
 

 
 

   

 

 

 
Modélisation du système vestibulaire et modèles non-linéaires 

de perception de l'orientation spatiale 

 
 
L’oreille interne est un organe fascinant du corps humain. Elle contient des organes sensoriels très 
précis et hypersensibles, ce qui lui permet de jouer un rôle majeur dans la perception de nos 
mouvements et de notre orientation spatiale. 
Dans un premier temps, ce travail de thèse à porté sur la modélisation du fonctionnement des 
senseurs d’orientation de l’oreille interne. Un démonstrateur type « Réalité Virtuelle » a été développé 

sous Matlab/Simulink afin de visualiser en temps réel l’état de chaque senseur. Une modélisation plus 
détaillée par éléments finis et tenant compte d’interactions fluide/structure a permis d’étudier la 
dynamique des fluides au sein de chaque capteur ainsi que le déplacement de membranes - éléments 
clés permettant de coupler le déplacement du fluide avec la stimulation de cellules sensorielles. 
Dans un second temps, ce travail de thèse s’est orienté vers le développement de modèles non-
linéaires et tridimensionnels de perception de l’orientation spatiale. Ces modèles supposent que notre 

cerveau estime/calcul nos perceptions d’orientation, de vitesse, et d’accélération de façon 
« optimale ». Par conséquent, les modèles développés se sont appuyés sur deux techniques 
d’estimation non-linéaires basées sur le filtre de Kalman (« Extended Kalman filter » & « Unscented 
Kalman filter »). En réponse à différent profils de stimulation, ces modèles permettent de prédire 
diverses illusions sensorielles connues dans le monde de l’aéronautique. En tant qu’applications 
potentielles, ces modèles pourraient être utilisés d’une part lors d’investigation de crash d’appareil afin 
de détecter si le pilote a été sujet à un phénomène de désorientation spatiale, et d’autre part pour le 

développement d’algorithmes de contrôle des simulateurs de vols.  
 
Mots clés : Système vestibulaire, Fluide/structure interaction, Modèles éléments-finis, Réalité virtuelle, 
Estimation optimale, Filtres de Kalman non-linéaire, Illusions sensorielles 
 

Modeling of the vestibular system and nonlinear models 
for human spatial orientation perception 

 
The non-auditory section of the human innner ear, the vestibular system, is recognized as the prime 

motion sensing center. The vestibular system is comprised of two primary sensory organs and 
represents an inertial measuring device which allows us to sense self-motion with respect to the six 
degrees of freedom in space. 
The scope of the work presented in this thesis concerns on one hand the modelling of the vestibular 

sensors, and on the other hand nonlinear models for human spatial orientation perception. 
First, a virtual reality model of the vestibular sensors has been developed so as to visualize in real 
time the state of each sensor in response to any kind of head motion. Second, a three-dimensional 
model of the entire set of canal using fluid-structural finite-elements simulations has been proposed. 
Using a strong coupling between the fluid flow and the structural displacements and also an Arbitrary 
Lagrangian Eulerian (ALE) approach for the moving mesh, we analyze displacements of the cupulae 
and fluid velocity during head rotation. 

Third, we developed a nonlinear model of human spatial orientation based on the Unscented Kalman 
Filter. This model successfully predicts the responses to a number of vestibular, visual and visual-
vestibular motion paradigms. It turns out that the UKF yields more accurate and less oscillatory 
responses than Pommellet’s Extended Kalman Filter model. As a prospect, this model could be used to 
investigate aircraft crashes so as to detect whether or not pilots have experienced a phenomenon of 
spatial disorientation. 

 

Key words : Vestibular system, Fluid/Structure interaction, Finite-element models, virtual reality, 
Optimal state estimation, Nonlinear Kalman filtering, Sensory illusions 
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General introduction 
 
Daily human activity includes complex orientation, postural control, and movement 
coordination. All these tasks depend upon his perception of motion. The non-auditory section 
of the human inner ear, the vestibular system, is recognized as the prime motion sensing 
center. It represents an inertial measuring device which allows us to sense, in the absence of 
external sensory cues (vision, etc) self-motion with respect to the six degrees of freedom in 
space (three rotational and three translational).  
 
The information from the vestibular apparatus is used in three ways:  

 
• To provide a subjective sensation of movement in three-dimensional space 

• To maintain upright body posture (balance) 

• To control the muscles that move the eyes, so that in spite of the changes in head 
position which occur during normal activities such as walking or running, the eyes 
remain stabilized on a point in space.  

 

Several scenarios illustrate these points. For instance, if a cat is dropped upside down, it will 
land right side up on all four paws. If a newborn infant is tilted backward, its eyes will roll 
downward so that its gaze remains fixed on the same point. If, as you read this report, you 
shake your head rapidly from side to side, the print nonetheless will stand still. Each of these 
scenarios is an example of how a healthy balance (vestibular) system compensates for daily 
changes in our spatial orientation. 
 
The vestibular system is comprised of two primary sense organs: 
 

• The semicircular canals (SCCs), which detect angular accelerations of the head 
 
• The otolith organs, which respond to linear accelerations of the head and to gravity. 

 
Thus, vestibular sensors provide information to the brain regarding our body’s position and 
acceleration in space with sensing capabilities that are compatible with everyday movements 
of man relative to his surroundings, and hence play central role in spatial orientation. 
 
Spatial orientation can be defined as one’s perception of body position in relation to a 
reference frame. This process involves two main sensory modalities, the vestibular system 
and vision, but proprioceptive and auditory inputs also come into play. The control of spatial 
orientation during navigational tasks and locomotion requires a dynamic updating of the 
representation of the relations between the body and the environment, i.e. spatial orientation 
normally entails both the subconscious integration of multisensory cues and the conscious 
interpretation of external information. Therefore, the Central Nervous System (CNS) uses 
information coming from multiple sensors to come up with a representation of how the body 
is moving and is oriented in space. 
 
The results of this “spatial orientation” process are usually satisfactory in most everyday life 
situations. However, when technology achievements began to expose humans to new and 
artificial situations such as sustained accelerations in fighter airplanes or micro-gravity 
environment in spacecrafts, our ability to correctly estimate our position and motion became 
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limited. As a matter of fact, as the number of fighter airplane accidents due to technical failure 
keeps decreasing, human errors have been proven to be a safety limiting factor. That is, the 
advent of aeronautics flight has not only involved a new demand on human organism but also 
the ability for pilots to deal with a high workload environment and a complex instrument 
panel. Furthermore, in some circumstances, for instance when flying in clouds or at night, 
pilots may not have the possibility of seeing external references. As a result, pilots are 
constantly liable to introduce conflict between their internal feeling of orientation and the true 
orientation, and hence to experience a case of spatial disorientation which is a phenomenon 
attributed to 15 to 30% of all aircraft fatalities in flight (Braithwaite et al. 1998, Knapp et al. 
1996). Thus, all these considerations have lead number of researchers to model human spatial 
orientation. 
 
Mathematical models for three-dimensional human spatial orientation have continued to 
evolve over the past four decades. Several models exist and have been developed using 
multiple computational approaches such as linear systems analysis, the concept of internal 
models, observer theory, Bayesian theory, Kalman filtering and particle filtering. A review of 
these approaches has recently been written by MacNeilage (2008). Different features can be 
distinguished among these models: some of them are restricted to one-dimensional space, 
whereas others take into account motions in three-dimensional space; some incorporate visual 
cues, whereas others only model vestibular response in the dark; and some work for large 
head tilts whereas others do not. 

 

Contributions of this work 
 

The scope of the work presented in this thesis concerns on one hand the modeling of the 
vestibular sensors, and more particularly the semicircular canals, and on the other hand 
nonlinear models for human spatial orientation perception. 
 
Since the 30’s, numerous models of the semicircular canal macromechanics have been 
suggested using different approaches. W. Steinhausen (1933) formulated a classical torsion 
pendulum model for the dynamic behavior of a single SCC. This model, which has been the 
benchmark for subsequent works, consists of a single-degree of freedom overdamped spring-
mass-damper system subject to mass-proportional inertia forcing. Several notable extensions 
have then been made to enhance this original model by relating the geometry and structure of 
the SCC to mass, stiffness, and damping parameters appearing in the model (e.g. Van 
Egmond et al. 1949, Groen et al. 1952, Van Buskirk 1976, Oman et al. 1987, Rabbitt et al 
2004). Other models were based on the resolution of the fluid flow equation within the canal 
(Van Buskirk 1977, Van Buskirk 1988, Steer 1967, Oman et al. 1987, Damiano et al. 1996, 
Rabbitt et al. 1999). The three-dimensional model of Oman et al. (1987), in which the non-
uniform geometry of the canal was considered, probably constitutes the most compatible 
biophysical single-degree of freedom model of the SCC. Some of these models are formulated 
in one dimension, while few of them consider a three-dimensional geometry. Moreover, all of 
these models consider a single canal and most of them do not take into account the fluid-
structure interaction but rather consider the influence of the cupula by a punctual elasticity. 
 

� Therefore, the first goal of the present thesis is to provide a three-dimensional model of 
the entire set of canals using fluid-structural finite-elements simulations. To achieve this goal, 
we first develop a two dimensional finite-elements model of a single canal. Second, this 



 12 

model is extended to a three-dimensional case. Finally, the 3D model is extended to the case 
where the three semicircular canals are considered. 

 

In order to build these numerical models, one needs to know the physical properties of the 
fluid that fills the canals and the elastic properties of the cupula - a membrane located within 
the duct that acts as a coupling between the fluid flow and sensory hair cells. The properties 
of the fluid, i.e. its density and viscosity, are well known (Steer, 1967). However, it is hard to 
find in the literature values for the elastic properties of the human semicircular canal cupula, 
and more especially its Young’s modulus, as most model represent the cupula as a linear 
spring-like element of stiffness /K P V= ∆ ∆ ,where  V∆  is the volume displaced upon 
application of a pressure difference P∆ .  

 

� Thus, the second goal of this doctoral work is to estimate the Young’s modulus of the 
human semicircular canal cupula using thick plate theory and also finite-elements (FE) 
models. In addition, cupula FE models are also used to study the influence of different cupula 
shapes on its motion and to analyse both the shear strain distribution and evolution near the 
sensory epithelium. 

 

As we move in our surrounding in space, our vestibular sensors provide information to the 
brain regarding our body’s position and acceleration in space. However, the way each sensor 
behaves for any angular or linear acceleration is not obvious, especially for complex head 
motion. In particular, in order to find out what are the semicircular canals sensing when a 
subject is doing head movements on a centrifuge Adenot (2002) developed a model that was 
able to compute the state of each cupula during the imposed motion. However, this model was 
limited to SCC sensors, considered a head centered set of sensors, and the implementation of 
successive head movements was not possible. 

 

� Consequently, the third goal of this thesis is to extend this model: 1) by considering not 
only the angular but also the linear sensors, 2) by taking into account the position of the inner 
ear away from head vertical axis, 3) by implementing a three-dimensional animation of the 
sensors, and 4) by developing a virtual reality model of the experiment. As an application, we 
have chosen to model a medical procedure called the rotary chair testing that is commonly 
used during a vestibular diagnosis rather than a centrifuge experiment. However, the 
developed model can be easily extended to the case of a centrifuge paradigm as the distance 
between the position of the inner ear and the axis of rotation is a parameter of the model. 

� In addition to this virtual model, we propose a similitude study, a choice of adequate 
materials, and a set of parameters so as to build a large scale model of the system SCC / 
cupula that has a similar dynamic behavior of the biological system for a specific imposed 
angular velocity.. Both models (virtual and scale model) can be used as a demonstrating and 
learning tool, for instance for the training of medical students, as the theoretical state of each 
sensor can be observed in real time for any kind of head rotation. 

 

Regarding to the models of human spatial orientation, two principle model families can be 
distinguished: Observer class models and Kalman filter class models. Although both 
approaches are apparently based on different assumptions, they produce similar responses, at 
least for the set of empirical parameters derived in the literature. 
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� The fourth goal of this thesis is to demonstrate why the Observer and Kalman filter 
model families are dynamically equivalent from an input-ouput perspective. Furthermore, we 
investigate the physical meaning of the KF model parameters that were previously chosen as 
free parameter of the model and were derived empirically. 

 

The first Observer model developed by Merfeld et al. (1993) has then been extended by 
several authors till the last contributions of Newman (2009). Despite this model is able to 
simulate different kinds of sensory illusions, it is limited to deterministic signals as it does not 
consider process noise and sensor noise. Furthermore, the gains used in the model that drive 
the responses in term of position, velocity, and acceleration perception are empirical. In order 
to derive a set of optimal gains and to take into consideration stochastic signals, Pommellet 
(1990) applied the extended Kalman filter (EKF) to this problem. However, his filter 
exhibited important numerical oscillations. 

 

� Therefore, the fifth goal of this thesis is first to modify Pommellet’s model so as to 
improve numerical stability and second to develop another nonlinear model based on a novel 
estimation technique called the unscented Kalman filter (UKF). It has been shown that in 
many applications this technique outperforms the EKF in terms of stability, accuracy, and 
computation time. 

 

Objectives of the thesis 
 
The main objectives of the presented thesis are summarized as follows: 
 

• Estimation of the elastic properties of the human semicircular canal cupula – a 
membrane located in each canal that functions as a coupling between the fluid flow 
within the ducts and the sensory hair cells –using thin and thick bending membrane 
theory and also finite-element simulations based on more realistic morphology 

 
• Develop of a three-dimensional model of the set of semicircular canals based on fluid-

structural finite-elements simulations 
 

• Develop of a three-dimensional dynamic virtual reality model of the vestibular sensors 
in order to propose both a demonstrating and a learning tool of this system 

 
• Propose a similitude study so as to build a large scale model of the semicircular canals 

 
• Demonstrate why the widely known “Observer” and “Kalman filter” model families 

for human spatial orientation perception – despite apparently different assumptions – 
are dynamically equivalent from an input-output (“black box”) perspective 

 
• Develop two nonlinear models for human spatial orientation estimation with the help 

of the extended Kalman filter and the unscented Kalman filter, respectively. Both 
models are formulated in three-dimensional space and take into account vestibular and 
visual cues. 
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Based on the work of this thesis, the author has so far succeeded in publishing the following 
works: 
 

• International peer-reviewed journals: 
 

� Development of a dynamic virtual reality model of the inner ear sensory 
system as a learning and demonstrating tool. Modelling and Simulation in 
Engineering, volume 2009. 

 
• International conference with proceedings: 

 
� A Matlab/simulink model of the inner ear angular accelerometers sensors. 

ASME, International Design Engineering Technical Conferences & Computers 
and Information in Engineering Conference, August 30 – September 2nd, San 
Diego, California, USA. 

 
• Manuscripts under progress: 

 
� Mechanical properties and motion of the cupula of the human semicircular 

canal. Journal of Vestibular Research. 
 
� Relationship between Observer and Kalman filter models for human dynamic 

spatial orientation. Journal of Neurophysiology. 
 

� Nonlinear models for human spatial orientation. Journal of Biology 
Cybernetics. 

 
� A three-dimensional finite-element model of the human semicircular canals. 

Computer Modeling in Engineering & Sciences. 
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Thesis organization 
 
The presented thesis is organized in six chapters.  
 

• Chapter 1. – Background: Provides a background on the anatomy and physiology of 
the vestibular system, on the history of spatial orientation modeling, and on state 
estimation techniques of dynamic state-space models. 

• Chapter 2. – Finite element modeling: Presents finite-element models for the cupula 
and finite-element fluid-structural interaction model of the semicircular canals. 
Introduces the history on cupula attachment, bending mode, stiffness, and modeling. 
Estimates the Young’s modulus of the cupula using thin and thick bending membrane 
theory, finite-element simulations, and estimates of a pressure-volume coefficient 
taken from the literature. Presents a three-dimensional finite-element model of the 
semicircular canals. 

• Chapter 3. – Virtual reality model: Presents the development of a virtual reality model 
of the vestibular sensors. The kinematics problem is first formulated. The resolution of 
the equation of motions and the computation of the state of each sensor are achieved 
using a Simulink model. Finally, a virtual world is linked to the Simulink file so as to 
visualize in real time the behavior of the sensory system. Note that a graphic user 
interface is specifically developed to simplify the use of the model.  

• Chapter 4. – Models for human spatial orientation perception: Demonstrates why the 
“Observer” and “Kalman filter” model families are equivalent from an input-output 
perspective. Introduces the idea that the motion disturbance and sensor noise spectra 
employed in the Kalman Filter formulation may reflect human perceptual thresholds 
and prior motion exposure history. Describes the structure of the EKF and UKF 
models through the modeling of the sensors and the definition of the central process in 
terms of suboptimal estimation. Discusses implementation in Matlab. Presents 
predictions of the model for usual experimental cases. Performs a sensitivity analysis 
on the parameters of the model. 

• Chapter 5. – Scale model of the semicircular canals: a similitude study for the 
semicircular canal is presented, and potential materials for the manufacturing of the 
large scale model are proposed. 

• Chapter 6. – Conclusion: Summarizes the key findings of this study and makes 
recommendations for future work. 

The work related to the development of models for human spatial orientation estimation and 
to finite-elements modeling of the cupula has been carried out while the author was a visiting 
student at Massachusetts Institute of Technology. 
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Chapter I: Background 
 

1.1. Vestibular physiology 
 
The inner ear is divided into two parts: the cochlea serving auditory function, and the 
vestibular system - which is phylogenetically the oldest part of the inner ear - that contains the 
sensors providing information of body orientation and balance in three-dimensional space. 
Any motion of the body are thus detected by the vestibular system, encoded as an electrical 
signal, and transmitted to the brain through the vestibular nerve. The brain then integrates 
vestibular, visual, and somatosensory inputs to estimate the orientation and motion of the 
body, and consequently elicit eye, head, or body movements that will stabilize gaze and 
maintain balance. 

 
There is one vestibular system on each side of the head, in close approximation to the cochlea. 
Due to its specific structure, this system is also called the labyrinth (Fig. 1.1). One 
distinguishes between the bony labyrinth and the membranous labyrinth. The bony labyrinth 
is a complex cavity tunneled in the temporal bone of the skull. Its structure forms three ducts - 
the semicircular canals - that converge toward a larger central part called “the vestibule”. The 
membranous labyrinth is enclosed in this osseous labyrinth, and is suspended in a fluid called 
“the perilymph” (Sauvage, 1999). In birds and mammals, fine connective tissue filaments 
suspend the membranous duct within the osseous canal. The filaments serve to anchor the 
membranous labyrinth to the temporal bone such that the gravitoinertial acceleration 
experienced by the sensory organs could be expected to be nearly identical to that experienced 
by the temporal bone. To date, there are no experimental data to suggest significant relative 
motion between the temporal bone and the membranous labyrinth (Rabbitt, 2004). The 
membranous labyrinth is also filled with fluid known as “the endolymph”, physically a water-
like liquid. Each side of this bilateral system consists of two types of sensors: a set of three 
semicircular canals sensing rotation movement, and two otolith organs (the saccule and 
utricle) which sense linear movement and head tilt. 
 
 

 
Figure 1.1. Visualization of the inner ear. 1) Anterior canal, 2) posterior canal, 3) lateral canal, 4) ampulla of 
each canal, 5) common crux, 6) utricle, 7) saccule, 8) cochlea. 

ear canal 

stapes 
malleus 

ear drum 

cochlea 

Vestibular 
system 

Vestibular nerve 

Outer ear 

Middle 
ear 

1 

4 
2 

4 

3 
5 

6 
7 

8 

Inner ear 



 17 

1.1.1. The semicircular canals 
 
The semicircular canals are commonly referred to as the lateral canal, also called horizontal 
canal, and the posterior and anterior canals, which constitutes the vertical canals. These latter 
have a common duct called the common crux for about 15% of their length. The canals are 
oriented in almost mutually orthogonal planes. The lateral canal lies in a plane elevated about 
30 degrees from the horizontal plane, while the two others are arranged in diagonal planes 
which subtend roughly 45 degrees relative to the frontal and saggital planes of the skull (Fig. 
1.2a). Thus, the anterior canal on one side of the head is parallel to the posterior canal on the 
other and vice versa, whereas the horizontal canals of both inner ears lie in the same plane. 
Because most head movements are not in a single SCC plane, and also because of the 
imperfect orthogonality of the three canals, the labyrinth usually resolves a given head 
rotation into three components.  That is, endolymph motion in each canal measures 
component of the head’s rotational velocity in the plane of that canal (Fig. 1.2b). It has also 
been shown that each canal admits a specific direction of stimulation, which maximizes the 
excitation: the lateral, anterior and posterior canals primarily sense yaw, roll and pitch 
respectively (Rabbitt, 1999). 
 
The set of canals constitute a very small fluid-filled system the size of a pea. They 
approximately form a circular path of 3.2 mm radius and have a cross section radius along 
their slender part of about 0.16mm (Curthoys et al., 1987). The study of Curthoys and Oman 
probably constitutes the most thorough investigation concerning the dimensions of the human 
semicircular canals. From microdissected specimens, they were able to provide measurements 
of the sizes, cross-sectional shapes and areas all around the path of fluid flow through the 
horizontal semicircular duct, ampulla, and utricle. The results of this study are presented in 
more detail in Chapter II. 
 
At one location in each canal, and more precisely in the vicinity of the utricle, the canal cavity 
swells to form a bulbous expansion known as the ampulla that contains a transverse ridge of 
sensory epithelium, the crista. The epithelial surface of the crista contains thousands of 
sensory hair cells and surrounding supporting cells (Fig. 1.3).  Hair cells and supporting cells 
are found not only atop the ridge (crest) of the crista, but also down its sloping flanks.  Hair 
cell sensory cilia project a short distance into tiny channels in the cupula, a gelatinous 
structure that extend upward from the surface of the crista all the way to the vault (roof) of the 
ampulla.  The channels in the cupula material may be created as cupula material is secreted 
upwards from the supporting cells surrounding the each hair cell.  The cupula effectively 
forms a thick diaphragm that completely occludes the canal lumen above the crista, and 
covers the entire sensory surface on the crest and both flanks. As detailed later, it is now 
believed that the cupula appears attached to the ampulla around its entire periphery.   
 
When the head is subjected to an angular acceleration, endolymph inertia creates a hydrostatic 
pressure that deforms the cupula (Fig. 1.4). Bending of hair cell stereocilia then initiates a 
complex transduction process in hair cells and vestibular afferent neurons. The nervous signal 
is finally transmitted to the brain and a sensation of motion results. At a constant rotation rate, 
the endolymph in the canals tends to catch up with the rotation of the head due to the 
viscosity, eliminating the relative movement. Eventually, as long as the rotation rate remains 
constant, the cupula returns to a vertical position due to its elastic properties and the sensation 
of motion eventually ceases.  
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Figure 1.2. Orientation of the semicircular canals. (a) Orientation of the semicircular canals within the head. 
(b) Definition of canal axis. (c) Resolving head’s angular rotation into vector components. HC, horizontal canal; 
RA and LA, right and left anterior canal, respectively; RP and LP, right and left posterior canal, respectively. 
 
 
 
All of the hair cells on a semicircular canal crista are oriented or “polarized” in the same 
direction. Their stereocilia all have the tall ends pointing the same way. As a result, 
endolymph motion that is excitatory for one hair cell will be excitatory for all of the hair cells 
on that crista. Horizontal and vertical canals have different direction of polarization. Hair cells 
in the horizontal canals are polarized to be excited by flow of endolymph toward the ampulla, 
whereas hair cells in the vertical canals are polarized to be excited by flow of endolymph 
away from the ampulla. 
 
Experimental studies (e.g. Goldberg and Fernandez, 1971) have shown that afferent neurons 
exhibit slightly different dynamics in response to the same head angular acceleration stimulus.  
All neurons seem to show a response component proportional to cupula volume displacement, 
as estimated from fluid mechanical models. Differences between units in static sensitivity, 
rate sensitivity and adaptive characteristics are attributed to the hair cell transduction or 
afferent encoding processes. 
 

(a) 

(b) 

(c) 

Decomposition of head’s angular 
velocity V on to canal axis 
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Figure 1.3. Cross-section of the ampulla and functioning of the hair cells. (a) Visualization of the vestibular 
system; (b) Section of ampulla showing how the cupula seals the duct; (c)  Details of the crista and hair cells 
implantation; (d) Function of vestibular hair cells: when mechanical forces deviate the cilia toward the 
kinocilium, the hair cell depolarizes and the frequency of action potentials in the associated afferent vestibular 
neurons increases. When the cilia are deviated in the opposite direction, the hair cell hyperpolarizes and the 
frequency of action potentials decreases. 
 
 
 

 
Figure 1.4. Detection of an angular acceleration of the SCC through inertia of the endolymph fluid relative to 
the canal motion. (a) At rest. (b) Clockwise head angular acceleration. (c) Constant angular motion. (d) 
Deceleration. 

cupula 

ampulla Vestibular nerve 

Vestibular system Section of ampulla Cupula+crest 

crista 

Hair cell 

Inhibition 
(hyperpolarize) 

Resting 
Excitation 

(depolarize) 

Vestibular afferent 
discharge rate 

Hair cell 

(a) (b) (c) 

(d) 

Relative 
movement 
of the fluid 

pressure depressure 

Acceleration 

cupula 

ampulla 

Semicircular 
canal 

endolymph 

Constant 
angular 
motion 

Deceleration 
or stopping 

motion 

• No angular acceleration 
• No relative motion between 

canal and endolymph 
• Cupula not deflected 
• No perceived angular 

movement 

• Angular clockwise 
acceleration 

• Inertia causes endolymph 
to lag behind 

• Cupula deflected right 
• Perceived clockwise 

movement 

• Endolymph moving at 
same speed as canal 

• No relative motion 
between canal and 
endolymph 

• Cupula not deflected 
• No perceived angular 

movement 

(a) (b) (c) (d) 

• Canal stopped 
• Endolymph momentum 

keeps it moving clockwise 
• Cupula deflected left 
• Perceived 

counterclockwise 
movement 

direction of excitation 
(polarization) 



 20 

1.1.2. Otolith organs 
 
The otolith organs, the saccule and utricle, are situated between the semicircular canals and 
the cochlea, and are approximately perpendicular to each other (Fig. 1.5a). They are the 
elements of the vestibular system that provide linear motion sensation in human and 
mammals. They are sensitive to the direction of the gravito-inertial force (GIF) applied to the 
head, and consequently respond to both linear acceleration and tilting of the head with respect 
to gravity. The saccule is dedicated to measuring primarily the vertical component of the GIF 
with respect to the head whereas the utricle measures primarily the horizontal component. As 
stated by Einstein’s equivalent principle, all linear accelerometers must measure both linear 
acceleration and gravity (Einstein 1908).  Therefore, the otolith organs cannot discriminate 
between acceleration and tilt, requiring additional sensory information to resolve this 
ambiguity.  
 
Both the saccule and utricle are flat layered structures (Fig. 1.5b). The top layer, which is in 
contact with the endolymph, consists of calcium carbonate crystals called otoconia, the 
middle layer consists of a gelatinous matrix called the otholitic membrane, and the bottom 
layer consists of a bed of hair cells known as the macula that is rigidly attached to the skull 
and therefore moves with the head. The hair cells are anchored in the macula whereas their 
cilias extremities are embedded in the otolithic membrane.  
 

 
 
Figure 1.5. Physiology of the utricular macula. (a) Location of the utricle and saccule and orientation of the 
hair cells on the maculae of the otolith organs. The streamline represents the striola, and the arrows, the local 
direction of enhanced sensitivity of the hair cells. (b) 3D perspectives of a macula. Hair cells are embedded in 
the macula and measure the deformation of the otolith membrane caused by the motion of otoconia with respect 
to the head. 
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The orientation of the hair cell bundles is organized relative to a region called the striola, 
which demarcates the overlying layer of otoconia (Fig. 1.5). The striola forms an axis of 
symmetry such that hair cells on opposite sides of the striola have opposing morphological 
polarization. Thus, a tilt along the axis of the striola will excite the hair cells on one side while 
inhibiting the cells on the other side. Figure 1.5a illustrates the general morphological 
distribution of hair cell polarizations for the saccule and utricle where the arrows indicate the 
direction of movement that produces excitation. 
 
The otoconia, which have a density of 2.71g/cm3, make the otolithic membrane considerably 
heavier than the structures and fluid surrounding it (Rabbitt et al., 2004). Thus, when the head 
experiences a linear acceleration, the membrane lags behind the sensory epithelium (Fig. 1.6). 
The resulting shearing motion between the otolithic membrane and the macula displaces the 
hair bundles, which are embedded in the lower gelatinous surface of the membrane. This 
displacement of the cilia generates a receptor potential in the hair cells. The same 
phenomenon also occurs when the head tilts, gravity causing the membrane to shift relative to 
the sensory epithelium. 
 

 

Figure 1.6. Mechanism of the otolith organs, showing their sensitivity to linear acceleration and head tilt. These 
drawings illustrate the shearing force in the plane of the utricular otolith membranes. For instance, a 30 degrees 
head-tilt elicits a force equivalent to 0.5G in the plane of the utricular macula. The same stimulus can be achieve 
using a linear acceleration of 0.5G with the head upright. 

 

1.2. Mathematical modeling 

1.2.1. Semicircular canals 
 
The first model regarding the canals was proposed by W. Steinhausen (1931, 1933). He 
proposed a linear second order model of canal dynamics to explain the observed 
characteristics of vestibular-induced eye movements in fish (pike).  This model was further 
refined by the “torsion pendulum” model of Van Egmond et al. (1949). They considered a 
canal as a thin torus having a constant large radius R, and a constant circular cross-section of 
radius r, and proposed that the angular displacement of the endolymph ( )tξ  about the center 
of the canal was related to the angular acceleration of the head ( )tα  by the differential 
equation of a heavily damped torsion pendulum: 
 

( ) ( ) ( ) ( )t t t tξ ξ ξ αΠ ∆+ + = −
Θ Θ

ɺɺ ɺ            (1.1) 
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where ( )tξ , ( )tξɺ , and ( )tξɺɺ  denote respectively the angle, the angular velocity and acceleration 
of the fluid; Θ  is the endolymph moment of inertia; Π  a viscous damping frictional drag of 
the endolymph, and ∆  a spring coefficient associated with cupula motion (Fig. 1.7).  
 

 
Figure 1.7. Mechanical model of a semicircular canal. 
 
 
For a step of change ω of angular velocity of the head, the exact solution for ( )tξ  is given by: 
 

1 21 2

1 2

( )
t t

t e eτ τωτ τξ
τ τ

− − 
 = −
 −  

            (1.2) 

 

where the two time constants are: 
1 2

( ² 4 )1 1
,

2τ τ
−Π ± Π − ∆Θ

=
Θ

. 

