parvenu, ce qui permet une résolution de la longueur de piste au décollage avec un modèle moteur précis.

Pour les cas de freinage au cours d'un décollage interrompu (RTO Rejected Take-Off) ou pour un atterrissage, la poussée n'est pas maximale, les moteurs sont au régime ralenti. Dans ce cas, la poussée de ralenti F_{red} sera considérée à la place de la poussée au point fixe F_0 dans l'expression analytique précédente. A noter que cette poussée F_{red} peut être considérée négative en cas de réverse mais seulement pour le calcul du freinage d'un décollage interrompu (RTO) sur piste mouillée ou enneigée. La réverse n'est pas tolérée dans la certification des autres cas de freinage (RTO piste sèche ou atterrissage).

La définition de F_0 étant la poussée au point fixe (vitesse et altitude nulles) des N_m moteurs équipant l'avion, si l'un des moteurs tombe en panne, il sera ajouté un terme $\frac{N_m-1}{N_m}$ en facteur de l'expression analytique de la poussée précédemment donnée.

Nous supposerons la poussée moteur dirigée selon l'axe de révolution du fuselage \vec{x}_b .

La portance et la traînée :

Les efforts aérodynamiques de portance $-\frac{1}{2}\rho V_a^2 SCz \vec{z}_a$ et de traînée $-\frac{1}{2}\rho V_a^2 SCx \vec{x}_a$ sont modélisés dans le repère aérodynamique lié à la vitesse de l'avion par rapport à l'air. Les coefficients de portance et de traînée sont classiquement modélisés par la polaire de l'avion :

$$Cz = Cz_{\alpha} (\alpha - \alpha_{0}) + (\Delta Cz_{oSP}) \leq Cz_{max}$$

$$Cx = Cx_{o} + \Delta Cx_{oTrain} + (\Delta Cx_{omoulinet}) + (\Delta Cx_{oSP}) + k_{i} Cz^{2}$$

$$Cm = Cm_{o} + Cm_{\alpha} (\alpha - \alpha_{0}) + Cm_{\delta m} \delta_{m} + Cm_{q} \frac{q \ell}{V}$$
(4.2)

Symboles : Désignation	Unités
Cx: Coefficient de traînée avion	
Cx_o : Coefficient de traînée de frottement de l'avion. Attention, il dépend de la	
configuration Bec/Volet adoptée.	
Cm: Coefficient aérodynamique de moment de tangage	
Cm_o : Coefficient de moment pur de tangage	
Cm_{α} : Gradient de coefficient de moment de tangage avec l'incidence α	rad^{-1}
Cm_q : Gradient de coefficient de moment de tangage avec la vitesse de tangage q	rad^{-1}
$Cm\delta m$: Gradient de coefficient de moment de tangage avec le braquage de gouverne de profondeur δm	rad^{-1}
Cz: Coefficient de portance avion	
Cz_{max} : Coefficient de portance maximale, au delà il y a décrochage. Attention sa	
valeur dépend de la configuration des becs/volets	
Cz_{α} : Gradient de coefficient de portance avec l'incidence	rad^{-1}
k_i : Coefficient de traînée induite $k_i \approx \frac{1}{-\lambda}$	
ℓ : Corde de référence	m
q: Vitesse de tangage, c'est-à-dire vitesse angulaire de l'avion par rapport à	rad/s
la terre selon l'axe \vec{y}_b . En vol longitudinal, $q = \dot{\theta}$	
V: Vitesse de l'avion par rapport à la piste	m/s
α_0 : Incidence de portance nulle de l'avion. Dépend de l'hypersustentation.	rad
α : Incidence de l'avion	rad
$\Delta Cx_{omoulinet}$: Augmentation du coefficient de traînée due au moteur en panne qui tourne en "moulinet"	
ΔCx_{oSP} : Augmentation du coefficient de traînée due à la sortie des spoilers	
ΔCx_{oTrain} : Augmentation du coefficient de traînée due au train sorti.	
ΔCz_{aSP} : Augmentation du coefficient de portance due à la sortie des spoilers.	

Les coefficients d'augmentation de traînée de frottement ΔCx_{oSP} et de portance ΔCz_{oSP} due au spoilers sont bien évidemment considérés comme nuls quand les spoilers ne sont pas déployés. De même, le coefficient de traînée $\Delta Cx_{omoulinet}$ due au moteur en panne qui tourne en "moulinet" n'est pas pris en compte s'il n'y a pas de panne moteur. Par contre, l'augmentation du coefficient de traînée de frottement ΔCx_{oTrain} due au train d'atterrissage est toujours pris en compte puisque le train n'a pas le temps de rentrer avant le passage de la hauteur de sécurité h_s .

Le Poids :

L'avion de masse m est soumis à son poids $mg \overrightarrow{z}_o$, produit de sa masse et de la constante de gravité terrestre $(g = 9.81 \ m/s^{-2})$, porté par la verticale terrestre \overrightarrow{z}_o .

REMARQUE 4.5 Pour l'étude du décollage/atterrissage, la masse de l'avion peut être considérée constante. En effet, prenons un avion ayant un taux de propulsion moyen de $\frac{F_0}{M_{MTOWg}} = 0.3$ ce qui est typique des bimoteurs [Boi01], avec une consommation spécifique au point fixe de $C_{SR} = 1.11 \ 10^{-5} \ (kg/s)/N$ ce qui est le cas des moteurs civils moyens [Rou02]. En supposant la poussée et la consommation spécifique constantes, la masse de carburant consommé durant un décollage de temps t_p est égale à :

$$M_{Fuel\,\mathrm{consomm\acute{e}}} = C_{SR} F_0 t_p$$

Ainsi la variation de masse entre le début du décollage M_{MTOW} et la fin du décollage $M_{MTOW} - M_{Fuel_{consommé}}$, est :

$$\frac{\Delta M_{MTOW}}{M_{MTOW}} = \frac{M_{MTOW} - (M_{MTOW} - M_{Fuel \text{ consommé}})}{M_{MTOW}} = \frac{M_{Fuel \text{ consommé}}}{M_{MTOW}}$$
$$= \frac{F_0}{M_{MTOW}g} C_{SR} g t_p \approx 0.3 (1.11 \ 10^{-5}) \ 9.81 \ t_p$$

Le décollage jusqu'au passage de la hauteur de sécurité, prenant en général moins d'une minute $(t_p < 60 s)$, la perte de masse est inférieure à 0.02%. Par conséquent, l'étude du décollage sous l'hypothèse d'une masse constante est tout à fait justifiée pour une approche de type avant-projet.

La réaction au sol :

Au contact de la piste par son train d'atterrissage, l'avion est soumis à la force de réaction au sol qui est composée d'une composante verticale à la piste $-R \overrightarrow{z}_o$ et d'une composante tangentielle $-\mu R \overrightarrow{x}_o$. La composante perpendiculaire à la piste $-R \overrightarrow{z}_o$ traduit le fait que l'avion reste au contact avec la piste, elle équilibre les autres efforts verticaux appliqués à l'avion. Bien entendu, dès que l'avion quitte la piste à V_{LOF} , la réaction au sol est nulle R = 0. Selon les lois du frottement, la composante tangentielle est égale au produit de la composante perpendiculaire à la piste et du coefficient de frottement pneu/piste μ . Ce coefficient (Table 4.4, p. 153) est noté μ_r lorsque l'avion roule librement, et μ_f lorsque l'avion freine.

	Coefficient de frottement pneu/piste μ à vitesse nulle			à vitesse nulle
État et nature de la	au freinage $\mu_f (V = 0)$		en roue libre $\mu_r(V=0)$	
piste ou du terrain				
	Bon état	Mauvais état	Bon état	Mauvaise état
Béton rugueux, propre et sec	1.00	0.80	0.012	0.015
Asphalte rugueux, propre et sec	0.90	0.70	0.015	0.018
Béton rugueux, propre et humide	0.80	0.60	0.015	0.018
Asphalte rugueux, propre et humide	0.70	0.50	0.018	0.020
Macadam sec	0.80	0.65	0.020	0.030
Macadam humide	0.65	0.50	0.030	0.040
Tapis herbeux, dur et sec	0.60	0.55	0.040	0.045
Tapis herbeux, dur et humide	0.55	0.45	0.045	0.050
Tapis herbeux, mou et sec	0.40	0.35	0.050	0.055
Tapis herbeux humide	0.35	0.30	0.055	0.060
Piste enneigée avec de la neige dure dont l'épaisseur	0.35	0.30	0.025	0.035
< 6 cm				
Piste enneigée avec de la neige molle dont	0.25	0.20	0.030	0.040
l'épaisseur $< 6 \ cm$				
Piste glacée opaque	0.20	0.15	0.015	0.020
Piste glacée lisse	0.15	0.10	0.010	0.015

TAB. 4.4 – Valeurs proposées par Attilio Lausetti [Lau92], du coefficient de frottement pneu/piste statique $\mu(V = 0)$. L'étude [Rou05] de ce coefficient μ , nous a permis d'élaborer un modèle (Table 4.12, p. 177) au freinage et en roue libre, fonction de la vitesse.

FIG. 4.13 – Moment de tangage provoqué par le train lors de la rotation (La distance d_{train} se déduit de la géométrie de l'avion et de son assiette θ).

REMARQUE 4.6 Moment de tangage créé par le train d'atterrissage :

Au cours de la rotation entre V_R et V_{LOF} , le train principal qui est encore en contact avec la piste, crée un moment de tangage au centre de gravité de l'avion. Ce moment de tangage est le produit de la force résultante de contact avec le sol, et du bras de levier d_{train} (Figure 4.13, p. 153).

L'équation de moment (en tangage) de l'avion s'écrit :

$$B\dot{q} = \frac{1}{2}\rho S V^2 \ell C m + M^t_{G,train}$$

Pour nos simulations numériques, cette équation nous sert seulement à déduire quelle est la position de la gouverne de profondeur δ_m (à travers le coefficient aérodynamique de moment $Cm = Cm_o + Cm_\alpha(\alpha - \alpha_0) + Cm_{\delta m}\delta_m$) correspondante à la loi de pilotage en assiette qui est imposée (Table 4.5, p. 156). Donc négliger ce moment dû au train, n'a pas d'influence sur le calcul des autres paramètres avion.

Loi d'assiette, ou comment piloter la rotation et l'arrondi?

La synthèse [Rou05] des témoignages de pilotes (Jean-Yves Boiffier [Boi05] pilote de ligne AirFrance, et Jean-Jacques Rosay [Ros05] pilote d'essai Airbus), et de différents ouvrages de la littérature (rapport Airbus ou des AFM Airplane Flight Manuel), nous a permis d'appréhender le problème du pilotage au décollage. En pratique, à la vitesse de rotation V_R , le pilote tire sur le manche dans le but d'atteindre l'assiette de montée θ_2 (Table 4.6, p. 157) qui correspond à la vitesse de sécurité au décollage V_2 à l'état d'équilibre. Cette assiette est différente entre un décollage avec panne moteur et un décollage sans panne. Une fois cette assiette atteinte, le pilote la maintient. L'avion passe donc de l'assiette de roulage θ_r à l'assiette de montée θ_2 . Pour atteindre cette assiette de montée θ_2 , la vitesse de tangage q de l'avion commence par croître à partir de V_R durant une période courte Δt_r (environ 0.8s pour un A330), puis reste quasi-constante ce qui implique une variation d'assiette avec le temps quasi-linéaire jusqu'à l'assiette objectif θ_2 .

Le décollage d'un avion est influencé par la manière de piloter la rotation et l'arrondi. Pour simuler le décollage, il est nécessaire de choisir une loi de pilotage représentative. Ce paragraphe a pour but d'exposer la loi de commande que nous avons choisie, et qui consiste à imposer une assiette θ à l'avion.

La loi en assiette que nous définissons, respecte les critères d'une assiette initiale de roulage θ_r et finale θ_2 , avec une vitesse de tangage quasi-constante q_{AF} , après un temps de transition Δt_r . En considérant ces quatre paramètres comme donnés, notre loi de pilotage se définit entièrement comme suit.

L'assiette de l'avion est égale à l'assiette de roulage θ_r (fixée par la géométrie de l'avion) jusqu'à la vitesse de rotation V_R . Afin de ne pas solliciter excessivement les modes dynamiques longitudinaux de l'avion, la loi d'assiette prévoit une phase transitoire à accélération angulaire constante

$$\frac{dq}{dt} = cte = \frac{q_{AF}}{\Delta t_r} = q_{moy} = \frac{1}{B} \frac{1}{2} \rho S V_R^2 \ell \left(Cm_o + Cm_\alpha(\alpha - \alpha_0) + Cm_\delta m \delta_m \right)$$

correspondant à un angle de gouverne de profondeur δm raisonnable au cours du décollage pour amorcer la rotation (-20° a été choisi pour nos simulations sachant que pour l'A300 $-30^{\circ} \leq \delta_m \leq 15^{\circ}$). La loi d'assiette respecte ensuite une vitesse de tangage constante $q = q_{AF}$ considérée égale à 3.6° /s (Nos simulations numériques montrent [Rou05] que plus q est élevé, plus la longueur de piste diminue, mais que le gradient est faible dans la plage de variation opérationnelle de q. Ainsi considérer une valeur moyenne $q_{AF} = 3.6^{\circ}/s$ n'est pas absurde). Après une autre phase transitoire $\frac{dq}{dt} = cte = -\dot{q}_{moy}$, l'assiette reste constante et égale à l'objectif θ_2 . L'assiette θ_2 est l'assiette qui correspond à la vitesse V_2 , à l'équilibre.

En cas de panne moteur, cette assiette θ_2 permet à l'équilibre à la vitesse de sécurité au décollage V_2 , train rentré, de respecter la pente minimale exigée par la norme FAR 25.121(b). Cette assiette se calcule analytiquement à l'aide de (Table 4.6, p. 157).

La loi d'assiette est finalement entièrement déterminée (Table 4.5, p. 156).

FIG. 4.14 – Loi d'assiette.

REMARQUE 4.7 Limitation de l'assiette au décollage

Nos simulations numériques (Section 4.2.1, p. 160) ne tiennent pas compte de la limitation géométrique de l'assiette au décollage θ_{TS} . Cette limitation dépend de la conception du train d'atterrissage et du fuselage. Il est donc difficile de tenir compte d'une telle contrainte dans des simulations représentant toute sorte d'avions.

Cela dit, sur l'ensemble de nos simulations (où $q = 3.6^{\circ}/s$), si on considère une assiette maximale admissible au sol (tail strike) $\theta_{TS} = 15^{\circ}$, et un train de 2.80 m de hauteur, seuls quelques rares avions simulés ont la queue qui racle la piste en cas de panne moteur; il manque seulement moins de 2 millimètres pour que la queue ne touche pas la piste !

Cette limitation en assiette, dont nous n'avons pas tenu compte dans nos simulations, ne paraît donc pas primordiale pour nos calculs numériques. Il faut cependant faire attention au fait que ces résultats dépendent beaucoup de la valeur de l'assiette maximale θ_{TS} considérée. Un avion plus bas sur train ou ayant un fuselage plus long rencontrerait certainement ce problème.

(a) Cas limite d'une de nos simulations où la queue d'un avion frôle la piste. ($\theta_{TS} = 15^{\circ}$ et distance pneu-fuselage de 2.80 m)

(b) Modèle simple de la distance entre la queue de l'avion et le sol

TAB. 4.5 – Loi d'assiette.

Г

Modèle de l'assiette objectif $ heta_2$	
de la loi de pilotage en assiette (Table 4.5, p. 156).	
$\theta_2 - \alpha_2 + \gamma_2$	
$u_2 = u_2 + v_2$	
$\alpha_2 = \alpha_0 + \left(\frac{V_{S1}}{V_2}\right) \frac{C z_{max}}{C z_\alpha}$	
En cas de panne moteur (OEI : One Engine Inoperative) :	
$N = 1 E = \langle V \rangle = \langle V \rangle^2 C x_0 + \Delta C x_{outour inst} + k_i \left(\frac{V_{S1}}{V_{S1}} \right)$	$\frac{4}{Cz_{max}}$
$\gamma_2 = \frac{N_m - 1}{N} \frac{F_{max}(V_2)}{m_a} - \left(\frac{V_2}{V}\right) \frac{\partial w_0 + \Delta \partial w_{omulinet} + N_1(V_2)}{C_a}$	€ ≈ max
$N_m mg (V_{S1}) \qquad C_{2max}$	
Sans panne moteur (AEO : An Engines Operating) :	
$F_{max}(V_2) \left(V_2\right)^2 Cx_o + k_i \left(\frac{V_{S1}}{V_2}\right)^* Cz_{max}^2$	
$\gamma_2 = -\frac{mg}{mg} - \left(\frac{1}{V_{S1}}\right) - \frac{Cz_{max}}{Cz_{max}}$	
Mode d'obtention : Analytique. Correspond à l'état d'équilibre à la vitesse de sé	curité au
décollage V_2 (Table 4.3, p. 149), train rentré, avec ou sans panne moteur.	
Domaine de définition : Avions soumis à la FAR 25.	
Précision : Modèle élaboré par résolution analytique exacte des équations de dy	vnamique
du voi à l'équilibre, selon la definition de la norme FAR 25.107.c.	
Symboles : Désignation	Unités
Cx_o : Coefficient de traînée de frottement de l'avion. Attention,	
il depend de la configuration Bec/volet adoptee. Cz_{max} : Coefficient de portance maximale, au delà il y a	
décrochage. Attention sa valeur dépend de la configura-	
tion des becs/volets	
Cz_{α} : Gradient de coefficient de portance avec l'incidence	rad^{-1}
$F_{max}(V_2)$: Poussée maximale (Equation 4.1, p. 151), que délivrerait	N
Tensemble des N_m moteurs equipant l'avion, à la vitesse V_{α} . Afin d'éviter un bouclare numérique cette poussée	
peut être évaluée à $V_{2,min}$ ce qui est justifié car en général	
$V_2 = V_{2min}$.	
g : Constante de gravité terrestre $g \approx 9.81 \ m/s^2$	m/s^2
k_i : Coefficient de traînée induite $k_i \approx \frac{1}{\pi \lambda}$,
m : Masse maximale de l'avion au décollage (M_{MTOW} ici	kg
notée m pour ne pas alourdir l'écriture des équations)	
N_m : Nombre de moteurs équipant l'avion (à ne pas confondre	
avec le nombre de moteur en état de fonctionnement).	,
V_2 : Vitesse de securite au decollage (Table 4.3, p. 149).	m/s
V_{S1} : vitesse de decrochage à 1-g $V_{S1} = \sqrt{\frac{1}{2\rho SCz_{max}}}$	m/s
α_0 : Incidence de portance nulle de l'avion. Attention, elle	rad
aepend de la configuration Bec/Volet adoptee. ΔCr Augmentation du coefficient de traînée due au motour on	
panne qui tourne en "moulinet"	
panne qui tourne en intermet	

TAB. 4.6 – Modèle de l'assiette de montée au décollage θ_2

Équations du décollage issues du Principe Fondamental de la Dynamique

Après avoir précisé les modèles des efforts appliqués à l'avion et la loi de pilotage choisie, il est maintenant possible de déterminer les équations qui régissent le décollage en appliquant le PFD (Principe Fondamental de la Dynamique) au système avion, dans le référentiel terrestre (la piste) supposé Galiléen.

$$\sum \overrightarrow{Forces} = m \overrightarrow{\Gamma}$$

$$\sum \overrightarrow{Moments} = \overrightarrow{\delta_G}_{(avion/piste)} \quad \text{moment dynamique}$$

Appliquons le principe fondamental de la Dynamique : la somme des forces selon les axes aérodynamiques \overrightarrow{x}_a et \overrightarrow{z}_a permettent d'obtenir respectivement les équations de propulsion (Equation 4.4, p. 158) et de sustentation (Equation 4.5, p. 158), et la somme des moments selon \overrightarrow{y}_b aboutit à l'équation de moment de tangage (Equation 4.6, p. 158). Les équations cinématiques de vitesses de tangage selon \overrightarrow{y}_b (Equation 4.7, p. 158) et d'altitude selon \overrightarrow{z}_o (Equation 4.8, p. 158) sont également utilisées.

Au roulage, c'est-à-dire tant que l'avion est en contact avec la piste, les équations du décollage sont :

$$\begin{split} m\dot{V} &= -\sin\gamma_p mg - \frac{1}{2}\rho \, V_a^2 SCx + F_{max} \cos \alpha - \mu R \\ 0 &= \cos\gamma_p mg - \frac{1}{2}\rho \, V_a^2 SCz - F_{max} \sin \alpha - R \\ \theta &= \text{Imposée par la loi d'assiette (Table 4.5, p. 156).} \\ \alpha &= \theta - \gamma_p \\ \frac{dX_p}{dt} &= V \\ h_p &= 0 \end{split}$$
(4.3)

Dès que l'avion a quitté la piste, les équations du décollage deviennent :

$$m\dot{V} = -\sin\gamma mg - \frac{1}{2}\rho V_a^2 SCx + F_{max}\cos\alpha$$
(4.4)

$$-mV\dot{\gamma} = \cos\gamma mg - \frac{1}{2}\rho V_a^2 SCz - F_{max}\sin\alpha$$
(4.5)

$$B\dot{q} = \frac{1}{2}\rho S V^2 \ell C m \tag{4.6}$$

$$\theta$$
 = Imposée par la loi d'assiette (Table 4.5, p. 156).
 $q = \dot{\theta}$ (4.7)

$$\begin{aligned}
\alpha &= \theta - \gamma \\
\frac{dX_p}{dt} &= V\cos\left(\gamma - \gamma_p\right) \\
\dot{h_p} &= V\sin\left(\gamma - \gamma_p\right)
\end{aligned}$$
(4.8)

La modélisation des coefficients aérodynamiques de portance Cz, de traînée Cx, et de moment de tangage Cm, a été donnée précédemment (Equation 4.2, p. 151).

FIG. 4.15 – Déduction géométrique de la distance parcourue sur la piste X_p et de la hauteur entre la piste et l'avion h_p , en fonction de la pente de la piste γ_p .

Les équations du décollage représentent donc un système d'équations différentielles couplées et non linéaires, qu'il est difficile d'appréhender analytiquement. Nous parviendrons tout de même à résoudre analytiquement ce système pour le roulage à incidence constante : c'est-à-dire déterminer un décollage interrompu (RTO : Rejected Take-Off), un freinage à l'atterrissage ou encore un roulage au décollage jusqu'à la vitesse de rotation V_R . Mais il ne sera pas possible de résoudre analytiquement la phase de rotation et de phase aérienne, sans hypothèses simplificatrices.

Par contre, ce système d'équations se résout numériquement comme nous le montrerons ultérieurement (Section 4.2.1, p. 160). Cette résolution numérique servira de référence pour valider les modèles analytiques de décollage que nous mettrons au point.

Symboles : Désignation	Unités
B : Inertie de l'avion en tangage. Coefficient (\vec{x}_b, \vec{x}_b) de la matrice d'inertie de	$kg.m^2$
l'avion par rapport au centre de gravité et exprimé dans le repère avion	
Cm: Coefficient aérodynamique de moment de tangage	
Cx: Coefficient aérodynamique de traînée avion	
Cz: Coefficient aérodynamique de portance avion	
Cz_{max} : Coefficient aérodynamique de portance maximale, au delà il y a décrochage.	
Attention sa valeur dépend de la configuration des becs/volets	
F_{max} : Poussée moteur maximale (Equation 4.1, p. 151). Il faut multiplier par	N
$\frac{N_m-1}{N_m}$ si un des N_m moteurs est en panne.	
g : Constante de gravité terrestre $g \approx 9.81 \ m/s^2$	m/s^2
h_p : Hauteur entre la piste et l'avion	m
ℓ : Corde de référence	m
m: Masse de l'avion	kg
q: Vitesse de tangage, c'est-à-dire vitesse angulaire de l'avion par rapport à la	rad/s
terre selon l'axe \overrightarrow{y}_{b} . En vol longitudinal, $q = \dot{\theta}$	
R : Composante perpendiculaire à la piste de la force de réaction au sol que le	N
contact de la piste crée sur l'avion.	
S : Surface voilure	m^2
V: Vitesse de l'avion par rapport à la piste	m/s
X_p : Distance parcourue par l'avion selon la piste	m
α : Incidence de l'avion	rad
γ : Pente de l'avion. Angle entre la vitesse air et l'avion en vol longitudinal.	rad
γ_p : Pente de la piste, supposée constante	rad
μ : Coefficient de frottement pneu/piste (Table 4.4, p. 153)	
ρ : Masse volumique de l'air au niveau de la piste	kg/m^3
ρ_0 : Masse volumique au niveau de la mer : $\rho_0 = 1.225 \ kg/m^3$	kg/m^3
θ : Assiette de l'avion. Angle entre la terre et l'axe de symétrie avion \overline{x}_b	rad

4.2 Élaboration de notre modèle

4.2.1 Modèle numérique de référence

Les équations du décollage établies précédemment (Section 4.1.3, p. 158), constituent un système d'équations différentielles couplées et non linéaires. Mis à part pour le roulage à incidence et coefficient de frottement pneu/piste constants, la résolution analytique de ce système n'est pas envisageable. C'est pourquoi nous avons développé un outil numérique, qui résout par itération ce système, afin de déterminer l'évolution de tous les paramètres avion au cours du décollage (forces, accélération, vitesse, altitude, distance parcourue sur la piste, pente, assiette, incidence, ...). La loi de pilotage en assiette précédemment définie (Table 4.5, p. 156) est utilisée. Ce modèle numérique servira de référence pour qualifier les modèles analytiques que nous mettons au point. C'est par la méthode numérique d'Euler que nous avons traduit les équations de la mécanique du décollage en un code numérique de simulation de décollage. Ce code détermine dans un premier temps les vitesses caractéristiques du décollage (vitesse de décision V_1 et vitesse de rotation V_R , par itération numérique, et la vitesse de sécurité au décollage V_2 par son expression analytique (Table 4.3, p. 149),...). À partir de ces vitesses, le code numérique permet de simuler les décollages sans panne moteur (AEO - All Engines Operating), avec panne moteur (OEI - One Engine Inoperative), et le décollage interrompu (RTO -Rejected TakeOff).

