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General introduction

Daily human activity includes complex orientatioppstural control, and movement
coordination. All these tasks depend upon his pti@e of motion. The non-auditory section
of the human inner ear, the vestibular systemeognized as the prime motion sensing
center. It represents an inertial measuring dewicieh allows us to sense, in the absence of
external sensory cues (vision, etc) self-motiorhwéspect to the six degrees of freedom in
space (three rotational and three translational).

The information from the vestibular apparatus isdis three ways:

» To provide a subjective sensation of movementieefdimensional space
* To maintain upright body posture (balance)

* To control the muscles that move the eyes, soithapite of the changes in head
position which occur during normal activities sugh walking or running, the eyes
remain stabilized on a point in space.

Several scenarios illustrate these points. Foant#, if a cat is dropped upside down, it will
land right side up on all four paws. If a newbonfant is tilted backward, its eyes will roll
downward so that its gaze remains fixed on the sponat. If, as you read this report, you
shake your head rapidly from side to side, thetpronetheless will stand still. Each of these
scenarios is an example of how a healthy balanestipular) system compensates for daily
changes in our spatial orientation.

The vestibular system is comprised of two primanyse organs:
» The semicircular canals (SCCs), which detect am@gdeelerations of the head
* The otolith organs, which respond to linear acegiens of the head and to gravity.

Thus, vestibular sensors provide information to lth@in regarding our body’s position and
acceleration in space with sensing capabilities éin@ compatible with everyday movements
of man relative to his surroundings, and hence pénjral role in spatial orientation.

Spatial orientation can be defined as one’s peimepdf body position in relation to a
reference frame. This process involves two mairs@gnmodalities, the vestibular system
and vision, but proprioceptive and auditory inpaitso come into play. The control of spatial
orientation during navigational tasks and locomotiequires a dynamic updating of the
representation of the relations between the bodlythe environment, i.e. spatial orientation
normally entails both the subconscious integrabbrmultisensory cues and the conscious
interpretation of external information. Therefotbe Central Nervous System (CNS) uses
information coming from multiple sensors to comewith a representation of how the body
is moving and is oriented in space.

The results of this “spatial orientation” process asually satisfactory in most everyday life
situations. However, when technology achievemeetgab to expose humans to new and
artificial situations such as sustained accelematiocn fighter airplanes or micro-gravity

environment in spacecrafts, our ability to corng@stimate our position and motion became
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limited. As a matter of fact, as the number of feghairplane accidents due to technical failure
keeps decreasing, human errors have been proviea &osafety limiting factor. That is, the
advent of aeronautics flight has not only invohaedew demand on human organism but also
the ability for pilots to deal with a high workloahvironment and a complex instrument
panel. Furthermore, in some circumstances, foant& when flying in clouds or at night,
pilots may not have the possibility of seeing exéérreferences. As a result, pilots are
constantly liable to introduce conflict betweenitheternal feeling of orientation and the true
orientation, and hence to experience a case ofasgigorientation which is a phenomenon
attributed to 15 to 30% of all aircraft fatalitissflight (Braithwaite et al. 1998, Knapp et al.
1996). Thus, all these considerations have leadoeumf researchers to model human spatial
orientation.

Mathematical models for three-dimensional humantigparientation have continued to
evolve over the past four decades. Several modetd and have been developed using
multiple computational approaches such as lineategys analysis, the concept of internal
models, observer theory, Bayesian theory, Kalmiéerifng and particle filtering. A review of
these approaches has recently been written by Miagjée(2008). Different features can be
distinguished among these models: some of thenremteicted to one-dimensional space,
whereas others take into account motions in threeiasional space; some incorporate visual
cues, whereas others only model vestibular responglee dark; and some work for large
head tilts whereas others do not.

Contributions of this work

The scope of the work presented in this thesis e@mscon one hand the modeling of the
vestibular sensors, and more particularly the seoni@r canals, and on the other hand
nonlinear models for human spatial orientation @ption.

Since the 30’s, numerous models of the semicircalmal macromechanics have been
suggested using different approaches. W. Steinha(i#33) formulated a classical torsion
pendulum model for the dynamic behavior of a sifg&C. This model, which has been the
benchmark for subsequent works, consists of aesidggree of freedom overdamped spring-
mass-damper system subject to mass-proportiondlarfercing. Several notable extensions
have then been made to enhance this original mmpdedlating the geometry and structure of
the SCC to mass, stiffness, and damping paramejgpearing in the model (e.g. Van
Egmond et al. 1949, Groen et al. 1952, Van BuskBK6, Oman et al. 1987, Rabbitt et al
2004). Other models were based on the resolutigheofluid flow equation within the canal
(Van Buskirk 1977, Van Buskirk 1988, Steer 1967, ddnet al. 1987, Damiano et al. 1996,
Rabbitt et al. 1999). The three-dimensional modeDman et al. (1987), in which the non-
uniform geometry of the canal was considered, gobybaonstitutes the most compatible
biophysical single-degree of freedom model of tRECSSome of these models are formulated
in one dimension, while few of them consider a¢hd@nensional geometry. Moreover, all of
these models consider a single canal and mosteoh ttho not take into account the fluid-
structure interaction but rather consider the erfice of the cupula by a punctual elasticity.

- Therefore, the first goal of the present thesi® iprovide a three-dimensional model of
the entire set of canals using fluid-structuraitéirelements simulations. To achieve this goal,
we first develop a two dimensional finite-elementsdel of a single canal. Second, this
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model is extended to a three-dimensional casellf;inhe 3D model is extended to the case
where the three semicircular canals are considered.

In order to build these numerical models, one ndedenow the physical properties of the
fluid that fills the canals and the elastic pro@stof the cupula - a membrane located within
the duct that acts as a coupling between the floid and sensory hair cells. The properties
of the fluid, i.e. its density and viscosity, arelilknown (Steer, 1967). However, it is hard to
find in the literature values for the elastic prdjgs of the human semicircular canal cupula,
and more especially its Young’s modulus, as mostlehoepresent the cupula as a linear
spring-like element of stiffnes =AP/AV ,where AV is the volume displaced upon

application of a pressure differen® .

- Thus, the second goal of this doctoral work igstimate the Young's modulus of the
human semicircular canal cupula using thick pldteoty and also finite-elements (FE)
models. In addition, cupula FE models are also tsetudy the influence of different cupula
shapes on its motion and to analyse both the siesin distribution and evolution near the
sensory epithelium.

As we move in our surrounding in space, our vesdibaensors provide information to the
brain regarding our body’s position and acceleratiospace. However, the way each sensor
behaves for any angular or linear accelerationoisabvious, especially for complex head
motion. In particular, in order to find out whateathe semicircular canals sensing when a
subject is doing head movements on a centrifugen8id€@002) developed a model that was
able to compute the state of each cupula duringnipesed motion. However, this model was
limited to SCC sensors, considered a head cengartedf sensors, and the implementation of
successive head movements was not possible.

- Consequently, the third goal of this thesis igxtend this model: 1) by considering not
only the angular but also the linear sensors, Zpking into account the position of the inner
ear away from head vertical axis, 3) by implementnthree-dimensional animation of the
sensors, and 4) by developing a virtual reality elad the experiment. As an application, we
have chosen to model a medical procedure calledaiay chair testing that is commonly
used during a vestibular diagnosis rather than mtritége experiment. However, the
developed model can be easily extended to the afasecentrifuge paradigm as the distance
between the position of the inner ear and the @ixistation is a parameter of the model.

-> In addition to this virtual model, we propose misitude study, a choice of adequate
materials, and a set of parameters so as to buiddge scale model of the system SCC /
cupula that has a similar dynamic behavior of ti@ogical system for a specific imposed
angular velocity.. Both models (virtual and scaled®l) can be used as a demonstrating and
learning tool, for instance for the training of nead students, as the theoretical state of each
sensor can be observed in real time for any kinaeafd rotation.

Regarding to the models of human spatial orientatteo principle model families can be
distinguished: Observer class models and Kalmaterfitlass models. Although both
approaches are apparently based on different assumspthey produce similar responses, at
least for the set of empirical parameters derivethe literature.
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- The fourth goal of this thesis is to demonstrateywihe Observer and Kalman filter
model families are dynamically equivalent from aput-ouput perspective. Furthermore, we
investigate the physical meaning of the KF modeapeeters that were previously chosen as
free parameter of the model and were derived eogbiyi

The first Observer model developed by Merfeld et(4093) has then been extended by
several authors till the last contributions of Neswym(2009). Despite this model is able to
simulate different kinds of sensory illusions stlimited to deterministic signals as it does not
consider process noise and sensor noise. Furtheyrtia@ gains used in the model that drive
the responses in term of position, velocity, anckration perception are empirical. In order
to derive a set of optimal gains and to take irdnsideration stochastic signals, Pommellet
(1990) applied the extended Kalman filter (EKF) ttus problem. However, his filter
exhibited important numerical oscillations.

- Therefore, the fifth goal of this thesis is fitst modify Pommellet's model so as to
improve numerical stability and second to developtler nonlinear model based on a novel
estimation technique called the unscented Kalmier f{UKF). It has been shown that in
many applications this technique outperforms the-EK terms of stability, accuracy, and
computation time.

Objectives of the thesis

The main objectives of the presented thesis aremarined as follows:

* Estimation of the elastic properties of the humamisircular canal cupula — a
membrane located in each canal that functions esupling between the fluid flow
within the ducts and the sensory hair cells —usinig and thick bending membrane
theory and also finite-element simulations basedore realistic morphology

» Develop of a three-dimensional model of the setawhicircular canals based on fluid-
structural finite-elements simulations

* Develop of a three-dimensional dynamic virtual itgahodel of the vestibular sensors
in order to propose both a demonstrating and ailegtool of this system

* Propose a similitude study so as to build a laoggesmodel of the semicircular canals

* Demonstrate why the widely known “Observer” and Iidan filter” model families
for human spatial orientation perception — desgpparently different assumptions —
are dynamically equivalent from an input-outputl@ttk box”) perspective

* Develop two nonlinear models for human spatialraggon estimation with the help
of the extended Kalman filter and the unscentedm&al filter, respectively. Both
models are formulated in three-dimensional spadetake into account vestibular and
visual cues.
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Based on the work of this thesis, the author hafaiseucceeded in publishing the following

works:

* International peer-reviewed journals:

>

Development of a dynamic virtual reality model bé tinner ear sensory
system as a learning and demonstrating tdébdelling and Simulation in
Engineering, volume 20009.

» International conference with proceedings:

>

A Matlab/simulink model of the inner ear angularcelerometers sensors.
ASME, International Design Engineering Technicah@oences & Computers
and Information in Engineering Conference, Augut-3September™, San
Diego, California, USA.

* Manuscripts under progress:

>

Mechanical properties and motion of the cupula led human semicircular
canal.Journal of Vestibular Research.

Relationship between Observer and Kalman filter @®dor human dynamic
spatial orientationJournal of Neurophysiology.

Nonlinear models for human spatial orientatiodournal of Biology
Cybernetics.

A three-dimensional finite-element model of the dureemicircular canals.
Computer Modeling in Engineering & Sciences.
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Thesis organization

The presented thesis is organized in six chapters.

* Chapter 1. — Background: Provides a backgrounchenahatomy and physiology of
the vestibular system, on the history of spatiaérdgation modeling, and on state
estimation techniques of dynamic state-space models

» Chapter 2. — Finite element modeling: Presentsefiaiement models for the cupula
and finite-element fluid-structural interaction nebdof the semicircular canals.
Introduces the history on cupula attachment, bendiode, stiffness, and modeling.
Estimates the Young’s modulus of the cupula udiig &nd thick bending membrane
theory, finite-element simulations, and estimatésaopressure-volume coefficient
taken from the literature. Presents a three-dinomasifinite-element model of the
semicircular canals.

» Chapter 3. — Virtual reality model: Presents theeflgoment of a virtual reality model
of the vestibular sensors. The kinematics probkefirst formulated. The resolution of
the equation of motions and the computation ofdfia¢e of each sensor are achieved
using a Simulink model. Finally, a virtual worldlisked to the Simulink file so as to
visualize in real time the behavior of the senssygtem. Note that a graphic user
interface is specifically developed to simplify thige of the model.

» Chapter 4. — Models for human spatial orientatiencpption: Demonstrates why the
“Observer” and “Kalman filter” model families arguvalent from an input-output
perspective. Introduces the idea that the motistuddance and sensor noise spectra
employed in the Kalman Filter formulation may refldluman perceptual thresholds
and prior motion exposure history. Describes threcsiire of the EKF and UKF
models through the modeling of the sensors andéfiaition of the central process in
terms of suboptimal estimation. Discusses impleatent in Matlab. Presents
predictions of the model for usual experimentalesa$erforms a sensitivity analysis
on the parameters of the model.

 Chapter 5. — Scale model of the semicircular canalsimilitude study for the
semicircular canal is presented, and potential nads$efor the manufacturing of the
large scale model are proposed.

* Chapter 6. — Conclusion: Summarizes the key firglio§ this study and makes
recommendations for future work.

The work related to the development of models foman spatial orientation estimation and
to finite-elements modeling of the cupula has besmied out while the author was a visiting
student at Massachusetts Institute of Technology.
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Chapter I: Background

1.1. Vestibular physiology

The inner ear is divided into two parts: the coahkerving auditory function, and the

vestibular system - which is phylogenetically th@est part of the inner ear - that contains the
sensors providing information of body orientatiamdaalance in three-dimensional space.
Any motion of the body are thus detected by thdilvekr system, encoded as an electrical
signal, and transmitted to the brain through thstilbalar nerve. The brain then integrates
vestibular, visual, and somatosensory inputs tonas¢ the orientation and motion of the

body, and consequently elicit eye, head, or bodyements that will stabilize gaze and

maintain balance.

There is one vestibular system on each side dii¢iael, in close approximation to the cochlea.
Due to its specific structure, this system is atsdled the labyrinth (Fig. 1.1). One
distinguishes between the bony labyrinth and thenbranous labyrinth. The bony labyrinth
is a complex cavity tunneled in the temporal bohtne skull. Its structure forms three ducts -
the semicircular canals - that converge towardgelacentral part called “the vestibule”. The
membranous labyrinth is enclosed in this ossedugileth, and is suspended in a fluid called
“the perilymph” (Sauvage, 1999). In birds and mansnéne connective tissue filaments
suspend the membranous duct within the osseoud. céma filaments serve to anchor the
membranous labyrinth to the temporal bone such that gravitoinertial acceleration
experienced by the sensory organs could be expexztaelnearly identical to that experienced
by the temporal bone. To date, there are no exeatish data to suggest significant relative
motion between the temporal bone and the membraktauginth (Rabbitt, 2004). The
membranous labyrinth is also filled with fluid knovas “the endolymph”, physically a water-
like liquid. Each side of this bilateral system swmts of two types of sensors: a set of three
semicircular canals sensing rotation movement, @ otolith organs (the saccule and
utricle) which sense linear movement and head tilt.

Inner eal

= Vestibular
i s system

cochles . Vestibular nerve

Middle

stapes
malleu
eardrur ear

Figure 1.1.Visualization of the inner ear. 1) Anterior cana),posterior canal, 3) lateral canal, 4) ampulla of
each canal, 5) common crux, 6) utricle, 7) sacc8)e;ochlea.

ear cana

'
Outer ea

16



1.1.1. The semicircular canals

The semicircular canals are commonly referred tthadateral canal, also called horizontal
canal, and the posterior and anterior canals, wbaictstitutes the vertical canals. These latter
have a common duct called the common crux for atié@t of their length. The canals are
oriented in almost mutually orthogonal planes. Hteral canal lies in a plane elevated about
30 degrees from the horizontal plane, while the tilers are arranged in diagonal planes
which subtend roughly 45 degrees relative to tbatil and saggital planes of the skull (Fig.
1.2a). Thus, the anterior canal on one side ohtaal is parallel to the posterior canal on the
other and vice versa, whereas the horizontal casfat®th inner ears lie in the same plane.
Because most head movements are not in a single @&, and also because of the
imperfect orthogonality of the three canals, thbytath usually resolves a given head
rotation into three components. That is, endolympbtion in each canal measures
component of the head’s rotational velocity in pgiane of that canal (Fig. 1.2b). It has also
been shown that each canal admits a specific direcf stimulation, which maximizes the
excitation: the lateral, anterior and posterior aanprimarily sense yaw, roll and pitch
respectively (Rabbitt, 1999).

The set of canals constitute a very small fluitefil system the size of a pea. They
approximately form a circular path of 3.2 mm radaml have a cross section radius along
their slender part of about 0.16mm (Curthoys €t1&87). The study of Curthoys and Oman
probably constitutes the most thorough investigationcerning the dimensions of the human
semicircular canals. From microdissected specintbey, were able to provide measurements
of the sizes, cross-sectional shapes and areasaalhd the path of fluid flow through the
horizontal semicircular duct, ampulla, and utricléne results of this study are presented in
more detail in Chapter II.

At one location in each canal, and more preciselyé vicinity of the utricle, the canal cavity
swells to form a bulbous expansion known as theudlanphat contains a transverse ridge of
sensory epithelium, the crista. The epithelial acef of the crista contains thousands of
sensory hair cells and surrounding supporting ¢€lig. 1.3). Hair cells and supporting cells
are found not only atop the ridge (crest) of thistar but also down its sloping flanks. Hair
cell sensory cilia project a short distance intoy tchannels in the cupula, a gelatinous
structure that extend upward from the surface efctista all the way to the vault (roof) of the
ampulla. The channels in the cupula material maygieated as cupula material is secreted
upwards from the supporting cells surrounding thehehair cell. The cupula effectively
forms a thick diaphragm that completely occludes tlanal lumen above the crista, and
covers the entire sensory surface on the crestbatid flanks. As detailed later, it is now
believed that the cupula appears attached to tipeiigararound its entire periphery.

When the head is subjected to an angular accalarandolymph inertia creates a hydrostatic
pressure that deforms the cupula (Fig. 1.4). Bapadinhhair cell stereocilia then initiates a
complex transduction process in hair cells andibvelstr afferent neurons. The nervous signal
is finally transmitted to the brain and a sensatbmotion results. At a constant rotation rate,
the endolymph in the canals tends to catch up with rotation of the head due to the
viscosity, eliminating the relative movement. Eveally, as long as the rotation rate remains
constant, the cupula returns to a vertical positioe to its elastic properties and the sensation
of motion eventually ceases.
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Figure 1.2. Orientation of the semicircular canals. (a) Orietitm of the semicircular canals within the head.
(b) Definition of canal axis. (c) Resolving headisgular rotation into vector components. HC, honitad canal;
RA and LA, right and left anterior canal, respeetiy RP and LP, right and left posterior canal, pestively.

All of the hair cells on a semicircular canal aisire oriented or “polarized” in the same
direction. Their stereocilia all have the tall engsinting the same way. As a result,
endolymph motion that is excitatory for one hailt véll be excitatory for all of the hair cells
on that crista. Horizontal and vertical canals hdW¥kerent direction of polarization. Hair cells
in the horizontal canals are polarized to be egdig flow of endolymph toward the ampulla,
whereas hair cells in the vertical canals are pdrto be excited by flow of endolymph
away from the ampulla.

Experimental studies (e.g. Goldberg and Fernanti®z]) have shown that afferent neurons
exhibit slightly different dynamics in responsetite same head angular acceleration stimulus.
All neurons seem to show a response component giropal to cupula volume displacement,
as estimated from fluid mechanical models. Diffeesn between units in static sensitivity,
rate sensitivity and adaptive characteristics atebated to the hair cell transduction or
afferent encoding processes.
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Figure 1.3. Cross-section of the ampulla and functioning of liaér cells. (a) Visualization of the vestibular
system; (b) Section of ampulla showing how the leupeals the duct; (c) Details of the crista aralrhcells
implantation; (d) Function of vestibular hair cellsvthen mechanical forces deviate the cilia towahes t
kinocilium, the hair cell depolarizes and the freguay of action potentials in the associated affexesstibular
neurons increases. When the cilia are deviatechéndpposite direction, the hair cell hyperpolarizesd the
frequency of action potentials decreases.
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Figure 1.4.Detection of an angular acceleration of the SCtlyh inertia of the endolymph fluid relative to
the canal motion. (a) At rest. (b) Clockwise headwdar acceleration. (c) Constant angular motiod) (

Deceleration.
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1.1.2. Otolith organs

The otolith organs, the saccule and utricle, aneated between the semicircular canals and
the cochlea, and are approximately perpendiculagaoch other (Fig. 1.5a). They are the
elements of the vestibular system that provide alinenotion sensation in human and
mammals. They are sensitive to the direction ofgtavito-inertial force (GIF) applied to the
head, and consequently respond to both linear exatn and tilting of the head with respect
to gravity. The saccule is dedicated to measurimgarily the vertical component of the GIF
with respect to the head whereas the utricle measanimarily the horizontal component. As
stated by Einstein’s equivalent principle, all lkneaccelerometers must measure both linear
acceleration and gravity (Einstein 1908). Therefdhe otolith organs cannot discriminate
between acceleration and tilt, requiring additiors@nsory information to resolve this
ambiguity.

Both the saccule and utricle are flat layered stmaés (Fig. 1.5b). The top layer, which is in

contact with the endolymph, consists of calciumboaate crystals called otoconia, the

middle layer consists of a gelatinous matrix called otholitic membrane, and the bottom

layer consists of a bed of hair cells known asrttaeula that is rigidly attached to the skull

and therefore moves with the head. The hair cefisaachored in the macula whereas their
cilias extremities are embedded in the otolithiewbeane.

(@)

(b)

Cilia extremities Otolithic membrane

of the hair cells  Gtoconia striola  (gelatin layer)
\ - - r

Supporting cells Hair cells

Figure 1.5.Physiology of the utricular macula. (a) LocationtbE utricle and saccule and orientation of the
hair cells on the maculae of the otolith organse Btreamline represents the striola, and the arraws local
direction of enhanced sensitivity of the hair ce(ty) 3D perspectives of a macula. Hair cells amebedded in
the macula and measure the deformation of thetbtolembrane caused by the motion of otoconia veispect
to the head.
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The orientation of the hair cell bundles is orgadizelative to a region called the striola,
which demarcates the overlying layer of otoconigy.(R.5). The striola forms an axis of

symmetry such that hair cells on opposite sidethefstriola have opposing morphological

polarization. Thus, a tilt along the axis of theada will excite the hair cells on one side while

inhibiting the cells on the other side. Figure liBastrates the general morphological

distribution of hair cell polarizations for the sate and utricle where the arrows indicate the
direction of movement that produces excitation.

The otoconia, which have a density of 2.71g/cmake the otolithic membrane considerably
heavier than the structures and fluid surroundirffRabbitt et al., 2004). Thus, when the head
experiences a linear acceleration, the membrarsebelind the sensory epithelium (Fig. 1.6).
The resulting shearing motion between the otolithembrane and the macula displaces the
hair bundles, which are embedded in the lower opelas surface of the membrane. This
displacement of the cilia generates a receptor npiatein the hair cells. The same
phenomenon also occurs when the head tilts, grasainging the membrane to shift relative to
the sensory epithelium.

Orolith organ tilt translation

Figure 1.6.Mechanism of the otolith organs, showing their g@vity to linear acceleration and head tilt. These
drawings illustrate the shearing force in the plasfehe utricular otolith membranes. For instanae30 degrees
head-tilt elicits a force equivalent to 0.5G in thlane of the utricular macula. The same stimulus loe achieve
using a linear acceleration of 0.5G with the headight.

1.2. Mathematical modeling

1.2.1. Semicircular canals

The first model regarding the canals was proposgd\b Steinhausen (1931, 1933). He
proposed a linear second order model of canal digsano explain the observed
characteristics of vestibular-induced eye movementissh (pike). This model was further
refined by the “torsion pendulum” model of Van Egmoet al. (1949). They considered a
canal as a thin torus having a constant large sadivand a constant circular cross-section of
radius r, and proposed that the angular displaceofetihe endolymphé(t) about the center
of the canal was related to the angular accelerabiothe heada(t) by the differential

equation of a heavily damped torsion pendulum:

EO+ 5 0+ 20 =-a0) (1.1)
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where &(t), &(t) , and &(t) denote respectively the angle, the angular velarid acceleration

of the fluid; @ is the endolymph moment of inerti@i; a viscous damping frictional drag of
the endolymph, and a spring coefficient associated with cupula motieig. 1.7).
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Figure 1.7.Mechanical model of a semicircular canal.

For a step of changeof angular velocity of the head, the exact solufmmé(t) is given by:

_wnt, | w
{(t)——r = [e e ] (1.2)

1 2

—_ [ 2
where the two time constants aaé;ri: M+ (2ne 4A0) )
1 2

In all species studied to date, the semicircularatsaare highly overdampediy© <<M2),
which results in real-valued time constants (Grd&%2; Rabbitt et al., 2004). In that case, a
good approximation of the time constants is:

LI A :%: long time constant 1.3)

* I, =9 short time constant (1.4)
M

and equation (1.2) can be rewritten as:
A m
&(t) =%(e n-e 9) (1.5)

At the very beginning of the rotation of the hedlde endolymph moves very quickly
according to the short time constant. Afterwardsfthid will retreat slowly, according to the
long time constant, controlled by the weak sprifigh® cupula and resisted by the high
degree of friction

Parameters for man are, however, difficult to meafecause direct afferent response of the
semicircular canals cannot be obtained. Therefoiest early experiments to determine the
torsion-pendulum model parameters were based ojective response. For instance, Van
Egmond (1949) determined both time constants acupr the verbal response of humans
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subjected to various motion inputs in a rotatingichHe reported that the long time constant
r, and short time constant, were close to 10 seconds and 0.1 seconds respgctAs

discussed latter, values determined from subjectesponse do not truly represent the
dynamics of cupula motion but rather constituterall@ynamics parameters representing the
rotational sensation response to an angular vglooput. However, the basic operating

principle of the canal is not impaired and is présd as follows.

The system endolymph-cupula being highly overdammedconvenient and sufficiently
accurate simplification of equation (1.1) in teraid.aplace transforms is:

$(s) _ 0L, (1.6)
A9 (6s+)(@ s |

where w is the angular velocity of the head. The reasorefgressing the transfer function
between head angular velocity and cupula displanémsenot obvious until one examines its
frequency response. As noted by Mayne (1950, 1%f)plymph and cupula displacement
are a measure of velocity rather than acceleratithin a given frequency range of head
angular velocity. This can be clearly seen on a eBalbgram (Fig. 1.8). Most head
movements during normal body activity are in thage of frequencies where the canal
response is flat, giving a nearly constant ratimieen input and output and nearly zero phase
shift. Clearly this implies that the canal’s normalle is that of an angular velocity transducer.
To explain this graph, Jones (1965) argued thatteff at high frequenciesu(>1/z,) is due

to inertial force increasing with respect to vissalamping force, while the cupula spring
force becomes negligible, and that the cutoff &t feequencies >1/r,) is due to cupula

spring force increasing with respect to viscous plagn force, while inertial force becomes in
turn negligible.
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Figure 1.8. Curve of typical cupula displacement and Bode diag of the transfer function between head
angular velocity and cupula displacement. (a) Capudleflection due to a step of angular velocity. (b)
Theoretical frequency response of the semicircoéarals based on the model of Van Egmond.

The torsion pendulum model has been the starting far subsequent theoretical analyses of
canal dynamics (Groen et al., 1952; Goren, 19561 Fgmond et al., 1949; Njeugna et al.,
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1986, Oman et al., 1987). Most of these studieg®Wwased on hydrodynamic considerations.
Steer (Steer, 1967) solved the Navier-Stokes empmftior flow in a toroidal duct, whereas

Van Buskirk (1976, 1977, 1988) presented a moreroigs approach by considering the
utricle as a semicircular segment, with a constaoss-section much larger than that of the
duct. Oman et al. (1987) derived a more generaldggment model, and considered the
effect of duct cross-section ellipticity on Poidkuflow drag. He then extends his model to
the case where the size, shape, and curvature afiimal lumen change continuously through
the duct, utricle, and ampulla. He came up witleeoad-order differential equation that has
three coefficients, unlike the equation of a tansgendulum, which has only two. He derived
the following transfer function relating cupula uoie displacement to head angular velocity:

V(9 _ —2pN\ 1 K - G (1.7)
a(®) pL(1),, 8mL( S| @stDEsD -
KL{A K [ A

where p and y are the density and viscosity of endolymph, respely, L is the total length
of the central streamlinek is a stiffness coefficient representing the cupagaa linear
spring-like element,Ais the surface defined by the central streamlinethaf canal and
projected into the plane of rotatiom, is the cross-sectional area of the canal lungers a
wall shape factor, andsis the sensitivity of endolymph volume displacemé&mtangular
acceleration.

Based on anatomical data (Curthoys et al., 198Mai®et al. (1987) estimated the short time
constant of the system to be close to 4 ms. THisevia two order of magnitude lower than
previous values derived by a number of researdleegs Van Egmond et al., 1949). That is,
previous values were derived from subjective edaf sensation of rotation and vestibular
induced nystagmus. Therefore, these sensationsohneepresentative of the response of the
canal alone and are certainly influenced by the pimated physiology of the central
vestibular pathways. As regards the determinaticthe long time constant, its calculation is
not immediate as it requires the knowledge of tbefftcientk . As it will be discussed in
Chapter Il, many researchers have attempted tmatithis parameter according to different
experimental procedures, and thus several valuge baen suggested. Hence, estimated
value for 7, is in turn different depending on the assumed evdlark . Another way to

approximate the long time constant is to recordrésponse of peripheral afferent neurons.
Indeed, it has been shown that the discharge ddffieeent nerve fibers innervating the canals
is proportional to cupular displacement. Fernandeal. (1971) did record the discharge
characteristics of peripheral vestibular afferentthe squirrel monkey under various angular
acceleration inputs of different amplitudes andjfirencies. They derived a transfer function
relating the afferent firing rate of the vestibuterve to the angular acceleration input of the
form:

AFR(9 _| 7,8 1+1s (1.8)
a(s) |1+r,s]| @+ 9047, 9 '

The termr,s/(r,s+1) results in a phase lead at low frequencies artdeifrequency-domain
representation of the Young-Oman adaptation operd®69). The term(1+zs) is a lead

component and reproduces the high frequency dewmtirom the torsion-pendulum model
and implies that the system is sensitive both futar displacement and to the velocity of the
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displacement. The values of the four time-constamise determined as; =80s, 7, =0.049s,
r,=5.7s, andr, =0.003s .

However, as noted by Merfeld et al. (1993), thagfar function derived by Fernandez et al.
exhibits incorrect behaviors at high frequenciesstFthe model predicts that the system
response will increase as the frequency is inctefrsen 3.25 Hz to 50Hz. Second, the model
predicts that the system response will be consfant all frequencies greater than

approximately 50 Hz. Neither of these predictiabkely. Consequently, Merfeld proposed a
modified transfer function to represent the seroidar canals of the form:

AFR(9 _ nr,s?
o) (59047, 9

(1.9)

wherer, =5.7sand r, =80s.

Note that Merfeld considered the model inputs tdilmited to low frequency disturbances,
and that this simple model may thus not be usedake predictions beyond 1 Hz.

Finally, by assuming that the long time constanth&f human semicircular canal cupula is
close to that of the squirrel monkey, the compatatf both the pressure-volume coefficient
K and the sensitivity gairc of Oman’s model can be performed. Indeed, thdnstk
coefficient kK and the gairG are related to the long time constant according to

K =8WL[§)=6.SGPa/m°’ (1.10)
I, \ A2

and

G=TLA%=1,85.10“m°’§ (2.12)

where A is the cross-sectional area of the lumen occupiedhe cupula and is equal to
1.04mmz (Curthoys et al. 1987), and the ratiQ/y defines the average displacement of the
face of the cupula per unit head angular veloaity B equal t00.026um/degis (Oman et al.
1987).

1.2.2. Otolith organs

As with the semicircular canals, the first modelgarding the dynamics of the otolith organs
were based on subjective experiments. Meiry (19683 probably the first to investigate
subjective response to linear motion by using atogproduce longitudinal sinusoidal motion.
According to subjective indication of direction, lobtained a transfer function relating
perceived velocity to stimulus velocity. Young aveiry (1968) then noted that the proposed
model correctly predicted the phase of perceivddcity for lateral oscillations, but failed to

predict the otoliths response to sustained tilt leangs indicated by behavioral and
physiological data. Therefore, they proposed a fremtimodel, which related the perceived
GIF to specific force stimulus, using a shortergdime constant and an additional lead term.
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Despite this revised model was able to predict Ipaticeived tilt and acceleration in response
to acceleration input, it did not actually refléioeé dynamics of the sensor alone, but rather the
dynamics behavior representing the gravito-ineg@sation response to a GIF input.

A decade later, Zacharias (1977) noted that a lahpaeameter model of otolith motion could
be used to represent otolith dynamics, similar he torsion-pendulum model for the
semicircular canals. Ormsby (1974) first developged model, and Grant et al. (1986, 1987,
1990, 1994) later proposed further refined versidimey first considered the gelatinous layer
supporting the otoconial as an elastic solid (Fig9). By examining the maximum
displacement of the otoconial layer in responseatstep change in linear velocity, they
approximated the short time constant of the systebe close to 0.002 s. However, they later
demonstrated that this value turned out to be #rgel when reasonable values of the
maximum otolith displacement are considered, amttlcoled that more damping was needed
in the lumped parameter model. Therefore, Grant @otlon (1990) proposed to introduce
additional damping by considering in their mechamuodel a viscoelastic gelatinous layer.
They suggested a one dimensional analysis andtir¢hé otoliths as a second-order spring-
mass damper, where the otoconial layer was modaledrigid solid mass, the gel layer as an
isotropic viscoelastic material, and the endolymgeh a Newtonian fluid with uniform
Viscosity.

a)
A Head tili
gl
endolymph
2 V2 4
Otoconial
(Ve % ——> »
Gel laye R Linear head acceleratio

Sensory base

Figure 1.9. Schematic diagram of the functioning of tB#olith organs. (a) Schematic diagram of the ololit
organ. (b) and (c) show two configurations illuging the system under a purely tilt stimulus (bjda purely
inertial stimulus (c).

By applying Newton’s second law of motion withinetiplane of the otoconial layer, they
obtained the following transfer function:

ﬁ - [1_&] Tiotof 2010 (1 12)
f (S) pO (1+ TlDtO S)(1+ TZOIO S)

where x is the relative displacement of the otoconial fayéh respect to the heag, is the
density of the endolymph, ang is the density of the otoconial membrane, with> p,. As
noted by Rabbitt et al. (2004), the fact thgt> p,leads to the inertial force responsible for
movement of the otolith mass relative to its sudistrFinally,r,,, and r,,, are the long and

short time constant, respectively, that charaatetie macromechanical temporal response
dynamics of the otoconial layer. These time constame analogous to those found in the
semicircular canals but are shifted relative topghgsiological time scales of motion present
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in linear versus angular head movements. Thahesemicircular canals experience a wide
range of angular motion stimuli at frequencies lsetwthe two characteristic times, whereas
the otolith organs experience additional low-fragmye stimuli arising primarily from slow
head tilts relative to gravity. As with the semicitar canals, the otolith organs have been
found to be highly overdamped (De Vries, 1950),,améhumans, the time constants are given
by 5us<r,,, <40us and0.1ps<r,,, < 4us (Grant and Cotton, 90; Grant .et al., 1994).

oto oto

As regard the characterization of the physiologyhef mammalian peripheral otolith system,
the works of Fernandez and Goldberg (1976) probatdpstitutes to date the most
comprehensive and thorough investigation. Indeedorb their studies, little was known
about the spatial and temporal properties of tmesgons, as all previous investigations had
almost entirely dealt with primary otolith affereneisponses to static tilts rather than dynamic
linear accelerations. As they did few years afterthe semicircular canals, they recorded the
discharge of peripheral otolith neurons in respomsearious stimulations in the squirrel
monkey. In particular, they described the respqreperties of primary otolith afferents to
sinusoidal linear acceleration stimuli and providéeé first quantification of the neurons
response dynamics using system analyses techniduees. characterized the frequency
responses of regular and irregular units with adfer function of the form:

H(S _1+k7,81+ k(T,9 _ Ha(gl-b_(s) (1.13)

1+r,s 1+r,s H, (9

The termH, is an adaption operator that contributes to loegfiencies phase leads seen at
and increases of gain from static to 0.006 Hz. #en H, is a velocity-sensitive operator
with a fractional exponentk(<1). The last termH, is a first order lag operator that
Fernandez and Goldberg noted might reflect the ar@ch of otolith motion. Despite this
transfer function provide an adequate represemtatiche dynamics behavior of most units,
Hosman (1996) noted that this model is not easgnfdement due to the fractional exponent
in the lead term. He proposed a simplified modeilhef same form developed by Grant and
Best (1987) which was then refined by Telban andd@ (2005). They came up with a
transfer function relating the afferent otolith dymics and the gravito-inertial force input of
the form:

AFR(9 _ 534 (10st]) (110
f(s) “(5s+1)(0.016s+ 1) :

By comparing the step response of the proposedeatfelynamics model (eq. 1.14) with the
Fernandez-Goldberg model (eq. 1.13), they showatdbtbth models were in good agreement.
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1.3. History of spatial orientation

Spatial orientation refers to the natural abilitydetermine and maintain body position in
relation to the surrounding environment, especidllying motion. In order to achieve this
goal, the brain has to integer various sensory assgrsuch as visual, vestibular, and
proprioceptive inputs. A lot of studies have beeoused on modeling the process of spatial
orientation so as to understand how sensory sigma&sprocessed by the central nervous
system as well as to model the phenomenon of $mhsiarientation, which is attributed to
15-30% of all aircraft fatalities in flight (Bratmaite et al., 1998; Knapp et al., 1996).

Mathematical models for three dimensional humantiagparientation have continued to
evolve over the past four decades. The earlieshenaatical models for human orientation
perception (e.g. Mayne, 1950) addressed rotationitadn Earth vertical axis. Attenuation of
sensations during prolonged rotation was attribudechicircular canal (SCC) dynamics.
However, in the 1970s, perspectives began to broad¥alidated models for primate
semicircular canal (Goldberg et al, 1971) and ttolFernandez et al., 1976) afferent
response dynamics became available. As a resllecame clear that the time course of
perception was not entirely determined by end-orggnamics. For example, animal
vestibulo-ocular reflex (VOR) data indicated thantral mechanisms somehow perpetuate
SCC responses, broadening the dynamic range ofomgiterception, and lengthening the
dominant VOR time constant - a phenomenon now gdlgeeferred to as “velocity storage”.
Alternative - but dynamically equivalent — matheiwat models were proposed by Robinson
(1977) and Raphan et al (1977, 1979). Similatlwvas recognized that relatively slow
dynamics associated with somatogravic illusionsehsas the sensation of pitching up during
linear acceleration in the dark — were primarily doe to otolith end organ dynamics. Mayne
(1974) noted that gravireceptors ambiguously redgorboth gravity and linear acceleration,
and proposed that somatogravic illusion dynamissilted from central mechanisms which
utilize both angular and linear acceleration cuwesdtimate the direction of “down”. Mayne
noted that keeping track of the direction of “dows’an essential step in inertial navigation,
normally achieved by integrating angular velocityes, and anchored by averaging the
direction of net gravireceptor output over longipds of time. Mayne proposed a 3D
orientation model where the central nervous sys(@MNS) estimated “down” and linear
acceleration respectively via complementary low higth pass filtering of gravireceptor cues.

Meanwhile, aerospace guidance engineers developedaf mathematical methods for
estimating the orientation and position of a vehifdr autonomous or assisted navigation
based on information from a relatively small setnavigation sensor measurements. The
vehicle trajectory is estimated in real time usamg‘internal model” for the vehicle dynamics.
The trajectory estimate is continuously correctgdibing internal models for the navigation
sensors to predict what the current set of sengasarements should be, provided the vehicle
internal model prediction were correct. The défere between predicted and actual sensor
measurements (termed the “residual”) — appropsiatedighted — is then used to correct the
trajectory estimate. The general version of thikesne is referred to as a Luenberger
Observer (Luenberger, 1963). For the case fretjuentountered in engineering, where the
entire system can be represented using linear modetl where “noise” disturbances to both
the vehicle and sensor measurements can be wellathezed, Kalman (1960) demonstrated
how to calculate optimal residual weighting coeéfits that minimize the stochastic error in
the trajectory estimate. Where the residual weighcoefficients are computed in advance,
such a system state estimator is referred to tsadysstate Kalman Filter (KF). Oman (1982,
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1991) noted that the “residual” signal in a KF esponded to the putative sensory conflict
signals thought to be the central neural stimuhiggéring sensory motor adaptation and
motion sickness.

Recognizing the potential utility of steady staté techniques, Young and colleagues (Borah
et al, 1979; Borah et al. 1988) applied them to ehodientation perception by a human riding

passively in a vehicle (Fig. 1.10). The estimatozorporated dynamic models for the

semicircular canals and otoliths, as well as simptedels of available visual angular and

linear velocity cues. Simple 1-D and 3-D exampleBarah’'s KF approach are presented in
chapter 4. The transformation from world to headrdmates was mathematically linearized,
so model predictions were restricted to small hleiadations from the upright.

INTERNAL MODEL (Central Nervous System)

i Internal Model (Central - '

! processors assumptions abm{A Kalman Filter oo :
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Figure 1.10 Borah et al. multisensory model using steady skéman filter to represent neural central
processing.X is the vector representing estimates of internablet states, e.g. estimates of angular velocity
perception, orientation perception, ete. is a function ofK (Kalman gains) and internal model dynamics

As noted by MacNeilage et al (2008), Borah et glarded vehicle motion disturbance and
sensor noise magnitude and bandwidth as free péeesne their model. They empirically

determined values of these such that their KF medetessfully mimicked angular velocity

storage during rotation about the Earth-verticatj aomatogravic illusory tilts during linear

acceleration in darkness. When visual stimuli weresent, the model accounted for the
“circularvection” and illusory tilt illusions restihg from scene rotation about vertical and
horizontal axes, respectively.

Many aircraft accident, neuro-otological and lalona spatial orientation research paradigms
involve three dimensional, six-degree-of-freedomveroents. Typically this results in head
tilts (real or perceived) so large that the wodehtad coordinate transformation is nonlinear,
and so a steady state KF model is not appropriditeerefore, Pommellet (1990) generalized
Borah’s model by using a nonlinear version of thHe khown as the Extended Kalman Filter
(EKF). In his model, the world-to-head coordinatansformation was represented using
Quarternion mathematics. While Borah’s model respsmualitatively matched perceptions
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for simple stimuli with the head near the erectifpms, the Pommelet EKF results exhibited
numerical instabilities in quaternion estimatiomrtcularly for the more complex profiles
involving larger estimated tilts. A follow up EKRyhich only considered the vestibular
portions of Pomellet's model, was developed by d8ili(1993). The resulting EKF was
applied to a simple centrifuge paradigm in darkness, unfortunately, encountered similar
difficulties, particularly when modeling Corioligsponses.