 
In all species studied to date, the semicircular canals are highly overdamped (4 ²∆Θ << Π ), 
which results in real-valued time constants (Groen, 1952; Rabbitt et al., 2004). In that case, a 
good approximation of the time constants is: 
 

• 1τ Π≈
∆

: long time constant         (1.3) 

• 2τ Θ≈
Π

: short time constant          (1.4) 

 
and equation (1.2) can be rewritten as: 
 

( )
tt

t e e
ωξ

Π∆ −−
ΘΠ

 Θ≈ −  Π  
            (1.5) 

 
At the very beginning of the rotation of the head, the endolymph moves very quickly 
according to the short time constant. Afterwards the fluid will retreat slowly, according to the 
long time constant, controlled by the weak spring of the cupula and resisted by the high 
degree of friction  
 
Parameters for man are, however, difficult to measure because direct afferent response of the 
semicircular canals cannot be obtained. Therefore, most early experiments to determine the 
torsion-pendulum model parameters were based on subjective response. For instance, Van 
Egmond (1949) determined both time constants according to the verbal response of humans 

Telastic 

ξ∆  

ξΠ ɺ  

Tviscous 
( )α t  

ξ
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subjected to various motion inputs in a rotating chair. He reported that the long time constant 

1τ  and short time constant 2τ  were close to 10 seconds and 0.1 seconds respectively. As 
discussed latter, values determined from subjective response do not truly represent the 
dynamics of cupula motion but rather constitute overall dynamics parameters representing the 
rotational sensation response to an angular velocity input. However, the basic operating 
principle of the canal is not impaired and is presented as follows. 
 
The system endolymph-cupula being highly overdamped, a convenient and sufficiently 
accurate simplification of equation (1.1) in terms of Laplace transforms is: 
 

1 2

1 1

( )

( ) ( 1)( 1)

s

s s s

τ τξ
ω τ τ

≈
+ +

           (1.6) 

 
where ω  is the angular velocity of the head. The reason for expressing the transfer function 
between head angular velocity and cupula displacement is not obvious until one examines its 
frequency response. As noted by Mayne (1950, 1974), endolymph and cupula displacement 
are a measure of velocity rather than acceleration within a given frequency range of head 
angular velocity. This can be clearly seen on a Bode diagram (Fig. 1.8). Most head 
movements during normal body activity are in the range of frequencies where the canal 
response is flat, giving a nearly constant ratio between input and output and nearly zero phase 
shift. Clearly this implies that the canal’s normal role is that of an angular velocity transducer. 
To explain this graph, Jones (1965) argued that the cutoff at high frequencies ( 21/ω τ> ) is due 
to inertial force increasing with respect to viscous damping force, while the cupula spring 
force becomes negligible, and that the cutoff at low frequencies ( 11/ω τ> ) is due to cupula 
spring force increasing with respect to viscous damping force, while inertial force becomes in 
turn negligible. 
 

 
 
Figure 1.8. Curve of typical cupula displacement and Bode diagram of the transfer function between head 
angular velocity and cupula displacement. (a) Cupula deflection due to a step of angular velocity. (b) 
Theoretical frequency response of the semicircular canals based on the model of Van Egmond. 
 
 
The torsion pendulum model has been the starting point for subsequent theoretical analyses of 
canal dynamics (Groen et al., 1952; Goren, 1956; Van Egmond et al., 1949; Njeugna et al., 
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1986, Oman et al., 1987). Most of these studies were based on hydrodynamic considerations. 
Steer (Steer, 1967) solved the Navier-Stokes equations for flow in a toroidal duct, whereas 
Van Buskirk (1976, 1977, 1988) presented a more rigorous approach by considering the 
utricle as a semicircular segment, with a constant cross-section much larger than that of the 
duct. Oman et al. (1987) derived a more general two-segment model, and considered the 
effect of duct cross-section ellipticity on Poiseuille flow drag. He then extends his model to 
the case where the size, shape, and curvature of the canal lumen change continuously through 
the duct, utricle, and ampulla. He came up with a second-order differential equation that has 
three coefficients, unlike the equation of a torsion-pendulum, which has only two. He derived 
the following transfer function relating cupula volume displacement to head angular velocity: 
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       (1.7) 

 
where ρ  and µ  are the density and viscosity of endolymph, respectively, L  is the total length 
of the central streamline, K  is a stiffness coefficient representing the cupula as a linear 
spring-like element, Λ is the surface defined by the central streamline of the canal and 
projected into the plane of rotation, A  is the cross-sectional area of the canal lumen, S  is a 
wall shape factor, and G is the sensitivity of endolymph volume displacement to angular 
acceleration.  
 
Based on anatomical data (Curthoys et al., 1987), Oman et al. (1987) estimated the short time 
constant of the system to be close to 4 ms. This value is two order of magnitude lower than 
previous values derived by a number of researchers (e.g. Van Egmond et al., 1949). That is, 
previous values were derived from subjective estimates of sensation of rotation and vestibular 
induced nystagmus. Therefore, these sensations are not representative of the response of the 
canal alone and are certainly influenced by the complicated physiology of the central 
vestibular pathways. As regards the determination of the long time constant, its calculation is 
not immediate as it requires the knowledge of the coefficientK . As it will be discussed in 
Chapter II, many researchers have attempted to estimate this parameter according to different 
experimental procedures, and thus several values have been suggested. Hence, estimated 
value for 1τ  is in turn different depending on the assumed value forK . Another way to 
approximate the long time constant is to record the response of peripheral afferent neurons. 
Indeed, it has been shown that the discharge of the afferent nerve fibers innervating the canals 
is proportional to cupular displacement. Fernandez et al. (1971) did record the discharge 
characteristics of peripheral vestibular afferents in the squirrel monkey under various angular 
acceleration inputs of different amplitudes and frequencies. They derived a transfer function 
relating the afferent firing rate of the vestibular nerve to the angular acceleration input of the 
form: 
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The term /( 1)a as sτ τ +  results in a phase lead at low frequencies and is the frequency-domain 
representation of the Young-Oman adaptation operator (1969). The term (1 )l sτ+  is a lead 
component and reproduces the high frequency deviations from the torsion-pendulum model 
and implies that the system is sensitive both to cupular displacement and to the velocity of the 
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displacement. The values of the four time-constants were determined as: 80a sτ = , 0.049l sτ = , 

1 5.7sτ = , and 2 0.003sτ = . 
 
However, as noted by Merfeld et al. (1993), the transfer function derived by Fernandez et al. 
exhibits incorrect behaviors at high frequencies. First, the model predicts that the system 
response will increase as the frequency is increased from 3.25 Hz to 50Hz. Second, the model 
predicts that the system response will be constant for all frequencies greater than 
approximately 50 Hz. Neither of these predictions is likely. Consequently, Merfeld proposed a 
modified transfer function to represent the semicircular canals of the form: 
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          (1.9) 

 
where 1 5.7sτ = and 80a sτ = .  
 
Note that Merfeld considered the model inputs to be limited to low frequency disturbances, 
and that this simple model may thus not be used to make predictions beyond 1 Hz. 
 
Finally, by assuming that the long time constant of the human semicircular canal cupula is 
close to that of the squirrel monkey, the computation of both the pressure-volume coefficient 
K  and the sensitivity gain G  of Oman’s model can be performed. Indeed, the stiffness 
coefficient K  and the gain G  are related to the long time constant according to: 
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where cA  is the cross-sectional area of the lumen occupied by the cupula and is equal to 
1.04 ²mm  (Curthoys et al. 1987), and the ratio /cX γ  defines the average displacement of the 
face of the cupula per unit head angular velocity and is equal to 0.026 / deg/µm s (Oman et al. 
1987). 
 

1.2.2. Otolith organs 
 
As with the semicircular canals, the first models regarding the dynamics of the otolith organs 
were based on subjective experiments. Meiry (1966) was probably the first to investigate 
subjective response to linear motion by using a cart to produce longitudinal sinusoidal motion. 
According to subjective indication of direction, he obtained a transfer function relating 
perceived velocity to stimulus velocity. Young and Meiry (1968) then noted that the proposed 
model correctly predicted the phase of perceived velocity for lateral oscillations, but failed to 
predict the otoliths response to sustained tilt angle as indicated by behavioral and 
physiological data. Therefore, they proposed a modified model, which related the perceived 
GIF to specific force stimulus, using a shorter long time constant and an additional lead term.  
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Despite this revised model was able to predict both perceived tilt and acceleration in response 
to acceleration input, it did not actually reflect the dynamics of the sensor alone, but rather the 
dynamics behavior representing the gravito-inertial sensation response to a GIF input. 
 
A decade later, Zacharias (1977) noted that a lumped parameter model of otolith motion could 
be used to represent otolith dynamics, similar to the torsion-pendulum model for the 
semicircular canals. Ormsby (1974) first developed this model, and Grant et al. (1986, 1987, 
1990, 1994) later proposed further refined versions. They first considered the gelatinous layer 
supporting the otoconial as an elastic solid (Fig. 1.9). By examining the maximum 
displacement of the otoconial layer in response to a step change in linear velocity, they 
approximated the short time constant of the system to be close to 0.002 s. However, they later 
demonstrated that this value turned out to be too large when reasonable values of the 
maximum otolith displacement are considered, and concluded that more damping was needed 
in the lumped parameter model. Therefore, Grant and Cotton (1990) proposed to introduce 
additional damping by considering in their mechanics model a viscoelastic gelatinous layer. 
They suggested a one dimensional analysis and treated the otoliths as a second-order spring-
mass damper, where the otoconial layer was modeled as a rigid solid mass, the gel layer as an 
isotropic viscoelastic material, and the endolymph as a Newtonian fluid with uniform 
viscosity. 
 

 
Figure 1.9. Schematic diagram of the functioning of the Otolith organs. (a) Schematic diagram of the otolith 
organ. (b) and (c) show two configurations illustrating the system under a purely tilt stimulus (b), and a purely 
inertial stimulus (c). 
 
 
By applying Newton’s second law of motion within the plane of the otoconial layer, they 
obtained the following transfer function: 
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where x  is the relative displacement of the otoconial layer with respect to the head, eρ  is the 
density of the endolymph, and 0ρ  is the density of the otoconial membrane, with 0 eρ ρ> . As 
noted by Rabbitt et al. (2004), the fact that 0 eρ ρ> leads to the inertial force responsible for 
movement of the otolith mass relative to its substrate. Finally, 1otoτ  and 2otoτ  are the long and 
short time constant, respectively, that characterize the macromechanical temporal response 
dynamics of the otoconial layer. These time constants are analogous to those found in the 
semicircular canals but are shifted relative to the physiological time scales of motion present 
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in linear versus angular head movements. That is, the semicircular canals experience a wide 
range of angular motion stimuli at frequencies between the two characteristic times, whereas 
the otolith organs experience additional low-frequency stimuli arising primarily from slow 
head tilts relative to gravity. As with the semicircular canals, the otolith organs have been 
found to be highly overdamped (De Vries, 1950), and, in humans, the time constants are given 
by 15 40otoµs µsτ< <  and 10.1 4otoµs µsτ< <  (Grant and Cotton, 90; Grant .et al., 1994). 
 
As regard the characterization of the physiology of the mammalian peripheral otolith system, 
the works of Fernandez and Goldberg (1976) probably constitutes to date the most 
comprehensive and thorough investigation. Indeed, before their studies, little was known 
about the spatial and temporal properties of these neurons, as all previous investigations had 
almost entirely dealt with primary otolith afferent responses to static tilts rather than dynamic 
linear accelerations. As they did few years after for the semicircular canals, they recorded the 
discharge of peripheral otolith neurons in response to various stimulations in the squirrel 
monkey. In particular, they described the response properties of primary otolith afferents to 
sinusoidal linear acceleration stimuli and provided the first quantification of the neurons 
response dynamics using system analyses techniques. They characterized the frequency 
responses of regular and irregular units with a transfer function of the form: 
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The term aH  is an adaption operator that contributes to low frequencies phase leads seen at 
and increases of gain from static to 0.006 Hz. The term vH is a velocity-sensitive operator 
with a fractional exponent ( 1vk < ). The last term MH  is a first order lag operator that 
Fernandez and Goldberg noted might reflect the mechanics of otolith motion. Despite this 
transfer function provide an adequate representation of the dynamics behavior of most units, 
Hosman (1996) noted that this model is not easy to implement due to the fractional exponent 
in the lead term. He proposed a simplified model of the same form developed by Grant and 
Best (1987) which was then refined by Telban and Cardullo (2005). They came up with a 
transfer function relating the afferent otolith dynamics and the gravito-inertial force input of 
the form: 
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By comparing the step response of the proposed afferent dynamics model (eq. 1.14) with the 
Fernandez-Goldberg model (eq. 1.13), they showed that both models were in good agreement. 
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1.3. History of spatial orientation 
 
Spatial orientation refers to the natural ability to determine and maintain body position in 
relation to the surrounding environment, especially during motion. In order to achieve this 
goal, the brain has to integer various sensory signals such as visual, vestibular, and 
proprioceptive inputs. A lot of studies have been focused on modeling the process of spatial 
orientation so as to understand how sensory signals are processed by the central nervous 
system as well as to model the phenomenon of spatial disorientation, which is attributed to 
15-30% of all aircraft fatalities in flight (Braithwaite et al., 1998; Knapp et al., 1996).  
 
Mathematical models for three dimensional human spatial orientation have continued to 
evolve over the past four decades.  The earliest mathematical models for human orientation 
perception (e.g. Mayne, 1950) addressed rotation about an Earth vertical axis. Attenuation of 
sensations during prolonged rotation was attributed semicircular canal (SCC) dynamics.  
However, in the 1970s, perspectives began to broaden:  Validated models for primate 
semicircular canal (Goldberg et al, 1971) and otolith (Fernandez et al., 1976) afferent 
response dynamics became available.  As a result, it became clear that the time course of 
perception was not entirely determined by end-organ dynamics.  For example, animal 
vestibulo-ocular reflex (VOR) data indicated that central mechanisms somehow perpetuate 
SCC responses, broadening the dynamic range of motion perception, and lengthening the 
dominant VOR time constant - a phenomenon now generally referred to as “velocity storage”.  
Alternative - but dynamically equivalent – mathematical models were proposed by Robinson 
(1977) and Raphan et al (1977, 1979).   Similarly, it was recognized that relatively slow 
dynamics associated with somatogravic illusions – such as the sensation of pitching up during 
linear acceleration in the dark – were primarily not due to otolith end organ dynamics.  Mayne 
(1974) noted that gravireceptors ambiguously respond to both gravity and linear acceleration, 
and proposed that somatogravic illusion dynamics resulted from central mechanisms which 
utilize both angular and linear acceleration cues to estimate the direction of “down”.  Mayne 
noted that keeping track of the direction of “down” is an essential step in inertial navigation, 
normally achieved by integrating angular velocity cues, and anchored by averaging the 
direction of net gravireceptor output over long periods of time.  Mayne proposed a 3D 
orientation model where the central nervous system (CNS) estimated “down” and linear 
acceleration respectively via complementary low and high pass filtering of gravireceptor cues.   
 
Meanwhile, aerospace guidance engineers developed formal mathematical methods for 
estimating the orientation and position of a vehicle for autonomous or assisted navigation 
based on information from a relatively small set of navigation sensor measurements.  The 
vehicle trajectory is estimated in real time using an “internal model” for the vehicle dynamics.  
The trajectory estimate is continuously corrected by using internal models for the navigation 
sensors to predict what the current set of sensor measurements should be, provided the vehicle 
internal model prediction were correct.  The difference between predicted and actual sensor 
measurements (termed the “residual”) – appropriately weighted – is then used to correct the 
trajectory estimate.  The general version of this scheme is referred to as a Luenberger 
Observer (Luenberger, 1963).  For the case frequently encountered in engineering, where the 
entire system can be represented using linear models, and where “noise” disturbances to both 
the vehicle and sensor measurements can be well characterized, Kalman (1960) demonstrated 
how to calculate optimal residual weighting coefficients that minimize the stochastic error in 
the trajectory estimate.   Where the residual weighting coefficients are computed in advance, 
such a system state estimator is referred to as a steady state Kalman Filter (KF).  Oman (1982, 
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1991) noted that the “residual” signal in a KF corresponded to the putative sensory conflict 
signals thought to be the central neural stimulus triggering sensory motor adaptation and 
motion sickness. 

 
Recognizing the potential utility of steady state KF techniques, Young and colleagues (Borah 
et al, 1979; Borah et al. 1988) applied them to model orientation perception by a human riding 
passively in a vehicle (Fig. 1.10).  The estimator incorporated dynamic models for the 
semicircular canals and otoliths, as well as simple models of available visual angular and 
linear velocity cues. Simple 1-D and 3-D examples of Borah’s KF approach are presented in 
chapter 4. The transformation from world to head coordinates was mathematically linearized, 
so model predictions were restricted to small head deviations from the upright.  

 

 
Figure 1.10. Borah et al. multisensory model using steady state Kalman filter to represent neural central 
processing. ̂x  is the vector representing estimates of internal model states, e.g. estimates of angular velocity 

perception, orientation perception, etc. F  is a function of K  (Kalman gains) and internal model dynamics. 

 

As noted by MacNeilage et al (2008), Borah et al regarded vehicle motion disturbance and 
sensor noise magnitude and bandwidth as free parameters in their model.  They empirically 
determined values of these such that their KF model successfully mimicked angular velocity 
storage during rotation about the Earth-vertical, and somatogravic illusory tilts during linear 
acceleration in darkness.  When visual stimuli were present, the model accounted for the 
“circularvection” and illusory tilt illusions resulting from scene rotation about vertical and 
horizontal axes, respectively. 

 
Many aircraft accident, neuro-otological and laboratory spatial orientation research paradigms 
involve three dimensional, six-degree-of-freedom movements.  Typically this results in head 
tilts (real or perceived) so large that the world-to-head coordinate transformation is nonlinear, 
and so a steady state KF model is not appropriate.  Therefore, Pommellet (1990) generalized 
Borah’s model by using a nonlinear version of the KF known as the Extended Kalman Filter 
(EKF). In his model, the world-to-head coordinate transformation was represented using 
Quarternion mathematics. While Borah’s model responses qualitatively matched perceptions 
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for simple stimuli with the head near the erect position, the Pommelet EKF results exhibited 
numerical instabilities in quaternion estimation, particularly for the more complex profiles 
involving larger estimated tilts. A follow up EKF, which only considered the vestibular 
portions of Pomellet’s model, was developed by Bilien (1993). The resulting EKF was 
applied to a simple centrifuge paradigm in darkness, but, unfortunately, encountered similar 
difficulties, particularly when modeling Coriolis responses. 

 
Meanwhile, Merfeld et al. (1993) proposed a nonlinear Observer model in which the 
relationship between head and world coordinate frame was also represented by quaternion 
mathematics (Fig. 11). In Merfeld’s model, this transformation was incorporated into the 
Observer’s internal model that estimated the direction of “down”.  The residual corrections 
were applied in an ad-hoc fashion, and vehicle motion disturbance and sensor noise was not 
represented.  However they showed that by appropriate choice of a single SCC residual 
weighting parameter, a one dimensional model could be tuned so its responses were identical 
to those of the Robinson/Raphan et al models for angular velocity storage. Adding three more 
Otolith measurement residual weighting factors as free parameters, the three dimensional 
version of the model predicted somatogravic illusions during lateral acceleration, 
centrifugation, and off-vertical-axis rotation.  It also accounted for effects of head tilt on post-
rotational sensations. Merfeld’s one and three-dimensional model are reviewed in chapter 4. 
  

 
Figure 1.11. Outline of the three-dimensional model of Merfeld. The physical inputs, angular velocity and 
gravitoinertial acceleration are processed by the sensor dynamics, then compared to internal estimates either by 
substraction or by means of a vetor product. After scaling by gain factors (triangles), the error vectors are fed 
into the estimation process which contains internal models of sensor dynamics and physics. 
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Merfeld’s Observer model was further validated and extended by Halswanter et al (2000), 
Merfeld and Zupan (2002), Vingerhoets et al (2006, 2007) and Newman (2009). Note that 
these models assumed that internal model estimates corresponded to perceptions. Table 1.1 
summarizes these efforts and compares them against the alternate class of Kalman filter and 
extended Kalman filter models. Note also that, until Newman contributions, Observer models 
predicted orientation and linear acceleration, but did not predict position in space. In addition, 
previous Observer models were limited to SCC and otolith cue interaction. Newman 
contribution was in adding a “limbic” coordinate frame in which velocity and position path 
integration was assumed to take place, and in incorporating visual pathways. Results of this 
extended Observer model are in good agreement with the Borah KF model results for the 
simple visual-vestibular motion paradigms of linear vection, circular vection, rotation in the 
light and acceleration in the light.  

 

 

 

Table 1.1. Validation cases for Observer and KF / EKF models 
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Merfeld 1993 × × × - - - - 

Haslwanter 2000 - × - - - - - 

Merfeld 2002 - - - × - × - 

Vingerhoets 2006 - × - - - - - 

Vingerhoets 2007 - × - - - × - 

Newman 2009 × × - × × - × 
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1.4. State estimation of dynamic state-space models 
 

1.4.1. Introduction 
 
In daily life our sensors, such as vestibular and visual sensors, provide information of 
orientation, velocity, and acceleration to the brain. In addition, it is assumed that the central 
nervous system has an internal representation of the physical world which is defined in state 
space notation by a state vector ( )x t  and a system matrix A . The main idea of human spatial 
orientation estimation model is to estimate a state vector that contains variables of orientation, 
velocity and acceleration given a set of measurements provided by our sensors. It is assumed 
that some of the estimated states correspond to our perception of orientation, angular velocity, 
and linear acceleration. The principle of human spatial orientation model is presented in 
figure 1.12.  
 
Different techniques such as Observer, linear Kalman filter, nonlinear Kalman filters, etc can 
be used to achieve this goal. In the following sections, we provide a background on state 
estimation techniques of dynamic state-space models. More particularly, we present in detail 
the linear Kalman filter algorithm as well as the extended and unscented Kalman filter 
techniques that will be used in chapter 4 to develop models for human spatial orientation. 
 
 

  
 
Figure 1.12. Principle of human spatial orientation estimation model. Sensors provide some measurements 

( )y t . The central nervous system is assumed to have an internal representation of the real world. Based on this 

model and on sensor measurements, estimation techniques can be used to provide an estimate state vector ˆ( )x t . 

It is assumed that the estimated state variables correspond to perception of orientation, angular and linear 
velocity, and linear acceleration. 
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1.4.1.1. Probalistic inference 
 
Probabilistic inference is the problem of estimating the hidden variables (states) of a system in 
an optimal and consistent fashion as a set of noisy or incomplete observations of the system 
becomes available online. The optimal solution to this problem is given by the recursive 
Bayesian estimation algorithm which recursively updates the posterior density of the system 
state as new observation arrive. This posterior density constitutes the complete solution to the 
probabilistic inference problem, and allows us to calculate any “optimal” estimate of the state. 
Unfortunately, for most real-world problems, the optimal Bayesian recursion is intractable 
and approximate solutions must be used. Numerous approximate solutions to the recursive 
Bayesian estimation problem have been proposed over the last couple of decades in a variety 
of fields. These methods can be loosely grouped into the following three main categories: 
 

• Gaussian approximate methods: these methods all model the pertinent densities in the 
Bayesian recursion by Gaussian distributions, under the assumption that a consistent 
minimum variance estimator (of the posterior state density) can be realized through 
the recursive propagation and updating of only the first and second order moments of 
the true densities. 

 
� Kalman filters: the celebrated Kalman filter is the optimal closed-form solution 

for linear, Gaussian dynamic state space models 
 
� Extended Kalman filter: the EKF applies the Kalman filter framework to 

nonlinear Gaussian systems, by first linearizing the dynamic state space model 
using a first order truncated Taylor series expansion around the current 
estimates. 

 
• Direct numerical integration methods: these methods, also known as grid-based filters, 

approximate the optimal Bayesian recursion integrals with large but finite sums over a 
uniform N-dimensional grid that tiles the complete state space in the area of interest. 
For even moderately high dimensional state spaces the computational complexity 
quickly becomes prohibitively large, which all but preclude any practical use of these 
filters. 

 
• Sequential Monte-Carlo methods: SMC methods make no explicit assumption about 

the form of the posterior density. They can be used for inference and learning in any 
general, nonlinear non-Gaussian dynamic state space models. These methods, like the 
grid-based filters, approximate the Bayesian integrals, with finite sum. Unlike grid-
based filters however, the summation is done with sequential importance sampling on 
an adaptive “stochastic grid”. This grid, as defined by a set of weighted samples drawn 
from a proposal distribution that approximates the true posterior, is concentrated in 
high likelihood area of the state space.  

 

1.4.1.2. Gaussian approximate methods 
 
Due in part to their relative ease of implementation and modest computational cost, the group 
of Gaussian approximate solutions has received most attention for over the past 40 years. 
Under the assumption that the underlying dynamic state space model is linear and all the 
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probability densities are Gaussian, the celebrated Kalman filter is the optimal and exact 
solution to the recursive Bayesian estimation problem. If these assumptions hold, the achieved 
solution is optimal in the minimum mean-square-error (MMSE) sense. However, Kalman’s 
original derivation of the Kalman filter did not require the underlying system equations to be 
linear or the probability densities to be Gaussian. The only assumption made are that 
consistent estimates of the system random variables can be maintained by propagating only 
their first and second order moments (means and covariances), that the estimator itself is a 
linear function of the prior knowledge of the system (summarized by 1: 1( | )k kp x y − ) and the new 
observed information (summarized by ( | )k kp y x ), and that predictions of the state and of the 
system observations can be calculated (these predictions are needed to approximate the first 
and second order moments of 1: 1( | )k kp x y −  and ( | )k kp y x ). The fact that only means and 
covariances are maintained is why this method are (somewhat misleading) called Gaussian 
approximate solution. In other words, the densities are not required to be Gaussian, we simply 
only maintain the Gaussian components (mean and covariance) of the densities in the 
estimator. Predictions of the state and of the observations are optimally calculated by taking 
the expected value of the following equations: 
 

1( , , )k k k kx f x u w−=  

( , )k k ky h x v=                      (1.15) 

 
where kx  is the hidden system state with initial probability density 0( )p x  that evolves over 
time according to the conditional probability density 1( | )k kp x x − , ky  are the observations that 
are generated according to the conditional probability density ( | )k kp y x , kw  is the process 
noise that drives the dynamic system through the nonlinear state transition function f , and kv  
is the observation or measurement noise corrupting the observation of the state through the 
nonlinear observation function h . Note that the state transition density 1( | )k kp x x −  is fully 
specified by f , whereas h  and the observation noise distribution ( )kp v  fully specify the 
observation likelihood ( | )k kp y x . The dynamic state space model, together with the known 
statistics of the noise random variables as well as the prior distributions of the states, defines a 
probabilistic generative model of how the system evolves over time and how we partially 
observe this hidden state evolution. 
 
It turns out that predictions of eq. (1.15) can in general only be calculated exactly for linear 
Gaussian random variables. This does not disallow the application of the Kalman framework 
to nonlinear systems. It just requires further approximations to be made. One such 
approximation is the linearization of the dynamic state space model through the use of a first 
order truncated Taylor series expansion around the current estimate of the system state. This 
algorithm known as the Extended Kalman filter will be presented in depth in section 1.4.3.2. 

 

1.4.2. Linear state space estimation 
 

The simplest of the state space models are linear models, which can be expressed with 
equations of the following form: 
 

1k k kx Fx w−= +  

k k ky Hx v= +                     (1.16) 
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where: 
 

• n

kx ∈ℝ  is the state of the system on the time step k . 

•  m

ky ∈ℝ  is the measurement on the time step k . 

• (0, )k kw N Q∼  is the process noise on the time step k . 

• (0, )k kv N V∼  is the measurement noise on the time step k . 

• F  is the transition matrix, or the system matrix, of the dynamic model. 
• H  is the measurement model matrix. 
• The prior distribution for the state is 0 0 0( , )x N m P∼ . 

 
The model can also be equivalently expressed in probabilistic terms with distributions: 

 

1 1( | ) ( | , )k k k k kp x x N x Fx Q− −=   

( | ) ( | , )k k k k kp y x N y Hx V=                    (1.17) 

 
 

1.4.2.1. Kalman filtering 
 

• Introduction 
 
In 1960, R.E Kalman published his famous paper describing a recursive solution to the 
discrete data linear filtering problem (Kalman, 1960). At first sight, his ideas were met with 
some scepticism among his peers such that his second paper, on the time-continuous case, 
was once rejected because – as one referee put it – one step in the proof “cannot possibly be 
true”! Kalman persisted in presenting his paper and found a receptive audience in the fall of 
1960 during a talk at the Ames Research Center of NASA in California (Mohinder et al., 
2001). Kalman presented his recent results which had been recognized to be potentially 
applicable to the trajectory estimation and control problem for the Apollo project, a planned 
manned mission to the moon and back. In the mid-1960s, the Kalman filter became part of the 
Northrup-built navigation system for the C5A air transport, and then, in the early part of 1961, 
was made a part of the Apollo onboard guidance. Since that time, it has been an integral part 
of nearly onboard trajectory estimation and control system designed. 
 
Theoretically the Kalman filter is an estimator for what is called the linear-quadratic problem, 
which is the problem of estimating the instantaneous state of a linear dynamic system 
perturbed by white noise – by using measurements linearly related to the state but corrupted 
by white noise. The resulting estimator is statistically optimal. Practically, it is certainly one 
of the greatest discoveries in the history of statistical estimation theory and possibly the 
greatest discovery in the twentieth century, at least for those involved in estimation and 
control problems. Many of the achievements since its introduction would not have been 
possible without it. It was one of the enabling technologies for the Space Age, in particular. 
The precise and efficient navigation of spacecraft through the solar system could not have 
been done without it. Its most immediate applications have been for the control of complex 
dynamic systems such as continuous manufacturing processes, aircraft, ships, or spacecraft.  
The Kalman filter is also used for predicting the likely future course of dynamic systems that 
people are not likely to control, such as the trajectories of celestial bodies, or the prices of 
traded commodities. 
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• Continuous version 
 
The Kalman Filter is a linear Observer specifically designed to optimally estimate the state x  
of a linear system described by a set of difference equations: 
 

( ) ( ) ( ) ( )x t Ax t Bu t Gw t= + +ɺ                             (1.18) 
 
based on a set of noisy measurements ky   derived from certain components of the state ( )x t  

 
( ) ( ) ( )y t Cx t v t= +                        (1.19) 

 
Here, the n dimensional vector x  represents the state at time t of all the system variables - for 
example in our case the linear and angular positions and velocities of the head, SCC cupula 
and otolith displacements, and any other variables whose initial conditions must be known in 
order to predict future behavior.  The n n×  matrix A  defines the undisturbed dynamic 
behaviour of the system, since it relates how state at time t t− ∆  influences the rate of change 
of the state at the current time t .  Some components of the system, defined by the matrix G , 
are disturbed by ℓ  continuous external “process noise” inputs, ( )w t  whose continuous 
covariance matrix is ( )Q tδ  (where ( )tδ  is the Dirac delta function). The system also 
responds to a deterministic external disturbance vector ( )u t . Hence the n l×  matrix B  
describes how the deterministic inputs at time t t− ∆  disturb the rate of change ( )x t . 
 