Voici un exemple d'une simulation de décollage sans panne moteur (Figure 4.16, p. 161), et avec panne moteur (Figure 4.17, p. 162).

Validation de notre modèle numérique sur des données Airbus

Airbus [Mar05] a eu la gentillesse de nous fournir des données expérimentales précises de décollage d'un de leur avion, afin que nous puissions valider notre modèle numérique de décollage. Ces données ne sont pas exposées dans ce document, mais nous indiquons tout de même la précision de notre modèle numérique par rapport à ces données. Cette précision s'est avérée satisfaisante puisque l'erreur relative moyenne d'estimation de notre modèle numérique est de 0.85% pour les vitesses de décollage, et de 8.7% et 11.3% pour les longueurs de piste au décollage sans et avec panne moteur. Les constantes q_1 et q_2 de notre modèle de poussée moteur maximale (Equation 4.1, p. 151), ont été déterminées à l'aide du modèle moteur (Table 2.9, p. 57) que nous avons élaboré avec les données constructeur de taux de dilution, de taux de compression et de température entrée turbine du moteur équipant l'avion étudié.

Si nous mettons en œuvre un modèle sophistiqué de type ESDU [ESD72] de l'effet de sol, pour compléter notre modèle numérique, les estimations sont encore plus proches des données expérimentales d'Airbus : 0.35% pour les vitesses, et pour les longueurs de piste au décollage 5.6% en AEO (All Engines Operating) et 2.1% en OEI (One Engine Inoperative).

Base de données simulées par notre modèle numérique

Le modèle numérique précédemment élaboré est ensuite mis en œuvre pour simuler les décollages d'une grande quantité d'avions ayant des caractéristiques couvrant l'ensemble des avions de transport civils. Ces simulations serviront de référence pour la mise au point de nos modèles de longueur de piste aérienne (Section 4.2.4, p. 180) et de vitesses au décollage V_1 (Table 4.7, p. 165), V_R (Table 4.8, p. 167), V_{LOF} (Table 4.10, p. 170).

AEO : All Engine Operating

FIG. 4.16 – Exemple de simulation d'un bimoteur ($\frac{F_0}{mg} = 0.31$, f = 17, $\frac{m}{S} = 600 \text{ kg/m}^2$) d'un décollage sans panne moteur (AEO)

OEI : One Engine Inoperative

FIG. 4.17 – Exemple de simulation d'un bimoteur ($\frac{F_0}{mg} = 0.31$, f = 17, $\frac{m}{S} = 600 \text{ kg/m}^2$) d'un décollage avec panne moteur (OEI)

C'est ainsi que nous avons effectué les simulations de 324 avions bimoteurs fictifs, ayant différentes valeurs de :

- taux de propulsion $\frac{F_0}{mg}$ (de 0.27 à 0.38 par pas de 0.01),
- charge alaire $\frac{m}{S}$ (de 500 à 700 kg/m² par pas de 100), et
- finesse (à travers le coefficient de traînée Cx_o , ce qui correspond à des finesses équivalentes en croisière $f = \frac{\sqrt{3}}{4} \sqrt{\frac{\pi\lambda}{Cx_o}}$ (optimise la distance réacteur en croisière de Bréguet montante) comprises entre 12 et 20 par pas de 1).

Les caractéristiques avion communes à toutes les simulations sont :

- Masse de l'avion au décollage $M_{MTOW} = 160000 \ kg$ (c'est la masse de l'A300, mais cela a peu d'importance puisque à charge alaire et taux de propulsion donnés, les simulations ont montré que les décollages ne dépendent pas de la masse. L'effet de taille n'a donc pas d'influence sur les performances au décollage).
- Le nombre de moteur équipant l'avion : $N_m = 2$
- Les coefficients du modèle de poussée moteur : $q_1 = -1/340$ et $q_2 = 1/2 * (1/340)^2$ (Valeurs du modèle de J.Mattingly [Mat96], représentatif d'un réacteur civil au décollage [Rou02])
- Augmentation du coefficient de traînée de frottement due au train en position sortie : $\Delta Cx_{oTrain} = 0.0175$ (valeur de celui de l'A300)
- Augmentation du coefficient de traînée de frottement due aux spoilers : $\Delta Cx_{oSP} = 0.06$ (valeur de celui de l'A300)
- Augmentation du coefficient de traînée due au moteur en panne qui tourne en "moulinet" : $\Delta Cx_{omoulinet} = 0.004 \text{ (cf.[MS00])}$
- Coefficient de traînée induite $k_i = 0.055$ (celui de l'A300)
- Coefficient de portance maximale (fonction becs/volets) : $Cz_{max} = 1.728$ (celui de l'A300 en configuration de décollage)
- Coefficient de gradient de portance $Cz_{\alpha} = 5$ (valeur de l'A300)
- Coefficient de portance due aux spoilers $\Delta C z_{oSP} = -0.15$ (valeur A300)
- Incidence de portance nulle $\alpha_0 = -2^\circ$ (A300 en configuration de décollage)
- Incidence de roulage $\alpha_r = 0 \ rad$.
- Données non essentielles servant uniquement à déduire la position de la gouverne de profondeur δ_m :
 - Inertie de l'avion en tangage $B = 9.72 \ 10^6 \ kgm^2$ (celle de l'A300 [Boi01])
 - Corde de référence $\ell\,=6.6\;m.$
 - Coefficient de moment de tangage en configuration de décollage : $Cm_o = -0.062$ (d'après des données internes sur l'A300)
 - Coefficient de gradient de moment de tangage avec l'incidence $Cm\alpha = -0.1$ (de l'A300)
 - Coefficient de gradient de moment de tangage avec la gouverne de profondeur δ_m : $Cm\delta_m = -1.46$ (de l'A300)
 - Coefficient de gradient de moment de tangage avec la vitesse de tangage $q: Cm_q = -12$

Les données du terrain qui ont été considérées :

- Constante de gravité terrestre $g = 9.81 \ m/s^2$
- Pente de la piste supposée constante (> 0 si montée, < 0 si descente) : $\gamma_p = 0 rad$
- Masse volumique de l'air au niveau de la piste $\rho = 1.225 \ kg/m^3$
- Masse volumique de l'air au niveau de référence à altitude nulle $\rho_0 = 1.225 \ kg/m^3$
- Vitesse du son au niveau de la piste a = 340 m/s
- Coefficient de frottement pneu/piste en roue libre $\mu_r = 0.015$ (représentatif d'une piste standard sèche)
- Coefficient de frottement pneu/piste au freinage $\mu_f = 0.4$ (représentatif d'un avion civil freinant sur une piste standard sèche)

4.2.2 Modèle des vitesses

Pour élaborer nos modèles de vitesses de décision V_1 , de rotation V_R et de décollage (lift-off) V_{LOF} , une structure analytique est d'abord judicieusement choisie en fonction de la charge alaire, du taux de propulsion et de la finesse. Les coefficients de cette structure analytique sont déterminés par identification, c'est-à-dire qu'ils sont obtenus par la méthode des moindres carrés (fonction "lsqnonlin" de MATLAB) pour minimiser l'erreur d'estimation de nos modèles de ces vitesses par rapport aux valeurs issues des simulations de notre modèle numérique de référence.

REMARQUE 4.8 J'ai choisi d'exprimer les modèles des vitesses en fonction de la finesse "équivalente" de croisière $f = \frac{\sqrt{3}}{4} \sqrt{\frac{\pi \lambda}{Cx_o}}$ et non pas en fonction du coefficient de traînée de frottement Cx_o .

Il est bien sûr critiquable de considérer une finesse de *croisière* pour l'élaboration d'un modèle de *décollage*, d'autant plus que le Cx_o en question est celui donnée avec becs/volets sortis ce qui n'est pas le cas en croisière (configuration lisse). Mais la grandeur de la finesse m'a paru plus "parlante" que les valeurs en 10^{-2} des Cx_o , et par chance, le comportement des lois à identifier était plus simple en fonction de cette finesse qu'en fonction du Cx_o .

Par ailleurs il n'est pas difficile de passer d'une modélisation à l'autre (l'allongement a été considéré constant, celui de l'A300 $\lambda = 7.8$) : $Cx_o = \frac{3}{16} \frac{\pi \lambda}{t^2}$

^aCette finesse correspond [Boi01] à l'optimum de $\frac{Cz^{1/2}}{Cx}$, qui maximise la distance franchissable d'un avion équipé de réacteurs, effectuant une croisière de Bréguet ou une croisière montante.

Modèle de la vitesse de décision V_1

Modèle du rapport des vitesses de décision et de rotation $\frac{V_1}{V_P}$ Lorsque la vitesse de sécurité au décollage est contrainte $V_2 = V_{2min} = 1.13V_{S1}$ (cas de la majorité des avions de transport civil (Table 4.3, p. 149)) $\frac{V_1}{V_R} = \left(K_1 f^2 + K_2 f + K_3\right) \left(\frac{F_0}{mg}\right)^2 + \left(K_4 f^2 + K_5 f + K_6\right) \left(\frac{F_0}{mg}\right)$ $+K_7f^2 + K_8f + K_9 + K_{10}\left(\frac{m}{S}\right)^2 + K_{11}\left(\frac{m}{S}\right)$ Lorsque la vitesse de sécurité au décollage est non contrainte $V_2 > V_{2min}$ $\frac{V_1}{V_R} = \left(K_1 \frac{m}{S} + K_2 \frac{F_0}{mg} + K_3 \frac{m}{S} \frac{F_0}{mg} + K_4\right) f^2 + \left(K_5 \frac{m}{S} + K_6 \frac{F_0}{mg} + K_7 \frac{m}{S} \frac{F_0}{mg} + K_8\right) f^2$ $+ \left(K_9 \frac{m}{S} + K_{10} \frac{F_0}{mg} + K_{11} \frac{m}{S} \frac{F_0}{mg} + K_{12} \right)$ Mode d'obtention : identifié par les moindres carrés sur des simulations de décollage de bimoteurs (Section 4.2.1, p. 160). C'est la vitesse de décision correspondant à la vitesse de rotation permettant d'obtenir la vitesse de sécurité au décollage V_2 en même temps que l'assiette θ_2 (Table 4.5, p. 156), pour une vitesse de tangage durant la rotation de $q = 3.6^{\circ}/s$. Les limitations éventuelles de V_1 par rapport à la V_{MC} (FAR 25.107.e) ou par rapport à l'énergie de freinage maximale n'ont pas été prises en compte. Par contre, le critère $V_1 \leq V_R$ a bien été respecté. **Domaine de définition :** Bimoteurs de taux de propulsion $0.27 \le \frac{F_0}{mg} \le 0.38$, de charge alaire $500 \leq \frac{m}{S} \leq 700 \ kg/m^2$, et de finesse équivalente en croisière $12 \leq f \leq 20$. **Précision :** Une erreur relative moyenne par rapport aux simulations numériques de 0.54%pour les décollages contraints en V_2 , et 0.09% pour les décollages non contraints en V_2 . Symboles : Désignation Unité Cx_o : Coefficient de traînée de frottement de l'avion ($Cx = Cx_o + \Delta Cx_{oTrain} + \Delta Cx_{oTrain}$ $\Delta Cx_{omoulinet} + k_i C z^2$). Il dépend de la configuration becs/volets. F_0 : Poussée au point fixe, c'est-à-dire à vitesse et altitude nulles, de tous les Nmoteurs de l'avion $\frac{F_0}{max}$: Taux de propulsion de l'avion : compris entre 0.27 et 0.38 pour nos simulations f: Finesse "équivalente" de croisière $f=\frac{\sqrt{3}}{4}\sqrt{\frac{\pi\lambda}{Cx_o}}$ (Remarque 4.8, p. 164) g: Constante de gravité terrestre $g\approx 9.81\,m/s^2$ m/s^2 m: Masse de l'avion au décollage. C'est la maximum Take-Off Weight kg M_{MTOW} qui a été désignée par *m* pour simplifier les notations. $\frac{m}{S}$: Charge alaire, entre 500 et 700 kg/m² pour nos simulations kg/m m^2 \tilde{S} : Surface voilure de référence V_{EF} : Vitesse la plus critique à laquelle une panne moteur peut survenir m/s V_1 : Vitesse de décision. m/s V_2 : Vitesse de sécurité au décollage (Table 4.3, p. 149) m/s $V_{2\,min}$: Vitesse de sécurité au décollage minimale (cf. FAR 25.107(b/c)) m/s V_R : Vitesse de rotation (Table 4.8, p. 167). m/s

TAB. 4.7 – Modèle du rapport $\frac{V_1}{V_B}$ pour des bimoteurs

FIG. 4.18 – Valeurs optimales des simulations (trait continu) et notre modélisation (trait pointillé) du rapport des vitesses de décision et de rotation $\frac{V_1}{V_R}$. Les décollages non contraints par la vitesse de sécurité au décollage minimale V_{2min} sont indiqués par des losanges.

Modèle de la vitesse de rotation V_R

Modèle du rapport des vitesses de rotation et de décrochage $\frac{V_B}{V_S}$	1
Lorsque la vitesse de sécurité au décollage est contrainte $V_2 = V_{2min} = 1.13$ (cas de la majorité des avions de transport civil (Table 4.3, p. 149))	V_{S1}
$\frac{V_R}{V_{S1}} = \left(K_1 \frac{m}{S} + K_2\right) \frac{F_0}{mg} + \left(K_3 \left(\frac{m}{S}\right)^2 + K_4 \frac{m}{S} + K_5\right) f^2$	
$+\left(K_{6}\left(\frac{m}{S}\right)^{2}+K_{7}\frac{m}{S}+K_{8}\right)f+\left(K_{9}\left(\frac{m}{S}\right)^{2}+K_{10}\frac{m}{S}+K_{11}\right)$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10
Lorsque la vitesse de sécurité au décollage est non contrainte $V_2 > V_{2min}$	
$\frac{V_R}{V_{S1}} = \left(K_1 \frac{m}{S} + K_2 \frac{F_0}{mg} + K_3 \frac{m}{S} \frac{F_0}{mg} + K_4\right) f^2 + \left(K_5 \frac{m}{S} + K_6 \frac{F_0}{mg} + K_7 \frac{m}{S} \frac{F_0}{mg} + K_8 \frac{F_0}{m$	$_{\rm B} \Big) f$
$+\left(K_9\frac{m}{S} + K_{10}\frac{F_0}{mg} + K_{11}\frac{m}{S}\frac{F_0}{mg} + K_{12}\right)$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Mode d'obtention : identifié par les moindres carrés sur des simulations de décollage bimoteurs (Section 4.2.1, p. 160). C'est la vitesse de rotation pour laquelle la vit de sécurité au décollage V_2 est obtenue en même temps que l'assiette θ_2 (Table p. 156), pour une vitesse de tangage durant la rotation de $q = 3.6^{\circ}/s$.	e de tesse 4.5,
Domaine de définition : Bimoteurs de taux de propulsion $0.27 \leq \frac{F_0}{mg} \leq 0.38$, de ch alaire $500 \leq \frac{m}{c} \leq 700$, et de finesse équivalente en croisière $12 \leq f \leq 20$.	arge
Précision : Une erreur relative moyenne par rapport aux simulations numériques de 0.0 pour les décollages contraints en V_2 , et 0.54% pour les décollages non contraints en	32% V_2 .
Symboles : Désignation U	Jnité
Cx_o : Coefficient de traînée de frottement de l'avion ($Cx = Cx_o + \Delta Cx_{oTrain} + \Delta Cx_{omoulinet} + k_i Cz^2$). Il dépend de la configuration becs/volets.	N
moteurs de l'avion	
$\frac{F_0}{mg}$: Taux de propulsion de l'avion : compris entre 0.27 et 0.38 pour nos simulations	_
f : Finesse "équivalente" de croisière $f = \frac{\sqrt{3}}{4} \sqrt{\frac{\pi\lambda}{Cx_o}}$ (Remarque 4.8, p. 164)	_ / 2
g : Constante de gravité terrestre $g \approx 9.81 \ m/s^2$ m : Masse de l'avion au décollage. C'est la maximum Take-Off Weight	$\frac{m/s^2}{kq}$
M_{MTOW} qui a été désignée par m pour simplifier les notations.	
$\frac{m}{S}$: Charge alaire, entre 500 et 700 kg/m ² pour nos simulations	$\frac{kg/m^2}{m^2}$
V_2 : Vitesse de sécurité au décollage (Table 4.3, p. 149)	m/s
V_{2min} : Vitesse de sécurité au décollage minimale (cf.FAR 25.107(b/c))	m'/s
V_R : Vitesse de rotation. Vitesse à laquelle le pilote tire sur le manche pour décoller, où la roulette de nez quitte le sol.	m/s
V_{S1} : Vitesse de décrochage à 1 g : $V_{S1} = \sqrt{\frac{mg}{1/2\sigma SCz}}$	m/s
V 1) 2900×max	

TAB. 4.8 – Modèle du rapport $\frac{V_R}{V_{S1}}$ pour des bimoteurs

FIG. 4.19 – Valeurs optimales des simulations (trait continu) et notre modélisation (trait pointillé) du rapport des vitesses de rotation et de décrochage $\frac{V_R}{V_{S1}}$. Les décollages non contraints par la vitesse de sécurité au décollage minimale V_{2min} sont indiqués par des losanges.

Modèle de la vitesse de décollage "lift-off" V_{LOF}

Modèle du rapport $rac{V_{LOF}}{V_{S1}}$ des vitesses de décollage "lift-off" et de décrochage, sans panne moteur (AEO All Engines Operating), pour des bimoteurs.
Lorsque la vitesse de sécurité au décollage est contrainte $V_2 = V_{2min} = 1.13V_{S1}$ (cas de la majorité des avions de transport civil (Table 4.3, p. 149))
$\frac{V_{LOF}}{V_{S1}} = \left(\left(K_1 \frac{m}{S} + K_2 \right) f + \left(K_3 \frac{m}{S} + K_4 \right) \right) \frac{F_0}{mg} + \left(K_5 \frac{m}{S} + K_6 \right) f + \left(K_7 \frac{m}{S} + K_8 \right)$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Lorsque la vitesse de sécurité au décollage est non contrainte $V_2 > V_{2min}$
$\frac{V_{LOF}}{V_{S1}} = \left(K_1 \frac{m}{S} + K_2 \frac{F_0}{mg} + K_3 \frac{m}{S} \frac{F_0}{mg} + K_4\right) f^2 + \left(K_5 \frac{m}{S} + K_6 \frac{F_0}{mg} + K_7 \frac{m}{S} \frac{F_0}{mg} + K_8\right)$
$+\left(K_9\frac{m}{S} + K_{10}\frac{F_0}{mg} + K_{11}\frac{m}{S}\frac{F_0}{mg} + K_{12}\right)$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TAB. 4.9 – Modèle du rapport $\frac{V_{LOF}}{V_{S1}}$ sans panne moteur (AEO)

VLOF/VS1g en AEO

FIG. 4.20 – Valeurs optimales des simulations (trait continu) et notre modélisation (trait pointillé) du rapport des vitesses de décollage "lift-off" sans panne moteur (AEO All Engines Operating) et de décrochage $\frac{V_{LOF}}{V_{S1}}$. Les décollages non contraints par la vitesse de sécurité au décollage minimale V_{2min} sont indiqués par des losanges.

FIG. 4.21 – Valeurs optimales des simulations (trait continu) et notre modélisation (trait pointillé) du rapport des vitesses de décollage "lift-off" avec panne moteur (OEI One Engine Inoperative) et de décrochage $\frac{V_{LOF}}{V_{S1}}$. Les décollages non contraints par la vitesse de sécurité au décollage minimale V_{2min} sont indiqués par des losanges.

Élodie Roux - novembre 2005

4.2.3 Modèle du roulage

Le roulage est la phase, durant laquelle l'avion roule sur la piste, au décollage ou à l'atterrissage, c'est-à-dire que des roues du train sont en contact avec la piste. Nous distinguons deux phases de roulage :

- Toutes les roues au sol : Lorsque l'avion a toutes ses roues en contact avec la piste, son incidence α_r est constante, et est donnée par sa géométrie. Pour le décollage cette phase de roulage est comprise entre le début de piste où l'avion a une vitesse nulle, et l'endroit où la roulette de nez quitte la piste c'est-à-dire à la vitesse de rotation V_R .
- La rotation (roulette de nez en l'air) : Lors de la phase de roulage où la roulette de nez est en l'air et le train arrière continue à rouler sur la piste, l'incidence varie : c'est une phase particulière du roulage que nous appelons phase de rotation. Ceci a lieu, pour le décollage, entre la vitesse de rotation V_R et la vitesse de décollage V_{LOF} (lift-off) où l'avion quitte le sol.

En considérant une modélisation [Rou02] sophistiquée mais néanmoins précis de la poussée $F_{max} = F_0 \frac{\rho}{\rho_0} (1 + q_1 V_a + q_2 V_a^2)$, et avec l'hypothèse d'un vent longitudinal constant $V_w = cte$, l'accélération de l'avion au roulage s'exprime, grâce au Principe Fondamental de la Dynamique (Equation 4.3, p. 158), par une équation différentielle de type "Riccati" en fonction de la vitesse aérodynamique de l'avion V_a .

$$\Gamma = \frac{dV_k}{dt} = \frac{dV_a}{dt} + \underbrace{\frac{dV_w}{dt}}_{= 0} = \underbrace{\frac{dV_a}{dt} = A V_a^2 + B V_a + C}_{\operatorname{car} V_w = cte}$$
(4.9)

Avec :

$$A = q_2 \tilde{F} - \tilde{T} \qquad \qquad \tilde{F} = \frac{F_{ref}}{m} \frac{\rho}{\rho_0} (\cos \alpha_r + \mu \sin \alpha_r) B = q_1 \tilde{F} \qquad \qquad \tilde{T} = \frac{1}{2} \rho \frac{S}{m} (Cx - \mu Cz) C = \tilde{F} - \tilde{f}_r \qquad \qquad \tilde{f}_r = g (\sin \gamma_p + \mu \cos \gamma_p) Cz = Cz_\alpha (\alpha_r - \alpha_0) + \Delta Cz_{oSP} Cx = Cx_o + \Delta Cx_{oTrain} + \Delta Cx_{omoulinet} + \Delta Cx_{oSP} + k_i Cz^2$$

La résolution analytique de cette équation différentielle n'est envisageable que si les coefficients A, B, C sont constants. Or, la valeur de ces coefficients changent à toute action du pilote (freinage, sortie des spoilers, réduction de la poussée, ...) ou à l'apparition d'une panne moteur, ou encore si l'incidence ou la pente de la piste ne sont pas constantes. C'est pourquoi, afin d'étudier analytiquement le roulage d'un avion, il faut donc scinder ce roulage en autant de portions nécessaires pour que ces coefficients soient constants dans chacune des portions. Pour les cas typiques de roulage des décollages avec (OEI) ou sans (AEO) panne moteur, du décollage interrompu (RTO : Rejected Take-Off) ou de l'atterrissage, la manière de scinder le roulage ainsi que les valeurs des différents paramètres (de la poussée F_{ref} , de l'augmentation de traînée due au moteur en panne $\Delta Cx_{omoulinet}$, de l'augmentation de traînée de frottement ΔCx_{oSP} et de portance ΔCz_{oSP} dues à la sortie des spoilers, et du coefficient de frottement pneu/piste μ), à considérer, est répertorié (Table 4.1, p. 141).

La distance de roulage parcourue sur une portion de piste ΔX entre les vitesses aérodynamiques initiale $V_{a,i}$ et finale $V_{a,f}$, se calcule analytiquement par l'intégrale :

$$\Delta X = \int_{X_i}^{X_f} dX = \int_{t_i}^{t_f} V_k dt = \int_{t_i}^{t_f} (V_a + V_w) dt = \int_{V_{a,i}}^{V_{a,f}} \frac{V_a dV_a}{\Gamma} + V_w \Delta t$$

Avec $\Delta t = t_f - t_i$, le temps mis par l'avion pour parcourir la portion de piste ΔX .

$$\Delta t = \int_{t_i}^{t_f} dt = \int_{V_{a,i}}^{V_{a,f}} \frac{dV_a}{\Gamma}$$

Ces intégrations ont abouti [Rou05] au modèle analytique (Table 4.11, p. 175).