Meanwhile, Merfeld et al. (1993) proposed a nordmébserver model in which the
relationship between head and world coordinate éravas also represented by quaternion
mathematics (Fig. 11). In Merfeld’s model, thisngtormation was incorporated into the
Observer’s internal model that estimated the dwacof “down”. The residual corrections
were applied in an ad-hoc fashion, and vehicle omotlisturbance and sensor noise was not
represented. However they showed that by apptepdhoice of a single SCC residual
weighting parameter, a one dimensional model cbelduned so its responses were identical
to those of the Robinson/Raphan et al models fgulan velocity storage. Adding three more
Otolith measurement residual weighting factors ree fparameters, the three dimensional
version of the model predicted somatogravic illasioduring lateral acceleration,
centrifugation, and off-vertical-axis rotation. allso accounted for effects of head tilt on post-
rotational sensations. Merfeld’'s one and three-dsi@al model are reviewed in chapter 4.

PHYSICAL WORLD SENSOR
DYNAMICS
w Angular velocity 175} Canal
> dynamics
. _. Gravitoinertial 17 .
_| Quaternion| g+ _ acceleration Otolith
integratior i »| dynamics
a
Linear acceleration
. v+
Angular velocit errol
2 O
Gravitoinertial acceleration eri /" 4-
)
Acceleration errc /")Jr A
\k
GRAVITY INTERNAL MODEL OF
\/ ESTIMATOR SENSOR DYNAMICS
+ Y+ Quaternion] f |Model of Otolith
» . > dynamics
mtegratlor A~
> & 'Model of Cana
dynamics

e é : perception of linear acceleration
Q : perception of angular velocity
— > ( : perception of direction of down

Figure 1.11.Outline of the three-dimensional model of Merféelthe physical inputs, angular velocity and
gravitoinertial acceleration are processed by tle@sor dynamics, then compared to internal estimeaitber by
substraction or by means of a vetor product. Afiealing by gain factors (triangles), the error vect are fed
into the estimation process which contains intemablels of sensor dynamics and physics.
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Merfeld’s Observer model was further validated @&xtended by Halswanter et al (2000),
Merfeld and Zupan (2002), Vingerhoets et al (20B8)7) and Newman (2009). Note that
these models assumed that internal model estincatessponded to perceptions. Table 1.1
summarizes these efforts and compares them aghmstiternate class of Kalman filter and
extended Kalman filter models. Note also that,luxdéwman contributions, Observer models
predicted orientation and linear acceleration,ddtnot predict position in space. In addition,
previous Observer models were limited to SCC analitbt cue interaction. Newman
contribution was in adding a “limbic” coordinateaifine in which velocity and position path
integration was assumed to take place, and in jproecating visual pathways. Results of this
extended Observer model are in good agreement tivtriBorah KF model results for the
simple visual-vestibular motion paradigms of lin@action, circular vection, rotation in the
light and acceleration in the light.

Stimuli used for validation

Earth Post- Fixed Cab Linear Roll Pseudo

Vertical OVAR Rotational Centrifugation Acceleration Tilt  Coriolis
Observer Models Rotation Tt
Merfeld 1993 X X x - - - -
Haslwanterooo - X - - - - -
Merfeld 2002 - - - X - X -
Vingerhoetsoos - X - - - - -
Vingerhoetsoo7 - X - - - x -
Newmanzoo9 X X - X X - X
KF/EKF Models
Borahi979 X - - - X - -
Pommelletiggo X - - X - -
Billien 1993 - - - x - - -

Table 1.1.Validation cases for Observer and KF / EKF models
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1.4. State estimation of dynamic state-space models

1.4.1. Introduction

In daily life our sensors, such as vestibular amsbal sensors, provide information of
orientation, velocity, and acceleration to the trdn addition, it is assumed that the central
nervous system has an internal representationeopliysical world which is defined in state
space notation by a state vectqt) and a system matriA. The main idea of human spatial

orientation estimation model is to estimate a stat#or that contains variables of orientation,
velocity and acceleration given a set of measurésnamovided by our sensors. It is assumed
that some of the estimated states correspond tpeyaeption of orientation, angular velocity,
and linear acceleration. The principle of humantiaparientation model is presented in
figure 1.12.

Different techniques such as Observer, linear Kalfilter, nonlinear Kalman filters, etc can

be used to achieve this goal. In the following &, we provide a background on state
estimation techniques of dynamic state-space mollgse particularly, we present in detail

the linear Kalman filter algorithm as well as thetemded and unscented Kalman filter
techniques that will be used in chapter 4 to dqgvehodels for human spatial orientation.

Internal model of the (Perceived orientation angles
S worlti X1t049 aroll ’apitch ’ayaw
State vector X(t) : i
A Perceived angular velocity
Syst. Matrix ~ & 2SSy A
7 " )?(t) < X597 2 C‘%uwy’wz
Perceived Iipear velocity

1
Sensors Perceived I|:‘1ear acceleration

\ 1
V N\
4 Observer \

Stimulus A y(t) Kalman filter X
> 2 Extended KF = X(t) estimate of X(t)

Unscented KF

Particlle Filter

- J Y,

Estimation techniques

Figure 1.12. Principle of human spatial orientation estimatiomodel. Sensors provide some measurements
y(t) . The central nervous system is assumed to haugemal representation of the real world. Basedtbis

model and on sensor measurements, estimation taesican be used to provide an estimate statervét) .

It is assumed that the estimated state variablesespond to perception of orientation, angular alikear
velocity, and linear acceleration.
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1.4.1.1. Probalistic inference

Probabilistic inference is the problem of estimgtine hidden variables (states) of a system in
an optimal and consistent fashion as a set of nmisgcomplete observations of the system
becomes available online. The optimal solution His fproblem is given by the recursive
Bayesian estimation algorithm which recursively afgd the posterior density of the system
state as new observation arrive. This posteriosithegonstitutes the complete solution to the
probabilistic inference problem, and allows usdtcalate any “optimal” estimate of the state.
Unfortunately, for most real-world problems, thetio@al Bayesian recursion is intractable
and approximate solutions must be used. Numeropso®imate solutions to the recursive
Bayesian estimation problem have been proposedtbedast couple of decades in a variety
of fields. These methods can be loosely groupexitiva following three main categories:

» Gaussian approximate methods: these methods aklIntoel pertinent densities in the
Bayesian recursion by Gaussian distributions, utidlerassumption that a consistent
minimum variance estimator (of the posterior s@gasity) can be realized through
the recursive propagation and updating of onlyfits¢ and second order moments of
the true densities.

» Kalman filters: the celebrated Kalman filter is thyatimal closed-form solution
for linear, Gaussian dynamic state space models

> Extended Kalman filter: the EKF applies the Kalm@ter framework to
nonlinear Gaussian systems, by first linearizirgydignamic state space model
using a first order truncated Taylor series expamsaround the current
estimates.

» Direct numerical integration methods: these methatd® known as grid-based filters,
approximate the optimal Bayesian recursion integnath large but finite sums over a
uniform N-dimensional grid that tiles the complstate space in the area of interest.
For even moderately high dimensional state spalcescomputational complexity
quickly becomes pronhibitively large, which all preclude any practical use of these
filters.

* Sequential Monte-Carlo methods: SMC methods makexmdicit assumption about
the form of the posterior density. They can be usednference and learning in any
general, nonlinear non-Gaussian dynamic state gpacels. These methods, like the
grid-based filters, approximate the Bayesian irgksgrwith finite sum. Unlike grid-
based filters however, the summation is done wetjfusntial importance sampling on
an adaptive “stochastic grid”. This grid, as defifgy a set of weighted samples drawn
from a proposal distribution that approximates e posterior, is concentrated in
high likelihood area of the state space.

1.4.1.2. Gaussian approximate methods

Due in part to their relative ease of implementatamd modest computational cost, the group
of Gaussian approximate solutions has received rmsintion for over the past 40 years.
Under the assumption that the underlying dynamatesspace model is linear and all the
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probability densities are Gaussian, the celebrdtabinan filter is the optimal and exact
solution to the recursive Bayesian estimation gobllf these assumptions hold, the achieved
solution is optimal in the minimum mean-square-e(MMSE) sense. However, Kalman’s
original derivation of the Kalman filter did notqgeire the underlying system equations to be
linear or the probability densities to be Gaussi@he only assumption made are that
consistent estimates of the system random variatalesbe maintained by propagating only
their first and second order moments (means andri@nces), that the estimator itself is a
linear function of the prior knowledge of the systésummarized by(x. | y,,_,)) and the new
observed information (summarized lpyy, | %)), and that predictions of the state and of the

system observations can be calculated (these pirdicare needed to approximate the first
and second order moments @fx |y,.,) and p(y |x)). The fact that only means and

covariances are maintained is why this method soenéwhat misleading) called Gaussian
approximate solution. In other words, the densiiesnot required to be Gaussian, we simply
only maintain the Gaussian components (mean andrieoxe) of the densities in the
estimator. Predictions of the state and of the magiens are optimally calculated by taking
the expected value of the following equations:

X = f(X U, W)
Y, =h(%, %) (1.15)

where x_ is the hidden system state with initial probapilitensity p(x,) that evolves over
time according to the conditional probability densp(x | x_,), y. are the observations that
are generated according to the conditional prolghdlensity p(y, | %), w, IS the process
noise that drives the dynamic system through the@imear state transition function, andv,

is the observation or measurement noise corrughagobservation of the state through the
nonlinear observation function. Note that the state transition densipyx | x_) is fully
specified by f , whereash and the observation noise distributigny,) fully specify the
observation likelihoodp(y, | x). The dynamic state space model, together withktievn

statistics of the noise random variables as wethagrior distributions of the states, defines a
probabilistic generative model of how the systeroless over time and how we partially
observe this hidden state evolution.

It turns out that predictions of eq. (1.15) cargeneral only be calculated exactly for linear
Gaussian random variables. This does not disall@rapplication of the Kalman framework
to nonlinear systems. It just requires further agpnations to be made. One such
approximation is the linearization of the dynantiats space model through the use of a first
order truncated Taylor series expansion aroundttineent estimate of the system state. This
algorithm known as the Extended Kalman filter w#l presented in depth in section 1.4.3.2.

1.4.2. Linear state space estimation

The simplest of the state space models are lineateln, which can be expressed with
equations of the following form:

X = X + W
Y = HXc+ Vi (1.16)
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where:

X UR" is the state of the system on the time Kep

* y UOR" is the measurement on the time skep

* w,_~ N(0,Q) is the process noise on the time skep

* Vv, ~ N(0,V,) is the measurement noise on the time &tep

F is the transition matrix, or the system matrixthed dynamic model.
H is the measurement model matrix.
The prior distribution for the state i§ ~ N(m, R).

The model can also be equivalently expressed ibgitistic terms with distributions:

pP(x | %)= N(x | Fx,, Q)
P(Y, | %)= Ny | H%,\) (1.17)

1.4.2.1. Kalman filtering

* Introduction

In 1960, R.E Kalman published his famous paper rid@ag a recursive solution to the
discrete data linear filtering problem (Kalman, @R6At first sight, his ideas were met with
some scepticism among his peers such that his dguaper, on the time-continuous case,
was once rejected because — as one referee poni step in the proof “cannot possibly be
true”! Kalman persisted in presenting his paper fmohd a receptive audience in the fall of
1960 during a talk at the Ames Research Center Al in California (Mohinder et al.,
2001). Kalman presented his recent results whiath @en recognized to be potentially
applicable to the trajectory estimation and conpmablem for the Apollo project, a planned
manned mission to the moon and back. In the mi®349he Kalman filter became part of the
Northrup-built navigation system for the C5A agirtsport, and then, in the early part of 1961,
was made a part of the Apollo onboard guidanceceStihat time, it has been an integral part
of nearly onboard trajectory estimation and corggatem designed.

Theoretically the Kalman filter is an estimator fenat is called the linear-quadratic problem,
which is the problem of estimating the instantasestate of a linear dynamic system
perturbed by white noise — by using measuremenéstly related to the state but corrupted
by white noise. The resulting estimator is statadly optimal. Practically, it is certainly one
of the greatest discoveries in the history of statl estimation theory and possibly the
greatest discovery in the twentieth century, astldar those involved in estimation and
control problems. Many of the achievements sinseintroduction would not have been
possible without it. It was one of the enablinghtealogies for the Space Age, in particular.
The precise and efficient navigation of spacedtafough the solar system could not have
been done without it. Its most immediate applicaitiave been for the control of complex
dynamic systems such as continuous manufacturiogepses, aircraft, ships, or spacecraft.
The Kalman filter is also used for predicting tiesly future course of dynamic systems that
people are not likely to control, such as the ttajges of celestial bodies, or the prices of
traded commodities.
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* Continuous version

The Kalman Filter is a linear Observer specificalgsigned to optimally estimate the state
of a linear system described by a set of differeeopgations:

%(t) = AXD+ BU )+ G } (1.18)

based on a set of noisy measuremeptsderived from certain components of the ste(ig

y(t) = Cx() + U (1.19)

Here, the n dimensional vectar represents the state at tirnef all the system variables - for
example in our case the linear and angular positaond velocities of the head, SCC cupula
and otolith displacements, and any other variabllesse initial conditions must be known in
order to predict future behavior. Thexn matrix A defines the undisturbed dynamic
behaviour of the system, since it relates how sthtanet — At influences the rate of change
of the state at the current tinhe Some components of the system, defined by thexm@ ,

are disturbed by/ continuous external “process noise” inputs(t) whose continuous
covariance matrix isQd(t) (where Jd(t) is the Dirac delta function). The system also
responds to a deterministic external disturbancetoveu(t). Hence thenx| matrix B

describes how the deterministic inputs at timeAt disturb the rate of chang«t).

It is assumed that sensors provide measuremg)sof a subset of the system statdt) ,

by an mxn matrix C, that determines which states are being measwed, sensor
sensitivity. The measurements are also corrupyesebsor noises(t) , whose continuous
covariance matrix i8/9(t). In our following models, this might corresporathe intrinsic
variability in SCC and otolith afferent signals. tBothe process and measurement noise

processes are assumed uncorrelated, and eaclepenmakent, white, zero mean, and normally
distributed i.e. :

w(t) ~ N(0, Q) (1.20)
v(t) ~ N(O,V) (1.21)
E[ W)W (1) | = Q@(t-7) (1.22)
E[ V)V (1) |= Vo(t-7) (1.23)
E[ WV (1)]=0 (1.24)

Kalman (1960) showed that it is possible to derare Observer that calculategt), an
optimal estimate ok(t) that minimizes the mean of the squared error batwiee actual state
X(t) and the estimated stat€t), as described by a state error covariance marixThe
equations describing the continuous-time Kalmaerfihre:

X(t) = AX) + BUY+ KOY( X )- CKY) (1.25)
K(t)=P(t)C"V?! (1.26)
P(t)= AP()+ R() A+ GQG '- R) ¢ V* CP) (1.27)
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%(0) = E[ x(0)] (1.28)
P(0) = E[ (X(0)~ %(0))(X(0)~ X(0)] | (1.29)

Equation (1.25) is often called the “internal mddetjuation, since first three terms in
equation (1.25) correspond exactly to those in eguudl.18). The Kalman filter “knows” the
unforced dynamic characteristics of the systefn(atrix), and can predict the effect aft)

of any deterministic inputsB matrix), given an initial state estimate (eq. ).28can use the
internal model state estimat€t) and knowledge of sensor sensitivity to calcul@t€t), an
estimate of what the sensor measurement shoulfl k@)i were correct. The fourth term in
equation (1.25) uses the difference between adndl anticipated sensor measurement,
(y(t) - CX(1)), usually called the “residual”, and weights itngsa set of appropriately chosen

weighting coefficientsK , referred to as the “Kalman Gain” matrix. This fibuterm in the
internal model equation thus incorporates the ueetqdl component of sensor information,
and continuously steers the internal model estinxéte so it converges with reality. Kalman
significant contribution was to show that the megunare state estimate is minimized if the
weighting coefficients are computed using equatio6). This calculation requires a running
estimate of state error covarianBe obtained by integrating equation (1.27), usingrainal
value provide by equation (1.29). However, in ma@ngctical situationsP soon reaches a
steady state value, and it is possible to precoenButthe cooresponding steady state value of

P . In this case, equation (1.27) reduces to a neatialgebraic matrix Riccati equation:
0O=AP.+P A+ Q- PCV'CP (1.30)

Equation (1.30) is readily solved fd?, using routines readily available, e.g. in Matldbe
two first terms in equation (1.30) represent théoroed state transition, i.e. the effect of the

unforced system dynamics upon the covariance psadjgag The third term increases the
uncertainty due to the process noise, whereas dbehf term represents a decrease of
uncertainty as a result of measurement.

Finally, the corresponding steady-state Kalman gagiven by:

K,=P,C'V*’ (1.31)

And the steady-state Kalman filter is given as:

X(1) =(A- K,OX D+ K, ¥ (1.32)

1.4.3. Nonlinear state-space estimation

As stated eatrlier, the Kalman filter calculates dpgimal terms in the recursive form of the
Gaussian approximate linear Bayesian update ofctimelitional mean of the state and its
covariance exactly for linear dynamic state spacelets. This is a well known result for
linear Gaussian systems, i.e. the linear transfoomaf a Gaussian variable stays Gaussian.
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Many dynamic systems and sensors are however rsmludely linear. Even the simple
| =V /R relationship of Ohm’s law is only an approximatiower a limited range. If the
voltage across a resistor exceeds a certain tHoestinen the linear approximation breaks
down. Following the considerable success enjoyedirtBar estimation methods on linear
problems, extensions of these methods were appdieich nonlinear problems. The most
widespread nonlinear extension of the Kalman filkeundoubtedly the extended Kalman
filter, which is based on a direct linearization thie nonlinear system (Simon, 2006).
However, this filter is usually limited to a firgirder accuracy of propagated means and
covariances resulting from a first-order truncai@ylor-series linearization method. A way
to reduce the linearization errors that are inhetianthe EKF is to use “higher-order”
approaches, e.g. a second-order extended Kalntan fistimation performance provided by
these approaches is better than the first-order, EF they do so at the price of a higher
complexity and computational expense. Recently tharotechnique called the unscented
Kalman filter has been proposed in an attempt tyesd the EKF shortcomings. This is done
through the use of novel deterministic samplingragphes to approximate the optimal gain
and prediction terms in the Gaussian approximatmali Bayesian update of the Kalman filter
framework. This filter can give greatly improvedrisemance (compared with the EKF) and
consistently outperforms the EKF in filter robusteeand ease of implementation, for no
added computational cost.

In the following sections, we first present how m&and covariances propagate in nonlinear
equations. Then, the first-order extended Kalmberfis introduced. Finally, after presenting
the unscented transformation, which is a way ta@pmate how the mean and covariance of
a random variable change when the random variatdiengoes a nonlinear transformation,
we introduce the unscented Kalman filter and coteple specify its algorithmic
implementation.

1.4.3.1. Nonlinear transformation of random variabés

* Multidimensional Taylor series

In order to apply tools from linear systems thetmryonlinear systems, the nonlinear system
has to be linearized. In other words, a linear esysthat is approximately equal to the

nonlinear system must be found. The usual apprdaiemanethod of nonlinear function is the

Taylor series expansion. For instance, if we carsadnonlinear functiorf of a scalarx, the

expansion off in a Taylor series around a linearization pointdefining X = x-X, is:

of 1 9%f
f(X)=f(X)+—| X+———
(69 =1(x) Xl 21 0%

X

3
3(2_|_16f

X

Extending equation (1.33) to the general case iithwl is a nx1 vector, the expansion of
f becomes:

2
f()= f(7<)+(7&%+"'+3ﬁij f +3(Xi+---+xij e (1.34)

0%,

x|
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where the term(f(lai+~--+ Sgaij f| is the gradient off times the displacement vector
% X

represents the Hessian matrix times the displacemen
%

2
and the tern‘(f(lai+---+ &aij f
X

vector.

The advantage of this formulation is that it cangeseralized to the case in whichis a
nx1 vector without using the usual tensor notatiodekd, defining the operattﬁl)'g as:

k
L_ 0
DX :(Z)qa_J f(X) (1.35)
2 -
the multidimensional Taylor series expansion bfcan be re-written as:
_ ot 1 2.1
f(x)= f(X)+ D*f+_| Dif+§ Dyf+.... (1.36)

* Mean transformation

Suppose thatx is a random variable with meax and covarianceP,. A second random
variable, y is related tox through the nonlinear functiory = f(X). The problem of
predicting the future state of a system consistsatoulate the meay and covariance®, of

y. The statistic ofy are calculated by determining the density funcbrthe transformed
distribution and evaluating the statistics fromt tthigtribution.

From equation (1.36y = f(X) can be expanded in a Taylor series aroxnals follows:

1

1

y=f(%)+ Dy f+ 3

DZf+=D3f+.. (1.37)

The mean ofy can thus be expanded as:
— - 1 1
y=f(X)+ E{Dif+§D§f+§D§f+...} (1.38)

Assuming that the distribution ok is symmetrical, it can be shown that all odd-order
moments of (1.38) are zeros (Simon, 2006). The @afien of the second order term can be
written as:
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E[Dgf] = E[ DX(DS(f)T]
= E[(DT %X ) f()@|x=?] (1.39)
=(@"R1O) (Y,

Substituting this result into (1.38) gives the daling form of the mean expression:

y= f(7()+%[(DT RO) 1(%), |+ Zl! o f+gl! of f+....} (1.40)
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* Covariance transformation

In a similar fashion as the mean transformatiodation, the covariance of a variable that
undergoes a nonlinear transformation can be caenil®y definition, the covariance of is

given by:

R, =E[(y- Ny ] (1.42)

By using equation (1.37) and (1.40), we can wgitey as

y=Y=| D f+=Df f 4 || = E[ D2 ]+ B f f]+-- (1.42)
2! 20 L a4 § '

Taking outer products and expectations, the tramsfd covariance is given by:

P, = FRF' - i[FP FFRF] + ZZFD f( o )T}

i=1j=1

(ii(ZI)I(ZJ)I [ o ]| of fﬂ

i=1j=1

i, j such that ij>1

(1.43)

where F is the Jacobian matrix of (x) evaluated ak =X.

To sum up, the nth order term in the seriesXois a function of the nth order moments»of
multiplied by the nth order derivatives of evaluated atx=X. If the moments and

derivatives can be evaluated correctly up to theanter, the mean is correct up to the nth
order as well. Similar comments hold for the coaace equation as well. Since each term in
the series is scaled by a progressively smallersamaller term, the lowest order terms in the
series are likely to have the greatest impact. dfbee, the prediction procedure should be
concentrated on evaluating the lower order terms.

By the way, linearization — such as in the exteniatinan filter - assumes that the second
and higher order terms & can be neglected. Under this assumption:

y= (%) (1.44)
P, = FRF' (1.45)

Comparing these expressions with equations (1.4@) @L.43), it is clear that these
approximations are accurate only if the secondhagider order terms in the mean and fourth
and higher order terms in the covariance are nibigig Otherwise, linearization may
introduce significant errors.
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1.4.3.2. The extended Kalman filter

The most well known application of the Kalman filttamework to nonlinear inference

problems is probably the extended Kalman filter EEKIndeed, the extended Kalman filter
extends the scope of Kalman filter to nonlineaiiropt filtering problem. This filter is based

on a sub-optimal implementation of the recursivgdd@an estimation framework applied to
Gaussian random variables. Basically, the EKF apprates the state distribution by a
Gaussian random variable, and propagates the siadytically through a first-order

linearization of the nonlinear system. As well ke Kalman filter, different versions of the
EKF can be derived: continuous-time, discrete-tiarg] hybrid. We here present the hybrid
EKF, which considers continuous-time dynamics asdrdte-time measurements such as:

x=f(xu wt) (1.46)
Yie = Re(Xe ) (1.47)
w(t) ~(0,Q,) (1.48)
v, ~(0,Vy) (1.49)

where x(t) O R" is the state,y, U R™ is the measurement. The process naige is
continuous-time white noise with covarian@, and the measurement noigg is discrete-
time white noise with covariance, . The state dynamics are modeled as continous-time
stochastic processes, and the measurements anmeeobéh discrete instances of time.

As the linear Kalman filter, the EKF has a predioti/ correction structure. First, between
measurement, the state estimate is propagateddangdo the known nonlinear dynamics

from %X, to thea priori estimateX, as well as the covarianBefrom R, to thea priori

covarianceR, . This propagation is performed by integrating khewn nonlinear dynamics

and the covariance of the estimation erfRor Second, at each measurement timeatpéori
state estimate and covariance are updated as déniviee discrete-time version of the EKF to
get thea posterioristate estimate and covariance. The implementatiaghe hybrid EKF is
given in algorithm 1.
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Algorithm 1: The hybrid extended Kalman filter

1. The dynamic system is given by the following &itpns:

x=f(xuwt

Yi = Re(Xe W)

w(t) ~(0,Q.)

Vi ~ (0.\)
2. Initialization

X, = E(%)

R =E[(%-%)(%-%)"]
3. Fork=12,..

(a) Prediction step: integrate the state estimateits covariance from timg¢k —1)" to
time k™ as follows:

x= f(%u,0,1)
P=AP+PA+ LQL
_of _of . : : s o -
where A—a— , L=— . This integration begins withx=X_, and P=R_,. At
% Wi

the end of this integration we hake= % andP =R .

(b) Correction step: at timk, incorporate the measuremeyt into the state estimate and
estimation covariance:
Ky =R Hg (H P HE+V) ™
R =X+ Kk|:yk_ h( % D]
R =(1-KH )P (1 - K H YT +K Y K,
where H, is the partial derivatives di (%, vi) with respect tox, , and is evaluated

at X .

Even though the hybrid EKF considers continuoustigystems, an important difference

between the continuous-time EKF and the hybrid Ekpears in the expression Bf. In the
case of the continuous-time EKF, its expressiaivsn by:

P=AP+PA+ LQL- PC R CI (1.50)
It can be observed that in the hybrid EKF tReterm is not included. This can be explained
by the fact thatP is integrated between measurement times, duringhndny measurements

are available.

Note that contrary to the Kalman filteR, and K, cannot be computed offline because they

depend orH , which depends oR, , which in turn depends on the noisy measurements.

43



« Limitation of the EKF

Even though the EKF is one of the most widely uapdroximate solutions for nonlinear
estimation and filtering, it has a few serious draeks:

1. This technique is based on the linearization of $lgstem around the current
estimate using a first-order truncation of the mdultensional Taylor series
expansion. Thus, it only achieves first-order aacytin the calculation of both the
posterior mean and covariance of the transformedam variables. Clearly, these
approximations will only be valid if the higher @dderivatives of the nonlinear
functions are effectively zero. In other wordsigitiuires the zeroth and first order
terms of equation (1.40) to dominate the remainerqs, over the region of the
state-space defined by the prior distributiorxof

2. The EKF does not take into account the inherentédinty” in the prior random
variable during the linearization process. That tise linearization method
employed by the EKF does not consider the fact th& a random variable. This
has large implications for the accuracy and coescst of the resulting EKF
algorithm, and may sometimes lead to divergendbefilter.

3. In many cases the calculation of the Jacobian oestrcan be a very difficult
process and it also prones to human errors (baothadien and programming).

1.4.3.3. The unscented Kalman filter

The unscented Kalman filter (UKF) is a recursive Bl estimator based on the optimal
Gaussian approximate Kalman filter framework thdtdirasses some of the approximation
issues of the EKF. Because the EKF only uses tis¢ dirder terms of the Taylor series
expansion of the nonlinear functions, it oftenadices large errors in the estimated statistics
of the posterior distribution of the states. Unlitee EKF, the UKF does not explicitly
approximate the nonlinear process and observatimets. It uses the true nonlinear models
and rather approximate the distribution of theest@ndom variable. In the UKF the state
distribution is still represented by a Gaussiandoan variable, but it is specified using a
minimal set of deterministically chosen sample piThese sample points, called “Sigma-
points”, completely capture the true mean and camae of the Gaussian random variable,
and when propagated through the nonlinear systapiues the posterior mean and
covariance accurately to th&'»rder for any nonlinearity.

To present the UKF, we first start by explaining tteterministic sampling approach called
the unscented transformation. Then, the implemiemtat the UKF is introduced.

* The unscented transformation
The unscented transformation (UT) is a method fdcuwdating the statistics of a random
variable which undergoes a nonlinear transformagihdier et al., 1995, 1997, 2000). This

technique is founded on the intuition that it isieato approximate a Gaussian distribution
than it is to approximate an arbitrary nonlineardiion. The basic idea of the UT is:
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1. A set of weighted samples (sigma points) are detestically calculated using the
mean and square-root decomposition of the covagiamatrix of the prior random
variable. As a minimal requirement the sigma paiett must completely capture
the first and second order moments of the priodoamvariable.

2. The sigma points are propagated through the nalifenction using functional
evaluations alone, i.e. no analytical derivatives ased, in order to generate a
posterior sigma point set.

3. The posterior statistics are calculated using fonet of the propagated sigma
points and weights. Typically these take on thenfaf simple weighted sample
mean and covariance calculations of the posteigona points.

For instance, let’s consider the propagation of dimensional random variabbe with mean

X and covarianceP, through a nonlinear functiory = f(x). In order to calculate the first
two moments (mean and covariance)yofusing the unscented transformation, the method is
as follows. First, a set dn+1 weighted samples, called sigma poiis= {w",w{, X,} are
deterministically chosen as follows:

X, =X w)' =A/(n+A) i=0
X =X+(J(WDR) i=lown  wf=A/m+A)+(1-a+p) i=0 (1.51)
X; :7—(,/(n+/1) B) i=1..,n w" =w =1/(2(n+A)) i=n+1..2n

wherew," andw; are the weight associated with tkie sigma-point used for the computation
of the predicted mean and covariance, respectiuﬂy&/})Px is the matrix square root of
(n+1)P, such that(\/(n+/1)Px)T JO+E) R =(n+2) B, and(1/(n+/])PX) is theith row (or

column) of \/(n+A)P, . The numerically efficient Cholesky factorizatiorethod is typically
used to calculate the matrix square root.

The distance of thih sigma point fromx is proportional to,/(n+A), whereld is a scaling
parameter defined as:

A=a?(n+k)—-n (1.52)

a and x are two positive coefficients that provide extegee of freedom to control the
scaling of the sigma points without causing theiltesy covariance to possibly become non-
positive semidefinite.a controls the size of the sigma-point distributiand is usually
chosen a®¥¥ < a < 1. The coefficientk must be positive or null in order to guaranteeitpas
semidefiniteness of the covariance matrix. The ifipe@lue of kappa is not critical though,
so a good default choice is=0. A third parameterS is introduced which affects the
weighting of the zeroth sigma-point for the caltigia of the covariance. It has been shown
that for a Gaussian prior the optimal choice tlegfuces higher-order errors of the mean and
covariance approximation errors =2 (Julier et al., 2002).
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Finally, each sigma-point is propagated throughniv@inear function
Y =f(X,) i=0,..,2n (2.53)

And the approximated mean, covariance and crosari@mce ofy are computed as follows:

y= ', (1.54)
i=0
2n

Po= wi(Y, =y)(Y, - y) (1.55)
=0

P, =2 wi(X, ~%)(Y, -y) (1.56)

These estimates of the mean and covariance areaéedo the third order (for Gaussian
priors) of the Taylor series expansion bfx) for any nonlinear function. For non-Gaussian
inputs, approximations are accurate to at leassékcend-order, with the accuracy of third and
higher order moments determined by the specifidogsoof scaling factors. In comparison,
the EKF only calculates the posterior mean and rcawvee accurately to the first order.
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* Implementation of the unscented Kalman filter

We here consider the hybrid version of the UKF (@in2006). In this case, the system is
described by continuous-time dynamics and disdiete- measurements such as equation
(1.46) and (1.47). The implementation in matrixnfois defined by the following recursive
algorithm.

Algorithm 2: The hybrid unscented Kalman filter

Initialization

% = E(X)

R =E[(%-%)(%-%)"]
Fork=1,2,...

1. Calculate sigma-points:

Xk—lz[A)(I<—1 S<k—1]"'V n+A [O \/?—1 _\/E}
2. Time update equations: integrate the state attiend its covariance :
= F(X())HW"
P(t) = X(OWFT (X(D+ f( XY WX ( X+ ¢
Where> W™ =[w§“ W ]T,
ew:@{wwnmNWWMQWN-@)4F[ww-w@3

The predicted mean and covariance are giver, asX(t,) and B_ = P(t,)

3. Correction step: measurement update equations

(a) regenerate 2n+1 sigma points with appropribtanges since the current best guess for
the mean and covariance xf are X, and B,

(b) Use the nonlinear measurement equation toforansthe sigma-points into predicted
measurements:

Y = h(X, %)

(c) Compute the predicted measurement vector flentransformed sigma-points:
2n )
B = 2 WM

i=0
(d) Estimate the covariance of the predicted messeant
P =2 W% - Y- W'
i=0
(e) Estimate the cross-covariance betwggrand y, :

2n ) .
ny ZZ\M:(XL - X:)(YI}(_ )DT
i=0
() The measurement update can be performed usengdrmal Kalman filter equations:

— -1
Ky = PyP;

R = X+ KV W)
R’ =R - KP,KL
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» Accuracy of sigma-points approach
» Posterior mean accuracy

The unscented Kalman filter calculates the postemean from the propagated sigman-
points. For the UKF, the sigma points are given by:

I
I
I+

X (n+A) p

X (1.57)
)

I
x|
I+

where p, denotes théth column of the matrix square root &f. The propagation of each
point through the nonlinear function as a Taylateseexpansion aboX is given by:

Y= 1(X)= {0+ D, f+% ﬁ f+é O f+... (1.58)

Px

Using equations (1.51), (1.53), (1.54) and takimg iconsideration that the sigma-points are
symmetrically distributed aroundk (resulting in zero odd moment terms), the UKF
calculated posterior mean is defined by:

2n
Yoke = F(X) + : Z{lsz —1D4f —1D6%f+ }

20+ )5 an

s ) (1.59)
—_ tva - - = 6
_f(x)+2(DPXD) f(x)|xzx+2(n+,1)§[4!Dgwf T R }

By comparing equation (1.40) and (1.59), it carclearly seen that the true posterior mean
and the mean calculated by the UKF agrees exaothhe third order and that errors are
introduced in the fourth and higher-order termse Tagnitude of these errors depends on the
choice of the scaling parametdr as well as the higher-order derivatives fof In contrast,

the linearization approach used in the EKF calesgldhe means ag. . = f(X), which only

agrees with the true posterior mean up to the dirgeér.
> Posterior covariance accuracy

The true posterior covariance is given in equatiod3). By definition, the covariance of is
given by equation (1.55). Expanding (1.55) and gisinsimilar approach used above to
calculate the accuracy in the mean approximations ishown that the UKF calculated
posterior covariance is:

e =mmp e e o bS5 g o, |

2 - 2n 2n T
(ZJ=14(2)'(ZJ)'(H+/1)ZZZ 51 (o ZJ“)] i, j such that ij>1

i=1 k=1m=1
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Comparing equations (1.43) and (1.61), it is cldeat the UKF calculates the posterior
covariance accurately in the first two terms, watiors only introduced at the fourth and
higher-order moments (Fig. 1.13). In contrast, B truncates the Taylor series after the
first term, that is:

P = FRF' (1.62)

Actual (sampling) Linearized (EKF) Sigma—Point

sigma pomts

mean

‘ y—g(x) y-_g(r't’)
Py = Vng(Vg)T l

y: = g(x;)

weighted sample mean
and covariance

g(x) traﬂsformed
oy true mean S|gma points
; ~_ true covariance
SP mean -

EKF covarlance

SP covanance

Figure 1.13. Demonstration of the accuracy of the unscented sf@amation for mean and covariance
propagation. (a) Actual (Monte Carlo approach). (Bjrst-order linearization (EKF). (c) Sigma point
transformation (UKF).
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Chapter Il: Finite element modeling

2.1. Modeling of the cupula

The mathematical model for the dynamics of the tayeadolymph system of the inner ear
semicircular, as elaborated by numerous investigatemains a fundamental tool in all of
vestibular physiology. Most models represent thputa as a linear spring-like element of
stiffness

K =AP/AV (2.1)

where AV is the volume displaced upon application of a gues differenceaP. K directly
influences the long time constant of the cupulaegyrdph system.

The following modeling addresses different objessivThe first goal is to determine the
relation between the pressure-volume coefficienof the cupula of the human semicircular
canal which describes the cupula’s behavior aseatielastic element, and Young’s modulus
E of the cupula material. We model the cupula astractwirally homogeneous elastic

diaphragm of constant thickness using the bendimgnibmane theory. We consider two

distinct cases, a thin and a thick diaphragm, astdvehich model best matches numerical
predictions from a finite-element model based omremealistic cupula morphologies. The

second goal is to explore — using finite elemendet® — the effect of regional cupula

thickness on the shearing mechanical stimulus tedying hair cells. We study two other

different shapes for the cupula based on cupulssuarements and quantify the impact on its
transverse displacement. We then use one of tiee-tlimensional finite element models to
analyze both the shear strain distribution andwian near the sensory epithelium. The third
goal is to quantify the impact of fluid filled ver&l channels traditionally believed to be
present in the cupula. To achieve this goal, we ehadsection of cupula material having
vertical channels voids. We consider three disticitannel diameters, use finite element
analysis, and compare the transverse displacenaddttb the one provided by a similar

section of cupula material without channels. Finalve discuss the properties of other
biological materials that have similar elastic pd@s as the cupula, and potential
implications.

2.1.1. Background

e Cupula attachment
The cupula is normally transparent, and therefteshape and function was not appreciated
by investigators prior to Steinhausen (1931) andilan (1935). Since then, at least four
modes of cupula displacement have been described:

1. Steinhausen (1931) and Dohlman (1935) cannulatesl gg@micircular canals, applied
small pressures, and described the resulting cumagon as that of a “swinging
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gate”, wiping across the vault of the ampulla i tmanner of a revolving door,
maintaining a seal so no endolymph passed ovdpthe

2. Dohlman (1971) suggested that displacement of tlaelgmph caused the cupula to
move as a sliding unit similar to a piston in aireger. Hence this model assumes no
attachment of the cupula along its entire periphdfpwever, in light of present day
knowledge of canal morphology and hair cell physygl the displacements
experimentally created by both Steinhausen and rBahlappear unphysiologically
large (Oman et al., 1972a and 1972b; Oman et af)198

3. Bélanger (1961) and Igarashi (1966) found someloigical evidence that the cupula
was functionally attached to the ampullary roofali@ (1967) then proposed a model
which assumed that the cupula was suspended frenrabf and the significant
shearing motion took place at the surface of tisacrHowever, subsequent histology
(Dohlman, 1971; Hillman, 1974, 1977) suggestedrgjrattachment of the cupula to
the crista via supporting cell filaments and reoepell kinocilia.

4. Hillman (1972) hypothesized that the cupula adhéoethe ampullary wall around its
entire the circumference. To demonstrate this, nidilh studied cupula motion
following the injection of a dye, compressing thenal wall. The cupula appeared
stationary around the perimeter and displaced makmn the central region.
Hillman argued that in prior studies of cupula nmoeat, the cupula attachment was
likely traumatized. He argued that the intact dapuas mechanical properties of a
elastic diaphragm. He argued the cupula is cirenemttially attached to the ampullary
wall, except alongside the crista where the cupmlilaars with the crista across
subcupular space. These findings were confirmedblaren (1977) who analyzed
the motion of opaque oil droplets placed within theula of the bullfrog. When
endolymph was displaced by compression of the cdnet, McLaren observed that
the line of droplets consistently flexed and bowatth maximal displacement near the
center of the cupula rather than the apical edpes Bealed diaphragm” hypothesis
was confirmed by later studies of Hillman and Mamar(1979) and McLaren and
Hillman (1979).

Therefore, in the following models, we will assumpinned boundary condition both around

the periphery of the cupula and at the cristatianslation displacements at the boundary are
set to zero. Note that a clamped boundary conddiahe crista has no significant impact on

the transverse displacement field as the mateeialgovery soft bends immediately above the

crista. Note also that the subcupular space betweeupula and the sensory epithelium is
here not taken into account.

e Cupula structure

The shape of the cupula has been described byategsearchers, but detailed measurements
are rarely published. The overall shape of the lmuputhe plane of the crista in the frog is
approximately that a semicircular disc with itsdasst above the crista and has a nonuniform
thickness (Hillman, 1974; McLaren, 1977). McLard®77) described the cupula as having
two thick columns of its mass arching along thelwéithe ampulla that are separated by a
thin region, which corresponds to the narrow portad the crista. The base of the cupula is
separated from the crista by a “subcupular spagkich is crossed by veils and a network of
filaments, while the ampullar endolymph entrancesenclosed by drapes (Dohlman, 1971,
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McLaren, 1977; Hillman and McLaren, 1979). Hendewas suggested that the cupula is
attached to the crista by connections across theugular space, i.e. kinocilia extend across
the entire width of the subcupular space and ateeedded directly in the base of the cupula.
In addition, many studies have supported the faat stereocilia and kinocilia appear to be
inserted into channels running vertically withiretbupula from the crista to the ampullary
wall (Igarashi and Alford, 1969; Dolhman, 1971; Li&®71). Since the cupula is thought to
be extruded upwards from supporting cells surroumadeach hair cell, the channels are
conventionally assumed to be “shadows” caused éytbasence of hair cells.

However, a recent study of the cupula of the hoialbbsemicircular canal in the toadfish
disputes these earlier results (Silver et al., 1989Bing confocal microscopy and a new
histological technique so as to reduce shrinkagfaets, Silver et al. examined the structure
of the cupula and disputed previous interpretatiéinst, they found that the toadfish cupula
has distinct internal organization composed of ssdifferent sections: lateral wings on both
sides, a central “antrum” above the hair cells, ancasymmetric shell consisting of utricular
and canal side “central pillars”. They describeel @éimtrum as an isotropic gel reinforced with
collagen connective fibers running vertically. Thaygued that the presence of the antrum
means there is no true subcupular space. Secortdbas or channels, as described in earlier
studies, were observed in the toadfish cupulageitihthe antrum nor in the cupula. Finally,
as regard the central portion of the cupula, thgued that the utricular-side pillar should be
stiffer than other regions of the cupula perhape tuits rich mucopolysaccharide content
higher than any other portions of the cupula. Sietal. speculate that the central section
moves differently than the wings and that the utacside pillar might serve to limit the
extent of cupula deformation during head displaggme

In order to model the cupula, it is clearly necegsa know the mechanical properties of each
of its region. Unfortunately, as no physical datavailable, one can only guess, for instance,
what the Young’s modulus is for the various compuseln our theoretical study we begin
by modeling the cupula by an homogenous materialoning’s moduluse .(This assumption
ignores regional differences in thickness, the isgpresence of a subcupular space and/or
differences in structure described by Silver eL8B8). We then use finite-element models to
assess the potential impact of regional thicknesstions, and channels.