It is assumed that sensors provide measurements ( )y t  of a subset of the system state  ( )x t  , 
by an m n×  matrix C , that determines which states are being measured, and sensor 
sensitivity.  The measurements are also corrupted by sensor noises ( )v t  , whose continuous 
covariance matrix is ( )V tδ .  In our following models, this might correspond to the intrinsic 
variability in SCC and otolith afferent signals. Both the process and measurement noise 
processes are assumed uncorrelated, and each is independent, white, zero mean, and normally 
distributed i.e. : 
 

( ) (0, )w t N Q∼                     (1.20) 
( ) (0, )v t N V∼                      (1.21) 

( ) ( ) ( )TE w t w Q tτ δ τ  = −                     (1.22) 

( ) ( ) ( )TE v t v V tτ δ τ  = −                        (1.23) 

( ) ( ) 0TE w t v τ  =                      (1.24) 

 
Kalman (1960) showed that it is possible to derive an Observer that calculates ˆ( )x t , an 
optimal estimate of ( )x t  that minimizes the mean of the squared error between the actual state 

( )x t  and the estimated state ˆ( )x t , as described by a state error covariance matrix P . The 
equations describing the continuous-time Kalman filter are: 
 
ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ))x t Ax t Bu t K t y t Cx t= + + −ɺ                  (1.25) 

1( ) ( ) TK t P t C V−=                     (1.26) 
1( ) ( ) ( ) ( ) ( )

TT TP t AP t P t A GQG P t C V CP t−= + + −ɺ                 (1.27) 
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[ ]ˆ(0) (0)x E x=                     (1.28) 

ˆ ˆ(0) ( (0) (0))( (0) (0))TP E x x x x = − −                   (1.29) 

 
Equation (1.25) is often called the “internal model” equation, since first three terms in 
equation (1.25) correspond exactly to those in equation (1.18). The Kalman filter “knows” the 
unforced dynamic characteristics of the system (A  matrix), and can predict the effect on ˆ( )x t  
of any deterministic inputs (B  matrix), given an initial state estimate (eq. 1.28). It can use the 
internal model state estimate ˆ( )x t  and knowledge of sensor sensitivity to calculate ˆ( )Cx t , an 
estimate of what the sensor measurement should be if ˆ( )x t  were correct. The fourth term in 
equation (1.25) uses the difference between actual and anticipated sensor measurement, 

ˆ( ( ) ( ))y t Cx t− , usually called the “residual”, and weights it using a set of appropriately chosen 
weighting coefficients K , referred to as the “Kalman Gain” matrix. This fourth term in the 
internal model equation thus incorporates the unexpected component of sensor information, 
and continuously steers the internal model estimate ˆ( )x t  so it converges with reality. Kalman 
significant contribution was to show that the mean square state estimate is minimized if the 
weighting coefficients are computed using equation (1.26). This calculation requires a running 
estimate of state error covariance P , obtained by integrating equation (1.27), using an initial 
value provide by equation (1.29). However, in many practical situations, P  soon reaches a 
steady state value, and it is possible to precompute P∞  the cooresponding steady state value of 

P . In this case, equation (1.27) reduces to a nonlinear algebraic matrix Riccati equation: 
 

10 T TAP P A Q P C V CP−
∞ ∞ ∞ ∞= + + −                   (1.30) 

 
Equation (1.30) is readily solved for P∞  using routines readily available, e.g. in Matlab. The 

two first terms in equation (1.30) represent the unforced state transition, i.e. the effect of the 
unforced system dynamics upon the covariance propagation. The third term increases the 
uncertainty due to the process noise, whereas the fourth term represents a decrease of 
uncertainty as a result of measurement. 
 
Finally, the corresponding steady-state Kalman gain is given by: 
 

1TK P C V−
∞ ∞=                     (1.31) 

 
And the steady-state Kalman filter is given as: 
 
ˆ ˆ( ) ( ) ( ) ( )x t A K C x t K y t∞ ∞= − +ɺ                   (1.32) 

 
 

1.4.3. Nonlinear state-space estimation 
 
As stated earlier, the Kalman filter calculates the optimal terms in the recursive form of the 
Gaussian approximate linear Bayesian update of the conditional mean of the state and its 
covariance exactly for linear dynamic state space models. This is a well known result for 
linear Gaussian systems, i.e. the linear transformation of a Gaussian variable stays Gaussian. 
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Many dynamic systems and sensors are however not absolutely linear. Even the simple 
/I V R=  relationship of Ohm’s law is only an approximation over a limited range. If the 

voltage across a resistor exceeds a certain threshold, then the linear approximation breaks 
down. Following the considerable success enjoyed by linear estimation methods on linear 
problems, extensions of these methods were applied to such nonlinear problems. The most 
widespread nonlinear extension of the Kalman filter is undoubtedly the extended Kalman 
filter, which is based on a direct linearization of the nonlinear system (Simon, 2006). 
However, this filter is usually limited to a first order accuracy of propagated means and 
covariances resulting from a first-order truncated Taylor-series linearization method. A way 
to reduce the linearization errors that are inherent in the EKF is to use “higher-order” 
approaches, e.g. a second-order extended Kalman filter. Estimation performance provided by 
these approaches is better than the first-order EKF, but they do so at the price of a higher 
complexity and computational expense. Recently, another technique called the unscented 
Kalman filter has been proposed in an attempt to address the EKF shortcomings. This is done 
through the use of novel deterministic sampling approaches to approximate the optimal gain 
and prediction terms in the Gaussian approximate linear Bayesian update of the Kalman filter 
framework. This filter can give greatly improved performance (compared with the EKF) and 
consistently outperforms the EKF in filter robustness and ease of implementation, for no 
added computational cost.  
 
In the following sections, we first present how means and covariances propagate in nonlinear 
equations. Then, the first-order extended Kalman filter is introduced. Finally, after presenting 
the unscented transformation, which is a way to approximate how the mean and covariance of 
a random variable change when the random variable undergoes a nonlinear transformation, 
we introduce the unscented Kalman filter and completely specify its algorithmic 
implementation. 
 
 

1.4.3.1. Nonlinear transformation of random variables 
 

• Multidimensional Taylor series 
 
In order to apply tools from linear systems theory to nonlinear systems, the nonlinear system 
has to be linearized. In other words, a linear system that is approximately equal to the 
nonlinear system must be found. The usual approximation method of nonlinear function is the 
Taylor series expansion. For instance, if we consider a nonlinear function f  of a scalar x , the 
expansion of f  in a Taylor series around a linearization point x , defining x x x= −ɶ , is: 
 

3
3

3

1 ² 1
( ) ( ) ² ....

2! ² 3!x x x

f f f
f x f x x x x

x x x

∂ ∂ ∂= + + + +
∂ ∂ ∂

ɶ ɶ ɶ                (1.33) 

 
Extending equation (1.33) to the general case in which x  is a 1n×  vector, the expansion of 
f  becomes: 

 
2

1 1
1 1

1
( ) ( )

2!n n
n nx x

f x f x x x f x x f
x x x x

   ∂ ∂ ∂ ∂= + + + + + + +   ∂ ∂ ∂ ∂   
ɶ ɶ ɶ ɶ⋯ ⋯ ⋯             (1.34) 
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where the term  1
1

n
n x

x x f
x x

 ∂ ∂+ + ∂ ∂ 
ɶ ɶ⋯ is the gradient of f  times the displacement vector 

and the term 
2

1
1

n
n

x

x x f
x x

 ∂ ∂+ + ∂ ∂ 
ɶ ɶ⋯ represents the Hessian matrix times the displacement 

vector.  
 
The advantage of this formulation is that it can be generalized to the case in which x  is a 

1n×  vector without using the usual tensor notation. Indeed, defining the operator kxDɶ  as: 

 

1

( )
kn

k
x i

i i
x

D x f x
x=

 ∂=  ∂ 
∑ɶ ɶ                    (1.35) 

 
the multidimensional Taylor series expansion of  f  can be re-written as: 
 

2 31 1
( ) ( ) ....

2! 3!x x xf x f x D f D f D f= + + + +ɶ ɶ ɶ                  (1.36) 

 
 

• Mean transformation 
 
Suppose that x  is a random variable with mean x  and covariance xP . A second random 

variable, y  is related to x  through the nonlinear function ( )y f x= . The problem of 

predicting the future state of a system consists to calculate the mean y  and covariance yyP  of 

y . The statistic of y  are calculated by determining the density function of the transformed 
distribution and evaluating the statistics from that distribution.  
 
From equation (1.36) ( )y f x=  can be expanded in a Taylor series around x  as follows: 
 

2 31 1
( ) ....

2! 3!x x xy f x D f D f D f= + + + +ɶ ɶ ɶ                  (1.37) 

 
The mean of y  can thus be expanded as: 
 

2 31 1
( ) ....

2! 3!x x xy f x E D f D f D f
 = + + + +  
ɶ ɶ ɶ                  (1.38) 

 
Assuming that the distribution of x  is symmetrical, it can be shown that all odd-order 
moments of (1.38) are zeros (Simon, 2006). The expectation of the second order term can be 
written as: 
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2 ( )

( ) ( )

( ) ( )

T
x x x

T T
x x

T T
x x x

E D f E D D f

E xx f x

P f x

=

=

   =   

 = ∇ ∇ 

= ∇ ∇

ɶ ɶ ɶ

ɶ ɶ                   (1.39) 

 
Substituting this result into (1.38) gives the following form of the mean expression: 
 

 ( ) 4 61 1 1
( ) ( ) ....

2 4! 6!
T

x x xx x
y f x P f x E D f D f=

  = + ∇ ∇ + + +    
ɶ ɶ               (1.40) 
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• Covariance transformation 

 
In a similar fashion as the mean transformation calculation, the covariance of a variable that 
undergoes a nonlinear transformation can be calculated. By definition, the covariance of y  is 
given by: 
 

( )( )T
yP E y y y y = − −                     (1.41) 

 
By using equation (1.37) and (1.40), we can write y y−  as 
 

2 2 41 1 1

2! 2! 4!x x x xy y D f D f E D f E D f
      − = + + − + +         
ɶ ɶ ɶ ɶ⋯ ⋯               (1.42) 

 
Taking outer products and expectations, the transformed covariance is given by: 
  

( )
1 1

2 2

1 1

1 1

4 ! !

1

(2 )!(2 )!

TTT T T i j
y x x x x x

i j

Ti j
x x

i j

P FP F FP F FP F E D f D f
i j

E D f E D f
i j

∞ ∞

= =

∞ ∞

= =

 
   = − +     

  

 
   −      

 

∑∑

∑∑

ɶ ɶ

ɶ ɶ

      , 1i j such that ij∀ >  

                      (1.43) 
 
where F  is the Jacobian matrix of ( )f x  evaluated at x x= . 
 
To sum up, the nth order term in the series for x  is a function of the nth order moments of x  
multiplied by the nth order derivatives of f  evaluated at x x= . If the moments and 
derivatives can be evaluated correctly up to the nth order, the mean is correct up to the nth 
order as well. Similar comments hold for the covariance equation as well. Since each term in 
the series is scaled by a progressively smaller and smaller term, the lowest order terms in the 
series are likely to have the greatest impact. Therefore, the prediction procedure should be 
concentrated on evaluating the lower order terms. 
 
By the way, linearization – such as in the extended Kalman filter - assumes that the second 
and higher order terms of xɶ  can be neglected. Under this assumption: 
 

( )y f x=                      (1.44) 
T

y xP FP F=                      (1.45) 

 
Comparing these expressions with equations (1.40) and (1.43), it is clear that these 
approximations are accurate only if the second and higher order terms in the mean and fourth 
and higher order terms in the covariance are negligible. Otherwise, linearization may 
introduce significant errors. 
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1.4.3.2. The extended Kalman filter 
 
The most well known application of the Kalman filter framework to nonlinear inference 
problems is probably the extended Kalman filter (EKF). Indeed, the extended Kalman filter 
extends the scope of Kalman filter to nonlinear optimal filtering problem. This filter is based 
on a sub-optimal implementation of the recursive Bayesian estimation framework applied to 
Gaussian random variables. Basically, the EKF approximates the state distribution by a 
Gaussian random variable, and propagates the state analytically through a first-order 
linearization of the nonlinear system. As well as the Kalman filter, different versions of the 
EKF can be derived: continuous-time, discrete-time, and hybrid. We here present the hybrid 
EKF, which considers continuous-time dynamics and discrete-time measurements such as: 
 

( , , , )x f x u w t=ɺ                     (1.46) 

( , )k k k ky h x v=                     (1.47) 

( ) (0, )cw t Q∼                      (1.48) 

(0, )k kv V∼                      (1.49) 

 

where x t( )  ∈ nℝ  is the state, ky  ∈ mℝ  is the measurement. The process noise w t( )  is 

continuous-time white noise with covariance cQ , and the measurement noise kv  is discrete-

time white noise with covariance kV . The state dynamics are modeled as continous-time 

stochastic processes, and the measurements are obtained at discrete instances of time.  
 
As the linear Kalman filter, the EKF has a prediction / correction structure. First, between 
measurement, the state estimate is propagated according to the known nonlinear dynamics 

from 1kx+
−ˆ   to the a priori estimate kx̂−  as well as the covarianceP  from 1kP+

−  to the a priori 

covariance kP− . This propagation is performed by integrating the known nonlinear dynamics 

and the covariance of the estimation error P .  Second, at each measurement time, the a priori 
state estimate and covariance are updated as derived in the discrete-time version of the EKF to 
get the a posteriori state estimate and covariance. The implementation of the hybrid EKF is 
given in algorithm 1. 
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Algorithm 1: The hybrid extended Kalman filter 
1. The dynamic system is given by the following equations: 

( , , , )x f x u w t=ɺ  

( , )k k k ky h x v=  

( ) (0, )cw t Q∼  

(0, )k kv V∼  

2. Initialization 

0 0
ˆ ( )x E x+ =  

0 0 0 0 0
ˆ ˆ( )( )TP E x x x x+ + += − −    

3. For 1,2,...k =  

(a) Prediction step: integrate the state estimate and its covariance from time ( 1)k +−  to 

time k−  as follows: 
ˆ ˆ( , ,0, )x f x u t=ɺ  

T T

cP AP PA LQ L= + +ɺ  

where 
x

f
A

x

∂=
∂ ˆ

, 
x

f
L

w ˆ

∂=
∂

. This integration begins with 1kx xˆ ˆ+
−=  and 1kP P+

−= . At 

the end of this integration we have kx xˆ ˆ−=  and kP P−= . 

 
(b) Correction step: at time k , incorporate the measurement ky  into the state estimate and 

estimation covariance: 
1T T

k k k k k k kK P H H P H V− − −= +( )  

k k k k k kx x K y h x tˆ ˆ ˆ( , )+ − − = + −   

T T
k k k k k k k k kP I K H P I K H K V K+ −= − − +( ) ( )  

where kH  is the partial derivatives of k k kh x v( , )  with respect to kx , and is evaluated 

at kx̂− . 

 
 
Even though the hybrid EKF considers continuous-time systems, an important difference 
between the continuous-time EKF and the hybrid EKF appears in the expression of Pɺ . In the 
case of the continuous-time EKF, its expression is given by: 
 

1T T T

cP AP PA LQ L PC R CP−= + + −ɺ                   (1.50) 

 
It can be observed that in the hybrid EKF the R  term is not included. This can be explained 
by the fact that P  is integrated between measurement times, during which any measurements 
are available. 
 
Note that contrary to the Kalman filter, kP  and kK  cannot be computed offline because they 

depend on H , which depends on ˆkx− , which in turn depends on the noisy measurements. 
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• Limitation of the EKF 
 
Even though the EKF is one of the most widely used approximate solutions for nonlinear 
estimation and filtering, it has a few serious drawbacks: 
 

1. This technique is based on the linearization of the system around the current 
estimate using a first-order truncation of the multidimensional Taylor series 
expansion. Thus, it only achieves first-order accuracy in the calculation of both the 
posterior mean and covariance of the transformed random variables.  Clearly, these 
approximations will only be valid if the higher order derivatives of the nonlinear 
functions are effectively zero. In other words, it requires the zeroth and first order 
terms of equation (1.40) to dominate the remaining terms, over the region of the 
state-space defined by the prior distribution of x . 

 
2. The EKF does not take into account the inherent “uncertainty” in the prior random 

variable during the linearization process. That is, the linearization method 
employed by the EKF does not consider the fact that x  is a random variable. This 
has large implications for the accuracy and consistency of the resulting EKF 
algorithm, and may sometimes lead to divergence of the filter.  

 
3. In many cases the calculation of the Jacobian matrices can be a very difficult 

process and it also prones to human errors (both derivation and programming). 
 
 

1.4.3.3. The unscented Kalman filter 
 
The unscented Kalman filter (UKF) is a recursive MMSE estimator based on the optimal 
Gaussian approximate Kalman filter framework that addresses some of the approximation 
issues of the EKF. Because the EKF only uses the first order terms of the Taylor series 
expansion of the nonlinear functions, it often introduces large errors in the estimated statistics 
of the posterior distribution of the states. Unlike the EKF, the UKF does not explicitly 
approximate the nonlinear process and observation models. It uses the true nonlinear models 
and rather approximate the distribution of the state random variable. In the UKF the state 
distribution is still represented by a Gaussian random variable, but it is specified using a 
minimal set of deterministically chosen sample points. These sample points, called “Sigma-
points”, completely capture the true mean and covariance of the Gaussian random variable, 
and when propagated through the nonlinear system, captures the posterior mean and 
covariance accurately to the 2nd order for any nonlinearity. 
 
To present the UKF, we first start by explaining the deterministic sampling approach called 
the unscented transformation. Then, the implementation of the UKF is introduced. 
 

• The unscented transformation 
 
The unscented transformation (UT) is a method for calculating the statistics of a random 
variable which undergoes a nonlinear transformation (Julier et al., 1995, 1997, 2000). This 
technique is founded on the intuition that it is easier to approximate a Gaussian distribution 
than it is to approximate an arbitrary nonlinear function. The basic idea of the UT is: 
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1. A set of weighted samples (sigma points) are deterministically calculated using the 
mean and square-root decomposition of the covariance matrix of the prior random 
variable. As a minimal requirement the sigma point set must completely capture 
the first and second order moments of the prior random variable. 

 
2. The sigma points are propagated through the nonlinear function using functional 

evaluations alone, i.e. no analytical derivatives are used, in order to generate a 
posterior sigma point set. 

 
3. The posterior statistics are calculated using functions of the propagated sigma 

points and weights. Typically these take on the form of simple weighted sample 
mean and covariance calculations of the posterior sigma points. 

 
For instance, let’s consider the propagation of a n  dimensional random variable x  with mean 
x  and covariance xP  through a nonlinear function ( )y f x= .  In order to calculate the first 

two moments (mean and covariance) of y  using the unscented transformation, the method is 
as follows. First, a set of 2 1n+  weighted samples, called sigma points, = { , , }m c

i i i iS w w X  are 
deterministically chosen as follows: 
 

0X x=  λ λ= +0 /( )mw n    0i =  

( )( )i x
i

X x n Pλ= + +  1,...,i n=  λ λ α β= + + − +0 /( ) (1 ² )cw n  0i =             (1.51) 

( )( )i x
i

X x n Pλ= − +  1,...,i n=  λ= = +1/(2( ))m c

i iw w n   1,...,2i n n= +  

 
where m

iw  and c

iw  are the weight associated with the ith sigma-point used for the computation 

of the predicted mean and covariance, respectively. ( ) xn Pλ+  is the matrix square root of 

( ) xn Pλ+  such that ( )( ) ( ) ( )
T

x x xn P n P n Pλ λ λ+ + = + , and ( )( ) x
i

n Pλ+  is the ith row (or 

column) of ( ) xn Pλ+ . The numerically efficient Cholesky factorization method is typically 

used to calculate the matrix square root.  
 

The distance of the ith sigma point from x  is proportional to ( )n λ+ , whereλ  is a scaling 

parameter defined as: 
 

²( )n nλ α κ= + −                     (1.52) 
 
α  and κ  are two positive coefficients that provide extra degree of freedom to control the 
scaling of the sigma points without causing the resulting covariance to possibly become non-
positive semidefinite. α  controls the size of the sigma-point distribution and is usually 
chosen as 0 1α≤ ≤ . The coefficient κ  must be positive or null in order to guarantee positive 
semidefiniteness of the covariance matrix. The specific value of kappa is not critical though, 
so a good default choice is 0κ = . A third parameter β  is introduced which affects the 
weighting of the zeroth sigma-point for the calculation of the covariance. It has been shown 
that for a Gaussian prior the optimal choice that reduces higher-order errors of the mean and 
covariance approximation errors is 2β =  (Julier et al., 2002). 
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Finally, each sigma-point is propagated through the nonlinear function 
 

( )i iY f X=  0,...,2i n=                    (1.53) 
 
And the approximated mean, covariance and cross-covariance of y are computed as follows: 
 

=

≈ ∑
2

0

n
m

i i

i

y w Y                        (1.54) 

=

≈ − −∑
2

0

( )( )
n

c T

y i i i

i

P w Y y Y y                    (1.55) 

=

≈ − −∑
2

0

( )( )
n

c T

xy i i i

i

P w X x Y y                   (1.56) 

 
These estimates of the mean and covariance are accurate to the third order (for Gaussian 
priors) of the Taylor series expansion of ( )f x  for any nonlinear function. For non-Gaussian 
inputs, approximations are accurate to at least the second-order, with the accuracy of third and 
higher order moments determined by the specific choices of scaling factors. In comparison, 
the EKF only calculates the posterior mean and covariance accurately to the first order. 
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• Implementation of the unscented Kalman filter 
 
We here consider the hybrid version of the UKF (Simon, 2006). In this case, the system is 
described by continuous-time dynamics and discrete-time measurements such as equation 
(1.46) and (1.47). The implementation in matrix form is defined by the following recursive 
algorithm. 
Algorithm 2: The hybrid unscented Kalman filter 
Initialization 

0 0
ˆ ( )x E x+ =  

0 0 0 0 0
ˆ ˆ( )( )TP E x x x x+ + += − −    

For 1,2,...k =  
1. Calculate sigma-points: 

[ ]1 1 1 1 10k k k k kX x x n P Pλ− − − − − = + + − 
ˆ ˆ⋯  

  
2. Time update equations: integrate the state estimate and its covariance : 

ˆ ( ( )) mx f X t W=ɺ  

( ) ( ) ( ( )) ( ( )) ( )T T
cP t X t Wf X t f X t WX t Q= + +ɺ  

Where � 0 2

Tm m m
nW w w =  ⋯ , 

            � ( ) ( ) ( )0 2

T
m m c c m m

nW I W W diag w w I W W   = − × × −   ⋯ ⋯ ⋯ .  

The predicted mean and covariance are given as ˆ ˆ( )k kx x t− =  and ( )k kP P t− =   

 
3. Correction step: measurement update equations 
 

(a) regenerate 2n+1 sigma points with appropriate changes since the current best guess for 

the mean and covariance of kx  are kx̂−  and kP−  

(b) Use the nonlinear measurement equation to transform the sigma-points into predicted 
measurements: 

( , )k k kY h X t=  

(c) Compute the predicted measurement vector from the transformed sigma-points: 
2

0

ˆ
n

m i
k i k

i

y w Y−

=
=∑  

(d) Estimate the covariance of the predicted measurement 
2

0

ˆ ˆ( )( )
n

c i i T
y i k k k k

i

P w Y y Y y− −

=
= − −∑  

(e) Estimate the cross-covariance between ˆkx−  and ˆky : 
2

0

ˆ ˆ( )( )
n

c i i T
xy i k k k k

i

P w X x Y y− −

=
= − −∑  

(f) The measurement update can be performed using the normal Kalman filter equations: 
1

k xy yK P P−=  

k k k k kx x K y yˆ ˆ ˆ( )+ −= + −  
T

k k k y kP P K P K+ −= −  
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• Accuracy of sigma-points approach 
 

� Posterior mean accuracy 
 
The unscented Kalman filter calculates the posterior mean from the propagated sigman-
points. For the UKF, the sigma points are given by: 
 

( )
i

i

i x

x

X x n p

x p

λ= ± +

= ± ɶ
                    (1.57) 

 
where 

ixp  denotes the ith column of the matrix square root of xP . The propagation of each 

point through the nonlinear function as a Taylor series expansion about x  is given by: 
 

2 31 1
( ) ( ) ....

2! 3!x x xi i i
i i p p pY f X f x D f D f D f= = + + + +ɶ ɶ ɶ                (1.58) 

 
Using equations (1.51), (1.53), (1.54) and taking into consideration that the sigma-points are 
symmetrically distributed around x  (resulting in zero odd moment terms), the UKF 
calculated posterior mean is defined by: 
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∑

∑

ɶ ɶ ɶ

ɶ ɶ

⋯

⋯

             (1.59) 

 
By comparing equation (1.40) and (1.59), it can be clearly seen that the true posterior mean 
and the mean calculated by the UKF agrees exactly to the third order and that errors are 
introduced in the fourth and higher-order terms. The magnitude of these errors depends on the 
choice of the scaling parameter λ  as well as the higher-order derivatives of f . In contrast, 

the linearization approach used in the EKF calculates the means as ( )EKFy f x= , which only 

agrees with the true posterior mean up to the first order. 
 

� Posterior covariance accuracy 
 
The true posterior covariance is given in equation (1.43). By definition, the covariance of y  is 
given by equation (1.55). Expanding (1.55) and using a similar approach used above to 
calculate the accuracy in the mean approximation, it is shown that the UKF calculated 
posterior covariance is: 
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         (1.61) 

 



 49 

Comparing equations (1.43) and (1.61), it is clear that the UKF calculates the posterior 
covariance accurately in the first two terms, with errors only introduced at the fourth and 
higher-order moments (Fig. 1.13). In contrast, the EKF truncates the Taylor series after the 
first term, that is: 
 

EKF T
y xP FP F=                     (1.62) 

 
 
 

 
 
Figure 1.13. Demonstration of the accuracy of the unscented transformation for mean and covariance 
propagation. (a) Actual (Monte Carlo approach). (b) First-order linearization (EKF). (c) Sigma point 
transformation (UKF). 

 
 

EKF covariance 
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Chapter II: Finite element modeling 
 
 

2.1. Modeling of the cupula 
 
The mathematical model for the dynamics of the cupula-endolymph system of the inner ear 
semicircular, as elaborated by numerous investigators, remains a fundamental tool in all of 
vestibular physiology.  Most models represent the cupula as a linear spring-like element of 
stiffness 
 

/K P V= ∆ ∆             (2.1) 
 
where V∆  is the volume displaced upon application of a pressure difference P∆ .  K directly 
influences the long time constant of the cupula-endolymph system. 
 
The following modeling addresses different objectives. The first goal is to determine the 
relation between the pressure-volume coefficient K  of the cupula of the human semicircular 
canal which describes the cupula’s behavior as a linear elastic element, and Young’s modulus 
E  of the cupula material. We model the cupula as a structurally homogeneous elastic 
diaphragm of constant thickness using the bending membrane theory. We consider two 
distinct cases, a thin and a thick diaphragm, and ask which model best matches numerical 
predictions from a finite-element model based on more realistic cupula morphologies. The 
second goal is to explore – using finite element models – the effect of regional cupula 
thickness on the shearing mechanical stimulus to underlying hair cells. We study two other 
different shapes for the cupula based on cupula measurements and quantify the impact on its 
transverse displacement. We then use one of the three-dimensional finite element models to 
analyze both the shear strain distribution and evolution near the sensory epithelium. The third 
goal is to quantify the impact of fluid filled vertical channels traditionally believed to be 
present in the cupula. To achieve this goal, we model a section of cupula material having 
vertical channels voids. We consider three distinct channel diameters, use finite element 
analysis, and compare the transverse displacement field to the one provided by a similar 
section of cupula material without channels. Finally, we discuss the properties of other 
biological materials that have similar elastic properties as the cupula, and potential 
implications. 
 

2.1.1. Background 
 

• Cupula attachment 
 
The cupula is normally transparent, and therefore its shape and function was not appreciated 
by investigators prior to Steinhausen (1931) and Dohlman (1935). Since then, at least four 
modes of cupula displacement have been described: 
 

1. Steinhausen (1931) and Dohlman (1935) cannulated pike semicircular canals, applied 
small pressures, and described the resulting cupula motion as that of a “swinging 
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gate”, wiping across the vault of the ampulla in the manner of a revolving door, 
maintaining a seal so no endolymph passed over the top.  

 
2. Dohlman (1971) suggested that displacement of the endolymph caused the cupula to 

move as a sliding unit similar to a piston in a cylinder. Hence this model assumes no 
attachment of the cupula along its entire periphery.  However, in light of present day 
knowledge of canal morphology and hair cell physiology, the displacements 
experimentally created by both Steinhausen and Dohlman appear unphysiologically 
large (Oman et al., 1972a and 1972b; Oman et al 1987). 

 
3. Bélanger (1961) and Igarashi (1966) found some histological evidence that the cupula 

was functionally attached to the ampullary roof.  Zalin (1967) then proposed a model 
which assumed that the cupula was suspended from the roof and the significant 
shearing motion took place at the surface of the crista. However, subsequent histology 
(Dohlman,  1971; Hillman, 1974, 1977) suggested strong attachment of the cupula to 
the crista via supporting cell filaments and receptor cell kinocilia. 