${\bf Symboles}: {\bf D\acute{e}signation}$

A, B, C : Coefficients du polynôme représentant l'accélération avion Γ (Equation 4.9, p. 173) dont le sens physique et dont les signes sont analysés dans [Rou05]. Le coefficient A est le paramètre d'ou- verture de la parabole représentant l'accélération Γ en fonction de la vitesse V . Si $A > 0$, alors la parabole est ouverte vers le haut (et inversement pour $A < 0$, la parabole est ouverte vers le bas). Le coefficient C représente la valeur de l'accélération sta- tique $C = \Gamma(V = 0)$. Au décollage, le coefficient $C > 0$ est positif. À l'atterrissame il est négatif $C < 0$	$m^{-1}, s^{-1} \text{ et } m/s^2$
 b : Envergure de la voilure c'est-à-dire la distance entre les extrémités des ailes Crette Coefficient de treînée de l'enjon en reulere 	m
Cz: Coefficient de trainée de l'avion au roulage. Cz: Coefficient de portance de l'avion au roulage. $Cz\alpha$: Gradient de coefficient de portance avec l'incidence Cx_o : Coefficient de traînée de frottement de l'avion. Attention, il dépend de la configuration Bec/Volet adoptée	rad^{-1}
F_0 : Poussée au point fixe (altitude et vitesse aérodynamique nulles) des N_m moteurs. Si l'un des N_m moteurs est en panne, alors il faut la multiplier par $\frac{N_m-1}{2}$	Ν
F_{red} : Poussée de ralenti tous les moteurs (à vitesse et altitude nulles). Peut-être considérée négative en cas de réverse, uniquement pour la certification d'un décollage interrompu RTO sur piste mouillée ou enneigée.	Ν
F_{ref} : Poussée au point fixe de référence au roulage : $F_{ref} = F_0$ en régime moteur maximal (décollage), $F_{ref} = F_{red}$ au ralenti (atterrissage ou RTO).	N
\widetilde{F} : Poussée réduite	m/s^2
\tilde{f}_{n} : Frottement statique réduit	m/s^2
g : Constante de gravité terrestre $g \approx 9.81 \ m/s^2$ k_i : Coefficient de traînée induite $k_i = \frac{1}{\pi \lambda}$	m/s^2
m: Masse de l'avion q_1, q_2 : Coefficients du modèle de poussée (Equation 4.1, p. 151) S: Surface voilure	$(m/s)^{-1} \mathop{\mathrm{et}}\limits_{m^2} (m/s)^{-2}$
\widetilde{T} : Traînée réduite	m^{-1}
$V_{a,i}, V_{a,f}$: Vitesse aérodynamique initiale $V_{a,i}$ et finale $V_{a,f}$ de la portion de roulage étudiée.	m/s
V_a : Vitesse aérodynamique ou vitesse de l'avion par rapport à l'air	m/s
V_k : Vitesse cinématique ou vitesse de l'avion par rapport à la piste	m/s
V_w : Vitesse du vent ou vitesse de l'air par rapport à la piste, supposée constante et selon l'axe de la piste \vec{x}_p ($V_w > 0$ si l'avion a le vent dans le dos, $V_w < 0$ si l'avion a le vent de face)	m/s
$V_{\Gamma=0}^{\oplus}, V_{\Gamma=0}^{\ominus}$: Vitesses aérodynamiques pour lesquelles l'accélération est nulle $\Gamma = 0$, c'est-à-dire racines réelles du polynôme de l'accélération pour $\Delta > 0$: $V_{\Gamma=0}^{\oplus} = \frac{-B+\sqrt{\Delta}}{2A}$ et $V_{\Gamma=0}^{\ominus} = \frac{-B-\sqrt{\Delta}}{2A}$. Au décollage $V_{\Gamma=0}^{\oplus} < 0, V_{\Gamma=0}^{\ominus} > 0$ et la vitesse de décollage $V_{LOF} < V_{\Gamma=0}^{\ominus}$. À l'atterrissage, $V_{\Gamma=0}^{\oplus} > 0, V_{\Gamma=0}^{\ominus} < 0$ et la vitesse de toucher des roues $V_{TD} < V_{\Gamma=0}^{\oplus}$.	m/s
$V_{\Gamma_{min}}$: Vitesse aérodynamique pour laquelle l'accélération $\Gamma = \Gamma_{min}$ est minimale si $A > 0$ ou maximale si $A < 0$. $V_{\Gamma_{min}} = -\frac{B}{2A}$.	m/s

Unités

Modèle de longueur de piste ΔX_k et temps Δt de roulage, avec vent longitudinal constant $V_w = cte$ pour une accélération avion de la forme $\Gamma = AV_a^2 + BV_a + C = A\left(V_a - V_{\Gamma_{min}}\right)^2 + \Gamma_{min}$ $\Delta X = \frac{1}{2A} \ln \left(\frac{\Gamma_f}{\Gamma_i}\right) + V_{\Gamma_{min}} \Delta t + V_w \Delta t$ Au décollage et à l'atterrissage : $(\Delta > 0)$ $\Delta t = \frac{1}{A\left(V_{\Gamma=0}^{\oplus} - V_{\Gamma=0}^{\ominus}\right)} \ln\left(\frac{\overline{V_{a,f}}^{\oplus} - 1}{\overline{V_{a,f}}^{\ominus} - 1} \frac{\overline{V_{a,i}}^{\ominus} - 1}{\overline{V_{a,i}}^{\oplus} - 1}\right)$ Au décollage interrompu (RTO Rejected-TakeOff) : ($\Delta < 0$) $\Delta t = \frac{signe(A)}{\sqrt{A\Gamma_{min}}} \left(\tan^{-1} \left(\frac{V_{a,f} - V_{\Gamma_{min}}}{\sqrt{\frac{\Gamma_{min}}{A}}} \right) - \tan^{-1} \left(\frac{V_{a,i} - V_{\Gamma_{min}}}{\sqrt{\frac{\Gamma_{min}}{A}}} \right) \right)$ $\begin{array}{l} \overline{V_a}^{\oplus} \ = \frac{V_a}{V_{\Gamma=0}^{\oplus}} \quad \text{et } \overline{V_a}^{\oplus} = \frac{V_a}{V_{\Gamma=0}^{\oplus}} \\ V_{\Gamma_{min}} \ = -\frac{B}{2A} \\ \Gamma_{min} \ = -\frac{\Delta}{4A} \end{array}$ $\Delta = B^2 - 4AC$ $V_{\Gamma=0}^{\oplus} = \frac{-B + \sqrt{\Delta}}{2A}$ $V_{\Gamma=0}^{\oplus} = \frac{-B - \sqrt{\Delta}}{2A}$ $V_a = V_k - V_w$ $A = q_2 \tilde{F} - \tilde{T}$ $B = q_1 \tilde{F}$ $C = \tilde{F} - \tilde{f}_r$
$$\begin{split} \widetilde{F} &= \frac{F_{ref}}{m} \frac{\rho}{\rho_0} \left(\cos \alpha_r + \mu \sin \alpha_r \right) \\ \widetilde{T} &= \frac{1}{2} \rho \frac{S}{m} \left(Cx - \mu Cz \right) \\ \widetilde{f}_r &= \left(\sin \gamma_p + \mu \cos \gamma_p \right) g \end{split}$$
 $Cz = Cz_{\alpha} \left(\alpha_r - \alpha_0\right) + \Delta Cz_{oSP}$ $Cx = Cx_o + \Delta Cx_{oTrain} + \Delta Cx_{omoulinet} + \Delta Cx_{oSP} + k_i Cz^2$ **Mode d'obtention :** Analytique par intégration cinétique de l'équation de Riccati (Equation 4.9, p. 173) : $\Delta X_k = \int_{V_{a,i}}^{V_{a,f}} \frac{V_a dV_a}{\Gamma}$ et $\Delta t = \int_{V_{a,i}}^{V_{a,f}} \frac{dV_{a,i}}{\Gamma}$. Domaine de définition : Tout avion au roulage. Il faut scinder le roulage en autant de portions qu'il y a de phase où l'avion change de mode de fonctionnement c'est-à-dire dès lors que l'avion sort des spoilers, freine ou a une panne moteur, Car à chacun de ces changements, la valeur des coefficients A, B, C est modifiée et nos formules ne sont valables que lorsque ces coefficients sont constants. Précision : Ce modèle a été obtenu par une résolution analytique exacte, sans aucune

approximation, dans le cadre des hypothèses d'une poussée moteur modélisée par $F_{max} = F_0 \frac{\rho}{\rho_0} \left(1 + q_1 V_a + q_2 V_a^2\right)$ et dirigée selon l'axe du fuselage, un vent longitudinal constant $V_w = cte$, une incidence au roulage constante $\alpha_r = cte$, un coefficient de frottement pneu/piste constant $\mu = cte$, et une pente de la piste $\gamma_p = cte$ supposée constante sur toute la portion de roulage étudiée.

TAB. 4.11 – Résolution cinétique avec vent longitudinal constant $V_w = cte$

Symboles : Désignation	Unités
α_r : Incidence de l'avion au roulage	rad
α_0 : Incidence de portance nulle de l'avion. Attention, elle dépend de la configu-	rad
ration Bec/Volet adoptée.	
Δ : Discriminant $\Delta = B^2 - 4AC$. Généralement (cf.[Rou05]) positif pour le décollage et l'atterrissage, et négatif en cas de freinage lors d'un décollage interrompu (Rejected Take Off RTO)	
ΔC_{m} . Augmentation du coefficient de traînée de frettement due au train d'attemie	
$\Delta C t_0$. Augmentation du coencient de trainée de notement due au train d'atterns-	
sage ΔCx_{oTrain} , at moteur en parme $\Delta Cx_{omoulinet}$, a la sortie des sponers	
ΔC_{x_0SP}	
ΔC_{20} At a Temps food au roulour our que l'arien passe de la vitasse initiale $V \rightarrow h$	8
Δi . Temps ecoule au foulage pour que l'avion passe de la vitesse finitiale $v_{a,i}$ a la vitesse finale $V_{a,i}$ et parcourt la longueur de piste ΔY_i	8
ΛY_{1} . Distance parcourse sur la piste par l'avien au roulage pour passer de la vitesse	m
ΔX_k . Distance parcourue sur la piste par l'avion au rourage pour passer de la vitesse aérodynamique finale V c	110
Γ : Accélération de l'avion en son centre de gravité par rapport à la piste	m/s^2
i i nodelisée par : $\Gamma = AV^2 + BV + C$ avec A B C constants (Equation 4.9)	110/0
no 173) Pour la portion de roulage étudiée l'accélération initiale est notée	
$\Gamma_{c} = \Gamma(V_{c})$ et l'accélération finale $\Gamma_{c} = \Gamma(V_{c})$	
$\Gamma_i = \Gamma(v_{a,i})$ of racceleration mater $\Gamma_f = \Gamma(v_{a,f})$. $\Gamma_{ij} = \Delta_{ij}$ acceleration minimale si $A > 0$ ou maximale si $A < 0$ $\Gamma_{ij} = -\Delta_{ij}$	m/e^2
m_{min} . Acceleration minimize si $A > 0$ of maximize si $A < 0$. I $m_{min} = \frac{1}{4A}$	ni/3
γ_p . I finde de la piste, suppose constante h^2	744
λ : Allongement de la volure $\lambda = \frac{\sigma}{S}$	
μ : Coefficient de frottement pneu/piste (Table 4.4, p. 153) : μ_r pour les roues	
libres, μ_f pour le freinage.	
ho: Masse volumique de l'air au niveau de la piste	kg/m^3
$ ho_0$: Masse volumique au niveau de la mer : $ ho_0 = 1.225 \ kg/m^3$	kg/m^3

Ce modèle suppose un coefficient de frottement pneu/piste μ constant. Mais en pratique, le coefficient μ dépend de la vitesse, comme le montrent l'ensemble des données et modèles existants que nous avons répertoriés dans la littérature [Rou05], ou comme le montre le modèle de μ que nous avons mis au point (Table 4.12, p. 177).

Prendre en compte un coefficient $\mu(V)$ qui dépend de la vitesse, rend les coefficients A, B, C de l'expression de l'accélération avion dépendant eux aussi de la vitesse, ce qui a pour conséquence de ne pas permettre une résolution analytique de l'équation différentielle de Riccati (Equation 4.9, p. 173). Nous proposons alors une amélioration de notre modèle de roulage (Table 4.11, p. 175), pour tenir compte de la variation du coefficient de frottement pneu/piste μ avec la vitesse. Cela consiste à assimiler l'accélération réelle de l'avion à un polynôme d'ordre 2 en vitesse V dont on connaît la solution analytique (Table 4.13, p. 178).

TAB. 4.12 – Modèle proposé du coefficient de frottement pneu/piste μ

- sera restreint par celui du modèle du coefficient de frottement pneu/piste $\mu(V)$ que vous aurez choisi [Rou05]. **Précision :** 0.015% au roulage en roue libre. Au freinage inférieure à 1% sur

TAB. 4.13 – Méthode de résolution du roulage avec un coefficient de frottement pneu/piste μ fonction de la vitesse

La rotation est un cas particulier de roulage où le train principal est encore en contact avec la piste alors que la roulette de nez est en l'air. Au décollage, la rotation commence à partir de la vitesse V_R où la roulette de nez quitte le sol, et se termine à la vitesse de décollage lift-off V_{LOF} où l'avion quitte complètement la piste. Durant cette phase, l'incidence de l'avion varie ce qui rend impossible la résolution analytique de l'équation de Riccati (Equation 4.9, p. 173) régissant l'avion au roulage.

Un modèle de rotation couramment utilisé, notamment par E. Torenbeek [Tor86], consiste à considérer une vitesse moyenne de l'avion durant la rotation de $\frac{V_R+V_{LOF}}{2}$. La longueur $L_{p_{T^{\bigcirc}}}$ de piste parcourue durant le temps $t_{p_{T^{\bigcirc}}}$ s'exprime par $L_{p_{T^{\bigcirc}}} = \frac{V_R+V_{LOF}}{2} t_{p_{T^{\bigcirc}}}$. En supposant une vitesse de tangage q constante, le temps de rotation $t_{p_{T^{\bigcirc}}}$ s'exprime en fonction de l'incidence de roulage toutes roues au sol α_r et l'incidence au lift-off α_{LOF} : $t_{p_{T^{\bigcirc}}} = \frac{\alpha_{LOF} - \alpha_r}{q}$. L'incidence au lift-off peut se calculer en considérant que l'avion est en équilibre à V_{LOF} la vitesse de lift-off ($\alpha_{LOF} = \alpha_0 + \frac{mg}{\frac{1}{2}\rho SV_{LOF}^2Cz\alpha}$), ce qui n'est en pratique pas le cas, vu le caractère dynamique de cette phase, mais qui suffit à obtenir un modèle de rotation suffisamment précis (Table 4.14, p. 179).

TAB. 4.14 – Modèle simple de la rotation (entre V_R et V_{LOF})
4.2.4 Modèle de la phase aérienne

Définition de la phase aérienne

Pour le décollage, la longueur de la phase aérienne $L_{p_{\text{air}}}$ est la distance de piste parcourue entre le point de dernier contact du train de l'avion avec le sol, c'est-à-dire à la vitesse lift-off V_{LOF} , et le point au dessus duquel l'avion passe la hauteur de sécurité réglementaire h_s (FAR 25.113 : 35 ft pour une piste sèche, 15 ft pour une piste mouillée).

Pour l'atterrissage, c'est la distance parcourue entre le passage de la hauteur de sécurité h_s (FAR 25.125 : 50 ft), et le toucher des roues sur la piste à V_{TD} (touch down).

FIG. 4.22 – Phase aérienne : au décollage entre la vitesse lift-off V_{LOF} et le passage de la hauteur de sécurité $h_s = 35 ft$, à l'atterrissage entre le passage de la hauteur de sécurité $h_s = 50 ft$ et la vitesse de toucher des roues V_{TD} .

Modélisation de la phase aérienne sous forme d'arrondi circulaire et de montée rectiligne

Une modélisation de la phase aérienne qui est souvent utilisée [Vin93, Nic84, MB92, Boi01], consiste à assimiler la trajectoire de l'avion à un arc de cercle appelé arrondi, suivi éventuellement d'une montée rectiligne de pente γ_{dec} .

FIG. 4.23 – Phase aérienne modélisée par un arrondi circulaire de facteur de charge n_z , et d'une montée rectiligne de pente γ_{dec} .

$$\begin{split} L_{p_{\rm air}} &= L_{p_{ar}} + L_{p \nearrow} \\ L_{p_{\rm air}} : \text{Longueur de piste parcourue durant la phase aérienne} & m \\ L_{p_{ar}} : \text{Longueur de piste parcourue durant l'arrondi} & m \\ L_{p \swarrow} : \text{Longueur de piste parcourue durant la montée rectiligne} & m \end{split}$$

Ce modèle ne donne pas seulement la longueur de piste parcourue durant la phase aérienne $L_{p_{\text{air}}}$ mais a également l'avantage de respecter la physique de la trajectoire de l'avion, notamment en respectant une tangente de la trajectoire nulle à V_{LOF} (ou V_{TD} pour l'atterrissage). Nous allons reprendre ce type de modélisation pour élaborer notre propre modèle.

La phase aérienne, ainsi modélisée, est entièrement caractérisée par le facteur de charge à l'arrondi n_z , la pente de montée rectiligne γ_{dec} , et la vitesse de sécurité au décollage V_2 .

La définition du facteur de charge permet d'écrire pour une trajectoire circulaire, que le rayon R de l'arrondi se terminant⁵ à la vitesse V_2 s'exprime par :

$$R = \frac{V_2^2}{\left(nz - \cos\left(\gamma_{dec} - \gamma_p\right)\right)g}$$

Et par, des considérations géométriques, la hauteur en fin d'arrond
i h_{dec} est donnée par :

$$h_{dec} = 2R\sin^2\frac{\gamma_{dec} - \gamma_p}{2}$$

Deux cas distincts se présentent : le passage de la hauteur de sécurité h_s se fait soit durant l'arrondi $(h_s \leq h_{dec})$, soit durant la montée rectiligne $(h_s \geq h_{dec})$.

Dans le cas (Figure 4.24, p. 181) de la hauteur de sécurité passée durant l'arrondi, on montre [Rou05] que la longueur de piste parcourue durant la phase aérienne $L_{p_{air}}$ est égale à celle parcourue durant l'arrondi $L_{p_{ar}}$, puisque la montée rectiligne L_{p} n'est pas considérée dans ce cas.

$$L_{p_{ar}} = R \sin(\gamma_s - \gamma_p)$$
$$L_{p,2} = 0$$

La pente γ_s est la pente de fin d'arrondi circulaire au passage de la hauteur de sécurité, c'est-à-dire $\gamma_s = \gamma_p + 2 \arcsin\left(\frac{h_s}{2R}\right)$.

Passage de la hauteur de sécurité h_S durant la phase circulaire ($h_{dec} > h_S$) :

FIG. 4.24 – Modélisation de la phase aérienne sous forme d'un arrondi circulaire

Thèse : Pour une approche analytique de la Dynamique du Vol

⁵En pratique, en fin d'arrondi, la vitesse atteinte n'est pas forcément la vitesse de sécurité au décollage V_2 , notamment au décollage sans panne moteur (AEO) où la vitesse finale d'arrondi est supérieure à V_2 . La définition choisie du rayon de l'arrondi R n'est pas pour autant remis en cause, car cela se répercutera simplement sur le modèle du facteur de charge moyen n_z de l'arrondi

Dans le cas (Figure 4.25, p. 182) de la hauteur de sécurité passée durant la montée rectiligne, on montre [Rou05] que les expressions des longueurs de piste parcourues durant l'arrondi L_{par} et la montée rectiligne $L_{p \nearrow}$ sont donnée par :

$$L_{p_{ar}} = R \sin(\gamma_{dec} - \gamma_p) \qquad (si \ h_{dec} \le h_s)$$
$$L_{p_{\nearrow}} = \frac{h_s - h_{dec}}{\tan(\gamma_{dec} - \gamma_p)}$$

Passage de la hauteur de sécurité h_s durant la phase rectiligne ($h_{dec} \le h_s$) :

 ${
m FIG.}$ 4.25 – Modélisation de la phase aérienne sous forme d'un arrondi circulaire et d'une phase rectiligne

Modèles du facteur de charge à l'arrondi n_z et de la pente de montée γ_{dec}

La longueur de piste parcourue durant la phase aérienne, est entièrement donnée par trois paramètres : le facteur de charge à l'arrondi circulaire n_z , la pente de montée rectiligne γ_{dec} , et la vitesse de sécurité au décollage V_2 . La vitesse de sécurité au décollage étant déterminée analytiquement (Table 4.3, p. 149), il reste à déterminer le facteur de charge n_z et la pente γ_{dec} . Dans la littérature, une valeur constante du facteur de charge est considérée quel que soit l'avion, et la pente de montée rectiligne γ_{dec} est calculée en considérant les équations de la dynamique du vol de l'avion à l'équilibre (généralement à la vitesse V_2). Nous avons montré [Rou05], qu'une telle démarche n'est en réalité pas fiable, et entraîne des erreurs d'estimation de la longueur de piste aérienne pouvant aller jusqu'à 50% malgré une modélisation fine du facteur de charge à l'arrondi. Cela est dû au caractère dynamique de la phase aérienne qui implique que la pente correspondant au passage de la hauteur de sécurité h_s est bien différente de la pente qu'aura l'avion quand il atteindra l'état d'équilibre (obtenu bien après le passage de la hauteur de sécurité d'après nos simulations numériques).

Une résolution analytique des équations du décollage en dynamique n'étant pas envisageable, nous avons donc décidé de modéliser les facteurs de charges n_z et pente de montée rectiligne γ_{dec} par identification sur les données issues des simulations numériques de décollage (Section 4.2.1, p. 160). C'est-à-dire que nous avons choisi une structure analytique pour n_z et γ_{dec} en fonction de la charge alaire, taux de propulsion et finesse, qui nous a semblé appropriée, et dont les coefficients ont été déterminés pour minimiser, par la méthode des moindres carré, l'erreur relative moyenne d'estimation de notre modèle par rapport aux simulations numériques de décollage. Modèle de la phase aérienne du décollage/atterrissage sous forme d'arrondi circulaire et de montée rectiligne.

$$R = \frac{V_2^2}{(nz - \cos(\gamma_{dec} - \gamma_p))g}$$
$$h_{dec} = 2R\sin^2\frac{\gamma_{dec} - \gamma_p}{2}$$

Cas du passage de la hauteur de sécurité durant la montée rectiligne $(h_{dec} \leq h_s)$:

$$L_{p_{\text{air}}} = R \, \tan\left(\frac{\gamma_{dec} - \gamma_p}{2}\right) + \frac{h_s}{\tan\left(\gamma_{dec} - \gamma_p\right)}$$

Cas du passage de la hauteur de sécurité durant l'arrondi $(h_{dec} \ge h_s)$:

$$L_{p_{\rm air}} = \sqrt{h_s} \sqrt{2R - h_s}$$

Mode d'obtention : analytique, en supposant la trajectoire de l'avion durant la phase aérienne du décollage/atterrissage sous forme d'arrondi circulaire et de montée rectiligne.

Domaine de définition : avions de transport civil (les modèles du facteur de charge n_z et de la pente de montée rectiligne γ_{dec} , sont donnés par le modèle (Table 4.16, p. 185), pour des bimoteurs de taux de propulsion $0.27 \leq \frac{F_0}{mg} \leq 0.38$, de charge alaire $500 \leq \frac{m}{S} \leq 700$, et de finesse en croisière $12 \leq f \leq 20$.)

Précision : Une erreur relative moyenne par rapport aux simulations des bimoteurs, de 0.16% pour les longueurs de phase aérienne de décollage sans panne moteur (AEO), et de 0.49% pour celle de décollage avec panne moteur (OEI).