* Cupula stiffnesK

Beginning with the pioneering work of Steinhausf33), a succession of more physically
detailed models have been proposed to describedyhamics of the cupula-endolymph
system (e.g. Groen et al. 1952; TenKate, 1973; Biaskirk, 1977; Oman et al, 1987; Rabbitt
et al, 1999; Rabbitt et al, 2004). A common featafemost studies is that the cupula is
assumed to behave as a linear spring, and canfdrerbe characterized by an elastic
coefficient which we define & =AP/AV in order to describe the volume displacement of
the cupulaAV when the latter experiences a transcupular pregsBreDifferent expressions
and values for this parameter have been sugge¥ted Buskirk, 1977; Oman et al., 1987;
Rabbitt et al., 2004). The coefficieist, along with a second factor related to endolyniptv
drag on the canal walls, determine the cupula-gmaoh system long time constamt ,

which characterizes the return of the cupula taet position following a change in head
angular velocity. In turn, the coefficient K iggothesized to depend on the shape of the
cupula, and the Young’s modulls and the Poisson ratio of the cupula material.
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This following work explores the theoretical retatships between the morphology of the
cupula of the semicircular canal, the stiffnesaid the cupula’s material properties E and
Fundamentally, there are three different approathas can be used to estimate K of the
cupula: Historically the first approach was toedity measure the pressure volume
relationship. As noted earlier, the classic pracede.g. Dohlman, 1969) was to transect the
canal, insert a micropipette containing stainedifladminister a known pressure change, and
measure the resulting volume displacement. How#vsrprocedure likely traumatized the
cupula. A second, less direct method is to meash&ecupula long time constamt , and

then use a mathematical model of the cupula-endatyrsystem to estimate K. One
technique used in animal models is to pinch thacintnembranous duct, and to monitor the
time course of return of the deflected cupula. IiSdisplacements must be measured through
the ampulla wall using a light microscope.  Howewhe physiologic range of cupula
deflections is at or below the limit of conventibtight microscopy (Oman, et al 1987). The
introduction of dye or particles to visualize thetian may also traumatize the attachments.
Direct observation off, has not been attempted in humans. Instead, nststates ofr

come from model based analysis of afferent resmofesg. Goldberg and Fernandez, 1971) or
eye movements (e.g. Dai et al 1999). Potentiallhird approach is to extract whole cupulae
and directly measure their shape and material ptiegeE andv using an appropriately
designed micro-apparatus. This difficult experitigas not been attempted.

Almost all estimates of K are derived from the setaapproach, employing various
mathematical models for the cupula-endolymph syst€able 2.1 shows estimates &f

based on the theoretical relationships shown irs¢éftend column, and assumed valuesrfor

suggested by the individual authors are indicatédlues range from 2.2 - 13 GP&lrn the
next modeling section, we will use Oman’s model émdolymph hydrodynamics as it is
probably the most detailed analytical model of dymiph volume displacement in one
semicircular canal. Oman et al. extended the da&einhausen/Groen mathematical
description of endolymph flow to the case where size, shape, and curvature of the canal
lumen change continuously through the duct, utrestd ampulla. As regard the long time
constant of the system cupula / endolymph, we usgge of 6 s determined experimentally
by recording the response of peripheral afferentraores of the squirrel monkey (Goldberg et
al, 1971).
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Time constant (s) | K (GPa/ nt) Comments
Van Buskirk _8uR K =2.5ifr, =17 Duct approximated as rigid toroidal dyct
(2977) I =— of constant cross section and occugies
one half of the circumference of a circle|
a'K half of the circumf f a circl
Cupula modelled as a revolving door.
Van Buskirk _8upBR K=22ifr, =21 Duct approximated as rigid toroidal duct
(1988) I =—= of constant cross section and occupies
of the circumference of a circle.
K 250° of the circumf f a circl
Cupula modelled as a revolving door.
Oman et al 8L 1 K=6.8ifr, =6 Rigid duct of length L with variations qf
I = . .
(1987) L K (Goldberg et al. 1971) ;:\ross section shape taken into account by
ooy | =R K213 = 4.2 e ering a iferent tme constant. |
LT @tk (Dai et al.1999) 9 '
Rabbitt et al. 2 8 Parameters approximation based |on
(2004) . - C _HA K= ﬂ};h =1.33 morphological data.
K yhA?
if 7, =13.3

Table 2.1.Summary of the values of the pressure-volume anefft along with its relation to the long time
constant of the cupula. See nomenclature for defmbf parameters.

2.1.3. Analytical model using thin and thick bendig membrane theory

The cupula is modeled as an isotropic circulartielasembrane of constant thickness with a
pinned edge boundary condition along its entirdpbery. In other words, the transverse
displacementw(r) along the periphery is set to zero as well as libading moment

M, (r =R) =0. Thus, rotational degrees of freedom were alloaethe cupula attachment.

We apply both thick and thin membrane theory - a&ferred to as the Love-Kirchhoff and
Mindlin-Reissner theories respectively (Timoshenk®64; Ventsel at al., 2001) — and
compare the results. The difference between thinekthin plate theories is principally due to
the treatment of transverse shear in the membitan€irchhoff (thin plate) theory, straight
lines, initially normal to the middle plane befdrending, are assumed to remain straight and
normal to the middle surface during the deformatiims assumption means that the vertical
shear strains are negligible and are not taken astmunt in the calculation of the strain
energy. Therefore, this approach, also referregstthe hypothesis of straight norméjss a
good approximation for thin plates. On the othendhathe Mindlin-Reissner (thick plate)
theory supposes that the straight lines, initiattymal to the middle plane before bending, are
able to rotate as the plate deforms. Thereforéntfiheence of the shear strains is not neglected
in the derivation of the strain energy.

According to both theories, in the case of a pineddge boundary condition, it can be shown
that the deflection of a circular plate w(r) of &R is given by:

w(r):ﬂ(l_ rzj(zg’“’ ~1- r2+¢j (2.2)

64D\ Rzl “1+v ~ R2
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Here P is a distributed load acting in the same directbrw andD is the bending rigidity
of the plate defined as

Eh’

°= 12(1-v?) 23

where E is the Young’s modulusy is the Poisson ratio of the plate material dnds the
thickness of the plate. The coefficieptis defined as

_16_he
5 R¥(1-v)

(2.4)

and is therefore negligibly small in the case &f tiin-plate assumptiorh( R<<1).

The volume displacement of the cupula is given bg integration of the transversal
displacement so that

(2.5)

R 2 2
AV =I2mw(r)dr = 3TPRE(L-v )( 3ty 4 1}
0

8ER° 2(1+v) B5R2(1-v) 3

Finally, sinceK is the ratioAP/AV , a relatiorE = f(K) between the Young’s modulus and
the pressure-volume coefficient was derived fohlibeories (table 2.2).

Thin plate theory Thick plate theory

AV JA\V/

_mPR A-)7+v) AVZ3nPR6(1—u2)[ v, 42 1}

16817 8ER® | 2(+V) TRAEV) :

3
6(1_ 61
E=f(K) g-KmR(E l;)(7+V) £ = 3K7R gl v 3ty 42 1
16h 8h

20+v) BR(L-v) 3

Table 2.2.Relationship between the Young's modulus of thalawgnd the pressure-volume coefficient K.

2.1.4. Finite-element models

2.1.4.1. Computation of the Young’'s modulus

A three-dimensional finite-element model of the wapis developed in order to check the
thick and thin plate analytical models. The shapé¢hefcupula is defined based on the 2D
cross-section model of Njeugna et al. (1990). Anpth boundary condition is assumed all
along the periphery of the cupula and at its basistq4). The thickness of the cupula was
assumed to be 403 um based on the morphologiah} sfuRabbitt et al. (2004) so that:

h=0.7/A /7= 403um (2.6)
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An elastic modulus of E = 10 Pa was assumed, andldstrative purposes a pressure of 0.05
Pa is applied (Fig. 2.1a). According to Oman andingp(1972a,b), the steady state relation of
cupula pressure to head acceleration in the platreecanal is given by:

P=2pnFa?R2B’a (2.7)

where o is the angular acceleration of the head in rad/¢8ee nomenclature for the
definition of the other parameters). Therefore,espure of 0.05 Pa corresponds to an impulse
of head angular acceleration of about 400°®&nce the cupula is nearly incompressible, a
Poisson ratio of 0.48 was considered (Kassemi .et2805, Yamauchi et al., 2001).The
solution shown in figures 2.1b was generated uBinge Element Analysis software (Abaqus
v 6.5.1) on a 3D mesh with 4284 quadratic elements.
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Figure 2.1. Three-dimensional model of the cupula) 3D model of the cupula. (b) Transverse disphaent
field given by the FEM cupula model. (¢) Transvedssplacement field provided by a 3D FEM model of a
circular plate.

The maximum transverse displacement occurs neacehier of the cupula and is 8.5 um.
We note that the displacement is almost identicalhat of a completely circular plate of
identical radius 0.575 mm, pinned along its entreundary, shown for purposes of
comparison in figure 2.1c. Therefore, we considdahbnodels to be equivalent in terms of
volume displacement.

The transverse displacements provided by the thintlaick plate theories and the numerical
FE circular plate model are compared in figure far tase were E= 10 Pa, P= 0.05 Pa, R=
0.575 mm and h=0.403 mm. As can be seen, the tate-model yields results significantly
different than either the thick-plate model or 8@ FE model, since it does not take into
account the shear strain components within thenstesmsor (Fig. 2.2). This illustrates that
plate theory is not sufficiently accurate sinceckthiess of the cupula is the same order of
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magnitude as cupula radius. Therefore, the thicteptaodel is more appropriate as it gives
similar results as the 3D finite-element model.

w

SN — Thick theory |

== FE circular plate|
- mode |

Transversal displacement (um)
o

L L 1 1 £
0 0.1 02 03 0.4 05 0.6
Radius (mm)

Figure 2.2. Transversal displacemem/(I') provided by the thin and thick analytical membramedels, and the
finite element circular plate model.

Using estimate ofk and 7, from the literature (Oman et al, 1987; Goldberglet 1971),
using thick and thin plate theories (Table 2.2sipossible to estimate the Young's modulus
E. (Note that these relations are derived assurtiiagcupula is a circular bending plate,
pinned along its entire periphery). A Poisson raio 0.48 was assumed. A value of
K =6.7GPa/nt and a long time constant of 6 s yield a Young'simos of 5.4 Pa for thick

membrane theory. The value provided by the thickepd@sumption is about five times lower
than the Young’'s modulus given by Groen (1952).

Finally, note that the shorter the long time conita assumed to be, the larger the theoretical
prediction for Young’'s modulus. For instance, byhsidering Oman’s model and the thick
plate theory, we can derive the following relatioipsbetweenE andr, :

2R6 (1—1, 2 2
E::«WLHR3 A-vNU( v . 42 1) « 2.8)
h°r, 2(1+v) SR(-v) 3 1.

where k is constant that depends on numerous geomettimréac

2.1.4.2. Comparison with other estimates

We compare our estimate @& with previous reports. Several authors proposedeisothe
endolymph-cupula system for the fish, particuldhg pike (De Vries, 1956; Ten Kate et al.,
1969; Ten Kate et al., 1972). Although the pikeisenear has different shape than that of the
human, functionally it is similar. Ten Kate (1969pdeled the pike’s cupula as a bending bar
and was able to estimate the elastic or geometilioansions and Young's modulus as about
34.9 Pa. Other authors have focused on the modedknwell as direct measurements of the
superficial neuromast in the fish lateral line syst(Frishkopf et al., 1972; McHenry et al.
2007; McHenry et al. 2008). Superficial lateralelinupulae are structures that detect water
flow on the surface body of fish and amphibians. seh@rgans are closely related to
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vestibular and auditory sensing organs, as theptececells of all these systems are
morphologically similar. Water disturbance bends ¢hpulae which overlay hair cells, which
results in stimulation of the organ. Oman et al7@)9experimentally measured cupula
stiffness in the mudpuppy, and based on cupula hodogy and cylindrical cantilevered
beam theory estimated E =*1Pa. More recently, utilizing a more complex stanat model,
McHenry et al. (2007) estimated E = 21 Pa for tHwaiesh’s freestanding cupula. This value
is comparable to that originally estimated by TeateKfor the pike, and is the same order of
magnitude as that for the human’s semicircular lsavehich we estimated in the previous
section.

2.1.4.3. Analysis of different cupula shapes

Detailed anatomical measurements of the shapeeafupula are rare in the literature. This is
probably due to the fragility of the cupula, ane tfact that it must be stained or the
endolymph counterstained in order to visualizééft in-situ it is difficult observe its shape
through the wall of the semicircular canal. Extrawtrisks traumatizing the structure. Classic
histological techniques have been optimized toemescellular structures, and e.g. alcohol
dehydration and fixation for electron microscopyyntiamage or distort the cupula. Also, it
is possible to misinterpret 2D micrographs of sewtd material unless the plane of sectioning
is known. For instance, by looking closer at asia 2D micrograph, one might assume that
the cupula becomes thicker at the top. Howevehefplane of sectioning was diagonal, the
increased thickness may be on the sides.

As a result, notions of the three-dimensional shafpiine cupula come mainly from various

light micrographs obtained by certain investigatans animal preparations where the

membranous labyrinth is easily accessed surgidaly. skate, pike, toadfish, frog) and

photographed. Studies of isolated cupula of theéesf@g. Oman et al., 1979) reveal that the
cupula is thicker on the sides, and thin in theteeall the way from the crista to the vault

(Fig. 2.3).

Figure 2.3.Top view of the skate cupula which is thicker anditles and thin in the center (Oman et al, 1979).

Therefore, we have decided to use finite elementetmogl to investigate the influence of
cupula shape on its transverse displacement fdaredard transcupular pressure. We have
studied the behaviour of two different models: omeker around its entire periphery (Fig.
2.4a), the other thick only on the sides and withstant thickness in the center (Fig. 2.4b).
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Figure 2.4. CAD models of the cupula considering differerdsis (a) Cupula with a thicker portion all
around its peripheiphery. (b) Cupula that is thrtically with thick sides.

The first model has a 800 um thickness around itgeeperiphery, with a 400 micron
thickness at its centre. The second model has av#hiical center section 400 pum thick,
widening to 800 um on the sides in the region @& fhlana semilunata. The boundary
conditions for the finite element analysis arelaanped condition on the crista, and a pinned
condition on the periphery of the cupula — plusoadition of symmetry relative to the cut-
plane (%,2). For simulation purposes we apply a transcupuiessure of 0.05 Pa, and assume

a Young’s modulus of 10 Pa and a Poisson ratia48.0
* Transverse displacement

The solution for the transverse displacement is shfow both models in figure @or both
cases, the maximum transverse displacement isgbeeldio be smaller than that predicted for
the simple 403 micron thick plate model by a facbg.8 for the first model and 1.8 for the
second. . This is because the increased thicknisdie¢ly stiffens the cupula. We note that
model 2.5b (cupula with fat sides and a thin vaftzenter) has a transverse displacement of
about 55% larger than model in figure 2.5a (thputal that was thick around its entire
periphery). We also note that if the cupula iskbrcalong its entire periphery, the transverse
displacement become vertically asymmetric as téist figure c. In that case the lower part
of the cupula, precisely where the hair bundlesl@cated, is the most deflected. This was
not the case with model a, because the cupulalie syonmetrical along a vertical axis.
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Figure 2.5.Transversal displacement of the human cupula pexvigy a finite element simulation in response to
a static pressure of 0.05 Pa. (a) cupula with shapéb) cupula with shape 2; (c) transversal dig@aent
along the dashed line of both models (a) and (b).

* Predicted shear strain above the crista

The mammalian crista, which supports the cupulataios two types of hair cells: cells of
type one and two, respectively located at the fdphecrista and down its sloping flanks. Hair
cell sensory sterocilia, which range in height aB5b pum and even longer kinocilia, project
into the cupula. It is generally assumed that tha are entrained with the cupula when the
latter is deflected. Conversion of cupular volunigpthcement into bending of cilia initiates
the transduction process in hair cells and vesibafferent neurons. The mechanical stimulus
of the stereocilia is determined by cupular shésairs that occurs close to the crista rather
than cupular transverse displacement. Thereforegusie second three-dimensional finite
element model of the cupula (Fig. 2.6), we anatfigeshear strain at a surface located 50 um
above the crista. First, we apply a static pressfi@®05 Pa on the cupula and plot a map of
the shear strain predicted by the model. Secondpeviorm a time dependent analysis in
order to observe the evolution of the shear stndian the pressure increases. Results of both
simulations are shown in figure 2.6.

The model predicts that the maximum shear strainrgagear the surface of the crista where
the cilia are located. It is also notable thatghear strain at a surface 50 um above the crista
is nonuniform. Indeed, the shear strain is predi¢b be largest at the centre of the crista and
to diminish both toward the periphery of the cupalad down the sloping flanks of the
sensory epithelium as shown in the plots in figu& From the time dependent analysis, we
determine that the shear strain first appears extcémtre of the crista and then spreads out
through time both toward the sides of the cupuld tmward the bottom of the crista (Fig.
2.6d). Hence, the model predicts that hair cellsypé 1 may be stimulated first, while hair
cells of type 2 are progressively stimulated as dbf#lection of the cupula increases. This
spatio-temporal variation in mechanical shearinggus to hair cells, as shown in the
models, suggests that these two hair cell typesdcplay different roles in encoding head
movement.
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2.1.4.5. Mechanical influence of cupula channels

We have considered so far a homogenous materighéo¥oung’s modulus E of the cupula.
However, according to Igarashi and Alford (1969phDnan (1971), and Lim (1971), the
cupula has endolymph filled channels, of about &@0diameter, running vertically through it.
Assuming that these channels exist, we use fihdi@ent models to investigate the influence
of their presence on the cupula stiffness. For psepf simplicity, we represent a volume of
cupula material as a rectangular box of dimensforran x 1 mm x 0.4 mm. As we study the
transverse displacement field of the cupula whenldltter experiences a static pressure, the
fluid within the tubes - being free to leave theimas therefore negligible effect on the cupula
stiffness. Thus, we consider a rectangular box gdutau material having vertical empty
channels positioned on a hexagonal matrix (Figa)2.Mhree channel diameters were
successively taken into consideration: 10 pm, 20 amd 30 pum (Fig. 2.7b,c). Note that each
model involve a large number of degrees of freedamd solution therefore demand
significant computational resource as the tube dtans are two orders of magnitude smaller
than the cupula dimensions. In addition, these mbiameed to be modeled by a fine mesh so
as to provide accurate results. Figure 2.8a iliss the transverse displacement provided by
the simulation. Figure 2.8b shows the influencethsd tubes diameter on the maximum
transverse displacement of the cupula, and alsgpames these displacements to the one
provided by a similar cupula material section withthe tubes. It turns out that the higher is
the tubes diameter, the larger is the displacentént.this tube spacing, it can be seen,
however, that 10 um diameter tubes have a verylsaefi@ct while 20 um and 30 pm
diameter tubes involve larger transverse displacesnef about 12.8 % and 28.6 %,
respectively. The increase of displacement witheespo the tube diameters appears to be
nonlinear. Since the cupula stiffness is clearlysgeve to channel size, it is important to
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know whether they actually exist in specific speciand if they do, to determine their
geometry, i.e. diameter and average spacing.
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Figure 2.7.Modeling of a section of cupula material havingtigad empty tubes. (a) 3D view of the box having
vertical empty tubes; (b) top view with 10 pm diten&ubes; (c) top view with 30 pm diameter tubes.
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Figure 2.8.Results provided by the finite-element model aécien of cupula material having vertical empty
tubes. (a) Transverse displacement of a box withu20diameter tubes; (b) Maximum transverse displese
at the center of the section for different tubenukters.

2.1.5. Biologically similar material

What biological materials have similar elastic s as the cupula? We first consider
biopolymers, a class of polymers produced by livimganism such as cellulose or proteins
for instance. Biopolymers are widely used as biemals and matrices in tissue engineering
as they offer control of structure, morphology artemistry as reasonable substitutes or
mimics of extracellular matrix. They are also chtedzed by low values of mechanical
properties in comparison with other classes of matd-or example, alginate polysaccharide
materials have an elastic modulus of 10-12 KPadwel et al., 2006). However, to our
knowledge, measurements of the elastic modulusapfobymers do not provide a Young’s
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modulus as low as the modulus of the cupula. Thexefoe considered hydrogel material
properties.

Hydrogels are characterized by a network of polyof&ins that contain a significant amount
of water. These materials are viscoelastic so theyammonly characterized using dynamic
mechanical analysis. The complex dynamic shear med@l* is used to represent their
mechanical response. The parameter is composeckaf and imaginary part, so that:

G*=G+iG" (2.9)

The elastic moduluss' is a measure of the reversibly stored deformag¢inergy, and the
viscous modulusG" represents a measure of the irreversibly disgipa&teergy, and is
proportional to the effective viscosity of the mé@k The elastic shear modulus is related to
the Young’s modulus according to:

. E
G'= T (2.10)

With this relation, the value we derived 5.4 Pa, correspond to a value 6f=1.8 Pa.
This range is similar to that reported for collagsulrogels. Indeed, Raub et al. (2007) have
demonstrated that the elastic shear modulus ofagef hydrogels varies between
0.28+0.16Pa and 23+3Pa, depending on the polyntienizeemperature (Fig. 2.9).
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Figure 2.9.Representative frequency sweeps of G’ (solid syshbad G” (open symbols) for collagen
hydrogels at each polymerization temperature (Retudd., 2007).
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2.2. Fluid structural interaction model

2.2.1. Introduction

When our head experience a movement of rotati@nfltid in the canal lags behind due to its
inertia and produces a force across the cupuléeaeiy it in the opposite direction of head
movement. Therefore, the functioning of the systemiogymph/cupula is a typical example
of Fluid-Structure Interaction (FSI).

The aim of this section is to model the entire $eteonircircular canals by taking into account
fluid-structure interactions in order to investigdiuid flow and cupula motion during head
rotation. To achieve this goal, we use the finiesgnt Comsol Multiphysics software as it
permits to deal with different physics, and mordipalarly with FSI problems. The modeling
strategy is as follows: first, we model a two-dirsemal cross-section of the lateral
semicircular canal using geometry and dimensiorigaeted from measured human data by
Curthoys and Oman (1987); second, we extend thim@Bel to a three-dimensional model of
a single semicircular canal; and third, we devebodully three-dimensional model by
considering the three SCCs.

Before going in depth through the core of the moded give a brief introduction to fluid-
structure interaction problem and Arbitrary LagramgEulerian (ALE) method which is a
common application in engineering used to solveblers pertaining to structure and fluid
mechanics analysis. The ALE method employs the usefefence frames to represent the
classical Lagrangian and Eulerian systems. The Lgganreference frame is used to study
the structure problem while the Eulerian refereisagsed to study the fluid problem.

2.2.2. Fluid-structure interaction

Fluid-structure interaction is the interaction ofree movable or deformable structure with an
internal or surrounding fluid flow. As FSI problerasd multiphysics problems in general are
often too complex to solve analytically, they hawdoe analyzed by means of experiments or
numerical simulations. Research in the fields ofmpatational fluid dynamics and
computational structural dynamics is still ongoimgt the maturity of these fields enables
numerical simulation of fluid-structure interactgnTypically in FSI, the fluid and solid
components are modeled using different techniquesfferent levels of complexity, ranging
from simple analytical solutions to three-dimensiomumerical schemes with advanced
physical models. Two main approaches exist for imellation of FSI problems:

* Monolithic approach: the equations governing tlmvfland the displacement of the
structure are solved simultaneously, with a sisgleer (e.g. Comsol Multiphysics).

» Partitioned approach: the equations governing ke &ind the displacement of the
structure are solved separately, with two distsaivers.
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The monolithic approach requires a code developedtHs particular combination of
physical problems whereas the partitioned apprpaebserves software modularity because an
existing flow solver and structural solver are dedp Although the integration of two
software codes is possible in principle, the coxipjeand size of the software make,
however, the partitioned approach quite unattractiFurthermore, the computational
overhead to run such codes is quite exorbitantfasmation has to pass from one code to the
other in each time step, adding to the total ovadh&inally, data transfer for the coupling
usually requires an extra program that acts astenface between the two other codes, thus
sacrifices the modularity of the method.

In addition to the range of techniques availablerfmdeling the individual fluid and solid
components, there is also the question of exchgnigiformation, typically in the form of
boundary conditions, at the interface. Differenti@ms can be considered and are classified
on the basis of the level of coupling between fland solid as follows:

* One-way coupled FSI: in this case, the deformatibthe solid is so small that its
influence on the fluid flow is negligible. Thereforanly the fluid stresses need to be
applied onto the structure and no iteration betwberfluid model and the solid model
iS necessary.

* Two-way (or fully) coupled FSI: in this case, thespense of the solid is strongly
affected by the response of the fluid, and vicesaem other words, fluid flow causes
deformation of the structure. This deformatios, urnf changes the boundary
conditions for the fluid flow.

In the following models, we adopt a monolithic agmaech — which is implemented in Comsol

Multiphysics — and consider a fully coupled methmetween the solid and fluid. In other

words, both fluid and solid equations are solveautianeously and a two-way data transfer is
performed such that the fluid exerts a force ondingula, while the deformation of the solid

affects the geometry of the fluid domain.

2.2.3. Arbitrary Lagrangian Eulerian methodology

The algorithms of continuum mechanics usually make af two classical description of
motion: the Lagrangian description and the Euledascription. The arbitrary Lagrangian
Eulerian method was developed in an attempt to coenbihe advantages of the above
classical kinematical description, while minimizineir respective drawbacks as far as
possible.

The Lagrangian reference frame - also called phlysicardinate system - is largely used
most commonly in solid mechanics. It sets up aregfee frame by fixing a grid to the
material of interest then as the material deforhes drid deforms with it. Therefore, each
individual node of the computational mesh follovire tassociated material particle during
motion (Fig. 2.10b). For instance, a solid struetwith little material flexibility uses the
Lagrangian approach because as the grid deformags out the deflection of the solid due to
some load. The grid would also define the exactlatgment of each particle. In this method
conservation of mass is automatically satisfiedabse the individual sections of the grid
always contain the same amount of mass. For steichotions with large deformation in
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which the grid becomes excessively distorted, titegration time steps become smaller and
smaller because they are based on the size ofitallest section of the grid.

The Lagrangian method typically is not the easiesit®n for a fluid mechanics problem.
The reason is that fluids are not cohesive and eoflthd particles do not stay closely
together. So if a grid is mapped out onto a flailcen no matter how small the initial grid
sections the fluid particles will travel indepentieh each other and diverge in space. This
will cause the grid to distort excessively and ragrlap each other.

The Eulerian reference frame - also called spatiatdinate system - which is fixed in space,
is the typical framework in the analysis of fluickeamanics problem (Fig. 2.10c). It allows for
material with specified load or pressure to flowotigh the grid as it is with le Lagrangian

frame, but this time without tracking the path afaf the individual particle. In other words

the computational mesh is fixed and the continuuowes with respect to the grid. In order to
predict the flow of the fluid across the grid, tRelerian approach solves the problem by
measuring the net flow through a certain area. ®inilthe Lagrangian method conservation
of mass is directly, in the Eulerian approach itaisen into account explicitly by measuring

the flux in and out of each grid section. In thddfian description, large distortions in the
continuum motion can be handled with relative e&kmwvever, one of the disadvantages of
the Eulerian system is that it does not track ttie paany individual particle.

Figure 2.10. Comparison Lagrangian and Eulerian descriptions. 2Rample of a beam that undergoes a

pressureP . (a) initial grid and material. (b) Lagrangian deription: the grid is attached to the material and
deforms with it. (c) Eulerian description: the giglfixed in space.
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Figure 2.11. Comparison Lagrangian, Eulerian, and ALE descripo (a) One-dimensional exemple of
Lagrangian, Eulerian and ALE mesh and particle motiln the Lagrangian description each node of riesh
follows the associated material particle, whereasthe Eulerian description the mesh is fixed. |e thLE
description, the nodes may either be moved or lkfhed depending on the distorsion of the mg$he) Mesh
used to model the detonation of an explosive chargam extremely strong cylindrical vessel (fronDanea et
al., 2003). (b) Initial finite-element mesh; (c) Aimesh at t=1 ms; (d) Lagrangian mesh at t=1 mydgtails of
interface in Lagrangian description.

Because of the shortcomings of purely Lagrangiad puarely Eulerian descriptions, the
arbitrary Lagrangian Eulerian technique, which cambi the best features of both the
Lagrangian and Eulerian approaches, has been dedelopthe ALE description, the nodes
of the computational mesh may be moved with thdisoam in normal Lagrangian fashion,
or be held fixed in Eulerian manner, or be movedame arbitrarily specified way to give a
continuous rezoning capability (Fig. 2.11). Because this freedom in moving the
computational mesh offered by the ALE descriptiaeater distorsions of the continuum can
be handled than would be allowed by a purely Lagisanmethod, with more resolution than
that afforded by a purely Eulerian approach. The eManshown in figure 2.11 (b-e)
illustrates the ability of the ALE description tocanmodate significant distorsions of the
computational mesh.

In order to model effectively our FSI problem, welopt the ALE approach. The
corresponding subdomain and boundary conditionthiomesh will be presented later.

2.2.4. 2D model

2.2.4.1. Geometry of the 2D model
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A two-dimensional cross-section of the lateral ssroular canal is modeled. The geometry
and all the associated dimensions (Fig. 2.12) atea&ed from measured human data by
Curthoys and Oman (1987). The canal consists oéthrain regions: the semicircular canal,
the ampulla, and the utricle. The canal is filledaoivater-like fluid, known as endolymph.

The model also considers the cupula (solid) locatede ampulla which completely seals the
canal.

-0.37 semicircular
"£0 03 canal

P \ 02T + 0-p3
\

a5
20K
7 065400

L] |
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175 £ 0-16 Common crux

\' ) e
? 632028 | o2 ies | utricle

4T £ 015 202

Figure 2.12. (Left) Dimensions of the human lateral semicircudanal (Curthoys et al., 1987) and (Right)
reconstruction of a 2D model under Comsol Multgiby. Note that the cupula is modeled by a 400 hiok t
section.

2.2.4.2. Governing equations

The equations describing the behavior of the cumaasidered as an elastic solid, and of the
endolymph, modeled as an incompressible Newtorliad, fare now presented. Typically,
these equations are solved for displacement angefocity and pressure respectively. This is
due to the fact that the stress tensor in solidsefed in terms of displacement while, in
fluids in terms of velocity and pressure.

*  Fluid flow:

For an incompressible Newtonian fluid, the govegraguations of fluid flow are described in
terms of the two dimensional Navier-Stokes equation

U, MU, =F+0, (2.12)

f

ot
OW,; =0 (2.13)

The first equation is the momentum transport equatamd the second is the equation of

continuity for incompressible fluids. These equagidescribe how the velocity, pressure, and

density of a moving fluid are related. The followimgriable and parameters appear in the
eqguations:
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p; is the fluid density

>

» F is the volume force affecting the fluid
» 0 is the stress tensor
>
>

U; =(us,Vv;) is the velocity field
p is the pressure

The Cauchy stress tensor is given by:
o¢ ==pl+ 4 (OU +(0U)") =-pl +244,¢ (2.14)

where | is the unit diagonal matrixy; is the dynamic viscosity, anél.is the rate of

deformation tensor. We here assume no gravitatiather volume forces affecting the fluid,
thus equation (2.12) can be written as:

oU; T
pFw(ufDD)Uf—D[—pl+uf(muf+(muf) ﬂ=o (2.15)

The Navier-Stokes equations (2.12) and (2.13) dredon the spatial (deformed) coordinate
system.

e Structural mechanics:

The structural deformations of the cupula are solusthg an elastic formulation and a
nonlinear geometry formulation to allow large defations that may occur due to its very
low stiffness. Neglecting body forces, the Naviguation of motion for the cupula can be
written in terms of displacement vectdg = (ug,v,) as:

2
a@t’; =0, (2.16)

Ps
We consider an elastic isotropic material so thatgeneralized Hooke’s law is obtained:
O, =2UE+ Atr () (2.17)

where ¢ and A are Lame’s coeffircients, which are related to Ng's modulus of elasticity
and Poisson’s ratio, by the following equations:

_E

AP T (2.18)
- VE (2.19)
T (1+v)(1- ) '
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* Interface fluid-structure

Due to the coupling between fluid and structureditions are needed to ensure that the fluid
and structural domains will not detach or overlap the motion (Fig. 2.13). For a viscous

fluid, the coupling between fluid and structure uiegs that velocities coincide along the

interface. In particular, the time derivatives bé tstructural displacements define the fluid’s
velocity so that:

_du,

2.20
=g (2.20)

In addition, the force exerted by the fluid on #wdid boundary must be considered and is the
negative reaction force on the fluid given by:

f :—n[é—pl +/7(Du+(Du)T)) (2.21)

wheren is the outward normal vector to the boundary. Téesl represents a sum of pressure
and viscous forces.

Fluid mechanics Solid mechanics
deformatio dUS / dt deformatio
¥ "
Load transfer solid
> force~/A

Figure 2.13. Concept of fluid-structure interaction (FSI). Loadnsfer from fluid side: nodal forces. Load
transfer from solid side: nodal displacements aabbeities.

2.2.4.3. Boundary conditions

The aim of the model is to simulate a rotation & tlead and investigate the dynamics of the

fluid flow and cupula motion. In order to impose@nstant rotational motion to the structure
which starts at =t;, and ends at instamt=t,, we define the following variables:
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Signification Var. name

Expression

displacementX ~ depx

displacementy ~ depy

velocity X vitx
velocity y vity

(Xcos@ut Y sinfut )- Xk flchs(t § A tx ficzhs(t- 0\ 1
+flc2hs(t—{,At)x (Xcosfwt I+ Y sinf]  X)

(=Xsin(t)+Ycosft ) Y x flchs(t § A tx flc2hgt- 1\
+flcZhg(t- §,At)x (= Xsingut )+ Ycosi ¥ X)

diff (depx )

diff (depy 9

Table 2.3.Expression of the prescribed displacements for adhetation that starts at =t; and ends at

t =t,. (X,Y) are the node coordinates in the reference fratokis the pulsation of rotationt is the current

time, anddiff (---) denotes the derivative operator.

Note that for time-dependent problems, the timegstey algorithm can run into problem if
any condition is imposed with a step function. tdey to avoid problems with discontinuity,
step functions are usually replaced with a smoothwidch function that emulates steps.
Consequently, numerical reliability and convergeaoce improved. In the present case, we
use a smoothed Heaviside functiofic2hs” (notation used in Comsol Multiplysics) with a

continuous second derivative.

ya

—
At At

>t

Figure 2.14. Smoothed Heaviside functiofic2hs(t— {,,At)with a continuous second derivative.
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Boundary conditions are summarized in table 2.4.

Solid domain

- b1, b2, b5: inactive boundaries
- b4: prescribed displacement (depx, depy
- b3: fluid load f

Fluid domain

- b4, b5: inactive boundaries

- Dbl: imposed velocity (vitx, vity)
Consequently, the fluid at the wall of the capal
rotates at the same velocity of the canal. This
is locally equivalent as a no-slip condition.
- b2: open boundary so the nodal velocities

are left free to accommodate inflow and bl b4
outflow of endolymph between the LSCC and b2 b5
the other canals.
- b3: velocity of the cupuldu, V) b3
ALE mesh
— b6

- b6: prescribed displacement (depx,depy)
- all other boundaries are inactive

Table 2.4. Boundary conditions of the two-dimensional firetement model of the horizontal semicircular
canal.

2.2.4.4. Moving mesh

In order to model effectively the FSI problem, theving mesh (ALE) approach is used to
solve two problems; the fluid problem (i.e. the motof the endolymph) and the structure
problem (i.e. the movement of the cupula). Henbe,model combines the fluid flow with

structural mechanics by using a moving mesh to nsake the fluid flow is deformed along

with the cupula.

The model is divided into different parts so asspeecify how the mesh displacement is
computed in each subdomain (Fig. 2.15). The impasedlitions of mesh displacement are
as follows:

» Solid domain (cupula)he displacementéu,,v,) provided by the computation of the

structure mechanics equations are imposed. In atoeds, a Lagrangian method is
used where the mesh movement follows the mateéiom

* Fluid domain near the cupulaas cupula deformation may affect fluid flow in its
vicinity we define a subdomain around the cupulaerehthe mesh is free to move.
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This means that the mesh is constrained only bybtheéndary conditions on the
surrounding boundaries. The displacement in thiglemain is obtained by solving a
PDE defined by a smoothing method, which is in ginesent case the “Winslow
smoothing”. This equation smoothly deforms the mgslen the constraints on its
boundaries.

* Rest of the fluid domairthe displacement of rotation imposed to the wistiacture
is also applied to this subdomain. In other worttl® mesh is not deformed and
follows the rotation of the canal.

solid (cupula)

fluid

Partitioned
subdomain of fluid

Figure 2.15.Visualization of the subdomains that have diffecemditions for mesh displacement.

2.2.4.5. Simulations

Numerical solutions of the governing system of dedmonlinear system partial differential
equations (PDEs) are generated using finite-elermealysis software (Comsol Multiphysics
3.5a). This PDEs system contains both dynamic P@iih time derivatives) and stationary
PDEs (without time derivatives). Therefore the esponding space-discretized system is a
differential-algebric equations (DAE) system, whicteans that it includes both differential
and algebric equations. For instance, the incomspiiesNavier-Stokes equations give rise to
a DAE system when discretizing the space becawsedbation of continuity turns into an
algebric relationship. A system of DAEs implies swgonstraints on the initial values, for
instance, that an algebric equation must be sadisfiypically, the solver perturbs the given
initial values so that they become consistent wise constraints. In the present case, we use
the implicit backward Euler method so as the sopesturbs the initial values of all degrees
of freedom by taking a backward Euler step, giviangmall perturbation to the differential
degrees of freedom.

Two different cases of simulation are considered:
» the center of the canal is located on the axigtaition (case 1)

» the center of the canal is located 30 mm away fiteeraxis of rotation (case 2)
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For each simulation, a constant angular velocitym® rad/s that mimics a constant head
rotation is applied during 15 s (Fig. 2.16). Thenpaitation is performed tilt =30s in order

to investigate the fluid dynamics and cupula moafter the deceleration phase.

All the results were generated on a 2D mesh witB32guadratics triangular elements that
represent 16985 degrees of freedom. According éorésults of section, we consider a
Young’s modulus for the cupula of 5 Pa and a Poiss@tio of 0.48.

(b)
(rad/9

NIy

to t
0 2 4 6 8 10 12 14 16 18 2
Time

Figure 2.16. Rotational motion applied to the semicircular can@) Moving mesh. (b) Profile of angular
velocity applied to the structure.

Case 1: Semicircular canal located at the center dfie head.

» Cupula displacement at the very beginning of theased rotational motion:

t=0.01s t=0.02s t=0.04s t=0.1s

Figure 2.17.Evolution of the displacement of the cupula at\key beginning of the imposed rotational
motion. The displacement of the cupula begins tiearsensory epithelium and then spreads towards the
center of the cupula.

The displacement of the cupula is shown in figur&72 It can be observed that
displacement begins close to the crista, which ssiggthat initial movements of the
cupula produce a shear type deformation right abibve sensory epithelium. Thus,

sensory hair cells are presumably stimulated as asdiead motion starts. After a certain
limit is reached, about 0.1 s, maximal displacenspreads toward the center of the
cupula. This behavior is consistent with previousdes of McLaren (1977) who

measured the positions of oil droplets, which wigjected in the cupula of the bullfrog,

following the compression of the canal wall.
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* Fluid flow in the slender part of the canal at vieey beginning of the rotation:

Fluid velocity along the dashed li x10~

— T

2.5 t=0.04s

t=0.01s

fluid velocity relative to the canal (m/s)

0 0.5 1 1.5 2 2.5 3 3.5
Arc-length (m) x10™

Figure 2.18.Evolution of the velocity of the fluid in the slengart of the duct at the beginning of the rotatib
motion.

Velocity profiles of the fluid flow in the slendgrart of the canal are plotted in figure 2.18.
We see that in about 0.04 s — 0.05 s the fluid fl®wanalogous to a Poiseuille flow. Indeed,
the velocity profile tends to a parabola, with thed in the center of the canal having the
greatest speed. This result is consistent withipusvanalytical studies. For instance, Groen
(1952) assumed a fully developed Poiseuille flowainstraight tube to investigate the
dynamics of semicircular canal flow and cupula wwotiwhile Van Buskirk et al. (1976)
shown that endolymph volume displacement resulftiogn a step change in angular velocity
under the non-steady state flow assumption carppegimate by the Poiseuille steady-state
flow relation.

* Fluid flow in the canal and cupula motion

At the beginning of the rotation of the canal, thd lags behind due to its inertia. Therefore,
fluid flow relative to the wall of the canal is erited in the opposite direction of the imposed
rotational motion during about 0.25 s (Fig. 2.19eanwhile, this flow, represented by the
arrows in figure 2.19, exerts a pressure acrossubpela, and thus deflects it in the opposite
direction of rotation as well. The deflection okthupula reaches a maximum value close to
15 um for the set of elastic properties retainedtiie t=0.3 s, even though the canal still
experiences a rotational motion, the cupula starteturn to its rest position due to its elastic
properties. In addition, because of the small diamef the duct and the viscosity of the fluid,
the latter tends to catch up with the rotationhaf tanal, eliminating little by little the relative
movement between the fluid and the canal. One o#inenthat the maximum fluid velocity is
decreased by a factor 20 between time instants @ri2l 0.6 s.

The canal experiences a constant angular velocty 15 s, and then the movement of
rotation is stopped in 0.3 s. At time t=15.1 s, flhél is still in motion within the canal due to
its inertia. As a consequence, the cupula, which reéurned to its rest position, is deflected
in the opposite direction than previously (Fig.®.20nce again, we can note that cupula
deflection starts near the sensory epithelium duaoh tspread toward its center (Fig. 2.20).
Finally, the cupula returns to its initial positievhich provokes a slight counter clockwise
fluid flow.
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Figure 2.19.Fluid velocity (left) and cupula displacement (right the beginning of the rotation.
Visualization in the ALE reference frame (movingime
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Figure 2.20.Fluid velocity (left) and cupula displacement (ripht the end of the rotation. Visualization in the
ALE reference frame (moving mesh).