 
4. Hillman (1972) hypothesized that the cupula adhered to the ampullary wall around its 

entire the circumference. To demonstrate this, Hillman studied cupula motion 
following the injection of a dye, compressing the canal wall. The cupula appeared 
stationary around the perimeter and displaced maximally in the central region. 
Hillman argued that in prior studies of cupula movement, the cupula attachment was 
likely traumatized.  He argued that the intact cupula has mechanical properties of a 
elastic diaphragm.  He argued the cupula is circumferentially attached to the ampullary 
wall, except alongside the crista where the cupula shears with the crista across 
subcupular space. These findings were confirmed by McLaren (1977) who analyzed 
the motion of opaque oil droplets placed within the cupula of the bullfrog. When 
endolymph was displaced by compression of the canal duct, McLaren observed that 
the line of droplets consistently flexed and bowed with maximal displacement near the 
center of the cupula rather than the apical edge. This “sealed diaphragm” hypothesis 
was confirmed by later studies of Hillman and McLaren (1979) and McLaren and 
Hillman (1979).  
 

Therefore, in the following models, we will assume a pinned boundary condition both around 
the periphery of the cupula and at the crista, i.e. translation displacements at the boundary are 
set to zero. Note that a clamped boundary condition at the crista has no significant impact on 
the transverse displacement field as the material being very soft bends immediately above the 
crista. Note also that the subcupular space between the cupula and the sensory epithelium is 
here not taken into account. 
 

• Cupula structure 
 
The shape of the cupula has been described by several researchers, but detailed measurements 
are rarely published. The overall shape of the cupula in the plane of the crista in the frog is 
approximately that a semicircular disc with its base just above the crista and has a nonuniform 
thickness (Hillman, 1974; McLaren, 1977). McLaren (1977) described the cupula as having 
two thick columns of its mass arching along the wall of the ampulla that are separated by a 
thin region, which corresponds to the narrow portion of the crista. The base of the cupula is 
separated from the crista by a “subcupular space”, which is crossed by veils and a network of 
filaments, while the ampullar endolymph entrances are enclosed by drapes (Dohlman, 1971; 
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McLaren, 1977; Hillman and McLaren, 1979). Hence, it was suggested that the cupula is 
attached to the crista by connections across the subcupular space, i.e. kinocilia extend across 
the entire width of the subcupular space and are embedded directly in the base of the cupula. 
In addition, many studies have supported the fact that stereocilia and kinocilia appear to be 
inserted into channels running vertically within the cupula from the crista to the ampullary 
wall (Igarashi and Alford, 1969; Dolhman, 1971; Lim, 1971). Since the cupula is thought to 
be extruded upwards from supporting cells surrounding each hair cell, the channels are 
conventionally assumed to be “shadows” caused by the presence of hair cells. 
 
However, a recent study of the cupula of the horizontal semicircular canal in the toadfish 
disputes these earlier results (Silver et al., 1998). Using confocal microscopy and a new 
histological technique so as to reduce shrinkage artifacts, Silver et al. examined the structure 
of the cupula and disputed previous interpretations. First, they found that the toadfish cupula 
has distinct internal organization composed of several different sections: lateral wings on both 
sides, a central “antrum” above the hair cells, and an asymmetric shell consisting of utricular 
and canal side “central pillars”. They described the antrum as an isotropic gel reinforced with 
collagen connective fibers running vertically. They argued that the presence of the antrum 
means there is no true subcupular space. Second, no tubes or channels, as described in earlier 
studies, were observed in the toadfish cupula, either in the antrum nor in the cupula. Finally, 
as regard the central portion of the cupula, they argued that the utricular-side pillar should be 
stiffer than other regions of the cupula perhaps due to its rich mucopolysaccharide content 
higher than any other portions of the cupula. Silver et al. speculate that the central section 
moves differently than the wings and that the utricular-side pillar might serve to limit the 
extent of cupula deformation during head displacement. 
  
In order to model the cupula, it is clearly necessary to know the mechanical properties of each 
of its region. Unfortunately, as no physical data is available, one can only guess, for instance, 
what the Young’s modulus is for the various components. In our theoretical study we begin 
by modeling the cupula by an homogenous material of Young’s modulus E .(This assumption 
ignores regional differences in thickness, the possible presence of a subcupular space and/or 
differences in structure described by Silver et al. 1998). We then use finite-element models to 
assess the potential impact of regional thickness variations, and channels. 
 
 
 

• Cupula stiffness K  
 
Beginning with the pioneering work of Steinhausen (1933), a succession of more physically 
detailed models have been proposed to describe the dynamics of the cupula-endolymph 
system (e.g. Groen et al. 1952; TenKate, 1973; Van Buskirk, 1977; Oman et al, 1987; Rabbitt 
et al, 1999; Rabbitt et al, 2004). A common feature of most studies is that the cupula is 
assumed to behave as a linear spring, and can therefore be characterized by an elastic 
coefficient which we define as /= ∆ ∆K P V  in order to describe the volume displacement of 
the cupula ∆V when the latter experiences a transcupular pressure ∆P . Different expressions 
and values for this parameter have been suggested (Van Buskirk, 1977; Oman et al., 1987; 
Rabbitt et al., 2004). The coefficient K , along with a second factor related to endolymph flow 
drag on the canal walls, determine the cupula-endolymph system long time constant Lτ , 

which characterizes the return of the cupula to its rest position following a change in head 
angular velocity.   In turn, the coefficient K is hypothesized to depend on the shape of the 
cupula, and the Young’s modulus E   and the Poisson ratio ν  of the cupula material. 
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This following work explores the theoretical relationships between the morphology of the 
cupula of the semicircular canal, the stiffness K, and the cupula’s material properties E and ν ,  
Fundamentally, there are three different approaches that can be used to estimate K of the 
cupula:  Historically the first approach was to directly measure the pressure volume 
relationship.  As noted earlier, the classic procedure (e.g. Dohlman, 1969) was to transect the 
canal, insert a micropipette containing stained fluid, administer a known pressure change, and 
measure the resulting volume displacement. However this procedure likely traumatized the 
cupula.  A second, less direct method is to measure the cupula long time constant Lτ , and 

then use a mathematical model of the cupula-endolymph system to estimate K.  One 
technique used in animal models is to pinch the intact membranous duct, and to monitor the 
time course of return of the deflected cupula.  Such displacements must be measured through 
the ampulla wall using a light microscope.   However, the physiologic range of cupula 
deflections is at or below the limit of conventional light microscopy (Oman, et al 1987).  The 
introduction of dye or particles to visualize the motion may also traumatize the attachments.  
Direct observation of Lτ  has not been attempted in humans.  Instead, most estimates of Lτ  

come from model based analysis of afferent responses (e.g. Goldberg and Fernandez, 1971) or 
eye movements (e.g. Dai et al 1999).  Potentially, a third approach is to extract whole cupulae 
and directly measure their shape and material properties E and ν  using an appropriately 
designed micro-apparatus.  This difficult experiment has not been attempted. 
 
Almost all estimates of K are derived from the second approach, employing various 
mathematical models for the cupula-endolymph system. Table 2.1 shows estimates of K   
based on the theoretical relationships shown in the second column, and assumed values for Lτ  

suggested by the individual authors are indicated.  Values range from 2.2 - 13 GPa/m3. In the 
next modeling section, we will use Oman’s model for endolymph hydrodynamics as it is 
probably the most detailed analytical model of endolymph volume displacement in one 
semicircular canal. Oman et al. extended the classic Steinhausen/Groen mathematical 
description of endolymph flow to the case where the size, shape, and curvature of the canal 
lumen change continuously through the duct, utricle and ampulla. As regard the long time 
constant of the system cupula / endolymph, we use a value of 6 s determined experimentally 
by recording the response of peripheral afferent neurons of the squirrel monkey (Goldberg et 
al, 1971). 
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 Time constant (s) K 3( / )GPa m  Comments 

Van Buskirk 
(1977) 4

8
L

R

a K

µτ =  
2.5K ≈ if 17Lτ =  Duct approximated as rigid toroidal duct 

of constant cross section and occupies 
one half of the circumference of a circle. 
Cupula modelled as a revolving door. 

Van Buskirk 
(1988) 4

8µβτ
π

=L
R

a K
 

2.2K ≈ if 21Lτ =  Duct approximated as rigid toroidal duct 
of constant cross section and occupies 
250° of the circumference of a circle. 
Cupula modelled as a revolving door. 

Oman et al. 
(1987) 

8
L

L

K

πµτ λ=  
6.8K ≈ if 6Lτ =  

(Goldberg et al. 1971) 

Rigid duct of length L with variations of 
cross section shape taken into account by 
λ. 

Squires et al. 
(2004) 4

8
L

R

a K

µβτ
π

=  
13K ≈ if 4.2Lτ =  

(Dai et al.1999) 

Same expression as Van Buskirk by 
considering a different time constant. 

Rabbitt et al. 
(2004) 

2

2
c

L
d

LAc

K hA

µτ
γ

≈ =  2

8
1.33

c

h
K

A

πγ
≃ ≃  

if  13.3Lτ =  

Parameters approximation based on 
morphological data. 

Table 2.1. Summary of the values of the pressure-volume coefficient along with its relation to the long time 
constant of the cupula. See nomenclature for definition of parameters. 
 
 

2.1.3. Analytical model using thin and thick bending membrane theory 
 
The cupula is modeled as an isotropic circular elastic membrane of constant thickness with a 
pinned edge boundary condition along its entire periphery. In other words, the transverse 
displacement ( )w r  along the periphery is set to zero as well as the bending moment 

( ) 0rrM r R= = . Thus, rotational degrees of freedom were allowed at the cupula attachment.  

We apply both thick and thin membrane theory - also referred to as the Love-Kirchhoff and 
Mindlin-Reissner theories respectively (Timoshenko, 1964; Ventsel at al., 2001) – and 
compare the results.  The difference between thick and thin plate theories is principally due to 
the treatment of transverse shear in the membrane. In Kirchhoff (thin plate) theory, straight 
lines, initially normal to the middle plane before bending, are assumed to remain straight and 
normal to the middle surface during the deformation. This assumption means that the vertical 
shear strains are negligible and are not taken into account in the calculation of the strain 
energy. Therefore, this approach, also referred to as the “hypothesis of straight normals”, is a 
good approximation for thin plates. On the other hand, the Mindlin-Reissner (thick plate) 
theory supposes that the straight lines, initially normal to the middle plane before bending, are 
able to rotate as the plate deforms. Therefore the influence of the shear strains is not neglected 
in the derivation of the strain energy. 
 
According to both theories, in the case of a pinned edge boundary condition, it can be shown 
that the deflection of a circular plate w(r) of radius R is given by: 
 

4 ² 3 ²
( ) 1 2 1

64 ² 1 ²

PR r r
w r

D R R

ν φ
ν

+  = − − − +  +  
        (2.2) 
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Here P  is a distributed load acting in the same direction of w  andD  is the bending rigidity 
of the plate defined as 
 

3

12(1 ²)

Eh
D

ν
=

−
                (2.3) 

 
where E  is the Young’s modulus, ν  is the Poisson ratio of the plate material and h  is the 
thickness of the plate. The coefficient φ  is defined as 
 

16 ²

5 ²(1 )

h

R
φ

ν
=

−
           (2.4) 

 
and is therefore negligibly small in the case of the thin-plate assumption (/ 1h R<< ). 
 
The volume displacement of the cupula is given by the integration of the transversal 
displacement so that 
 

6

3
0

3 (1 ²) 3 4 ² 1
2 ( )

2(1 ) 5 ²(1 ) 38

R PR h
V rw r dr

REh

π ν νπ
ν ν

 − +∆ = = + − + − 
∫      (2.5) 

 
Finally, since K  is the ratio /P V∆ ∆ , a relation ( )E f K=  between the Young’s modulus and 
the pressure-volume coefficient was derived for both theories (table 2.2). 
 
 
 Thin plate theory Thick plate theory 
 

V∆  
6

3
(1 )(7 )

16

PR
V

Eh

π ν ν∆ = − +  
6

3

3 (1 ²) 3 4 ² 1

2(1 ) 5 ²(1 ) 38

PR h
V

REh

π ν ν
ν ν

 − +∆ = + − + − 
 

 

( )E f K=  
6

3

(1 )(7 )

16

K R
E

h

π ν ν− +=  
6

3

3 (1 ²) 3 4 ² 1

2(1 ) 5 ²(1 ) 38

π ν ν
ν ν

 − += + − + − 

K R h
E

Rh
 

 
Table 2.2. Relationship between the Young’s modulus of the cupula and the pressure-volume coefficient K. 
 

2.1.4. Finite-element models 
 

2.1.4.1. Computation of the Young’s modulus 
 
A three-dimensional finite-element model of the cupula is developed in order to check the 
thick and thin plate analytical models. The shape of the cupula is defined based on the 2D 
cross-section model of Njeugna et al. (1990). A pinned boundary condition is assumed all 
along the periphery of the cupula and at its base (crista). The thickness of the cupula was 
assumed to be 403 µm based on the morphological study of Rabbitt et al. (2004) so that: 
 

0.7 / 403ch A µmπ= ≃           (2.6) 
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An elastic modulus of E = 10 Pa was assumed, and for illustrative purposes a pressure of 0.05 
Pa is applied (Fig. 2.1a). According to Oman and Young (1972a,b), the steady state relation of 
cupula pressure to head acceleration in the plane of the canal is given by: 

 
22 ² ²P Fa R Bρπ α−≈            (2.7) 

 
where α  is the angular acceleration of the head in rad/sec2 (See nomenclature for the 
definition of the other parameters). Therefore, a pressure of 0.05 Pa corresponds to an impulse 
of head angular acceleration of about 400°/s2. Since the cupula is nearly incompressible, a 
Poisson ratio of 0.48 was considered (Kassemi et al., 2005, Yamauchi et al., 2001).The 
solution shown in figures 2.1b was generated using Finite Element Analysis software (Abaqus 
v 6.5.1) on a 3D mesh with 4284 quadratic elements. 
 
 

 
Figure 2.1. Three-dimensional model of the cupula. (a) 3D  model of the cupula. (b) Transverse displacement 
field given by the FEM cupula model. (c) Transverse displacement field provided by a 3D FEM model of a 
circular plate. 
 
The maximum transverse displacement occurs near the center of the cupula and is 8.5 µm.  
We note that the displacement is almost identical to that of a completely circular plate of 
identical radius 0.575 mm, pinned along its entire boundary, shown for purposes of 
comparison in figure 2.1c. Therefore, we consider both models to be equivalent in terms of 
volume displacement.  
 
The transverse displacements provided by the thin and thick plate theories and the numerical 
FE circular plate model are compared in figure for the case were E= 10 Pa, P= 0.05 Pa, R= 
0.575 mm and h=0.403 mm. As can be seen, the thin-plate model yields results significantly 
different than either the thick-plate model or the 3D FE model, since it does not take into 
account the shear strain components within the strain tensor (Fig. 2.2). This illustrates that 
plate theory is not sufficiently accurate since thickness of the cupula is the same order of 

P  

Pinned BC 

Pinned BC 

(a) 

(b) (c) 403µm 
R=0.575mm 

mm 
mm 
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magnitude as cupula radius. Therefore, the thick-plate model is more appropriate as it gives 
similar results as the 3D finite-element model.   
 

 
Figure 2.2. Transversal displacement ( )w r provided by the thin and thick analytical membrane models, and the 

finite element circular plate model. 
 
Using estimate of K  and Lτ  from the literature (Oman et al, 1987; Goldberg et al., 1971), 
using thick and thin plate theories (Table 2.2) it is possible to estimate the Young’s modulus 
E.  (Note that these relations are derived assuming the cupula is a circular bending plate, 
pinned along its entire periphery). A Poisson ratio of 0.48 was assumed. A value of 

36.7 /K GPa m≈  and a long time constant of 6 s yield a Young’s modulus of  5.4 Pa for thick 
membrane theory. The value provided by the thick plate assumption is about five times lower 
than the Young’s modulus given by Groen (1952). 
 
Finally, note that the shorter the long time constant is assumed to be, the larger the theoretical 
prediction for Young’s modulus. For instance, by considering Oman’s model and the thick 
plate theory, we can derive the following relationship between E  and Lτ : 

 
6

3
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2(1 ) 5 ²(1 ) 3 LL

L R h
E

Rh

µ π ν λ ν κ
ν ν ττ

 − += + − = + − 
      (2.8) 

 
where κ  is constant that depends on numerous geometric factors. 
 
 

2.1.4.2. Comparison with other estimates 
 
We compare our estimate of E  with previous reports. Several authors proposed models the 
endolymph-cupula system for the fish, particularly the pike (De Vries, 1956; Ten Kate et al., 
1969; Ten Kate et al., 1972). Although the pike’s inner ear has different shape than that of the 
human, functionally it is similar. Ten Kate (1969) modeled the pike’s cupula as a bending bar 
and was able to estimate the elastic or geometrical dimensions and Young’s modulus as about 
34.9 Pa. Other authors have focused on the modelling as well as direct measurements of the 
superficial neuromast in the fish lateral line system (Frishkopf et al., 1972; McHenry et al. 
2007; McHenry et al. 2008). Superficial lateral line cupulae are structures that detect water 
flow on the surface body of fish and amphibians. These organs are closely related to 
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vestibular and auditory sensing organs, as the receptor cells of all these systems are 
morphologically similar. Water disturbance bends the cupulae which overlay hair cells, which 
results in stimulation of the organ. Oman et al (1972) experimentally measured cupula 
stiffness in the mudpuppy, and based on cupula morphology and cylindrical cantilevered 
beam theory estimated E = 103 Pa. More recently, utilizing a more complex structural model, 
McHenry et al. (2007) estimated E = 21 Pa for the zebrafish’s freestanding cupula. This value 
is comparable to that originally estimated by Ten Kate for the pike, and is the same order of 
magnitude as that for the human’s semicircular canals, which we estimated in the previous 
section. 
 

2.1.4.3. Analysis of different cupula shapes 
 
Detailed anatomical measurements of the shape of the cupula are rare in the literature. This is 
probably due to the fragility of the cupula, and the fact that it must be stained or the 
endolymph counterstained in order to visualize it. Left in-situ it is difficult observe its shape 
through the wall of the semicircular canal. Extraction risks traumatizing the structure. Classic 
histological techniques have been optimized to preserve cellular structures, and e.g. alcohol 
dehydration and fixation for electron microscopy may damage or distort the cupula.  Also, it 
is possible to misinterpret 2D micrographs of sectioned material unless the plane of sectioning 
is known.  For instance, by looking closer at a classic 2D micrograph, one might assume that 
the cupula becomes thicker at the top.  However, if the plane of sectioning was diagonal, the 
increased thickness may be on the sides. 
 
As a result, notions of the three-dimensional shape of the cupula come mainly from various 
light micrographs obtained by certain investigators in animal preparations where the 
membranous labyrinth is easily accessed surgically (e.g. skate, pike, toadfish, frog) and 
photographed. Studies of isolated cupula of the skate (e.g. Oman et al., 1979) reveal that the 
cupula is thicker on the sides, and thin in the center all the way from the crista to the vault 
(Fig. 2.3). 
 
 

 
 
Figure 2.3. Top view of the skate cupula which is thicker on the sides and thin in the center (Oman et al, 1979). 
 
 
Therefore, we have decided to use finite element modeling to investigate the influence of 
cupula shape on its transverse displacement for a standard transcupular pressure. We have 
studied the behaviour of two different models: one thicker around its entire periphery (Fig. 
2.4a), the other thick only on the sides and with constant thickness in the center (Fig. 2.4b). 
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Figure 2.4.  CAD models of the cupula considering different shapes. (a) Cupula with a thicker portion all 
around its peripheiphery. (b) Cupula that is thin vertically with thick sides. 
 
The first model has a 800 µm thickness around its entire periphery, with a 400 micron 
thickness at its centre. The second model has a thin vertical center section  400 µm thick, 
widening to 800 µm on the sides in the region of the plana semilunata. The boundary 
conditions for the finite element analysis are: a clamped condition on the crista, and a pinned 
condition on the periphery of the cupula – plus a condition of symmetry relative to the cut-
plane ( , )x z

� � . For simulation purposes we apply a transcupular pressure of 0.05 Pa, and assume 
a Young’s modulus of 10 Pa and a Poisson ratio of 0.48. 
 

• Transverse displacement 
 
The solution for the transverse displacement is shown for both models in figure 6. For both 
cases, the maximum transverse displacement is predicted to be smaller than that predicted for 
the simple 403 micron thick plate model by a factor of 2.8 for the first model and 1.8 for the 
second. . This is because the increased thickness effectively stiffens the cupula.  We note that 
model 2.5b (cupula with fat sides and a thin vertical center) has a transverse displacement of 
about 55% larger than model in figure 2.5a  (the cupula that was thick around its entire 
periphery). We also note that if the cupula is thicker along its entire periphery, the transverse 
displacement become vertically asymmetric as illustrated figure c. In that case the lower part 
of the cupula, precisely where the hair bundles are located, is the most deflected.  This was 
not the case with model a, because the cupula is more symmetrical along a vertical axis. 
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Figure 2.5. Transversal displacement of the human cupula provided by a finite element simulation in response to 
a static pressure of 0.05 Pa. (a) cupula with shape 1; (b) cupula with shape 2; (c) transversal displacement 
along the dashed line of both models (a) and (b).  
 
 

• Predicted shear strain above the crista 
 
The mammalian crista, which supports the cupula, contains two types of hair cells: cells of 
type one and two, respectively located at the top of the crista and down its sloping flanks. Hair 
cell sensory sterocilia, which range in height up to 35 µm and even longer kinocilia, project 
into the cupula. It is generally assumed that the cilia are entrained with the cupula when the 
latter is deflected. Conversion of cupular volume displacement into bending of cilia initiates 
the transduction process in hair cells and vestibular afferent neurons. The mechanical stimulus 
of the stereocilia is determined by cupular shear strain that occurs close to the crista rather 
than cupular transverse displacement. Therefore, using the second three-dimensional finite 
element model of the cupula (Fig. 2.6), we analyse the shear strain at a surface located 50 µm 
above the crista. First, we apply a static pressure of 0.05 Pa on the cupula and plot a map of 
the shear strain predicted by the model. Second, we perform a time dependent analysis in 
order to observe the evolution of the shear strain when the pressure increases. Results of both 
simulations are shown in figure 2.6.  
 
The model predicts that the maximum shear strain occurs near the surface of the crista where 
the cilia are located. It is also notable that the shear strain at a surface 50 µm above the crista 
is nonuniform.  Indeed, the shear strain is predicted to be largest at the centre of the crista and 
to diminish both toward the periphery of the cupula and down the sloping flanks of the 
sensory epithelium as shown in the plots in figure 2.6. From the time dependent analysis, we 
determine that the shear strain first appears at the centre of the crista and then spreads out 
through time both toward the sides of the cupula and toward the bottom of the crista (Fig. 
2.6d). Hence, the model predicts that hair cells of type 1 may be stimulated first, while hair 
cells of type 2 are progressively stimulated as the deflection of the cupula increases. This 
spatio-temporal variation in mechanical shearing stimulus to hair cells, as shown in the 
models, suggests that these two hair cell types could play different roles in encoding head 
movement. 
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Figure 2.6. Analysis of the shear strain above the crista. (a) Definition of the surface located 50 µm above the 
crista and 2D map of the shear strain in response to a static pressure. (b) Shear strain in the cupula in response 
to a static pressure. (c) Pressure applied in the time dependent analysis. (d) Evolution of the shear strain at a 
surface50 µm above the crista at different time instants. 
 
 

2.1.4.5. Mechanical influence of cupula channels 
 
We have considered so far a homogenous material for the Young’s modulus E of the cupula.  
However, according to Igarashi and Alford (1969), Dohlman (1971), and Lim (1971), the 
cupula has endolymph filled channels, of about 10 µm diameter, running vertically through it. 
Assuming that these channels exist, we use finite element models to investigate the influence 
of their presence on the cupula stiffness. For purpose of simplicity, we represent a volume of 
cupula material as a rectangular box of dimensions 1 mm x 1 mm x 0.4 mm. As we study the 
transverse displacement field of the cupula when the latter experiences a static pressure, the 
fluid within the tubes - being free to leave them - has therefore negligible effect on the cupula 
stiffness. Thus, we consider a rectangular box of cupula material having vertical empty 
channels positioned on a hexagonal matrix (Fig. 2.7a). Three channel diameters were 
successively taken into consideration: 10 µm, 20 µm, and 30 µm (Fig. 2.7b,c). Note that each 
model involve a large number of degrees of freedom, and solution therefore demand 
significant computational resource as the tube diameters are two orders of magnitude smaller 
than the cupula dimensions. In addition, these channels need to be modeled by a fine mesh so 
as to provide accurate results. Figure 2.8a illustrates the transverse displacement provided by 
the simulation. Figure 2.8b shows the influence of the tubes diameter on the maximum 
transverse displacement of the cupula, and also compares these displacements to the one 
provided by a similar cupula material section without the tubes. It turns out that the higher is 
the tubes diameter, the larger is the displacement. For this tube spacing, it can be seen, 
however, that 10 µm diameter tubes have a very small effect while 20 µm and 30 µm 
diameter tubes involve larger transverse displacements of about 12.8 % and 28.6 %, 
respectively. The increase of displacement with respect to the tube diameters appears to be 
nonlinear. Since the cupula stiffness is clearly sensitive to channel size, it is important to 
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know whether they actually exist in specific species, and if they do, to determine their 
geometry, i.e. diameter and average spacing. 
 

 
Figure 2.7. Modeling of a section of cupula material having vertical empty tubes. (a) 3D view of the box having 
vertical empty tubes; (b) top view with 10 µm diameter tubes; (c) top view with 30 µm diameter tubes. 
 

 
Figure 2.8. Results provided by the finite-element model of a section of cupula material having vertical empty 
tubes. (a) Transverse displacement of a box with 20 µm diameter tubes; (b) Maximum transverse displacement 
at the center of the section  for different tube diameters. 
 

2.1.5. Biologically similar material 
 
What biological materials have similar elastic properties as the cupula? We first consider 
biopolymers, a class of polymers produced by living organism such as cellulose or proteins 
for instance. Biopolymers are widely used as biomaterials and matrices in tissue engineering 
as they offer control of structure, morphology and chemistry as reasonable substitutes or 
mimics of extracellular matrix. They are also characterized by low values of mechanical 
properties in comparison with other classes of material. For example, alginate polysaccharide 
materials have an elastic modulus of 10-12 KPa (Velema et al., 2006). However, to our 
knowledge, measurements of the elastic modulus of biopolymers do not provide a Young’s 
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modulus as low as the modulus of the cupula. Therefore, we considered hydrogel material 
properties.  
 
Hydrogels are characterized by a network of polymer chains that contain a significant amount 
of water. These materials are viscoelastic so they are commonly characterized using dynamic 
mechanical analysis. The complex dynamic shear modulus *G  is used to represent their 
mechanical response. The parameter is composed of a real and imaginary part, so that: 
 

* ' "G G iG= +             (2.9) 
 
The elastic modulus 'G  is a measure of the reversibly stored deformation energy, and the 
viscous modulus "G  represents a measure of the irreversibly dissipated energy, and is 
proportional to the effective viscosity of the material. The elastic shear modulus is related to 
the Young’s modulus according to: 
 

'
2(1 )

E
G

ν
=

+
                     (2.10) 

 
With this relation, the value we derived forE =5.4 Pa, correspond to a value for 'G =1.8 Pa. 
This range is similar to that reported for collagen hydrogels. Indeed, Raub et al. (2007) have 
demonstrated that the elastic shear modulus of collagen hydrogels varies between 
0.28±0.16Pa and 23±3Pa, depending on the polymerization temperature (Fig. 2.9).  
 
 

 
Figure 2.9. Representative frequency sweeps of G’ (solid symbols) and G’’ (open symbols) for collagen 
hydrogels at each polymerization temperature (Raub et al., 2007). 
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2.2. Fluid structural interaction model 
 

2.2.1. Introduction 
 
When our head experience a movement of rotation, the fluid in the canal lags behind due to its 
inertia and produces a force across the cupula, deflecting it in the opposite direction of head 
movement. Therefore, the functioning of the system endolymph/cupula is a typical example 
of Fluid-Structure Interaction (FSI). 
 
The aim of this section is to model the entire set of semircircular canals by taking into account 
fluid-structure interactions in order to investigate fluid flow and cupula motion during head 
rotation. To achieve this goal, we use the finite-element Comsol Multiphysics software as it 
permits to deal with different physics, and more particularly with FSI problems. The modeling 
strategy is as follows: first, we model a two-dimensional cross-section of the lateral 
semicircular canal using geometry and dimensions extracted from measured human data by 
Curthoys and Oman (1987); second, we extend this 2D model to a three-dimensional model of 
a single semicircular canal; and third, we develop a fully three-dimensional model by 
considering the three SCCs. 
 
Before going in depth through the core of the model, we give a brief introduction to fluid-
structure interaction problem and Arbitrary Lagrangian-Eulerian (ALE) method which is a 
common application in engineering used to solve problems pertaining to structure and fluid 
mechanics analysis. The ALE method employs the use of reference frames to represent the 
classical Lagrangian and Eulerian systems. The Lagrangian reference frame is used to study 
the structure problem while the Eulerian reference is used to study the fluid problem.  
 
 

2.2.2. Fluid-structure interaction 
 

Fluid-structure interaction is the interaction of some movable or deformable structure with an 
internal or surrounding fluid flow. As FSI problems and multiphysics problems in general are 
often too complex to solve analytically, they have to be analyzed by means of experiments or 
numerical simulations. Research in the fields of computational fluid dynamics and 
computational structural dynamics is still ongoing but the maturity of these fields enables 
numerical simulation of fluid-structure interactions. Typically in FSI, the fluid and solid 
components are modeled using different techniques to different levels of complexity, ranging 
from simple analytical solutions to three-dimensional numerical schemes with advanced 
physical models. Two main approaches exist for the simulation of FSI problems: 
 

• Monolithic approach: the equations governing the flow and the displacement of the 
structure are solved simultaneously, with a single solver (e.g. Comsol Multiphysics). 

 
• Partitioned approach: the equations governing the flow and the displacement of the 

structure are solved separately, with two distinct solvers. 
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The monolithic approach requires a code developed for this particular combination of 
physical problems whereas the partitioned approach preserves software modularity because an 
existing flow solver and structural solver are coupled. Although the integration of two 
software codes is possible in principle, the complexity and size of the software make, 
however, the partitioned approach quite unattractive. Furthermore, the computational 
overhead to run such codes is quite exorbitant as information has to pass from one code to the 
other in each time step, adding to the total overhead. Finally, data transfer for the coupling 
usually requires an extra program that acts as an interface between the two other codes, thus 
sacrifices the modularity of the method. 
 