Va	ria	abl	\mathbf{es}	:

Symboles : Désignation	Unités
g : Constante de gravité terrestre $g\approx 9.81m/s^2$	m/s^2
h_s : Hauteur de sécurité. C'est au passage de cette hauteur que le	m
calcul de la longueur de piste s'arrête. Au décollage (cf.FAR	
25.113), $h_s = 35ft = 10.7m$ sur piste sèche et $h_s = 15ft = 4.6m$	
sur piste mouillée, et à l'atterrissage (cf. FAR 25.125), $h_s=$	
50ft = 15.2m.	
$L_{p_{\mathrm{air}}}$: Longueur de piste parcourue durant la phase aérienne du	m
décollage/atterrissage	
nz: Facteur de charge de l'arrondi (Section 4.2.4, p. 182)	-
R: Rayon de l'arc de cercle modélisant l'arrondi	m
V_2 : Vitesse de sécurité au décollage (Table 4.3, p. 149)	m/s
γ_{dec} : Pente de montée rectiligne au décollage (Section 4.2.4, p. 182),	rad
ou de descente rectiligne pour l'atterrissage $\gamma_{dec} = \gamma_{ILS} = -3^{\circ}$	
γ_p : Pente de la piste	rad

TAB. 4.15 – Modèle de la longueur de piste parcourue durant la phase aérienne du décollage/atterrissage $L_{p_{\rm air}}.$

Modèle du facteur de charge n_z à l'arrondi circulaire et modèle de la pente de montée rectiligne γ_{dec} pour la modélisation (Table 4.15, p. 183) de la phase aérienne du décollage de bimoteurs. Cas de la vitesse de sécurité au décollage contrainte $V_2 = V_{2min} = 1.13V_{S1}$ $n_{ZOEI} = \left((K_1 \frac{m}{S} + K_2) f^2 + (K_3 \frac{m}{S} + K_4) f + (K_5 \frac{m}{S} + K_6) \right) \left(\frac{F_0}{m_a} \right)^2$ $+\left((K_7\frac{m}{S}+K_8)f^2+(K_9\frac{m}{S}+K_{10})f+(K_{11}\frac{m}{S}+K_{12})\right)\frac{F_0}{m_0}$ $+(K_{13}\frac{m}{S}+K_{14})f^2+(K_{15}\frac{m}{S}+K_{16})f+(K_{17}\frac{m}{S}+K_{18})$ $n_{ZAEO} = \left(K_1 \left(\frac{m}{S}\right)^2 + K_2 \frac{m}{S} + K_3\right) \left(\frac{F_0}{mq}\right)^2 + \left(K_4 \left(\frac{m}{S}\right)^2 + K_5 \frac{m}{S} + K_6\right)$ $\kappa_1\!=\!-2.48\;10^{-7}\quad \kappa_2\!=\!2.54\;10^{-4}\quad \kappa_3\!=\!-1.52\;10^{-4}\quad \kappa_4\!=\!1.19\;10^{-7}\quad \kappa_5\!=\!-9.26\;10^{-5}\quad \kappa_6\!=\!1.19\;10^{-5}$ $\left(\frac{\gamma_{dec}}{\gamma_{\ell q}(\theta_2)}\right)_{OEL} = K_1 e^{\left(K_2 \frac{F_0}{mg} + K_3 \frac{m}{S} + K_4\right)f} + K_5 \frac{F_0}{mq} + K_6 \frac{m}{S} + K_7$ $K_1 = 21.8$ $K_2 = -2.78$ $K_3 = 1.81 \ 10^{-4}$ $K_4 = 0.536$ $K_5 = -4.23$ $K_6 = -1.45 \ 10^{-4}$ $K_7 = 2.93$ $\left(\frac{\gamma_{dec}}{\gamma_{\acute{eq}}(\theta_2)}\right)_{AEO} = \left((K_1 \frac{F_0}{mg} + K_2)f^2 + (K_3 \frac{F_0}{mg} + K_4)f + (K_5 \frac{F_0}{mg} + K_6)\right) \left(\frac{m}{S}\right)^2$ $+\left((K_{7}\frac{F_{0}}{m_{q}}+K_{8})f^{2}+(K_{9}\frac{F_{0}}{m_{q}}+K_{10})f+(K_{11}\frac{F_{0}}{m_{q}}+K_{12})\right)\frac{m_{q}}{S}$ $+(K_{13}\frac{F_0}{mq}+K_{14})f^2+(K_{15}\frac{F_0}{mq}+K_{16})f+(K_{17}\frac{F_0}{mq}+K_{18})$ Cas de la vitesse de sécurité au décollage non contrainte $V_2 > V_{2min}$ L'ensemble des grandeurs se modélisent de la forme : $\left(K_{1}\frac{m}{S} + K_{2}\frac{F_{0}}{mq} + K_{3}\frac{m}{S}\frac{F_{0}}{mq} + K_{4}\right)f^{2} + \left(K_{5}\frac{m}{S} + K_{6}\frac{F_{0}}{mg} + K_{7}\frac{m}{S}\frac{F_{0}}{mg} + K_{8}\right)f^{2}$ $+\left(K_{9}\frac{m}{S}+K_{10}\frac{F_{0}}{mq}+K_{11}\frac{m}{S}\frac{F_{0}}{ma}+K_{12}\right)$ Facteur de charge n_{zAEO} sans panne moteur (AEO : All Engines Operating Facteur de charge n_{ZOEI} avec panne moteur (OEI : One Engine Inoperative) Rapport des pentes de montée rectiligne et d'équilibre $\left(\frac{\gamma_{dec}}{\gamma_{\acute{eq}}(\theta_2)}\right)_{OFI}$ avec panne Rapport des pentes de montée rectiligne et d'équilibre $\left(\frac{\gamma_{dec}}{\gamma_{\acute{eq}}(\theta_2)}\right)_{AEO}$ sans panne

Les pentes d'équilibre, atteinte en maintenant l'assiette de montée θ_2 , train sorti, s données par les équations de dynamique du vol à l'équilibre [Rou05] :	ont
$\alpha_{i}(\theta_{2}) = -\theta_{2} - \alpha_{0} + \frac{\theta_{2} - \alpha_{0} - \frac{F_{max}}{mg} + \sqrt{\left(\theta_{2} - \alpha_{0} - \frac{F_{max}}{mg}\right)^{2} - 4\frac{\left(k_{i}Cz\alpha - 1\right)}{Cz\alpha}}$	
$\gamma_{\text{eq}}(v_2)_{AEO} = v_2 - \alpha_0 + \frac{1}{2(k_i C z_\alpha - 1)(C x_o + \Delta C x_o_{Train})}$	
$\gamma_{i\alpha}(\theta_2)_{\alpha=1} = \theta_2 - \alpha_0 + \frac{\theta_2 - \alpha_0 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg} + \sqrt{\left(\theta_2 - \alpha_0 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2 - 4\frac{\left(k_1 - \alpha_0 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} + \frac{\theta_2 - \alpha_0 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2}{\left(1 - \frac{N_m - 1}{N_m} \frac{F_{max}}{mg}\right)^2} - \frac{1}{4} \frac{F_{max}}{mg}} + \frac{1}{4} \frac{F_{max}}{mg} + \frac{1}{4} \frac{F_{max}}{mg} + \frac{F_{max}}{mg} $	$\frac{i C z \alpha - 1}{C z \alpha}$
$2(k_i C z_\alpha - 1) (C x_o + \Delta C x_{oTrain} + \Delta C x_{omoulinet})$	
Mode d'obtention : Structure analytique inventée et dont les coefficients ont été ic par les moindres carrés sur les valeurs optimales issues des simulations de décol- bimoteurs (Section 4.2.1, p. 160).	lentifié lage de
Domaine de définition : avions de transport civil. Les modèles de facteur de charg de pente de montée rectiligne γ_{dec} sont donnés pour des bimoteurs de taux de prop $0.27 \leq \frac{F_0}{m_g} \leq 0.38$, de charge alaire $500 \leq \frac{m}{S} \leq 700$, et de finesse équivalente en cu $12 \leq f \leq 20$. Pour déterminer si la vitesse de sécurité au décollage V_2 est contrainte ou non, i de la caludar à l'aide de (Table 4.3 p. 140)	e nz et pulsion coisière il suffit
	0.0407
Precision : Une erreur relative moyenne par rapport aux simulations numeriques de pour les facteurs de charge n_z , et de moins de 2% pour les pentes de montée rec	0.04% ctiligne
ldec. Symboles · Désignation	Unités
AEO : All Engines Operating. Cas d'un décollage sans panne moteur.	-
configuration becs/volets.	
F_0 : Poussee au point fixe, c'est-a-dire a vitesse et altitude nulles, de tous les moteurs de l'avion	IN IN
F_{max} : Poussee maximale de vol (ici, correspondant à la vitesse V_2) cf. modèle de poussée (Table 2.9, p. 57)	IN
$\frac{F_0}{mg}$: Taux de propulsion de l'avion	-
f : Finesse "équivalente" de croisière $f = \frac{\sqrt{3}}{4} \sqrt{\frac{\pi\lambda}{Cx_o}}$ (Remarque 4.8,	-
p. 164) g : Constante de gravité terrestre $g \approx 9.81 \ m/s^2$	m/s^2
k_i : Coefficient de traînée induite $k_i \approx \frac{1}{\pi \lambda}$,
m : Masse de l'avion au décollage. C'est la maximum Take-Off Weight M_{MTOW} qui a été désignée par m dans ce chapitre pour simplifier les notations dans les équations.	kg
$\frac{m}{S}$: Charge alaire de l'avion.	kg/m^2
N_m : Nombre de moteurs équipant l'avion n_z : Facteur de charge de l'arrondi du modèle de phase aérienne du décollage	_
(Table 4.15, p. 183) S : Surface voilure de référence	m^2
OEI : One Engine Inoperative. Cas d'un décollage avec panne moteur. Ici avec la panne moteur intervenant au moment le plus critique, c'est-à-dire forçant le pilote à prendre sa décision de continuer le décollage à la vitesse de décision V_1 .	_
V_2 : Vitesse de sécurité au décollage (Table 4.3, p. 149) V_{2min} : Vitesse de sécurité au décollage minimale $V_{2min} = 1.13V_{S1}$ pour les bi- moteurs selon la FAR 25.107(b/c)	m/s m/s
V_{S1} : Vitesse de décrochage à 1 g : $V_{S1} = \sqrt{\frac{mg}{1/2\rho SCz_{max}}}$	m/s
$Cz\alpha$: Gradient du coefficient de portance avec l'incidence α_0 : Incidence de portance nulle de l'avion. Attention, elle dépend de la confi-	rad^{-1} rad
guration de décollage becs/volets adoptées ΔCx_{oTrain} : Augmentation du coefficient de traînée de frottement dû au train en po- cition cortio	
$\Delta Cx_{omoulinet}$: Augmentation du coefficient de traînée due au moteur en panne, tournant	
en "moulinet" γ_{dec} : Pente de montée rectiligne au décollage du modèle de phase aérienne (Table 4.15, p. 183)	rad
θ_2 : Assiette de montée au décollage (Table 4.6, p. 157)	rad

TAB. 4.16 – Modèles du facteur de charge n_z à l'arrondi et de la pente γ_{dec} de montée rectiligne du modèle de longueur de piste parcourue durant la phase aérienne du décollage $L_{p_{\text{air}}}$ (Table 4.15, p. 183).

Thèse : Pour une approche analytique de la Dynamique du Vol

4.3 Conclusion : Modèle proposé de longueur de piste

Dans les sections précédentes, nous avons élaboré des modèles du roulage (Table 4.11, p. 175) et de la phase aérienne (Table 4.15, p. 183). Ces modèles nous permettent d'obtenir un modèle de la longueur de piste au décollage L_p . La longueur de piste L_p au passage de la hauteur de sécurité, est la somme de la longueur de piste au roulage L_{p_r} et de la longueur de piste de la phase aérienne $L_{p_{air}}$.

$$L_p = L_{p_r} + L_{p_{\text{air}}}$$

Les modèles de ces longueurs sont donnés dans cette section, pour les cas de décollage avec et sans panne moteur, pour le décollage interrompu et pour l'atterrissage.

À ces longueurs de piste au passage de la hauteur de sécurité ainsi calculées, il faut tenir compte des marges de sécurité définies par la FAR 25 (Section 4.1.1, p. 142), pour obtenir les longueurs de pistes réglementaires sur piste sèches et mouillées.

Symboles : Désignation

Unités

ΔCx_o : Augmentation du coefficient de traînée de frottement due au train d'atterris-	
sage ΔCx_{oTrain} , au moteur en panne $\Delta Cx_{omoulinet}$, à la sortie des spoilers	
$\Delta C x_{oSP}$	
ΔCz_{oSP} : Augmentation du coefficient de portance due aux spoilers	
μ : Coefficient de frottement pneu/piste : μ_r en roues libres, μ_f au freinage	
(Table 4.4, p. 153).	
AEO : All Engines Operating. Cas d'un décollage sans panne moteur.	_
F_0 : Poussée au point fixe (altitude et vitesse nulles) de tous les moteurs	N
F_{red} : Poussée de ralenti de tous les moteurs (à vitesse et altitude nulles). Peut-être	N
considérée négative en cas de réverse, uniquement pour la certification d'un décollage interrompu RTO sur piste mouillée ou enneigée.	
F_{ref} : Poussée au point fixe de référence au roulage : $F_{ref} = F_0$ en régime moteur	N
maximal (décollage), $F_{ref} = F_{red}$ au ralenti (atterrissage ou RTO).	
N_m : Nombre de moteurs équipant l'avion	_
OEI : One Engine Inoperative. Cas d'un décollage avec panne moteur. Ici la panne	_
moteur intervient au moment le plus critique, c'est-à-dire en forçant le pilote	
à prendre sa décision de continuer le décollage à la vitesse de décision V_1 .	
RTO : Rejected Take-Off. Cas d'un décollage interrompu	_
V_{EF} : Vitesse la plus critique à laquelle une panne moteur peut survenir	m/s
V_1 : Vitesse de décision (Table 4.7, p. 165). Vitesse à laquelle le pilote prend	m/s
la première mesure pour arrêter l'avion en cas de décollage interrompu, et	
vitesse minimale à la suite d'une panne moteur critique à V_{EF} , qui permet	
de décoller en satisfaisant le passage de la hauteur de sécurité h_s .	
V_2 : Vitesse de sécurité au décollage (Table 4.3, p. 149)	m/s
V_{2min} : Vitesse de sécurité au décollage minimale (cf.FAR 25.107(b/c))	m/s
V_{LOF} : Vitesse de décollage "lift-off" où l'avion quitte totalement le sol (Table 4.9,	m/s
p. 169) et (Table 4.10, p. 170).	
V_R : Vitesse de rotation (Table 4.8, p. 167). Vitesse à laquelle le pilote tire sur	m/s
le manche, la roulette de nez quitte le sol.	,
V_{S1} : Vitesse de décrochage à 1 g : $V_{S1} = \sqrt{\frac{mg}{1/2\rho SCz_{max}}}$	m/s

Modèle de longueur de piste effective L_p au décollage/atterrissage

Décollage sans panne moteur (AEO All Engines Operating)

 $L_p = L_{p_{rAEO}}(0 \to V_R) + L_{p_{r\circlearrowleft AEO}} + L_{p_{air}}$

Décollage avec panne moteur (OEI One Engine Inoperative)

 $L_p = L_{p_rAEO}(0 \to V_{EF}) + L_{p_rOEI}(V_{EF} \to V_R) + L_{p_r \circlearrowright OEI} + L_{p_{air}}$

Décollage interrompu (RTO Rejected Take-Off)

$$L_p = L_{p_rAEO}(0 \to V_{EF}) + L_{p_rOEI}(V_{EF} \to V_1) + L_{p_rRTO}(V_1 \to 0)$$

ttorrigsago

Atterrissage

$$L_p = L_{p_{\text{air}}} + L_{p_r \circlearrowright Att} + L_{p_r Att}$$

Pour calculer :	considérez (Table 4.11, p. 175) avec :
$L_{p_{rAEO}}$	$F_{ref} = F_0, \qquad \Delta Cx_{omoulinet} = 0, \Delta Cx_{oSP} = 0, \Delta Cz_{oSP} = 0, \mu = \mu_r$
$L_{p_{rOEI}}$	$F_{ref} = \frac{N_m - 1}{N_m} F_0,$ $\Delta C x_{oSP} = 0, \ \Delta C z_{oSP} = 0, \ \mu = \mu_r$
$L_{p_{rRTO}}$	$F_{ref} = \frac{N_m - 1}{N_m} F_{red}, \ \Delta Cx_{o \ moulinet} = 0, \qquad \mu = \mu_f$
$L_{p_{r(1)}}$	$F_{ref} = F_{red}, \qquad \qquad \mu = \mu_r$
$L_{p_{rAtt}}$	$F_{ref} = F_{red}, \qquad \qquad \mu = \mu_f$

Avec (Table 4.15, p. 183), le modèle de longueur de piste aérienne $L_{p_{\text{air}}}$, (Table 4.14, p. 179), le modèle de rotation $L_{p_{r\circlearrowright}}$, et (Table 4.11, p. 175) le modèle de roulage toutes roues au sol.

Mode d'obtention : L'expression de la longueur de piste au roulage L_p est déterminée (Table 4.11, p. 175) par résolution analytique exacte des équations du décollage (Equation 4.3, p. 158) dans le cadre de l'hypothèse d'un coefficient de frottement pneu/piste constant. Dans le cas d'un coefficient de frottement pneu/piste fonction de la vitesse (Table 4.12, p. 177), une résolution physico-statistique (Table 4.13, p. 178) est proposée. Elle consiste à assimiler l'accélération réelle de l'avion à une fonction parabolique de la vitesse avion, et d'appliquer ensuite la résolution de roulage précédente (Table 4.11, p. 175).

L'expression de la longueur de piste parcourue durant la phase aérienne $L_{p_{\text{air}}}$ est déterminée (Table 4.15, p. 183) en assimilant la phase aérienne à un arrondi circulaire sous facteur de charge n_z et une montée rectiligne de pente γ_{dec} . Les modèles (Table 4.16, p. 185) du facteur de charge n_z et de la pente de montée γ_{dec} sont élaborés en identifiant les coefficients d'une structure analytique judicieusement choisie, par rapport aux simulations de décollage issue de notre modèle de référence numérique (Section 4.2.1, p. 160).

Domaine de définition : Bimoteurs civils soumis à la FAR 25.

Précision : 0.25% pour la longueur de piste, par rapport à l'ensemble des simulations numériques de décollage issues de notre modèle de référence numérique (Section 4.2.1, p. 160).

TAB. 4.17 – Modèle proposé de longueur de piste L_p

Thèse : Pour une approche analytique de la Dynamique du Vol

Conclusion : bilan et perspectives

Conclusion

Bilan du travail effectué :

L'objectif de cette thèse était d'étudier des thèmes liés à l'étude de la Dynamique du Vol avec une approche analytique. C'est ainsi que nous avons commencé par développer des modèles des efforts appliqués à l'avion (modèle moteur et modèle de masse voilure), pour ensuite s'intéresser aux performances avion.

Modèle développé		Précision	ı par rapport à	Gain***
Consommation spécifique C_{SR}	(Table 2.8, p. 41)	3.6~%	$données^*$	3 %
Poussée maximale moteur F_{max}				
moteurs civils	(Table 2.9, p. 57)	$1.1 \ \%$	famille CFM56	28 %
moteurs militaires à sec	(Table 2.10, p. 60)	1.6~%	modèle Onéra	
et avec post-combustion	(Table 2.12, p. 62)	$1.3 \ \%$	modèle Onéra	
Masse moteur M_m	(Table 2.21, p. 74)	7.2~%	tout moteurs *	6%
		$6.5 \ \%$	moteurs civils [*]	
Masse voilure M_W	(Table 3.11, p. 129)	8.7~%	$données^*$	3 %
Longueur de piste au décollage	(Table 4.17, p. 187)	0.3~%	$simu^{**}$	
Vitesse de décision V_1	(Table 4.7, p. 165)	0.1~%	$simu^{**}$	
Vitesse de rotation V_R	(Table 4.8, p. 167)	0.1~%	$simu^{**}$	
Vitesse de décollage "lift-off"				
V_{LOF} sans panne moteur	(Table 4.9, p. 169)	0.1~%	$simu^{**}$	
V_{LOF} avec panne moteur	(Table 4.10, p. 170)	0.1~%	$simu^{**}$	

* Base de données expérimentales (Appendix A, p. 195) constituée de 52 réacteurs, et 37 voilures d'avions de transport civil.

** Simulations numériques de bimoteurs au décollage (Section 4.2.1, p. 160)

** Gain de précision apporté par notre modèle, par rapport aux meilleurs modèles existants

Les modèles développés pour chacun des thèmes étudiés, restent relativement simples analytiquement, et sont pertinents c'est-à-dire qu'ils sont fonction des paramètres influents et ont une excellente précision. Ces modèles sont tout à faits adaptés pour une étude de type avant-projet. Par rapport aux modèles qui existaient, ils apportent un gain de précision notable, et ont l'avantage d'être plus robuste puisqu'ils ne sont pas entièrement statistiques mais basés sur de la physique.

Poursuite du travail des thèmes abordés :

Dans nos modèles moteurs, il manque un modèle de consommation spécifique de moteurs militaires à post-combustion. Lorsqu'il sera possible de trouver un modèle existant pertinent qui pourra servir de modèle de référence, un modèle analytique de consommation spécifique militaire pourra être élaboré. Ainsi, l'ensemble de la modélisation analytique du comportement moteur sera complète.

Pour les performances au décollage, les modèles que nous avons élaborés de la phase aérienne et des vitesses caractéristiques de décollage, sont adaptés aux bimoteurs. Un travail similaire serait envisageable pour les quadrimoteurs.

Par ailleurs, l'adaptation de notre modèle de la phase aérienne en fonction de la configuration becs et volets, pourrait permettre de déterminer analytiquement la configuration d'hypersustentateur optimale au décollage.

Il serait également intéressant de modéliser finement l'arrondi à l'atterrissage, afin d'obtenir un modèle pertinent de longueur de piste à l'atterrissage.

Autres thèmes intéressants à traiter :

Dans l'optique d'une approche analytique de la Dynamique du Vol, d'autres thèmes que ceux que nous avons étudiés, pourraient être envisagés.

Par exemple, l'étude des performances en montée, pourrait permettre d'élaborer un modèle analytique de la vitesse ascensionnelle V_z , ou de la pente de montée optimale γ_{opt} .

Pour l'étude de performances en croisière, l'utilisation de nos modèles moteur ouvre la possibilité de déterminer l'expression analytique du coefficient de portance optimale Cz_{opt} de croisière en fonction du taux de dilution moteur d'un avion de transport civil. L'altitude optimale de croisière est également un thème clef des performances en croisière, et qui a fait l'objet d'une thèse [Bov03], et laisse présager qu'une solution analytique pourrait être développée.

Les performances dynamiques, plus communément appelées Qualités De Vol, sont un autre exemple d'étude analytique d'un thème clef de la Dynamique du Vol. C'est ainsi que D.Simon et S.Servoles [SS01] ont développé un modèle analytique des modes latéraux quasiment exact et susceptible de franchir l'instabilité, grâce à une modélisation simplifiée du mode spiral. Il serait intéressant de poursuivre cette modélisation analytique des modes, avec le longitudinal où le problème de stabilité se pose aussi.

Notre modélisation analytique des efforts voilure, ainsi que le travail de masse fuselage de Marco Adurno [Adu04], permettent d'amorcer une étude analytique des qualités de vol d'un avion souple, avec la détermination de la position du foyer et du point de manœuvre d'un avion à fuselage et voilure souples. Par exemple, la fréquence propre du mode d'oscillation d'incidence dépend directement de la position du foyer qui est modifiée par la souplesse de l'avion. Troisième partie

Annexes

Annexe A Données expérimentales

Sommaire

A.1	Base de données moteur	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	. 196	į
A.2	Base de données voilure							•	•	•	•		•						•		• •	. 202	2

A.1 Base de données moteur

Les tableaux suivants répertorient les données courantes des 54 moteurs, que nous avons collectées à l'aide de divers documents [Wee98, JSR99, Rid97, htta, httd, httb, httc].

Par valider les modèles que nous mettons au point, nous disposons également de données constructeurs précises, que nous n'exposerons pas dans ce document, pour divers moteurs (d'avions de transport civil, d'avions de combat, d'avion d'affaire ou encore de gnoptères).

Dans les tableaux de données, les "NaN" (Not-a-Number) désignent des données dont nous ne disposions pas.

Symboles	: Désignation	Unités
année	: année de mise en service du moteur	
С	: Code constructeur (Table A.2, p. 196)	
C_{SR}	: Consommation spécifique (rapport de la consommation ho-	(kg/s/N)
	raire du moteur et de la poussée qu'il délivre)	
D	: Diamètre d'entrée de la tuyère	(m)
F_0	: Poussée au sol et à l'arrêt d'un seul moteur	(N)
F_{max}	: Poussée maximale en vol d'un seul moteur, correspondant	(N)
	à l'altitude h et au Mach de vol M	
h	: Altitude de vol	(m)
Ι	: 1 si implanté sur un avion de ligne Airbus, Boeing, McDou-	
	glas	
	: 0 sinon	
L	: Longueur d'entrée de la tuyère	(m)
M	: Mach de vol	
M_{mbrut}	: Masse moteur brut (non avionné)	(kg)
T_4	: Température d'entrée turbine	(K)
ε_c	: Rapport de pression entrée/sortie du compresseur	
λ	: Taux de dilution	

TAB. A.1 – Nomenclature des données moteurs

C : Constructeur	C: Constructeur
1 : CFM Internationnal	9 : BMW
2: IAE	10: AVIA
3 : General Electric	11: ZMKB
4: Pratt & Whitney (P & W)	12: ASE
5 : Rolls-Royce	13: PERM
6 : Alliedsig	14 : SOLOVIEV
7 : Allison	15: TRUD
8: CFE	

TAB. A.2 – C : Code Constructeur

REMARQUE A.1 La poussée au sol et à l'arrêt F_0 du TRENT 900 est estimée [httd] entre 69 000 lbf et 84 000 lbf. Nous avons décidé de considérer une poussée moyenne de 76 500 lbf soit 340 289 N.