Figure 2.21 shows the time-dependent displacemieat pmint located at the center of the
cupula. It can be seen that the cupula experietveesleflections in opposite directions that
are due to the acceleration and deceleration pifake motion.
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Figure 2.21.Displacement of the center of the cupula duringoastant angular rotation which ends at time
t=15s.
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Case 2: Semicircular canal located 30 mm away froiihe axis of rotation

The same simulation as previously is performed withcanal located 30 mm away from the
axis of rotation. The behaviors of the cupula ahthe fluid flow within the canal are similar
to the centered canal model (Fig. 2.22). Figur@ di&sents cupula motion and fluid flow at
different instants. Following a deflection due teetangular acceleration of the canal, the
cupula returns to its rest position through times regard the fluid flow, it is oriented
clockwise because at time t=2 s it has alreadyldauyg with the rotation of the canal.

t=10s_
t=8s
- yA &
d=3.2mm
~ X
// \\\
&“ \*‘ s = O > “‘1 | < // "‘
A i SN
:{ . t=6s 5 30mm ;x\“\iw//
: SN t=2s
~w) S ”
n‘

Figure 2.22.Rotation of the canal located 30 mm away from tkis af rotation (the physical scale is not
respected). The arrows are oriented along the fflad.
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2.2.5. Three-dimensional model of a single canal

Before modeling the entire set of semicircular tenewe have extended the previous 2D
model to three-dimensional space. Once again, we bhaed dimensions and shape of the
various cross sections provided by Curthoys and rO(h887). Besides drawing a complex
geometric model with the computer-aided design (CADols built into Comsol
Multiphysics, an alternative is to create it withspecialized and more appropriate CAD
software application and save it to a file that da in turn, imported into Comsol
Multiphysics. In the present case, we have chosatevelop the 3D canal under CATIA V5
(Fig. 2.23a). Then, the resulting geometry has leegorted into a STEP file format, which is
one of the most popular types of file used to ergeageometric models among CAD
software applications. Finally, this STEP file, einicontains the mathematical description of
the object, has been imported into Comsol Multijts/shanks to its CAD import module so
as to perform the meshing (Fig. 2.23b) and rurstimilations.

(@)

Outlet of the
common crux

Interface cupula/fluid

Figure 2.23.Visualization of a three-dimensional single carfa). CAD model under CATIA V5. (b) Tetrahedral
mesh of the canal perfomed under Comsol Multipkysic

As regard the simulation, we have only considereataion of the structure around a vertical
axis passing through the center of the canal. QisWo the size of the model is much higher
than the two-dimensional version. The mesh is caagrof 15 408 quadratic tetrahedral
elements that represent 133 112 degrees of freedom.

As one might expect, the solution provided by tBi3 model is similar to the 2D model

results previously computed (Fig. 2.24). Therefave,only show few figures related to fluid

velocity and cupula displacement. As already meetih at time instant 0.03 s the fluid lags
behind due to its inertia. Therefore, fluid flowlatve to the wall of the canal is oriented in
the opposite direction of the imposed rotationaltiorowhich deflects the cupula. We can
note that the maximum velocity of fluid flow is sl®to 2.1 pm/s while the 2D model predicts
a maximum value of 1.6 pm/s. As regard cupula disgghent, a maximum value of 0.37 um
and 0.44 um are predicted by the 2D and 3D modsheactively (difference of about 20 %).

Due to the constant angular velocity applied to ¢heal and the elastic properties of the
cupula, the latter returns to its rest positiorotigh time. At time instant t=1 s, the maximum
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displacement of the cupula is about 1.7 um. We aan observe that the fluid flow is
oriented in the same direction as the imposed mewerof rotation for the same reasons
mentioned previously.

min -7.45e® max 2.11€® (m/s’ min 0 max 4.11€” (m)
[ S Nl H @ o
-6 -4 -2 0 2 0 1 2 3 4

min -1.1z¢” max 6.08& (m/s) min O max 1.71& (m)
x10° [ N N
0o 1 2 3 4 5 6 0 04 0.8 1.2 1.6

Figure 2.24.Fluid velocity in m/s (left) and cupula displacermanm (right) at time instant t=0.03 s and t=1 s.
The fields of fluid velocity and cupula displacetrene plotted on a cross-section of the 3D modehied at the

coordinate Z= 0 (midplane). Visualization in the ALE referencenfie(moving mesh). The arrows are oriented
along the fluid flow.
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2.2.6. 3D model of the entire set of canals

The modeling of the entire set of semicircular ¢aracupulae + utricle is now considered.
As the previous 3D model, the geometry has beerldpgd with the CAD software CATIA

V5 and then has been imported into Comsol MultiptsygFig. 2.25). Dimensions of the
vertical canals have been taken identical as th&zdwtal canal, and all the canals are

assumed orthogonal.

[

Anterior canal

~i Posterior canal
Common Utricle /
crux \ / .
/V

‘Lateral canal

Figure 2.25.Three-dimensional CAD model of the three SCCs ielatr-cupulae.

Obviously the mesh of this model is much more cacapdd than the previous 3D model of a
single canal because the connections between emaiscand the utricle has to be meshed
finely. The mesh is comprised of 45,408 quadraticahedral elements that represent 498,112

degrees of freedom (Fig. 2.26).

Figure 2.26. Mesh of the final three-dimensional model which sists of 45,408 quadratics elements
representing 498,112 degrees of freedom.

81



The number of degrees of freedom (DOFs) conditiotiedsize of the model in terms of
required computational resource, in particular Raméccess memory (RAM). If the
numbers of DOFs is very high so that the model irequa RAM quantity higher than that
available in the computer, then the operating systegoing to swap. Swapping is a useful
technique that enables a computer to execute prgeand manipulate data files larger than
main memory. The operating system copies as muhatapossible into main memory, and
leaves the rest on the disk. When the operatingsyseeds data from the disk, it exchanges
a portion of data in main memory with a portiordata on the disk. In other words, if the size
of the model is too high, the operating system wolhtinuously exchange data between main
memory and the disk, and computation time of thel@hwvill blow up. Therefore we have to
make sure that memory required by the model is lawat least equal to the available RAM.
However, the size of the mesh also conditionedatteiracy of the solution. For instance, if
the mesh is too coarse we may encounter problerosrmfergence of the solution because of
inverted mesh. Thus, the model must be meshechasaé possible as long as the available
memory is sufficient.

In the present case, simulations of the model anean a computer having two dual-core
processors, 8Go RAM, and a 64-bit linux operatiggtem. The available main memory
implies a maximum number of DOFs close to 300,000.

Unfortunately, by running the model for a constaead angular velocity we encountered
problems of convergence a tinel.8s because of inverted mesh, which is probabégy td
the fact that the mesh was not fine enough. Howeesults of the simulation are promising
as the overall behavior of the model at the begimf the imposed rotation is similar to that
of the models previously presented. Figure 2.27vshdisplacement of the cupulae and fluid
velocity at timet=0.1 s and=0.3s. At timet=0.1s, the fluid flow is in the opposite directioh
the imposed clockwise rotational motion. The cupiléhe lateral is thus deflected. Note that
cupula of the anterior canal also experiences ghtskileflection due to the gravity field.
Cupula of the posterior canal remains at its resitpn as there is no fluid flow within this
canal and as this cupula is almost aligned withgttaevity vector. At time t=0.3 s, fluid flow
catches up with the rotation of the canal elimimgfittle by little the relative motion between
endolymph and canal walls.
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Figure 2.27.Results provided by the simulation of the final 8Bdel of the semicircular canals. (a) Field of
fluid velocity at time t=0.1s. (b) Field of cupuldesplacement at time t=0.1 s. The cupula of therk canal is
deflected because of the imposed motion of rotadfotihe canals. The cupula of the anterior canaslightly
deflected at the beginning of the simulation beeanfsthe gravitational field. Note that cupula b&tposterior
canal does not experience any deflection as thermifluid flow within this canal and as this cupuis almost
aligned with the gravity vector. (c) Field of fluelocity at time t=0.3s.
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Chapter lllI: Virtual reality model

3.1. Virtual reality model

3.1.1. Introduction

As we move in our surrounding environment, our ieddr systems constantly provide
information to the brain regarding our head’s aladion and acceleration in space. As
described in the background section, head angut@iominduces cupula deflection which in
turn provokes the bending of sensory hair cellsdbes) and thus involves a stimulus on the
semicircular canals’ afferent nerve fibers. In faene way, both head linear acceleration and
head tilts cause a displacement of the otolithionlmane relative to its sensory base,
provoking bending of hair cell cilia that generaseggal on the otolith afferent nerve fibers.

The way each cupula and otolithic membrane behforeany angular or linear acceleration

is, however, not obvious, especially for complexadanotion. Therefore, a virtual reality

model of the vestibular sensors is designed inmmrk. The primary advantage of this model
is that it can be used as a demonstrating andifgatool as the theoretical state of each
sensor can be observed in real time. As a resuffars the possibility to get a better overall
understanding of the vestibular apparatus.

This numerical model, developed in Matlab/Simulitdkes into account both the angular and
linear sensors. However, the three-dimensional amim only considers the semicircular
canals. While a previous model considered a heattiad vestibular system (Adenot, 2002),
we here assume that the sensors are located 30 way faom the head vertical axis.

Consequently, during any rotational head movemthd, otolith organs experience both
tangential and normal acceleration components.

As a practical demonstration, the model simulatesrotating chair test which is one of the

procedures usually performed by specialists duandiagnosis of the vestibular system.

Basically, this experiment consists of strapping gatient onto a rotating chair, applying

different rotational motion profiles (trapezoidainusoidal, etc), and recording - using two

miniaturized infrared cameras mounted in a mask ecalar reflex, which is the consequence
of the stimulation of his vestibular systems, sot@sletect any vestibular deficiencies. In

order to simulate this experience and to computeerically the state of each sensor, the
model follows different steps (Fig. 3.1). First,résolves the equations of motion in three
distinct reference frames: earth, chair, and hesdinate system. Second, it computes the
angular acceleration vectors projected on eachl @ais and the linear acceleration vectors
projected on the surface of the otolith organs.rd,hthe displacement of each sensor is
derived using their transfer function. Fourth, #hekta, which constitute the inputs of the
virtual scene, are transferred to the virtual moblelte that a Graphical User Interface (GUI)

has been developed in order to simplify the usiisfmodel.
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Implementation of the input
stimulus using {he GUI
|

v v
Definition of the motion of Definition of the potential
the rotary chair head movements
[ * ]
Computation of the Computation of the
equations of motion 1/0 equations of motion 2/1

I I

!

Computation of the
equations of motion 2/0

Angular velocity in R, v Gravitoinertial
l laccelemtion inR;
Model of the Model of the otolith

Semicircular organs F. (s)

oto

canals F_ (s)

sce

v A4
State of the cupulas in State of the otolith
real time organs in real time

Figure 3.1. Schematic block diagram of the virtual reality mbdimulink model. The computation of the model
is divided in several steps. First, the user immgata the motions. Then, as soon as the simulasionn, 1)
equations of motion are solved; 2) angular veloeitd gravitoinertial acceleration are applied toetlsensors
models; 3) the state of each sensor is determimeeal time.

.The model is based on different assumptions:

- the orientation of the semicircular canals is deglivaccording to a recent study
performed by Della Santina (2005)

- the utricle has an elevation of 30 ° from the hamtal plane

- the saccule is assumed vertical

- asemicircular canal is normally excited by rotatio the plane of the canal

- the response to simultaneous canal stimuli is aqmately the vector sum of the
responses to each stimulus alone

- the canals are totally uncoupled

- the utricle is stimulated by horizontal componenwfs gravito-inertial forces,
whereas the saccule senses the vertical component.

3.1.2. Formulation of the kinematic problem

The different coordinate frames are defined a®Wal (Fig. 3.2b):
- Ro: (O, X,,Y,,Z,) fixed orthogonal coordinate system

- Ru: (O, X,,Y,,Z,) orthogonal coordinate system attached to theingtahair
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- Rz (A X,,Y,,Z,) orthogonal coordinate system attached to the head
- Rs (B,X,,Y,,Z,) non-orthogonal coordinate system defined by the 3
perpendiculars of the semicircular canals

a b
@ 4 (b) e
1 ‘ e 172
I
\‘
\
N5
Y,
O/:
XO \\“—-—"'1
) X

Figure 3.2 (a) Visualization of the diagnosis procedure, (bff&ent coordinate systems 5RO, XO,VO , ZO)
fixed orthogonal coordinate system:;,RO, )Zl,\?l,zl) orthogonal coordinate system attached to the tiota

chair, R: (A, X,,Y,,Z,) orthogonal coordinate system attached to the heRd (B,X,,Y,,Z,) non-
orthogonal coordinate system defined by the 3 pedjpailars of the semicircular canals.

During the experiment, the head of the patientsigaily kept fixed so as to investigate his
lateral semicircular canals. However it is interggtto have the possibility to simulate head
rotations during the imposed chair motion. Firsistwould imply the stimulation of the
vertical canals. Second, head-movements in a ngtagnvironment create Coriolis cross-
coupled stimuli that introduce problematic vestdyutesponse. This phenomenon has been
the topic of many researches. In particular, ineortb prevent the serious deconditioning
associated with prolonged exposure to weightlessrsesentists suggested using short-radius
centrifugation in order to create artificial grgvitynfortunately, out-of-plane head-turns on a
centrifuge provoke unexpected illusory sensatidnaation. As the present model permits to
simulate any head rotations in a rotating enviraomimié can simply be extended to the case of
a centrifuge experiment by modifying the positidrttee head coordinate frame from the axis
of rotation.

For clarity purpose, the head movements of theestilajre named (Fig. 3.3):
- pitch movement: for a head tilt toward the showder

- roll movement: for a downward or upward head rotati
- yaw movement: for a head rotation to the left othi right.
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@ Yaw head movement

]““\

Pitch head movement

Roll head mjgg’y

Figure 3.3.Definition of head movements: pitch, roll, and yaw.

3.1.2.1. Rotation of reference frames

The angular orientation of the reference frameescdbed by the Euler angle. This method
involves successive rotation about the principlesayand has a solid link with the intuitive
notions of roll, pitch, and yaw. Needless to sagré are many valid Euler angle rotation sets
possible to reach a given orientation. We considge the sequence of yaw, pitch, and roll
rotation that transforms the original coordinasnie into an arbitrary orientation.

A
/, yo
%
) cd, 0 -,
M, =|-s6, cf, 0 Me,=0 1 O Mg =|0 c6, sb,
0 0 1 g, 0 o, 0 -6, o,

The axes of the transformed coordinate frame Rdafmed by the following matrix

XO
=My MMy | Yo (3.1)

Z,

multiplication:

N| <| X]|

3.1.2.2. Orientation of the SCC coordinate system
The model takes into account a coordinate frameclsid to the SCC in which the

components of angular acceleration will be projcfehis coordinate system is defined by
the normal of each canal plamg, f,, fi, (lateral, anterior and posterior respectively)eTh
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problem that arises is to know accurately the altsarientation of these perpendiculars with
respect to the head coordinate frame. Apart fromidely cited study of 10 human skulls by
Blanks et al. (1975, Curthoys et al. 1977), mayowf the studies of human labyrinth
morphology have related SCC orientations to acbksskull landmarks. Indeed, most of the
studies have dealt with inter-SCC angles of isdldteman labyrinths using high-resolution
radiographic reconstructions (Archer et al. 1988gdki et al. 1989, Harada et al. 1990,
Hashimoto et al. 2003). In addition, Blanks etancluded that the horizontal and anterior
SCC are not mutually orthogonal (111 = 7.6°) whiteltiple studies of isolated labyrinths
have shown the inter-SCC angles are close to 96°ndted by Della Santina et al., this
difference is probably due to the small number kiflissamples that Blanks et al. have
considered. Therefore, in order to unify all théuea proposed in the literature and to provide
accurate data of orientation and position of SCEllaDSantina et al. have measured SCC
orientations with respect to accessible skull laadk® using three-dimensional multiplanar
reconstructions of high-resolution computed tompgyascans of 44 labyrinths in 22 human
subjects. They concluded that the angle betweearitexior and posterior SCC is 94.0 + 4.0°,
that the angle between the anterior and horizd8@C is 90.6 £ 6.2°, and that the angle
between the horizontal and posterior canal is 20449°. These angles are considered in the
present model.

These values clearly show that the canals do rfotedan orthogonal coordinate system. In a
physical sense that means if the head turn ardumddrmal of one canal plane, not only this
canal but the others will be stimulated. Thus, day rotation of the head all the angular
sensors should provide a stimulus. A vector defime®, is projected into the coordinate
system R attached to the canals with the transformatiorrisnat

Cgaq[/a Cﬂaﬂ/a - ga
M=MMM =l<cdsy, cpoy, p, |Wwith c=cos, s=sin.
¢y -9 94

where @ ¢ and¢ are the Euler angles defining the normal of eaahat plane (lateral,
posterior, anterior).

3.1.2.3. Expression of the angular velocity vectors

Convention for notations:

The symboly,; represents the angular velocity of a body movinffamei as seen in frame

j . Correspondinglyz,, \T,, and A, = represent the angular acceleration, linear velgcit
and linear acceleration of a body moving framas seen in framg, respectively.

» Head/ Chair
Head movements are separated into three non-simeolts distinct motions:

» Case 1: yaw motion defined by the angleso thata,, = yZ,=yZ,
»  Case 2: pitch motion defined by the angleso thata,, = Y, = Y,
»  Case 3: roll motion defined by the angleso thata,, =dX,=dX,.
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The axes of Rare expressed inpRccording to:

X, X, cd 0 0
Y, [=M,M;M MY, | With M;=|-sd c& 0
z, Z, 0 0 1

This yields the following expressions:

¥ X =(Chyd-DBY) X+(EL pr LW ¥ B, 3.2)

5 Vet Byw-a - & @) aph X (3.3)
HswmBy-a g+ & & o+ cp ¥ feas, '

» Lrlcdgyaftasg)- & pa b os)l EX i (3.4)
tHsd(ya B+ & P+ o @ js B~ as)ff ¥ Beac,

Thus, for each case of head rotation, the angelacity vectora,,, is defined in R by:

» Case L@, =dX,=dcoX,+dsdY, (3.5)

» Case 2:@,,=f4Y,=-85X,+ DY, (3.6)

» Case3a@,=yZ,=yZ, (3.7)

e Head/ earth

The angular velocity of the head with respect toéhrth coordinate frame is given by:
@,, = a,,+®,, Therefore for each case of head rotation:

» Case li@,,=adX,+3Z,=dcoX +asdY,+J Z, (3.8)
» Case 2:@,,=p8Y,+0Z,=-f0 X, + BDY,+J Z, (3.9)
» Case 3w,,=yZ,+3Z,=(y+9)Z, (3.10)

3.1.2.4. Expression of the angular acceleration viec
The angular acceleration of the head relative écetlrth reference frame is given by:
Wy = Wyt Wy (3.11)

If the chair rotates at a constant angular velodftg vectordy,, is null. Let us consider the
following rotation rate vectoraw,,; = w X, + @, ¥, + w,Z, so that its first derivative is:

o :wxzz+wyy2+wzzz+wx(%j +wy(%j ”"Z(Ej (3.12)
Ry dt R, dt R, dt R,
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According to the formulas of differentiation of &cotor in a moving frame, we have the
following relations:

) %j + @) 0%y = @y 0% o+ @y,00% (3.13)

dy dy . . - -

% = _)’2) + o0y, =0, 05+ w00 Y, (3.14)
t /g, dt R

%) . %j 002, =0, 025+ 000 7, (3.15)
dt o \dt g

Finally, injecting (3.13), (3.14), and (3.15) int®.12), the angular acceleration vector of the
head relative to the earth coordinate frame is:

-

Wl =WXt W Y,+ w2+ w0 Uw,), (3.16)

Ro

3.1.2.5. Expression of the linear acceleration vemt

Due to their position from the head vertical axisth vestibular systems experience normal
and tangential acceleration components during atgtion of the head. The further is the
head from the axis of rotation, the higher are éhesceleration components. We assume here
that these components stimulate the otolith orgkos.each case of head movement — roll,
pitch, and yaw rotation — the derivation of theabte linear acceleration of the origin of the
coordinate systemdttached to the canals is given by:

Ag, = AB,M +ay, UAB+ @1/05(@1/05 AB) *+ Acoriolis (3.17)

This expression describes linear acceleration riot&ing environment. The first term is due
to the acceleration of B within the moving frame Rhe second term is the result of the
rotational acceleration of RThe third term constitutes the centripetal acgegien which is
due to the rotation of the moving frame. The lasit is due to the motion of B within the
moving frame and is known as the Coriolis acceienat
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* Case 1. yaw head movement

Figure 3.4.Orientation of the coordinate systems for a yawdhemvement while the subject is rotated around

an Earth vertical axis.

» Linear velocity

The velocity of B relative to the moving frame R given by:

\?2/1 :\Tm"'a)m OAB =67)2,1E|ﬁ
W |pdy yd-g @+ g 8)
PV, = [0 = |psy= |-ydy o+ 8 )
Ry O R 0 Ro 0

> Linear acceleration

v" Acceleration of B relative to R

d d dx ~d
Ao, =(GVe) | =[Sim)| =y B2] = |
t R \dt R dt g
R 0
v" Coriolis acceleration
0 |- 0 20pdsy
A':oriolis = 2“1/0 D\7B,Rlel =2x oo 0 = - 25Vd = |~ 25ydcy
R, o R, 0 R, 0 R 0

(3.18)

(3.19)

(3.20)

91



v' Absolute acceleration of B

—jd - &d
As,,=Ag, +@0AB+ a)llom(d)l/ODKé) * Acoriolis = |12d — 9%d -2 (3.21)
0
R2

The green, red, and blue terms represent the aatiele of B relative to R the rigid body
acceleration of B in g and the Coriolis acceleration, respectively.

* Case 2: pitch head movement

- 0

Figure 3.5.0Orientation of the coordinate systems for a pitelath movement while the subject is rotated around
an Earth vertical axis.

» Linear velocity

The velocity of B relative to the moving frame R null because it is located right on the axis
of rotation y,. Therefore, both the acceleration of B relative Rp and the Coriolis

acceleration are equal to zero.
» Linear acceleration

v' Absolute acceleration of B

“5d |-6dep
ABrZ/o =Ci&-/oDﬁ-'-C_[)J./O|:J(&'.)l/0|:J'A\_B.) = _52d = _52d (322)
0 -dds,
R R, o
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e Case 3: roll head movement

Figure 3.6.Orientation of the coordinate systems for a rolalenovement while the subject is rotated around
an Earth vertical axis.

» Linear velocity

The velocity of B relative to the moving frame R given by:

a 0 0 0
By od |d= 0 = |-adsx (3.23)
0 Ry 0 Ry ad R adca
» Linear acceleration
v" Acceleration of B relative to R
0 0
P, = Ao ig + @ OAB +@,,0(@,,0AB)= |-a2d= |-a2dar-dds (3.24)
R, ad R -a2dsy + & day
v" Coriolis acceleration
0 0 200 ds
Avoriolis = 264,0 Vg =2x |00 |-ddsx= 0 (3.25)
3 adca 0
RIO R RUR,
v' Absolute acceleration of B
~ddca + 2addsy
AEa,z,0 = AB,M +y,,0AB + wl/om(d)llomﬁ) + Acoriolis = |~02d (ca )2~ a2 (3.26)

. o2dca s +da

2
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3.1.3. Programming and implementation

The entire model has been developed in Matlab/Smul graphical user interface has been
programmed in order to simplify the use of the miothee implementation of the simulation
parameters, and the analysis of the results (cuslas 3D animation, and virtual reality).
This GUI is linked to the core of the model, impkmed in Simulink, where the equations of
motion and the state of the sensors are computeatidition, a virtual reality world is linked
to the kinematics and vestibular model using theual reality toolbox available in Matlab.
This toolbox represents an interface between Madiadd Simulink data on one hand, and
virtual reality graphics one the other hand.

Basically the model follows different steps:

1. the user implements the motion undertaken by anmabgatient, i.e. the motion
profile of the chair (continuous, trapezoidal, orusoidal) and the potential head
rotations

2. the user runs the simulation: the kinematics arel dtate of each sensor are
computed

3. the user analyses the results: data processimgrfisrmed from the GUI. The user
has the possibility to plot the displacement of heaensor, to run a three-
dimensional dynamic animation showing the statehef cupulae, or to run a
virtual reality animation of the experiment.

3.1.3.1. Graphical user interface

Figure 3.7 shows the GUI developed under Matlabs Triterface is comprised of four main
sections:

» Section | concerns the implementation of the motibthe rotating chair. The user can
choose between a continuous, trapezoidal or sidakmtation. The parameters of the
imposed rotation are the angular velocity of thaichthe duration of acceleration and
deceleration, the duration of the motion profiledain the case of a sinusoidal
motion, the frequency of the rotation.

» Section Il offers the possibility to consider trit®nal motion. In that case, however,
both the three-dimensional animation and the Jinteality model become useless as
they only represent the rotating chair experimBionetheless, the displacement of the
otolithic membrane can still be analyzed throughdtiferent plots.

» Section Il concerns the implementation of head emoents. For each head rotation,
the parameters are the starting and return timt@eomotion, and the magnitude and
duration of each rotation.

e Section IV comprises the push buttons for runnihg simulation and for data
processing (curves plots, animation, etc).

94



Simulation of the functionning of the inner ear
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Figure 3.7. Graphical user interface of the virtual reality nedd |: parameters of the rotary chair; Il :
parameters of exterior linear accelerations; lliparameters of head movements; IV : simulation, Itesand
virtual reality push buttons.

3.1.3.2. Simulink model

The architecture of the core of the model is presgem figures 3.8. The first box titled SCC,
computes the kinematics problem regarding the iostak motion, i.e. the angular velocity,
angular acceleration, and linear acceleration corapts due to the movement of rotation.
This block also performs the projection of the dagacceleration vectors into the coordinate
frame attached to the canals. A variable permitswidch between the angular acceleration -
either defined in Ror R; - that is applied to the SCC. In other words, wker can choose
between an orthogonal head-centered vestibulaemsysind a set of SCC that are oriented
according to experimental angles. Hence, he cadystbe impact of a non-orthogonal
coordinate frame on the stimulation of the SCCssufvsing that the SCCs are totally
uncoupled, thex, y, and z angular acceleration components are then sertietdransfer
function of the posterior, anterior, and laterahala respectively. Note that the semicircular
canals are supposed to have the same dynamic behakich is defined by equation (1.9).

The block titled Utricle-saccule performs merelg gum of the linear acceleration vector due
to the rotational motion, the linear accelerati@cter of a potential translational motion, and
the gravity vector. Each component is then padsedigh each otolith organ transfer function
defined by equation (1.14). Theand y components are assumed to be sensed by the utricle

while the z component stimulates the saccule.

Finally, the block named VR Vizualisation, whichntains all the data relative to the virtual
reality world, performs the virtual animation.
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SCC transfer functions

M —

Angular acceleration in R 2

B 4
P

scc \ )

Angular acceleration inR 3

linear acceleration Utricle / saccule r}

Utricle-saccule

Otolith transfer functions

VR Visualization

Figure 3.8.First layer of the simulink model.
The block “SCC” is detailed in figure 3.9. The kinatics problem is solved in four
successive steps:

1. Blue block: calculation of the motionifR, (angular and linear velocity, Euler
angles, rotation matrix fromgRo Ry, etc)

2. Red block: Calculation of the motion,/R; (angular and linear velocity, Euler
angles, rotation matrix from;Ro R,, etc)

3. Green block: Calculation of the motion/R, (angular and linear velocity, linear
acceleration, Euler angles, rotation matrix frogt&RR,, etc)

4. White block: Calculation of the angular accelenatio R, and R.
The block “Utricle-saccule” first sums up the pdtahlinear acceleration imposed by the user
and the gravity vector, and projects the resultiegtor into the head coordinate framg R

Then, this vector is added to the linear accelenatf the origin of the coordinate framg R
that is due to the rotational motion of the chaid af the head (Fig. 3.10).
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Figure 3.10.Detailed view of the block of the first layer titleutricle-saccule”.

3.1.3.4. Virtual reality model

A virtual reality world is linked to the kinematiand vestibular model using the virtual
reality toolbox available in Matlab (Natick, 2007}his toolbox represents an interface
between Matlab and Simulink data on one hand artdalireality graphics one the other
hand. Virtual reality graphics are based on VRMh, @en standard for describing 3-D
scenes (Carey et al., 1997). Virtual Reality Toallbas been successfully used in multiple
applications for visualizing results of Simulinkrailations. However, it has been observed
that system and control engineers who are unfamilith VRML find it difficult to create a
VRML file describing a 3-D scene they would liketisualize. The solution to simplify the
VRML file creation process is to start the desigthv€CAD assemblies. In this modeling, the
different parts of the virtual world are createdngsSolidworks (CAD software), which is
very useful for specifying detailed three-dimensiodesign of a component (Solidworks
User’'s guide, 2007). The CAD models are then ewgbinhto Virtual Reality Modeling
Language (VRML) files. The final virtual environntems created using the “V-Realm
Builder” software where the VRML files are importdd order to simulate the dynamics of
the system, the CAD-to-SimMechanics translator froffme MathWorks is used
(SimMechanics User’'s Guide, 2007). It enables émdlate CAD assemblies from a CAD
platform into a Physical Modeling XML file compalié with SimMechanics. Then a
SimMechanics block diagram model is generated ftiois: file to simulate the dynamics of
the CAD assembly in the Simulink environment. Irder to achieve this, Simulink and
SimMechanics use a block diagram approach to meoolarol systems around mechanical
devices and simulate their dynamics. The block rdimgapproach does not include full
geometric information, nor do CAD assemblies tyjycacorporate controllers or allow to
perform dynamic simulations. Using this techniq@ieCAD translation, the power of CAD
and SimMechanics are combined.

Finally, this Simulink model is connected to thetwal scene in order to create a realistic
high-quality animation. The outputs of the kinerositand vestibular model are linked to the
inputs of the virtual reality toolbox in order toifg about progress in the virtual world (Fig.
3.11).
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Figure 3.11.Schematic block diagram of how the virtual realityrld is created and controlled. The VRML files
are created using a CAD software. The Simmechanadule permits to represent and keep the physitiseof
modeling. All the data are imported into a Matlaid8link model where the virtual reality toolboxused. This
Simulink file is controlled by the kinematics of gimulation and the vestibular model.

3.1.3.5. Simulation and visualization

* Rotation movement of the chair

This experiment mimics the usual diagnosis prooedefr the lateral semicircular canal.
During this first experiment the patient sits dowm the rotary chair. His head is kept fixed
relatively to the device and tilted downward of 3@ bring the lateral semircircular canal in
the plane of rotation. Then, a constant angulaooigl of 5=100° /sis imposed to the chair.
This motion starts at, =1s and achieves its steady statei This simulation lasts 40
seconds. The volume displacement of the cupul&asvs on figure 3.12. If the canals are
considered to be orthogonal, the endolymph indkerdl canals lags behind - at the beginning
of the rotation - due to its inertia. Consequernthg cupula of the lateral semicircular canal is
deflected in the opposite direction of head moven{Eig. 3.12a). This deflection causes a
sensation of motion. The angular velocity of thaicleing constant, the endolymph in the
lateral canal tends to catch up with the rotatibthe head eliminating the relative movement.
Therefore, the cupula returns to a vertical positdue to its elastic properties, and the
sensation of motion ceases.

Figures 3.12a and 3.12b enable us to show theemék of the non-orthogonality of the
canals. From these plots, a slight displacemetiteofinterior and posterior cupula is observed
that does not appear in the case of an orthogomstére. However, the lateral canal is the
most stimulated as its plane is quasi-perpendidal#iie axis of rotation. The displacement of
the lateral cupula generates a sensation of raotatibich lasts about thirty seconds at a
constant angular velocity.

99



(a) 1

0

Anterior canal (cma) 5  Anterior canal (cms)

(b) X107
0.

.5+

o
-0.5

40 o

10 20 30 10 20 30 40

" 3
Posterior canal (cm
Posterior canal (cm®) x10° e}

1

L

x 10

& b N o

-]

4
40 0

10 20 30 10 20 30 40

3,
% 104 Lateral canal (cm®)

O.SV

40 '10

& Lateral canal (cm®)

10 20 20

Time (s) Time (s)

30 10 30 40

() °

0.5
0
-0.5
]

10X
10,

o 10

- 10-5 Anterior canal (sz)

(d)

1

0

" 3,
x10° Anterior canal (cm®)

20 30 40

104; Posterior canal (cma)

-1

0 10

20 30 40

o i o
% 10 5 Posterior canal (cm®)

<x10°

5
0 10

20 30 40

Lateral canal (cms)

1

0

]

() 10

?

20 30 40

3,
" 10.5 Lateral canal (cm®)

-1 00

10 20

Time (s)

30 40

1

0.5

0|

-0.5]

4

0 10

!

20 30

Time (s)

40

Figure 3.12.Displacement of the cupula of each canal due tp:afad (b) rotation movement of the chair, (c)
and (d) rotation movement of the chair and of tkach The graphics (a) and (c) correspond to an agtnal
coordinate system ;Rwhereas (b) and (d) correspond to a non-orthodarardinate system R The non-
orthogonality of R entails a slight response of the verticals can@lss kind of response might be similar in the
case of the existence of coupling terms betweecahals due to fluid flow.

* Rotation movement of the chair and then of the head

The rotation movement of the chair is the samelawea In this case the subject does a
downward and an upward head rotation at ttra@os andt=25s respectively. For the sake

of simplicity, the amplitude of these movementseaual to 90° here. This kind of head
motion during a constant angular velocity of thaichnvolves the stimulation of the other
canals. The displacements of the cupulas can benaakon figures 3.12c and 3.12d. Uhtil
being equal to 10s, the movement of the cupuldlseéssame as the previous experiment. At
time 10s, the subject does a downward head rotafi@®° from the previous head position.
In the case of an orthogonal set of canals, thesl meotion brings the posterior canal into the
plane of rotation. Therefore the cupula of the @ost canal is in turn deflected whereas the
cupula of the lateral canal bends in the opposiertion as the fluid keeps moving relatively
to the wall of the lateral canal. At time-25s, the reverse phenomenon is produced as the

subject makes an upward head rotation of the saagmitude.

It can be noticed that the succession of head mem&srduring a constant rotation of the
body, creates erroneous motion sensations knowhea€oriolis Effect in aeronautic terms.
For example, at=5s the downward motion of the head engenders a pesiisplacement of
the lateral cupula. This means that during a fevoisds the subject has a sensation of rotation
opposite to the rotation of the chair. This is daehe inertia of the fluid which is still in
motion inside the canal. The resulting sensorgidio will be presented in depth in chapter 4.

» Virtual reality as a demonstration tool
The aim of showing virtually the diagnosis test emdken by the specialist is to allow a
better comprehension of what happens inside ther iear during a specific head movement.

The state of each sensor is computed and visualigedg the experimental protocol. Figure
3.13 illustrates the patient sitting on the rotelnair and experiencing a downward movement
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of his head. The displacement of the cupula of ezaniial can be observed. For clarity
purposes, a video of this simulation is availablae link:
http://personnel.supaero.fr/morlier-joseph/Inner&athtml

Zoom on the SCC
of the inner ear

Visualization of the state of

Rotatory chair
each sensor (cupula)

Figure 3.13.Visualization of a virtual scene: The state of eaehsor can be visualized on real time during the
test. The learning process is enhanced using useractivity.

3.1.3.6. Conclusion

The model presented above simulates the rotatiragr ¢bst which is one of the usual
procedures carried out during a vestibular diagnobi addition, this model offers the
possibility to simulate several head rotations.

All the parameters that define the experiment carerttirely specified by the user through a
graphical user interface. Regarding data proces#iireguser has the choice between plotting
the displacement curve of each sensor, visualizidgnamic three-dimensional animation of

the SCC, and visualizing a dynamic virtual scenéhefexperiment. Both the 3-D animation

and the virtual reality environment are very congah as the user can observe what
theoretically happens at the level of each sensang any head rotation. This model also
provides a better understanding of different kinflerroneous motion sensations which may
appear during combined rotation motions.

The core of the model computes in real time eguoatiaf motion in earth, chair, and head
coordinate system, and then project angular aaieder vectors into a reference frame
attached to the semicircular canals. The oriematiothe axes of this coordinate system has
been defined according to a recent study based -Bn n3ultiplanar reconstructions of
computerized tomography scans (Della Santina eR@05). The resulting non-orthogonal
system underlines the fact that all the canalstmeulated for any rotation.
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Chapter IV: Models for human spatial orientation

4.1. Introduction

Models for human spatial orientation perception lzased on the concept imfternal model
representation. This concept assumes that theatem@rvous system (CNS) has an internal
model of the physical world. In other words, basadpast motion experiences the CNS has
somehow learnt the dynamics of the sensors (vdatilsensors, visual sensors, etc) which
sense position and motion, as well as some phystzlons.

This idea ofinternal modelwas developed in the 60’s in the field of guidarogineering to
estimate the orientation and position of a vehiokeautonomous or assisted navigation. An
internal model (not to be confused with the overathdel) is an integral component of
estimation techniques like observer theory andnagitestimation theory (i.e., Kalman filters).
The purpose of internal models is to estimate ezglevariables (like gravity, acceleration,
velocity etc.) by mimicking the physical relationsh between those variables and the sensory
systems and thereby predicting their time-coursenfincomplete, noisy, and/or inaccurate
sensory information (Fig. 4.1). Since the 70’s,stlioncept has attracted interests in
neuroscience from motion sickness models (e.g.dRed®77, 1978; Oman, 1982, 1991) to
model of human spatial orientation (Merfeld et 4893; Borah et al., 1979 and 1988; Zupan
et al., 2002; Newman, 2009).

Physical world Central Nervous system
Physical relations : Error Internal model
of external —p SENSOIS|—p{ comparison »  predicting the >
variables - external variables
Estimates of|
external
Sensor model | variables

Figure 4.1. Principle outline of the internal model concept Aeg for the estimation of external physical
variables like acceleration, velocity, and position

As regard models for human spatial orientationnggtion, two main model families can be
distinguished: the Observer and the Kalman Filtedeh families. As already mentioned in
the background section, Borah et al. were preswnthbl first to apply steady state Kalman
filtering techniques to model orientation perceptity a human riding passively in a vehicle.
Their model considered dynamic models for vestibudad visual sensors, and the
transformation from head to world coordinate systems linearized about the upright
position. By empirically choosing sensor noise niagle and bandwidth they show that their
Kalman filter model successfully mimicked angulatocity storage during rotation about the
Earth-vertical, somatogravic illusory tilts durifigear acceleration in darkness, and angular
vection and illusory tilt illusions resulting froscene rotation about vertical and horizontal
axes, respectively.
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A decade later, Merfeld et al. implemented a sasfesiodels using Observer theory. These
models were developed to help explain perceivetiadpaientation as well as the vestibulo-
ocular reflexes elicited by complex motion paradsg®bviously, Merfeld et al. applied the

concept of internal model and assumed that intemadel estimates corresponded to
perceptions of acceleration, velocity, and positibhe most well known Observer model

refers probably to Merfeld’'s original paper (1998)which a one-dimensional model and a
three-dimensional model were proposed. Both ofeh@®edels considered only vestibular
sensors, and a nonlinear transformation from headvorld coordinate system using

guaternion mathematics was taken into accountar8ih model.

The first goal of this chapter is to investigateywthe widely known “Observer” and “Kalman
Filter” model families — despite their apparentlyfetent assumptions - are dynamically
equivalent from an input-output (“black box”) peespive. Obviously the Borah KF model
incorporates some visual cues, whereas Merfeld @b&senly described vestibular cue
interaction in darkness. Borah assumed the serBorgmics of the otoliths were relatively
slow (5 seconds dominant time constant), whereageldewas aware that otolith dynamics
were much faster. Structurally, the models areeswnat different: In the Borah KF model,
weighted sensor residuals determine the rates afigeh of model outputs, whereas in the
Merfeld Observer model, SCC residuals simply adthéooutputs. The vestibular portions of
the Borah KF model postulate 16 SCC and Otolitidtesd weighting factors - each of which
adds a potential decaying exponential or sinusomdatle to the model’'s responses. By
comparison the Merfeld Observer model utilizes diolyr ad hoc parameters. The Merfeld
model works for large head tilts, whereas the Bonaldel does not. Nonetheless even for the
head upright attitude, the angular velocity storagd somatogravic illusion responses of the
Borah KF and Merfeld Observer are almost identiCeherefore, in the following section we
ask: What are the reasons for the dynamic equigalehthe two models? How did Borah et
al’s choice of motion disturbance and sensor noiagnitude and bandwidth impact the KF
model’s dynamics? Is the Merfeld Observer modedveel-order-equivalent-system (LOES)
for the Borah KF model, at least for the head uprigondition? The Borah KF model
residual weighting factors are optimal for the paifar motion disturbance and sensor noise
magnitude and bandwith assumptions made. Howda@ah et al considered these free
parameters, equivalent to the four free parameterthe Merfeld observer model, and
determined them by fitting data on illusory rotatiand tilt perception.  Shouldn’t the
appropriate external motion disturbance charattesisepresented in the Borah et al model
be determined by a person’s motion exposure higtdp human thresholds for angular and
linear motion correspond to the equivalent sensosenimplied by the Borah et al model
coefficients?

The second goal of this chapter is to extend Berakteady state Kalman filter model to a
general time-continuous three-dimensional modelwmuaks for any head attitude. In order to
achieve this goal, we use suboptimal filtering téghes such as the extended Kalman filter
and the unscented Kalman filter. The first devetbp®del is closely based on Pommellet’s
EKF model but differs in the sense that first, vge different dynamics for the otolith, second
we add some fictitious process noise to the quaterm order to address the issue of
instabilities of the filter, and third we solve sermrmplementation errors especially for the
noise measurement. We then develop the first neatimodel for human spatial orientation
based on the hybrid unscented Kalman filter. Tachmhique is fundamentally different than
the EKF as it relies on the propagation, throughrtnlinear dynamics of the system, of a set
of points to approximate the mean and variancé@ftates instead of directly truncating the
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nonlinear functions to a first or second order.atidition, its inherent properties involve a
better accuracy and a faster computation time thanEKF. Finally, we simulate different
motion paradigms and present modeling results dgeal vestibular and visual — vestibular
illusions including for instance Coriolis and psetdoriolis illusions.

4.1. Relationships between Observer and Kalman fér models for
human dynamics spatial orientation

4.1.2. Observer and KF model comparison: yaw rotatin in darkness

Here we compare the Merfeld Observer and Borah Kalfiiter models for the simple one
dimensional case where a human subject is rotatgdw about an Earth vertical axis in the
dark, stimulating only the horizontal semicircutanals. The system input is a step of angular
velocity w,. The subject reports perception of head anguliacitg.

4.1.2.1. Merfeld 1-D Observer model

Sensor output Estimated/Perceived

100 20 head angular velocity
» Ui Input : head % dg a0
D) angular velocity o : ~
g z
T 4 ) IS y '; ) kw a)Z
2 1+7s .
o V 0
0 10 20 30 40 SCC y A 0 10 20 30 40
TS
‘ Y 1+7s
80 Expected

. Sensory S/\CC
o Ouput

0 10 20 30 40

Figure 4.2.Merfeld Observer model for a yaw rotation. Hat \ednlies refer to as the estimated variables. SCC:

model of semicircular canal dynamic&CC : model of semicircular canal dynamics assumedhbyinternal
model of the central nervous system. The modelipiedhat in response to a constant head angulacitg
perception of angular velocity decays through time.