In addition to the range of techniques available for modeling the individual fluid and solid 
components, there is also the question of exchanging information, typically in the form of 
boundary conditions, at the interface. Different options can be considered and are classified 
on the basis of the level of coupling between fluid and solid as follows: 
 

• One-way coupled FSI: in this case, the deformation of the solid is so small that its 
influence on the fluid flow is negligible. Therefore, only the fluid stresses need to be 
applied onto the structure and no iteration between the fluid model and the solid model 
is necessary. 

 
• Two-way (or fully) coupled FSI: in this case, the response of the solid is strongly 

affected by the response of the fluid, and vice versa. In other words, fluid flow causes 
deformation of the structure. This deformatios, in turn, changes the boundary 
conditions for the fluid flow. 
 

In the following models, we adopt a monolithic approach – which is implemented in Comsol 
Multiphysics – and consider a fully coupled method between the solid and fluid. In other 
words, both fluid and solid equations are solved simultaneously and a two-way data transfer is 
performed such that the fluid exerts a force on the cupula, while the deformation of the solid 
affects the geometry of the fluid domain.  

 
 

2.2.3. Arbitrary Lagrangian Eulerian methodology 
 
The algorithms of continuum mechanics usually make use of two classical description of 
motion: the Lagrangian description and the Eulerian description. The arbitrary Lagrangian 
Eulerian method was developed in an attempt to combine the advantages of the above 
classical kinematical description, while minimizing their respective drawbacks as far as 
possible. 
 
The Lagrangian reference frame - also called physical coordinate system - is largely used 
most commonly in solid mechanics. It sets up a reference frame by fixing a grid to the 
material of interest then as the material deforms the grid deforms with it. Therefore, each 
individual node of the computational mesh follows the associated material particle during 
motion (Fig. 2.10b). For instance, a solid structure with little material flexibility uses the 
Lagrangian approach because as the grid deforms it maps out the deflection of the solid due to 
some load. The grid would also define the exact displacement of each particle. In this method 
conservation of mass is automatically satisfied because the individual sections of the grid 
always contain the same amount of mass. For structure motions with large deformation in 



 66 

which the grid becomes excessively distorted, the integration time steps become smaller and 
smaller because they are based on the size of the smallest section of the grid. 
 
The Lagrangian method typically is not the easiest solution for a fluid mechanics problem. 
The reason is that fluids are not cohesive and so the fluid particles do not stay closely 
together. So if a grid is mapped out onto a fluid, then no matter how small the initial grid 
sections the fluid particles will travel independent of each other and diverge in space. This 
will cause the grid to distort excessively and may overlap each other. 
 
The Eulerian reference frame - also called spatial coordinate system - which is fixed in space, 
is the typical framework in the analysis of fluid mechanics problem (Fig. 2.10c). It allows for 
material with specified load or pressure to flow through the grid as it is with le Lagrangian 
frame, but this time without tracking the path of any of the individual particle. In other words 
the computational mesh is fixed and the continuum moves with respect to the grid. In order to 
predict the flow of the fluid across the grid, the Eulerian approach solves the problem by 
measuring the net flow through a certain area. While in the Lagrangian method conservation 
of mass is directly, in the Eulerian approach it is taken into account explicitly by measuring 
the flux in and out of each grid section. In the Eulerian description, large distortions in the 
continuum motion can be handled with relative ease. However, one of the disadvantages of 
the Eulerian system is that it does not track the path of any individual particle. 
 
 

 
Figure 2.10. Comparison Lagrangian and Eulerian descriptions. 2D example of a beam that undergoes a 
pressure P  . (a) initial grid and material. (b) Lagrangian description: the grid is attached to the material and 
deforms with it. (c) Eulerian description: the grid is fixed in space. 
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P  
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Figure 2.11. Comparison Lagrangian, Eulerian, and ALE descriptions. (a) One-dimensional exemple of 
Lagrangian, Eulerian and ALE mesh and particle motion. In the Lagrangian description each node of the mesh 
follows the associated material particle, whereas in the Eulerian description the mesh is fixed. In the ALE 
description, the nodes may either be moved or be held fixed depending on the distorsion of the mesh.  (b-e) Mesh 
used to model the detonation of an explosive charge in an extremely strong cylindrical vessel (from J. Donea et 
al., 2003). (b) Initial finite-element mesh; (c) ALE mesh at t=1 ms; (d) Lagrangian mesh at t=1 ms; (e) details of 
interface in Lagrangian description.  
 
 
Because of the shortcomings of purely Lagrangian and purely Eulerian descriptions, the 
arbitrary Lagrangian Eulerian technique, which combines the best features of both the 
Lagrangian and Eulerian approaches, has been developed. In the ALE description, the nodes 
of the computational mesh may be moved with the continuum in normal Lagrangian fashion, 
or be held fixed in Eulerian manner, or be moved in some arbitrarily specified way to give a 
continuous rezoning capability (Fig. 2.11). Because of this freedom in moving the 
computational mesh offered by the ALE description, greater distorsions of the continuum can 
be handled than would be allowed by a purely Lagrangian method, with more resolution than 
that afforded by a purely Eulerian approach. The example shown in figure 2.11 (b-e) 
illustrates the ability of the ALE description to accommodate significant distorsions of the 
computational mesh. 
 
In order to model effectively our FSI problem, we adopt the ALE approach. The 
corresponding subdomain and boundary conditions for the mesh will be presented later. 
 

2.2.4. 2D model 
 

2.2.4.1. Geometry of the 2D model 
 

(a) (b) (c) 

(d) (e) 
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A two-dimensional cross-section of the lateral semicircular canal is modeled. The geometry 
and all the associated dimensions (Fig. 2.12) are extracted from measured human data by 
Curthoys and Oman (1987). The canal consists of three main regions: the semicircular canal, 
the ampulla, and the utricle. The canal is filled of a water-like fluid, known as endolymph. 
The model also considers the cupula (solid) located in the ampulla which completely seals the 
canal.  

 

 
Figure 2.12. (Left) Dimensions of the human lateral semicircular canal (Curthoys et al., 1987) and (Right) 
reconstruction of a 2D model  under Comsol Multiphysics. Note that the cupula is modeled by a 400 µm thick 
section.  

 
 

2.2.4.2. Governing equations 
 
The equations describing the behavior of the cupula, considered as an elastic solid, and of the 
endolymph, modeled as an incompressible Newtonian fluid, are now presented. Typically, 
these equations are solved for displacement and for velocity and pressure respectively. This is 
due to the fact that the stress tensor in solids is defined in terms of displacement while, in 
fluids in terms of velocity and pressure. 
  

• Fluid flow: 
 
For an incompressible Newtonian fluid, the governing equations of fluid flow are described in 
terms of the two dimensional Navier-Stokes equations: 
 

( )f
f f f f f

U
U U F

t
ρ ρ σ

∂
+ ⋅∇ = + ∇ ⋅

∂
                 (2.12) 

 
0fU∇ ⋅ =                      (2.13) 

 
The first equation is the momentum transport equation, and the second is the equation of 
continuity for incompressible fluids. These equations describe how the velocity, pressure, and 
density of a moving fluid are related. The following variable and parameters appear in the 
equations: 
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� fρ  is the fluid density 

� F  is the volume force affecting the fluid 
� fσ  is the stress tensor 

� ( , )f f fU u v=  is the velocity field 

� p  is the pressure 
 
The Cauchy stress tensor is given by: 
 

( ( ) ) 2T
f f f f fpI U U pIσ µ µ ε= − + ∇ + ∇ = − + ɺ                  (2.14) 

 
where I  is the unit diagonal matrix, fµ  is the dynamic viscosity, and.εɺ  is the rate of 

deformation tensor.  We here assume no gravitation or other volume forces affecting the fluid, 
thus equation (2.12) can be written as: 
 

( )( )( ) 0
Tf

f f f f f

U
U U pI U U

t
ρ ρ µ

∂  + ⋅∇ − ∇ − + ∇ + ∇ = ∂  
              (2.15) 

 
The Navier-Stokes equations (2.12) and (2.13) are solved in the spatial (deformed) coordinate 
system.  
 

• Structural mechanics: 
 
The structural deformations of the cupula are solved using an elastic formulation and a 
nonlinear geometry formulation to allow large deformations that may occur due to its very 
low stiffness. Neglecting body forces, the Navier equation of motion for the cupula can be 
written in terms of displacement vector ( , )s s sU u v=  as: 

 
2

²
s

s s
U

t
ρ σ∂ = ∇ ⋅

∂
                    (2.16) 

 
We consider an elastic isotropic material so that the generalized Hooke’s law is obtained: 
 

2 ( )s tr Iσ µε λ ε= +                     (2.17) 

 
where µ  and λ  are Lame’s coeffircients, which are related to Young’s modulus of elasticity 
and Poisson’s ratio ν , by the following equations: 
 

2(1 )

Eµ
ν

=
+

                     (2.18) 

(1 )(1 2 )

Eνλ
ν ν

=
+ −

                    (2.19) 
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• Interface fluid-structure 

 
Due to the coupling between fluid and structure, conditions are needed to ensure that the fluid 
and structural domains will not detach or overlap during the motion (Fig. 2.13). For a viscous 
fluid, the coupling between fluid and structure requires that velocities coincide along the 
interface. In particular, the time derivatives of the structural displacements define the fluid’s 
velocity so that: 
 

s
f

dU
U

dt
=                      (2.20) 

 
In addition, the force exerted by the fluid on the solid boundary must be considered and is the 
negative reaction force on the fluid given by: 
 

( )( )( )T
f n pI u uη= − ⋅ − + ∇ + ∇                   (2.21) 

 
where n  is the outward normal vector to the boundary. This load represents a sum of pressure 
and viscous forces.  
 

 
 
Figure 2.13. Concept of fluid-structure interaction (FSI). Load transfer from fluid side: nodal forces. Load 
transfer from solid side: nodal displacements and velocities. 
 
 

2.2.4.3. Boundary conditions 
 
The aim of the model is to simulate a rotation of the head and investigate the dynamics of the 
fluid flow and cupula motion. In order to impose a constant rotational motion to the structure 
which starts at 0t t=  and ends at instant 1t t= , we define the following variables: 
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Signification Var. name Expression 

displacement x
�

 depx 
0 1

1 1 1

( cos( ) sin( ) ) 2 ( , ) 2 ( , )

2 ( , ) ( cos( ) sin( ) )

X t Y t X flc hs t t t flc hs t t t

flc hs t t t X t Y t X

ω ω
ω ω

+ − × − ∆ × − ∆
+ − ∆ × + −

 

 
displacement y

�
 depy 

0 1

1 1 1

( sin( ) cos( ) ) 2 ( , ) 2 ( , )

2 ( , ) ( sin( ) cos( ) )

X t Y t Y flc hs t t t flc hs t t t

flc hs t t t X t Y t X

ω ω
ω ω

− + − × − ∆ × − ∆
+ − ∆ × − + −

 

velocity x
�

 vitx ( , )diff depx t  

velocity y
�

 vity ( , )diff depy t  

 
 
Table 2.3. Expression of the prescribed displacements for a head rotation that starts at 0t t=  and ends at 

1t t= . ( , )X Y  are the node coordinates in the reference frame, ω  is the pulsation of rotation, t  is the current 

time, and ( )diff ⋯  denotes the derivative operator. 

 
 
Note that for time-dependent problems, the time-stepping algorithm can run into problem if 
any condition is imposed with a step function. In order to avoid problems with discontinuity, 
step functions are usually replaced with a smoothed switch function that emulates steps. 
Consequently, numerical reliability and convergence are improved. In the present case, we 
use a smoothed Heaviside function “2flc hs” (notation used in Comsol Multiplysics) with a 
continuous second derivative. 
 
 

 
Figure 2.14.  Smoothed Heaviside function 02 ( , )flc hs t t t− ∆ with a continuous second derivative. 

 

0t  
t∆  t∆  

t  
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Boundary conditions are summarized in table 2.4. 
 
 

Solid domain 
 

� b1, b2, b5: inactive boundaries 
� b4: prescribed displacement (depx, depy) 
� b3: fluid load f   

 
Fluid domain 
 

� b4, b5: inactive boundaries 
� b1: imposed velocity (vitx, vity). 
Consequently, the fluid at the wall of the canal 
rotates at the same velocity of the canal. This 
is locally equivalent as a no-slip condition. 
� b2: open boundary so the nodal velocities 
are left free to accommodate inflow and 
outflow of endolymph between the LSCC and 
the other canals. 
� b3: velocity of the cupula ( , )s su vɺ ɺ  

 
ALE mesh 
 

� b6: prescribed displacement (depx,depy) 
� all other boundaries are inactive 

 
 
Table 2.4. Boundary conditions of the two-dimensional finite-element model of the horizontal semicircular 
canal. 

 

2.2.4.4. Moving mesh 
 
In order to model effectively the FSI problem, the moving mesh (ALE) approach is used to 
solve two problems; the fluid problem (i.e. the motion of the endolymph) and the structure 
problem (i.e. the movement of the cupula). Hence, the model combines the fluid flow with 
structural mechanics by using a moving mesh to make sure the fluid flow is deformed along 
with the cupula. 
 
The model is divided into different parts so as to specify how the mesh displacement is 
computed in each subdomain (Fig. 2.15). The imposed conditions of mesh displacement are 
as follows: 
 

• Solid domain (cupula): the displacements ( , )s su v  provided by the computation of the 

structure mechanics equations are imposed. In other words, a Lagrangian method is 
used where the mesh movement follows the material motion. 

 
• Fluid domain near the cupula: as cupula deformation may affect fluid flow in its 

vicinity we define a subdomain around the cupula where the mesh is free to move. 

b1 

b2 

b3 

b4 

b5 

b6 
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This means that the mesh is constrained only by the boundary conditions on the 
surrounding boundaries. The displacement in this subdomain is obtained by solving a 
PDE defined by a smoothing method, which is in the present case the “Winslow 
smoothing”. This equation smoothly deforms the mesh given the constraints on its 
boundaries. 

 
• Rest of the fluid domain: the displacement of rotation imposed to the whole structure 

is also applied to this subdomain. In other words, the mesh is not deformed and 
follows the rotation of the canal. 

 

 
Figure 2.15. Visualization of the subdomains that have different conditions for mesh displacement. 
 
 

2.2.4.5. Simulations 
 
Numerical solutions of the governing system of coupled nonlinear system partial differential 
equations (PDEs) are generated using finite-element analysis software (Comsol Multiphysics 
3.5a). This PDEs system contains both dynamic PDEs (with time derivatives) and stationary 
PDEs (without time derivatives). Therefore the corresponding space-discretized system is a 
differential-algebric equations (DAE) system, which means that it includes both differential 
and algebric equations. For instance, the incompressible Navier-Stokes equations give rise to 
a DAE system when discretizing the space because the equation of continuity turns into an 
algebric relationship. A system of DAEs implies some constraints on the initial values, for 
instance, that an algebric equation must be satisfied. Typically, the solver perturbs the given 
initial values so that they become consistent with these constraints. In the present case, we use 
the implicit backward Euler method so as the solver perturbs the initial values of all degrees 
of freedom by taking a backward Euler step, giving a small perturbation to the differential 
degrees of freedom.   
 
Two different cases of simulation are considered: 
 

• the center of the canal is located on the axis of rotation (case 1) 
 

• the center of the canal is located 30 mm away from the axis of rotation (case 2) 
 

 

fluid 

Partitioned 
subdomain of fluid 

solid (cupula) 
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For each simulation, a constant angular velocity of / 2π  rad/s that mimics a constant head 
rotation is applied during 15 s (Fig. 2.16). The computation is performed till 30t s=  in order 
to investigate the fluid dynamics and cupula motion after the deceleration phase.  
All the results were generated on a 2D mesh with 2663 quadratics triangular elements that 
represent 16985 degrees of freedom. According to the results of section, we consider a 
Young’s modulus for the cupula of 5 Pa and a Poisson’s ratio of 0.48. 
 

 
 
Figure 2.16. Rotational motion applied to the semicircular canal. (a) Moving mesh. (b) Profile of angular 
velocity applied to the structure. 
 
 
 
Case 1: Semicircular canal located at the center of the head. 
 

• Cupula displacement at the very beginning of the imposed rotational motion: 
 
 

 
Figure 2.17. Evolution of the displacement of the cupula at the very beginning of the imposed rotational 
motion. The displacement of the cupula begins near the sensory epithelium and then spreads towards the 
center of the cupula. 
 
 
The displacement of the cupula is shown in figure 2.17. It can be observed that 
displacement begins close to the crista, which suggests that initial movements of the 
cupula produce a shear type deformation right above the sensory epithelium. Thus, 
sensory hair cells are presumably stimulated as soon as head motion starts. After a certain 
limit is reached, about 0.1 s, maximal displacement spreads toward the center of the 
cupula. This behavior is consistent with previous studies of McLaren (1977) who 
measured the positions of oil droplets, which were injected in the cupula of the bullfrog, 
following the compression of the canal wall. 
 

x
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y
�
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�
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• Fluid flow in the slender part of the canal at the very beginning of the rotation: 

 

 
Figure 2.18. Evolution of the velocity of the fluid in the slender part of the duct at the beginning of the rotational 
motion. 
 
Velocity profiles of the fluid flow in the slender part of the canal are plotted in figure 2.18. 
We see that in about 0.04 s – 0.05 s the fluid flow is analogous to a Poiseuille flow. Indeed, 
the velocity profile tends to a parabola, with the fluid in the center of the canal having the 
greatest speed. This result is consistent with previous analytical studies. For instance, Groen 
(1952) assumed a fully developed Poiseuille flow in a straight tube to investigate the 
dynamics of semicircular canal flow and cupula motion, while Van Buskirk et al. (1976) 
shown that endolymph volume displacement resulting from a step change in angular velocity 
under the non-steady state flow assumption can be approximate by the Poiseuille steady-state 
flow relation. 
 

• Fluid flow in the canal and cupula motion  
 

At the beginning of the rotation of the canal, the fluid lags behind due to its inertia. Therefore, 
fluid flow relative to the wall of the canal is oriented in the opposite direction of the imposed 
rotational motion during about 0.25 s (Fig. 2.19). Meanwhile, this flow, represented by the 
arrows in figure 2.19, exerts a pressure across the cupula, and thus deflects it in the opposite 
direction of rotation as well. The deflection of the cupula reaches a maximum value close to 
15 µm for the set of elastic properties retained. At time t=0.3 s, even though the canal still 
experiences a rotational motion, the cupula starts to return to its rest position due to its elastic 
properties. In addition, because of the small diameter of the duct and the viscosity of the fluid, 
the latter tends to catch up with the rotation of the canal, eliminating little by little the relative 
movement between the fluid and the canal. One can notice that the maximum fluid velocity is 
decreased by a factor 20 between time instants 0.3 s and 0.6 s. 
 
The canal experiences a constant angular velocity until t=15 s, and then the movement of 
rotation is stopped in 0.3 s. At time t=15.1 s, the fluid is still in motion within the canal due to 
its inertia. As a consequence, the cupula, which was returned to its rest position, is deflected 
in the opposite direction than previously (Fig. 2.20). Once again, we can note that cupula 
deflection starts near the sensory epithelium and then spread toward its center (Fig. 2.20). 
Finally, the cupula returns to its initial position which provokes a slight counter clockwise 
fluid flow. 

Fluid velocity along the dashed line 

0.025t s=  

0.01t s=  
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Figure 2.19. Fluid velocity (left) and cupula displacement (right) at the beginning of the rotation. 
Visualization in the ALE reference frame (moving mesh). 
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Figure 2.20. Fluid velocity (left) and cupula displacement (right) at the end of the rotation. Visualization in the 
ALE reference frame (moving mesh). 
 
 
Figure 2.21 shows the time-dependent displacement of a point located at the center of the 
cupula. It can be seen that the cupula experiences two deflections in opposite directions that 
are due to the acceleration and deceleration phase of the motion.  
 
 

 
Figure 2.21. Displacement of the center of the cupula during a constant angular rotation which ends at time 
t=15 s. 
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Case 2: Semicircular canal located 30 mm away from the axis of rotation 
 
The same simulation as previously is performed with the canal located 30 mm away from the 
axis of rotation. The behaviors of the cupula and of the fluid flow within the canal are similar 
to the centered canal model (Fig. 2.22). Figure 2.22 presents cupula motion and fluid flow at 
different instants. Following a deflection due to the angular acceleration of the canal, the 
cupula returns to its rest position through time. As regard the fluid flow, it is oriented 
clockwise because at time t=2 s it has already caught up with the rotation of the canal. 
 
 

 
Figure 2.22. Rotation of the canal located 30 mm away from the axis of rotation (the physical scale is not 
respected). The arrows are oriented along the fluid flow. 
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2.2.5. Three-dimensional model of a single canal 
 
Before modeling the entire set of semicircular canals, we have extended the previous 2D 
model to three-dimensional space. Once again, we have used dimensions and shape of the 
various cross sections provided by Curthoys and Oman (1987). Besides drawing a complex 
geometric model with the computer-aided design (CAD) tools built into Comsol 
Multiphysics, an alternative is to create it with a specialized and more appropriate CAD 
software application and save it to a file that can be, in turn, imported into Comsol 
Multiphysics. In the present case, we have chosen to develop the 3D canal under CATIA V5 
(Fig. 2.23a). Then, the resulting geometry has been exported into a STEP file format, which is 
one of the most popular types of file used to exchange geometric models among CAD 
software applications. Finally, this STEP file, which contains the mathematical description of 
the object, has been imported into Comsol Multiphysics thanks to its CAD import module so 
as to perform the meshing (Fig. 2.23b) and run the simulations. 
 
 

 
Figure 2.23. Visualization of a three-dimensional single canal. (a) CAD model under CATIA V5. (b) Tetrahedral 
mesh of the canal perfomed under Comsol Multiphysics. 
 
 
As regard the simulation, we have only considered a rotation of the structure around a vertical 
axis passing through the center of the canal. Obviously, the size of the model is much higher 
than the two-dimensional version. The mesh is comprised of 15 408 quadratic tetrahedral 
elements that represent 133 112 degrees of freedom. 
 
As one might expect, the solution provided by this 3D model is similar to the 2D model 
results previously computed (Fig. 2.24). Therefore, we only show few figures related to fluid 
velocity and cupula displacement. As already mentioned, at time instant 0.03 s the fluid lags 
behind due to its inertia. Therefore, fluid flow relative to the wall of the canal is oriented in 
the opposite direction of the imposed rotational motion which deflects the cupula. We can 
note that the maximum velocity of fluid flow is close to 2.1 µm/s while the 2D model predicts 
a maximum value of 1.6 µm/s. As regard cupula displacement, a maximum value of 0.37 µm 
and 0.44 µm are predicted by the 2D and 3D model, respectively (difference of about 20 %). 
 
Due to the constant angular velocity applied to the canal and the elastic properties of the 
cupula, the latter returns to its rest position through time. At time instant t=1 s, the maximum 

(a) (b) 

Interface cupula/fluid 

Outlet of the 
common crux 
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displacement of the cupula is about 1.7 µm. We can also observe that the fluid flow is 
oriented in the same direction as the imposed movement of rotation for the same reasons 
mentioned previously. 
 
 

 
Figure 2.24. Fluid velocity in m/s (left) and cupula displacement in m (right) at time instant t=0.03 s and t=1 s. 
The fields of fluid velocity and cupula displacement are plotted on a cross-section of the 3D model located at the 
coordinate 0z =  (midplane). Visualization in the ALE reference frame (moving mesh). The arrows are oriented 
along the fluid flow. 
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2.2.6. 3D model of the entire set of canals 
 
The modeling of the entire set of semicircular canals + cupulae + utricle is now considered. 
As the previous 3D model, the geometry has been developed with the CAD software CATIA 
V5 and then has been imported into Comsol Multiphysics (Fig. 2.25). Dimensions of the 
vertical canals have been taken identical as the horizontal canal, and all the canals are 
assumed orthogonal. 

 
Figure 2.25. Three-dimensional CAD model of the three SCCs + utricle +cupulae. 
 
 
Obviously the mesh of this model is much more complicated than the previous 3D model of a 
single canal because the connections between each canals and the utricle has to be meshed 
finely. The mesh is comprised of 45,408 quadratic tetrahedral elements that represent 498,112 
degrees of freedom (Fig. 2.26). 

 
Figure 2.26. Mesh of the final three-dimensional model which consists of 45,408 quadratics elements 
representing 498,112 degrees of freedom. 
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The number of degrees of freedom (DOFs) conditioned the size of the model in terms of 
required computational resource, in particular Random-access memory (RAM). If the 
numbers of DOFs is very high so that the model requires a RAM quantity higher than that 
available in the computer, then the operating system is going to swap. Swapping is a useful 
technique that enables a computer to execute programs and manipulate data files larger than 
main memory. The operating system copies as much data as possible into main memory, and 
leaves the rest on the disk. When the operating system needs data from the disk, it exchanges 
a portion of data in main memory with a portion of data on the disk. In other words, if the size 
of the model is too high, the operating system will continuously exchange data between main 
memory and the disk, and computation time of the model will blow up. Therefore we have to 
make sure that memory required by the model is lower or at least equal to the available RAM. 
However, the size of the mesh also conditioned the accuracy of the solution. For instance, if 
the mesh is too coarse we may encounter problems of convergence of the solution because of 
inverted mesh. Thus, the model must be meshed as fine as possible as long as the available 
memory is sufficient. 
 
In the present case, simulations of the model are run on a computer having two dual-core 
processors, 8Go RAM, and a 64-bit linux operating system. The available main memory 
implies a maximum number of DOFs close to 300,000. 
 
Unfortunately, by running the model for a constant head angular velocity we encountered 
problems of convergence a time t=1.8s because of inverted mesh, which is probably due to 
the fact that the mesh was not fine enough. However, results of the simulation are promising 
as the overall behavior of the model at the beginning of the imposed rotation is similar to that 
of the models previously presented. Figure 2.27 shows displacement of the cupulae and fluid 
velocity at time t=0.1 s and t=0.3s. At time t=0.1s, the fluid flow is in the opposite direction of 
the imposed clockwise rotational motion. The cupula of the lateral is thus deflected. Note that 
cupula of the anterior canal also experiences a slight deflection due to the gravity field. 
Cupula of the posterior canal remains at its rest position as there is no fluid flow within this 
canal and as this cupula is almost aligned with the gravity vector. At time t=0.3 s, fluid flow 
catches up with the rotation of the canal eliminating little by little the relative motion between 
endolymph and canal walls. 
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Figure 2.27. Results provided by the simulation of the final 3D model of the semicircular canals. (a) Field of 
fluid velocity at time t=0.1s. (b) Field of cupulae displacement at time t=0.1 s. The cupula of the lateral canal is 
deflected because of the imposed motion of rotation of the canals. The cupula of the anterior canal is slightly 
deflected at the beginning of the simulation because of the gravitational field. Note that cupula of the posterior 
canal does not experience any deflection as there is no fluid flow within this canal and as this cupula is almost 
aligned with the gravity vector. (c) Field of fluid velocity at time t=0.3s. 
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Chapter III: Virtual reality model 
 
 

3.1. Virtual reality model 

3.1.1. Introduction 
 
As we move in our surrounding environment, our vestibular systems constantly provide 
information to the brain regarding our head’s orientation and acceleration in space.  As 
described in the background section, head angular motion induces cupula deflection which in 
turn provokes the bending of sensory hair cells bundles, and thus involves a stimulus on the 
semicircular canals’ afferent nerve fibers. In the same way, both head linear acceleration and 
head tilts cause a displacement of the otolithic membrane relative to its sensory base, 
provoking bending of hair cell cilia that generates signal on the otolith afferent nerve fibers. 
 
The way each cupula and otolithic membrane behaves for any angular or linear acceleration 
is, however, not obvious, especially for complex head motion. Therefore, a virtual reality 
model of the vestibular sensors is designed in our work. The primary advantage of this model 
is that it can be used as a demonstrating and learning tool as the theoretical state of each 
sensor can be observed in real time. As a result, it offers the possibility to get a better overall 
understanding of the vestibular apparatus. 
 
This numerical model, developed in Matlab/Simulink, takes into account both the angular and 
linear sensors. However, the three-dimensional animation only considers the semicircular 
canals. While a previous model considered a head centered vestibular system (Adenot, 2002), 
we here assume that the sensors are located 30 mm away from the head vertical axis. 
Consequently, during any rotational head movement, the otolith organs experience both 
tangential and normal acceleration components.  
 
As a practical demonstration, the model simulates the rotating chair test which is one of the 
procedures usually performed by specialists during a diagnosis of the vestibular system. 
Basically, this experiment consists of strapping the patient onto a rotating chair, applying 
different rotational motion profiles (trapezoidal, sinusoidal, etc), and recording - using two 
miniaturized infrared cameras mounted in a mask – an ocular reflex, which is the consequence 
of the stimulation of his vestibular systems, so as to detect any vestibular deficiencies. In 
order to simulate this experience and to compute numerically the state of each sensor, the 
model follows different steps (Fig. 3.1). First, it resolves the equations of motion in three 
distinct reference frames: earth, chair, and head coordinate system. Second, it computes the 
angular acceleration vectors projected on each canal axis and the linear acceleration vectors 
projected on the surface of the otolith organs. Third, the displacement of each sensor is 
derived using their transfer function. Fourth, these data, which constitute the inputs of the 
virtual scene, are transferred to the virtual model. Note that a Graphical User Interface (GUI) 
has been developed in order to simplify the use of this model.  
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Figure 3.1. Schematic block diagram of the virtual reality model simulink model. The computation of the model 
is divided in several steps. First, the user implements the motions. Then, as soon as the simulation is run, 1) 
equations of motion are solved; 2) angular velocity and gravitoinertial acceleration are applied to the sensors 
models; 3) the state of each sensor is determined in real time. 

 
.The model is based on different assumptions: 

 

- the orientation of the semicircular canals is derived according to a recent study 
performed by Della Santina (2005) 

- the utricle has an elevation of 30 ° from the horizontal plane 
- the saccule is assumed vertical 
- a semicircular canal is normally excited by rotation in the plane of the canal 
- the response to simultaneous canal stimuli is approximately the vector sum of the 

responses to each stimulus alone 
- the canals are totally uncoupled 
- the utricle is stimulated by horizontal components of gravito-inertial forces, 

whereas the saccule senses the vertical component. 
 