REMARQUE A.2 Les moteurs TRENT 900, GE90 85B et PW4168 ont des données de masse moteur curieuses, et ont donc été ignorés pour l'optimisation de nos modèles. Ces moteurs apparaissent tout de même, à titre indicatif, sur les différents graphiques de ce document.

À l'époque où a été effectué ce travail sur les masses moteurs, le TRENT 900 était en cours de développement et ses données étaient donc encore approximatives. Il est fort probable qu'au fur et à mesure de son développement, les rendements moteurs soient améliorés et que la poussée au point fixe F_0 soit meilleure rapportée à sa masse M_m . Ceci ira dans le sens d'améliorer les estimations de nos modèles pour ce moteur.

Pour le GE90 85B, c'est un moteur ayant d'incorporé, par construction, une partie de la nacelle nécessaire à l'implantation sur avion. Ainsi la donnée de masse dont nous disposons pour ce moteur n'est pas exactement une masse moteur brute, mais une masse semi-avionnée (il faudra encore tenir compte de la masse du mât et de l'hydraulique pour obtenir la masse moteur avionné). Ainsi, cela est donc normal si ce moteur paraît anormalement plus lourd.

Quant au PW4168, sa donnée paraît erronée par rapport aux autres moteurs mais je n'ai pas trouvé d'explications.

Modèle	С	F_0	M_{mbrut}	λ	T_4	ε_c	L	D	année	Ι
Moteur		(N)	(kg)		(K)		(m)	(m)		
FJ44	5	8452	202	3.28	NaN	12.8	1.06	0.53	1992	0
JT15D	4	13545	287	3.3	1288	13	1.55	0.69	1983	0
TFE731 5	12	20000	401	3.15	1378	19.4	1.39	0.76	NaN	0
PW305B	4	23424	450	4.5	NaN	23	2.08	1.11	1990	0
CFE738	8	26325	601	5.3	1643	23	2.51	1.22	1992	0
ALF502R5	6	31004	606	5.7	NaN	12.2	1.62	1.27	1982	0
LF507	6	31138	628	5.6	NaN	13.8	1.62	1.27	1991	0
AE3007	7	31805	717	NaN	NaN	24	2.71	1.11	NaN	0
CF34 3A/3B	3	41013	757	NaN	1204	21	2.62	1.25	1996	0
RB183 55515P	5	44037	1037	0.71	NaN	15.5	52.46	0.94	1969	0
SPEY 5118	5	50710	1126	0.64	NaN	18.4	2.78	0.83	1968	0
TAY 611	5	61608	1339	3.04	NaN	15.8	2.59	1.52	1988	0
BR710	9	66034	1597	4	NaN	25.7	2.21	1	1996	0
RB183 TAY650	5	67150	1515	3.1	1370	16.4	2.4	1.14	NaN	0
TAY 651	5	68503	1533	3.07	NaN	16.6	2.59	1.52	1992	1
D 436T1	11	75019	1450	4.95	1550	25.2	3.03	1.37	1996	0
BR715 55	9	88444	2062	4.7	NaN	32.1	2.59	1.53	NaN	1
JT8D 217	4	90000	2037	1.73	1407	18.8	4.28	1.25	NaN	1
CFM56 7B20	1	91633	2374	NaN	NaN	NaN	2.5	1.65	1997	1
JT8D 219	4	96526	2048	1.77	NaN	19.2	3.92	1.43	1986	1
V2522 A5	2	97861	2382	5	NaN	24.9	3.2	1.68	1993	1
CFM56 2B1	1	97900	2119	6	1560	23.7	2.43	1.74	NaN	0
CFM56 3C1	1	104533	1951	6	1646	25.7	2.36	1.6	1986	1
D30KU II	10	106090	2318	2.42	NaN	NaN	5.2	1.46	1982	0
CFM56 2A2	1	106757	2186	5.9	1628	25.4	2.43	1.73	NaN	1
V2500 A1	2	111206	2363	5.4	1537	29.4	3.2	1.68	1989	1
V2525 D5	2	111206	2382	4.8	NaN	27.7	3.2	1.68	1994	1
CFM56 5A1	1	113500	2204	6	1600	26.5	2.51	1.83	1987	1
CFM56 5C2	1	138785	2585	6.6	1633	31.5	2.62	1.95	1994	1
V2533 A5	2	146791	2372	4.6	NaN	33.4	3.2	1.68	1994	1
PS90	13	156800	2950	4.4	1640	35	4 96	1.00	NaN	0
PS90 Soloviev	14	156800	3250	4.6	1606	NaN	2.8	1.9	NaN	0
PS 90A	10	156911	2950	4.6	NaN	35.5	4.96	1.9	1992	0
PW2037	4	170144	3248	6	1554	31.8	3.73	2.15	1983	1
NK93	15	176000	3650	NaN	1520	28.9	5.5	2.10	NaN	0
BB211 535E4	5	191718	3295	4.3	1500	25.8	3	1.88	1984	1
D 18T	11	229795	4100	5.6	1600	25	5.4	2.33	1982	0
PW4152	4	231308	4264	4.85	NaN	27.5	3.88	2.48	1986	1
PW4052	4	232197	4264	4.85	NaN	27.5	3.88	2.48	1986	1
CF6 80C2B2	3	233532	4263	5.31	1608	27.1	4.27	2.69	1986	1
PW4056	4	252437	4264	4.85	NaN	29.7	3.88	2.48	1987	1
TRENT 556	5	255773	NaN	7.32	1581	35.59	NaN	2.48	NaN	1
CF6 80C2B1F	3	257997	4309	5.15	1608	29.9	4.27	2.69	NaN	1
PW4358	4	258000	4173	5.2	1538	29.6	3.37	2.38	NaN	1
CF6 80A2	3	266893	3854	4.66	NaN	27.3	3.98	2.49	1981	1
BB211 524H	5	269562	4386	4.3	1548	33	3.18	2.19	1989	1
CE6 80C2A5	3	272676	4144	5.05	1608	31.5	4 27	2.69	1987	1
CF6 80E1A2	3	300255	4865	5.3	NaN	32.4	4 34	2.03	NaN	1
PW4168	4	302479	6509	5.1	NaN	32	4 14	2.54	1993	1
TRENT 779	5	316260	4785	/ 80	NaN	36.84	3 01	2.04	1005	1
TRENT 900	5	3/0289	7077	7 14	1502	41	5.64	2.41	2004	1
PW4084	4	373651	6214	6.41	NaN	36.3	4 87	2.13	1994	1
CE00 85P	-± 2	400340	7550	8 /	NoN	30.3	5.19	2.00	1005	1
TRENT 802	5	406192	5057	5 74	NoN	42.7	4.97	2 70	1390 NoN	1
11(1)11 1 094	5	400120	0301	0.14	INGIN	±4.1	4.07	4.19	INGIN	1

TAB. A.3 – Données des paramètres conceptuels moteurs

	Au sol	et à l'arrêt				
Modèle	F_0	$10^{5} C_{SB}$	F	$10^{5} C_{SR}$	h	M
Moteur	(N)	((kg/s)/N)	(N)	((kg/s)/N)	(m)	
F.I44	8452	1.29	2669	2.12	9144	0.7
JT15D	13545	1.59	10738	1.53	12192	0.8
TFE731 5	20000	NaN	NaN	NaN	NaN	NaN
PW305B	23424	1 11	4951	1 91	12192	0.8
CFE738	26325	1.11	5827	1.83	12102	0.8
ALE502B5	31004	1.00	10008	2.04	7620	0.0
LE507	31138	1.10	NaN	1.17	NaN	NaN
AE3007	31805	1.1	NaN	NaN	NaN	NaN
CE34 3A/3B	41013	0.99	NaN	NaN	NaN	NaN
BB183 55515P	44037	1.59	16592	2.27	7620	0.74
SPEY 5118	50710	NaN	9341	2.27	13106	0.75
TAY 611	61608	1.22	11343	1.95	10668	0.8
BB710	66034	1.1	15480	1.81	10668	0.8
RB183 TAY650	67150	NaN	NaN	NaN	NaN	NaN
TAY 651	68503	1.27	13122	1.95	10668	0.8
D 436T1	75019	NaN	14710	1.73	11000	0.75
BR715 55	88444	1.05	19483	1.76	10668	0.8
JT8D 217	90000	NaN	NaN	NaN	NaN	NaN
CFM56 7B20	91633	1.02	NaN	NaN	NaN	NaN
JT8D 219	96526	1.47	23309	2.09	10668	0.76
V2522 A5	97861	0.96	23064	1.63	10668	0.8
CFM56 2B1	97900	NaN	22108	1.84	10668	0.8
CFM56 3C1	104533	0.93	NaN	1.89	10668	0.8
D30KU II	106090	NaN	26970	1.98	11000	0.8
CFM56 2A2	106757	1.02	25620	1.88	10668	0.8
V2500 A1	111206	0.99	22552	1.65	10668	0.8
V2525 D5	111206	1.02	25680	1.63	10668	0.8
CFM56 5A1	113500	0.93	25500	1.69	10668	0.8
CFM56 5C2	138785	0.91	30800	1.61	10668	0.8
V2533 A5	146791	1.05	25466	1.63	10668	0.8
PS90	156800	NaN	NaN	NaN	NaN	NaN
PS90 Soloviev	156800	NaN	NaN	NaN	NaN	NaN
PS 90A	156911	NaN	34322	1.69	11000	0.8
PW2037	170144	0.93	28913	1.65	10668	0.85
NK93	176000	NaN	NaN	NaN	NaN	NaN
RB211 535E4	191718	1.72	37788	1.69	10668	0.8
D 18T	229795	NaN	47667	1.61	11000	0.75
PW4152	231308	0.99	NaN	NaN	NaN	NaN
PW4052	232197	0.99	NaN	NaN	10668	0.8
CF6 80C2B2	233532	0.91	53379	1.63	10668	0.8
PW4056	252437	1.02	NaN	NaN	10668	0.8
TRENT 556	255773	NaN	NaN	1.65	9144	0.8
CF6 80C2B1F	257997	0.91	57026	1.6	10668	0.8
PW4358	258000	NaN	NaN	NaN	NaN	NaN
CF6 80A2	266893	0.99	49131	1.76	10668	0.8
KB211 524H	269562	1.59	52547	1.61	10668	0.85
CF6 80C2A5	272676	0.96	50443 N.N.	1.64	10668 N. N.	U.8
OF 6 80EIAZ	300255	0.93 N. N	INAIN N. N	1.59 N. N	INAIN	INAIN
Г W4108 ТДЕМТ 779	302479	INAIN Na N	INAIN	INAIN 1.C	10668	0.8
TRENI (12 TRENT 000	310209 240380	NaN	01100 NoN	1.0	0144	0.82
TRENT 900 DW/08/	340289 373651	Nan	NaN	1.03 NoN	9144	0.8
CE00.85P	400240	0.91	NoN	1.54	10669	0.00
TRENT 802	406122	U.01 NaN	57827	1.54	10668	0.83
110101 0004	100120	T A CUT N	01041	1.00	10000	0.00

TAB. A.4 – Données courantes de consommation spécifique C_{SR} .

		Poir	nt fixe		Croisière					
Modèle	λ	ε_c	T_4	F_0	M	h	F_{max}			
			(K)	(N)		(m)	(N)			
SPEY 5118	0.64	18.4	NaN	50710	0.75	13106	9341			
RB183 55515P	0.71	15.5	NaN	44037	0.74	7620	16592			
JT8D 217	1.73	18.8	1407	90000	NaN	NaN	NaN			
JT8D 219	1.77	19.2	NaN	96526	0.76	10668	23309			
D30KU II	2.42	NaN	NaN	106090	0.8	11000	26970			
TAY 611	3.04	15.8	NaN	61608	0.8	10668	11343			
TAY 651	3.07	16.6	NaN	68503	0.8	10668	13122			
RB183 TAY650	3.1	16.4	1370	67150	NaN	NaN	NaN			
TFE731 5	3.15	19.4	1378	20000	NaN	NaN	NaN			
FJ44	3.28	12.8	NaN	8452	0.7	9144	2669			
JT15D	3.3	13	1288	13545	0.8	12192	10738			
BR710	4	25.7	NaN	66034	0.8	10668	15480			
RB211 524H	4.3	33	1548	269562	0.85	10668	52547			
RB211 535E4	4.3	25.8	1500	191718	0.8	10668	37788			
PS90	4.4	35	1640	156800	NaN	NaN	NaN			
PW305B	4.5	23	NaN	23424	0.8	12192	4951			
V2533 A5	4.6	33.4	NaN	146791	0.8	10668	25466			
PS 90A	4.6	35.5	NaN	156911	0.8	11000	34322			
PS90 Soloviev	4.6	NaN	1606	156800	NaN	NaN	NaN			
CF6 80A2	4.66	27.3	NaN	266893	0.8	10668	49131			
BR715 55	4.7	32.1	NaN	88444	0.8	10668	19483			
V2525 D5	4.8	27.7	NaN	111206	0.8	10668	25680			
PW4052	4.85	27.5	NaN	232197	0.8	10668	NaN			
PW4056	4.85	29.7	NaN	252437	0.8	10668	NaN			
PW4152	4.85	27.5	NaN	231308	NaN	NaN	NaN			
TRENT 772	4.89	36.84	NaN	316269	0.82	10668	51155			
D 43611	4.95	25.2	1550 N. N.	75019	0.75	10000	14710			
V 2022 A0	0 5 05	24.9	1609	97801	0.8	10668	23064			
CF6 80C2A5	5.05	31.5	1608 N. N	272070	0.8	10008	50443 N.N.			
F W4106	0.1	32	1609	302479	0.8	10008	F7026			
DW4259	5.10	29.9	1529	257997	U.O NoN	10008 NoN	57020 NoN			
F W4556	5.2	29.0	1556 No.N	200255	NaN	NaN	NaN			
CF0 80E1A2	5.0	02.4 02	1642	300235	Inain 0.8	19109	INAIN 5807			
CF6 80C2B2	5.31	23 27.1	1608	20325	0.8	12192	53370			
V2500 A1	5.4	27.1	1537	111206	0.8	10668	22552			
V2500 III LE507	5.6	13.4	NaN	31138	NaN	NaN	NaN			
D 18T	5.6	25	1600	229795	0.75	11000	47667			
ALE502B5	5.7	12.2	NaN	31004	0.7	7620	10008			
TRENT 892	5 74	42.7	NaN	406123	0.83	10668	57827			
CFM56 2A2	5.9	25.4	1628	106757	0.8	10668	25620			
CFM56 3C1	6	25.7	1646	104533	0.8	10668	NaN			
CFM56 5A1	6	26.5	1600	113500	0.8	10668	25500			
PW2037	6	31.8	1554	170144	0.85	10668	28913			
CFM56 2B1	6	23.7	1560	97900	0.8	10668	22108			
PW4084	6.41	36.3	NaN	373651	0.83	10668	NaN			
CFM56 5C2	6.6	31.5	1633	138785	0.8	10668	30800			
TRENT 900	7.14	41	1593	340289	0.85	10668	62275			
TRENT 556	7.32	35.59	1581	255773	0.8	9144	NaN			
GE90 85B	8.4	39.3	NaN	400340	0.83	10668	NaN			
CFM56 7B20	NaN	NaN	NaN	91633	NaN	NaN	NaN			
CF34 3A/3B	NaN	21	1204	41013	NaN	NaN	NaN			
AE3007	NaN	24	NaN	31805	NaN	NaN	NaN			
NK93	NaN	28.9	1520	176000	NaN	NaN	NaN			

TAB. A.5 – Données courantes de poussée maximale ${\cal F}_{max}$

Modèle	λ	T_4	ε_c	F_0	(N)	Implanté sur
Moteur		K		sec	PC	
ATAR 9K50	0	1208	6.15	49200	70600	Mirage F1
Olympus 593/610	0	1440	14.5	143000	169000	Concorde
F199PW100	0.2	NaN	NaN	98000	156000	F22 Raptor
PW1120	0.2	1523	26.8	61300	91700	F4, LAVI
M88-2	0.3	1850	24.5	50000	75000	Rafale B,C,M
F404 GE 402	0.31	NaN	26	NaN	78200	F18 C,D
M53-P2	0.35	1533	9.8	64000	95000	Mirage 2000
F414	0.37	NaN	30	64900	97700	F18 E,F
EJ200	0.4	1750	26	60000	90000	EF-2000
F100 PW 229	0.4	NaN	32	79178	128998	F15, F16
F125	0.491	1645	18.45	28000	41100	Ching Kuo (IDF)
RD-33	0.55	1680	21.7	49500	81400	Mig-29
AL-31F	0.57	1600	NaN	78000	122600	Su-27
F100 PW 100/200	0.63	1553	23.3	65250	106000	F15, F16
Adour Mk811	0.75	1413	11.5	24550	37360	Hawk, T45A sans PC, et
						Jaguar, T-2, F-1 avec PC
F110 GE 129	0.76	NaN	NaN	NaN	129000	F-16
F110 GE 400	0.87	1643	30.3	75600	124500	F-14
LARZAC 04-C20	1.04	1433	11.1	14100	NaN	Alphajet
RB199 Mk103	1.06	1598	23.5	40700	71500	Tornado
LARZAC 04-C6	1.13	1403	10.5	13200	NaN	Alphajet

TAB. A.6 – Données moteurs d'avion de combat au point fixe [Rid97].

Modèle	M	h	$F_{max}(N)$		Constructeur
Moteur		(m)	sec	PC	
ATAR 9K50	2	11000	NaN	75000	SNECMA
Olympus 593/610	2	16130	44600	NaN	Rolls-Royce/SNECMA
M53-P2	2.2	16800	35900	NaN	SNECMA
LARZAC 04-C20	0.8	0	12150	NaN	SNECMA
RB199 Mk103	0.9	0	35000	91000	TU
LARZAC 04-C6	0.8	0	10900	NaN	SNECMA

TAB. A.7 – Données en croisière de moteurs d'avion de combat [Rid97].

A.2 Base de données voilure

Dans cette section, nous exposons les données voilure dont nous disposons pour valider nos modèles et les modèles existants de masse voilure. Cette base de données a été constituée à l'aide d'une base de données interne ONÉRA[CM88] et de données reccueillies dans la littérature dans des ouvrages de référence tels que ceux d'E.Torenbeek [Tor86], d'I.Kroo [Kro01] ou de M.D.Ardema [ACP⁺96]. Elle est constituée de 73 avions de toute sorte : aussi bien des avions de transport civil, que des jets privés, des avions cargo militaire, des avions de combat ... Nous présentons ces données sous forme de tableaux classés par type d'avion puis par masse maximale au décollage M_{MTOW} .

Les différents types d'avion de la base de données sont dans l'ordre :

- Civil Fret+Passagers
- Civil Passagers
- Militaire Cargo
- Militaire Chasse Biplace
- Militaire Chasse Biplace Marine
- Militaire Chasse Monoplace
- Militaire Chasse Monoplace Marine
- Militaire Ecole

Le descriptif des grandeurs exposées dans les tableaux est explicité dans les nomenclatures qui suivent. Les "NaN" (Not-A-Number) représentent des données dont nous ne disposons pas. Les "NC" (Non Communiqué) désignent les données internes que nous n'exposerons pas dans ce document.

Des données plus détaillées et précises pour quelques voilures d'avion de transport civil, nous ont également servi à valider nos modèles, mais ne seront pas exposées dans ce document.