Merfeld et al's Observer model for this simple yestation case is shown schematically in
figure 4.2. Input to the system is head angulanaig} w,. The SCC sensory afferengewas

modelled assuming first order high-pass filter S@@amics with a time constamt of 6 s.
Merfeld assumed that CNS neurons maintain an iatestimate of head angular velocity.

Using this estimate, and an internal dynamic mdéaiethe SCC with time constart of 6 s,
the CNS predicts SCC sensory afferenceand computes a residual, and substracts it from

actual SCC afference. The residual is weighted dy §, =3 and set equal to the current
velocity estimated,. Note that this is a different estimation schetm@ntthat used in the
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Kalman observer (eq.1.25) where residual drivesr#tte of change of the estimated state,
ensuring that the steady state residual approankies Merfeld et al. chose this alternate
scheme because the closed loop transfer functittmaDbserver is

k,(1+79)

[1+ (k, + 7] 4.1

effectively cancelling the SCC pole, and repladingith a time constant otk , +1)7 = 24s,
matching empirical evidence for a “velocity storageenomenon (Fig. 4.3).

@, s y kM w:
e 1+(k, +1)7s

Figure 4.3.Merfeld Observer model showing pole/zero canceliati

A 4

4.1.2.2. Borah 1-D Kalman filter model

Next, we develop the corresponding Kalman filterdelofor yaw rotation. In the general
Kalman filter formulation (section 1.4.2.1) the pess and measurement noise are assumed
white. However, the head angular velocity inputsoemtered in daily life are band limited, so

a low pass shaping filter of bandwidf, is incorporated into the system model, as shown in

figure 4.4a. This also makes head angular velocty a state of the system which the
Kalman filter can then estimate.

(@)

scc v(t)
wo),| 1 [%=e | 7s % y(®) P
s+8, 1+71s l
N J
Y

Shaping filter - Statistical model faw, (t)
(b)

w(t) +X?X2 W,
% llﬂ a

w

Figure 4.4.0One-dimensional Borah’s KF model. (a) Model for t@hmoise shaping filter, SCC dynamics, and
Kalman filter. (b) Equivalent representation foetehaping filter.
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Therefore we represent the system using a staitervbcc(t) a)z(t)]T E[xl(t) xz(t)]T so the
KF system equation is:

(M) (-Ur 1\ (x()) (0
R Y N “2

And the measurement equation is:

()

y(t) = CX()+ () =(-1/7 1)[X 0
2

j+wo (4.3)

Note that the shaping filter bandwidi{i,, is a term in the system matri&. The process

noise, shaping filter, and measurement noise paeam8orah corresponding to those used
by Borah were:

e f,=200rad /s
e w(t)~ N(0,3.0x 1§ )
« v(t)~ N(0,0.75)

Given these values, and assuming 6s, one can numerically solve the nonlinear algebric
Riccati equation (1.30) foP, and then use equation (1.31) to compute the Kalittangain

matrix K :[K1 K2]T =(= O,463.5)T. Note that for these parameter valuks,is almost zero

(10" or smaller). Defining the KF estimated statexas| %, (1) @,()] =[%(9 %(1], the KF
equations become:

X() = A%(D (4.4)
X, (t) = Ax(1) +463.5(y(t)- Cx (1)) (4.5)

The block diagram on the left side of figure 4.%wh the structure of the resulting Kalman
filter.

+
<l

'
4
~
~
A
1
<>
A
N
[
l
+
4_
<l

N
S
>~
b
’
b4
- g
[
N\
i)
N&) l
e
~N>
(7)) l
n
w
ﬁi
<b

1/7p

L&

Figure 4.5.Kalman filter model for yaw rotation (left). Equieat model for f << ,Bw (right).
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Comparing this KF model with the Observer modekdbgd in section 4.1.2.1 and shown in
figure 4.1, note that in the KF, th€, weighted residual passes through “internal modefs”
the shaping filter and the SCC in series. This maense from a Bayesian perspective: the
KF was designed based on the a priori assumptiah ¢cbmponents of the residual at
frequenciesf >> S, are unlikely, and should be filtered out since they probably cues due
to sensor noise. Note also that the shaping fikethe KF reduces the effect of the

measurement noise on the KF yaw velocity estimbte. Merfeld Observer internal model
has no explicit representation of the head moverapattrum and hence no internal model

“shaping filter”. However for stimulus frequencies S,, the transfer function of the shaping
filter is simply 1/5,,, so the KF dynamics can be approximated bye tesyshown on the
right side of figure 4.5, which structurally is recal to the Merfeld Observer model. The KF
residual pathway gairK, /8, =463.5/200= 2.:is very close to th&, , =3 of the Merfeld
Observer model. As shown in figure 4.6, both moeelsibit very similar dynamic responses

to a deterministic 100 deg/s step change in hegdlanvelocity. This is not surprising, since
the parameters in both models were empiricallyduoematch similar data.

100}

@ ~ ——input
0\ E
SO -1 ] S, S ——Merfe|d Observer
2 " . ——Borah KF
o g :
4]
>
© 40t
=
g) 20
< 0 ~e.
0 i i | ———————
0 20 40 60 80 100
Time (s

Figure 4.6. Observer and KF estimated angular velocity resperieea 100 deg/s angular velocity step.

We should note that to simplify the example andaailitate comparison with Merfeld’s
model, the KF model developed above used a ficgro6CC model and first order shaping
filter. Borah actually employed a second order S@Gdel with a 10 s dominant time
constant, and a second order shaping filter. Tlyaemni order models introduced additional
complexity in Borah’s KF, due to the additionaltessa However the dynamic response of
Borah’s model is almost identical to the examplevat here.

We conclude that Merfeld’'s Observer model is a loaeler equivalent system to Borah's
KF, at least for the values of process and measanemoise and shaping filter bandwidths
chosen by Borah.

4.1.2.3. Ecologic basis for 1-D Kalman filter modgbarameters

Although Boral et al. (1978) consider€l, V and S, to be free parameters, they noted that
the head motion input should be “a typical spectassociated with walking and running or
perhaps a typical average aircraft flight spectrinowever, neither of the above is well
known”. They assumed measurement noise was simpdylatrary fraction of the noise in the
state estimate. However, we believe that KF pararsethould not be considered entirely
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free. Ecologically, it makes sense to think that plarameters of the process noise and shaping
filter should reflect the spectrum of yaw head mmoeats normally made in daily life.
Similarly, we argue the measurement noise oughddétermine the human perceptual
threshold for motion detection when the subjectistionless. The bandwidtif,, of the

shaping filter in the KF determines the relatiopsbetweenQ (the covariance of the process
noise w(t) ) and the covariance of the head angular velogitft) experienced by the subject.
Passing a white noise/(t) with covarianceQ through the shaping filter results in a signal
w,(t) whose spectral density function is given by:

And whose autocorrelation function is given by:

— Q - BT
r)=——e"™ 4.7
Do, (T) 25, (4.7)
Therefore, the variance of the sigral(t) is:
0‘5)2 :quzwz(()):% (48)

Hence, if we can estimate the variance of the imeagement signal encountered in daily life,
the variance of the associated white noise sign@l+ Zﬂwaj,z :

The values ofaf,z and S, depend on the amplitude and frequency conteneatl imotions

made in daily life, which are biomechanically detered. Human locomotion typically
occurs at frequencies up to 2-4 Hz. Active yaw hesvements are usually in the range
below 200 deg/s where the pursuit tracking andilvalst-ocular reflexes work well. Hence

we estimateg,, = 25, g,, =12.2 and soQ = 609.

Since K, =0 the shaping filter also determines how much mesamsant noise is expressed in
the KF angular velocity estimat®, when the head is motionless. By similarity to eiuns ,
the measurement noise covarianc¥ s Zﬂwaf,z . We argue that,, should correspond to the

human perception threshold for passive angular anoferception, about 2 deg/s, so
0%, =0.0012, and hence/ =0.061. Note thatQ/V =07, /g7, =10%, more than an order of

magnitude lower than th®/V ratio assumed by Borah. Solving for the Kalmamgdkegq.
1.31),K=[0 78]T. The KF residual pathway gaiK,/3,=3.1 is identical to Merfeld’s
proposed value ok, and close to Borah’s model. As shown in figurg, Riccati equation
(1.30) solutions for other combinations gf, bandwidth andQ/V yield values of KF gain
K, such thatK, /B, remains close to that of Merfeld Observer mode@wever, we argue
that B,=25and Q/V :af)z/af)z =10" can be ecologically justified based on human
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movement and threshold characteristics. This allmssto suggest that human angular
velocity estimates appear optimal in a mean sqaei@ stochastic sense. Borah et al. and
Merfeld et al. could not make that assertion, sihey offered empirical, rather than ecologic
justification for their choice of model parameters.
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Figure 4.7.Kalman gain K; with respect toQ/V ratio and shaping filter bandwidth. Black dots sho

parameter combinations whet§, / 5,, =3, equivalent to the Merfeld and Borah models.

One could ask: what does a KF model response likekwhere Q/V =o7, /o7 =10 but
shaping filter has a much broader bandwidth (Bg>> 25)? As shown in figure 4.7, a8,
increases, Kalman gaiK, decreases, an{,/,, become less than 3. Both the magnitude

and dominant time constant of thi,(t) response shorten compared to empirical values.

There is some empirical evidence that prolongedupaiional exposure to high motion
environments (e.g. figure skating, gymnast, flyingdluces the gains and time constants of
angular velocity perception (e.g. Groen 1962).

4.1.3. Observer and KF 3-D model for somatogravidlusion in darkness

In this section we model the somatogravic illuswhich is elicited by sustained linear
acceleration when no visual cues are availables Kimd of illusion is well known in aviation
and its most common form is the sense of pitchipgmhen taking off into poor visibility.
Basically the pilot undergoes a sustained forwangar acceleration which produces a
backward inertial reaction force. When combinechwite 1-G downward gravitational force,
the net gravito-inertial force vector is rotatecthkmard. This rotation might produce a pitch-
up illusion (Fig. 4.8).
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Figure 4.8 Somatogravic illusion. The subject experiences stasued forward acceleration. The resulted
sensation is an illusion of pitching up.

To model this phenomenon, the previous one-dimeasimodel needs to be extended to a
three-dimensional version, and has to take intowtcthe otolith organs which sense linear
acceleration. In the following sections, the stuwes of the 3D Merfeld Observer model as
well as the 3D Borah Kalman filter model are inttodd. We then compare the response
provided by both model and demonstrate why thesentedels are dynamically equivalent.

4.1.3.1. Three-dimensional Merfeld Observer modebf large tilts

The observer model has been extended to a threendiomal representation by replacing
scalar values with vectors, and by replacing thedfer function of the sensory organs with
3x3 matrices transfer functions. The inputs of thedel are angular velocity and linear
acceleration (Fig. 4.9). In this configuration, éér dimensional rotations change the
orientation of the gravity relatively to the heasbadinate frame. This point, which involves
non-linearity in the model, has to be taken intocamt. This is what the block “rotate g”
performs. Indeed, by knowing the current positidntte gravity vector and the imposed
angular velocity vectoww, the block “rotate g” keeps tracks in real timetloé direction of
down. To perform this, Merfeld used a quaternidegnation.

According to Einstein’s equivalence principle, ltlear accelerometers must measure both
linear acceleration and gravity. Therefore, thdithtmrgans — which respond to translational
motions and tilts of our body - must sense the itpimertial force f . The gravitoinertial
force is given by the difference between the gyavéctor and the potential external linear
acceleration; so thaf =g—-a . The internal hypothesis suggests that the nesnsystem

somehow knows these two physical effects, i.e theking of the gravity vector and the
computation of the gravitoinertial force. To mimikese physical relationships, internal
representations are implemented by assuming theg tiee same form. In particular, the
perceived GIF is given by the difference betweenititernal estimates of gravity and linear

acceleration such ds=g-a.
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The block diagram below shows the structure of@bserver model derived by Merfeld (Fig.
4.9). The angular velocity and the gravitoinerf@lce are respectively sent to the canals and
the otolith organs. The internal model is composkdifferent loops to provide estimation of
angular velocity, linear acceleration and graviterfeld et al. arbitrarily considered four
gains, one for each loop, that provide the onlg fparameter of the model. Double arrows
show the pathway of the previous 1D model whichdgiengular velocity storage. In three-
dimensional space, this path is affected by thétbteensory afference through a g&p,. A

feedback loop with a gaik, is used to provide an estimate of linear acceteravhereas
another loop with a gairk; affects the computation of the estimated gravigtor. The

transfer function of the SCC is the same as thariddel. As regard the otolith dynamics,
Goldberg and Fernandez (1976) experimentally deterina second order transfer function
by recording the response of peripheral afferenirores of the squirrel monkey. However,
Merfeld considered a simplify model of otolith dynigs, in particular a lower order transfer
function by considering the lowest pole, so asdduce system stiffness for purposes of
numerical stability. He chose to model the dynanoicthe otolith organs by a low pass filter
with cut-off frequency of 2Hz, so that the otolithnsfer function is given by:

1
TF, =—— 4.9
w0 g 11 (4.9)
with 7, =1/(277f )= 0.0&
H 179
a v .
i \4 : i v Sscc(g —é_
1 =~ |+ ! ! 1
| Fomea st —{5, (51—
i Body Dynamic i iSensory Dynamics i
______________________________________ v+
k,, | ?
Kol < -
Ky
+
a K, 4—65
+ — é B} 'T
(O—»|Rotate § =+ Sw(dF—
+v\ + é)
?C/T > SSCC( 9 ————

Sensory Moel

—

Figure 4.9.3D Observer model. Double arrows show the 1D mpdéiways presented earlied, f , and @
correspond to perception of linear accelerationagjty, and angular velocity, respectively.

4.1.3.2. Three-dimensional Borah steady state Kalmdilter for small tilts

As the 3-D Borah’s model was linearized near a hgatyht position, it only works for small
head tilts. The three-dimensional internal mod@resented in figure 4.10.
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Figure 4.10.3D internal model used in the present Kalman filleodel. Note that Borah used a different
transfer function for the otoliths. For comparisparposes, the transfer function used in Merfeldted is also
utilized in the following Kalman filter model.
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White process noises;, (t) and w,,..(t) are passed through first order filters to generate

angular velocity and linear acceleration. The aaguwelocity is then integrated to
approximate orientation angle))( The otolith organs are driven by the gravitoriia

acceleration equal td = g-a. The linearization about an upright position metm the
orientation angle vectoy has small components, so that the projection@fthvector in the
head coordinate frame is equabjp. Finally, measurement noise is added.

The model is described in state space form by:

% = AX(1) + Gw( D (4.10)
y(t) =Cx()+ W9 (4.11)
01 0 0 O
0-4, 0 0 O 00010 01-1r 0 O
With A= 0 1 -1)r O 0 | E= : C= .
00 0-4 O 01000 00 O 0 1,
10 0 1-1f,

Only five states are needed to model this experiment as onlganponent for both the
linear acceleration and angular velocity are required. The stateg and x, correspond to

the pitch angle orientation, the angular velocity around the pitch and the forward linear
acceleration respectively. The states and x;correspond to internal states of the sensors

transfer function.

The process and measurement noises used in the simulation are:

Wrot (t) - N(O1120); Wtrans(t) - N(0,0.l)
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Viot (t) - N(O’10_3 ); Vtrans(t) - N(0110_4 )

The initial conditions assumed by the filter are:

100° 0 0 0 O
0 10° 0 0 ©
%0]0)=(0 0 0 0 0 andPO|O)=| 0 0 10° 0 o
o 0 o0 10 o©
o 0 o0 o0 10°

The steady state Kalman gain computation yields a 5x2 gainsxmiasich of these gains
shapes the evolution of each state variable. However, it can be shatfour gains are
required to capture the main behaviour of each state variable, the samer figdins used
in the Observer. The minimum set of gains neededKis,K;,,K 5, K ,,). However, the

structure of the Observer and the Kalman filter are different as the Kajanas are applied
to the rate of change of the state variables.

095 -4.03
334.60 -0.83
In the present caseK =| 0.95 <-3.16|. The dominant terms are the one circled and
0.005 <18.9
-0.002 1716
setting the other to zero does not affect the result of the simuldie update state equations
of the steady state continuous Kalman filter are thus given by:

X0 = %)+ Kileuo () (4.12)
% (1) = =B, % (1) + Ky Yuee(D (4.13)
(0= %(0 = 5600+ Kagho() (4.14)
X4 (1) = =B 3() + Ky Voo (D (4.15)
() = %0+ (9 - Tl 369 (4.16)

The resulting three-dimensional model is presented in figufie 4.1
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Figure 4.11. Block diagram of the steady state Kalman filter the somatogravic illusion. The system
corresponds to a KF with only the four necessaryngaf(l, )A(Z, and )?4 correspond to perception of
orientation, angular velocity, and linear acceldrmt, respectively.

Figure 4.12 shows the response of the Kalman filter model develipeee and of the
Merfeld Observer model. It can be seen that the perceived linear acceleaatiothe

perceived pitch angle provided by both models are close, at leastefaet of parameters
assumed.

(@)

0.25

Pe?rceived bitch anéle

0.2} - fom-=7=

80.15* o KE-LP .

b TN 11 [| N SR A—— - ..M.erfe.ld.Qbserve._

0.05

. Perceived linear acceleration

time (s)

Figure 4.12. Perception of linear acceleration and pitch angherésponse to a forward linear acceleration of
0.2g provided by Merfeld Observer and Kalman filbeodel. Both models consider a low pass filter afaff
frequency 2Hz for otolith dynamics.

By the way, Borah used a much slower otolith dynamics thanctragidered by Merfeld.
More particularly, Borah took into consideration a higher order trafgfetion of the form:
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_ 90(s+0.1)

TF2,, <+0.2

(4.17)

Nevertheless, for the same values of bandwidths, both Kalman filtme with the low pass
filter and the other with Borah’s transfer function for otoliths dyitam- produce similar
results (Fig. 4.13). One can note however that the outpulte dfdlman filter depend largely
on the assumed bandwidths. As it can be seen on figure 4eligwbr is the translational
bandwidth: 1) the higher is the magnitude of perceived linear aceefera} the longer is the
duration of the perceived linear acceleration, 3) the slower is theptiene of tilt around the
pitch axis.

0.25

0.2
0.15
01/

0.05}

Figure 4.13. Perception of linear acceleration and pitch angleesponse to a forward linear acceleration of
0.2g provided by the Kalman filter model for twdfdient otolith dynamics.
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Figure 4.14. Response of the Kalman filter model with Borah’slitiiatransfer function for different bandwiths
of linear acceleration. (a) Perception of lineazederation; (b) perception of pitch angle.

Conclusion
Even though Merfeld’s model and Borah’s model are based on diffapgtbaches and
assumed empirical data, we have shown that both models are dynamigaligilent from an

input-output blackbox as they produce similar results in terfrgerception (estimation) of
head angular velocity, linear acceleration, and orientation.
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We have argued that the presence of the low pass filters usedpe gte process noise
means that the brain expects head angular velocities and linear acagdaraticertain range
of frequencies. We have supposed that these filters somehow refleatqiamst history, i.e
kind of motion our head has encountered in the past and thegtitral nervous system might
expect. Therefore, we have suggested that the bandwidths obtedienited filters should
be determined by a person’s motion exposure history.

We have also demonstrated that the shaping filter is also a maitendatice to augment
the size of the state vector by adding one more state that correspthellso head angular
velocity or head linear acceleration. Thus, it gives us a meartitoaés perception of head
angular velocity and head linear acceleration. Note also that thayplcte magnitude of the
process noise covariance.

Finally, even if Borah used a slower otolith dynamics than toasidered in Merfeld’'s
Observer, we have shown that perception of motion and orientaiwided by the Kalman
Filter do not depend very much on the dynamics of the atolifor the same value of
bandwidths, both Kalman filters look almost the same
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4.2. Nonlinear models for human spatial orientatiorbased on the
hybrid extended and unscented Kalman filter

As previously described, Borah’s Kalman filter model for human &lpatientation is valid
only for a head orientation near the upright position. In tdeevelop a model for human
spatial orientation that works for any head tilt, the transformdigiween head coordinate
system and world reference frame must be considered. This transforméiicm can be
defined either by Euler angles or quaternion parameters is nonlitnees,. & modified version
of the Kalman filter has to be used to estimate the state variabtbss afonlinear system.
Different techniques apply the Kalman filter framework to nonlineansSian systems, such
as the Extended Kalman Filter or the Unscented Kalman Filter.

In the following sections, we first apply both the hybrid egtgh Kalman filter and the
unscented Kalman filter to develop a model of human spatial oriemnt&iist, we define the
coordinate system as well as the sensors dynamics used in the Semteid, we present the
“real world model” that permits to generate sensors measurement, andi¢hnedlimodel” of
the central nervous system. Third, by assuming that the ceminadus system works as an
optimal estimator, we formulate more precisely the internal madahg state space
representation. Finally, we simulate different motion paradigms sesgpt modeling results
for several vestibular and visual — vestibular illusions provigetoth the EKF and the UKF
models.

4.2.1. Coordinate system

We consider a (XYZ) coordinate system related to the Earth, and,a) (@pprdinate system
related to the vehicle in which the pilot is flying.

X

Z

Figure 4.15.Head and world coordinate frame.

For modeling purposes, we take into consideration a cyclopeaof sa@inals and otoliths
located at the center of the head (Fig. 4.16). First, this assumpteans that only one
vestibular system is considered. This implicitly assumes tiatsubject has two healthy
vestibular systems. Second, considering a cyclopean set of senguwiss that linear

acceleration components (normal and tangential), which acts on titk otghns, created by
a rotational motion are not taken into account. In the present cothiexsimplification is

sufficient to model the notion of perception of orientation, attléasa subject without

vestibular disorder.
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An input to our sensors model can thus be characterized by@ofuof time describing the
movement of the vehicle (V,x,y,z) in the inertial space. The orientgiocess consists in
knowing at each time the transformation matrix between (x,y,z) ani4X,This is done by
guaternion integration and then a transformation from quaternion getaanto Euler angles.

Xs

l—’ D

z

Figure 4.16.Coordinate system attached to the sensors

4.2.2. Modeling of the sensors

The model takes into account visual and vestibular cues. Thela@gentation process
can be divided into two distinct categories: the focal visionciwhs related to object
recognition, and the ambient vision for general spatial orientdtiotiis study, we consider
only the ambient vision which provides both motion cuespsition cues. For simplicity we
assume that the visual sensory dynamics can be approximatedyasansfer function which
responds to both angular and linear velocity of the visual emagoh Since dynamic inputs
illicit a sensation of motion in the opposite direction of visual field (e.g. linear vection or
angular vection) the dynamic sensors are modeled in three-dimenspata as a negative
3x3 identity matrix.

As regard the vestibular system, the SCCs as well as the obofjins are assumed
located at the center of the head. We model the SCCs as a singletisete orthogonal
canals. They are supposed identical, uncoupled, and can thusdieéed in three dimensional
space by a set of three identical transfer functions. As mentiortée ipackground section,
the dynamics of each SCC and otolith organ can be modeled byral sder filter. We here
chose to use the Fernandez and Goldberg transfer function to rephesdghamics of the
SCC and to retain the Telban and Cardullo transfer function to relgteh @tfferent firing
rate with the gravito-inertial force. These transfer function are remindegline 4.17.

(@)

Angular Canal dynamics
W velocity I,0,S? Canal afferint firing rate
A+7s)(1+7,9)
(b) ii Otolith dynamics
Specific 1 Otolith afferent firing rate
of_force | (r,5+1) .y
A+7s)1+7.9)

Figure 4.17.Sensors transfer functions used in the EKF and WigiEels. (a) Semicircular canal model with
I, =6s and 7, = 80s (Goldberg et al., 1971); (b) Otolith model with =5s,7, =0.0165,7, =10s, and

K =33.3 (Telban RJ, 2005).
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4.2.3. Description of the model

The philosophy of the developed model of human spatial orientpgoception is presented
in figure 4.18.

: Model of the 1Sensory signa:tl y )\ y Estimated sensory sigr

I real worle | : N
| IR Feedback signi

Kalman gains

of the CN¢ I

EKF or UKF Estimatecstates> perceptionsf

Figure 4.18.Philosophy of the model of human orientation pptice. The model of the real world is used to
generate the output of each sensor. It is assuhadhe CNS has an internal representation of éaéworld
denoted as “internal model”. Assuming that the QM$forms the estimation of the state vector in ptintal
sense, the CNS is modeled as an Extended or Uesci&atman filter (EKF or UKF). The estimated stabtés
the internal model correspond to the subject pdimemf orientation, angular velocity and linearcealeration.
The internal model provides an expected sensomkigettor which is compared with the actual sensigpal
vector. The resulting feedback signal is then wigidiby some Kalman gains which then drive the exttioh
states

A model of the real world, which will be detailed later, is usedenerate a sensory output
vector comprised of the signals provided by the semicircular cahalsdlith organs and the
visual system. The true dynamics of the body and sensors of sivgpasubject that
experiences angular velocity or linear acceleration can be described by:

X(t) = f(%(t), 0)+ w1 (4.18)

where X is the state space vector containing variables of position, telaciceleration, and
internal states of the sensors transfer functibns the external motion input applied to the
body andw(t) is a zero mean white process noise. The measurement providedsensioes

are given by:
Vi = (X U)+ \ (4.19)

where y, is the output vector coming out from the sensors, gnsla zero mean white noise
modeling the biological noise corrupting the afferent neuromsatsg

Models of spatial orientation are based on the idea that the ceetvalus system has an
internal model of the real world. In other words, it somehowwsithe dynamics of the
sensors which sense position and motion as well as someghgguations. The idea for the
central nervous system (CNS) having an internal model of thevoeld means that it knows
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both functions f and h. The problem faced by the central nervous system consists in

estimating the random state vector of the internal model givet af :10isy measurements
which are computed by the real world model (Fig. 4.18). Bssumed that these internal
model estimates correspond to perceptions of orientation, angulamaad Velocity, and
linear acceleration.

To achieve this goal, the CNS is modeled by a nonlinear Sulapéstimator. Both the
hybrid extended Kalman filter and the hybrid unscented Kalman fiterapplied to this
estimation problem. Hybrid version of these two filters meanstkigasystem is modeled by
continuous-time dynamics and measurements are obtained at discretestanes.

4.2.3.1. Real world model

The model of the real world, which permits to generate the sensorsrarmaasts vector, is
presented in figure 4.19. The blocks “Canals dynamics” and “Otalinamics” are
composed of three SCC transfer functions and three otoliths transfeipfisnaspectively,
one for each component of angular velocity and gravito-inertial accelerAngular velocity
is passed through the semicircular canals transfer function to preduosery afferent signals
as well as the visual transfer functions to get information of theavifield rotation. In order
to keep track of the direction of down when our head rotates, we hdeeable to compute
our orientation relatively to the earth coordinate frame. This &plerformed by quaternion
integration rather than a classic Euler representation as quaternionsatd gimbal lock,
reduce numerical storage from 9 to 4 digits, and increase compatastability. The
guaternion equations and the transformation between quaternion paraamet&msler angles
are defined in appendix 2. The gravito-inertial force, defined as tfexatice between the
gravity and the linear acceleration, is passed through thehotadibhsfer function to get a
three-dimensional otolith afferent rate vector. Finally, linear velabtgined from the direct
integration of linear acceleration is applied to a negative iyeménsfer function to get the
visual field translation velocity. The computation of the sermatput vectory can be

performed using the Simulink model presented in appendix 3.

MODEL OF THE REAL WORLD

! Visual field translation

: White noise\Wy White noiseVsec  Sensors signalst
' Gt) Angular velocity+ ¥+ Canal LYt gmmTs . :
! " dynamics [ > O—"’_ > Yeanals | |
: White noiseV, ision i E :
! - + Y* LY L
| K3 —> = Jvisrot 1
! v . . . . o
: Quaternion Visual field rotation i by y
I integration : : :'
| White noiseV, ! 'y
I | Rotation — _ ¢ oto i b
! . . d of g’ +f (t) Otolith + + 1 ol
: White noEeV% dynamics ——»(O— Yotoliths | 1
_ - it ,
L a(t) +.6 Vol White noiseV,ision i : :
iLin. \ Lyt : . -
lacceleration % '[ —> —| 33 —> - Yyistrans J
S e I
|
I

Figure 4.19.Detailed view of the model of the real world.
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4.2.3.2. Internal model of the CNS

The internal model of the central nervous system is presented ne #gRO0. It is different
than the real world model in the sense that the CNS does nwtwhizh motion the subject
is going to experience. This means the CNS does not knowwghe which is a part of what
it has to estimate. Nevertheless, it can be assumed that thd&\®me expectation about
the frequency range of the motion the body is going to encountether words, the CNS
expects a certain bandwidth of angular velocity and linear acceler@herefore, we use two
low pass filters — as in Borah model (1988) — to generate angalacity and linear
acceleration (figure 4.20).

The nervous system is also facing other problems that arise whkeaniesto use the sensor
output to compute position and orientation in space:

» As stated by various researchers, the otoliths alone are not sufficielistinguish
between gravity and linear acceleration. This physical fact is a prdasd by any
linear accelerometer, and is commonly referred to as gravito-inertial ford® (Gl
resolution.

» Correct implementation of rotational kinematics requires a three-dimahsiogular
velocity to orientation integration.

These two problems must be considered by the CNS when attgnpomocess ambiguous
motion cues.

As already mentioned in section 4.1.3.1, linear accelerometers (imgltigi otoliths) respond
similarly to inertial and gravitational accelerations (Einstein’svedence principle, Einstein
1908). The otoliths can only measure the sum of both as follows

f=g-a (4.20)

where f denotes the total linear acceleration measured by the otolithsh ishtomposed of
gravitational acceleratiorfj and other translational accelerati@n Thus, otolith afferent
provide inherently ambiguous sensory information, given thateticode acceleration could
have been generated during either actual translation or a head reomergiatiove to gravity
(Angelaki and Dickman, 2000). Therefore, the problem of GIF resoltigsnio be solved by
the CNS using other information.

A lot of studies (e.g. Zupan et al. 2004) have supported thetlinggis that the CNS knows
the physical relationships between gravity, translational accelerata gravito-inertial

force. In other words, the neural representation of grag:yiu;ninus the neural representation

of linear acceleratiord equals the neural representation of GIF, consistent and mimittien
real world physics such as:

A
—

-§-3 (4.21)

=
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where f is the estimate of the total accelerati@sz the current estimate of gravity, aad
is the current estimate of translatory acceleration.

Similarly, transformation between head coordinate system and worldnegeframe requires
a three-dimensional angular velocity to orientation integratitis ihtegration is performed
using quaternion mathematics. We hypothesized that the CNpeafeomed this integration
SO as to provide an internal estimate of the direction of dawnam estimate of the gravity
vector, as well as internal estimates of orientation angles.

Finally we assume that the brain has an exact knowledge of the séwsansics, so that the
transfer functions of the SCC and otolith organs have the samea®nm the real world
model.

INTERNAL MODEL OF THE CNS

|
Expected sensors |

_signals I
1 ~ Estimated angular . N
N w velocity M b & o
> odel of Canals| v |
. —% |
s+ dynamics oS
1
: | :
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. . Visual field rotation o
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Figure 4.20.Detailed view of the internal model of the CNSisThlock is a part of figure 4.18. We assume that
the CNS expects angular velocity and linear acaétar in a certain frequency range. Thus, two laggfilters

with cut-off frequency,E’r and ,Bt respectively are used. It is also supposed thaCt8® performs a quaternion
integration to provide an internal estimate of theection of down and computes the difference betwthe

estimated gravityJ and linear acceleratiofi vectors to produce an estimate of the gravito-iakfarce f . The
transfer functions of the sensors have the sanme &srin the real world model.

4.2.4. Estimation process

4.2.4.1 State vector update

The model can be written in a state-space differential equation ofrthe fo

X(t) = f(X(1) + WD) (4.22)
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X is a state vector of dimension 25, expressed in the head referstera syd partitioned as
follows:

- (%, %, X5 %y) quaternion paramete(sy, ¢, &, %)

- (Xsy X5 %) angular velocity(a, @, w,)

- (%5, %9, %) linear velocity(V,,V,,V,)

- (X X0 %49) linear acceleratioffa,, a,, a,)

- (X0 X5 X0 X970 X35 %19 variables of SCCs transfer function
- (Xo0s Xo1, Xo00 Xog Xop Xo9 variables of otoliths transfer function

* Quaternion differential equations

In order to update the quaternion vector as we rotate in inertial dpadeittal quaternion
must be integrated with respect to the angular velocity in@d({t) = (a,w,,@w,). The

integration of the rate of change of the quaternion vector is givewbe@&le gainA drives
the norm of the quaternion to 1.0. The value of this gain brishosen with care, because a
large value improves the decay rate of the error in the norm, buslailse the simulation. A
value of 0.9 worked best for our sample rate.

G 0 -« Wy, TW (g
G |_1| % 0 w -w| g
(o) B 2 W, -, 0 Wy || G
s w, w -w, 0 \G

+ e with £=1- (05 +f + &g + ) (4.23)

oSO

According to (4.23), quaternion equations in teohstate space variables are given by:

>‘<1=%(—><5x2-><6>%- % %) +0.9 x(1- (%+ %+ %+ %) (4.24)
)'(2:%()%xl+ % %= %X)+0.9 %(1- (%+ %+ %+ %) (4.25)
=2 06R= X%+ %60 +0.9 (1= (i+ &t &+ %) (4.26)
>‘<4:%(x7x1+ %%~ %X +0.9%(1- (X+ &+ %+ %) (4.27)

Therefore, the update of the corresponding estunstie variables is given by:

;(1:%(_5%3(2: %= %%) +0.97%(1- (Ag+“g+Ag+“§S))+z K (4.28)
i1
%, :%(3%3&+ %% 9 +0.9%(- (k+ %t "+ Y, K (4.29)

i=1
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X =2 (%%~ %%+ %) +0.9%(1- (F+ "%+ %+ TR+ Y K (4.30)

M~ ';'M~

(%% + %% = %59 +0.9%,(1~ (X + "%+ "%+ i))+ (4.31)

|\>I|—\ I\JlH

|_\

where r is the dimension of the measurement vecjoiand ¥, =y — Y is the difference
between the actual measurement and the expectesures@ent.K; corresponds to the
element of the") row and ' column of the Kalman gain matrix.

* Angular velocity

We assume that the subject expects a certain bdtidy), of angular velocity. This signal is
represented in the internal model by the outpua difst order shaping filter driven by the
feedback signa(y — y) weighted by the Kalman gain matrix.

Kalman gains<(“y- "y Kalman gains<("y- Y %

202030
v

1 |5 o 1
L —p s i =
s+8, S

B

Figure 4.21.Equivalent model of the low pass filter.

Therefore we have the following differential eqoas for the update of angular velocity:

% ==B,%+> Kg ¥ (4.32)
i=1

X =—Bo%+ D Kg & (4.33)
i=1

X, ==B,%+ > Ki ¥ (4.34)
i=1

» Linear velocity and linear acceleration

Linear velocity is obtained by integration of limegcceleration, so that its update is given by:

=%+ Kg ¥ (4.35)
i=1

=%t Y Kgy (4.36)
i=1
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%= %3+ ) Ko ¥ (4.37)

As angular velocity, linear acceleration is expddie be the output of a first order shaping
filter driven by the feedback signg - y) weighted by the Kalman gain matrix , so that:

);lez_lgt;(ll-'-z K ¥ (4.38)
i=1

X =Bty Ky (4.39)
i=1

3= =Bst Y. Kig¥ (4.40)

i=1

» Semicircular canals dynamics

Semicircular canal dynamics is defined by the ti@miinction presented in figure 4.22. This
transfer function can be redrawn as:

\ 4

n,+7,
. ; LT
X5 X5 %4 B
A AR K14
2 _ls o~ e [1]|1%9 Xsl1] X | 1| W -
W= x6——© N = —

")
iy

'\'
N

o ycanals
X, AN Expected canal
afferent firing rate
n+r,

I,

1

I,

Figure 4.22. Equivalent representation of the transfer functiasfsthe semicircular canal dynamics of the
internal model.

Therefore, the semicircular canal states updatgvien by the following set of differential
equations:

. r

X4 = X15+Z Kia ¥ (4.41)
i=1

s _ I FT, . 1 . 4.~ <

X5 =" T Xl5_TT X4t X5+Z KisY (4.42)

10> P i=1
. r
%6= %7+ D, Kig Y (4.43)

i=1
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A I, +7, . 1 . . < -

X7 = =2 %~ X6t Xe"'z KirY (4.44)
0O, I, i=1

. r

Xg = X19+Z Kig ¥ (4.45)

i=1

s I FT, . 1 . .+ .x <

X9 =" X9~ X8t X7+Z KigY (4.46)
0O, I, i=1

* Otolith dynamics

The internal model of otoliths respond to the eated gravito-inertial forcef = é—é. The
orientation ofé relative to head coordinate system is defined by:

. 0 19.62 (%, — % %)
g=M|0 =|19. 626%x4 X% ) (4.47)
981 (981 + X -3 - %)

where M is the transpose of the direction cosine matrikindein appendix 2. Thus the
gravito-inertial force is given by:

~ [19.62(, X, - X.LXS) )&1
f =|19. tsz&gx4 Xz) X5 (4.48)

9.81(¢ + % — %~ 3¢ )~ %5

Otolith dynamics is defined by the transfer functioresented in figure 4.23. This transfer
function can be redrawn as:

KT,

yotoliths

Expected otolith
afferent firing
rate

TSTL

Figure 4.23.Equivalent representation of the transfer functiofishe otolith dynamics of the internal model.

Therefore, the states update is given by the foligwdifferential equations:
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. r
Xo0 = X21+Z Ko ¥ (4.49)
=

A T.+7T, . 1 . A Ay A [ -

. r

X0 = Xzs"'Z Ko ¥ (4.51)
i=1

A T.+7, . 1 . A Ay A [ -

Xo3 = ———L Koy ——— X5, +19.62(X X+ X Xo)— X12"'Z Kas ) (4.52)

. r

Xo4 = Xzs"'z Ko ¥ (4.53)
i=1

A T.+7T, . 1 . "2 A2 AD A N [ -

Xo5 =~ STT S S5 == Xou+ 9.81(% + ¥y %~ )~ Mgt D Kasy (4.54)

sfL i) i=1

4.2.4.2. Measurement equations: outputs of the realorld model

The measurement equations are derived from the stmce representation of the canals,
otoliths, and visual transfer functions. Accordiogeach transfer function we have:

1 L+7,
- _ + ¥+ 4.55
Y1 r, X4 I, X571 X5 oo ( )
1 nL+7,
- _ + o+ 4.56
Yo r, X6 I, X771 Xgt Ve ( )
1 R
__ _ byt 4.57
Y3 r, X8 I, X9 X7+ e ( )
Y4 = =% * Myision (4-58)
Y5 = =X * Vuision (4.59)
Y6 = =% * Vyision (4.60)
Y7 = =% * Myision (4.61)
Ys = =% * Myision (4-62)
Y9 =~ X0 F Myision (4-63)
K Kr,
== Xog——— XpqF 4.64
Y10 rr, 20 Iz, 217 Vio ( )
K Kr,
=- Xop = =~ Xoat 4.65
Y11 Iz, 22 Iz, 237 Vio ( )
K Kz,
Y12 rr 24 7, 257 \oto ( )

In addition, we consider one more measurement eguat order to keep the norm of the
guaternion equal to unity, which is fundamentahie quaternion formulation. Thus, we have:
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y13:)(f+xg+x§+xi (4.67)
4.2.5. Implementation consideration

The algorithms of the EKF and UKF defined in thekgaound section are implemented in
the MATLAB software (code available in appendix s the central nervous system is
modelled as a continuous system, the differentiplagons for the state vector and the
error covariance matri have to be integrated between each measuremenstep. For the
EKF, a fourth-order Runge-Kutta integration is us@th an integration time step of 0.01s.
Note that in this case Euler integration would pevvery bad and oscillatory results.
However, Euler integration with a time step of &@4 convenient for the UKF and provides
similar results as if a Runge-Kutta scheme wouldi®ed, for a computation time about five
times faster. For both models, a time-step of 8.8used to update the state vector.

A graphical user interface is also developed andiges users with complete control over all
model parameters - such as bandwidths and covari@hprocess and measurement noise -
and data output without a need for advanced progiam skills or optimal filtering
knowledge (Fig. 4.24). The user has the choicemnadifferent motion paradigms:

* Yaw rotation in darkness: the subject is strapméad @ rotating chair and experiences
a movement of rotation at a constant angular vlacidarkness.

* Forward acceleration in darkness: the subject éxpegs a constant forward linear
acceleration in darkness.

* Yaw angular vection: vection is defined as the celimg sensation of self-motion
elicited by a moving visual stimulus. In this exipeent the subject is stationary and
placed inside a rotating drum which rotates at astant angular velocity around a
vertical axis.

» Pitch angular vection: the subject is stationany placed inside a rotating drum which
at a constant angular velocity around the pitcls.axi

* Roll angular vection: the subject is stationary atated inside a rotating drum which
at a constant angular velocity around the roll .axis

* Backward linear vection: the subject is stationarys surrounding environment
translates backward at a constant linear velocity.

» Coriolis stimulation: the subject sits head erectai chair which rotates around a
vertical axis. When angular velocity perception lkeéfectively decayed to zero, the
subject makes a head tilt.

* Pseudo-Coriolis stimulation: the subject is staignwith his head erect. His
surrounding environment rotates about an Earthicatraxis at a constant angular
velocity. When the subject experiences an illussegsation of rotational motion in
the opposite direction of the surrounding motiomniakes a head tilt.
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» Off-vertical axis rotation (OVAR): the subject siv® a rotating char tilted from the
Earth vertical axis. He then experiences a rotadi@mund a tilted axis in darkness.

Extended & Unscented Kalman Filter

— modeal - — Plots
SCC Otoliths EKF
80s.6s K{1+10s) O perceived ang. velocity (0 perceived angles
HeAllolidtin) (ham e by O perceived lin. velocity
(O perceived lin. acceleration )

— Parameters e
Bandwidth UKF plot both.
br| 10 | bt| 1 | ) perceived ang. velocity O perceived angle

. . () perceived lin. velocity
Process nms.e_cmr. measurement noise cov. O nicienived lin. dec lnrating !]
ow [ 1 | R_scc (00001
oA [ 1] R oto [0.0001
o it EU_@:@@_ R_quat [ D | Save state vector-
R_wision |0.0001 |
saveJ
— Filter algorithm
® EKF 3 UKF
Simulation
['vaw Rotation in dark Sim. duration EXF 0.0
Sim. duration UKF 0.0

Figure 4.24.Graphical user interface of the EKF/UKF models. Tharameters” panel allow the user to define
the bandwidths as well as the process noise coweeiaand measurement noise covariance. The “filter
algorithm” panel permits to switch between the E&fd the UKF. The “Simulation” panel proposes diéfat
kind of motion paradigms such as yaw rotation imkdass, forward linear acceleration in darkness riGlis
stimulation, etc. Then the user can plot any ofdtate variables and save the state vector. Contiputdimes
are displayed at the end of each simulation.