 

3.1.2. Formulation of the kinematic problem 
 
  
The different coordinate frames are defined as follows (Fig. 3.2b): 

- R0: (O, 0X
�

, 0Y
�

, 0Z
�

) fixed orthogonal coordinate system 

- R1: (O, 1X
�

, 1Y
�

, 1Z
�

) orthogonal coordinate system attached to the rotating chair 
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- R2: (A, 2X
�

, 2Y
�

, 2Z
�

) orthogonal coordinate system attached to the head 

- R3: (B, 3X
�

, 3Y
�

, 3Z
�

) non-orthogonal coordinate system defined by the 3 

perpendiculars of the semicircular canals 
 

 
 
Figure 3.2. (a) Visualization of the diagnosis procedure, (b) Different coordinate systems : R0: (O, 0X

�
, 0Y
�

, 0Z
�

) 

fixed orthogonal coordinate system ,R1: (O, 1X
�

, 1Y
�

, 1Z
�

) orthogonal coordinate system attached to the rotating 

chair, R2: (A, 2X
�

, 2Y
�

, 2Z
�

) orthogonal coordinate system attached to the head, R3: (B, 3X
�

, 3Y
�

, 3Z
�

) non-

orthogonal coordinate system defined by the 3 perpendiculars of the semicircular canals. 
 
 
During the experiment, the head of the patient is usually kept fixed so as to investigate his 
lateral semicircular canals. However it is interesting to have the possibility to simulate head 
rotations during the imposed chair motion. First, this would imply the stimulation of the 
vertical canals. Second, head-movements in a rotating environment create Coriolis cross-
coupled stimuli that introduce problematic vestibular response. This phenomenon has been 
the topic of many researches. In particular, in order to prevent the serious deconditioning 
associated with prolonged exposure to weightlessness, scientists suggested using short-radius 
centrifugation in order to create artificial gravity. Unfortunately, out-of-plane head-turns on a 
centrifuge provoke unexpected illusory sensations of motion. As the present model permits to 
simulate any head rotations in a rotating environment, it can simply be extended to the case of 
a centrifuge experiment by modifying the position of the head coordinate frame from the axis 
of rotation. 
 
For clarity purpose, the head movements of the subject are named (Fig. 3.3): 
 

- pitch movement: for a head tilt toward the shoulders 
- roll movement: for a downward or upward head rotation 
- yaw movement: for a head rotation to the left or to the right. 

 

(a) (b) 
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Figure 3.3. Definition of head movements: pitch, roll, and yaw. 

 
 

3.1.2.1. Rotation of reference frames 
 
The angular orientation of the reference frame is described by the Euler angle. This method 
involves successive rotation about the principle axes, and has a solid link with the intuitive 
notions of roll, pitch, and yaw. Needless to say, there are many valid Euler angle rotation sets 
possible to reach a given orientation. We consider here the sequence of yaw, pitch, and roll 
rotation that transforms the original coordinate frame into an arbitrary orientation.  
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problem that arises is to know accurately the absolute orientation of these perpendiculars with 
respect to the head coordinate frame. Apart from a widely cited study of 10 human skulls by 
Blanks et al. (1975, Curthoys et al. 1977), majority of the studies of human labyrinth 
morphology have related SCC orientations to accessible skull landmarks. Indeed, most of the 
studies have dealt with inter-SCC angles of isolated human labyrinths using high-resolution 
radiographic reconstructions (Archer et al. 1988, Tagaki et al. 1989, Harada et al. 1990, 
Hashimoto et al. 2003). In addition, Blanks et al. concluded that the horizontal and anterior 
SCC are not mutually orthogonal (111 ± 7.6°) while multiple studies of isolated labyrinths 
have shown the inter-SCC angles are close to 90°. As noted by Della Santina et al., this 
difference is probably due to the small number of skull samples that Blanks et al. have 
considered. Therefore, in order to unify all the values proposed in the literature and to provide 
accurate data of orientation and position of SCC, Della Santina et al. have measured SCC 
orientations with respect to accessible skull landmarks using three-dimensional multiplanar 
reconstructions of high-resolution computed tomography scans of 44 labyrinths in 22 human 
subjects. They concluded that the angle between the anterior and posterior SCC is 94.0 ± 4.0°, 
that the angle between the anterior and horizontal SCC is 90.6 ± 6.2°, and that the angle 
between the horizontal and posterior canal is 90.4 ± 4.9°. These angles are considered in the 
present model. 
 
These values clearly show that the canals do not define an orthogonal coordinate system. In a 
physical sense that means if the head turn around the normal of one canal plane, not only this 
canal but the others will be stimulated. Thus, for any rotation of the head all the angular 
sensors should provide a stimulus. A vector defined in R2 is projected into the coordinate 
system R3 attached to the canals with the transformation matrix: 
 

a a a a a

p p p p p

l l l l l

c c c s s

M M M M c s c c s

c s s c c
ϕ θ ψ

θ ψ θ ψ θ
ϕ ψ ϕ ψ ϕ
ϕ θ ϕ ϕ θ

− 
 = = − 
 − 

 with cosc = , sins = . 

where , ,andθ ψ ϕ  are the Euler angles defining the normal of each canal plane (lateral, 
posterior, anterior).  
 

3.1.2.3. Expression of the angular velocity vectors 
 
Convention for notations: 
The symbol /i jω

				�
 represents the angular velocity of a body moving in frame i  as seen in frame 

j . Correspondingly /i jω�ɺ , 
/,i jBV

					�
, and 

/,i jBA
					�

 represent the angular acceleration, linear velocity, 

and linear acceleration of a body moving frame i  as seen in frame j , respectively. 
 

• Head / Chair 
 
Head movements are separated into three non-simultaneous distinct motions:  
 

� Case 1: yaw motion defined by the angle γ , so that 2 /1 2 1Z Zω γ γ= =
� ��
ɺ ɺ  

� Case 2: pitch motion defined by the angle β , so that 2 /1 2 1Y Yω β β= =
� �� ɺ ɺ  

� Case 3: roll motion defined by the angleα , so that 2 /1 2 1X Xω α α= =
� ��
ɺ ɺ . 
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The axes of R2 are expressed in R0 according to: 
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c s

M s cδ

δ δ
δ δ

 
 = − 
 
 

 

 
This yields the following expressions: 
 

� 2 0 0 0( ) ( )X c c c s c s X s c c c c s Y s Zβ γ δ δ β γ δ β γ δ β γ β= − + + −
� � � �

     (3.2) 
 

� 2 0

0 0

[ ( ) ( )]

[ ( ) ( )]

δ β γ α α γ δ α γ β α γ
δ α β γ α γ δ α γ β α γ β α

= − − +

+ − + + +

� �

� �
Y c s c s c s s s s s c c X

s s s c c s c s s s c c Y c s Z
    (3.3) 

 

� 2 0

0 0

[ ( ) ( )]

[ ( ) ( )]

δ γ α β α γ δ γ α β α γ
δ γ α β α γ δ α γ β α γ β α

= + − −

+ + + − +

� �

� �
Z c c c s s s s s c s s c X

s c c s s s c c s s s c Y c c Z
     (3.4) 

 
Thus, for each case of head rotation, the angular velocity vector 2 /1ω�  is defined in R0 by: 
 

� Case 1: 2/1 2 0 0X c X s Yω α α δ α δ= = +
� � ��
ɺ ɺ ɺ        (3.5) 

� Case 2: 2/1 2 0 0Y s X c Yω β β δ β δ= = − +
� � �� ɺ ɺ ɺ         (3.6) 

� Case 3: 2/1 2 0Z Zω γ γ= =
� ��
ɺ ɺ         (3.7) 

 
• Head / earth 

 
The angular velocity of the head with respect to the earth coordinate frame is given by: 

2 / 0 2 /1 1/ 0ω ω ω= +
� � � .Therefore for each case of head rotation: 

 
� Case 1: 2 / 0 2 0 0 0 0ω α δ α δ α δ δ= + = + +

� � � � �� ɺ ɺɺ ɺ ɺX Z c X s Y Z      (3.8) 

� Case 2: 2 / 0 2 0 0 0 0ω β δ β δ β δ δ= + = − + +
� � � � �� ɺ ɺ ɺ ɺ ɺY Z s X c Y Z       (3.9) 

� Case 3: 2 / 0 2 0 0( )ω γ δ γ δ= + = +
� � �� ɺ ɺɺ ɺZ Z Z                 (3.10) 

 
 

3.1.2.4. Expression of the angular acceleration vector 
 
The angular acceleration of the head relative to the earth reference frame is given by: 
 

2 / 0 2 /1 1/ 0ω ω ω= +� � �ɺ ɺ ɺ                     (3.11) 

 

If the chair rotates at a constant angular velocity, the vector 1/ 0ω�ɺ  is null. Let us consider the 

following rotation rate vector: 2 /1 2 2 2x y zx y zω ω ω ω= + +� � � �
 so that its first derivative is: 

 

0
0 0 0

2 2 2
2 /1 2 2 2x y z x y zR

R R R

dx dy dz
x y z

dt dt dt
ω ω ω ω ω ω ω     = + + + + +     

     

� � �
� � � �ɺ ɺ ɺ ɺ              (3.12) 
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According to the formulas of differentiation of a vector in a moving frame, we have the 
following relations: 
 

0 1

2 2
1/ 0 2 2 /1 2 1/ 0 2ω ω ω   = + ∧ = ∧ + ∧   

   

� �
� � � � � �

R R

dx dx
x x x

dt dt
               (3.13) 

0 1

2 2
1/ 0 2 2 /1 2 1/ 0 2ω ω ω   = + ∧ = ∧ + ∧   

   

� �
� � � � � �

R R

dy dy
y y y

dt dt
               (3.14) 

0 1

2 2
1/ 0 2 2 /1 2 1/ 0 2ω ω ω   = + ∧ = ∧ + ∧   

   

� �
� � �� � �

R R

dz dz
z z z

dt dt
               (3.15) 

 
Finally, injecting (3.13), (3.14), and (3.15) into (3.12), the angular acceleration vector of the 
head relative to the earth coordinate frame is: 
 

0
2 /1 2 2 2 1/ 0 2 /1x y zR

x y zω ω ω ω ω ω= + + + ∧� � � � ��ɺ ɺ ɺ ɺ                  (3.16) 

 
 

3.1.2.5. Expression of the linear acceleration vectors 
 
Due to their position from the head vertical axis, both vestibular systems experience normal 
and tangential acceleration components during any rotation of the head. The further is the 
head from the axis of rotation, the higher are these acceleration components. We assume here 
that these components stimulate the otolith organs. For each case of head movement – roll, 
pitch, and yaw rotation – the derivation of the absolute linear acceleration of the origin of the 
coordinate system R3 attached to the canals is given by: 
 

( )
2 / 0 2 /1, , 1/ 0 1/ 0 1/ 0ω ω ω= + ∧ + ∧ ∧ +

			� 			� 							�� � � � �ɺ
B B coriolisA A AB AB A                  (3.17) 

 
This expression describes linear acceleration in a rotating environment. The first term is due 
to the acceleration of B within the moving frame R1. The second term is the result of the 
rotational acceleration of R1. The third term constitutes the centripetal acceleration which is 
due to the rotation of the moving frame. The last term is due to the motion of B within the 
moving frame and is known as the Coriolis acceleration. 
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• Case 1: yaw head movement 

 

 
 
Figure 3.4. Orientation of the coordinate systems for a yaw head movement while the subject is rotated around 
an Earth vertical axis. 
 
 

� Linear velocity 
 
The velocity of B relative to the moving frame R1 is given by: 
 

2 /1 2 /1, , 2 /1 2/1B AV V AB ABω ω= + ∧ = ∧
					� 					� 			� 			�� �

                  (3.18) 
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� Linear acceleration 

 
� Acceleration of B relative to R1 
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            (3.19) 

� Coriolis acceleration 
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2 2 0 0 2 2
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dsd

A V d dc

δγ γγ
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� Absolute acceleration of B 

 
 
 

( )
2 / 0 2 /1

2

, , 1/ 0 1/ 0 1/ 0 ² 2

0

²ω
δ
δω

γ
δω γγ= + ∧ + ∧ ∧ +
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			� 			� 							�� �

ɺ

ɺɺ ɺɺ

ɺ� � �ɺ ɺ ɺB B coriolis

R

d

dA A AB AB A

d

dd              (3.21) 

 
The green, red, and blue terms represent the acceleration of B relative to R1, the rigid body 
acceleration of B in R0, and the Coriolis acceleration, respectively.  
 

• Case 2: pitch head movement 
 

 
Figure 3.5. Orientation of the coordinate systems for a pitch head movement while the subject is rotated around 
an Earth vertical axis. 
 
 

� Linear velocity 
 
The velocity of B relative to the moving frame R1 is null because it is located right on the axis 
of rotation 2y

� . Therefore, both the acceleration of B relative to R1 and the Coriolis 
acceleration are equal to zero. 
 

� Linear acceleration 
 

� Absolute acceleration of B 
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• Case 3: roll head movement 
 

 
Figure 3.6. Orientation of the coordinate systems for a roll head movement while the subject is rotated around 
an Earth vertical axis. 
 
 

� Linear velocity 
 
The velocity of B relative to the moving frame R1 is given by: 
 

2 /1

2 2 1

,

0 0 0

0 0

0 0
B

R R R

V d ds

d dc

α
α α

α α α
= ∧ = = −
ɺ

					�
ɺ

ɺ ɺ
                 (3.23) 

 
� Linear acceleration 
 
� Acceleration of B relative to R1 
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� Coriolis acceleration 
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� Absolute acceleration of B 
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3.1.3. Programming and implementation  
 
The entire model has been developed in Matlab/Simulink. A graphical user interface has been 
programmed in order to simplify the use of the model, the implementation of the simulation 
parameters, and the analysis of the results (curves plot, 3D animation, and virtual reality). 
This GUI is linked to the core of the model, implemented in Simulink, where the equations of 
motion and the state of the sensors are computed. In addition, a virtual reality world is linked 
to the kinematics and vestibular model using the virtual reality toolbox available in Matlab. 
This toolbox represents an interface between Matlab and Simulink data on one hand, and 
virtual reality graphics one the other hand. 
 
Basically the model follows different steps: 
 

1. the user implements the motion undertaken by an actual patient, i.e. the motion 
profile of the chair (continuous, trapezoidal, or sinusoidal) and the potential head 
rotations 

 
2. the user runs the simulation: the kinematics and the state of each sensor are 

computed 
 

3. the user analyses the results: data processing is performed from the GUI. The user 
has the possibility to plot the displacement of each sensor, to run a three-
dimensional dynamic animation showing the state of the cupulae, or to run a 
virtual reality animation of the experiment. 

 

3.1.3.1. Graphical user interface 
 
Figure 3.7 shows the GUI developed under Matlab. This interface is comprised of four main 
sections: 
 

• Section I concerns the implementation of the motion of the rotating chair. The user can 
choose between a continuous, trapezoidal or sinusoidal rotation. The parameters of the 
imposed rotation are the angular velocity of the chair, the duration of acceleration and 
deceleration, the duration of the motion profile, and, in the case of a sinusoidal 
motion, the frequency of the rotation. 

 
• Section II offers the possibility to consider translational motion. In that case, however, 

both the three-dimensional animation and the virtual reality model become useless as 
they only represent the rotating chair experiment. Nonetheless, the displacement of the 
otolithic membrane can still be analyzed through the different plots.  

 
• Section III concerns the implementation of head movements. For each head rotation, 

the parameters are the starting and return time of the motion, and the magnitude and 
duration of each rotation. 

 
• Section IV comprises the push buttons for running the simulation and for data 

processing (curves plots, animation, etc). 
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Figure 3.7. Graphical user interface of the virtual reality model. I: parameters of the rotary chair; II : 
parameters of exterior linear accelerations; III : parameters of head movements; IV : simulation, results and 
virtual reality push buttons. 
 
 

3.1.3.2. Simulink model 
 
The architecture of the core of the model is presented in figures 3.8. The first box titled SCC, 
computes the kinematics problem regarding the rotational motion, i.e. the angular velocity, 
angular acceleration, and linear acceleration components due to the movement of rotation. 
This block also performs the projection of the angular acceleration vectors into the coordinate 
frame attached to the canals. A variable permits to switch between the angular acceleration - 
either defined in R2 or R3 - that is applied to the SCC. In other words, the user can choose 
between an orthogonal head-centered vestibular system and a set of SCC that are oriented 
according to experimental angles. Hence, he can study the impact of a non-orthogonal 
coordinate frame on the stimulation of the SCCs. Assuming that the SCCs are totally 
uncoupled, the x� , y

� , and z�  angular acceleration components are then sent to the transfer 
function of the posterior, anterior, and lateral canal, respectively. Note that the semicircular 
canals are supposed to have the same dynamic behavior, which is defined by equation (1.9).  
 
The block titled Utricle-saccule performs merely the sum of the linear acceleration vector due 
to the rotational motion, the linear acceleration vector of a potential translational motion, and 
the gravity vector. Each component is then passed through each otolith organ transfer function 
defined by equation (1.14). The x

�  and y�  components are assumed to be sensed by the utricle, 
while the z�  component stimulates the saccule. 
 
Finally, the block named VR Vizualisation, which contains all the data relative to the virtual 
reality world, performs the virtual animation. 
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Figure 3.8. First layer of the simulink model. 
 
 
The block “SCC” is detailed in figure 3.9. The kinematics problem is solved in four 
successive steps: 
 

1. Blue block: calculation of the motion R1/R0 (angular and linear velocity, Euler 
angles, rotation matrix from R0 to R1, etc) 

 
2. Red block: Calculation of the motion R2/R1 (angular and linear velocity, Euler 

angles, rotation matrix from R1 to R2, etc) 
 

3. Green block: Calculation of the motion R2/R0 (angular and linear velocity, linear 
acceleration, Euler angles, rotation matrix from R0 to R2, etc) 

 
4. White block: Calculation of the angular acceleration in R2 and R3. 

 
The block “Utricle-saccule” first sums up the potential linear acceleration imposed by the user 
and the gravity vector, and projects the resulting vector into the head coordinate frame R2. 
Then, this vector is added to the linear acceleration of the origin of the coordinate frame R3 
that is due to the rotational motion of the chair and of the head (Fig. 3.10). 
 

SCC transfer functions 

Otolith  transfer functions 
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Figure 3.10. Detailed view of the block of the first layer titled “utricle-saccule”. 
 
 

3.1.3.4. Virtual reality model 
 
A virtual reality world is linked to the kinematics and vestibular model using the virtual 
reality toolbox available in Matlab (Natick, 2007). This toolbox represents an interface 
between Matlab and Simulink data on one hand and virtual reality graphics one the other 
hand. Virtual reality graphics are based on VRML, an open standard for describing 3-D 
scenes (Carey et al., 1997). Virtual Reality Toolbox has been successfully used in multiple 
applications for visualizing results of Simulink simulations. However, it has been observed 
that system and control engineers who are unfamiliar with VRML find it difficult to create a 
VRML file describing a 3-D scene they would like to visualize. The solution to simplify the 
VRML file creation process is to start the design with CAD assemblies. In this modeling, the 
different parts of the virtual world are created using Solidworks (CAD software), which is 
very useful for specifying detailed three-dimensional design of a component (Solidworks 
User’s guide, 2007). The CAD models are then exported into Virtual Reality Modeling 
Language (VRML) files. The final virtual environment is created using the “V-Realm 
Builder” software where the VRML files are imported. In order to simulate the dynamics of 
the system, the CAD-to-SimMechanics translator from the MathWorks is used 
(SimMechanics User’s Guide, 2007). It enables to translate CAD assemblies from a CAD 
platform into a Physical Modeling XML file compatible with SimMechanics. Then a 
SimMechanics block diagram model is generated from this file to simulate the dynamics of 
the CAD assembly in the Simulink environment. In order to achieve this, Simulink and 
SimMechanics use a block diagram approach to model control systems around mechanical 
devices and simulate their dynamics. The block diagram approach does not include full 
geometric information, nor do CAD assemblies typically incorporate controllers or allow to 
perform dynamic simulations. Using this technique of CAD translation, the power of CAD 
and SimMechanics are combined. 
 
Finally, this Simulink model is connected to the virtual scene in order to create a realistic 
high-quality animation. The outputs of the kinematics and vestibular model are linked to the 
inputs of the virtual reality toolbox in order to bring about progress in the virtual world (Fig. 
3.11).  

Linear acceleration due 
to the rotational motion 
R2/R0 and coming from 
the block SCC 
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Figure 3.11. Schematic block diagram of how the virtual reality world is created and controlled. The VRML files 
are created using a CAD software. The Simmechanics module permits to represent and keep the physics of the 
modeling. All the data are imported into a Matlab/Simulink model where the virtual reality toolbox is used. This 
Simulink file is controlled by the kinematics of the simulation and the vestibular model. 
 

3.1.3.5. Simulation and visualization 
 

• Rotation movement of the chair 
 
This experiment mimics the usual diagnosis procedure of the lateral semicircular canal. 
During this first experiment the patient sits down on the rotary chair. His head is kept fixed 
relatively to the device and tilted downward of 30 ° to bring the lateral semircircular canal in 
the plane of rotation. Then, a constant angular velocity of 100 /sδ = °ɺ is imposed to the chair. 
This motion starts at 0 1t s=  and achieves its steady state in 1s . This simulation lasts 40 
seconds. The volume displacement of the cupula is shown on figure 3.12. If the canals are 
considered to be orthogonal, the endolymph in the lateral canals lags behind - at the beginning 
of the rotation - due to its inertia. Consequently, the cupula of the lateral semicircular canal is 
deflected in the opposite direction of head movement (Fig. 3.12a). This deflection causes a 
sensation of motion. The angular velocity of the chair being constant, the endolymph in the 
lateral canal tends to catch up with the rotation of the head eliminating the relative movement. 
Therefore, the cupula returns to a vertical position due to its elastic properties, and the 
sensation of motion ceases.   
 
Figures 3.12a and 3.12b enable us to show the influence of the non-orthogonality of the 
canals. From these plots, a slight displacement of the anterior and posterior cupula is observed 
that does not appear in the case of an orthogonal system. However, the lateral canal is the 
most stimulated as its plane is quasi-perpendicular to the axis of rotation. The displacement of 
the lateral cupula generates a sensation of rotation which lasts about thirty seconds at a 
constant angular velocity. 
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Figure 3.12. Displacement of the cupula of each canal due to: (a) and (b) rotation movement of the chair, (c) 
and (d) rotation movement of the chair and of the head. The graphics (a) and (c) correspond to an orthogonal 
coordinate system R3, whereas (b) and (d) correspond to a non-orthogonal coordinate system R3. The non-
orthogonality of R3 entails a slight response of the verticals canals. This kind of response might be similar in the 
case of the existence of coupling terms between the canals due to fluid flow. 
 
 
 

• Rotation movement of the chair and then of the head 
 
The rotation movement of the chair is the same as above. In this case the subject does a 
downward and an upward head rotation at time 10t s=  and 25t s=  respectively. For the sake 
of simplicity, the amplitude of these movements is equal to 90° here. This kind of head 
motion during a constant angular velocity of the chair involves the stimulation of the other 
canals. The displacements of the cupulas can be observed on figures 3.12c and 3.12d. Until t 
being equal to 10s, the movement of the cupulas is the same as the previous experiment. At 
time 10s, the subject does a downward head rotation of 90° from the previous head position. 
In the case of an orthogonal set of canals, this head motion brings the posterior canal into the 
plane of rotation. Therefore the cupula of the posterior canal is in turn deflected whereas the 
cupula of the lateral canal bends in the opposite direction as the fluid keeps moving relatively 
to the wall of the lateral canal. At time 25t s= , the reverse phenomenon is produced as the 
subject makes an upward head rotation of the same magnitude. 
 
It can be noticed that the succession of head movements during a constant rotation of the 
body, creates erroneous motion sensations known as the Coriolis Effect in aeronautic terms.  
For example, at 5t s=  the downward motion of the head engenders a positive displacement of 
the lateral cupula. This means that during a few seconds the subject has a sensation of rotation 
opposite to the rotation of the chair. This is due to the inertia of the fluid which is still in 
motion inside the canal. The resulting sensory illusion will be presented in depth in chapter 4. 
 

• Virtual reality as a demonstration tool 
 
The aim of showing virtually the diagnosis test undertaken by the specialist is to allow a 
better comprehension of what happens inside the inner ear during a specific head movement. 
The state of each sensor is computed and visualized during the experimental protocol. Figure 
3.13 illustrates the patient sitting on the rotary chair and experiencing a downward movement 



 101 

of his head. The displacement of the cupula of each canal can be observed. For clarity 
purposes, a video of this simulation is available at the link: 
http://personnel.supaero.fr/morlier-joseph/Inner%20ear.html 
 

 
Figure 3.13. Visualization of a virtual scene: The state of each sensor can be visualized on real time during the 
test. The learning process is enhanced using user interactivity. 
 

3.1.3.6. Conclusion 
 
The model presented above simulates the rotating chair test which is one of the usual 
procedures carried out during a vestibular diagnosis. In addition, this model offers the 
possibility to simulate several head rotations.  
 
All the parameters that define the experiment can be entirely specified by the user through a 
graphical user interface. Regarding data processing, the user has the choice between plotting 
the displacement curve of each sensor, visualizing a dynamic three-dimensional animation of 
the SCC, and visualizing a dynamic virtual scene of the experiment. Both the 3-D animation 
and the virtual reality environment are very convenient as the user can observe what 
theoretically happens at the level of each sensor during any head rotation. This model also 
provides a better understanding of different kinds of erroneous motion sensations which may 
appear during combined rotation motions. 
 
The core of the model computes in real time equations of motion in earth, chair, and head 
coordinate system, and then project angular acceleration vectors into a reference frame 
attached to the semicircular canals. The orientation of the axes of this coordinate system has 
been defined according to a recent study based on 3-D multiplanar reconstructions of 
computerized tomography scans (Della Santina et al. 2005). The resulting non-orthogonal 
system underlines the fact that all the canals are stimulated for any rotation. 
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Chapter IV: Models for human spatial orientation 
 
 

4.1. Introduction 
 

Models for human spatial orientation perception are based on the concept of internal model 
representation. This concept assumes that the central nervous system (CNS) has an internal 
model of the physical world. In other words, based on past motion experiences the CNS has 
somehow learnt the dynamics of the sensors (vestibular sensors, visual sensors, etc) which 
sense position and motion, as well as some physical relations. 
 
This idea of internal model was developed in the 60’s in the field of guidance engineering to 
estimate the orientation and position of a vehicle for autonomous or assisted navigation. An 
internal model (not to be confused with the overall model) is an integral component of 
estimation techniques like observer theory and optimal estimation theory (i.e., Kalman filters). 
The purpose of internal models is to estimate external variables (like gravity, acceleration, 
velocity etc.) by mimicking the physical relationships between those variables and the sensory 
systems and thereby predicting their time-course from incomplete, noisy, and/or inaccurate 
sensory information (Fig. 4.1). Since the 70’s, this concept has attracted interests in 
neuroscience from motion sickness models (e.g. Reason, 1977, 1978; Oman, 1982, 1991) to 
model of human spatial orientation (Merfeld et al., 1993; Borah et al., 1979 and 1988; Zupan 
et al., 2002; Newman, 2009).  

 
Figure 4.1. Principle outline of the internal model concept applied for the estimation of external physical 
variables like acceleration, velocity, and position. 

 
As regard models for human spatial orientation estimation, two main model families can be 
distinguished: the Observer and the Kalman Filter model families. As already mentioned in 
the background section, Borah et al. were presumably the first to apply steady state Kalman 
filtering techniques to model orientation perception by a human riding passively in a vehicle. 
Their model considered dynamic models for vestibular and visual sensors, and the 
transformation from head to world coordinate system was linearized about the upright 
position. By empirically choosing sensor noise magnitude and bandwidth they show that their 
Kalman filter model successfully mimicked angular velocity storage during rotation about the 
Earth-vertical, somatogravic illusory tilts during linear acceleration in darkness, and angular 
vection and illusory tilt illusions resulting from scene rotation about vertical and horizontal 
axes, respectively. 
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A decade later, Merfeld et al. implemented a series of models using Observer theory. These 
models were developed to help explain perceived spatial orientation as well as the vestibulo-
ocular reflexes elicited by complex motion paradigms. Obviously, Merfeld et al. applied the 
concept of internal model and assumed that internal model estimates corresponded to 
perceptions of acceleration, velocity, and position. The most well known Observer model 
refers probably to Merfeld’s original paper (1993) in which a one-dimensional model and a 
three-dimensional model were proposed. Both of these models considered only vestibular 
sensors, and a nonlinear transformation from head to world coordinate system using 
quaternion mathematics was taken into account in the 3D model. 
 
 
The first goal of this chapter is to investigate why the widely known “Observer” and “Kalman 
Filter” model families – despite their apparently different assumptions - are dynamically 
equivalent from an input-output (“black box”) perspective. Obviously the Borah KF model 
incorporates some visual cues, whereas Merfeld Observer only described vestibular cue 
interaction in darkness.  Borah assumed the sensory dynamics of the otoliths were relatively 
slow (5 seconds dominant time constant), whereas Merfeld was aware that otolith dynamics 
were much faster.  Structurally, the models are somewhat different:  In the Borah KF model, 
weighted sensor residuals determine the rates of change of model outputs, whereas in the 
Merfeld Observer model, SCC residuals simply add to the outputs.  The vestibular portions of 
the Borah KF model postulate 16 SCC and Otolith residual weighting factors - each of which 
adds a potential decaying exponential or sinusoidal mode to the model’s responses.  By 
comparison the Merfeld Observer model utilizes only four ad hoc parameters. The Merfeld 
model works for large head tilts, whereas the Borah model does not. Nonetheless even for the 
head upright attitude, the angular velocity storage and somatogravic illusion responses of the 
Borah KF and Merfeld Observer are almost identical.  Therefore, in the following section we 
ask: What are the reasons for the dynamic equivalence of the two models?  How did Borah et 
al’s choice of motion disturbance and sensor noise magnitude and bandwidth impact the KF 
model’s dynamics? Is the Merfeld Observer model a lower-order-equivalent-system (LOES) 
for the Borah KF model, at least for the head upright condition?  The Borah KF model 
residual weighting factors are optimal for the particular motion disturbance and sensor noise 
magnitude and bandwith assumptions made.  However, Borah et al considered these free 
parameters, equivalent to the four free parameters in the Merfeld observer model, and 
determined them by fitting data on illusory rotation and tilt perception.   Shouldn’t the 
appropriate external motion disturbance characteristics represented in the Borah et al model 
be determined by a person’s motion exposure history?  Do human thresholds for angular and 
linear motion correspond to the equivalent sensor noise implied by the Borah et al model 
coefficients? 
 