N	M	M	М	M	M -	M	M		0	
do l'avion	MTOW (hc)	$^{M}MZFW$	Fuel	^{M}MLW	^{IVI} OWE	(ha)	1 m	*	U	^{nz} ce
NORD 262 20	(<i>Kg</i>)	(<i>kg</i>)	(<i>Kg</i>)	(<i>K</i> g)	(Kg)	(<i>Kg</i>)	0	1		1 50
ATR-42-200	10000	IN AIN No N	1431	10450	0490	1004	2	1	2	4.00
EOKKEP 27	18200	16600	2032	17800	9124	1341	2	1	1	3.75
DC 9-10	10434	33566	10081	37059	20672	3066	2	2	1	4 223
B 737-100	44000	NaN	7000	43090	NaN	3410	2	1	1	3 75
B 737-200	45360	38550	9626	44450	23805	3046	2	1	1	3.75
CARAVELLE-6R	50000	NaN	14.235	47620	25805	3814	2	2	1	6.33
DC 9-40	51710	42184	9525	42265	24799	3264	2	2	1	3.75
TRIDENT 1	52163	NaN	10580	46267	28311	3586	3	4	1	4.5
MERCURE IT	54500	46000	10552	49800	28169	3690	2	1	1	4.56
B 727-100	72575	53525	21798	62370	36478	5312	3	4	1	3.75
DC 8-20	125190	NaN	51890	87543	54932	11112	4	1	1	3.75
DC 8-63	161030	104330	57933	111130	64487	9510	4	1	1	3.75
L-1011 TRIST	185520	139940	45586	157850	95540	10632	3	3	2	3.75
DC 10-10	195050	151960	54037	164880	92464	10865	3	3	1	3.75
DC 10-30	251750	166920	87716	182800	103830	12026	3	3	1	3.75
B 747-100	321140	238820	102270	255830	139320	16142	4	1	3	3.75
CITATION 1	5216	NaN	1641	4989	2806	544	2	2	1	7.41
SN-601-CORVE	6600	NaN	1476	5700	3689	624	2	2	2	7.5
FALCON 10	8615	NaN	2560	8330	4638	820	2	2	1	6.83
HS 125-3 B	9843	NaN	3728	9072	4863	815	2	2	1	4.32
HS 125-600 B	11340	NaN	4190	9979	5625	871	2	2	2	4.75
FALCON 20	12100	NaN	3602	11430	6899	807	2	2	1	6.35
FALCON 50-B	17600	10650	7465	16200	8643	1206	3	4	1	5.97
FALCON 900	19824	14000	8618	12250	9533	1421	3	4	1	5.75
VFW-614-G6	19950	NaN	3753	19950	11456	1538	2	1	1	4.8
FOKKER-28	28580	NaN	7441	24490	14807	2366	2	2	1	3.75
CARAVELLE 12	56000	NaN	12939	49500	29027	3754	2	2	1	4.47
A320-100	77400	61000	14285	61000	35818	4682	2	1	1	3.75
A 310-200	138600	112000	42126	121500	69879	7969	2	1	1	3.75
в 707-328	140610	86300	70300	93893	55721	10032	4	1	1	3.75
A310-300	150000	113000	53154	124000	70386	8767	2	1	1	3.75
A300 B4	157500	124000	45614	134000	79288	8207	2	1	1	3.75
A300-600	165000	130000	32140	138000	78157	8461	2	1	1	3.75
A 330 300	185070	185000	95680	185000	194500	13931	4	1	1	3.75
A 3 40, 300	212000	185000	107540	185000	124500	9730	2	1	1	3.75
R 747 400	206820	242670	159209	285760	129300	17056	4	1	1	3.75
A 380	560000	361000	240000	285700	276800	25084	4	1	1	3.75
A380	300000	301000	240000	380000	210800	23084	4	1	1	3.15
BREGUET 941	21472	NaN	3835	19465	14209	3741	4	1	2	5.25
BR. ATLANTIC	43183	NaN	16017	34700	22702	3904	2	1	1	4.25
		08800		20.2.20		4250				4.5
TRANSALL	46530	37700 N - N	10016	42000	21111	4543	2	1	5	4 5
TRANSALL TRANSALLC160	46530 51000	37700 NaN	14418	42000	28068	4543	2	1	2	4.5
TRANSALL TRANSALLC160 BOEING C-135	$46530 \\ 51000 \\ 135440 \\ 143600$	37700 NaN NaN	10016 14418 38519	42000 90720	28068 48469	4543 8415	2 2 4	1 1	2 1	4.5 3
TRANSALL TRANSALLC160 BOEING C-135 C-141 P 52 H	46530 51000 135440 143600 221250	37700 NaN NaN NaN	10016 14418 38519 50892 116140	42000 90720 124970 122470	27777 28068 48469 61318 77162	4543 8415 10312	2 2 4 4	1 1 1	2 1 2	4.5 3.93
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-54 CALAXY	46530 51000 135440 143600 221350 348810	37700 NaN NaN 114900 253510	10016 14418 38519 50892 116140 95297	$\begin{array}{r} 39270 \\ 42000 \\ 90720 \\ 124970 \\ 122470 \\ 288420 \end{array}$	28068 48469 61318 77162	4330 4543 8415 10312 14664 13742	2 2 4 4 8	1 1 1 1	2 1 2 2 2	4.5 3.93 3.5
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 34810\\ \end{array}$	37700 NaN NaN 114900 253510	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297$	$\begin{array}{r} 33270\\ 42000\\ 90720\\ 124970\\ 122470\\ 288420\\ \end{array}$	21111 28068 48469 61318 77162 144980	4330 4543 8415 10312 14664 13742	2 2 4 4 8 4	1 1 1 1 1	2 1 2 2 2 2	4.5 3 3.93 3 2.5
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 10251\\ \end{array}$	37700 NaN NaN 114900 253510 NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ $	$\begin{array}{r} 33210\\ 42000\\ 90720\\ 124970\\ 122470\\ 288420\\ \hline 3650\\ 100000\\ \hline \end{array}$	21111 28068 48469 61318 77162 144980 3629	4330 4543 8415 10312 14664 13742 745	2 2 4 4 8 4 2	1 1 1 1 1 5	2 1 2 2 2 2 2	4.5 3 3.93 3 2.5 13
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G JUDI GO GOOD	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 450054\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ 4450 \\ 4450 \\ 5000 \\ 1000 \\ $	$\begin{array}{r} 33210\\ 42000\\ 90720\\ 124970\\ 122470\\ 288420\\ \hline 3650\\ 12049\\ \hline \end{array}$	28068 28068 48469 61318 77162 144980 3629 10114	4330 4543 8415 10312 14664 13742 745 1894	2 2 4 4 8 4 2 1	1 1 1 1 1 5 5	2 1 2 2 2 2 2 2	$ \begin{array}{r} 4.5 \\ 3 \\ 3.93 \\ 2.5 \\ 13 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE G MIRAGE GO008	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000 \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ 4450 \\ 3125 \\ 5607 \\ 1007 \\ $	42000 90720 124970 122470 288420 3650 12049 NaN	28068 48469 61318 77162 144980 3629 10114 7657 7520	$\begin{array}{r} 4330\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1637\\ 1652\\ \end{array}$	2 2 4 4 4 8 4 2 1 1 1	1 1 1 1 1 5 5 5	2 1 2 2 2 2 2 1	$ \begin{array}{r} 4.5 \\ 3 \\ 3.93 \\ 2.5 \\ 13 \\ 12 \\ 13.5 \\ 10.5 \\ \end{array} $
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 17000\\ 010700\\ 010700\\ 010700\\ 010700\\ 000\\ 0$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ 4450 \\ 3125 \\ 5665 \\ 5000 \\ 1000 \\ $	42000 90720 124970 122470 288420 3650 12049 NaN NaN NaN	287777 28068 48469 61318 77162 144980 3629 10114 7657 7738	$\begin{array}{r} 4330\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1637\\ 1653\\ 2020\end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ $	1 1 1 1 5 5 5 5	2 1 2 2 2 2 2 1 1	$ \begin{array}{r} 4.5 \\ 3 \\ 3.93 \\ 2.5 \\ 13 \\ 12 \\ 13.5 \\ 13.5 \\ 10 \\ \end{array} $
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TOBNADO CE 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 05540\end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ 4450 \\ 3125 \\ 5665 \\ 5383 \\ 5000 \\ 1000 \\ $	35210 42000 90720 124970 122470 288420 3650 12049 NaN NaN 19073 N-N	27777 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037	$\begin{array}{r} 4330\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline\\ 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2470\\ \hline\end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5	2 1 2 2 2 2 2 1 1 1 1 2	$\begin{array}{r} 4.5 \\ 3 \\ 3.93 \\ 3 \\ 2.5 \\ 13 \\ 12 \\ 13.5 \\ 13.5 \\ 10 \\ 11 \\ 7 \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 17000\\ 21659\\ 25540\\ 0\\ 21821\end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN	$10016 \\ 14418 \\ 38519 \\ 50892 \\ 116140 \\ 95297 \\ 1593 \\ 4450 \\ 3125 \\ 5665 \\ 5383 \\ 5090 \\ 14956 \\ 1$	35210 42000 90720 124970 122470 288420 3650 12049 NaN NaN 19073 NaN	27777 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline\\ 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 2182\\ \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ $	1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 1 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2	$\begin{array}{r} 4.5 \\ 3 \\ 3.93 \\ 2.5 \\ 13 \\ 12 \\ 13.5 \\ 13.5 \\ 10 \\ 11.7 \\ 7.25 \\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 TORNADO GR 1 MIRAGE IV-A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 42741\end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \end{array}$	35210 42000 90720 124970 122470 288420 3650 12049 NaN NaN 19073 NaN 15410	28777 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 2480	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline\\ 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 3183\\ 6424\\ \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ $	1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 1 2 2 1 2 2 2 2 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741 \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ \hline \\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \end{array}$	32210 42000 90720 122470 288420 3650 12049 NaN NaN 19073 NaN 15410 24040	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline\\ 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 2 1 1 1 2 1 2 1 2 2 1 2 2 2 2 2 2 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ \end{array}$	32210 42000 90720 124970 122470 288420 12049 NaN NaN 19073 NaN 15410 24040 20865	21711 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ \hline 3284\\ \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 8 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\\ \hline\\ 7297\end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ \hline 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \hline 0100\\ \hline 1169\\ \end{array}$	32210 42000 90720 124970 122470 288420 3650 12049 NaN NaN 19073 NaN 15410 24040 20865	21717 28068 48469 61318 77162 144980 38629 10114 7657 7738 14037 13020 14720 24880 11850 53356	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ \hline 3284\\ \hline 1315\\ \end{array}$	2 2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 11.25\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\\ \hline\\ 7297\\ 9379\end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 56665\\ 5383\\ 5090\\ 14856\\ 20280\\ \hline 0\\ 1169\\ 1732\\ \end{array}$	32210 42000 90720 124970 122470 288420 288420 12049 NaN NaN 19073 NaN 15410 24040 20865 6985 9006	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723	4530 4543 8415 10312 14664 13742 745 1894 1637 1653 2889 2479 3183 6434 3284 3284 1315 894	2 2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 2 1 2	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 2.5\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 11.25\\ 10.5\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 10-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 9379\\ 11950\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976 \end{array}$	32210 42000 90720 124970 122470 288420 38550 12049 NaN 19073 NaN 15410 24040 20865 6985 9006 7300	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 11850\\ 5356\\ 3723\\ 6062\\ \end{array}$	$\begin{array}{r} 4530\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ \hline 3284\\ \hline 3284\\ \hline 1315\\ 894\\ 1466\end{array}$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 1 2 1 2 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 2.5\\ 12\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 12.75\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 11950\\ 12137\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397	32210 42000 90720 124970 122470 288420 8650 12049 NaN NaN 15073 NaN 15410 24040 20865 6985 9006 7300 7666	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ \end{array}$	$\begin{array}{r} 4353\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ \hline 745\\ 1894\\ 1637\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ 3284\\ \hline 1315\\ 894\\ 1466\\ 1788\\ \end{array}$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 2 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 12.75\\ 11.5\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B HUNCANEER 2B TORNADO GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARRIER GR 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN 6446 NaN 9104 8890	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \hline 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ \end{array}$	32210 42000 90720 124970 122470 288420 3650 12049 NaN NaN 15410 20865 9006 7300 7666 7700	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ \hline 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ \end{array}$	43503 4543 8415 10312 14664 13742 745 1894 1653 2889 2479 3183 6434 3284 3183 6434 3284 1466 1788 954 1466 1789	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ $	2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3.25\\ 13\\ 12\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 12.75\\ 10.5\\ 12.75\\ 11.2\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE F1-C	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\\ \hline\\ 7297\\ 9379\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \hline 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ \end{array}$	32210 42000 90720 124470 122470 288420 36550 12049 NaN 19073 NaN 15410 24040 24040 24040 26865 6985 9006 7300 7666 7300 7666 7700 8992	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ 7804\\ \end{array}$	$\begin{array}{r} 4353\\ 4543\\ 4543\\ 8415\\ 10312\\ 14664\\ 13742\\ 745\\ 1894\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ 3284\\ 1315\\ 894\\ 1466\\ 1788\\ 1539\\ 1668\\ 1539\\ 1668\\ \end{array}$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1		2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10.5\\ 12.75\\ 10.5\\ 12.75\\ 11.25\\ 11.5\\ 11.5\\ 11.2\\ 12\\ 12\end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-E MIRAGE III-E MIRAGE III-E MIRAGE F1-C JAGUAR A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN 6446 NaN 6446 NaN 9104 8890 NaN	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 14856 20280 6100 1169 1732 3976 5182 5197 3276	32210 42000 90720 124970 122470 122470 122470 12049 NaN NaN 10073 NaN 15410 24040 20865 9006 7300 7666 7700 8992 8500	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196	$\begin{array}{r} +350\\ +350\\ +4543\\ 8415\\ 10312\\ +4664\\ +13742\\ \hline \\ 14664\\ +13742\\ \hline \\ 1894\\ +1653\\ 2889\\ 2479\\ 2479\\ 3183\\ 6434\\ \hline \\ 3284\\ \hline \\ 3284\\ \hline \\ 3284\\ \hline \\ 3284\\ \hline \\ 1315\\ 894\\ +1468\\ 1539\\ 1668\\ \hline \\ 1688\\ \hline \\ 1688\\ \hline \end{array}$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	2 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 11.25\\ 10.5\\ 12.75\\ 11.2\\ 11.2\\ 11.2\\ 12\\ 12\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 9379\\ 9379\\ 11950\\ 12137\\ 14950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ \end{array}$	37700 NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN 6446 NaA 9104 8890 NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 5182\\ 5197\\ 3276\\ 3276\\ 2573\\ \end{array}$	32210 42000 90720 124970 122470 288420 38550 12049 NaN NaN 15410 20865 6985 9006 7300 7666 7300 7666 7300 7666 7700 8992 8500 12903	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ 7804\\ 7196\\ 10990\\ \end{array}$	$\begin{array}{r} +350\\ +350\\ +4543\\ 8415\\ 10312\\ 104664\\ 13742\\ 745\\ 1894\\ 1653\\ 2889\\ 2479\\ 3183\\ 643\\ 43284\\ \hline 1315\\ 894\\ 1315\\ 894\\ 1315\\ 894\\ 1466\\ 1788\\ 1668\\ 1668\\ 1668\\ 1668\\ 1688\\ 1688\\ 3773\\ \end{array}$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2	$ \begin{array}{c} 1 \\ 5 \\ $	2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 9.75\\ 10\\ 9.75\\ 10.25\\ 10.25\\ 12.75\\ 11.2\\ 12.25\\ 11.2\\ 11.2\\ 11.25\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE 2000C	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ 7642\\ 16054\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ \end{array}$	32210 42000 90720 124970 122470 288420 8650 12049 NaN 19073 NaN 15410 24040 20865 6985 9006 7300 7666 7300 7666 7300 8992 8500 8892 8500 2803 NaN	21717 28068 48469 61318 77162 144980 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ +745\\ +894\\ +1653\\ +2889\\ +2479\\ +2889\\ +2479\\ +2889\\ +2479\\ +2$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1	1 1 1 1 1 1 1 1	2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 10.5\\ 12.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 13$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000B HUNCANEER 2B TORNADO GR 1 MIRAGE 2000B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ \hline \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN MaN 6446 NaN 9104 8890 NaN 9104 S890 NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ \hline 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ 3162\\ \end{array}$	32210 42000 90720 124970 122470 122470 122470 124970 124970 124970 124970 124970 124970 NaN NaN 15410 20865 6985 9006 7300 7666 7700 8992 8500 12903 NaN NaN 8550 12903 NaN 8550 85	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7804 7196 10990 7536 7720	$\begin{array}{r} +350\\ +353\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ +745\\ +894\\ +1637\\ +1653\\ +2479\\ +3183\\ +2479\\ +3183\\ +2479\\ +3183\\ +3483\\ +31$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5	2 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 12.75\\ 11.2\\ 12.2\\ 12.2\\ 12.2\\ 13.5\\ 13.$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 10-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN 6446 NaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2397\\ 5182\\ 5197\\ 3276\\ 4444\\ \end{array}$	32210 90720 924970 122470 28420 3650 12049 NaN 19073 NaN 15410 24040 24040 24040 24040 24040 26855 9006 7300 7666 7300 7666 7300 7666 7700 8992 8500 2903 NaN 8950 NaN	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ \hline 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ \hline 14850\\ \hline 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ 7804\\ 7196\\ 10990\\ 7536\\ 7020\\ 9195\\ \end{array}$	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +10312\\ +10312\\ +10464\\ +13742\\ -745\\ +894\\ +1653\\ +2479\\ +3183\\ -2479\\ +3182\\ +$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 11.7\\ 7.25\\ 10.5\\ 11.25\\ 11.25\\ 11.5\\ 11.5\\ 11.2\\ 12\\ 12\\ 12\\ 12\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5 \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ 12081\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN MaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 56665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ 3162\\ 4444\\ 4360\\ \end{array}$	32210 42000 90720 124970 122470 288420 8650 12049 NaN NaN 15410 24040 20865 6985 9006 7300 7666 7300 7666 7300 8992 8500 12903 NaN 8850 NaN 8850 NaN	21717 28068 48469 61318 77162 14980 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493	4543 4543 4543 8415 10312 14664 13742 745 1894 1653 2889 2479 2479 2479 2479 2479 2479 2479 247	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 1 2 1	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 11.2\\ 11.25\\ 11.2\\ 11.2\\ 12\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 122\\ \end{array}$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 10- HARTIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE FI-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ 12081\\ 17010\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN 6446 N4A 8890 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 5182\\ 5197\\ 5182\\ 5197\\ 3276\\ 22573\\ 3190\\ 3162\\ 4444\\ 4360\\ 3711\\ \end{array}$	32210 42000 90720 124970 122470 288420 3650 12049 NaN 19073 NaN 15410 20865 6085 9006 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7700 8992 8500 12903 NaN 8850 12903 NaN 7500 7500 12587	21717 28068 48469 61318 77162 144980 3829 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493 10684	$\begin{array}{r} +350\\ +350\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ -745\\ +1894\\ +1637\\ +1653\\ +2479\\ +1653\\ +2479\\ +3183\\ +643\\ +3284\\ \hline & 3284\\ \hline & 3284\\ \hline & 3284\\ \hline & 3284\\ \hline & 1315\\ +894\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +1788\\ +1668\\ +16888\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 1 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 11.25\\ 10.5\\ 12.75\\ 11.5\\ 12.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 122\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 1$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUPETENDARD SCIMITAR MK1 F 18 A	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ \hline\\ 12081\\ 17010\\ 22317\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN MaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 55665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2397\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ 3162\\ 4444\\ 4360\\ 3711\\ 4926\\ \end{array}$	32210 42000 90720 124470 122470 28420 3650 12049 NaN 19073 NaN 15410 24040 20865 6985 9006 7300 7666 7300 7666 7700 8992 8500 12903 NaN 8850 NaN 8850 NaN 7500 12587 13566	21111 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 24880 21850 5356 3723 6062 5335 6710 7804 7196 10990 7536 7020 9195 6493 10684 10084	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +454\\ +10312\\ +10312\\ +1042\\ +1$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2	$\begin{smallmatrix} 1\\1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 11.7\\ 7.25\\ 10.5\\ 11.25\\ 11.25\\ 11.25\\ 11.5\\ 11.2\\ 12\\ 12\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37	46530 51000 135440 221350 348810 7642 16054 17000 21659 25540 31831 46741 27932 7297 9379 11950 12137 14072 14871 15346 15488 17000 17010 20000 22317 3445	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 3276 2397 5182 5197 3162 2444 4444 4360 3711 4926 918	32210 42000 90720 124970 122470 122470 122470 122470 12049 NaN NaN 15410 20865 6985 9006 7300 2666 7700 8592 8500 12903 NaN NaN NaN 7500 12587 13560 2766	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7804 7196 10990 7536 7020 9195 6493 10684 10084	$\begin{array}{r} +350\\ +353\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ +1637\\ +1653\\ +2879\\ +1653\\ +2479\\ +1653\\ +2479\\ +1653\\ +2479\\ +3183\\ +643\\ +3284\\ +1339\\ +1466\\ +1788\\ +3733\\ +1466\\ +1788\\ +3733\\ +1668\\ +1539\\ +150\\$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2	$\begin{array}{r} 4.5\\ 3.93\\ 3.93\\ 3.25\\ 13.5\\ 13.5\\ 100\\ 11.7\\ 7.25\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 12.75\\ 11.2\\ 12.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 11.2\\ 112\\ 112\\ 112\\ 110\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1	46530 51000 135440 143600 221350 348810 7642 16054 17000 21659 25540 31831 46741 27932 7297 9379 11950 12137 14072 14871 15346 15488 17000 17010 20000 12081 17010 22317 3445	37700 NaN NaN NaN 114900 253510 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 014856\\ 20280\\ 014856\\ 20280\\ 014856\\ 20280\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ 3162\\ 4444\\ 4360\\ 3711\\ 4926\\ 918\\ 928\\ \end{array}$	32210 42000 90720 90720 124970 122470 122470 122470 12049 NaN 19073 NaN 15410 24040 20865 6985 9006 7300 7666 7300 7266 7500 8992 8500 12903 NaN	21777 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 7020 9195 6493 10684 10084 10984	$\begin{array}{r} +350\\ +350\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ -745\\ +1894\\ +1653\\ +2899\\ +1653\\ +2899\\ +3183\\ -6434\\ +3894\\ +38844\\ +3884\\ +3884\\ +3884\\ +3884\\ +3884\\ +3884\\ +3884\\ +3884\\ +$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10\\ 9.75\\ 10.7\\ 10\\ 9.75\\ 10.7\\ 11.25\\ 12.75\\ 11.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 13.5\\ $
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE IV-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ 7642\\ 16054\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 17010\\ 17010\\ 12081\\ 17010\\ 22317\\ 3445\\ 4173\\ 7130\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 95297\\ 1593\\ 4450\\ 3125\\ 55665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 3276\\ 3276\\ 3276\\ 3276\\ 3190\\ 3162\\ 3162\\ 4444\\ 4360\\ 3711\\ 4926\\ 918\\ 928\\ 928\\ 928\\ 928\\ 928\\ 928\\ 9272\end{array}$	32210 42000 90720 124470 122470 122470 288420 36550 12049 NaN 15410 240400 240400000000	21111 28068 48469 61318 77162 144980 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493 10684 10984	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ +745\\ +894\\ +1653\\ +2889\\ +2479\\ +3183\\ -6434\\ +3284\\ +3383\\ -6434\\ +3284\\ +3373\\ +394\\ +1668\\ +1688\\ +3773\\ +1688\\ +1688\\ +3773\\ +1688\\ +1688\\ +3773\\ +16888\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1688\\ +1$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12.2\\ 11.2\\ 11.2\\ 12\\ 11.2\\ 12\\ 11.2\\ 12\\ 11.2\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 1$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B HANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE 1II-C HARRIER GR 1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ 12081\\ 17010\\ 22317\\ \hline 3445\\ 4173\\ 7130\\ 7425\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 02080\\ \hline 6100\\ \hline 1169\\ 23976\\ 23976\\ 23976\\ 2397\\ 5182\\ 5197\\ 5182\\ 5197\\ 3276\\ 2573\\ 3190\\ 3162\\ 4444\\ 4360\\ 3711\\ 4926\\ \hline 918\\ 928\\ 1272\\ 1593\\ \end{array}$	32210 42000 90720 124970 122470 122470 122470 124970 124970 124970 124970 124970 124970 12047 8450 7300 7666 7300 7666 7300 7666 7300 7500 8992 8500 12903 NaN 8850 NaN 8850 NaN 8850 NaN 8850 22766 3561 4720 3650	21717 28068 48469 61318 77162 144980 3829 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493 10684 10084 1	$\begin{array}{r} +350\\ +3503\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ +745\\ +1894\\ +1653\\ +2479\\ +1653\\ +2479\\ +3183\\ +2479\\ +3183\\ +3284\\ \hline \\ 3284\\ \hline \\ 3284\\$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2	$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 10.5\\ 12.75\\ 11.2\\ 12.2\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 11.25\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1 ALPHAJET-ECO JAGUAR E	$\begin{array}{r} 46530\\ 51000\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 17010\\ 20000\\ \hline 12081\\ 17010\\ 22317\\ \hline 3445\\ 4173\\ 7130\\ 7425\\ 13669\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN 6446 NaN NaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	$\begin{array}{c} 10016\\ 14418\\ 38519\\ 50892\\ 116140\\ 95297\\ 1593\\ 4450\\ 3125\\ 5665\\ 5383\\ 5090\\ 14856\\ 20280\\ 6100\\ 1169\\ 1732\\ 3976\\ 2397\\ 5182\\ 5197\\ 3276\\ 2397\\ 5182\\ 5197\\ 3276\\ 3160\\ 2573\\ 3190\\ 3162\\ 4444\\ 4360\\ 3711\\ 4926\\ 918\\ 928\\ 1272\\ 1593\\ 3277\\ \end{array}$	32210 42000 90720 12470 122470 122470 288420 3650 12049 NaN 15410 24040 20865 6985 9006 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 3500 1293 NaN 8850 NaN 8850 203 850 203 850 204 850 850 850 850 850 850 850 850	21717 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493 10084 10084 10940 7536 72271	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +454\\ +10312\\ +10312\\ +1042\\ +1$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2	1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 1 2	$\begin{array}{r} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 10\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 11.25\\ 10.5\\ 11.25\\ 12.75\\ 11.25\\ 12.75\\ 11.5\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12.25\\ 13.5\\ 13.5\\ 13.5\\ 12.2\\ 11.25\\ 13.$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A CESSNA T-37 GNAT T MK 1 ALPHAJET-ECO JAGUAR E	$\begin{array}{r} 46530\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline\\ 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline\\ 27932\\ \hline\\ 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 1201\\ 12081\\ 17010\\ 22317\\ \hline\\ 3445\\ 4173\\ 7130\\ 7425\\ 13669\\ \end{array}$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 3276 2397 5182 5197 3162 2444 4444 4360 3711 4926 918 928 928 1272 1593 3277	32210 42000 90720 124970 122470 122470 122470 122470 12049 NaN NaN 15410 20865 6985 9006 7300 24040 20865 6985 9006 7300 7666 7700 8592 8500 12903 NaN NaN 7500 12587 13560 2766 3561 4720 3650 8878	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ 7804\\ 7196\\ 10990\\ 7536\\ 6710\\ 7804\\ 10990\\ 7536\\ 6710\\ 7804\\ 10990\\ 7536\\ 3464\\ 3412\\ 7271\\ \end{array}$	$\begin{array}{r} +350\\ +353\\ +4543\\ +4543\\ +454\\ +10312\\ +10664\\ +13742\\ +1637\\ +1653\\ +2879\\ +1653\\ +2879\\ +1653\\ +2479\\ +2479\\ +3834\\ +1637\\ +2479\\ +3834\\ +1633\\ +3834\\ +1633\\ +3834\\ +1666\\ +1788\\ +3733\\ +1666\\ +1788\\ +3733\\ +1666\\ +1788\\ +3733\\ +1666\\ +1788\\ +3733\\ +1666\\ +1788\\ +3733\\ +1666\\ +1788\\ +3732\\ +1668\\ +1788\\ +1782\\ +1$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 12.75\\ 11.2\\ 12\\ 12\\ 12\\ 13.5\\ 13.$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B HONTADO GR 1 MIRAGE 2000N FHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1 HAWK T MK 1 MLPHAJET-ECO JAGUAR E	$\begin{array}{c} 46530\\ 51000\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 9379\\ 9379\\ 11950\\ 12137\\ 14950\\ 12137\\ 14950\\ 12137\\ 14950\\ 12137\\ 14950\\ 12137\\ 14950\\ 12137\\ 14950\\ 12081\\ 17010\\ 220000\\ 12081\\ 17010\\ 220000\\ 12081\\ 177010\\ 220000\\ 12081\\ 177010\\ 22317\\ \hline 3445\\ 4173\\ 7130\\ 7425\\ 13669\\ \hline ada carbury$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 5182 5197 5197 5197 5192 5197 3276 3277 3162 4444 4360 3711 4926 918 928 1272 593 3277 2	32210 42000 90720 124970 122470 122470 122470 122470 12049 NaN 19073 NaN 15410 20865 6085 9006 6305 9006 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 7300 7666 3500 12903 NaN 8850 NaN 7500 7500 8892 850 850 850 850 850 850 850 850	21777 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7804 7196 10990 7536 67020 9195 6493 10684 10084 1913 2555 3464 3412 7271	$\begin{array}{r} +350\\ +350\\ +4543\\ +4543\\ +10312\\ +10664\\ +13742\\ -745\\ +1894\\ +1653\\ +2479\\ +1653\\ +2479\\ +1653\\ +2479\\ +3884\\ +3848\\ +3$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 10.5\\ 12.75\\ 11.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 11.25\\ 13.5\\ 13.5\\ 122\\ 11.25\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 11.25\\ 13.5\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 12$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A SUP ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1 ALPHAJET-ECO JAGUAR E MFuel : Masse	46530 51000 135440 143600 221350 348810 7642 16054 17000 21659 25540 31831 46741 27932 7297 9379 11950 12137 14072 14871 15346 15488 17000 17010 22017 3445 4173 7130 7425 13669	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 3276 2573 3190 3162 4444 4360 3711 4926 918 928 1272 1593 3277 2	32210 42000 90720 124970 122470 288420 3650 12049 NaN 19073 NaN 15410 24040 20865 6985 9006 7300 7666 7300 7666 7700 8992 8500 12903 NaN NaN 8500 12857 13560 27666 3561 4720 3650 8878	21111 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 24880 24880 5356 3723 6062 5335 6710 7804 7196 10990 7536 7020 9195 6493 10684 10084 10931 2555 3464 3412 7271	$\begin{array}{r} +350\\ +4543\\ +4543\\ +4543\\ +4543\\ +10312\\ +10312\\ +1042\\ +$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 1 2 1	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13.5\\ 13.5\\ 10\\ 11.7\\ 7.25\\ 10\\ 9.75\\ 10.5\\ 12.75\\ 11.25\\ 11.25\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 13\\ 3\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
$\begin{array}{ll} {\rm TRANSALL}\\ {\rm TRANSALLC160}\\ {\rm BOEING} C-135\\ {\rm C}-141\\ {\rm B} 52 \ {\rm H}\\ {\rm C}-5A \ {\rm GALAXY}\\ {\rm ALPHAJET-APP}\\ {\rm MIRAGE} \ {\rm G}\\ {\rm MIRAGE} \ 2000B\\ {\rm MIRAGE} \ 2000B\\ {\rm MIRAGE} \ 2000B\\ {\rm BUCCANEER} \ 2B\\ {\rm TORNADO} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 1000B\\ {\rm HIRAGE} \ 2000B\\ {\rm HIRAGE} \ 2000B\\ {\rm HIRAGE} \ 1000B\\ {\rm HIRAGE} \ 1000B\\ {\rm HIRAGE} \ 1000B\\ {\rm HIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 11-C\\ {\rm HARRIER} \ {\rm GR} \ 1\\ {\rm MIRAGE} \ 1000C\\ {\rm F} \ 16 \ A\\ {\rm RAFALE} \ - \ A\\ {\rm LIGHTNING} \ {\rm MI}\\ {\rm MIRAGE} \ 2000C\\ {\rm F} \ 16 \ A\\ {\rm RAFALE} \ - \ A\\ {\rm SUPETENDARD}\\ {\rm SCIMITAR} \ {\rm MK1} \ 1\\ {\rm HAWK} \ T \ {\rm MK} \ 1\\ {\rm HAWK} \ T \ {\rm MK} \ 1\\ {\rm HAWK} \ T \ {\rm MK} \ 1\\ {\rm ALPHAJJET-ECO}\\ {\rm JAGUAR} \ E\\ \hline \\ M_{Fuel} \ : \ {\rm Massee}\\ M_m \ : \ {\rm Massee} \end{array}$	$\begin{array}{c} 46530\\ 51000\\ 51000\\ 135440\\ 143600\\ 221350\\ 348810\\ \hline 7642\\ 16054\\ 17000\\ 17000\\ 21659\\ 25540\\ 31831\\ 46741\\ \hline 27932\\ \hline 7297\\ 9379\\ 11950\\ 12137\\ 14072\\ 14871\\ 15346\\ 15488\\ 17000\\ 12080\\ 17010\\ 20000\\ \hline 12081\\ 17010\\ 22000\\ 12081\\ 17010\\ 22000\\ 12081\\ 17010\\ 22317\\ 3445\\ 15488\\ 17000\\ 17010\\ 22000\\ 12081\\ 17010\\ 22000\\ 22317\\ 3445\\ 15488\\ 15488\\ 17000\\ 17010\\ 2000\\ 2000\\ 200$	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 5182 5197 3276 2573 3190 3162 4444 4444 4926 918 928 1272 1593 3277 e e	32210 42000 90720 90720 12470 122470 122470 122470 12490 12490 12490 12490 12490 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12400 12903 12903 NaN 88500 NaN 88500 12587 13560 12587 13560 3651 4720 3650 8878 14700 14700 1	21777) 28068 48469 61318 77162 144980 3629 10114 7657 7738 14037 13020 14720 24880 11850 5356 3723 6062 5435 6710 7804 7196 10990 7536 7020 9195 6493 10684 10084	$\begin{array}{r} +350\\ +353\\ +4543\\ +4543\\ +454\\ +10312\\ +10664\\ +13742\\ +1653\\ +2479\\ +1653\\ +2479\\ +1653\\ +2479\\ +1653\\ +2479\\ +3183\\ +1653\\ +2479\\ +3183\\ +1653\\ +3183\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +3773\\ +1668\\ +1788\\ +1888\\ +1788\\ +1888\\ +1$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\5\\5\\5\\5\\5\\5\\5\\5\\5\\5$	2 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 10\\ 0\\ 11.7\\ 7.25\\ 10.5\\ 12.75\\ 11.2\\ 12.75\\ 11.2\\ 12.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 12\\ 12\\ 11\\ 25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
TRANSALL TRANSALLC160 BOEING C-135 C-141 B 52 H C-5A GALAXY ALPHAJET-APP MIRAGE G MIRAGE 2000B BUCCANEER 2B TORNADO GR 1 MIRAGE 2000N BUCCANEER 2B TORNADO GR 1 MIRAGE 1V-A T.S.R.2 PHANTOM F4B HUNTER F MK1 NORTHROP F5A MIRAGE III-C HARRIER GR 1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE F1-C JAGUAR A LIGHTNING M1 MIRAGE 2000C F 16 A RAFALE - A SUP.ETENDARD SCIMITAR MK1 F 18 A CESSNA T-37 GNAT T MK 1 HAWK T MK 1 HAWK T MK 1 HAWK T MK 1 ALPHAJET-ECO JAGUAR E M_{Fuel} : Massee M_m : Massee	46530 51000 135440 143600 221350 348810 7642 16054 17000 21659 25540 31831 46741 27932 7297 9379 1950 12137 14072 14871 15346 15488 17000 12081 17010 22000 12081 17010 22317 3445 4173 7130 7425 13669 e de carbura e de l'ensemi	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 3276 2573 3190 3162 4444 4360 918 928 1272 1593 3277 26 e e e e e e e e e e e e e	42000 90720 90720 28420 38550 122470 122470 122470 122470 12049 NaN 15410 20865 6985 9006 7666 7300 7500 7500 8992 8500 8850 8850 8850 8850 8850 8850 885	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ 14720\\ 24880\\ 14720\\ 24880\\ 5356\\ 6710\\ 7536\\ 6710\\ 7804\\ 7196\\ 7020\\ 9195\\ 6493\\ 10084\\ 10090\\ 7536\\ 7020\\ 9195\\ 6493\\ 10684\\ 10084\\ 10084\\ 11913\\ 2555\\ 3464\\ 3412\\ 7271\\ 7271\\ \end{array}$	$\begin{array}{r} 4363\\ 4543\\ 4543\\ 8415\\ 10312\\ 10312\\ 14664\\ 13742\\ 745\\ 1894\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ 1653\\ 2889\\ 2479\\ 3183\\ 6434\\ 1315\\ 894\\ 1315\\ 1315\\ 1325\\ 1315\\$	2 4 4 8 4 1 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2 1 2 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 2 1	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13\\ 12\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 10.5\\$
$\begin{array}{r} \text{TRANSALL}\\ \text{TRANSALLC160}\\ \text{BOEING C-135}\\ \text{C-141}\\ \text{B 52 H}\\ \text{C-5A GALAXY}\\ \hline \\ \text{ALPHAJET-APP}\\ \text{MIRAGE G}\\ \text{MIRAGE G}\\ \text{MIRAGE 2000B}\\ \text{BUCCANEER 2B}\\ \text{TORNADO GR 1}\\ \text{MIRAGE 1V-A}\\ \text{T.S.R.2}\\ \hline \\ \text{PHANTOM F4B}\\ \text{HUNTER F MK1}\\ \text{NORTHROP F5A}\\ \text{MIRAGE II-C}\\ \text{HARRIER GR 1}\\ \text{MIRAGE II-C}\\ \text{MIRAGE F1-C}\\ \text{JAGUAR A}\\ \text{LIGHTNING M1}\\ \text{MIRAGE F1-C}\\ \text{JAGUAR A}\\ \text{LIGHTNING M1}\\ \text{MIRAGE F1-C}\\ \text{SUP.ETENDARD}\\ \text{SCIMITAR MK1}\\ \text{F 18 A}\\ \hline \\ \hline \\ \text{CESSNA T-37}\\ \text{GNAT T MK 1}\\ \text{ALPHAJET-ECO}\\ \text{JAGUAR E}\\ \hline \\ \hline \\ M_{Fuel} &: \text{Masse}\\ M_{m} &: \text{Masse}\\ \hline \\ M_{m} &: \text{Masse}\\ \hline \\ \end{array}$	46530 51000 135440 143600 221350 348810 7642 16054 17000 21659 25540 31831 46741 27932 7297 9379 11950 12137 14072 14871 15346 15488 17000 17010 22317 3445 4173 7130 7425 13669 e de carbura e de l'ensemi num Landin	37700 NaN NaN NaN 114900 253510 NaN NaN NaN NaN NaN NaN NaN MaN 6446 NaN 9104 8890 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	10016 14418 38519 50892 116140 95297 1593 4450 3125 5665 5383 5090 14856 20280 6100 1169 1732 3976 2397 5182 5197 3276 2573 3190 3162 4444 4360 3711 4926 918 928 1272 1593 3277 e e curs équip	32210 42000 90720 90720 124970 122470 122470 122470 12470 NaN NaN 15410 20865 9006 7300 7666 7700 8992 8500 12903 NaN NaN 7500 12587 13560 2766 3761 4720 3650 8878	$\begin{array}{c} 21717\\ 28068\\ 48469\\ 61318\\ 77162\\ 144980\\ 3629\\ 10114\\ 7657\\ 7738\\ 14037\\ 13020\\ 14720\\ 24880\\ \hline 11850\\ 5356\\ 3723\\ 6062\\ 5435\\ 6710\\ 7804\\ 7196\\ 10990\\ 7536\\ 6710\\ 7804\\ 10990\\ 7536\\ 7020\\ 9195\\ 6493\\ 10684\\ 10084\\ \hline 1913\\ 2555\\ 3464\\ 3412\\ 7271\\ \hline \end{array}$	$\begin{array}{r} 4353\\ 4543\\ 4543\\ 4543\\ 8415\\ 10312\\ 10312\\ 14664\\ 13742\\ 745\\ 1894\\ 1637\\ 1653\\ 2849\\ 2479\\ 3183\\ 6434\\ \hline 3284\\ \hline 3284$	2 4 4 8 4 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2 1 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2	$\begin{array}{c} 4.5\\ 3\\ 3.93\\ 3\\ 2.5\\ 13.5\\ 13.5\\ 13.5\\ 10\\ 9.75\\ 10\\ 9.75\\ 10.5\\ 10.5\\ 10.5\\ 12.75\\ 11.2\\ 11.25\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$