4.2.6. Simulation results

4.2.6.1. Parameters

The following set of parameters is used in theofelhg simulations:

« Bandwidths:5,,=25and 4 =1

* Process noise covariance matigX:is a 25x25 diagonal matrix with:
> QLD=Q(2,2=Q(3,3F Q(4,4F Quu= &
Q(5,5)=Q(6,6)= Q(7,7F Q = 60

>
> Q1111)=-Q(12,12FrQ (13,13 Q=
» All the other diagonal elements are set to zero
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* Measurement noise covariance matrix for experimpatformed in darknes¥ is a
7x7 diagonal matrix with:
> V(2,2)=V(3,3)=V (4,4F \[,.= 0.00

cc ™
> V(5,5)=V(6,6)=V (7,7F V|, = 0.00
» V(,1)= 0 > assumed there is no measurement noise for thergu@t norm
computation

* Measurement noise covariance matrix for experimgetsormed in light:V is a
13x13 diagonal matrix (3 angular and 3 translafionsual information are added)
with:

> V(1,1)=V(2,2)=V (3,3F .= 0.00

CcC
> V(4,4)-- V(9,9)= Vision, = 0.00
> V(10,10)=V (11L,11FV (12,125 \,,, = 0.0(
» V(13,13)= C - assumed there is no measurement noise for thergu@t norm
computation

In order to integrate the state vector and ther@wwariance matriXP , the extended Kalman
filter model uses aorder Runge-Kutta integration scheme with a tite@-®f 0.01s, while
the unscented Kalman filter uses a Euler integnaiocheme with an identical integration
time-step. Both models update the estimated stt®rX(t) every 0.04 s.

4.2.6.2. Constant velocity rotation about an earthertical axis

In this simulation the subject is strapped int@tating chair and experience a rotation about
an Earth vertical axis at a constant angular vilociwo different experiments are
considered: 1) rotation of the subject in the dadund an Earth vertical axis; 2) the subject is
stationary and his surrounding rotates at a cohstagular velocity (circular vection). An
angular velocity of 60 °/s is chosen for the stiatiain.

When the subject experiences a yaw rotation, tfeenration is registered by the horizontal
semicircular canals. Several seconds after thenbhew of the rotational motion, the

horizontal semicircular canals signal a steadiuceed yaw rate, which finally drops below
subjective threshold. The yaw rate sensation beginthe original yaw rate and decays
exponentially (Fig. 4.26). The sensation of rotatieventually ceases. As the yaw rate
sensation decays over time, the associated pevoepfiyaw angle to achieve a complete
rotation lasts longer (Fig. 4.25). Note that theFERredicts a longer decay of yaw rate
sensation, and thus perception of yaw angle iefalsan that predicted by the UKF.
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Figure 4.25.Scheme of the yaw rotation in darkness experinigrg. subject is rotated at a constant angular
velocity @,. However, his perception of angular veloci@)Z decays to zero. If the rotation is sustained long
enough, the subject will feel motionless.
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Figure 4.26.Model response to a step in yaw angular velocitye $ubject is seated upright in the dark and is
rotated around an Earth vertical axis (a) Perceivangular velocity in darkness. (b) Perceived yawglann
darkness. Green and red curves are the resultsigeovby the EKF and UKF
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If the subject is stationary and placed inside tatmog drum so that his surrounding
environment rotates at a constant angular velothigymodel predicts a sustained sensation of
rotation in the opposite direction of the visualdi which tends toward a value close to the
input stimuli. This illusory sensation of rotatioeén commonly referred as “angular vection”.
The curve of perceived angular velocity shows twsiinct components associated with the
time course of the perceived self motion: a fasing component responsible for the quick
initial onset followed by a slow rising componehid. 4.27).

w, stimulus rotation of the drui

B — ! ! ! !
1} : : 5 4
> ?
Rl O SN NN N WU S N S 1
£y — UKF
g2 EKF
c S i
= 3 Al E :
LIUJ) 0T TR SURRIIOE. STSIRTONS SOOI SOOI SO &, circular vectipn
@®© : :
0 5 10 15 20 25 30 35 40

Figure 4.27.Model response to a step in yaw angular velocityhef surrounding environment. The subject is
stationary, eyes opened and placed in a rotatingrdrHis surrounding environment is rotated aroumdezarth
vertical axis at a constant angular velocity. Affew seconds, the subject feels that he is rotatiribe opposite
direction the visual stimulation. This illusionrisferred to as “circular vection”.
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4.2.6.3. Forward linear acceleration in darkness

In this experiment, the subject is sat on a sletlexperiences a forward linear acceleration in
darkness. The forward acceleration creates a badkwertial force that combines with
gravity to produce a resultant gravito-inertial toeaotated backward from the subject (Fig.
4.8). Hence, the subject experiences an illusiopiwwhing up. This illusion has been well
documented experimentally (Cohen et al. 1973, Geay®66). This illusion known as the
“somatogravic illusion” is a common illusion in awion that is believed to have caused a
large number of mishaps over the years. This dlusof pitching up excessively is
experienced by pilots when taking off into pooribiigy or even more extremely during a
catapult-assisted takeoff from an aircraft carrighnis false climb illusion demonstrates the
limitation of the otoliths in providing accuratefanmation to the brain, when there is
insufficient visual information to correct the rm&rmation.

Figures 4.28 shows the perceived linear acceleratiol the perceived pitch angle in response
to a step of linear acceleration of 2 m/s2. BothEKF and UKF predict a pitch angle of about
11.5 °. Note that results provided by the EKF asslstable than that predicted by the UKF.
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£ c !
-2 ;
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E D :
LCI,J) % 0.5¢
ol e R
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Figure 4.28 Model response to a step in forward linear accefieraof 2 m/s2. The subject is seated upright and
accelerated forward. (a) Perceived linear acceleyat (b) Perceived pitch angle. Green and red caraee the
results provided by the EKF and UKF

133



4.2.6.4. Vestibular “Coriolis” Cross-coupling

Head-movements in a rotating environment creatéstrting stimulus called the Coriolis
cross-coupled stimulus. These head movements outhefplane of rotation provoke
unexpected illusory sensations of motion and motgckness. This phenomenon is
commonly experienced in flight when a pilot in antlooks down to adjust some navigation
setting.

In order to simulate this phenomenon, the subgestated upright in a chair that is rotated in
yaw about an Earth vertical axis at a constant langtelocity of 100 °/s. At 60 seconds,
angular velocity perception of the simulated subjeas decayed to zero because the
horizontal canal has been in the plane of rotalbmy enough for its cupula to return to its
rest position and thus signals no rotation to trenb At this instantt€60 s), the simulated
subject makes a rolling head tilt of +20° towatdks tight shoulder (Fig. 4.29). The surprising
sensation is an illusion of angular motion andaibut a third axis of rotation which can be
highly nauseogenic (Guedry and Benson, 1972).

Actual orientation t=60s Perceivecorientatior
w,= +100°/s s +20° | @, constant

N

NN
N7
\

A \ Perceived pitc

; angle
Ye— « Y l S

X
Z Z

Figure 4.29.Description of the Coriolis illusion. The subjastrotated in darkness around an Earth vertical
axis. A time 60s, the subject makes a roll heddtdivards his right shoulder. The resulting illusios a
sensation of pitching up.

This illusion can be explained by considering theies acting on each semicircular canal.
When the head is rolled towards the right shouldlee, horizontal canals are suddenly
removed from the plane of chair rotation. Theretitwey experience a deceleration, leading to
cupula deflection in a direction opposite to thaioal sense, with the consequent decaying
sense of rotation about the head’s z-axis, which s horizontal. Meanwhile, the anterior
canal is suddenly exposed to a step change in angeilocity as it is rolled into the plane of
rotation. Its cupula is deflected and slowly retuta its rest position. Therefore, the subject
perceives a pitch angular velocity that decays loavzero (Fig. 4.30a).

In addition, a sensation of pitch up is predictgdtlire model. Note that the EKF predicts a
pitch up sensation of 17 ° while the UKF gives lugaof 23 ° (Fig. 4.31a).

As the perception of yaw angular velocity becomgatige at t=60 s, the simulated has the
perception of turning in the opposite directiontloé imposed rotation. This can be seen in
figure 4.31c in which the estimated yaw angle clearng direction.
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Figure 4.30.Simulation of vestibular Coriolis effect I. (a) Reived roll angular velocity. (b) Perceived yaw
angular velocity. Green and red curves are the ltssorovided by the EKF and UKF, respectively. Head is
rolled at t=60 s.
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Figure 4.31 Simulation of vestibular Coriolis effect Il. (a) feeived roll angle. (b) Perceived yaw angle. Green
and red curves are the results provided by the EKE UKF, respectively. Blue curve is for the actaagles.
The head is rolled at t=60 s.
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4.2.6.5. Pseudo-Coriolis illusion

Numerous studies mention that pitching or rollirgath movements during pure wide field of
optokinetic rotational stimulation about a vertiealis produce illusions of disorientation as
well as nausea (Dichgans et al. 1973, Bles, 1988)sbn et al. 1999). This illusion is referred
to as the pseudo-Coriolis illusion.

In this simulation, the subject is stationary aedted upright inside a rotating drum which
rotates around a vertical axis at a constant angudipcity of 100 °/s. When the subject
experiences an illusion of self-motion in the opfdirection of the rotation of the drum, he
makes a head tilt of 20 ° towards his right shoulgfeg. 4.32). Note that the stimulation is
chosen to correspond to the previous Coriolis itlissimulation. In other words, while the
subject was rotated in a positive direction relatie the world coordinate frame in the case of
Coriolis, the drum (visual scene) is here rotatedinegative direction so that the subject
experiences an illusion of self-motion in the safimection of the physical stimulation applied
in the Coriolis experiment.

Actual orientation t=60s Perceive( orientatior

Figure 4.32.Description of the pseudo-Coriolis illusion. Thebgct is stationary and placed inside a rotating
drum. The drum is rotated in a negative directicglative to the world coordinate frame so the subjec
experiences a self-motion illusion in the same diiom of the physical stimulation used previousiythe
Coriolis experiment. At time 60 s, the subject rsakeoll head tilt towards his right shoulder. Evédrough the
stimulation is mainly visual, the subject experienche illusion of pitching down. Note that thisislon is
opposite to the direction of the Coriolis illusion.

Both the EKF and UKF predict a transient pitch-igmsation (Fig. 4.33c). Note that the
direction of the illusory pitch sensation is oppedio the direction of the classic Coriolis
illusion. The UKF predicts a maximum pitch angle -@fL..5 ° while the EKF predicts a
smaller pitch angle of -5.6 °. Note also that pgeGariolis illusion is not induced from a
cross-coupling of the semicircular canals. As ndigdNewman (2009), the pseudo-Coriolis
illusion is a result of fundamentally different melogical mechanism which could be
described as “visual velocity storage”.

Coriolis and pseudo-Coriolis motion paradigms aoengletely different. In the Coriolis

simulation, the subject is physically rotated, dahds his horizontal canals provide angular
information to the brain. On the contrary, duringepdo-Coriolis stimulation the subject is
stationary, and his illusion of self-motion is puogd by a rotating visual field. Therefore, his
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semicircular canals do not provide any informatdrangular velocity to the central nervous
system.

In the Coriolis stimulation, when the head is rdlewvay from the gravitational vertical, the
horizontal semicircular canal experiences a suddeceleration, and the vertical canals
experience a corresponding acceleration. As notedGhedry and Benson (1978), the
resultant angular velocity componen(sby,c?)z) combine to generate the pitch-down

sensation. However, in the pseudo-Coriolis stimoitatwhen the head rolled away from the
Earth vertical axis, the horizontal canal does ragjister any inertial deceleration as the
subject is stationary. The model suggests that utiseial system does not respond
instantaneously to the change in relative oriemtatf the visual field. Instead, as the head is
rolled towards the shoulder, it seems that the alimystem stores the angular velocity
estimate with respect to the head reference franteratates this vector in the new 20 °
orientation. As a consequence, the model predigisca-up illusion along with a continued
sensation of rotational motion.
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Figure 4.33.Simulation of pseudo-Coriolis illusion. (a) Peroeivz-head axis angular velocity. (b) Perceived y-

head axis angular velocity. (c) Perceived and atpitch angle. Green and red curves are the respitts/ided
by the EKF and UKF, respectively.
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In order to make sure that the illusory pitch igpagite to the classic Coriolis response, a
simple pilot study was conducted in the MIT Man ‘& Lab (MVL). Four subjects (ages 23
to 65) with no history of vestibular abnormality iwaised. Each subject was seated upright in
a stationary chair and positioned so that theidhead upper torso were encased in a rotating
optokinetic drum 50 cm in diameter. The drum wattedl counter-clockwise at 36 °/s.
Subjects were instructed to look straight ahead \aark told to make an approximate 20
degree left ear down (LED) roll head tilt as so@ntlaey experienced a sensation of self-
motion around an Earth vertical axis. Then, theyewssked to report the direction (pitch-up /
pitch-down) of any pitching sensation. The experitakprocedure was then repeated for a
right ear down (RED) roll tilt.

All four subjects reported a pitch up sensationtlfi@ head tilt towards the right shoulder and
a pitch down illusion for the head tilt towards thght shoulder. These responses match the
predictions of both the EKF and UKF, and are alsoscstent with the Newman’s Observer
model (2009). These results support the fact thatdirection of illusory pitch for the
pseudo-Coriolis illusion is indeed opposite to ¢hessic Coriolis response.

4.2.7 Sensitivity study

The results of the various simulations dependsherparameters assumed for the bandwidths
of head angular velocity and head linear accelmmatind the process and measurement noise
covariance matrices. Therefore we propose a semstudy in order to investigate the impact
of these parameters on the predicted perception®rigntation, velocity, and linear
acceleration. All the following results are prouidey the UKF model. The default parameters
chosen for each simulation arg;, =25, 4 =1, Q,=609, Q, =1, V,=V, =0.001

4.2.7.1. Yaw angular velocity in darkness

The simulated subject is strapped into a chair ghabtated at a constant angular velocity of
60 deg/s. The experiment is performed in darkness.

» Influence of the bandwidth in angular velocijfy,

Figure 4.34 show the influence of the expectedueagy bandwidth for head angular velocity
of the CNS. It turns out that the lower is the bauidlth, the longer is the perception of angular
velocity. For instance, the model predicts that ibandwidth of 40 rad/s is assumed the
perception of angular velocity decays to zero iowt80 s, whereas a bandwidth of 20 rad/s
yield a perception of angular velocity that ladiss4
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Figure 4.34.Influence of the bandwidth in angular velocity be estimated yaw angular velocity in darkness.

4.2.7.2. Forward linear acceleration in darkness

* Influence of the bandwidth in head linear acceiemat

Figure 4.35 shows the responses predicted by thE K different bandwidths in linear
acceleration. It can be seen that the higher ibtredwidth 5, , the shorter is the perception of
linear acceleration and the smaller is the mageitoidthe perceived acceleration. Note that
considering a valug = 0.3 the model predicts a constant perception of lirseemeleration
close to 0.5 m/s2 in response to a stimulus of &.nWhis result is inconsistent with the
dynamics of the otolith organs as they provide ssgy signal that decays toward zero in

response to a constant linear acceleration. Theuasvalue of 0.5 m/s2 is presumably due to
the integration method which constitutes in thespne case a limit of the model.

Regarding the estimated pitch angle, the onseh@fpitch-up illusion is much faster for a
high value of bandwidth (Fig. 4.35b). For instanéea bandwidth 5 =5 is considered the

estimated pitch angle reaches a maximum valueontah s, whereas a bandwidth of 1 gives
a maximum value of perceived pitch angle reacheabout 20s.
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Figure 4.35.Influence of the bandwidth in linear acceleration the estimated linear acceleration (a) and
perceived pitch angle (b) in darkness.
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» Influence of the process noise in head linear acatbn

Figure 4.36 shows the responses predicted by th& @@ different linear acceleration
process noises. The model predicts that the smialldre process nois#e shorter is the
perception of linear acceleration and the smalkerthe magnitude of the perceived
acceleration. Once again, note that consideringgl talue for linear acceleration process
noise the model predicts a constant perceptionnefat acceleration close to 0.5 m/s2 in
response to a stimulus of 2 m/s2.

As already observed in the case of a high valubasfdwidth, the onset of the pitch-up
illusion is here much faster for a small value(f
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Figure 4.36.Influence of the linear acceleration process naisethe estimated linear acceleration (a) and
perceived pitch angle (b) in response to a forwacdeleration in darkness.
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4.2.7.3. Vestibular Coriolis illusion

The subject experiences a rotation around an Eartical axis at a constant angular velocity
of 100 deg/s in darkness. At time 60 s, while rotatthe subject makes a head roll tilt toward
his right shoulder. An illusion of pitch-up is pretd by the model (Fig. 4.34b).

The impact of the bandwidtf$,, on the perceived angular velocidy, is identical as the yaw

angular velocity in darkness experiment. The maaeldicts a longer sensation of yaw
angular velocity for smaller values of bandwidtig(F.37a).

For small values of bandwidth, the estimated p#ogle provided by the model is higher and
the sensation of tilt lasts longer than that predidor large bandwidths. For instance, if a
bandwidth of 10 rad/s is considered the UKF mquedlicts a tilt illusion of about 28.6 ° that

lasts 80 s, whereas a pitch-up angle of about 1. produced by considering a bandwidth of
40 rad/s (Fig. 4.37b).
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Figure 4.37.Influence of bandwidth in head angular velocity the estimated yaw angular velocity (a) and
perceived pitch angle (b) in response to a Coristimulation in darkness.
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Chapter 5. Scale model of the semicircular canals

Before writing the final conclusion of the presehtbesis, a detailed study is presented that
establishes the design features for the construafoa physical model of the semicircular
canals. To our knowledge this study is the first ttonsiders dynamic similitude between the
biological sensors and the scale model and thajesiig potential and adequate materials for
manufacturing of the mock-up.

The objective of this part is to construct a phaghyc similar augmented model of one
semicircular canal for both quantitative and qaéile testing. Price, construction simplicity
and material availability have been determinanialdes during this project. The project
requirements are listed below:

» Size of the model large enough to be easily obsemmed recorded during the
experiments. This restraint could be translateda aminimum scale factor of 20,
considering the small dimensions of the vestibsjamtem (e.g. 0.16 mm cross-section
radius)

» Transparence of the fluid representing the endolyrdpe to the visual experiments
* Low Manufacturing complexity

» Cupula Material Young’'s modulus non inferioriio=  @@GPa (silicone rubber)

« Maximum angular velocity applied to the scale mddaelted by, =250° /s, due
to equipment restraints

5.1. Similitude study

Construction of a scale model must be accompaniedrb analysis to determine what
conditions it is tested under. While the geometayre simply scaled, other parameters such
as pressure, velocity and type of fluid may beratte Similitude is achieved when testing
conditions are created such that the results gkcaple to real design. The following criteria
are required to achieve similitude:

* Geometric similarity: the model is the same shaptha application, usually scaled

» Kinematic similarity: fluid flow of both the modelnd real application must undergo
similar time rates of change motions.

In order to satisfy the above conditions and tlmgnsure dynamic similitude between the
scale model and the application, we perform a dsweal analysis to express the system
with dimensionless parameters. The values of tdeésensionless parameters are held to be
the same for both the scale model and the realcgenar canal.

Given the fundamental units! (mass),L (length), andT (time), any physical parameters
G may be written as:
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G=M21ATS (3.27)
where the exponents are rational numbers.

The fluid velocity y within the canal is a function of:

e fluid density p
» fluid dynamic viscosityu

* cross-section radius of the duct
» canal length

e cupula Young's modulug

* angular velocity of the heag.

Therefore, each of these parameters has the foltpdimension:

Fluid density M Canal length G,=l=L

Gl =p= F 4
Fluid dynamic __ M |CupulaYoung'smodulus . _ M
viscosity G, =u LT G =E= LT2
Cross-section | G, =r=L Pulsation of head angulatrG _ 1
radius acceleration 6 = W=

Table 5.1.Dimension of the physical parameters that influeniteid flow within a semicircular canal in terms
of fundamental units.

The fluid velocity can be written as:
= (o, 1,1 E @)= M yTZ=$ (3.28)
so thatx=1, y=0, z=-1.

According toBuckingham Ptheorem (1914), which provides a method for conmgusets of
dimensionless parameters from given variables, y&iphl variableR can be expressed by
the following equation:

P=G"GJz--G" = EMYT (3.29)

where theG, aren physical variables, and the exponeatsx y, and z are rational numbers.
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Equation (3.29) can be expressed in matrix formtingd to the fundamental units as:

G G, G,
L a 2 a,
by b, b,
T ¢ c, ,

Table 5.2.Matrix form of the Buckingham Pi theorem.

And a; are the solutions of the following linear system:

aa;tad,t--+ 8,0, = X
bay+ba,+--+ha,=y

CaL+ Clp+ e+ G, = Z

In this particular case, we have:

G=p |G=u | G=r |G=l |G Gs = P
L |-3 -1 1 1 -1 0 1
M |1 1 0 0 1 0
T |0 -1 0 0 -2 -1 -1

(3.30)

Table 5.3.Matrix form of the Buckingham Pi theorem appliedto similitude problem.
The correspondent linear system is:

a+ta,+as;=0

So that

Finally,
acicegieticges

S/:ﬁ(l—j% pr " prew)™
prir) \ e U
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> ORCECN

It is therefore required to keep constant the filhg dimensionless parameters so as to
ensure dynamic similitude between the scale mautkklze semicircular canal:

(I—j which is a geometric parameter
r

Pr2e
/12
. M] which is the Reynolds number

U
Pr?2w

7,
in relation to viscous effects (1955). This dimeméess number is also equal to the
product of the well known Reynolds and Strouhal bham In the present case, this
number is small (less than 1) even for high fregyeof head acceleration pulsation
(e.g. =10 Hz). This means that in any case theguieacy of pulsation will be
sufficiently low so that a parabolic velocity prefiwill have time to develop during
each cycle, and the flow will be given to a googragimation by Poiseuille’s law.

j which relates fluid properties with the Young’'sauotus of the cupula

j which is the Womersley number that representptheatile flow frequency

In the present case, we consider a simple step$tant angular velocity rather than a
sinusoidal rotation that will be applied to the Iscanodel. Therefore, the first three
dimensionless parameters are taken into considar&ir the choice of potential materials
suitable for the manufacturing of the scale model.

r

This geometrical parameter can be easily maintaiyeaidjusting the correct canal length to a
chosen cross-section radius.

2
» Second dimensionless numb%@}
7,

The main restraint of the scale model resides inntaaing the second dimensionless
number, because it requires an extremely Young'slulus for the cupula material. By
considering a scale factd¥ the new cross-section radius is given by=Y¥r . Then, for
conserving the second dimensionless parametegyitlra written:

» First dimensionless numbe(r:l—j

r2E r'E"
25
From which
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1\ 2
E'=(Lj [ﬁ.J E=kE (3.33)
Au) \ p

whereE', u', p' are the parameters of the scale model.

The main limitation of the problem is th&t is considerably small, namely close to 5 Pa. For
this reason, the coefficiet has to be large as much as possible so that ajuaidematerial
can be found such thd'> E'_;, =0.005GPa. In a practical approach, the density and

the scale factol play a minor role in influencing in comparison with the potential impact
the viscosity may have. That is, fluids having scesity around 10times higher then the
endolymph can be found and retained for the scaldem

» Third dimensionless parametd&e= (Mj
U

As long asRe= Re, by choosing a large enough value for the visgogit, the velocity of
the fluid is relatively larger in the scale mod&periment when all other variables are kept
constant. In other words, the simulation of a chdsead rotation requires an even large scale
model rotation.

5.2. Choice of materials

* Endolymph: Polidimethylsiloxane Silicone Oil

For modeling the endolymph, an initial qualitatisteidy with three different high viscosity
fluids has been conducted. Results of this stuéypaesented in table 5.4 for a maximum
scale model rotation of 250 °/s. Red cells in thst Icolumn indicate that the criterion
E'>E',, Is satisfied.

The polydimethylsiloxane group has been chosen gnttom analyzed materials to represent
the endolymph, inasmuch as it stands for a highugina@upula elasticity modulus and as it
provides experiments with higher rotational rategually, the commercial easiness to find it
renders it an attractive choice. The fluid presestteer interesting features such as: clear,
colorless, fluid, extremely high kinematic viscaest covering a wide range, little viscosity
change with temperature. It can also be pointedtlatt the mentioned fluid covers a wide
range of possible kinematic viscosities (from lésan 0.65 till 20 million cSt), while
maintaining practically constant density (978 k§)/m
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Fluid Dynamic Density | Scale factor| Angular Young’s modulus
viscosity (Pa.s)| (kg/m3) Velocity (°/s) E (GPa)
Glycerol 1.42 1260 20 75.4 5e-5
40 301.7 le-5
200 333 20 1.1
40 4.3
Peanut 60 96
Butter 80 17.1
100 26.6
78.3 979 20 1.1
40 4.3
60 9.6
80 17
100 26.6
Silicone 88.0 978 20 0.9
Polydimethylsiloxane 40 3.8
60 8.5
80 15.1
100 23.6
107.6 978 20 0.8
40 3.1
60 7.0
80 12.4
100 19.3

Table 5.4.Required experimental values for cupula materialiivgds modulus and maximum simulated head
angular velocity.

* Cupula: silicone rubber

Regarding to the cupula, low elasticity modulus iceihte rubbers with
E'=E',, =0.005GPa have been considered. A convenient material is“8per soft
silicone rubber Ecoflex 10”"Note that by choosing the material’s lowest gasslyoung’s
modulus, higher viscosity can be utilized, minimgithe angular velocity that will be applied
to the scale model.

5.3. Results

In order to maintain the dimensionless numberstandspect the constraint on the minimum
Young's modulus value, an Excel file was elaboratéti a Visual Basic macro for a discrete
set of scale factors as well as different fluidcesities, and the Goal Seek optimization
function was used. Results are shown in table 5.5.

It turns out that the maximum scale factdr=100 is the most convenient, allowing higher
simulated head rotations. The corresponding fluidinelatic viscosity is
v'=60000cSt= 0.06m2/s. For this task of representing the endolymph, weppse the

polydimethylsiloxane Wacker AK 60,000 cSt Silicdn O
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Angular velocity applied to the scale modek 250° /s
Simulated head angular velocity=25° /s

Fluid kinematic viscosity (m2/s) Scale factor  Yoismmodulus of the cupula (GPa)

0.01 30 0.0009
0.03 60 0.0024
0.05 80

0.07 90

0.08 100

Angular velocity applied to the scale modek 250° /s
Simulated head angular velocity=30° /s

Fluid kinematic viscosity (m?/s) Scale factor  Yoismmodulus of the cupula (GPa)

0.01 30 0.0006
0.03 60 0.0024
0.05 80 0.0043

0.06 90
0.07 100

Angular velocity applied to the scale moadek 250° /s
Simulated head angular velocity=35° /s

Fluid kinematic viscosity (m?/s) Scale factor  Yoisxgmodulus of the cupula (GPa)

0.01 30 0.0004
0.03 70 0.0024
0.05 90 0.0040

006 100 oSO

Table 5.5. Quantitative estimation of possible configuratiotitsat keep constant all the dimensionless

parameters. Red cells indicate that the criteriri> E',,, = 0.005 GPa has been met.
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Chapter 6. Conclusion and future works
6.1. Overall conclusion

The thesis presents models of the human vestitaylstiem, and more particularly of the
semicircular canals, as well as models for humatiaporientation perception.

* In Chapter 2, the system endolymph / cupula has beedeled using finite-element
simulations. In order to estimate the elastic pridpe of the human semicircular canal cupula,
the latter has been modeled assuming it was atlaahmund its periphery, and deformed
according to thick and thin membrane theory. A ehdenensional finite-element model of
the cupula has also been developed. Comparistrthétfinite-element model has confirmed
that the thin-membrane model is not appropriateabge the thickness of the cupula has the
same order of magnitude as the radius of the cu@dsed on thick bending membrane
theory, a relation between the pressure-volumeficeit K and the Young's modulus of the
cupula has been derived. A value flar has been computed based on the cupula radius and
thickness and on the various estimates of the preas®lume displacement coefficiekt or
the cupula long time constant of the cupula. Weehestimated that the Young’s modulus of
the cupula is close to 5.4 Pa. It is notable thet value depends not only on the geometric
dimensions of the cupula but also on the long woestant that we assumed. The shorter the
long time constant, the larger the theoretical jotexh for the cupula material’'s Young's
modulus. However, our estimate is the same ordenagnitude as a previous value derived
by Groen et al. (1952), with values derived for thike (Ten Kate, 1969), and with the
Young’'s modulus of the cupula of the lateral-limgans of the fish (Mc Henry et al., 2007).

Using finite-element models, we have also studiea dther shapes for the cupula: one with
thick sides and a thin vertical center, the othendp thick along its entire periphery. We have
investigated their influence on the transverseldcgment field of the cupula. It turns out that
the cupula with thick sides along its entire peeighbends less as its stiffness is larger than
the second model, and that the cupula having a \bntical center exhibits a vertical
asymmetrical transverse displacement. In that daseJower part of the cupula, precisely
where the hair cilia are located, is the most dédié. Since the mechanical stimulus of the
stereocilia is determined by cupular shear stiaén dccurs near the crista, we have also used
a finite-element model of the cupula so as to stimdypredicted shear strain right above the
sensory epithelium. It turns out that first, thexmaum shear strain occurs near the surface of
the crista where the cilia are located, and, sectrat the shear strain first appears at the
center of the crista and then spread toward thipleny of the cupula and down the sides of
the crista.

According to numerous authors (lgarashi and Alfdr@69; Dohlman, 1971; Lim, 1971) the
cupula is in reality not a homogenous structureaditionally it is thought to contain
endolymph-filled vertical channels although this hacently disputed. By modeling a section
of cupula material having empty vertical channalsifponed on a hexagonal matrix, we have
shown that in the case of a static transcupulasgoire the stiffness of the cupula is strongly
sensitive to the diameter of the channels. In paldr 10 um diameter channels have a small
effect on the transverse displacement of the cuphite 30 pm channels tubes increases the
displacement by 28.6 %.
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Then we have investigated the fluid-structural dgits that takes place in the semicircular
canals of the vestibular system using the Comsdtiphysics software. The endolymph has
been modeled as an incompressible Newtonian flundewthe cupula was considered as an
elastic solid. The fluid-structure interaction pierin has been treated with a strong coupling
between the fluid flow and structural displacemefsst, a two-dimensional as well as a
three-dimensional model of a single semicirculanatahave been considered. Results
provided by both models were in good agreement midvious analytical studies as regard
cupula displacement and fluid flow velocity fieM.e have shown that:

> in about 0.04 s fluid flow in the slender part bktsemicircular canal can be
approximated by a classic Poiseuille flow

» for a step change in head angular velocity cupidalacement begins near the
sensory epithelium and then spreads towards itecen

» displacement of the cupula through time is in gaggdeement with the classic
torsion-pendulum model, i.e. described by two exgmial terms

In addition, we have considered a head centereal eanwell as a canal located 30 mm away
from an Earth vertical axis and have shown thal Imebddels predict similar results.

Second, we have developed a three-dimensionakfeld@ment model of the entire set of
semicircular canals and cupulae. The associatechgtep has been constructed using a CAD
software (CATIA V5) which has then been importedoirthe finite-element Comsol
Multiphysics software. Unfortunately, during themsilation convergence problems due to
inverted mesh were encountered. This kind of problsually occurs when the mesh is too
coarse. In the present case, a finer mesh wasosstljpe as we were limited by the available
RAM (8Go) which in turns limits the size of the neddTo explain more clearly, the size of
the model is conditioned by the size of the mesh,the number of degrees of freedom. The
finer is the mesh, the larger are the size of tleelehand the required RAM. Even if the
model has been meshed as fine as possible accaodihg available RAM, it was not enough
fine for the computation to converge. However tiailable solutions provided by the model
at the beginning of the simulation were promisisgtlzey were in good agreement with the
previous 2D and 3D models.

* In chapter 3, a virtual reality model that simusathe rotating chair test - one of the
usual procedures carried out during a vestibulagrbsis — has been developed. This model
also offers the possibility to simulate severalcheatations while the simulated subject is
rotated around an Earth vertical axis and to ingast in real time the state of each sensor. In
addition, a Graphical User Interface has been dgeel and provides users with complete
control over all model parameters and data proogs$tegarding data processing, the user
has the choice between plotting the displacemenecof each sensor, visualizing a dynamic
three-dimensional animation of the SCC, and viguad a dynamic virtual scene of the
experiment. Both the 3-D animation and the virtiggllity environment are very convenient
as the user can observe what theoretically hapgtethe level of each sensor during any head
rotation. This model also provides a better undeding of different kinds of erroneous
motion sensations which may appear during combiatdion motions.

The core of this virtual reality model computeseal time equations of motion in earth, chair

and head coordinate system, and then project anguatzleration vectors into a reference
frame attached to the semicircular canals. Thentai®mn of the axes of this coordinate
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system has been defined according to a recent staghd on 3-D multiplanar reconstructions
of computerized tomography scans (Della Santira.e2005). The resulting non-orthogonal
system underlines the fact that all the canalstmeulated for any rotation.

In addition, a similitude study has also been psagoin order to build a large scale model of
the semicircular canals. It was found that four elisionless parameters define the design
features of the mockup, by considering a step omanghead angular velocity, keeping
constant the dimensionless parameters, and takingaccount a minimum Young’'s modulus
of the cupula equal to 0.005 GPa. Thus we haverdeted that a scale factok=100 is the
most convenient, allowing higher simulated headtrohs. We have also looked for potential
materials that could be used to build the scaleahdd/e have proposed to use a highly
viscous fluid for the endolymph such as thalydimethylsiloxane Wacker AK 60,000 cSt
Silicon Oil, and to use a super soft silicone rubber for tipufa, e.g. ECOFLEX 00-10.

* Chapter 4 has been devoted to models for humarakpaentation perception. First,
we have investigated the Observer and Kalman fittedel families and have shown why
these two approaches are dynamically equivalemh fam input-output blackbox. We have
compared the Merfeld Observer model with the Bdfalman filter model for a simple one-
dimensional case, i.e. a subject who experienggsvarotation around an Earth vertical axis
in dark (angular velocity storage), and for a thdemensional case, i.e. a subject who
experiences a forward acceleration in dark (sommatag illusion). Both models are
structurally different in the sense that:

1. Merfeld Observer model utilizes only four ad hocgmaeters while the Borah Kalman
filter model postulate 16 weighting factors

2. In Merfeld Observer model, residuals simply addh® output, whereas in Borah KF
model the residuals determine the rate of changeoafel outputs

3. Merfeld Observer model work for large head tilterfinear model), whereas Borah
KF model is linearized near the upright position

4. Merfeld considered faster dynamics for the otoliths

5. Merfeld considered only vestibular cues while Bortook into consideration
vestibular as well as visual cues.

However, despite all these differences, we havevsttbat both models predict similar results
for perception of head angular velocity in the daskwell as perception of linear acceleration
and pitch angle in response to a forward lineaelacation in darkness.

We have also discussed the presence of low passsfialso called shaping filters, used to
limit the band of the process noises. First, thdgss constitute a mathematical device to
augment the size of the state vector by addingnooee state that correspond either to head
angular velocity or head linear acceleration. Sdcahese shaping filters control the
magnitude of the process noise covariance. Thielhave argued that the consideration of
these filters means that the brain expects headlangelocities and linear acceleration in a
certain range of frequencies. In other words, tHese pass filters somehow reflect past
motion history, i.e. kind of motion our head has@mtered in the past and that the central
nervous system might expect. Unlike Borah who aered bandwidths and noise
covariances as free parameters of his model, we hayued that these parameters can be
ecologically justified based on human movementtaneshold characteristics.
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Second, in order to extend Borah steady state Kalfiiter model to a general time-
continuous three-dimensional model that works foy &ead attitude, we have applied
nonlinear estimation techniques to the problem whan spatial orientation perception. In
particular, two models based on the extended amditiscented Kalman filters respectively,
have been developed. The first model was basedomtellet’'s 1990 extended Kalman filter
model. Several modifications of Pommellet's modealvdn been performed such as the
consideration of different dynamics for the otoldgigans, the use of fictitious process noise
for the quaternion in order to reduce numericatahbsities of the filter, and correction of
some implementation errors as regard measuremes#.nkhe second model was developed
according to the hybrid version of the unscentedm&a filter. This novel technique is
fundamentally different from the EKF in the senlattthe EKF approximates the nonlinear
functions of the state space model, whereas the pf§pagates a set of sigma points through
the nonlinear functions, and then estimates thenraed covariance of the states based on the
transformed sigma points.

As the central nervous system is modeled as araomis system, the differential equations
for the estimated state vector and the error covariance matRx have been integrated
between each measurement time step. For the EKIRhforder Runge-Kutta integration has
been used to avoid numerical instabilities, whemaguler integration scheme appeared to
be sufficient in the UKF to obtain accurate resulise direct consequence was a computation
time about 2-3 times faster in favor of the UKF.

Both models were successfully implemented and tsgdedict the responses to a number of
vestibular, visual and visual-vestibular motiongzhgms such as the somatogravic illusion,
angular vection, vestibular Coriolis illusion ansepdo-Coriolis illusion. However, according
to the results provided by both filters, it turrmd that the UKF yields more accurate and less
oscillatory responses than the EKF, for the sarhefdaitial conditions and noise parameters.
In addition, a sensitive study has been proposedssto investigate the influence of the
bandwidths and process noise covariance on thécpedgerceptions of orientation, velocity,
and acceleration for various motion paradigms. Resi this study are summarized in the
table below:

High values off3,, High values off3 High values ofQ

Yaw rotation in Shorter perception of

darkness head angular velocity
Forward linear Shorter perception andLonger perception and
acceleration in lower magnitude of headhigher magnitude of head
darkness N linear acceleration linear acceleration

Quicker illusion of tilt Slower illusion of tilt
Vestibular Shorter perception of

Coriolis illusion head angular velocity
Smaller and shorter
perception of pitch
angle

Table 6.1.Summary of the sensitivity study of some of thamaters of the UKF model.
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It has been shown that a high value of bandwidtlarajular velocity tends to shorten the
perception of head angular velocity. In additionthe case of the vestibular Coriolis illusion,
the perception of pitch angle becomes smaller hadhssociated sensation is also shortened.
In the case of a forward acceleration in darknassmilar phenomenon is observed for a high
value of bandwidth of linear acceleration. The pption of linear acceleration is shortened
and the associated magnitude is diminished. Thiglwes a fast illusion of tilt. The inverse
effect is obtained if a high magnitude of linearceeration process noise covariance is
considered. Therefore, we can see that the behaitbe developed model really depends on
the assumed parameters for the bandwidths and coisgiances. It is the reason why these
parameters must be estimated as accurate as godsildhapter four, we have tempted to
approximate these parameters based on ecologisaimasions. For instance, we have
determined that a bandwidth of angular velocity26frad/s should reflect the spectrum of
yaw head movements normally made in daily life

6.2. Perspectives

* Regarding the proposed models of the human semiliaircanal cupula, the latter has
been described in terms of its pressure-volumdielasefficientK. However, the cupula is
composed of two components: filamentous materialot@ns) and an amorphous
mucopolysaccharide substance (Hillman et al., 1979 kind of structure, which resembles
specific biopolymers (biological polysaccharides) loydrogels, is much more like a
viscoelastic material. Therefore, viscoelasticitpdals, such as Maxell or Kelvin-Voigt
model, should be considered in future studies. @hmasdels would help investigators to
answer two questions: Do the viscoelastic propedfehe cupula have a significant influence
on the dynamic response of the system cupula/engily Does the cupula behave more
stiffly for fast deflections?

Furthermore, another limitation of the presenteddwtis that the cupula was assumed
homogeneous because of the lack of knowledge afigtshanical properties. In order to build
a more detailed and accurate model based on tnewial examination of Silver et al. (1998),
future experiments to determine, or at least esénrthe mechanical properties of each region
of the cupula may be ultimately needed.

Concerning the final three-dimensional fluid-sttuel finite-element model of the
semicircular canals, we have obtained promisinglt®sHowever a finer mesh needs to be
considered in order to ensure the convergenceeofitimulation. Therefore, the size of the
model - in terms of degrees of freedom — will irge and the simulations will have to be run
on a supercomputer. Based on our 3-D simulatioeshave estimated that at least 10-12 Go
of RAM are required to avoid any swap between tagnrmemory and the disk.

In the future, this model could be used to studfeddnt kind of vestibular disorders such as
the Méniére’s disease which is caused by an inere@aspressure and volume of the
endolymph.

* In case of the developed virtual reality model,nitajor limitation is that it does not
entirely represent the real diagnosis procedurere@tly, the way to explore the vestibular
component of the inner ear is to record the vekitbgular-reflex (VOR) — a reflexive eye
movement due to the stimulation of the vestibulamsers - using different experiments
including the rotary chair test. By examining tlusular reflex relatively to the imposed
rotational movements the specialists are able tectlany vestibular deficiencies. A potential
future application of this model could be its useinly such diagnosis in order to have a
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comparison between clinical results and those efrttodel. To achieve this goal this first
version has to be enhanced:

1) by taking into account the link between the Nesar sensors and the vestibule-
ocular-reflex, i.e. the transfer functions betwéledse two components (Note that vestibule-
ocular reflex models exist in the literature, &gpan, 1995)

2) by incorporating eye movements in the virtuanee

* Regarding models for human spatial orientation gg@ron, both the presented EKF
and UKF models assume Gaussian noises. While gsbigi@ption may be valid in many cases,
it is not always justified (Faisal et al., 2008hefFefore, a prospect would be to apply the
Particle Filter technique to the three-dimensiomaldel here presented. The particle filter,
which was invented to numerically implement the &agn estimator is a completely
nonlinear estimator that does not assume any spéa#ussian noise. The patrticle filter has
some similarities with the UKF in that it transfagna set of points via known nonlinear
eguations and combines the results to estimatséaa and covariance of the state. However,
in the particle filter the points are chosen ranfousing Monte Carlo simulations, whereas
in the UKF the points are chosen on the basis gfpexific algorithm. Because of this, the
number of points used in a particle filter gengrakeds to be much greater than the number
of points generated by the UKF. On the other hanel,estimation error in a particle filter
does converge to zero as the number of particlad (@nce the computational effort)
approaches infinity, which is not the case for th&-. Therefore, although the Kalman filter
can be used in nonlinear systems for state esomdtie particle filter may give better results
at the price of additional computational effort.féture study regarding the application of
particle filtering to a 3-D model of human spat@ientation should help to answer the
following questions: Does particle filtering impmthe performance of the three-dimensional
UKF model for human spatial orientation estimati@dées the improved performance worth
the increased computational effort? How many pladishould we consider to get at least the
same accuracy as the UKF? In that case, is the watngm time comparable with that of the
UKF? Does the unscented Kalman filter provides adgdalance between the low
computational effort of the Kalman filter and thigthperformance of the particle filter?