The second goal of this chapter is to extend Borah’s steady state Kalman filter model to a 
general time-continuous three-dimensional model that works for any head attitude. In order to 
achieve this goal, we use suboptimal filtering techniques such as the extended Kalman filter 
and the unscented Kalman filter. The first developed model is closely based on Pommellet’s 
EKF model but differs in the sense that first, we use different dynamics for the otolith, second 
we add some fictitious process noise to the quaternion in order to address the issue of 
instabilities of the filter, and third we solve some implementation errors especially for the 
noise measurement. We then develop the first nonlinear model for human spatial orientation 
based on the hybrid unscented Kalman filter. This technique is fundamentally different than 
the EKF as it relies on the propagation, through the nonlinear dynamics of the system, of a set 
of points to approximate the mean and variance of the states instead of directly truncating the 
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nonlinear functions to a first or second order. In addition, its inherent properties involve a 
better accuracy and a faster computation time than the EKF. Finally, we simulate different 
motion paradigms and present modeling results for several vestibular and visual – vestibular 
illusions including for instance Coriolis and pseudo-Coriolis illusions. 
 

4.1. Relationships between Observer and Kalman filter models for 
human dynamics spatial orientation 
 

4.1.2. Observer and KF model comparison: yaw rotation in darkness 
 
Here we compare the Merfeld Observer and Borah Kalman filter models for the simple one 
dimensional case where a human subject is rotated in yaw about an Earth vertical axis in the 
dark, stimulating only the horizontal semicircular canals. The system input is a step of angular 
velocity zω . The subject reports perception of head angular velocity. 

 

4.1.2.1. Merfeld 1-D Observer model 
 
 

 
Figure 4.2. Merfeld Observer model for a yaw rotation. Hat variables refer to as the estimated variables. SCC: 

model of semicircular canal dynamics. 
SCC : model of semicircular canal dynamics assumed by the internal 
model of the central nervous system. The model predicts that in response to a constant head angular velocity, 
perception of angular velocity decays through time. 
 
 
Merfeld et al’s Observer model for this simple yaw rotation case is shown schematically in 
figure 4.2. Input to the system is head angular velocity zω . The SCC sensory afference y  was 

modelled assuming first order high-pass filter SCC dynamics with a time constant τ  of 6 s. 
Merfeld assumed that CNS neurons maintain an internal estimate of head angular velocity ˆzω . 

Using this estimate, and an internal dynamic model for the SCC with time constant τ̂  of 6 s, 
the CNS predicts SCC sensory afference ŷ , and computes a residual, and substracts it from 

actual SCC afference. The residual is weighted by gain 3kω =  and set equal to the current 

velocity estimate ̂ zω . Note that this is a different estimation scheme than that used in the 
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Kalman observer (eq.1.25) where residual drives the rate of change of the estimated state, 
ensuring that the steady state residual approaches zero. Merfeld et al. chose this alternate 
scheme because the closed loop transfer function of the Observer is  
 

[ ]
ˆ(1 )

ˆ1 ( 1)

k s

k s
ω

ω

τ
τ

+
+ +

           (4.1) 

 
effectively cancelling the SCC pole, and replacing it with a time constant of ˆ( 1) 24k sω τ+ = , 

matching empirical evidence for a “velocity storage” phenomenon (Fig. 4.3). 
 
 

 
 
Figure 4.3. Merfeld Observer model showing pole/zero cancellation. 
 
 

4.1.2.2. Borah 1-D Kalman filter model 
 
Next, we develop the corresponding Kalman filter model for yaw rotation. In the general 
Kalman filter formulation (section 1.4.2.1) the process and measurement noise are assumed 
white. However, the head angular velocity inputs encountered in daily life are band limited, so 
a low pass shaping filter of bandwidth ωβ  is incorporated into the system model, as shown in 

figure 4.4a. This also makes head angular velocity  zω  a state of the system which the 

Kalman filter can then estimate. 
 

 
Figure 4.4. One-dimensional Borah’s KF model. (a) Model for white noise shaping filter, SCC dynamics, and 
Kalman filter. (b) Equivalent representation for the shaping filter. 
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Therefore we represent the system using a state vector [ ] [ ]1 2( ) ( ) ( ) ( )
T T

c zx t t x t x tω ≡  so the 

KF system equation is: 
 

1 1

2 2

1/ 1( ) ( ) 0
( ) ( ) ( )

0( ) ( ) 1

x t x t
Ax t Gw t w t

x t x tω

τ
β

−      
= + = +      −      

ɺ �

ɺ
      (4.2) 

 
And the measurement equation is: 
 

( ) 1

2

( )
( ) ( ) ( ) 1/ 1 ( )

( )

x t
y t Cx t v t v t

x t
τ  

= + = − + 
 

�
       (4.3) 

 
Note that the shaping filter bandwidth ωβ  is a term in the system matrix A . The process 

noise, shaping filter, and measurement noise parameters Borah corresponding to those used 
by Borah were: 
 

• 200 /rad sωβ =  

• 5( ) (0,3.0 10 )w t N ×∼  

• ( ) (0,0.75)v t N∼  
 
Given these values, and assuming 6sτ = , one can numerically solve the nonlinear algebric 

Riccati equation (1.30) for P∞  and then use equation (1.31) to compute the Kalman filter gain 

matrix [ ] ( )1 2 0,463.5
T T

K K K= = ≈ . Note that for these parameter values, 1K  is almost zero 

(10-13 or smaller). Defining the KF estimated state as [ ] [ ]1 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )c zx x t t x t x tω= ≡�

, the KF 

equations become: 
 

1 1ˆ ˆ( ) ( )x t Ax t=ɺ             (4.4) 

2 2 2ˆ ˆ ˆ( ) ( ) 463.5( ( ) ( ))x t Ax t y t Cx t= + −ɺ          (4.5) 

 
The block diagram on the left side of figure 4.5 shows the structure of the resulting Kalman 
filter. 

 
Figure 4.5. Kalman filter model for yaw rotation (left). Equivalent model for f ωβ<<  (right). 
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Comparing this KF model with the Observer model described in section 4.1.2.1 and shown in 
figure 4.1, note that in the KF, the 2K  weighted residual passes through “internal models” of 

the shaping filter and the SCC in series. This makes sense from a Bayesian perspective: the 
KF was designed based on the a priori assumption that components of the residual at 
frequencies f ωβ>>  are unlikely, and should be filtered out since they are probably cues due 

to sensor noise. Note also that the shaping filter in the KF reduces the effect of the 
measurement noise on the KF yaw velocity estimate. The Merfeld Observer internal model 
has no explicit representation of the head movement spectrum and hence no internal model 
“shaping filter”. However for stimulus frequencies ωβ<<   the transfer function of the shaping 

filter is simply 1/ ωβ , so the KF dynamics can be approximated bye the system shown on the 

right side of figure 4.5, which structurally is identical to the Merfeld Observer model. The KF 
residual pathway gain 2 / 463.5 / 200 2.3K ωβ = =  is very close to the 3kω =  of the Merfeld 

Observer model. As shown in figure 4.6, both models exhibit very similar dynamic responses 
to a deterministic 100 deg/s step change in head angular velocity. This is not surprising, since 
the parameters in both models were empirically tuned to match similar data. 
 

 
Figure 4.6.  Observer and KF estimated angular velocity responses to a 100 deg/s angular velocity step. 
 
We should note that to simplify the example and to facilitate comparison with Merfeld’s 
model, the KF model developed above used a first order SCC model and first order shaping 
filter. Borah actually employed a second order SCC model with a 10 s dominant time 
constant, and a second order shaping filter. The higher order models introduced additional 
complexity in Borah’s KF, due to the additional states. However the dynamic response of 
Borah’s model is almost identical to the example shown here. 
 
We conclude that Merfeld’s Observer model is a lower order equivalent system to Borah’s 
KF, at least for the values of process and measurement noise and shaping filter bandwidths 
chosen by Borah. 
 

4.1.2.3. Ecologic basis for 1-D Kalman filter model parameters 
 
Although Boral et al. (1978) considered Q , V  and ωβ  to be free parameters, they noted that 

the head motion input should be “a typical spectrum associated with walking and running or 
perhaps a typical average aircraft flight spectrum, however, neither of the above is well 
known”. They assumed measurement noise was simply an arbitrary fraction of the noise in the 
state estimate. However, we believe that KF parameters should not be considered entirely 
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free. Ecologically, it makes sense to think that the parameters of the process noise and shaping 
filter should reflect the spectrum of yaw head movements normally made in daily life. 
Similarly, we argue the measurement noise ought to determine the human perceptual 
threshold for motion detection when the subject is motionless. The bandwidth ωβ  of the 

shaping filter in the KF determines the relationship between Q  (the covariance of the process 

noise ( )w t ) and the covariance of the head angular velocity ( )z tω  experienced by the subject. 

Passing a white noise ( )w t  with covariance Q  through the shaping filter results in a signal 

( )z tω  whose spectral density function is given by: 

 

2

1
( )

²z
s Q

sω
ωβ

Φ =
− +

           (4.6) 

 
And whose autocorrelation function is given by: 
 

( )
2z z

Q
e ωβ τ

ω ω
ω

φ τ
β

−=            (4.7) 

 
Therefore, the variance of the signal ( )z tω  is: 

 
2 (0)

2z z z

Q
ω ω ω

ω

σ φ
β

= =            (4.8) 

 
Hence, if we can estimate the variance of the head movement signal encountered in daily life, 
the variance of the associated white noise signal is 22

z
Q ω ωβ σ= . 

 
The values of 2

zωσ  and ωβ  depend on the amplitude and frequency content of head motions 

made in daily life, which are biomechanically determined. Human locomotion typically 
occurs at frequencies up to 2-4 Hz. Active yaw head movements are usually in the range 
below 200 deg/s where the pursuit tracking and vestibule-ocular reflexes work well. Hence 
we estimate 25ωβ = , 2 12.2

zωσ =  and so 609Q = . 

 
Since 1 0K ≈  the shaping filter also determines how much measurement noise is expressed in 

the KF angular velocity estimate ˆ
zω  when the head is motionless. By similarity to equations , 

the measurement noise covariance is 22
z

V ω ωβ σ= . We argue that ˆzωσ  should correspond to the 

human perception threshold for passive angular motion perception, about 2 deg/s, so 
2
ˆ 0.0012

zωσ = , and hence 0.061V = . Note that 2 2 4
ˆ 10

z z
Q V ω ωσ σ= = , more than an order of 

magnitude lower than the Q V  ratio assumed by Borah. Solving for the Kalman gains (eq. 

1.31 ), [ ]0 78
T

K = . The KF residual pathway gain 2 / 3.1K ωβ =  is identical to Merfeld’s 

proposed value of kω , and close to Borah’s model. As shown in figure 4.7, Riccati equation 

(1.30) solutions for other combinations of ωβ  bandwidth and Q V  yield values of KF gain 

2K  such that 2 /K ωβ  remains close to that of Merfeld Observer model. However, we argue 

that 25ωβ = and 2 2 4
ˆ 10

z z
Q V ω ωσ σ= =  can be ecologically justified based on human 
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movement and threshold characteristics. This allows us to suggest that human angular 
velocity estimates appear optimal in a mean square error stochastic sense. Borah et al. and 
Merfeld et al. could not make that assertion, since they offered empirical, rather than ecologic 
justification for their choice of model parameters. 
 

 
Figure 4.7. Kalman gain K21 with respect to /Q V  ratio and shaping filter bandwidth. Black dots show 

parameter combinations where 2 / 3K ωβ = , equivalent to the Merfeld and Borah models. 

 

One could ask: what does a KF model response look like where 2 2 4
ˆ 10

z z
Q V ω ωσ σ= =  but 

shaping filter has a much broader bandwidth (i.e. 25ωβ >> )? As shown in figure 4.7, as ωβ  

increases, Kalman gain 2K  decreases, and 2 /K ωβ  become less than 3. Both the magnitude 

and dominant time constant of the ˆ ( )z tω  response shorten compared to empirical values. 

There is some empirical evidence that prolonged occupational exposure to high motion 
environments (e.g. figure skating, gymnast, flying) reduces the gains and time constants of 
angular velocity perception (e.g. Groen 1962). 
 
 

4.1.3. Observer and KF 3-D model for somatogravic illusion in darkness 
 
In this section we model the somatogravic illusion which is elicited by sustained linear 
acceleration when no visual cues are available. This kind of illusion is well known in aviation 
and its most common form is the sense of pitching up when taking off into poor visibility. 
Basically the pilot undergoes a sustained forward linear acceleration which produces a 
backward inertial reaction force. When combined with the 1-G downward gravitational force, 
the net gravito-inertial force vector is rotated backward. This rotation might produce a pitch-
up illusion (Fig. 4.8).  
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Figure 4.8. Somatogravic illusion. The subject experiences a sustained forward acceleration. The resulted 
sensation is an illusion of pitching up. 
 
 
To model this phenomenon, the previous one-dimensional model needs to be extended to a 
three-dimensional version, and has to take into account the otolith organs which sense linear 
acceleration. In the following sections, the structures of the 3D Merfeld Observer model as 
well as the 3D Borah Kalman filter model are introduced. We then compare the response 
provided by both model and demonstrate why these two models are dynamically equivalent. 
 

4.1.3.1. Three-dimensional Merfeld Observer model for large tilts 
 
The observer model has been extended to a three dimensional representation by replacing 
scalar values with vectors, and by replacing the transfer function of the sensory organs with 
3x3 matrices transfer functions. The inputs of the model are angular velocity and linear 
acceleration (Fig. 4.9). In this configuration, three dimensional rotations change the 
orientation of the gravity relatively to the head coordinate frame. This point, which involves 
non-linearity in the model, has to be taken into account. This is what the block “rotate g” 
performs. Indeed, by knowing the current position of the gravity vector and the imposed 
angular velocity vector ω� , the block “rotate g” keeps tracks in real time of the direction of 
down. To perform this, Merfeld used a quaternion integration. 

 
According to Einstein’s equivalence principle, all linear accelerometers must measure both 
linear acceleration and gravity. Therefore, the otolith organs – which respond to translational 

motions and tilts of our body - must sense the gravitoinertial force f
�

. The gravitoinertial 
force is given by the difference between the gravity vector and the potential external linear 

acceleration; so that f g a= −
� � �

 . The internal hypothesis suggests that the nervous system 
somehow knows these two physical effects, i.e the tracking of the gravity vector and the 
computation of the gravitoinertial force. To mimic these physical relationships, internal 
representations are implemented by assuming they have the same form. In particular, the 
perceived GIF is given by the difference between the internal estimates of gravity and linear 

acceleration such aŝ ˆ ˆf g a= −
� � �

.  
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The block diagram below shows the structure of the Observer model derived by Merfeld (Fig. 
4.9). The angular velocity and the gravitoinertial force are respectively sent to the canals and 
the otolith organs. The internal model is composed of different loops to provide estimation of 
angular velocity, linear acceleration and gravity. Merfeld et al. arbitrarily considered four 
gains, one for each loop, that provide the only free parameter of the model. Double arrows 
show the pathway of the previous 1D model which yields angular velocity storage. In three-
dimensional space, this path is affected by the otolith sensory afference through a gain fk ω . A 

feedback loop with a gain ak  is used to provide an estimate of linear acceleration whereas 

another loop with a gain fk  affects the computation of the estimated gravity vector. The 

transfer function of the SCC is the same as the 1D model. As regard the otolith dynamics, 
Goldberg and Fernandez (1976) experimentally determined a second order transfer function 
by recording the response of peripheral afferent neurons of the squirrel monkey. However, 
Merfeld considered a simplify model of otolith dynamics, in particular a lower order transfer 
function by considering the lowest pole, so as to reduce system stiffness for purposes of 
numerical stability. He chose to model the dynamics of the otolith organs by a low pass filter 
with cut-off frequency of 2Hz, so that the otolith transfer function is given by: 
 

1

1oto
oto

TF
sτ

=
+

           (4.9) 

with 1/(2 ) 0.08oto f sτ π= ≈  

 

 

Figure 4.9. 3D Observer model. Double arrows show the 1D model pathways presented earlier. â
�

, f̂
�

, and ω̂�  

correspond to perception of linear acceleration, gravity, and angular velocity, respectively. 
 
 

4.1.3.2. Three-dimensional Borah steady state Kalman filter for small tilts 
 
As the 3-D Borah’s model was linearized near a head upright position, it only works for small 
head tilts. The three-dimensional internal model is presented in figure 4.10. 
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Figure 4.10. 3D internal model used in the present Kalman filter model. Note that Borah used a different 
transfer function for the otoliths. For comparison purposes, the transfer function used in Merfeld’s model is also 
utilized in the following Kalman filter model. 
 
 
White process noises ( )rotw t  and ( )transw t  are passed through first order filters to generate 

angular velocity and linear acceleration. The angular velocity is then integrated to 
approximate orientation angle (γ). The otolith organs are driven by the gravito-inertial 

acceleration equal to f g a= −
� � �

. The linearization about an upright position means that the 
orientation angle vector γ�  has small components, so that the projection of the g

�
 vector in the 

head coordinate frame is equal togγ� . Finally, measurement noise is added. 
 
The model is described in state space form by: 
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�
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Only five states are needed to model this experiment as only one component for both the 
linear acceleration and angular velocity are required. The states 1x , 2x  and 4x  correspond to 

the pitch angle orientation, the angular velocity around the pitch axis and the forward linear 
acceleration respectively. The states 3x  and 5x correspond to internal states of the sensors 

transfer function. 
 
The process and measurement noises used in the simulation are: 
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3( ) (0,10 )rotv t N −∼ ; 4( ) (0,10 )transv t N −∼  

 
The initial conditions assumed by the filter are: 
 

( )ˆ(0 | 0) 0 0 0 0 0
T

x =  and 

3

3

3

4

3

10 0 0 0 0

0 10 0 0 0
(0 | 0) 0 0 10 0 0

0 0 0 10 0

0 0 0 0 10

P

−

−

−

−

−

=

 
 
 
 
 
 
 

. 

 
The steady state Kalman gain computation yields a 5x2 gains matrix. Each of these gains 
shapes the evolution of each state variable. However, it can be shown that four gains are 
required to capture the main behaviour of each state variable, the same number of gains used 
in the Observer. The minimum set of gains needed is 21 12 32 42( , , , )K K K K . However, the 

structure of the Observer and the Kalman filter are different as the Kalman gains are applied 
to the rate of change of the state variables. 
 

In the present case, 

0.95 4.03
334.6 0.83
0.95 3.16
0.005 18.95
0.002 1.16

K

− 
 −
 = −
 −
 − 

. The dominant terms are the one circled and 

setting the other to zero does not affect the result of the simulation. The update state equations 
of the steady state continuous Kalman filter are thus given by: 
 

1 2 12ˆ ˆ( ) ( ) ( )otox t x t K y t= +ɺ ɶ                    (4.12) 

2 2 21ˆ ˆ( ) ( ) ( )sccx t x t K y tωβ= − +ɺ ɶ                    (4.13) 

3 2 3 32
1

ˆ ˆ ˆ( ) ( ) ( ) ( )otox t x t x t K y t
τ

= − +ɺ ɶ                   (4.14) 

4 4 42ˆ ˆ( ) ( ) ( )t otox t x t K y tβ= − +ɺ ɶ                    (4.15) 

5 1 4 5
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
oto

x t x t x t x t
τ

= − + −ɺ                   (4.16) 

 
The resulting three-dimensional model is presented in figure 4.11. 
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Figure 4.11. Block diagram of the steady state Kalman filter for the somatogravic illusion. The system 

corresponds to a KF with only the four necessary gains. 1̂x , 2x̂ , and 4x̂   correspond to perception of 

orientation, angular velocity, and linear acceleration, respectively. 
 
 
Figure 4.12 shows the response of the Kalman filter model developed above and of the 
Merfeld Observer model. It can be seen that the perceived linear acceleration and the 
perceived pitch angle provided by both models are close, at least for the set of parameters 
assumed. 
 

 
Figure 4.12.  Perception of linear acceleration and pitch angle in response to a forward linear acceleration of 
0.2g provided by Merfeld Observer and Kalman filter model. Both models consider a low pass filter of cut-off 
frequency 2Hz for otolith dynamics. 
 
 
By the way, Borah used a much slower otolith dynamics than that considered by Merfeld. 
More particularly, Borah took into consideration a higher order transfer function of the form: 
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                    (4.17) 

 
Nevertheless, for the same values of bandwidths, both Kalman filters – one with the low pass 
filter and the other with Borah’s transfer function for otoliths dynamics – produce similar 
results (Fig. 4.13). One can note however that the outputs of the Kalman filter depend largely 
on the assumed bandwidths. As it can be seen on figure 4.14, the lower is the translational 
bandwidth: 1) the higher is the magnitude of perceived linear acceleration, 2) the longer is the 
duration of the perceived linear acceleration, 3) the slower is the perception of tilt around the 
pitch axis.   
 

 
Figure 4.13.  Perception of linear acceleration and pitch angle in response to a forward linear acceleration of 
0.2g provided by the Kalman filter model for two different otolith dynamics.  
 
 

 
Figure 4.14.  Response of the Kalman filter model with Borah’s otolith transfer function for different bandwiths 
of linear acceleration. (a) Perception of linear acceleration; (b) perception of pitch angle. 
 
 
Conclusion 
 
Even though Merfeld’s model and Borah’s model are based on different approaches and 
assumed empirical data, we have shown that both models are dynamically equivalent from an 
input-output blackbox as they produce similar results in terms of perception (estimation) of 
head angular velocity, linear acceleration, and orientation. 
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We have argued that the presence of the low pass filters used to shape the process noise 
means that the brain expects head angular velocities and linear accelerations in a certain range 
of frequencies. We have supposed that these filters somehow reflect past motion history, i.e 
kind of motion our head has encountered in the past and that the central nervous system might 
expect. Therefore, we have suggested that the bandwidths of these bandlimited filters should 
be determined by a person’s motion exposure history. 
 
We have also demonstrated that the shaping filter is also a mathematical device to augment 
the size of the state vector by adding one more state that corresponds either to head angular 
velocity or head linear acceleration. Thus, it gives us a mean to estimate perception of head 
angular velocity and head linear acceleration. Note also that they control the magnitude of the 
process noise covariance. 
 
Finally, even if Borah used a slower otolith dynamics than that considered in Merfeld’s 
Observer,  we have shown that perception of motion and orientation provided by the Kalman 
Filter do not depend very much on the dynamics of the otoliths. For the same value of 
bandwidths, both Kalman filters look almost the same 
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4.2. Nonlinear models for human spatial orientation based on the 
hybrid extended and unscented Kalman filter 
 
As previously described, Borah’s Kalman filter model for human spatial orientation is valid 
only for a head orientation near the upright position. In order to develop a model for human 
spatial orientation that works for any head tilt, the transformation between head coordinate 
system and world reference frame must be considered. This transformation which can be 
defined either by Euler angles or quaternion parameters is nonlinear. Thus, a modified version 
of the Kalman filter has to be used to estimate the state variables of this nonlinear system. 
Different techniques apply the Kalman filter framework to nonlinear Gaussian systems, such 
as the Extended Kalman Filter or the Unscented Kalman Filter. 
 
In the following sections, we first apply both the hybrid extended Kalman filter and the 
unscented Kalman filter to develop a model of human spatial orientation. First, we define the 
coordinate system as well as the sensors dynamics used in the model. Second, we present the 
“real world model” that permits to generate sensors measurement, and the “internal model” of 
the central nervous system. Third, by assuming that the central nervous system works as an 
optimal estimator, we formulate more precisely the internal model using state space 
representation. Finally, we simulate different motion paradigms and present modeling results 
for several vestibular and visual – vestibular illusions provided by both the EKF and the UKF 
models. 
 
 

4.2.1. Coordinate system 
 
We consider a (XYZ) coordinate system related to the Earth, and a (x,y,z) coordinate system 
related to the vehicle in which the pilot is flying. 

 
Figure 4.15. Head and world coordinate frame. 
 
For modeling purposes, we take into consideration a cyclopean set of canals and otoliths 
located at the center of the head (Fig. 4.16). First, this assumption means that only one 
vestibular system is considered. This implicitly assumes that the subject has two healthy 
vestibular systems. Second, considering a cyclopean set of sensors implies that linear 
acceleration components (normal and tangential), which acts on the otolith organs, created by 
a rotational motion are not taken into account. In the present context, this simplification is 
sufficient to model the notion of perception of orientation, at least for a subject without 
vestibular disorder.  
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An input to our sensors model can thus be characterized by a function of time describing the 
movement of the vehicle (V,x,y,z) in the inertial space. The orientation process consists in 
knowing at each time the transformation matrix between (x,y,z) and (X,Y,Z). This is done by 
quaternion integration and then a transformation from quaternion parameters to Euler angles. 

 
Figure 4.16. Coordinate system attached to the sensors 
 

4.2.2. Modeling of the sensors 
 

The model takes into account visual and vestibular cues. The visual-orientation process 
can be divided into two distinct categories: the focal vision which is related to object 
recognition, and the ambient vision for general spatial orientation. In this study, we consider 
only the ambient vision which provides both motion cues and position cues. For simplicity we 
assume that the visual sensory dynamics can be approximated as unity transfer function which 
responds to both angular and linear velocity of the visual environment. Since dynamic inputs 
illicit a sensation of motion in the opposite direction of the visual field (e.g. linear vection or 
angular vection) the dynamic sensors are modeled in three-dimensional space as a negative 
3x3 identity matrix.  

As regard the vestibular system, the SCCs as well as the otolith organs are assumed 
located at the center of the head. We model the SCCs as a single set of three orthogonal 
canals. They are supposed identical, uncoupled, and can thus be modeled in three dimensional 
space by a set of three identical transfer functions. As mentioned in the background section, 
the dynamics of each SCC and otolith organ can be modeled by a second order filter. We here 
chose to use the Fernandez and Goldberg transfer function to represent the dynamics of the 
SCC and to retain the Telban and Cardullo transfer function to relate otolith afferent firing 
rate with the gravito-inertial force. These transfer function are reminded in figure 4.17. 

 
 

 

 
Figure 4.17. Sensors transfer functions used in the EKF and UKF models. (a) Semicircular canal model with 

1 6sτ =  and 2 80sτ =  (Goldberg et al., 1971); (b) Otolith model with 5L sτ = , 0 016s s.τ = , 10sτ =ℓ , and 

33 3K .=  (Telban RJ, 2005). 
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4.2.3. Description of the model 
 
The philosophy of the developed model of human spatial orientation perception is presented 
in figure 4.18.  
 

 
Figure 4.18. Philosophy of the model of human orientation perception. The model of the real world is used to 
generate the output of each sensor. It is assumed that the CNS has an internal representation of the real world 
denoted as “internal model”. Assuming that the CNS performs the estimation of the state vector in an optimal 
sense, the CNS is modeled as an Extended or Unscented Kalman filter (EKF or UKF). The estimated states of 
the internal model correspond to the subject perception of orientation, angular velocity and linear acceleration. 
The internal model provides an expected sensor signal vector which is compared with the actual sensory signal 
vector. The resulting feedback signal is then weighted by some Kalman gains which then drive the estimated 
states 
 
 
A model of the real world, which will be detailed later, is used to generate a sensory output 
vector comprised of the signals provided by the semicircular canals, the otolith organs and the 
visual system. The true dynamics of the body and sensors of a passive subject that 
experiences angular velocity or linear acceleration can be described by: 
 

( ) ( ( ), ) ( )x t f x t u w t= +� � �ɺ                    (4.18) 
 
where x

�
 is the state space vector containing variables of position, velocity, acceleration, and 

internal states of the sensors transfer function, u
�

 is the external motion input applied to the 
body and ( )w t  is a zero mean white process noise. The measurement provided by the sensors 
are given by: 
 

( , )k ky h x u v= +� � �
                    (4.19) 

 
where ky is the output vector coming out from the sensors, and kv is a zero mean white noise 

modeling the biological noise corrupting the afferent neurons signals.  
 
Models of spatial orientation are based on the idea that the central nervous system has an 
internal model of the real world. In other words, it somehow knows the dynamics of the 
sensors which sense position and motion as well as some physical equations. The idea for the 
central nervous system (CNS) having an internal model of the real world means that it knows 
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both functions f  and h . The problem faced by the central nervous system consists in 
estimating the random state vector of the internal model given a set of noisy measurements 
which are computed by the real world model (Fig. 4.18). It is assumed that these internal 
model estimates correspond to perceptions of orientation, angular and linear velocity, and 
linear acceleration. 
 
To achieve this goal, the CNS is modeled by a nonlinear suboptimal estimator. Both the 
hybrid extended Kalman filter and the hybrid unscented Kalman filter are applied to this 
estimation problem. Hybrid version of these two filters means that the system is modeled by 
continuous-time dynamics and measurements are obtained at discrete-time instants. 
 

4.2.3.1. Real world model 
 
The model of the real world, which permits to generate the sensors measurements vector, is 
presented in figure 4.19. The blocks “Canals dynamics” and “Otolith dynamics” are 
composed of three SCC transfer functions and three otoliths transfer functions respectively, 
one for each component of angular velocity and gravito-inertial acceleration. Angular velocity 
is passed through the semicircular canals transfer function to produce sensory afferent signals 
as well as the visual transfer functions to get information of the visual field rotation. In order 
to keep track of the direction of down when our head rotates, we have to be able to compute 
our orientation relatively to the earth coordinate frame. This task is performed by quaternion 
integration rather than a classic Euler representation as quaternions eliminate gimbal lock, 
reduce numerical storage from 9 to 4 digits, and increase computational stability. The 
quaternion equations and the transformation between quaternion parameters and Euler angles 
are defined in appendix 2. The gravito-inertial force, defined as the difference between the 
gravity and the linear acceleration, is passed through the otolith transfer function to get a 
three-dimensional otolith afferent rate vector. Finally, linear velocity obtained from the direct 
integration of linear acceleration is applied to a negative identity transfer function to get the 
visual field translation velocity. The computation of the sensor output vector y

�
 can be 

performed using the Simulink model presented in appendix 3. 
 

 
Figure 4.19. Detailed view of the model of the real world. 
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4.2.3.2. Internal model of the CNS 
 
The internal model of the central nervous system is presented in figure 4.20. It is different 
than the real world model in the sense that the CNS does not know which motion the subject 
is going to experience. This means the CNS does not know the input, which is a part of what 
it has to estimate. Nevertheless, it can be assumed that the CNS has some expectation about 
the frequency range of the motion the body is going to encounter. In other words, the CNS 
expects a certain bandwidth of angular velocity and linear acceleration. Therefore, we use two 
low pass filters – as in Borah model (1988) – to generate angular velocity and linear 
acceleration (figure 4.20). 
 