 $\begin{array}{ll} M_{MTOW}: \mbox{Maximum Take-Off Weight} & kg \\ M_{MZFW}: \mbox{Maximum Zero Fuel Weight} & kg \\ M_{OWE} & : \mbox{Masse à vide Operating Weight Empty} & kg \end{array}$

 M_{OWE} : Masse a vide Operating Weight Empty $n_{z_{ce}}$: Facteur de charge extrême

 $n_{z_{ce}}$: Facteur de charge ext N_m : Nombre de moteurs

Emplacement du moteur (1=voilure,2=fuselage externe,3=voilure + fuselage interne,4=fuselage intérieur et extérieur,5=fuselage interne)

• : Emplacement du train principal (1=voilure,2=fuselage)

Thèse : Pour une approche analytique de la Dynamique du Vol

Nom	M_W	M_{WC}	$M_{W,CC}$	M_{WCPF}	$M_{W,BA}$	$M_{W,BF}$	d (%)	M_{MO}
de l'avion	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	Emp/ Cas/ Ext	0.90
ATB-42-200	NC	NC	NC	NC	NC	NC		0.36
FOKKER-27	NC	NC	NC	NC	NC	NC	58/ 54/ 54	0.45
DC 9-10	NC	NC	NC	NC	NC	NC	46/ $46/$ 45	0.84
B 737-100	NC	NC	NC	NC	NC	NC	38/51/42	0.84
B 737-200	NC	NC	NC	NC	NC	NC	38/ 53/ 40	0.84
CARAVELLE-6R	NC	NC	NC	NC	NC	NC	36/ 37/ 38	0.77
TRIDENT 1	NC	NC	NC	NC	NC	NC	43/ $43/$ $3243/$ $50/$ 37	0.84
MERCURE IT	NC	NC	NC	NC	NC	NC	43/46/32	0.85
B 727-100	NC	NC	NC	NC	NC	NC	45/ 48/ 31	0.9
DC 8-20	NC	NC	NC	NC	NC	NC	46/ $46/$ 44	0.88
DC 8-63	NC	NC	NC	NC	NC	NC	46/46/43	0.88
L-1011 TRIST	NC	NC	NC	NC	NC	NC		0.9
DC 10-10 DC 10-30	NC	NC	NC	NC	NC	NC	46/ 48/ 43	0.85
B 747-100	NC	NC	NC	NC	NC	NC	40/40/45 41/50/45	0.92
CITATION 1	NC	NC	NC	NC	NC	NC	53/ 80/ 53	0.7
SN-601-CORVE	NC	NC	NC	NC	NC	NC	39/ 48/ 48	0.77
FALCON 10	NC	NC	NC	NC	NC	NC	60/ 55/ 40	0.88
HS 125-3 B	NC	NC	NC	NC	NC	NC	80/ 73/ 45	0.77
HS 125-600 B	NC	NC	NC	NC	NC	NC	53/60/40	0.78
FALCON 20	NC	NC	NC	NC	NC	NC		0.85
FALCON 50-B	NC	NC	NC	NC	NC	NC	49/55/43 71/62/50	0.85
VFW-614-G6	NC	NC	NC	NC	NC	NC	39/ 39/ 39	0.85
FOKKEB-28	NC	NC	NC	NC	NC	NC	68/ 63/ 56	0.75
CARAVELLE 12	NC	NC	NC	NC	NC	NC	30/34/38	0.77
A320-100	NC	NC	NC	NC	NC	NC	46/53/27	0.82
A 310-200	NC	NC	NC	NC	NC	NC	38/46/25	0.84
B 707-328	NC	NC	NC	NC	NC	NC	65/36/45	0.9
A310-300	NC	NC	NC	NC	NC	NC	39/49/32	0.84
A 200 600	NC	NC	NC	NC	NC	NC	43/47/30	0.82
CONCORDE	NC	NC	NC	NC	NC	NC	88/ 82/ 17	2.04
A330-300	NC	NC	NC	NC	NC	NC	NaN/NaN/NaN	0.86
A340-300	NC	NC	NC	NC	NC	NC	NaN/NaN/NaN	0.86
B 747-400	NC	NC	NC	NC	NC	NC	NaN/NaN/NaN	0.92
A380	NC	NC	NC	NC	NC	NC	NaN/NaN/NaN	0.89
BREGUET 941	NC	NC	NC	NC	NC	NC	30/ 30/ 30	0.42
BR. ATLANTIC	NC	NC	NC	NC	NC	NC	48/ 48/ 48	0.7
TRANSALL TRANSALLCIED	NC	NC	NC	NC	NC	NC		0.64
BOEING C-135	NC	NC	NC	NC	NC	NC	42/ 06/ 42 62/ 31/ 55	0.64
C-141	NC	NC	NC	NC	NC	NC	52/52/52/52	0.83
B 52 H	NC	NC	NC	NC	NC	NC	39/ 39/ 49	0.95
C-5A GALAXY	NC	NC	NC	NC	NC	NC	72/70/49	0.78
ALPHAJET-APP	NC	NC	NC	NC	NC	NC	38/ 41/ 38	0.86
MIRAGE G	NC	NC	NC	NC	NC	NC	24/ $40/$ 40	2.2
MIRAGE 2000B	NC	NC	NC	NC	NC	NC	81/ 72/ 0	2.2
MIRAGE 2000N	NC	NC	NC	NC	NC	NC	81/72/0	2.2
TOBNADO GB 1	NC	NC	NC	NC	NC	NC	65/ 62/ 59	1.03
MIRAGE IV-A	NC	NC	NC	NC	NC	NC	70/56/0	2.1
T.S.R.2	NC	NC	NC	NC	NC	NC	64/ $61/$ 53	2.25
PHANTOM F4B	NC	NC	NC	NC	NC	NC	22/ 24/ 16	2.1
HUNTER F MK1	NC	NC	NC	NC	NC	NC	69/ 65/ 56	1
NORTHROP F5A	NC	NC	NC	NC	NC	NC	41/ $41/$ 41	1.4
MIRAGE III-C	NC	NC	NC	NC	NC	NC	61/ $85/$ 11	2.1
HARRIER GR 1	NC	NC	NC	NC	NC	NC	75/64/23	1.2
MIRAGE III-E	NC	NC	NC	NC	NC	NC		2.2
MIRAGE FI-C	NC	NC	NC	INC NC	NC	NC	42/ 32/ 27	2.2
LIGHTNING M1	NC	NC	NC	NC	NC	NC	64/60/56	1.7
MIRAGE 2000C	NC	NC	NC	NC	NC	NC	81/ 72/ 0	2.2
F 16 A	NC	NC	NC	NC	NC	NC	60/ 60/ 60	2.2
RAFALE - A	NC	NC	NC	NC	NC	NC	69/ 69/ 41	2
SUP.ETENDARD	NC	NC	NC	NC	NC	NC	37/ 40/ 51	1.3
SCIMITAR MK1 F 18 A	NC	NC	NC	NC	NC	NC	69/63/53 50/40/50	1.3
r to A	NC	NC	NU	NC	NC	NC	50/ 49/ 50	2
CESSNA T-37 CNAT T MK 1	NC NC	NC NC	NC NC	NC	NC	NC NC	60/ 61/ 61 58/ 56/ 52	0.64
HAWK T MK 1	NC	NC	NC	NC	NC	NC	35/35/38	0.9
ALPHAJET-ECO	NC	NC	NC	NC	NC	NC	38/41/38	0.86
JAGUAR E	NC	NC	NC	NC	NC	NC	36/43/26	1.7

 \widetilde{d} : Profondeur du caisson travaillant rapporté à la corde locale % : Maximum Mach Operating M_{MO} M_W : Masse de la voilure $M_W = M_{WBA} + M_{WBF} + M_{Wcaisson} + M_{reste}.$ Avec M_{reste} la kgmasse des aérofreins et déporteur de caisson, de la liaison train-voilure, de la trappe de train, des parties secondaires fixes, du blindage contre endommagement et des particularités. $M_{WBA} \;\;$: Masse des Bords d'Attaque de la voilure kg: Masse des Bords de Fuite de la voilure M_{WBF} kg M_{WC} : Masse du caisson travaillant voilure kg M_{WCC} : Masse du caisson central kg M_{WCPF} : Masse du caisson en porte à faux kg

Élodie Roux - novembre 2005

Nom de l'avien	(m^2)	<i>b</i>	λ	ε	φ ₂₅	(°)	Γ (°)	e_r (%) Emp/Cas/Ext	C(m) Emp/Cas/Ext	V_D
	(111)	(m)	0.50		av/a	p Cas.	()	Emp/ Cas/ Ext	Emp/ Cas/ Ext	(<i>m</i> /s)
NORD 262-20	55	21.9	8.72	0.57	0/	0	3	16/ 15/ 12	3.2/2.6/1.8	138 No N
FOKKER-27	70	24.072	12.01	0.41	2/	2	3	$\frac{10}{21}$ $\frac{10}{20}$ $\frac{13}{13}$	3.5/2.6/1.4	139
DC 9-10	89	27.25	8.36	0.26	24'	24	3	13/ $11/$ 9	4.7/ $3.9/$ 1.2	221
B 737-100	100	28.35	8.07	0.26	30/	25	6	15/ $11/$ 8	6/ $3.7/$ 1.5	216
B 737-200	101	28.346	7.99	0.27	28/	25	6	15/ 11/ 8	6/ 3.6/ 1.6	216
DC 9 40	147	33.66	9.74	0.38	20/	20	3	12/12/12 12/10/0	6/4.3/2.2	191
TRIDENT 1	126	28.430	5.95	0.22	31/	35	4	10/10/10	73/45/2	219
MERCURE IT	116	30.294	7.91	0.29	28/	25	5	12/9/9	$\frac{6}{4}$ $\frac{4}{1.7}$	231
B 727-100	163	32.92	6.65	0.3	34/	33	3	13/ 11/ 9	7.7/ 4.9/ 2.3	252
DC 8-20	258	43.41	7.31	0.24	24/	30	7	11/ $10/$ 10	9.5/ $5.8/$ 2.3	211
DC 8-63	278	45.22	7.34	0.21	31/	31	7	11/ 10/ 10	9.5/5.8/2	214
L-I0II TRIST	348	47.34	6.45	0.3	32/	35	5	17/12/11	10.5/ 7.6/ 3.1	224
DC 10-10	362	50 404	7.02	0.27	31/	35	6	13/9/8 13/10/9	11.8/7.7/2.7	216
B 747-100	535	59.64	6.65	0.27	41/	38	7	$\frac{10}{20}$ $\frac{10}{8}$ 8	14.6/ 8.9/ 4	224
CITATION 1	24	14.35	8.53	0.42	2/	2	4	14/ 19/ 11	2.5/ 1.2/ 1.1	174
SN-601-CORVE	22	12.8	7.45	0.39	15/	20	3	14/ 13/ 12	2.8/ 1.9/ 1.1	202
FALCON 10	24	13.09	7.11	0.32	30/	27	3	12/ $11/$ 9	2.8/ $1.9/$ 0.9	221
HS 125-3 B	33	14.32	6.25	0.32	20/	20	4	14/ 12/ 8	3.3/ $2.2/$ 1.1	190
HS 125-600 B	33	14.32	6.25	0.32	20/	20	2	14/19/10	3.3/2.3/1	190
FALCON 50 P	42	10.390	5.67	0.34	30/	30	2	11/ 10/ 8	3.7/3.2/1.3	249
FALCON 900	40	19.328	7.66	0.3	29/	25	1	14/9/9	4.1/2.5/1.1 4.1/2.5/1.2	221
VFW-614-G6	64	21.5	7.22	0.43	15/	15	3	15/14/12	3.9/2.9/1.7	170
FOKKER-28	76	23.58	7.28	0.34	22/	17	3	13/ 14/ 10	4.6/ 3.4/ 1.6	201
CARAVELLE 12	147	33.65	7.7	0.32	33/	19	2	10/ $11/$ 12	7.1/ $5.7/$ 2.2	195
A320-100	122	33.92	9.4	0.25	21/	25	5	21/13/21	6.1/ 3.8/ 1.5	196
A 310-200 B 707 228	219	43.9	8.8	0.26	23/	28	4 7	17/ 12/ 12	8.5/ 5/ 2.2	213
A 310-300	209	43.41	8.84	0.35	24/	28	4	17/12/17	84/49/22	215
A300 B4	260	44.84	7.73	0.31	23/	30	5	11/10/10	9.4/ 5.8/ 2.9	208
A300-600	260	45.2	7.86	0.29	26/	30	5	13/ 9/ 12	9.4/ 5.6/ 2.7	203
CONCORDE	358	25.56	1.82	0.09	59/	59	NaN	3/ 3/ 3	30.6/ 16/ 2.9	293
A330-300	362	60.3	10.06	NaN	NaN/	30	NaN	NaN/NaN/NaN	NaN/NaN/NaN	NaN
A340-300 B 747 400	362	60.3	7 20	NaN 0.28	NaN/	30 NoN	NaN	NaN/NaN/NaN NaN/NaN/NaN	NaN/NaN/NaN 14/NaN/ 2.0	NaN
A 380	845	79.8	7.54	0.28	34/	NaN	NaN	NaN/NaN/NaN	17.7/NaN/ 3.8	NaN
BREGUET 941	84	23.4	6.54	0.54	NaN/	NaN	4	17/ 16/ 16	45/34/24	145
BR. ATLANTIC	120	36.3	10.95	0.4	4/	4	2	18/16/14	4.6/ 3.8/ 1.8	195
TRANSALL	160	40	10	0.5	0/	3	6	18/ 18/ 14	4.8/ $4.8/$ 2.4	165
TRANSALLC160	160	40	9.99	0.5	1/	1	6	18/ $25/$ 14	4.8/ $3.5/$ 2.4	165
BOEING C-135	226	39.8	7.01	0.35	34/	34	7	17/ 10/ 9	8.3/ 5.6/ 2.9	180
C-141	300	48.98	8	0.36	22/	24	5	13/11/10	9.3/6.1/3.4	211
C-5A GALAXY	595	67.88	7 74	0.4	26/	25	-5	10/10/8 12/12/11	9.1/ 7.3/ 3.0 12.4/ 8.5/ 4.7	205
	10	0.1	4.79	0.44	20/	20	7	10/ 11/ 8	28/21/12	N-N
MIRAGE G	33	13	5.2	0.29	64/	13	NaN	11/ 11/ 10	4/ 2.3/ 1.2	412
MIRAGE 2000B	41	9.13	2.03	0.12	51/	51	-5	6/ 5/ 10	7.2/ 4.3/ 0.8	NaN
MIRAGE 2000N	41	9.13	2.03	0.12	51/	51	- 5	6/ 5/ 10	7.2/ 4.3/ 0.8	NaN
BUCCANEER 2B	48	13.42	3.77	0.55	38/	31	0	9/ 8/ 6	4.4/ $3.4/$ 2.4	340
TORNADO GR 1	27	13.9	7.11	0.58	22/	22	4		2.3/1.8/1.3	412
T.S.B.2	65	11.84	1.96	0.21	51/	51	inain 0	$\frac{4}{5}$	9.4/ 0/ 2 8.3/ 2.9/ 1.3	412
PHANTOM F4B	49	11.76	2.81	0.26	41/	41	0	5/ 5/ 5	56/46/15	412
HUNTER F MK1	32	10.26	2.01	0.45	40/	40	1	8/8/9	3.0/ 3/ 1.8	319
NORTHROP F5A	16	7.86	3.91	0.25	64/	24	0	5/ 5/ 6	2.8/1.8/0.7	419
MIRAGE III-C	35	8.22	1.94	0.07	54/	54	-4	4/4/4	6.7/ 4/ 0.5	376
HARRIER GR 1	19	7.68	3.16	0.41	34/	34	14	10/ 8/ 3	3.1/ 2.6/ 1.3	387
MIRAGE III-E	35	8.22	1.94	0.07	54/	54	-4	4/ 0/ 3	6.7/ $4.6/$ 0.5	386
MIRAGE F1-C	25	8.42	2.84	0.35	41/	45	-5		4/ 3.1/ 1.4	412
LIGHTNING M1	24	8.488	1.83	0.28	31/	41	-3	0/ 0/ 0 5/ 5/ 0	4/ 2.7/ 1.1 59/ 45/ 45	373
MIRAGE 2000C	41	9.13	2.03	0.12	51/	51	-5	6/ 5/ 10	7.2/ 4.3/ 0.8	NaN
F 16 A	28	9.45	3.2	0.29	33/	33	0	4/4/4	3.9/ $2.8/$ 1.1	412
RAFALE - A	47	11.225	2.68	0.26	47/	37	-4	4/4/4	7/ 5/ 1.8	NaN
SUP.ETENDARD	28	9.6	3.25	0.5	45/	45	-2	6/ 5/ 5	3.9/2.9/2	334
SCIMITAR MK1	45	11.32	2.84	0.45	45/	45	0	7/7/0	5/3.9/2.3	374
F 18 A	37	11.43	3.52	0.42	19/	19	3	$\frac{3}{3}$	4/ 2.9/ 1.7	3/10
GNAT T MK 1	16	7.32	0.21	0.69	40/	40	3 5	7/6/7	$\frac{2}{2.8}$ $\frac{1.7}{1.4}$	324
HAWK T MK 1	17	9.39	5.28	0.38	21/	21	2	11/ 10/ 9	2.4/ 1.4/ 0.9	283
ALPHAJET-ECO	18	9.1	4.73	0.44	29/	26	-7	10/ 11/ 8	2.8/ $2.1/$ 1.2	309
JAGUAR E	24	8.488	3	0.28	37/	41	-3	6/5/5	4/2.7/1.1	373

b : Envergure

C~:Corde géométrique (Emp. = à l'emplanture, Cas. = à la cassure, Ext. = à l'extrémité) (m)