However, a well known and fundamental problem irtipie filters is “particle collapse” or
“particle degenerency” as a result of Bayes'rulecéntly, F. Daum and J. Huang have solved
this problem by developing a new filter that impknts Bayes’ rule using particle flow rather
than with a pointwise multiplication of two functis. This new nonlinear filter has been
shown to be vastly superior to the classic PF hadEKF as the computational complexity of
this filter is many orders of magnitude less thiae PF with optimal estimation accuracy for
problems with dimension greater than 4. Therefargther prospect of this study would be
to apply the nonlinear particle flow filter to thieree-dimensional problem of human spatial
orientation which would provide more accurate ressas well as faster computation time than
any other nonlinear estimation techniques.
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Appendix 1:
Numerical model for the resolution of the fluid flow
within a single canal

At the beginning of our work, we were interestedtadying fluid dynamics that takes place
within each semicircular of the inner ear so asnderstand the dynamic behavior of the
system cupula/endolymph. Therefore we developednaenical tool that solves, for different
head motions, the governing equations of the filoav in the slender duct of the lateral
semicircular canal, so that motions and volume ldgnents of the cupula can be
approximated. This numerical tool based on a ChHebyspectral collocation method has
been validated according to an analytical solutosra specific head motion.

This work is not included in the core of this repas it does not really make any significant
contribution. Indeed, modeling of the system enohgii/cupula based on the governing
equations of fluid flow has already been invesgdaby many researchers (Van Buskirk,
1977; Ten Kate, 1969; Oman et al., 1987; Damiarad.£1996). However, we have chosen to
add this work as an appendix as it constitutesefulsumerical tool implemented in Matlab
which provides a fast and accurate solution forflilne flow. In addition different profiles of
head motion can be quickly studied.

1. Modeling

Spectral methods are well adapted for the reseiutbd unstationnary problems in

incompressible fluid mechanics, in a simple geoyn@rtoroidal duct in the present study).
This numerical approach provides an accurate astdstdution for the fluid flow, and permits
to study the global behavior of the system. Morgipaarly, by integrating the volume flow

rate, the cupula volume displacement can be apmeted for different head motions.

1.1.Theoretical equation of the movement

The developed model results from the Navier-Stekpstions applied to the endolymph, and
takes into account the cupula as an elastic digpmrdhe fluid has a constant denspyand

a kinematic viscosity . Several assumptions are considered:

- The horizontal canal is subjected to rotationabvements around an axis ¥
perpendicular to its plane,

- The membranous wall is rigid,

- Endolymph is modeled as an incompressible Newtofiuid, the flow is laminar,

- Inertia of the cupula is negligible with respaxthe fluid inertia,

- If (U,V,W) are the velocity vector coordinates of a fluid tige in a curvilinear

coordinates system, it is assumed that the compeneh and V are null and
W(r,6,z,t)=W(r,1),

- A pressure-volume coefficierk is assumed. This coefficient, definedkas AP/AV ,
characterized the volume displacement of the cupWawhen the latter experiences a
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transcupular pressurdP . Different relations and values for this parametave been
suggested (Njeugna et al., 1986; Oman et al.,, 1987Yhe present case, the value of
13GPa/n is retained (Rabbitt et al., 2004). In additidme toefficientK is related to a long
time constantr, , which governs the return of the cupula to itst nessition, following

removal of any forcing. The relation between thgseameters is discussed later.

By applying the Navier-Stokes equations to theesysand taking into account the presence
of the cupula, the volume flow rate between theadhinstant and the currentis given by:

AV (t) = j Q(t) dt= 2nj T rW(r, t)drdt (1)
0 00

where a is the radius of the duct ar@ the flow rate, and the governing integral-differah
equation for the fluid flow is (Njeugna et al., )8

ta
pGW(r,t) =£—ZHK”rW(r,t)drdHEi(raW(r’t)j 2
ot L L 5% ror o

where AP is the transcupular pressure gad pv the dynamic viscosity.

The initial and boundary conditions ai(r,0)=0, W(a t)=0 respectively. The first
condition means that the system is initially att.ré@he second condition is the non-slip
condition of the fluid at the duct wall. It mustsal be considered thaqaﬂ =0 which

r r=0
comes from the fact that even if the cylindricababnate system is not defined iat 0, the
fluid velocity remains finite at this position.

AP is the input of the system which is directly tethto the angular acceleration of the head.
Several expressions AP can be found through the literature (e.g. Oman.£1972).

3.2.Numerical modeling
The aim of the numerical modeling is to provideaaourate tool for the resolution of the fluid
flow in the slender part of the semicircular camadt only for a step of pressure as Njeugna
(1986) did, but for different kind of head motions.

e Spatial discretization
In order to solve the integro-differential equati@) a spectral collocation method based on
Chebyshev polynomials is used (Canuto et al., 1988rzejewski, 2001). Following standard

procedures the conventional differentiation forniola can be described as follows. A one-
dimensional domain-1<¢&<1 is considered. This domain of interest is diseegtiusing N

Gauss-Lobatto points defined as:

¢ :cos(%j, i=0,...,N (3)
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An approximation of the function W) defined on [-1,1] is obtained by polynomial
interpolation :

N
W(&) =3 A (W) (4)
i=0

where A (&) are the Lagrange interpolation polynomials. In tase of the Gauss-Lobatto
points &, A () are defined by:

aT'y()
A(é) = ( j( i) N (5)
&-§ N2g
where T’ is the first derivative form of the Chebyshev paynial of order N, and
c,=G =2,c=1fori=1to N-1.

» Differentiation
The /¢ th-order derivative of the approximate solution@\Vdefined on [-1,1] is evaluated at

the collocation points using a differentiation agger. This one is obtained by differentiating
the interpolation functions as follows:

d /(5) Zw(f)wwk) Z D' W(&) (6)
¢ k=0

where D, is a differentiation matrix which links the derixse of Wcomputed at the

collocation points with the values &V at the same points. The zero-order differentiation
matrix is the identity matrix whereas the first-erds defined by:

_\k+l
=Y gor ik
Ce §i 4k
D; =- d fori=1,....,N-1
2(1-4;?)
2N2+1
Dgo =Dy = 6

Higher orders of derivative are simply obtainedebgluating the differentiation matri to
the considered power.

* Formulation of the governing equation
For this problem, a first order temporal schemesied. An implicit scheme is chosen for the

viscosity terms in order to avoid a large numertcahsient phenomenon. According to this,
Eq. (2) can be written as:

W(rt)

”rW(r t)drdt + p———~ (7)

pW”+1(r,t) _H[ W™ 1) o W™ (r, 1)) _ AP 21K}
At r or or2 L

If the following variable is substitutedr::%({ﬂ), then Eq. (7) finally becomes:
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pW””(E,t)_ﬂ( 1 GW“+1(E,t)+62V\/‘“6,t)j=
(

At E+1) 9§ 082
AP mKa2'pt VV”(E f)
oL { jl(£+1)W<£ Ddfdtyp—2= (8)
or in matricial form:
_ ® @ TWTEEY =
([] [[(1+5J[D] {0 ]ﬂ ¢&
At[ AP 7TK 2% 1 [W" (E,,t)] ©
'0 L 0-1

Eg. (9) takes the form of a linear systdim] [W”*l]:[ B. The boundary conditions are

inserted in the first and last line of the matr] [which defines respectively the no-slip
condition at the duct wall and a slope equal te zrthe centre of the cross section of the
duct. The corresponding values in [B] are null.alynthe matrix [A] must be invert in order

to obtain the velocity vector at each new time st&p.

In order to compute the integral term it shoulchb&ed that:

[(&+nw(e e = i[wwj D[ E+DA (5)] 3 (10)

1
where A, (¢) is entirely known. The term.fs(f+1)/1](f)d5 can thus be evaluated once at t=0.

-1
» Validation of the numerical parameters

Several simulations in response to a pressureastepomputed in order to test the required
numerical parameters, i.e. the number of collocatioints and the size of the time-step. As it
can be seen in Fig. 1la, the numerical solutiondtgptonverges for a small number of

collocation points. Therefore it is not necessarydtain a large value for N which would

increase the computation time. Furthermore theevafithe velocity field at any points can be
obtained by using the interpolation function Eq) {4 order to have a smooth velocity

function.
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Fig. 1. (a) Velocity curves for different numbers of caittion points. (b) Velocity curves for differentie step
at t=0.02s, withy=0.02s and\P=0.05Pa.

In order to obtain an accurate solution the sizheftime-step\t must be carefully chosen. If
the input is a pressure step, the size of the sitep-will depend upon the duration tingehat
pressure needs in order to reach its final valuemétically the rising part of the step of
pressure is defined by a fourth order polynomiathsas the pressure and its first time

derivative are continuous functions. Then fort, the pressure keeps a constant value. For
t, =0.1s, a time step of I&which constitutes a good compromise between tharacy of
the results and the computation time is retainemvéVer, if one wants to decrease the value
of t,, for instance to 0.02 s, then the time step shatilitast be lower to 1.P0Fig. 1b

illustrates this latter case by plotting some vigdyocurves for different time-step in response
to a step of pressure of 0.05 Pa wiglequal to 0.02 s. As it can be expected a time-gtep
0.01 s is not sufficient for giving an accurateutebecause the numerical solution has not yet
converged. The two other studied time-steps gireat identical results #:0.02 s.

2. Validation of the spectral model

In order to validate the spectral model, we usdy#inal solution available for the case of a
step of pressure (Poncin, 1940; Obrecht, 1976).

In the 40s, the problem of non stationary laminacaus flow in a capillary tube was studied
and solved by Poncin (1940). Afterwards this problgas reformulated by Obrecht by taking
into account a punctual elasticity (Obrecht, 19H®. found an exact solution to Eq. (2) in
response to a step of pressure:

. Il Ex =300
W(r,t):16,8yZ ¢(1X)x (anx)

(VAN

(13)

where :
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. JO is the zeroth-order Bessel function of the firisidk
« X is thei" root of the equation2yJ (X) = J,(X*( X +)) x=0;
o P(X)=12x-(x*+))?,

2 6
* B= 435;_ V= Z%ZE with P is the magnitude of the pressure step.

Fig. 2 shows the response to a step of pressu@eO6Pa with ¢ equal to 0.1s for both the
analytical solution and the spectral model. Thdyital and numerical results differ a lot for
t below 0.1s. This is due to the transient parhefrumerical model which takes into account
the raise of pressure. However the curves accymatatch fromt close to 0.1s.

X 1[]'6 Fluid Velocity m.s”
T

—o—ae— Spectral method

— — = = Analytical o

-1 0.5 0 0.5 1

Collocation points

Fig. 2. Comparison of the velocity curves of the analytarad spectral model at different instant. Restibbath
models clearly differs at t=0.02s because of tlh@dient part of the spectral model. However, botderfs
provide identical results at 0.1s so that velociiyves are superimposed.

3. Study of different cases

The major advantage of the spectral numerical migdéle possibility to rapidly study several

angular movements of the head, which are repreddmtedifferent mathematical pressure

functions. Two cases are here presented, a rotafitire head at a constant angular velocity
and a sinusoidal angular acceleration of the head.

* Constant head rotation

This first case simulates a head rotation at ateabhsngular velocity. Practically, the subject
is strapped into a rotating chair and experiencesaion around a vertical axis at a constant
angular velocity. The rotational motion starts=di &and stops at t=25s. This is implemented in
the model by taking into account two short stepr@ssure (positive at t=0 and negative at
t=25s) which represents the acceleration and dediEe of the head respectively. The
upward and downward slope of theses steps are dechpy using a fourth order polynomial
S0 as to avoid numerical problems.
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An appropriate picture of the cupula displacemsrthe volume flow rate integral defined by
Eq. (). It can be seen thAV varies exponentially according to two time conssdike the
behavior defined by the torsion pendulum model .(RBg). Physically, that means the
sensation of rotation associated with the shoretoonstant is instantaneous. However this
sensation reduces exponentially, with a time consta, even though the angular velocity

remains at a constant level. The value of this lange constant directly depends on the
parameterK .The higher the cupula stiffness is, the lower tihge constant governing its
return to its rest position. Fig. 3b shows the ralrsed volume displacement of the cupula for
a constant head angular velocity and for differaities of K. The relation betweeliK and

7, seems to be linear, which is consistent with o#itedies (e.g. Van Buskirk et al., 1977).
In the present model, a valuekofequal to 13GPa/fnyields a time constant close to 6.6s.

Therefore, if one wants to consider the time coristh 4.2s - recently derived by Dai et al.
(1999) - the value oK should be taken close to 20.4 GPa/m

(@) 1 : ‘ : (b) 1 - ,
- A S N T YV K =26GPa/m
A . === K =13GPa/m
0.5 1 © —— K =58GPa/m]
0.4 T, #6.65
-0.5 0.2| LT,.=33s
_1 L L i I 0 i ‘-‘w B, H
0 10 20 30 40 50 [o] 20 40 60 80 100
Time (s) Time (s)

Fig. 3. Normalized volume displacement of the endolymphddhead angular rotation at a constant angular
velocity. (a) The rotation is stopped at t=25s.Th§ rotation is maintained and the plots are fffeidnt values

of K.
» Sinusoidal angular acceleration

Here a sinusoidal angular acceleration is consitlditeis implemented in the model by a
sinusoidal pressurédP = R cost). From the analytical solution of the fluid velociEq.

(13), an expression for the outflow in responsa snusoidal pressure can also be derived by
using the step response and the convolution protiuatsteady state the outflow is given by:

_4m'R &
Q(t) = oLy i:1¢(>ﬁ)D' coslat+¢q ) (14)

0° lw xijz
where D. =——,0=4a,/— and @ =arctan — | .

The outflow curves are shown in Fig. 4 for two diéint frequencies. In addition the outflow
expression according to Poiseuille’s law is alsuttpt. It can be noticed that in steady state,

Eq. (14) can be reduced to its first term with tago xf l¢(x)=1/32. Therefore, Eq. (14)
can be approximated in steady state by:
ma’P
Q= :
8pLu

(15)
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which is analogous to Poiseuille’s law. This resaly holds for frequencies superior to
0.08Hz (Fig. 4).

0.5
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Fig. 4. Outflow curves for the numerical model (continudure), analytical model (dashed
line) and the Poiseuille’s expression (dotted line)

It should be noticed that the required time-si¢plepends on the value of the pulsatien
According to the value ob the size ofAt must be carefully chosen in order to ensure the
calculations to be independentAtf For example a frequency of 0.08Hz requires &t#tep

of 0.1 whereas from 0.5Hz a time step of 0.01 rbesthosen (Fig. 10).

Conclusion

The proposed numerical model simulates the floveratolymph in a semicircular canal by
considering the cupula as an elastic diaphragm. vEhecity profiles, the outflow, and the
volume displacement can be computed for differeémddk of pressure, i.e. for different head
motions. The numerical parameters have been ambiyse then evaluated in order to ensure
the convergence of the results. The major advardagieis numerical model is its flexibility
that gives it an ability to be parametric. It hagb shown that in response to a step of angular
velocity the cupula behaves like the original tonspendulum model, i.e governed by two
time constants. The long time constant governimgréturn of the cupula to its rest position
directly depends on the value & representing its stiffness. It is shown that tighér the
value of K is, the lower the long time constant is. In cafsa sinusoidal angular acceleration
of the head, the analytical and numerical model® gilentical results except during the
transient part. Furthermore, it can be noticed ttwat frequencies higher than 0.08Hz,
Poiseuille’s law relating the pressure to the owfhives similar results.
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Appendix 2: Quaternions and spatial rotation

Quaternions provide a convenient mathematics motatdr representing orientations and
rotations of objects in three dimensions. Compaedtuler angles they are simpler to
compose and avoid the problem of gimbal lock. Caegb#o rotations matrices they are more
efficient because the representation of a rota®a quaternion (4 numbers) is more compact
than the representation as an orthogonal matnnu(@bers).

A quaternion is a generalized complex number &bingj of four components such as:
Q=0 +ig+ jop + kg
whereq,, ¢, 0, and g; are real numbers anél= j2=k2=-1.

The four element unit quaternion vectfu,, ¢, @, @;) can be transformed into a 3 by 3
direction cosine matrix (DCM) which is defined by:

B+ -h-% 2(q%t 6% 2(9¢ ¢Q
DCM =| 2(q%-a%) G- 4+ d- ¢ 2(gq+ ¢
2%+ %)  2(%pG- 49 G- 4- G+ §

The quaternion paramete(s,, ¢, ¢, @) can be converted into the equivalent three Euler

angles (roll, pitch, yaw) by comparing elementshie direction cosine matrix, as function of
the Euler rotation angles, with elements in theaion cosine matrix, as function of a unit
quaternion vector.

The following relationships between DCM elementsl andividual Euler angles can be
derived:

2(0% + B %) j

= at
g aan(qé—of—oéwé

6=asin(-2(0 - % %))

_ 2(0p 0 + G %) j
Y =atan
(qg +0az‘ q22_ 05
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Appendix 3: Example of Simulink model used to
generate sensors output for motion paradigms in
darkness

Head angular velocity for
yaw rotation

‘ L_, > [yawdark]
! q SCC transfer
‘——@——' a functions SCC output
u

""" H =

‘ { \ P yscc_dark

4: Head angular velocity for Quaterniol output:
m

e e —

Coriolis stimulation

P vq_dark

a5

NS Quaternion Gravity vector

integrators rotation .
h L}
choix i — Otolith output:
[yawdark ] B euler Matrix |5 \ yoto_dark

Multiply r'y

Otolith transfer
functions

g

Head angular acceleration for
the somatogravic illusion
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Appendix 4: EKF and UKF models: Matlab code

» Graphical user interface

% %%%%%% %% %% % %% %% %% %% % %% %% %% %% % %% %% %0 %% % %% %% %% %% % %%

% Contact: Pierre Selva (pierre_bhc@hotmail.fr)

% %9%%%%%%% %% % %% %% %% %% % %% %% %% %% % %% %% %0 %% % %% %% %% %% % %%

% Begin initialization code - DO NOT EDIT
function  varargout = EKF_GUI(varargin)
gui_Singleton = 1;

gui_State = struct( '‘gui_Name' mfilename,
'gui_Singleton' , gui_Singleton,
'gui_OpeningFcn' , @EKF_GUI_OpeningFcn,
'gui_OutputFcn' , @EKF_GUI_OutputFcn,
'gui_LayoutFcn' e
'gui_Callback’ )E

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% khkkkhkhkhkhkhkkkkkkkkkkkkkkkhkhkhkhhhhhhhhhhhhhrrkkhxkx kkkkkhkkkkkkkkkk

% --- Executes just before EKF_GUI is made visible.

function  EKF_GUI_OpeningFcn(hObject, eventdata, handles, va rargin)
movegui( ‘center' );
%GUI initialization

set(handles.editl, 'String' ,'10" ); %bandwidth in head angular velocity
set(handles.edit2, 'String' 1), %bandwidth in head linear acceleration
set(handles.edit3, 'String' 1), %process noise in head angular velocity
set(handles.edit4, 'String' 1), %process noise in head linear
acceleration

set(handles.edit5, 'String' , '0.0001" ); %fictitious process noise quaternion
set(handles.edit6, 'String' , '0.0001" ); %measurement noise SCC
set(handles.edit7, 'String' , '0.0001" ); %measurement noise otolith

set(handles.edit8, 'String' ,'0" ), %measurement noise quaternion

set(handles.edit9, 'String' , '0.0001" ); %measurement noise vision
set(handles.ekf, Value' ,1);
set(handles.ukf, ‘Value' ,0);

handles.xekf=0;
handles.choix_dark=1;
handles.xukf=[];
handles.choix=1;
handles.ukf=0;

handles.ekf=1;
handles.model=1;
handles.simulation=zeros(1,2);

handles.br=str2num(get(handles.editl, 'String"  ));
handles.bt=str2num(get(handles.edit2, 'String"  ));
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handles.Q_w=str2num(get(handles.edit3, 'String"  ));
handles.Q_A=str2num(get(handles.edit4, 'String"  ));
handles.Q_quat=str2num(get(handles.edit5, 'String'
handles.Rscc=str2num(get(handles.edit6, 'String"  ));
handles.Roto=str2num(get(handles.edit7, 'String"  ));
handles.Rquat=str2num(get(handles.edit8, 'String"  ));
handles.Rvision=str2num(get(handles.edit9, 'String'

handles.Q=[handles.Q_quat*eye(4,4) zeros(4,21);
zeros(3,4) handles.Q_w*eye(3) zeros(3,18
zeros(3,10) handles.Q_A*eye(3) zer
zeros(12,25)];

handles.Rdark=diag([handles.Rquat,handles.Rscc,hand
ndles.Roto,handles.Roto,handles.Roto]);

handles.Rlight=diag([handles.Rscc,handles.Rscc,hand
,handles.Rvision,handles.Rvision,handles.Rvision,ha
ision,handles.Roto,handles.Roto,handles.Roto,handle

handles.output = hObject;
handles.ukfangvel V=0;
handles.ukfangle V=0;
handles.ukflinvel V=0;
handles.ukflinacc_V=0;
handles.ekfangvel V=0;
handles.ekfangle V=0;
handles.ekflinvel V=0;
handles.ekflinacc_V=0;

% Update handles structure
guidata(hObject, handles);

Qp *Frxxxxxrrrrrrrer Create the output VARARGOUT func
function  varargout = EKF_GUI_OutputFcn(hObject, eventdata,
varargout{1} = handles.output;

%

Y FFrekkkkkkkkkkk Ypdate of the parameters specifi
% *kkkkkkkkkhhhhhhkk * * *

% bandwidth

function  editl_Callback(hObject, eventdata, handles)
handles.br=str2num(get(hObject, 'String"  ));
guidata(hObject, handles);

function  editl_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, '‘BackgroundColor’ , 'white' );

end

function  edit2_Callback(hObject, eventdata, handles)

handles.bt=str2num(get(hObject,
guidata(hObject, handles);

'String"  ));

function  edit2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,
get(0, ‘'defaultUicontrolBackgroundColor' )

'BackgroundColor’ ),

'BackgroundColor’ ),

)

);zeros(3,25);
0s(3,12);

les.Rscc,handles.Rscc,ha

les.Rscc,handles.Rvision
ndles.Rvision,handles.Rv
s.Rquat));

tion DO NOT EDIT
handles)

ed by the user* x*xrxsx

* *kkkkkkkkkkkkhk
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set(hObiject, 'BackgroundColor’ , 'white' );
end

% process noise in head angular velocity

function  edit3_Callback(hObject, eventdata, handles)
handles.Q_w=str2num(get(hObject, 'String"  ));
handles.Q(5:7,5:7)=handles.Q_w*eye(3);
guidata(hObject, handles);

function  edit3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor’
get(0, ‘'defaultUicontrolBackgroundColor' )

set(hObiject, '‘BackgroundColor’ , 'white' );
end

% process noise in head linear acceleration

function  edit4_Callback(hObject, eventdata, handles)
handles.Q_A=str2num(get(hObject, 'String"  ));
handles.Q(11:13,11:13)=handles.Q_A*eye(3);
guidata(hObject, handles);

function  edit4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’
get(0, ‘'defaultUicontrolBackgroundColor' )

set(hObiject, 'BackgroundColor’ , 'white' );
end

% fictitiou process noise for the quaternion

function  edit5_Callback(hObject, eventdata, handles)
handles.Q_quat=str2num(get(hObject, 'String"  ));
handles.Q(1:4,1:4)=handles.Q_quat*eye(4);
guidata(hObject, handles);

function  edit5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’
get(0, ‘'defaultUicontrolBackgroundColor' )

set(hObiject, 'BackgroundColor’ , 'white' );
end

% measurement noise

function  edit6_Callback(hObject, eventdata, handles)
handles.Rscc=str2num(get(hObject, 'String"  ));
handles.R(2:4,2:4)=handles.Rscc*eye(3);
handles.Rlight(1:3,1:3)=handles.Rscc*eye(3);
guidata(hObject, handles);

function  edit6_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor’
get(0, ‘'defaultUicontrolBackgroundColor' )

set(hObiject, '‘BackgroundColor’ , 'white' );
end

function  edit7_Callback(hObject, eventdata, handles)
handles.Roto=str2num(get(hObject, 'String"  ));
handles.R(5:7,5:7)=handles.Roto*eye(3);
handles.Rlight(10:12,10:12)=handles.Roto*eye(3);
guidata(hObject, handles);

function  edit7_CreateFcn(hObject, eventdata, handles)
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if ispc && isequal(get(hObject, 'BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, '‘BackgroundColor’ , 'white' );
end

function  edit8_Callback(hObject, eventdata, handles)
handles.Rquat=str2num(get(hObject, 'String"  ));
handles.R(1,1)=handles.Rquat;
handles.Rlight(13,13)=handles.Rquat;

guidata(hObject, handles);

function  edit8_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, 'BackgroundColor’ , 'white' );

end

function  edit9_Callback(hObject, eventdata, handles)
handles.Rvision=str2num(get(hObject, 'String"  ));
handles.Rlight(4:9,4:9)=handles.Rvision*eye(6);
guidata(hObject, handles);

function  edit9_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, '‘BackgroundColor’ , 'white' );

end

%
% K*khkhkkkhkk Run Of the Slmulatlon kkkkkhkhkhhkikk

% LR R R R R R R R R S R S S S S T e e R R R R R R R S S T *kkkkkkkkkhhhhhhikk

function  pushbutton2_Callback(hObject, eventdata, handles)

handles.simulation(1,2)=1; % means the simulation button has been pushed
if handles.model==1 % yaw rotation in darkness
% generation of the sensors output using a simulink model
sTime=40;
y=[I;
choix=handles.choix_dark;
options=simset( 'SrcWorkspace' |, 'current’ );
sim(  'EKF_entreedarkbis' J[],options);

y(1,:)=yq_dark(:,1)"
y(2:4,)=yscc_dark(:,1:3)";
y(5:7,:)=yoto_dark(:,1:3)";
handles.y=y;
handles.R=handles.Rdark
guidata(hObject, handles);

elseif  handles.model==2 % forward acceleration in dark
% load output sensor measurements
load y_forw_acc_comp.mat ;
% or can generate sensor measurements using a simul ink model
% sTime=100;
% y=[I;
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% choix=handles.choix_dark;
% options=simset('SrcWorkspace','current’);
% sim('EKF_entreedarkbis',[],options);
% y(1,:)=yq_dark(:,1)"
% y(2:4,:)=yscc_dark(:,1:3)";
% y(5:7,:)=yoto_dark(:,1:3)";
handles.R=handles.Rdark
handles.y=y;
guidata(hObject, handles);

elseif  handles.model==3 % yaw circular vection
% load output sensor measurements
load y_yawvection_40s_cte ;
handles.y=y;
handles.R=handles.Rlight;
guidata(hObject, handles);

elseif  handles.model== % forward linear vection
load y_linvection_40s_cte
handles.y=y;
handles.R=handles.Rlight;
guidata(hObject, handles);

elseif  handles.model== % roll vection
load yrollvection_40s_cte
handles.y=y;
handles.R=handles.Rlight;
guidata(hObject, handles);

elseif  handles.model==6 % coriolis
% generate sensor outpus using a simulink model
sTime=220;
y=[I;
choix=handles.choix_dark;
options=simset( 'SrcWorkspace' |, 'current’ );
sim(  'EKF_entreedarkbis' J[],options);
y(1,:)=yq_dark(:,1)’;
y(2:4,)=yscc_dark(:,1:3)";
y(5:7,:)=yoto_dark(:,1:3)";
handles.y=y;
handles.R=handles.Rdark
guidata(hObject, handles);

elseif handles.model==7 % off-vertical axis rotation
% load sensor outputs
load y_OVAR45 v2;
handles.y=y;
handles.R=handles.Rdark
guidata(hObject, handles);

elseif  handles.model== % pseudo-coriolis
% load sensor outputs
load ypseudocoriolis_simulink_avecy
handles.y=y;

handles.R=handles.Rlight;
guidata(hObject, handles);
end

% if the EKF algorithm is selected
if handles.ekf==1
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% if the selected experiment is performed in darkne
if handles.model==1 || handles.model==2 || handles.mo
handles.model==7

[handles.xekf,handles.angleekf,handles.timeekf]l=EKF
.bt,handles.Q,handles.Rdark,handles.y,handles.model

if handles.model==1

elseif

end

set(handles.ekfangvel, ‘Value' ,1);
handles.ekfangvel_V=get(handles.ekfangvel,
set(handles.ekfangle, ‘Value' ,1);

handles.ekfangle_V=get(handles.ekfangle,
set(handles.ekflinvel, 'Value' ,0);
handles.ekflinvel_V=get(handles.ekflinvel,

set(handles.ekflinacc, ‘Value' ,0);
handles.ekflinacc_V=get(handles.ekflinacc,

handles.model==2

set(handles.ekflinacc, ‘Value' ,1);
handles.ekflinacc_V=get(handles.ekflinacc,
set(handles.ekfangvel, ‘Value' ,0);
handles.ekfangvel V=get(handles.ekfangvel,
set(handles.ekfangle, 'Value' ,1);

handles.ekfangle_V=get(handles.ekfangle,
set(handles.ekflinvel, ‘Value' ,0);
handles.ekflinvel_V=get(handles.ekflinvel,

% display of the computation time
handles.timeekf=(round(handles.timeekf*100)
set(handles.tpsekf, 'String' ,[num2str(handles.timeekf), s s

% if the selected experiment is performed in the li

else

[handles.xekf,handles.angleekf,handles.timeekf]l=EKF
s.bt,handles.Q,handles.Rlight,handles.y);

if handles.model==3

elseif

elseif

set(handles.ekfangvel, 'Value' ,1);
handles.ekfangvel V=get(handles.ekfangvel,
set(handles.ekfangle, ‘Value' ,1);

handles.ekfangle_V=get(handles.ekfangle,
set(handles.ekflinvel, ‘Value' ,0);
handles.ekflinvel _V=get(handles.ekflinvel,

set(handles.ekflinacc, ‘Value' ,0);
handles.ekflinacc_V=get(handles.ekflinacc,

handles.model==

set(handles.ekflinacc, 'Value' ,1);
handles.ekflinacc_V=get(handles.ekflinacc,
set(handles.ekflinvel, ‘Value' ,1);
handles.ekflinvel_V=get(handles.ekflinvel,

set(handles.ekfangvel, ‘Value' ,0);
handles.ekfangvel V=get(handles.ekfangvel,
set(handles.ekfangle, 'Value' ,1);

handles.ekfangle_V=get(handles.ekfangle,

handles.model==5
set(handles.ekfangvel, 'Value' ,1);

SS
del==6 ||

_dark(handles.br,handles

‘Value' );

'Value' );

‘Value' );

‘Value' );

‘Value' );

'Value' );

‘Value' );

‘Value' );

)/100;

ght

_light(handles.br,handle

'Value' );

‘Value' );

'Value' );

‘Value' );

'Value' );
‘Value' );

'Value' );

‘Value' );
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handles.ekfangvel V=get(handles.ekfangvel, 'Value' );
set(handles.ekflinacc, ‘Value' ,0);
handles.ekflinacc_V=get(handles.ekflinacc, ‘Value' );
set(handles.ekflinvel, ‘Value' ,0);
handles.ekflinvel _V=get(handles.ekflinvel, 'Value' );
set(handles.ekfangle, 'Value' ,1);
handles.ekfangle_V=get(handles.ekfangle, ‘Value' );
end
% display of the computation time
handles.timeekf=(round(handles.timeekf*100) )/100;
set(handles.tpsekf, 'String' ,[num2str(handles.timeekf), s D;

end

% if the UKF algorithm is selected

elseif

[handles.xukf,handles.angleukf,handles.timeukfl=UKF

handles.ukf==1

andles.Q,handles.R,handles.y);

if handles.model==1 || handles.model==3

elseif

elseif

elseif

end

set(handles.ukfangvel, ‘Value' ,1);
handles.ukfangvel V=get(handles.ukfangvel,
set(handles.ukfangle, 'Value' ,1);
handles.ukfangle_V=get(handles.ukfangle,
set(handles.ukflinvel, ‘Value' ,0);
handles.ukflinvel_V=get(handles.ukflinvel,
set(handles.ukflinacc, ‘Value' ,0);

handles.ukflinacc_V=get(handles.ukflinacc,

handles.model==2

set(handles.ukflinacc, ‘Value' ,1);
handles.ukflinacc_V=get(handles.ukflinacc,
set(handles.ukfangvel, ‘Value' ,0);
handles.ukfangvel_V=get(handles.ukfangvel,
set(handles.ukfangle, ‘Value' ,1);
handles.ukfangle_V=get(handles.ukfangle,
set(handles.ukflinvel, ‘Value' ,0);

handles.ukflinvel _V=get(handles.ukflinvel,

handles.model==4

set(handles.ukflinacc, ‘Value' ,1);
handles.ukflinacc_V=get(handles.ukflinacc,
set(handles.ukflinvel, 'Value' ,1);
handles.ukflinvel_V=get(handles.ukflinvel,
set(handles.ukfangvel, ‘Value' ,0);
handles.ukfangvel_V=get(handles.ukfangvel,
set(handles.ukfangle, 'Value' ,1);

handles.ukfangle_V=get(handles.ukfangle,

handles.model==5

set(handles.ukfangvel, 'Value' ,1);
handles.ukfangvel_V=get(handles.ukfangvel,
set(handles.ukflinacc, ‘Value' ,0);
handles.ukflinacc_V=get(handles.ukflinacc,
set(handles.ukflinvel, 'Value' ,0);
handles.ukflinvel _V=get(handles.ukflinvel,
set(handles.ukfangle, ‘Value' ,1);

handles.ukfangle_V=get(handles.ukfangle,

% display of the computation time
handles.timeukf=(round(handles.timeukf*100))/

(handles.br,handles.bt,h

'Value' );
‘Value' );
‘Value' );
'Value' );
'Value' );
‘Value' );
‘Value' );
'Value' );
'Value' );
‘Value' );
‘Value' );
'Value' );
‘Value' );
‘Value' );
'Value' );
‘Value' );
100;
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set(handles.tpsukf, 'String' ,[num2str(handles.timeukf),
end
guidata(hObject, handles);

S

%
0p ****+** galection of the simulated experiment *** ko

% *kkkkkkkkkhhhhhhkk * * * * *kkkkkkkkkkkkhk

function  popupmenul_Callback(hObject, eventdata, handles)
switch get(handles.popupmenul, 'Value' )
case 1
handles.model=1;handles.simulation=zeros(1, 2);
handles.choix_dark=1; handles.sTime=100;
handles.xekf=[];
guidata(hObject,handles);
case 2
handles.model=2;handles.simulation=zeros(1, 2);
handles.choix_dark=2;handles.sTime=100;
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 3
handles.model=3;handles.simulation=zeros(1, 2);
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 4
handles.model=4;handles.simulation=zeros(1, 2);
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 5
handles.model=5;handles.simulation=zeros(1, 2);
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 6
handles.model=6;handles.simulation=zeros(1, 2);
handles.choix_dark=3;handles.sTime=220;
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 7
handles.model=7;handles.simulation=zeros(1, 2);
handles.xekf=[];handles.xukf=[];
guidata(hObject,handles);
case 8
handles.model=8;handles.simulation=zeros(1 2);
handles.Q(1:4,1:4)=1e-6*eye(4);
guidata(hObject,handles);
end

function  popupmenul_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, 'BackgroundColor’ , 'white' );

end

%
O ¥ rwkkiiik Save the state vector to a .mat file ko
% *% *%* *% *% *% * * * * *%* *%* *% *%
function  pushbutton12_Callback(hObiject, eventdata, handles)

if handles.simulation(1,2)==1;
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if handles.ekf==1
EKF_save(handles.xekf,handles.angleekf)
elseif  handles.ukf==1
EKF_save(handles.xukf,handles.angleukf)
end
else

errordlg({ 'You have to run a simulation’

end

% LR R R R R R R R R S R S S S S T e e R R R R R R R S RS T

% ***rrxxx gelection of the EKF / UKF algorithm **
%

function  ekf_Callback(hObject, eventdata, handles)
handles.ekf=get(hObject, 'Value' );
handles.ukf=0;

guidata(hObject, handles);

function  ukf_Callback(hObject, eventdata, handles)
handles.ukf=get(hObject, 'Value' );
handles.ekf=0;

guidata(hObject, handles);

%
% *khkhkkhhkhhkkikk P LOT

% khkkkhkhkhkhkhkkkkkkkkkkkkkkkhkhkhkhhhhhhhhhhhhhrrkkhxkx

% ***xxxx plot all the state variables ****xkrrkiix
function  pushbutton7_Callback(hObject, eventdata, handles)
if handles.simulation(1,2)==0
errordlg({ 'You have to run a simulation’
return
end

t=0:0.04:(size(handles.y,2)-1)*0.04;
if handles.ekf==1
for i=1:25

}, 'Error! );

*kkkkkkkkkhhhhhhhhhix

*kkkkhkkkhkk

*kkkk
*kkkk

*kkkk

*kkkk

}, 'Error!’ );

figure( 'Name' | 'EKF x(* ,num2str(i), " 1, 'NumberTitle' ,'off )

plot(t,handles.([ 'xekf'"  D(@,:));
title([ 'X(",num2str(i), D))
end
figure( 'Name' ,[| 'EKF perceived roll angle’ 1s
plot(t,handles.angleekf(1,:));
title( 'EKF perceived roll angle' )

‘NumberTitle' ,off )

figure( 'Name' ,[ 'EKF perceived pitch angle' ], 'NumberTitle' , 'off);

plot(t,handles.angleekf(2,:));
title( 'EKF perceived pitch angle’ )

figure( 'Name' ,[ 'EKF perceived yaw angle’ ], 'NumberTitle' , 'off);

plot(t,handles.angleekf(3,:));
title( 'EKF perceived yaw angle' )

elseif  handles.ukf==1
for i=1:25

figure( 'Name' ,[ 'UKF x(" ,num2str(i), " 1, 'NumberTitle' ,off )

plot(t,handles.([ 'xukf (), T
title([ X(numa2str(i), )" D)
end

figure( 'Name' ,[ 'UKF perceived roll angle' ], 'NumberTitle' ,off )
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plot(t,handles.angleukf(1,:), ™),

title( 'UKF perceived roll angle'

figure( 'Name' ,[ 'UKF perceived pitch angle' ], 'NumberTitle' , "off’
plot(t,handles.angleukf(2,:), ™),

title( 'UKF perceived pitch angle' )

figure( 'Name' ,[ 'UKF perceived yaw angle' ], 'NumberTitle' , 'off );
plot(t,handles.angleukf(3,:));

title( 'UKF perceived yaw angle' )

end
figure( 'Name' , 'Caption' , 'Position' ,[30 300 300 400], 'NumberTitle' , "off’
uicontrol( 'Style' , 'Text' , 'Position’ ,[20 350 250 22], 'String' , 'EKF-UKF
states variables' , 'Fontsize' ) e

14, 'ForegroundColor' ,[0 0 0], '‘BackgroundColor' ,[0.80.8
0.8], 'FontWeight" , 'bold" );
uicontrol( 'Style' |, 'Text' , 'Position’ ,[20 300 250 22], 'String’ , 'X1to x4 :
guaternions' , 'Fontsize' -

11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor’ , [0.8 0.8 0.8]);
uicontrol( 'Style' |, 'Text' , 'Position’ ,[20 260 250 22], 'String’ , 'X5t0 X6 :
perceived angular velocity' , 'Fontsize' -

11, 'ForegroundColor' ,[0 0 0], '‘BackgroundColor' , [0.8 0.8 0.8]);
uicontrol( 'Style' , 'Text' , 'Position’ ,[20 220 250 22], 'String' , 'X7 to x10 :
perceived linear velocity' , 'Fontsize' -

11, 'ForegroundColor' ,[0 0 0], '‘BackgroundColor' , [0.8 0.8 0.8]);
uicontrol( 'Style' , 'Text' , 'Position’ ,[20 180 250 22], 'String’ , 'X14 to x19 :
SCC TF', 'Fontsize' -

11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor’ , [0.8 0.8 0.8]);
uicontrol( 'Style' , 'Text' , 'Position’ ,[20 140 250 22], 'String' , 'X20 to x25:
Otoliths TF' , 'Fontsize' -

11, 'ForegroundColor' ,[0 0 0], '‘BackgroundColor' , [0.8 0.8 0.8]);

% kkkkkkkkk plot Euler angles kkkkhkkkkhkkkkhkhkkkhkhkk
function  pushbutton9_Callback(hObject, eventdata, handles)

if handles.simulation(1,2)==0

errordlg({ 'You have to run a simulation’ }, 'Error!’ );
return

end
t=0:0.04:(size(handles.y,2)-1)*0.04;
if handles.ekf==1

figure( 'Name' ,[ 'EKF perceived roll angle' ], 'NumberTitle' , 'off);

plot(t,handles.angleekf(1,:));

title( 'EKF perceived roll angle'

figure( 'Name' ,[ 'EKF perceived pitch angle' ], 'NumberTitle' , 'off )

plot(t,handles.angleekf(2,:));

title( 'EKF perceived pitch angle' )

figure( 'Name' ,[ 'EKF perceived yaw angle' ], 'NumberTitle' , 'off);

plot(t,handles.angleekf(3,:));

title( 'EKF perceived yaw angle’ );
elseif  handles.ukf==1

figure( 'Name' ,[ 'UKF perceived roll angle' ], 'NumberTitle' , 'off);

plot(t,handles.angleukf(1,:), ™),

title( 'UKF perceived roll angle' )

figure( '‘Name' ,[ 'UKF perceived pitch angle' ], 'NumberTitle' , 'off )

plot(t,handles.angleukf(2,:), ™)
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title( 'UKF perceived pitch angle' )

figure( ‘Name' ,[ 'UKF perceived yaw angle' ], 'NumberTitle' , "off’
plot(t,handles.angleukf(3,:), ™)
title( 'UKF perceived yaw angle' )
end
% ******* P|ot the results provided by the EKF **** ko
function  plotekf_Callback(hObject, eventdata, handles)
if handles.simulation(1,2)==0
errordlg({ 'You have to run a simulation’ }, 'Error! );
return
end
t=0:0.04:(size(handles.y,2)-1)*0.04;
if handles.ekfangvel V==1
figurel = figure( 'Name' , 'EKF perceived angular
velocity' , 'NumberTitle' ,'on" , 'Position' ,[200 80 700 650]);
subplotl =
subplot(3,1,1, 'Parent’  ,figurel, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  'on" );
hold( all' ),
title( roll’ , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.xekf(5,:), 'LineWidth' 1);
xlabel( ‘Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
subplot2 =
subplot(3,1,2, 'Parent’  figurel, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on" );
hold( all' )
title( '‘pitch* | 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.xekf(6,:), 'LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
subplot3 =
subplot(3,1,3, 'Parent’  figurel, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );
hold( all' )
title( 'vaw' , 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.xekf(7,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
end
if handles.ekflinvel V==1
figure2 = figure( '‘Name' , 'EKF perceived linear
velocity' , 'NumberTitle' , 'on' , 'Position’ ,[200 80 700 650]);
subplotl =
subplot(3,1,1, 'Parent’  figure2, 'YGrid® ,'on' ,'XGrid" ,'on' , 'FontSize'
box(  ‘'on" );
hold( all' )
title( VX', 'FontSize' ,12, 'FontWeight' ,'bold" );
plot(t,handles.xekf(8,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);
subplot2 =
subplot(3,1,2, 'Parent’  ,figure2, 'YGrid®  ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on' );