 $\widetilde{d}~$: Profondeur du caisson travaillant rapporté à la corde locale

 $e_r\;$: Épaisseur relative du profil (Emp. = emplanture, Cas. = cassure, Ext. = extrémité)

 e_r : Epilsseur relative du prom (Emp. – emplanters, cas. – et al. S: Surface vollure V_D : Design dive speed FAR 25.335 λ : Allongement vollure $\lambda = \frac{b^2}{S}$ ε : Effilement, le rapport des cordes à l'extrémité et à l'emplanture $\varepsilon = \frac{C_{ext}}{C_{emp}}$

 φ_{25} : Flèche voilure à 25% de corde

 $\Gamma~$: Dièdre de la voilure

Thèse : Pour une approche analytique de la Dynamique du Vol

% % m^2

m/s

0

m

Annexe B

Modèle de l'environnement

B.1 Modèle de l'atmosphère standard

En admettant que dans la troposphère (entre 0 et 11 km d'altitude) la température varie de façon linéaire avec l'altitude h :

$$T(h) = T_0 + a_h h$$

avec $a_h = \text{cte.}$ En considérant des molécules d'air, nous avons :

$$\rho g - gradP = 0 - \rho g = \frac{dP}{dh}$$

En assimilant l'air à un gaz parfait, nous pouvons écrire :

$$PV = n_{air}RT$$

$$P\frac{m_{air}}{\rho} = n_{air}RT$$

$$P\frac{m_{air}}{n_{air}} = \rho RT$$

$$P\mathcal{M}_{air} = \rho RT$$

$$\rho = \frac{\mathcal{M}_{air}P}{RT}$$

$$\begin{array}{lll} \frac{\partial P}{\partial h} & = & -\frac{\mathcal{M}_{air}P}{RT}g \\ & = & -\frac{\mathcal{M}_{air}P}{R(T_0+a_hh)}g \end{array} \end{array}$$

Supposons que la pression ne dépend que de l'altitude : P = P(h).

$$\frac{dP}{P} = -\frac{\mathcal{M}_{airg}}{R(T_0 + a_h h)} dh$$

$$\ln P = -\frac{\mathcal{M}_{airg}}{Ra_h} \ln(T_0 + a_h h) + cte$$

Appliquons les conditions aux limites. À h = 0, P = Psol et $T = T_0$, nous pouvons écrire que : $\ln P_0 = -\frac{\mathcal{M}_{airg}}{Ra_h} \ln T_0 + cte$. Alors :

$$\ln \frac{P}{P_0} = -\frac{\mathcal{M}_{airg}}{Ra_h} \ln \frac{T_0 + a_h h}{T_0}$$
$$\frac{P}{P_0} = (\frac{T_0 + a_h h}{T_0})^{-\frac{\mathcal{M}_{airg}}{Ra_h}}$$

Or nous avions, $\rho = \frac{\mathcal{M}_{air}P}{RT}$, alors : $\rho = \frac{\mathcal{M}_{air}P_0}{R(T_0+a_hh)} (\frac{T_0+a_hh}{T_0})^{-\frac{\mathcal{M}_{air}g}{Ra_h}}$. Finalement :

$$\rho = \frac{\mathcal{M}_{air}P_0}{R} T_0^{\frac{\mathcal{M}_{airg}}{Ra_h}} (T_0 + a_h h)^{-(1 + \frac{\mathcal{M}_{airg}}{Ra_h})}$$

$$\rho = \rho_0 \left(1 + \frac{a_h}{T_0}h\right)^{-\left(1 + \frac{\mathcal{M}_{air}g}{Ra_h}\right)}$$

En prenant

- $-T_0 = 15^{\circ}C = 288.15K$
- $-P_0 = 101325Pa$
- $-g = 9.80m.s^{-2}$
- gradient vertical de température : $a_h = -6.5 K.km^{-1}$
- $-R = 8.31451K^{-1}.mol^{-1}$
- $-\mathcal{M}_{air} = 28.96g.mol^{-1}$

Si on se place à des altitudes plus hautes que la troposphère (jusqu'à 11 km), la température est toujours modélisée par une fonction linéaire mais son gradient prend alors d'autres valeurs. Jusqu'à 20 km elle ne varie plus puis augmente avec un gradient de 1.10^{-3} jusqu'à 32 km puis de 2.810^{-3} de 32 à 47 km. Par le même type de calculs effectués précédemment, les paramètres de l'atmosphère sont ainsi modélisés (cf (Figure B.1)).

Modèle de l'atmosphère standard

FIG. B.1 – Évolution des paramètres de l'atmosphère avec l'altitude selon le modèle de l'atmosphère standard

Thèse : Pour une approche analytique de la Dynamique du Vol

209

B.2 Modèle de la vitesse du son

La vitesse du son est donnée par :

$$a = \sqrt{\gamma rT}$$

 $\begin{array}{ll} a & \text{Vitesse du son} & m/s \\ \gamma & \text{Constante des gaz parfaits } \gamma = 1.4 \\ r & \text{Constante } r = \frac{R}{\mathcal{M}_{air}} = 287.1 \ J/kg/K & J/kg/K \\ R & \text{Constante de Joules } R = 8.31451 \ K^{-1}.mol^{-1} & K^{-1}.mol^{-1} \\ \mathcal{M}_{air} & \text{Masse molaire de l'air } \mathcal{M}_{air} = 28.96 \ g.mol^{-1} & g.mol^{-1} \end{array}$

B.3 Nombre de Reynolds Re

Le nombre de Reynolds est défini par :

$$Re = \frac{V \, l}{\nu}$$

La viscosité cinématique ν est définie par :

$$\nu = \frac{\mu}{\rho}$$

Et la viscosité μ est donnée par la loi de Sutherland :

$$\mu = 1.4 \ 10^{-6} \frac{T^{3/2}}{T + 110.4}$$

Re	Nombre de Reynolds	
V	Vitesse	m/s
l	Longueur de référence	m
ν	Viscosité cinématique	m^2/s
μ	Viscosité	kg/(m/s)
ρ	Masse volumique de l'air	kg/m^3
T	Temperature de l'air	K

Bibliographie

- [ACP+96] Mark D. Ardema, Mark C. Chambers, Anthony P. Patron, Andrew S. Hahn, Hirokazu Miura, et Mark D. Moore. Analytical fuselage and wing weight estimation of transport aircraft. NASA, 1996. Technical memorandum TM-110392. http://atrs.arc.nasa.gov/atrs/96/ardema/961451/961451_ardema.pdf.
- [Adu04] Marco Adurno. Qualités de Vol, position du foyer et point de manœuvre d'un avion souple. SUPAÉRO, 2004. Rapport de stage encadré par J.-L. Boiffier.
- [AJ96] Michael F. Ashby et David R.H. Jones. Matériaux : Propriété et applications, volume 1, chapter L'aube d'une turbine : Une étude de cas de conception contrôlée par la résistance en fluage, pages 169–178. DUNOD, Paris, 1996. ISBN : 2-10-003106-6.
- [Boi98] Jean-Luc Boiffier. The Dynamics of Flight : The Equations. Wiley, Juillet 1998. ISBN : 0-471-94237-5.
- [Boi01] Jean-Luc Boiffier. *Dynamique du Vol de l'avion*. Version 7.1. Notes de cours. SUPAÉRO, Septembre 2001.
- [Boi05] Jean-Yves Boiffier. *Pilote AirFrance*. AirFrance, d'après des conversations téléphoniques du 27 octobre 2004, du 4 et 26 mai 2005.
- [Bou04] Guy Bousquet. Senior Engineer Aircraft Performance. Airbus CE-EVT, 2004. Essais en vol.
- [Bov03] Laurent Bovet. Optimisation conceptuelle de la croisière : application aux avions civils. Thèse de doctorat, Université de Marseille, Octobre 2003.
- [BV99] Jean-Luc Boiffier et Pierre Vacher. Document d'usage interne. ONÉRA, 1999. RT 1/7601.27 DCSD.
- [CB00] Alain Carrère et R. Barènes. Notes de cours de majeure de dynamique du vol de 1ère année : Modélisation des Efforts de Propulsion. SUPAÉRO, 1999-2000.
- [CM88] D. Cavalli et T. Marchon. Base de données "Avions" conforme à la norme 2001/D. ONÉRA, avril 1988. Diffusion restreinte. Rapport Technique RT14/3403 SY.
- [Dup92] W.P Dupont. Avant projet d'un avion de transport commercial. Aérospatiale-SUPAÉRO A/DET/AP, 1992.
- [ESD72] ESDU. Low-speed longitudinal aerodynamic characteristics of aircraft in ground effect, volume 9a - Stability of aircraft - General. Longitudinal stability. ESDU, October 1972. ISBN : 0 85679 022 2. Data item No. 72023. Part : Aerodynamics.
- [ESD82] ESDU. Approximate methods for estimation of cruise range and endurance : aeroplanes with turbo-jet and turbo-fan engines, volume 8 - Performances. ESDU, May 1982. 73019. ISBN : 0-85679-043-5.

- [ESD85] ESDU. Calculation of ground performance in take-off and landing, volume 6 Airfield performance (general). Landing. ESDU, November 1985.
 ISBN : 0 85679 535 6. Data item No. 85029. Part : Performance.
- [ESD00a] ESDU. Example of statistical analysis of wet runway friction : aircraft with extensive set of test data, volume 6 - Airfield performance (general). Landing. ESDU, November 2000. ISBN : 1 86246 084 1. Data item No. 99016. Part : Performance.
- [ESD00b] ESDU. Example of statistical analysis of wet runway friction : aircraft with limited set of test data, volume 6 - Airfield performance (general). Landing. ESDU, November 2000. ISBN : 1 86246 085 X. Data item No. 99017. Part : Performance.
- [ESD00c] ESDU. Example of statistical analysis of wet runway friction : Ground-test machine data, volume 6 - Airfield performance (general). Landing. ESDU, October 2000. ISBN : 1 86246 121 X. Data item No. 00018. Part : Performance.
- [ESD00d] ESDU. Statistical analysis of wet runway friction for aircraft and ground-test machines, volume 6 - Airfield performance (general). Landing. ESDU, October 2000. ISBN : 1 86246 083-3. Data item No. 99015. Part : Performance.
- [FAA98] Federal Aviation Administration FAA. Advisory Circular AC25-7A : Flight test guide for certification of transport category airplanes. U.S. Department of Transportation, March 1998.
- [FAA03] Federal Aviation Administration FAA. Federal Aviation Regulations FAR 25: Airworthiness Standards - Transport Category Airplanes. U.S. Department of Transportation, 2003.
- [Feh91] J.-M. Fehrenbach. Élements pour le calcul de structure d'avions. Cours SUPAÉRO de 2ème année, 1991.
- [GR70] Robert P. Gerend et John P. Roundhill. Correlation of Gas Turbine Engine Weights and Dimensions. AIAA 6th Propulsion Joint Specialist Conference, June 1970. AIAA Paper No. 70-669.
- [Gui03] Jean Guillot. Conception : Modélisation des systèmes mécaniques. INSA, 2003. Notes de cours de 4ème année.
- [Hal84] Francis Hale. Introduction to Aircraft Performance, Selection, and Design. Wiley, 1984. ISBN : 0-471-07885-9.
- [htta] *http://www.cfm56.com.* CFM56 de General Electric.
- [httb] http://www.geae.com. General Electric Aircraft Engines.
- [httc] *http://www.pratt-whitney.com.* Pratt & Whitney.
- [httd] *http://www.Rolls-Royce.com.* Rolls-Royce.
- [JSR99] Lloyd R. Jenkinson, Paul Simpkin, et Darren Rhodes. Civil Jet Aircraft Design. Elsevier Sciences & Technology, Butterworth-Heinemann, http ://books.elsevier.com/companions/034074152X/appendices/dataa/default.htm, 1999.
- [Kro01] Ilan Kroo. Aircraft Design : Synthesis and analysis. Stanford, 2001. Cours en ligne : http://adg.stanford.edu/aa241/structures/componentweight.html.
- [Lam90] Roger Lamouline. La pratique du Turbofan. Lavoisier : Technique et documentation & TEKNEA, 1990. Lavoisier : ISBN : 2-85206-654-8 ou TEKNEA : ISBN : 2-87717-013-6.

- [Lau92] Attilio Lausetti. Decollo e atterramento aeroplani, idrovolanti trasportati. Libreria Editrice universitaria Levrotto & Bella Torino, 1992. Dipartimento di Aeronautica e Aerospaziale del Politecnico di Torino.
- [Lec02] Frédéric Leclerc. Notes de Cours de Structures. Airbus France-SUPAÉRO, Mars 2002. version 3. Majeure de Dynamique du Vol.
- [Mar92] John F. Martin. Etude préliminaire d'un avion de transport à réaction (à partir de la corrélation des caractéristiques et des performances d'avions existants). L'aéronautique et l'astronautique, page 69, juin 1992. N.157.
- [Mar05] Frédéric Marani. Modèle avion A330-300 pour validation du modèle de décollage d'Élodie Roux. Airbus (EGVT/Low & High Speed Perfo), 16 mars 2005. Courrier à usage interne.
- [Mat96] Jack D. Mattingly. Elements of Gas Turbine Propulsion. McGraw-Hill International Editions, 1996. ISBN : 0-07-114521-4.
- [Mat99] Benoît Mathieu. L'aile volante : une nouvelle formule de transport aérien ? Projet de fin d'études encadré par Jean-Luc Boiffier, INSA-ONÉRA, 1999.
- [MB92] W. Austyn Mair et David L. Birdsall. *Aircraft performance*. Cambridge University Press, 1992. ISBN : 0-521-56836-6.
- [MHD87] Jack D. Mattingly, William H. Heiser, et Daniel H. Daley. Aircraft Engine Design. AIAA Education series, 1987. ISBN : 0-930403-23-1.
- [Mor58] Piero Morelli. On the weight of sailplanes as a function of their main geometric parameters. OSTIV, June 1958. 7th OSTIV Congress, Poland.
- [MS00] Frédéric Marani et Patrick Sallier. *BE de Dynamique du Vol des Mastères TAS : Panne moteur au décollage*. SUPAÉRO-Airbus, 2000.
- [Nic84] Leland M. Nicolai. Fundamentals of Aircraft Design. METS, June 1984. ISBN : 9991295291.
- [OB96] René Orengo et René Boudet. Génie mécanique Organes de machines, volume B 5 III. Technique de l'ingénieur, 1996. ISSN : 0399-4104.
- [Pal98] Sébastien Palluel. *Modèles de masse voilure*. SUPAÉRO, juin 1998. Projet d'Initiation à la Recherche, encadré par Jean-Luc Boiffier.
- [Pau97] S. Bringtown, I. Miché, M. Clément et A. Paulmier. Performances d'avions civils au décollage et à l'atterrissage : solutions analytiques. Document de travail interne, Projet d'Initiation à la Recherche A2, SUPAÉRO, 1997. Encadré par Jean-Luc Boiffier.
- [PB99] Céline Pendaries-Bourissou. Performances d'un avion souple. Application aux gnoptères Hales. Thèse de doctorat, ONÉRA-SUPAÉRO, 1999. numéro d'ordre 283.
- [PDM00] B. Paluch, F. Descatoire, et F. Morel. Module d'évaluation du devis de masse COMPACT. ONÉRA-DCSD, mai 2000. Rapport Technique : RT 3/7998.24 AER 00640.01F DCSD.
- [PSE00] P.Prévost, S.Esparza, et E.Labarrère. PFR HALERTE : Propulsion des drones par moteurs à pistons turbocompressés et turboréacteurs, Refroidissement des systèmes moteurs et charges utiles. ONÉRA, Décembre 2000. Rapport Technique : RT 02/03628 DPRS/DMAE (AER 03628 06F DMAE).
- [Raš00] Jan Raška. Pertinence des modèles de conception d'un avant projet d'avion : application aux gnoptères hales. Thèse de doctorat, SUPAÉRO, novembre 2000.

Thèse : Pour une approche analytique de la Dynamique du Vol

- [Ray99] Daniel P. Raymer. Aircraft Design : A conceptual Approach. AIAA Education Series, third edition, 1999. ISBN : 1-56347-281-3.
- [Rid97] Guy-Louis Rideau. Memento Moteur. Snecma W/TXP, Avril 1997. 43.7990.
- [Ros85] Jan Roskam. Airplane Design : Component Weight Estimation. The University of Kansas. Lawrence, Kansas, 1985.
- [Ros05] Jacques Rosay. Essai en vol : intérêts des essais en vol, certification, types d'essais, équipe et moyens d'essais. Généralités et conception du cockpit de l'A380. Conférence SUPAÉRO dans le cadre de l'enseignement de Dynamique du Vol, juin 2004 et 2005. Chef pilote d'essai Airbus.
- [Rou02] Élodie Roux. Modèles Moteurs ..., volume 1, Pour une approche analytique de la Dynamique du Vol. SUPAÉRO-ONÉRA, 2002.
- [Rou03] Élodie Roux. Modèle de Masse Voilure Avions de transport civil, volume 2, Pour une approche analytique de la Dynamique du Vol. SUPAÉRO-ONÉRA, 2003.
- [Rou05] Élodie Roux. Modèle de longueur de piste au décollage-atterrissage Avions de transport civil, volume 3, Pour une approche analytique de la Dynamique du Vol. SUPAÉRO-ONÉRA, 2005.
- [Rui96] G. J. J. Ruijgrok. Element of Airplane Performance. Delft University Press, 1996. ISBN : 90-6275-608-5.
- [SS01] David Simon et Sebastien Servoles. Expression analytique des modes latéraux d'un avion. SUPAÉRO, Mai 2001. Projet d'Initiation à la Recherche encadré par Jean-Luc Boiffier.
- [Ste69] Walter Stender. Sailplane weight estimation. OSTIV, June 1969.
- [Taq] Gilles Taquin. Aérospatiale.
- [TF97] Clément Toussaint et Guy Frager. Adaptation du cycle d'un turboréacteur en vol sonique. ONÉRA, Septembre 1997. Rapport Technique : RT 135/7103 DEFAN Département Énergétique Fondamentale et Appliquée.
- [Tor68] Egbert Torenbeek. The Propulsion of Aircraft with Laminar Flow Control. TU-Delft-The Netherlands, November 1968. Report VTH-150 (680646).
- [Tor73] Egbert Torenbeek. Analytical Method for Computing Turbo-Engine Performance at design and Off-Design Conditions. TU-Delft-The Netherlands, 1973. Memorandum M-188.
- [Tor86] Egbert Torenbeek. Synthesis of Subsonic Airplane Design. Delft University Press, Martinus Nijhoff Publishers, 1986. ISBN : 90-247-2724-3.
- [Vin93] Nguyen X. Vinh. Flight Mechanics of High-Performance Aircraft. Cambridge University Press, 1993. ISBN : 0-521-47852-9.
- [Vio92] Pascal Viou. Calcul de masse d'un caisson de voilure d'avion de transport civil du type Airbus. Rapport de Stage ONÉRA/SUPAÉRO. Édition des artistes scientifiques, 1992.
- [Wan84] Jean-Claude Wanner. Dynamique du vol et pilotage des avions. SUPAÉRO, 1984. Notes de cours.
- [Wee98] Aviation Week. Aerospace Source Book. Aviation Week & Space Technology, January 12 1998. Vol.148 No.2.

Résumé de la thèse :

L'objectif de la thèse est de traiter quelques thèmes de la Dynamique du Vol par une approche analytique. Cette approche constitue un complément pertinent de l'approche numérique. C'est un outil d'analyse rapide et physique des phénomènes particulièrement utile, notamment :

- Au stade de pré-développement en phase conceptuelle rapidité des calculs
- Pour cerner rapidement les axes pertinents de recherche outil d'aide à la décision
- Pour interpréter et valider des études numériques sophistiquées.

Les thèmes suivants ont été traités :

- Modèles des efforts extérieurs :
 - \circ propulsif (ex : poussée moteur F_{max} et consommation spécifique C_{SR})
 - massique (ex : masse moteur Mm et voilure M_w)
 - Performances opérationnelles (ex : longueur de piste au décollage L_p)

La cohérence du projet réside dans l'état d'esprit commun et l'unité de la méthode pour traiter les différents thèmes. Les modèles analytiques classiques sont revisités avec la puissance du calcul formel avec l'aide de logiciel tel que Maple. Si possible une généralisation est faite par une approche adimensionnelle qui rend le résultat universel, c'est-à-dire applicable à tout type d'avion.

Mots clefs : Dynamique du Vol, performances conceptuelles, performances opérationnelles, consommation spécifique de carburant, poussée moteur, masse moteur, masse voilure, longueur de piste au décollage.

Summary:

The aim of this PhD thesis is to study some topics of the Dynamics of Flight, by an analytical approach. This constitutes a pertinent complement of the numerical approach. It is a particularly useful tool for a rapid analysis with a physical understanding of the phenomena. In particular, this approach can favorably be exploited:

- at the preliminary design stage in the conceptual design phase calculation's speed
- to quickly investigate the pertinent research orientations tool of decision-making aid

• to interpret and validate sophisticated numerical studies.

The following topics were treated:

- Models of the external efforts:
 - \circ Propulsion (ex: engine thrust F_{max} and specific fuel consumption $C_{SR})$
 - Mass (ex: engine mass Mm and wing mass M_w).
 - Operational performances (ex: takeoff field length L_p).

The project's coherence lies in the common state of mind and the method unity to treat the various topics. The traditional analytical models are revisited with the power of formal calculation with the assistance of software such as Maple. If possible, a generalization is made by an adimensional approach which makes the result universal, i.e. applicable to any type of airplane.

Keywords: Dynamics of flight, conceptual performances, operational performances, specific fuel consumption, engine thrust, engine mass, wing mass, takeoff field length.

10, avenue Édouard-Belin - BP 54032 - 31055 Toulouse cedex 4 - France Tél : 33 (0)5 62 17 80 80 - Fax : 33 0(5) 62 17 83 30 - http://www.supaero.fr Établissement public à caractère administratif sous tutelle du Ministère de la Défense