12);

12);

12);

12);

12);
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hold(  ‘all )

title( 'Vy' , 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xekf(9,:), ‘LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);
subplot3 =
subplot(3,1,3, 'Parent’  figure2, 'YGrid® ,'on' , 'XGrid" ,'on' ,'FontSize'

box(  ‘'on' );
hold( all' )

title( 'Vz' ,'FontSize' 12, 'FontWeight' ,‘'bold" );
plot(t,handles.xekf(10,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);

end

if  handles.ekflinacc_V==1

figure3 = figure( '‘Name' , 'EKF perceived linear

acceleration' , 'NumberTitle' ,'on" , 'Position' ,[200 80 700 650]);
subplotl =

subplot(3,1,1, 'Parent’  ,figure3, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  'on' ); hold( all' )
title( '‘AX' , 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xekf(11,:), 'LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);
subplot2 =

subplot(3,1,2, 'Parent’  ,figure3, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( all' );
title( '‘Ay' |, 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xekf(12,:), 'LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);
subplot3 =

subplot(3,1,3, 'Parent’  ,figure3, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( ‘all' );
title( '‘Az' ,'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xekf(13,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);

end

if handles.ekfangle V==1
figure4 = figure( 'Name' , 'EKF perceived

angles' , 'NumberTitle' , 'on' , 'Position’ ,[200 80 700 650]);
subplotl =

subplot(3,1,1, 'Parent’  ,figure4, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  'on' ); hold( all' )
title( 'Roll angle' , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.angleekf(1,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad" , 'FontSize' ,12);
subplot2 =

subplot(3,1,2, 'Parent’  ,figure4, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( all' );
title( 'pitch angle' , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.angleekf(2,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);

12);

12);

12);

12);

12);

12);
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ylabel( rad" , 'FontSize' ,12);

subplot3 =

subplot(3,1,3, 'Parent’  ,figure4, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( ‘all' );
title( 'Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.angleekf(3,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad" , 'FontSize' ,12);

end

% ***++xx Plot the results provided by the UKF **** ko

function  plotukf_Callback(hObject, eventdata, handles)
if handles.simulation(1,2)==0
errordlg({ 'You have to run a simulation’ }, 'Error! );
return
end

t=0:0.04:(size(handles.y,2)-1)*0.04;

if handles.ukfangvel V==1

figure5 = figure( '‘Name' , 'UKF perceived angular
velocity' , 'NumberTitle' ,'on" , 'Position’ ,[200 80 700 650]);
subplotl =
subplot(3,1,1, 'Parent’  ,figureb, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on" );
hold( all' )

title( roll’ , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.xukf(5,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
subplot2 =
subplot(3,1,2, 'Parent’  ,figureb, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on' );
hold( all' )

title( 'pitch’ | 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.xukf(6,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
subplot3 =
subplot(3,1,3, 'Parent’  ,figureb, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on' );
hold( all' ),

title( 'vaw' , 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.xukf(7,:), ‘LineWidth' 1);
xlabel( ‘"Time (sec)' , 'FontSize'  ,10);
ylabel( rad/s' , 'FontSize' ,12);
end

if handles.ukflinvel V==1

figure6 = figure( 'Name' , 'UKF perceived linear
velocity' , 'NumberTitle' , 'on' , 'Position’ ,[200 80 700 650]);
subplotl =
subplot(3,1,1, 'Parent’  ,figure6, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );
hold( all' ),
title( VX' , 'FontSize' ,12, 'FontWeight' ,'bold" );

12);

12);

12);

12);

12);
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plot(t,handles.xukf(8,:), 'LineWidth' ,1);

xlabel( ‘Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);
subplot2 =
subplot(3,1,2, 'Parent’  ,figure6, 'YGrid® ,'on' ,'XGrid" ,'on' , 'FontSize'

box(  ‘'on" );
hold( all ),

title( 'Vy' , 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xukf(9,:), 'LineWidth' 1);
xlabel( ‘Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);
subplot3 =
subplot(3,1,3, 'Parent’  ,figure6, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on" );
hold( all' )

title( 'Vz' ,'FontSize' 12, 'FontWeight' ,‘'bold" );
plot(t,handles.xukf(10,:), 'LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);

end

if  handles.ukflinacc_V==1

figure7 = figure( 'Name' , 'UKF perceived linear

acceleration' , 'NumberTitle' ,'on' , 'Position’ ,[200 80 700 650]);
subplotl =

subplot(3,1,1, 'Parent’  figure?, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on" ); hold( all' ),
title( '‘AX' , 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xukf(11,:), 'LineWidth' 1);
xlabel( ‘Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);
subplot2 =

subplot(3,1,2, 'Parent’  figure?, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on" );hold( al' );
title( '‘Ay' , 'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xukf(12,:), ‘LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);
subplot3 =

subplot(3,1,3, 'Parent’  ,figure?, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on" )hold( ‘all' );
title( '‘Az' ,'FontSize' 12, 'FontWeight' ,'bold" );
plot(t,handles.xukf(13,:), ‘LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);

end

if handles.ukfangle V==1
figure8 = figure( ‘Name' , 'UKF perceived

angles' , 'NumberTitle' , 'on" , 'Position’ ,[200 80 700 650]);
subplotl =

subplot(3,1,1, 'Parent’  ,figure8, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  'on' ); hold( all' )
title( 'Roll angle' , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.angleukf(1,:), 'LineWidth' ,1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad" , 'FontSize' ,12);

12);

12);

12);

12);

12);

12);
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subplot2 =

subplot(3,1,2, 'Parent’  ,figure8, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( all' );
title( 'pitch angle' , 'FontSize' 12, 'FontWeight' , 'bold" );
plot(t,handles.angleukf(2,:), ‘LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad" , 'FontSize' ,12);
subplot3 =

subplot(3,1,3, 'Parent’  ,figure8, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box(  ‘'on' );hold( ‘all' );
title( 'Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold" );
plot(t,handles.angleukf(3,:), ‘LineWidth' 1);
xlabel( "Time (sec)' , 'FontSize'  ,10);
ylabel( rad" , 'FontSize' ,12);

end

% ***++xx Plot the results provided by both the EKF and UK #kskok

function  pushbutton15_Callback(hObject, eventdata, handles)
if handles.simulation(1,2)==0
errordlg({ 'You have to run a simulation’ }, 'Error!’ );
return
end

t=0:0.04:(size(handles.y,2)-1)*0.04;
if handles.ukfangvel V==1 || handles.ekfangvel V==1

figure10 = figure( ‘Name' , 'EKF-UKF perceived angular
velocity' , 'NumberTitle' , 'on' , 'Position’ ,[200 80 700 650]);
subplot3 =
subplot(3,1,3, 'Parent’  ,figurelO, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box( 'on" ); hold( all' )
titte(  'vaw' , 'FontSize' ,12, 'FontWeight' ,'bold" );
if handles.ekfangvel V==1
plot(t,handles.xekf(7,:), ‘LineWidth' 1);
end
if handles.ukfangvel V==1
plot(t,handles.xukf(7,:), --r' , 'LineWidth' ,1);
end

legend( 'EKF' , 'UKF' );
xlabel(  'Time (sec)' , 'FontSize'  ,10);
ylabel( ‘rad/s'" ,'FontSize' ,12);
subplotl =
subplot(3,1,1, 'Parent’  ,figurelO, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box( 'on' );
hold( 'all' );
titte( ‘roll , 'FontSize' 12, 'FontWeight' , 'bold" );
if handles.ekfangvel V==1
plot(t,handles.xekf(5,:), ‘LineWidth' 1);
end
if handles.ukfangvel V==1
plot(t,handles.xukf(5,:), “-r' , 'LineWidth' 1);
end

legend( 'EKF' , 'UKF');
xlabel( 'Time (sec)' , 'FontSize'  ,10);

12);

12);

12);

12);
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ylabel( ‘'rad/s'" ,'FontSize' ,12);

subplot2 =
subplot(3,1,2, 'Parent’  ,figurelO, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'
box( 'on" ); hold( all' )
titte(  ‘'pitch’ , 'FontSize' ,12, 'FontWeight' , 'bold' );
if handles.ekfangvel V==1
plot(t,handles.xekf(6,:), ‘LineWidth' 1);
e nd
if handles.ukfangvel _V==1
plot(t,handles.xukf(6,:), --r' , 'LineWidth' ,1);
end

legend( 'EKF' , 'UKF');

xlabel(  'Time (sec)' , 'FontSize'  ,10);
ylabel( ‘rad/s'" ,'FontSize' ,12);
end

if handles.ukflinvel_V==1 || handles.ekflinvel V==1

figurell = figure( ‘Name' , 'EKF-UKF perceived linear
velocity' , 'NumberTitle' ,'on" , 'Position’ ,[200 80 700 650]);
subplotl =

subplot(3,1,1, 'Parent’  figurell, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box( 'on" ); hold( all' ),
titte(  'Vx' , 'FontSize' ,12, 'FontWeight' , 'bold" );

if handles.ekflinvel V==1
plot(t,handles.xekf(8,:), 'LineWidth' ,1);
end
if handles.ukflinvel V==1
plot(t,handles.xukf(8,:), --r' , 'LineWidth' 1);
end
legend( 'EKF' , 'UKF');
xlabel(  'Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);

subplot2 =

subplot(3,1,2, 'Parent’  figurell, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box( 'on" ); hold( all' )
title(  'Vy' , 'FontSize' ,12, 'FontWeight' , 'bold" );

if handles.ekflinvel V==1
plot(t,handles.xekf(9,:), ‘LineWidth' 1);
end
if handles.ukflinvel V==1
plot(t,handles.xukf(9,:), --r' , 'LineWidth' ,1);
end
legend( 'EKF' , 'UKF');
xlabel( 'Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);

subplot3 =

subplot(3,1,3, 'Parent’  figurell, 'YGrid® ,'on' ,'XGrid" ,'on' ,'FontSize'

box(  ‘'on" ); hold( all' ),
title( 'Vz' ,'FontSize' 12, 'FontWeight' ,'bold" );

if handles.ekflinvel V==1

12);

12);

12);

12);
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plot(t,handles.xekf(11,:),
end
if handles.ukflinvel V==1
plot(t,handles.xukf(11,:),

end
legend( 'EKF' , 'UKF');
xlabel( 'Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s' , 'FontSize' ,12);
end

'LineWidth' ,1);

--r' , 'LineWidth' ,1);

if  handles.ukflinacc_V==1 || handles.ekflinacc_V==1

figurel2 = figure(
acceleration’
subplotl =
subplot(3,1,1,
box( 'on" ); hold(
titte(  'Ax' , 'FontSize'

, 'NumberTitle' , 'on'
'Parent’  figurel2, 'Y Grid'
all' );

,12, 'FontWeight'

if handles.ekflinacc_V==1
plot(t,handles.xekf(11,:),
end
if handles.ukflinacc_V==1
plot(t,handles.xukf(11,:),
end
legend( 'EKF' , 'UKF');
xlabel( 'Time (sec)'
ylabel( 'm/s? |, 'FontSize'

, 'FontSize'
,12);

,10);

subplot2 =
subplot(3,1,2,
box( 'on' ); hold(  ‘all' );
title(  'Ay' , 'FontSize' ,12, 'FontWeight'
if handles.ekflinacc_V==1
plot(t,handles.xekf(12,:),
end
if handles.ukflinacc_V==1
plot(t,handles.xukf(12,:),
end
legend( 'EKF' , 'UKF');
xlabel(  'Time (sec)'
ylabel( 'm/s?' | 'FontSize'

'Parent’  ,figurel2, 'Y Grid'

, 'FontSize'
12);

,10);

subplot3 =

subplot(3,1,3, 'Parent'
box( 'on' );hold( ‘all" );
titte(  'Az' , 'FontSize'

figurel2, 'Y Grid'

,12, 'FontWeight'

if handles.ekflinacc_V==1
plot(t,handles.xekf(13,:),

end

if handles.ukflinacc_V==1
plot(t,handles.xukf(13,:),

end
legend( 'EKF' , 'UKF');
xlabel(  'Time (sec)' , 'FontSize'  ,10);
ylabel( 'm/s? |, 'FontSize' ,12);

end

‘Name' , 'EKF-UKF perceived linear
, 'Position’

[200 80 700 650]);

,'on' , 'XGrid" , 'on'

, 'bold" );

‘LineWidth' 1);

--r' , 'LineWidth' ,1);

,'on' , 'XGrid" , 'on'
'‘bold" );

‘LineWidth' 1);

--r' , 'LineWidth' ,1);

,'on' , 'XGrid" |, 'on'

, 'bold" );

'LineWidth' ,1);

--r' , 'LineWidth' 1);

, 'FontSize'

, 'FontSize'

, 'FontSize'

12);

12);

12);
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if handles.ukfangle V==1 || handles.ekfangle V==1

figurel3 = figure( ‘Name' , 'EKF-UKF perceived
angles' , 'NumberTitle' , 'on' , 'Position’ ,[200 80 700 650]);
subplotl =
subplot(3,1,1, 'Parent’  figurel3, 'YGrid® ,'on' , 'XGrid' , 'on’
box( 'on" ); hold( all' )
titte(  'Roll angle’ , 'FontSize' 12, 'FontWeight' , 'bold" );
if handles.ekfangle V==1
plot(t,handles.angleekf(1,:), 'LineWidth' ,1);
end
if handles.ukfangle V==1
plot(t,handles.angleukf(1,:), --r' , 'LineWidth'
end
legend( 'EKF' , 'UKF');
xlabel( 'Time (sec)' , 'FontSize'  ,10);

ylabel( ‘rad" , 'FontSize' ,12);

subplot2 =
subplot(3,1,2, 'Parent’  ,figurel3, 'YGrid®  ,'on' ,'XGrid" , 'on’
box( 'on' ); hold(  ‘all' );
title(  ‘'pitch angle’ , 'FontSize' 12, 'FontWeight' , 'bold" );
if handles.ekfangle V==1
plot(t,handles.angleekf(2,:), 'LineWidth' 1);
end
if handles.ukfangle V==1
plot(t,handles.angleukf(2,:), --r' , 'LineWidth'
end
legend( 'EKF' , 'UKF');
xlabel(  'Time (sec)' , 'FontSize'  ,10);

ylabel( ‘'rad" , 'FontSize' ,12);

subplot3 =

subplot(3,1,3, 'Parent’  figurel3, 'YGrid® ,'on' , 'XGrid" ,'on’

box( '‘on" );hold( ‘all' );
titte( '"Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold" );

if handles.ekfangle V==1
plot(t,handles.angleekf(3,:), 'LineWidth' ,1);
end
if handles.ukfangle V==1
plot(t,handles.angleukf(3,:), --r' , 'LineWidth'
end
legend( 'EKF' , 'UKF' );
xlabel( 'Time (sec)' , 'FontSize'  ,10);
ylabel( ‘rad" , 'FontSize' ,12);

end

O ***rxkkk galection of the curves to plot **xxx** *E
function  ekfangvel Callback(hObject, eventdata, handles)
handles.ekfangvel V=get(hObject, 'Value' );

guidata(hObject, handles);

function  ekflinvel_Callback(hObject, eventdata, handles)
handles.ekflinvel_V=get(hObject, 'Value' );
guidata(hObject, handles);

, 'FontSize'  ,12);

, 'FontSize'  ,12);

1);

, 'FontSize'  ,12);

1);
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function  ekflinacc_Callback(hObiject, eventdata, handles)
handles.ekflinacc_V=get(hObject, 'Value' );
guidata(hObject, handles);

function  ekfangle_Callback(hObject, eventdata, handles)
handles.ekfangle_V=get(hObject, 'Value' );
guidata(hObject, handles);

function  ukfangvel_Callback(hObject, eventdata, handles)
handles.ukfangvel_V=get(hObject, 'Value' );
guidata(hObject, handles);

function  ukflinvel_Callback(hObject, eventdata, handles)
handles.ukflinvel _V=get(hObject, 'Value' );
guidata(hObject, handles);

function  ukflinacc_Callback(hObiject, eventdata, handles)
handles.ukflinacc_V=get(hObject, 'Value' );
guidata(hObject, handles);

function  ukfangle_Callback(hObject, eventdata, handles)
handles.ukfangle_V=get(hObject, 'Value' );
guidata(hObject, handles);

» Extended Kalman filter function (in darkness)

function  [xe,angle,tps]=EKF_dark(br,bl,Q,R,y,modele)
tic

%
% initialisation

% * *
xe=s[100000000000000000000000
P=diag([0.01*ones(1,4) 1le-2*ones(1,21)]);

h=0.01; % Runge Kutta time step integration
%%sensors transfer functions

ta_scc=80;tscc=6;
Ko=33.3;tl_oto=10;t1_0t0=0.016;t2_oto=5;
[Ascc,Bscc,Cscce,Dscc]=tf2ss([ta_scc*tscc 0 0],[ta_s
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto*

1]);

%
% Main algorithm

% * * *kkkkk
wait=waitbar(0, 'Please walit' );

for i=2:size(y,2)
waitbar(i/size(y,2));
z(:,)=y(,)+sqrt(R)*randn(size(y,1),1);
xe(:,i)=xe(;,i-1);
% 4 order Runge Kutta integration
for j=1:4
s0l1=statespacemodel(xe(:,i),br,bl,Ascc,A

0l

cc*tscc ta_scc+tscc 1));
t2_oto t1_oto+t2_oto

oto);
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s02=jacobian(xe(:,i),br,bl,Ascc,Aoto)*P+P*jacobian(
+Q;
xel=xe(;,i)+h*s01;
P1=P+h*s02;
sll=statespacemodel(xel,br,bl,Ascc,Aoto)

sl12=jacobian(xel,br,bl,Ascc,Aoto)*P1+P1*acobian(xe
xe2=xe(;,i)+h*(s01+s11)/4;
P2=P+h*(s02+s12)/4;
s21=statespacemodel(xe2,br,bl,Ascc,Aoto)

s22=jacobian(xe2,br,bl,Ascc,Aoto)*P2+P2*jacobian(xe
xe(:,i)=xe(:,i)+h*(s01+s11+4*s21)/6;
P=P+h*(s02+s12+4*s22)/6;
end

% Measurement matrix
H(1,:)=[2*xe(1,i) 2*xe(2,i) 2*xe(3,i) 2*xe(4

a=[Ascc(1,2) Ascc(1,1) 0 0 0 0;0 0 Ascc(1,2) Asce(
Ascc(1,2) Ascc(1,1)];

b=[416.25 4162.500 0 0;0 0 416.25 4162.500;0 0
4162.5];

H(2:7,1:25)=[zeros(3,4) eye(3) zeros(3,6) a zeros(3
b];

% predicted measurement
z_est(1,i)=xe(1,)"2+xe(2,i)"2+xe(3,i)"2+xe(
Z_est(2:7,)=H(2:7,:)*xe(:,i);

% Kalman gain
K=P*H"*inv(H*P*H'+R);

% update of the predicted state vector
xe(:,i)=xe(:,i)+K*(z(:,i)-z_est(:,i));

% update of the covariance matrix
P=(eye(25)-K*H)*P*(eye(25)-K*H)'+K*R*K";

end

tps=toc;

%
% Computation of Euler angles from quaternion param
%

duration=(size(y,2)-1)*0.04;
t=0:0.04:duration;

g0=xe(1,)";

gl=xe(2,)"

g2=xe(3,)";

g3=xe(4,)"

t=t";

options=simset( 'SrcWorkspace' |, 'current’ );
sim(  'quat_euler' [],options);
angle=angle’;

close(wait);

» Extended Kalman filter function (experiment in liggh

function  [xe,angle,tps]=EKF_light(br,bl,Q,R,y)

xe(:,i),br,bl,Ascc,Aoto)

1,br,bl,Ascc,Aoto)'+Q;

2,br,bl,Ascc,Aot0)'+Q;

i) zeros(1,21)];
1,1)00;,0000

00416.25

,6); zeros(3,19)

4,)"2;

*kkkk

eters

*kkk
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tic
% *
% initialisation
%
xe=s[100000000000000000000000 (0]}
P=0.0001*eye(25,25);

step=0.01; % Runge Kutta time step integration
%%sensors transfer functions

ta_scc=80;tscc=6;

Ko=33.3;tl_oto=10;t1 0t0=0.016;t2_oto=5;
[Ascc,Bscc,Cscce,Dscc]=tf2ss([ta_scc*tscc 0 0],[ta_s
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto*

1]);

cc*tscc ta_scc+tscc 1));
t2_oto t1_oto+t2_oto

% state propagation equations
f=@(X)[0.5*(-x(5)*x(2)-x(6)*Xx(3)-x(7)*x(4));
0.5*(x(5)*x(1)+x(7)*X(3)-X(6)*x(4));
0.5*(x(8)*x(1)-x(7)*x(2)+X(5)*x(4));
0.5*(X(7)*x(1)+x(6)*x(2)-x(5)*x(3));
-br*x(5);-brx(6);-br*x(7);x(11);x(12);x(13);-bl*x (12);-bl*x(12);-
blI*x(13);
x(15);
Ascc(1,2)*x(14)+Ascc(1,1)*x(15)+x(5);x(17);Ascc(1,2
X(17)+x(6); x(19);
Ascc(1,2)*x(18)+Ascc(1,1)*x(19)+x(7);

)*x(16)+Ascc(1,1)*

x(21);
Aoto(1,1)*x(21)+Aoto(1,2)*x(20)+(19.62*(x(2)*x(4)-x (1)*x(3))-x(11));
X(23); Aoto(1,1)*x(23)+Aoto(1,2)*x(22)+(19.62*(x(3) *X(4)+x(1)*x(2))-
x(12));
X(25); Aoto(1,1)*x(25)+Aoto(1,2)*x(24)+(9.81*(x(1)* X(1)+x(4)*x(4)-

% nonlinear state equations

X(3)*%(3)-x(2)*x(2))-x(13)):];

% measurement equations

h=@(x)
[Ascc(1,2)*x(14)+Ascc(1,1)*x(15)+x(5);Ascce(1,2)*x(1
Ascc(1,2)*x(18)+Ascc(1,1)*x(19)+x(7);x(5);x(6);x(7)
2)*x(20)+Coto(1,1)*x(21);Coto(1,2)*x(22)+Coto(1,1)*
Coto(1,2)*x(24)+Coto(1,1)*x(25);x(1)*x(1)+x(2)*x(2)

%jacobian of f

gradf=@(x) [0 -0.5*x(5) -0.5*x(6) -0.5*x(7) -0.5*x(
zeros(1,18);0.5*x(5) 0 0.5*x(7) -0.5*x(6) 0.5*x(1)
zeros(1,18);0.5*x(6) -0.5*x(7) 0 0.5*x(5) 0.5*x(4)
zeros(1,18);0.5*x(7) 0.5*x(6) -0.5*x(5) 0 -0.5*x(3)
zeros(1,18);zeros(3,4) -brreye(3) zeros(3,18);zeros
zeros(3,12);zeros(3,10) -bl*eye(3) zeros(3,12);zero
[0 1;Ascc(1,2) Asce(1,1)] zeros(2,10);zeros(2,5) [0
1;Ascc(1,2) Ascc(1,1)] zeros(2,8);zeros(2,6) [0;1]
1;Ascc(1,2) Ascc(1,1)] zeros(2,6);zeros(1,19) 01 0
19.62*x(4) -19.62*x(1) 19.62*x(2) zeros(1,6) -1 00
Aoto(1,1) 0 0 0 0;zeros(1,19) 00 01 0 0;19.62*x(2
19.62*x(3) zeros(1,6) 0 -1 0 zeros(1,6) 0 0 Aoto(1,
0;zeros(1,19) 00 0 0 0 1;19.62*x(1) -19.62*x(2) -1
zeros(1,6) 0 0 -1 zeros(1,6) 0 0 0 0 Aoto(1,2) Aoto

%
% Main algorithm

0/0 * * *%
wait=waitbar(0, 'Please walit' );

6)+Ascc(1,1)*x(17)+x(6);
X(8);%(9);x(10);Coto(1,
x(23);
+X(3)*x(3)+x(4)*x(4):;

2) -0.5*x(3) -0.5*x(4)
-0.5*x(4) 0.5*x(3)
0.5*x(1) -0.5*x(2)
0.5*x(2) 0.5*x(2)
(3,10) eye(3)

s(2,4) [0;1] zeros(2,8)
;1] zeros(2,9) [0
zeros(2,10) [0

00 0;-19.62*x(3)
zeros(1,6) Aoto(1,2)
) 19.62*x(1) 19.62*x(4)
2) Aoto(1,1) 0
9.62*x(3) 19.62*x(4)
(1,1)];
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for i=2:size(y,2)
waitbar(i/size(y,2));
z(:,)=y(,)+sqrt(R)*randn(size(y,1),1);
xe(:,i)=xe(:,i-1);
% 4 order Runge Kutta integration
for j=1:4
s01=f(xe(:,i));
s02=gradf(xe(:,i))*P+P*gradf(xe(:,i))'+Q
xel=xe(;,i)+step*s01;
P1=P+step*s02;
sl1=f(xel);
sl12=gradf(xel)*P1+P1*gradf(xel)'+Q;
xe3=xe(:,i)+step*(s01+s11)/4;
P3=P+step*(s02+s12)/4;
s21=f(xe3);
s22=gradf(xe3)*P3+P3*gradf(xe3)'+Q;
xe(:,i)=xe(:,i)+step*(s01+s11+4*s21)/6;
P=P+step*(s02+s12+4*s22)/6;
end

% jacobian of h
a=[Ascc(1,2) Ascc(1,1) 00 0 0;0 0 Ascc(1,2)
Ascc(1,2) Asce(1,1)];
b=[416.25 4162.5000 0;0 0 416.25 4162.50
4162.5];

H(1:13,1:25)=[zeros(3,4) eye(3) zeros(3,6) a
zeros(3,4) -eye(3) zeros(3,18)
zeros(3,7) -eye(3) zeros(3,15)
zeros(3,19) b;
2*xe(1,i) 2*xe(2,i) 2*xe(3,i)

% predicted measurement
z_est(1:12,i)=H(1:12,:)*xe(:,i);
z_est(13,i)=xe(1,i)"2+xe(2,i)"2+xe(3,i)"2+x

%cross covariance
P12=P*H",

%Kalman filter gain
K=P12*inv(H*P12+R);

% update of the predicted state vector
xe(:,i)=xe(:,i)+K*(z(:,i)-z_est(:,i));

% update of the covariance matrix
P=(eye(25)-K*H)*P*(eye(25)-K*H)'+K*R*K";

end

96 * * * *kkkkkkkkkkhhhhhhhhhhx *

% Computation of Euler angles from quaternion param
%
tps=toc;
duration=(size(y,2)-1)*0.04;
t=0:0.04:duration;
g0=xe(1,))}
gl=xe(2,)}
g2=xe(3,))";
g3=xe(4,))

t=t’,
options=simset(
sim( 'quat_euler'
angle=angle’;

'SrcWorkspace' |, 'current’ );
.[l.options);

% sensors output

Ascc(1,1) 000000
0;0000416.25

zeros(3,6);

2*xe(4,i) zeros(1,21)];

e(4,)"2;

*kkkk

eters

*kkk
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close(wait);
* Unscented Kalman filter function

function  [xe,angle,tps]=UKF(br,bl,Q,R,y)
tic
%
% initialisation

% * *% * * ** **

xe0=[10000000000000000000000 00];
h=0.01; % Runge Kutta integration time step

P=1e-4*eye(25); % initial covariance matrix P

dt=0.04; % update time step of the estimated state vector
xe=zeros(25,751); % estimated state vector

xe(:,1)=xe0;

n=size(xe(:,1),1); % dimension of the state vector

alpha=0.5; beta=2; kappa=3-n; lambda=alpha”2*(n+kap pa)-n;
the UKF

%%sensors transfer functions
ta_scc=80;tscc=6;
K0=33.3;tl_oto=10;t1 ot0o=0.016;t2_oto=5;

% state vector

% parameters of

[Ascc,Bscc,Cscce,Dscc]=tf2ss(Jta_scc*tscc 0 0],[ta_s cc*tscc ta_scc+tscc 1));
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto* t2_oto t1_oto+t2_oto
1));

Asccl=Ascc(1,1);
Ascc2=Ascc(1,2);
Aotol=Aoto(1,1);
Aoto2=Aoto(1,2);
Cotol=Coto(1,1);
Coto2=Coto(1,2);

%
% noisy output generation
% *kkkk * * *kkkkkkkkkhhhhhkx
if size(y,1)==7
zr=zeros(7,751);
for i=1l:size(y,2)
zr(;,D=y(:,)+sqrt(R)*randn(7,1);
end

elseif  size(y,1)==13
zr=zeros(13,751);
for i=1:size(y,2)
zr(;,D=y(:,)+sqgrt(R)*randn(13,1);
end
end

% *kkkk * * *kkkkkkkkkkkhkhk

% Main algorithm
%

wait=waitbar(0, 'Please wait' );

for k=2:size(y,2)
waitbar(k/size(y,2));
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xe(:,k)=xe(:,k-1);

% if the re-normalization is considered at each tim

% xe(1,k)=xe(1,k)/sqgrt(xe(1,k)"2+xe(2,k)*2+xe(3,k)"
% xe(2,k)=xe(2,k)/sqgrt(xe(1,k)*2+xe(2,k)*2+xe(3,k)"
% xe(3,k)=xe(3,k)/sqgrt(xe(1,k)"2+xe(2,k)*2+xe(3,k)"
% xe(4,k)=xe(4,k)/sgrt(xe(1,k)"2+xe(2,k) 2+xe(3,k)"

%unscented transformation
%%1) weights

WM = zeros(2*n+1,1);

WC = zeros(2*n+1,1);

for j=1:2*n+1

if j==1
wm = lambda / (n + lambda);
wc = lambda / (n + lambda) + (1 - alpha”2 + bet a);
else
wm =1/(2* (n + lambda));
WC = wm;
end

WM(j) = wm;

WC(j) = wc;

end

¢ =n + lambda;
%%2)Sigma points generation
A = chol(P)";
X = [zeros(size(xe(:,k))) A -A];
X = sqgrt(c)*X + repmat(xe(;,k),1,size(X,2));

%%3) Sigman points transformation (propagation)
Y=

% if the Runge Kutta integration is considered
% for i=1:(2*n+1)

% forj=1:4

% s01=xdot(X(:,i),Ascc,Aoto,br,bl);
% xel=X(:,i)+h*s01;

% s11=xdot(xel,Ascc,Aoto,br,bl);

% xe2=X(:,i)+h*(s01+s11)/4;

% s21=xdot(xe2,Ascc,Aoto,br,bl);

% X(,1)=X(:,)+h*(s01+s11+4*s21)/6;
% end

% end

% Y=X;

% if the Euler integration is considered
for i=1:(2*n+1)
for j=1:4
dot_x=zeros(size(X));
% classic formulatoin ofr the quaternion

e step

2+xe(4,k)"2);
2+xe(4,k)"2);
2+xe(4,k)"2);
2+xe(4,k)"2);

dot_x(L,1)=0.5*(-X(5,i)*X(2,i)-X(6,i)*X(3,i)-X( 7,i)*X(4,0));
dot_x(2,i)=0.5*(X(5,))*X(L,)+X(7,)*X(3,)-X(6 AVX(4,);
dot_x(3,i)=0.5*(X(6,i)*X(L,)-X(7,i)*X(2,)+X(5 AVX(4,0);
dot_x(4,i)=0.5*(X(7,i)*X(L,)+X(6,))*X(2,)-X(5 X(3.0)):;

% formulation 2 for the quaternion
% dot_x(1,i)=0.5*(-X(5,i)*X(2,i)-X(6,i)*X(3,i)-

X(7,i)*X(4,))+0.9*X (1,))*(1-X(L,i)"2-X(2,)2-X(3, A2-X(4,)72);



% dot_x(2,i)=0.5*(X(5,i)*X(1,i)+X(7,i)*X(3,i)-
X(6,1)*X(4,1))+0.9*X(2,i)*(1-X(1,)"2-X(2,i)"2-X(3,
% dot_x(3,i)=0.5*(X(6,i)*X(1,i)-
X(7,1)*X(2,1)+X(5,i)*X(4,i))+0.9*X(3,i)*(1-X(1,i)"2
X(4,)"2);
% dot_x(4,i)=0.5*(X(7,i)*X(1,i)+X(6,i)*X(2,i)-
X(5,1)*X(3,1))+0.9*X(4,i)*(1-X(1,)"2-X(2,)2-X(3,
dot_x(5,i)=-br*X(5,i);
dot_x(6,i)=-br*X(6,i);
dot_x(7,i)=-br*X(7,i);
dot_x(8,i)=X(11,i);
dot_x(9,i)=X(12,i);
ot _x(10,i)=X(13,i);
dot_x(11,i)=-bI*X(11,i);
dot_x(12,i)=-bI*X(12,i);
dot_x(13,i)=-bI*X(13,i);
dot_x(14,i)=X(15,i);
dot_x(15,i)=Ascc2*X(14,i)+Ascc1*X(15,i)+X(5,i);
dot_x(16,i)=X(17,i);
dot_x(17,i)=Ascc2*X(16,i)+Asccl*X(17,i)+X(6,i);
dot_x(18,i)=X(19,i);
dot_x(19,i)=Ascc2*X(18,i)+Ascc1*X(19,i)+X(7,i);
dot_x(20,i)=X(21,i);
dot_x(21,i)=Aotol1*X(21,i)+Aoto2*X(20,i)+(19.62*
X(1,1)*X(3,1))-X(11,));
dot_x(22,i)=X(23,i);

dot_x(23,i)=A0to1*X(23,i)+A0to2*X(22,i)+(19.62*(X(3
)-X(12,));
dot_x(24,i)=X(25,);

dot_x(25,i)=A0to1*X(25,i)+A0to2*X(24,i)+(9.81*(X(1,
X(3,)*X(3,)-X(2,i)*X(2,i))-X(13,0));

% % Euler integration
X(:,0) = X(:,i) + 0.01 * dot_x(:,i);
end
end
Y =X;

mu = zeros(size(Y,1),1);

S = zeros(size(Y,1),size(Y,1));
C = zeros(size(xe,1),size(Y,1));
for i=1l:size(X,2)

mu = mu + WM(i) * Y(:,i); % predicted state mean

end
for i=1l:size(X,2)

S =S +WC(i) * (Y(,i) - mu) * (Y(,i) - mu);
estimated state

C =C + WC(i) * (X(1:size(xe,1),i) - xe(:,k)) *
cross-covariance Pxy
end

P=S+Q; %predicted state covariance

xe(:,k)=mu;

%% update
% recompute a new set of sigma points

A2-X(4,)72);

X(2,i)2-X(3,i)"2-

A2-X(4,)72);

(X(2,i)*X(4,)-

J)FX(4,1)+X(1,i)*X(2,i)

D*X(L,i)+X(4,i)*X(4,i)-

% covariance of the

(Y(,0) - mu); %
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%%1) weights
WM = zeros(2*n+1,1);
WC = zeros(2*n+1,1);
for j=1:2*n+1
if j==1
wm = lambda / (n + lambda);
wc = lambda / (n + lambda) + (1 - alpha”2 + bet
else
wm=1/(2*(n+ lambda));
wC = wm;
end
WM(j) = wm;
WC(j) = wc;
end
¢ =n + lambda;

%%?2)sigma points
A = chol(P)’;
X = [zeros(size(xe(:,k))) A -A];
X = sgrt(c)*X + repmat(xe(:,k),1,size(X,2));

%%3) SP propagation through the measurement equatio
z=I;

if size(zr,1)==7
for i=1:(2*n+1)
z(1,i) = sqrt(X(1,)"2+X(2,i)"2+X(3,i)"2+X(
z(2,i) =Ascc2*X(14,i)+Ascc1*X(15,i)+X(5,i);
z(3,i) =Ascc2*X(16,i)+Asccl*X(17,i)+X(6,i);
z(4,i) =Ascc2*X(18,i)+Ascc1*X(19,i)+X(7,i);
z(5,i) =Coto2*X(20,i)+Coto1*X(21,i);
z(6,i) =Coto2*X(22,i)+Coto1*X(23,i);
z(7,i) =Coto2*X(24,i)+Coto1*X(25,i);

end

elseif  size(zr,1)==13
for i=1:(2*n+1)
z(1,i)=Ascc2*X(14,i)+Asccl*X(15,i)+X(5,i)
z(2,i)=Ascc2*X(16,i)+Asccl*X(17,i)+X(6,)
z(3,i)=Ascc2*X(18,i)+Asccl*X(19,)+X(7,))
z(4,i)=-X(5,i);
z(5,i)=-X(6,i);
z(6,i)=-X(7,i);
z(7,i)=-X(8,i);
z(8,i)=-X(9,i);
z(9,i)=-X(10,i);
z(10,i)=Coto2*X(20,i)+Coto1*X(21,i);
z(11,i)=Coto2*X(22,i)+Coto1*X(23,i);
z(12,i)=Coto2*X(24,i)+Coto1*X(25,i);
z(13,1)=X(1,)"2+X(2,)"2+X(3,i)"2+X(4,i)
end

end

mu = zeros(size(z,1),1);
S =zeros(size(z,1),size(z,1));
C = zeros(size(xe,1),size(z,1));
for i=1l:size(X,2)
mu = mu + WM(i) * z(;,i);
end
for i=1l:size(X,2)
S =S + WC(i) * (z(:,i) - mu) * (z(:,i) - mu)
measurement Py

ns

4,)"2);

nD:

" % covariance of the
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C = C + WC(i) * (X(1:size(xe(:,k),1),i) - xe( LK) * (z(:,1) - mu)';
% cross-covariance

end
S=S+R;
K=C/S; % Kalman gain matrix
xe(:,k) = xe(;,k) + K* (zr(;,k) - mu); % update of the predicted state
P=P-K*S*Kj, % update of the covariance matrix
end
tps=toc;
% kkkkkkkkkhkkkkhkhkkkkhkhkkhkhkkkhkhkkkkhkhkkkkhkkkkhkhkrkkkhkhkkxk *kkkk
% Computation of Euler angles from quaternion param eters
%*****************~k***~k***~k************************ *kkk

duration=(size(y,2)-1)*0.04;
t=0:0.04:duration;

q0=xe(1,))";

ql=xe(2,)";

g2=xe(3,)"

g3=xe(4,))"

t=t";

options=simset( 'SrcWorkspace' |, 'current’ );
sim(  'quat_euler' [],options);
angle=angle’;

close(wait);
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Modélisation du systéme vestibulaire et modéles non-linéaires
de perception de I'orientation spatiale

L'oreille interne est un organe fascinant du corps humain. Elle contient des organes sensoriels trés
précis et hypersensibles, ce qui lui permet de jouer un rdle majeur dans la perception de nos
mouvements et de notre orientation spatiale.

Dans un premier temps, ce travail de thése a porté sur la modélisation du fonctionnement des
senseurs d’orientation de l'oreille interne. Un démonstrateur type « Réalité Virtuelle » a été développé
sous Matlab/Simulink afin de visualiser en temps réel I'état de chaque senseur. Une modélisation plus
détaillée par éléments finis et tenant compte d’interactions fluide/structure a permis d’étudier la
dynamique des fluides au sein de chaque capteur ainsi que le déplacement de membranes - éléments
clés permettant de coupler le déplacement du fluide avec la stimulation de cellules sensorielles.

Dans un second temps, ce travail de thése s’est orienté vers le développement de modeéles non-
linéaires et tridimensionnels de perception de l'orientation spatiale. Ces modéles supposent que notre
cerveau estime/calcul nos perceptions d’orientation, de vitesse, et d’accélération de facon
« optimale ». Par conséquent, les modeéles développés se sont appuyés sur deux techniques
d’estimation non-linéaires basées sur le filtre de Kalman (« Extended Kalman filter » & « Unscented
Kalman filter »). En réponse a différent profils de stimulation, ces modéles permettent de prédire
diverses illusions sensorielles connues dans le monde de l'aéronautique. En tant qu’applications
potentielles, ces modéles pourraient étre utilisés d’une part lors d’investigation de crash d’appareil afin
de détecter si le pilote a été sujet a un phénoméne de désorientation spatiale, et d’autre part pour le
développement d’algorithmes de contrdle des simulateurs de vols.

Mots clés : Systéme vestibulaire, Fluide/structure interaction, Modeéles éléments-finis, Réalité virtuelle,
Estimation optimale, Filtres de Kalman non-linéaire, Illusions sensorielles

Modeling of the vestibular system and nonlinear models
for human spatial orientation perception

The non-auditory section of the human innner ear, the vestibular system, is recognized as the prime
motion sensing center. The vestibular system is comprised of two primary sensory organs and
represents an inertial measuring device which allows us to sense self-motion with respect to the six
degrees of freedom in space.

The scope of the work presented in this thesis concerns on one hand the modelling of the vestibular
sensors, and on the other hand nonlinear models for human spatial orientation perception.

First, a virtual reality model of the vestibular sensors has been developed so as to visualize in real
time the state of each sensor in response to any kind of head motion. Second, a three-dimensional
model of the entire set of canal using fluid-structural finite-elements simulations has been proposed.
Using a strong coupling between the fluid flow and the structural displacements and also an Arbitrary
Lagrangian Eulerian (ALE) approach for the moving mesh, we analyze displacements of the cupulae
and fluid velocity during head rotation.

Third, we developed a nonlinear model of human spatial orientation based on the Unscented Kalman
Filter. This model successfully predicts the responses to a number of vestibular, visual and visual-
vestibular motion paradigms. It turns out that the UKF yields more accurate and less oscillatory
responses than Pommellet’'s Extended Kalman Filter model. As a prospect, this model could be used to
investigate aircraft crashes so as to detect whether or not pilots have experienced a phenomenon of
spatial disorientation.

Key words : Vestibular system, Fluid/Structure interaction, Finite-element models, virtual reality,
Optimal state estimation, Nonlinear Kalman filtering, Sensory illusions