The nervous system is also facing other problems that arise when one tries to use the sensor 
output to compute position and orientation in space: 
 

• As stated by various researchers, the otoliths alone are not sufficient to distinguish 
between gravity and linear acceleration. This physical fact is a problem faced by any 
linear accelerometer, and is commonly referred to as gravito-inertial force (GIF) 
resolution. 

 
• Correct implementation of rotational kinematics requires a three-dimensional angular 

velocity to orientation integration. 
 
These two problems must be considered by the CNS when attempting to process ambiguous 
motion cues.  
 
As already mentioned in section 4.1.3.1, linear accelerometers (including the otoliths) respond 
similarly to inertial and gravitational accelerations (Einstein’s equivalence principle, Einstein 
1908). The otoliths can only measure the sum of both as follows: 
 

f g a= −
� � �

                     (4.20) 
 

where f
�

 denotes the total linear acceleration measured by the otoliths, which is composed of 
gravitational acceleration g

�
 and other translational acceleration a

�
. Thus, otolith afferent 

provide inherently ambiguous sensory information, given that the encode acceleration could 
have been generated during either actual translation or a head reorientation relative to gravity 
(Angelaki and Dickman, 2000). Therefore, the problem of GIF resolution has to be solved by 
the CNS using other information.  
A lot of studies (e.g. Zupan et al. 2004) have supported the hypothesis that the CNS knows 
the physical relationships between gravity, translational acceleration and gravito-inertial 

force. In other words, the neural representation of gravity ĝ
�

 minus the neural representation 

of linear acceleration ̂a
�

 equals the neural representation of GIF, consistent and mimicking the 
real world physics such as: 
 
ˆ ˆ ˆf g a= −
� � �

                     (4.21) 
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where f̂
�

 is the estimate of the total acceleration, ĝ
�

 is the current estimate of gravity, and â
�

 
is the current estimate of translatory acceleration.  
 
Similarly, transformation between head coordinate system and world reference frame requires 
a three-dimensional angular velocity to orientation integration. This integration is performed 
using quaternion mathematics. We hypothesized that the CNS also performed this integration 
so as to provide an internal estimate of the direction of down, i.e. an estimate of the gravity 
vector, as well as internal estimates of orientation angles.  
 
Finally we assume that the brain has an exact knowledge of the sensors dynamics, so that the 
transfer functions of the SCC and otolith organs have the same form as in the real world 
model.  
 
 

 
Figure 4.20. Detailed view of the internal model of the CNS. This block is a part of figure 4.18. We assume that 
the CNS expects angular velocity and linear acceleration in a certain frequency range. Thus, two low pass filters 

with cut-off frequency rβ  and tβ respectively are used. It is also supposed that the CNS performs a quaternion 

integration to provide an internal estimate of the direction of down and computes the difference between the 

estimated gravity ̂g
�

and linear acceleration â
�

vectors to produce an estimate of the gravito-inertial force f̂
�

. The 

transfer functions of the sensors have the same form as in the real world model. 
 
 

4.2.4. Estimation process 

 

4.2.4.1 State vector update 
 
The model can be written in a state-space differential equation of the form: 
 

( ) ( ( )) ( )x t f x t w t= +� � �ɺ                     (4.22) 

Quaternion 
integration 

Rotation 
of ĝ
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x
�

 is a state vector of dimension 25, expressed in the head reference system and partitioned as 
follows: 
 

- 1 2 3 4( , , , )x x x x    quaternion parameters 0 1 2 3( , , , )q q q q  

- 5 6 7( , , )x x x    angular velocity ( , , )x y zω ω ω  

- 8 9 10( , , )x x x    linear velocity ( , , )x y zV V V  

- 11 12 13( , , )x x x    linear acceleration ( , , )x y za a a  

- 14 15 16 17 18 19( , , , , , )x x x x x x  variables of SCCs transfer function 

- 20 21 22 23 24 25( , , , , , )x x x x x x  variables of otoliths transfer function 

 
• Quaternion differential equations 

 
In order to update the quaternion vector as we rotate in inertial space the initial quaternion 
must be integrated with respect to the angular velocity input ( ) ( , , )x y ztω ω ω ω=�

. The 

integration of the rate of change of the quaternion vector is given below. The gain λ  drives 
the norm of the quaternion to 1.0. The value of this gain must be chosen with care, because a 
large value improves the decay rate of the error in the norm, but also slows the simulation. A 
value of 0.9 worked best for our sample rate. 
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ɺ ɺ ɺ
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  with  2 2 2 2
0 1 2 31 ( )q q q qε = − + + +         (4.23) 

 
According to (4.23), quaternion equations in terms of state space variables are given by: 
 

2 2 2 2
1 5 2 6 3 7 4 1 1 2 3 4

1
( ) 0.9 (1 ( ))

2
x x x x x x x x x x x x= − − − + − + + +ɺ                (4.24) 

2 2 2 2
2 5 1 7 3 6 4 2 1 2 3 4

1
( ) 0.9 (1 ( ))

2
x x x x x x x x x x x x= + − + − + + +ɺ                (4.25) 

2 2 2 2
3 6 1 7 2 5 4 3 1 2 3 4

1
( ) 0.9 (1 ( ))

2
x x x x x x x x x x x x= − + + − + + +ɺ                (4.26) 

2 2 2 2
4 7 1 6 2 5 3 4 1 2 3 4

1
( ) 0.9 (1 ( ))

2
x x x x x x x x x x x x= + − + − + + +ɺ                (4.27) 

 
Therefore, the update of the corresponding estimated state variables is given by: 
 

2 2 2 2
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2 2 2 2
3 6 1 7 2 5 4 3 1 2 3 4 3
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where r  is the dimension of the measurement vector y

�
 and ˆi i iy y y= −ɶ  is the difference 

between the actual measurement and the expected measurement. jiK  corresponds to the 

element of the jth row and ith column of the Kalman gain matrix. 
 
 

• Angular velocity 
 
We assume that the subject expects a certain bandwidth ωβ  of angular velocity. This signal is 

represented in the internal model by the output of a first order shaping filter driven by the 

feedback signal ˆ( )y y−� �  weighted by the Kalman gain matrix.  
 

 
 
Figure 4.21. Equivalent model of the low pass filter. 
 
 
Therefore we have the following differential equations for the update of angular velocity: 
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• Linear velocity and linear acceleration 

 
Linear velocity is obtained by integration of linear acceleration, so that its update is given by: 
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As angular velocity, linear acceleration is expected to be the output of a first order shaping 

filter driven by the feedback signal ˆ( )y y−� �  weighted by the Kalman gain matrix , so that: 
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• Semicircular canals dynamics 
 
Semicircular canal dynamics is defined by the transfer function presented in figure 4.22. This 
transfer function can be redrawn as: 

 
Figure 4.22. Equivalent representation of the transfer functions of the semicircular canal dynamics of the 
internal model.  
 
Therefore, the semicircular canal states update is given by the following set of differential 
equations: 
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• Otolith dynamics 

 

The internal model of otoliths respond to the estimated gravito-inertial force ̂ ˆ ˆf g a= −
� � �

. The 

orientation of ̂g
�

 relative to head coordinate system is defined by: 
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where M  is the transpose of the direction cosine matrix define in appendix 2. Thus the 
gravito-inertial force is given by: 
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Otolith dynamics is defined by the transfer function presented in figure 4.23. This transfer 
function can be redrawn as: 
 

 
Figure 4.23. Equivalent representation of the transfer functions of the otolith dynamics of the internal model.  
 
 
Therefore, the states update is given by the following differential equations: 
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4.2.4.2. Measurement equations: outputs of the real world model 
 
The measurement equations are derived from the state space representation of the canals, 
otoliths, and visual transfer functions. According to each transfer function we have: 
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In addition, we consider one more measurement equation in order to keep the norm of the 
quaternion equal to unity, which is fundamental in the quaternion formulation. Thus, we have: 
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2 2 2 2

13 1 2 3 4y x x x x= + + +                    (4.67) 

4.2.5. Implementation consideration 
 
The algorithms of the EKF and UKF defined in the background section are implemented in 
the MATLAB software (code available in appendix 4). As the central nervous system is 
modelled as a continuous system, the differential equations for the state vector x̂  and the 
error covariance matrixP  have to be integrated between each measurement time step. For the 
EKF, a fourth-order Runge-Kutta integration is used with an integration time step of 0.01s. 
Note that in this case Euler integration would provide very bad and oscillatory results. 
However, Euler integration with a time step of 0.01s is convenient for the UKF and provides 
similar results as if a Runge-Kutta scheme would be used, for a computation time about five 
times faster. For both models, a time-step of 0.04 s is used to update the state vector. 
 
A graphical user interface is also developed and provides users with complete control over all 
model parameters - such as bandwidths and covariance of process and measurement noise - 
and data output without a need for advanced programming skills or optimal filtering 
knowledge (Fig. 4.24). The user has the choice to run different motion paradigms: 
 

• Yaw rotation in darkness: the subject is strapped into a rotating chair and experiences 
a movement of rotation at a constant angular velocity in darkness. 

 
• Forward acceleration in darkness: the subject experiences a constant forward linear 

acceleration in darkness. 
 

• Yaw angular vection: vection is defined as the compelling sensation of self-motion 
elicited by a moving visual stimulus. In this experiment the subject is stationary and 
placed inside a rotating drum which rotates at a constant angular velocity around a 
vertical axis. 

 
• Pitch angular vection: the subject is stationary and placed inside a rotating drum which 

at a constant angular velocity around the pitch axis. 
 

• Roll angular vection: the subject is stationary and placed inside a rotating drum which 
at a constant angular velocity around the roll axis. 

 
• Backward linear vection: the subject is stationary. His surrounding environment 

translates backward at a constant linear velocity. 
 

• Coriolis stimulation: the subject sits head erect in a chair which rotates around a 
vertical axis. When angular velocity perception has effectively decayed to zero, the 
subject makes a head tilt. 

 
• Pseudo-Coriolis stimulation: the subject is stationary with his head erect. His 

surrounding environment rotates about an Earth vertical axis at a constant angular 
velocity. When the subject experiences an illusory sensation of rotational motion in 
the opposite direction of the surrounding motion, he makes a head tilt. 
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• Off-vertical axis rotation (OVAR): the subject sits on a rotating char tilted from the 
Earth vertical axis. He then experiences a rotation around a tilted axis in darkness. 

 
 

 
 
Figure 4.24. Graphical user interface of the EKF/UKF models. The “parameters” panel allow the user to define 
the bandwidths as well as the process noise covariance and measurement noise covariance. The “filter 
algorithm” panel permits to switch between the EKF and the UKF. The “Simulation” panel proposes different 
kind of motion paradigms such as yaw rotation in darkness, forward linear acceleration in darkness, Coriolis 
stimulation, etc. Then the user can plot any of the state variables and save the state vector. Computation-times 
are displayed at the end of each simulation. 
 
 

4.2.6. Simulation results 
 

4.2.6.1. Parameters 
 
The following set of parameters is used in the following simulations: 
 

• Bandwidths: 25 1tandωβ β= =  

 
• Process noise covariance matrix: Q  is a 25x25 diagonal matrix with: 

� 5(1,1) (2,2) (3,3) (4,4) 1quatQ Q Q Q Q e−= = = = =  

� (5,5) (6,6) (7,7) 609rQ Q Q Q= = = =  

� (11,11) (12,12) (13,13) 1tQ Q Q Q= = = =  

� All the other diagonal elements are set to zero 
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• Measurement noise covariance matrix for experiments performed in darkness: V  is a 
7x7 diagonal matrix with: 
� (2,2) (3,3) (4,4) 0.001sccV V V V= = = =  

� (5,5) (6,6) (7,7) 0.001otoV V V V= = = =  

� (1,1) 0V =  � assumed there is no measurement noise for the quaternion norm 
computation 

 
• Measurement noise covariance matrix for experiments performed in light: V  is a 

13x13 diagonal matrix (3 angular and 3 translational visual information are added) 
with: 
� (1,1) (2,2) (3,3) 0.001sccV V V V= = = =  

� (4,4) (9,9) 0.001visionV V V= =⋯⋯  

� (10,10) (11,11) (12,12) 0.001otoV V V V= = = =  

� (13,13) 0V =  � assumed there is no measurement noise for the quaternion norm 
computation 

 
In order to integrate the state vector and the error covariance matrix P , the extended Kalman 
filter model uses a 4th order Runge-Kutta integration scheme with a time-step of 0.01s, while 
the unscented Kalman filter uses a Euler integration scheme with an identical integration 
time-step. Both models update the estimated state vector ˆ( )x t every 0.04 s. 
 

4.2.6.2. Constant velocity rotation about an earth vertical axis 
 
In this simulation the subject is strapped into a rotating chair and experience a rotation about 
an Earth vertical axis at a constant angular velocity. Two different experiments are 
considered: 1) rotation of the subject in the dark around an Earth vertical axis; 2) the subject is 
stationary and his surrounding rotates at a constant angular velocity (circular vection). An 
angular velocity of 60 °/s is chosen for the stimulation.  
 
When the subject experiences a yaw rotation, the information is registered by the horizontal 
semicircular canals. Several seconds after the beginning of the rotational motion, the 
horizontal semicircular canals signal a steadily reduced yaw rate, which finally drops below 
subjective threshold. The yaw rate sensation begins at the original yaw rate and decays 
exponentially (Fig. 4.26). The sensation of rotation eventually ceases. As the yaw rate 
sensation decays over time, the associated perception of yaw angle to achieve a complete 
rotation lasts longer (Fig. 4.25). Note that the EKF predicts a longer decay of yaw rate 
sensation, and thus perception of yaw angle is faster than that predicted by the UKF. 
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Figure 4.25. Scheme of the yaw rotation in darkness experiment. The subject is rotated at a constant angular 

velocity zω . However, his perception of angular velocity ˆzω  decays to zero. If the rotation is sustained long 

enough, the subject will feel motionless. 
 
 

 
Figure 4.26. Model response to a step in yaw angular velocity. The subject is seated upright in the dark and is 
rotated around an Earth vertical axis (a) Perceived angular velocity in darkness. (b) Perceived yaw angle in 
darkness. Green and red curves are the results provided by the EKF and UKF 
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If the subject is stationary and placed inside a rotating drum so that his surrounding 
environment rotates at a constant angular velocity, the model predicts a sustained sensation of 
rotation in the opposite direction of the visual field which tends toward a value close to the 
input stimuli. This illusory sensation of rotation is commonly referred as “angular vection”. 
The curve of perceived angular velocity shows two distinct components associated with the 
time course of the perceived self motion: a fast rising component responsible for the quick 
initial onset followed by a slow rising component (Fig. 4.27). 
 

 
Figure 4.27. Model response to a step in yaw angular velocity of the surrounding environment. The subject is 
stationary, eyes opened and placed in a rotating drum. His surrounding environment is rotated around an Earth 
vertical axis at a constant angular velocity. After few seconds, the subject feels that he is rotating in the opposite 
direction the visual stimulation. This illusion is referred to as “circular vection”. 
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4.2.6.3. Forward linear acceleration in darkness 
 
In this experiment, the subject is sat on a sled and experiences a forward linear acceleration in 
darkness. The forward acceleration creates a backward inertial force that combines with 
gravity to produce a resultant gravito-inertial vector rotated backward from the subject (Fig. 
4.8). Hence, the subject experiences an illusion of pitching up. This illusion has been well 
documented experimentally (Cohen et al. 1973, Graybiel 1966). This illusion known as the 
“somatogravic illusion” is a common illusion in aviation that is believed to have caused a 
large number of mishaps over the years. This illusion of pitching up excessively is 
experienced by pilots when taking off into poor visibility or even more extremely during a 
catapult-assisted takeoff from an aircraft carrier. This false climb illusion demonstrates the 
limitation of the otoliths in providing accurate information to the brain, when there is 
insufficient visual information to correct the misinformation. 
Figures 4.28 shows the perceived linear acceleration and the perceived pitch angle in response 
to a step of linear acceleration of 2 m/s². Both the EKF and UKF predict a pitch angle of about 
11.5 °. Note that results provided by the EKF are less stable than that predicted by the UKF. 
 
 
 
 

 
Figure 4.28. Model response to a step in forward linear acceleration of 2 m/s². The subject is seated upright and 
accelerated forward. (a) Perceived linear acceleration. (b) Perceived pitch angle. Green and red curves are the 
results provided by the EKF and UKF 
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4.2.6.4. Vestibular “Coriolis” Cross-coupling 
 
Head-movements in a rotating environment create a disturbing stimulus called the Coriolis 
cross-coupled stimulus. These head movements out of the plane of rotation provoke 
unexpected illusory sensations of motion and motion sickness. This phenomenon is 
commonly experienced in flight when a pilot in a turn looks down to adjust some navigation 
setting.  
 
In order to simulate this phenomenon, the subject is seated upright in a chair that is rotated in 
yaw about an Earth vertical axis at a constant angular velocity of 100 °/s. At 60 seconds, 
angular velocity perception of the simulated subject has decayed to zero because the 
horizontal canal has been in the plane of rotation long enough for its cupula to return to its 
rest position and thus signals no rotation to the brain. At this instant (t=60 s), the simulated 
subject makes a rolling head tilt of +20° towards the right shoulder (Fig. 4.29). The surprising 
sensation is an illusion of angular motion and tilt about a third axis of rotation which can be 
highly nauseogenic (Guedry and Benson, 1972). 
 

 
Figure 4.29. Description of the Coriolis illusion. The subject is rotated in darkness around an Earth vertical 
axis. A time 60s, the subject makes a roll head tilt towards his right shoulder. The resulting illusion is a 
sensation of pitching up. 
 
This illusion can be explained by considering the torques acting on each semicircular canal. 
When the head is rolled towards the right shoulder, the horizontal canals are suddenly 
removed from the plane of chair rotation. Therefore they experience a deceleration, leading to 
cupula deflection in a direction opposite to the original sense, with the consequent decaying 
sense of rotation about the head’s z-axis, which now lies horizontal. Meanwhile, the anterior 
canal is suddenly exposed to a step change in angular velocity as it is rolled into the plane of 
rotation. Its cupula is deflected and slowly returns to its rest position. Therefore, the subject 
perceives a pitch angular velocity that decays slowly to zero (Fig. 4.30a). 
In addition, a sensation of pitch up is predicted by the model. Note that the EKF predicts a 
pitch up sensation of 17 ° while the UKF gives a value of 23 ° (Fig. 4.31a).  
As the perception of yaw angular velocity become negative at t=60 s, the simulated has the 
perception of turning in the opposite direction of the imposed rotation. This can be seen in 
figure 4.31c in which the estimated yaw angle changes in direction. 
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Figure 4.30. Simulation of vestibular Coriolis effect I. (a) Perceived roll angular velocity. (b) Perceived yaw 
angular velocity. Green and red curves are the results provided by the EKF and UKF, respectively. The head is 
rolled at t=60 s. 
 

 
Figure 4.31. Simulation of vestibular Coriolis effect II. (a) Perceived roll angle. (b) Perceived yaw angle. Green 
and red curves are the results provided by the EKF and UKF, respectively. Blue curve is for the actual angles. 
The head is rolled at t=60 s. 
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4.2.6.5. Pseudo-Coriolis illusion 
 
Numerous studies mention that pitching or rolling head movements during pure wide field of 
optokinetic rotational stimulation about a vertical axis produce illusions of disorientation as 
well as nausea (Dichgans et al. 1973, Bles, 1998, Johnson et al. 1999). This illusion is referred 
to as the pseudo-Coriolis illusion.  
 
In this simulation, the subject is stationary and seated upright inside a rotating drum which 
rotates around a vertical axis at a constant angular velocity of 100 °/s. When the subject 
experiences an illusion of self-motion in the opposite direction of the rotation of the drum, he 
makes a head tilt of 20 ° towards his right shoulder (Fig. 4.32). Note that the stimulation is 
chosen to correspond to the previous Coriolis illusion simulation. In other words, while the 
subject was rotated in a positive direction relative to the world coordinate frame in the case of 
Coriolis, the drum (visual scene) is here rotated in a negative direction so that the subject 
experiences an illusion of self-motion in the same direction of the physical stimulation applied 
in the Coriolis experiment. 
 

 
Figure 4.32. Description of the pseudo-Coriolis illusion. The subject is stationary and placed inside a rotating 
drum. The drum is rotated in a negative direction relative to the world coordinate frame so the subject 
experiences a self-motion illusion in the same direction of the physical stimulation used previously in the 
Coriolis experiment. At time 60 s, the subject makes a roll head tilt towards his right shoulder. Even though the 
stimulation is mainly visual, the subject experiences the illusion of pitching down. Note that this illusion is 
opposite to the direction of the Coriolis illusion. 
 
 
Both the EKF and UKF predict a transient pitch-up sensation (Fig. 4.33c). Note that the 
direction of the illusory pitch sensation is opposite to the direction of the classic Coriolis 
illusion. The UKF predicts a maximum pitch angle of -11.5 ° while the EKF predicts a 
smaller pitch angle of -5.6 °. Note also that pseudo-Coriolis illusion is not induced from a 
cross-coupling of the semicircular canals. As noted by Newman (2009), the pseudo-Coriolis 
illusion is a result of fundamentally different neurological mechanism which could be 
described as “visual velocity storage”. 
 
Coriolis and pseudo-Coriolis motion paradigms are completely different. In the Coriolis 
simulation, the subject is physically rotated, and thus his horizontal canals provide angular 
information to the brain. On the contrary, during pseudo-Coriolis stimulation the subject is 
stationary, and his illusion of self-motion is produced by a rotating visual field. Therefore, his 
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semicircular canals do not provide any information of angular velocity to the central nervous 
system.  
 
In the Coriolis stimulation, when the head is rolled away from the gravitational vertical, the 
horizontal semicircular canal experiences a sudden deceleration, and the vertical canals 
experience a corresponding acceleration. As noted by Guedry and Benson (1978), the 
resultant angular velocity components ̂ ˆ( , )y zω ω  combine to generate the pitch-down 

sensation. However, in the pseudo-Coriolis stimulation, when the head rolled away from the 
Earth vertical axis, the horizontal canal does not register any inertial deceleration as the 
subject is stationary. The model suggests that the visual system does not respond 
instantaneously to the change in relative orientation of the visual field. Instead, as the head is 
rolled towards the shoulder, it seems that the visual system stores the angular velocity 
estimate with respect to the head reference frame and rotates this vector in the new 20 ° 
orientation. As a consequence, the model predicts a pitch-up illusion along with a continued 
sensation of rotational motion. 
 
 
 
 
 

 
Figure 4.33. Simulation of pseudo-Coriolis illusion. (a) Perceived z-head axis angular velocity. (b) Perceived y-
head axis angular velocity. (c) Perceived and actual pitch angle. Green and red curves are the results provided 
by the EKF and UKF, respectively. 
 
 

EKF 

UKF 

E
st

im
at

ed
 a

n
g

u
la

r 
ve

lo
ci

ty
 (

ra
d

/s
) 

Time (s) 

Time (s) 

Time (s) 

ˆzω  

ˆ yω  

Estimated pitch angle 

Actual pitch angle 

E
st

im
at

ed
 a

n
g

u
la

r 
ve

lo
ci

ty
 (

ra
d

/s
) 

E
st

im
at

ed
 p

itc
h

 
an

g
le

 (
ra

d
) 

(a) 

(b) 

(c) 



 138 

In order to make sure that the illusory pitch is opposite to the classic Coriolis response, a 
simple pilot study was conducted in the MIT Man Vehicle Lab (MVL). Four subjects (ages 23 
to 65) with no history of vestibular abnormality were used. Each subject was seated upright in 
a stationary chair and positioned so that their head and upper torso were encased in a rotating 
optokinetic drum 50 cm in diameter. The drum was rotated counter-clockwise at 36 °/s. 
Subjects were instructed to look straight ahead and were told to make an approximate 20 
degree left ear down (LED) roll head tilt as soon as they experienced a sensation of self-
motion around an Earth vertical axis. Then, they were asked to report the direction (pitch-up / 
pitch-down) of any pitching sensation. The experimental procedure was then repeated for a 
right ear down (RED) roll tilt.  
 
All four subjects reported a pitch up sensation for the head tilt towards the right shoulder and 
a pitch down illusion for the head tilt towards the right shoulder. These responses match the 
predictions of both the EKF and UKF, and are also consistent with the Newman’s Observer 
model (2009).  These results support the fact that the direction of illusory pitch for the 
pseudo-Coriolis illusion is indeed opposite to the classic Coriolis response.  
 

4.2.7 Sensitivity study 
 
The results of the various simulations depends on the parameters assumed for the bandwidths 
of head angular velocity and head linear acceleration, and the process and measurement noise 
covariance matrices. Therefore we propose a sensitive study in order to investigate the impact 
of these parameters on the predicted perceptions of orientation, velocity, and linear 
acceleration. All the following results are provided by the UKF model. The default parameters 
chosen for each simulation are: 25ωβ = , 1tβ = , 609Qω = , 1tQ = , 0.001tV Vω = = . 

 

4.2.7.1. Yaw angular velocity in darkness 
 
The simulated subject is strapped into a chair that is rotated at a constant angular velocity of 
60 deg/s. The experiment is performed in darkness. 
 

• Influence of the bandwidth in angular velocity ωβ  

 
Figure 4.34 show the influence of the expected frequency bandwidth for head angular velocity 
of the CNS. It turns out that the lower is the bandwidth, the longer is the perception of angular 
velocity. For instance, the model predicts that if a bandwidth of 40 rad/s is assumed the 
perception of angular velocity decays to zero in about 30 s, whereas a bandwidth of 20 rad/s 
yield a perception of angular velocity that lasts 40 s. 
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Figure 4.34. Influence of the bandwidth in angular velocity on the estimated yaw angular velocity in darkness. 
 
 

4.2.7.2. Forward linear acceleration in darkness 
 

• Influence of the bandwidth in head linear acceleration 
 
Figure 4.35 shows the responses predicted by the UKF for different bandwidths in linear 
acceleration. It can be seen that the higher if the bandwidth tβ , the shorter is the perception of 

linear acceleration and the smaller is the magnitude of the perceived acceleration. Note that 
considering a value 0.3tβ =  the model predicts a constant perception of linear acceleration 

close to 0.5 m/s² in response to a stimulus of 2 m/s². This result is inconsistent with the 
dynamics of the otolith organs as they provide a sensory signal that decays toward zero in 
response to a constant linear acceleration. The residual value of 0.5 m/s² is presumably due to 
the integration method which constitutes in the present case a limit of the model.  
 
Regarding the estimated pitch angle, the onset of the pitch-up illusion is much faster for a 
high value of bandwidth (Fig. 4.35b). For instance, if a bandwidth 5tβ =  is considered the 

estimated pitch angle reaches a maximum value in about 5 s, whereas a bandwidth of 1 gives 
a maximum value of perceived pitch angle reached in about 20s. 
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Figure 4.35. Influence of the bandwidth in linear acceleration on the estimated linear acceleration (a) and 
perceived pitch angle (b) in darkness. 
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• Influence of the process noise in head linear acceleration 

 
Figure 4.36 shows the responses predicted by the UKF for different linear acceleration 
process noises. The model predicts that the smaller is the process noise, the shorter is the 
perception of linear acceleration and the smaller is the magnitude of the perceived 
acceleration. Once again, note that considering a high value for linear acceleration process 
noise the model predicts a constant perception of linear acceleration close to 0.5 m/s² in 
response to a stimulus of 2 m/s². 
 
As already observed in the case of a high value of bandwidth, the onset of the pitch-up 
illusion is here much faster for a small value of tQ .  

 

 
Figure 4.36. Influence of the linear acceleration process noise on the estimated linear acceleration (a) and 
perceived pitch angle (b) in response to a forward acceleration in darkness. 
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4.2.7.3. Vestibular Coriolis illusion 
 
The subject experiences a rotation around an Earth vertical axis at a constant angular velocity 
of 100 deg/s in darkness. At time 60 s, while rotating, the subject makes a head roll tilt toward 
his right shoulder. An illusion of pitch-up is predicted by the model (Fig. 4.34b). 
The impact of the bandwidth ωβ  on the perceived angular velocity ˆzω  is identical as the yaw 

angular velocity in darkness experiment. The model predicts a longer sensation of yaw 
angular velocity for smaller values of bandwidth (Fig. 4.37a).  
For small values of bandwidth, the estimated pitch angle provided by the model is higher and 
the sensation of tilt lasts longer than that predicted for large bandwidths. For instance, if a 
bandwidth of  10 rad/s is considered the UKF model predicts a tilt illusion of about 28.6 ° that 
lasts 80 s, whereas a pitch-up angle of about 14.3 ° is produced by considering a bandwidth of 
40 rad/s (Fig. 4.37b).   

 
Figure 4.37. Influence of bandwidth in head angular velocity on the estimated yaw angular velocity (a) and 
perceived pitch angle (b) in response to a Coriolis stimulation in darkness. 
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Chapter 5. Scale model of the semicircular canals 
 
Before writing the final conclusion of the presented thesis, a detailed study is presented that 
establishes the design features for the construction of a physical model of the semicircular 
canals. To our knowledge this study is the first that considers dynamic similitude between the 
biological sensors and the scale model and that suggests potential and adequate materials for 
manufacturing of the mock-up. 
 
The objective of this part is to construct a physically similar augmented model of one 
semicircular canal for both quantitative and qualitative testing. Price, construction simplicity 
and material availability have been determinant variables during this project. The project 
requirements are listed below:  
 

• Size of the model large enough to be easily observed and recorded during the 
experiments. This restraint could be translated as a minimum scale factor of 20, 
considering the small dimensions of the vestibular system (e.g. 0.16 mm cross-section 
radius) 

 
• Transparence of the fluid representing the endolymph, due to the visual experiments 

 
• Low Manufacturing complexity 

 
• Cupula Material Young’s modulus non inferior to 0.005E GPa=  (silicone rubber) 

 
• Maximum angular velocity applied to the scale model limited by max 250 /sω = ° , due 

to equipment restraints 
 

5.1. Similitude study 
 
Construction of a scale model must be accompanied by an analysis to determine what 
conditions it is tested under. While the geometry may be simply scaled, other parameters such 
as pressure, velocity and type of fluid may be altered. Similitude is achieved when testing 
conditions are created such that the results are applicable to real design. The following criteria 
are required to achieve similitude: 
 

• Geometric similarity: the model is the same shape as the application, usually scaled 
 
• Kinematic similarity: fluid flow of both the model and real application must undergo 

similar time rates of change motions. 
 
In order to satisfy the above conditions and thus to ensure dynamic similitude between the 
scale model and the application, we perform a dimensional analysis to express the system 
with dimensionless parameters. The values of these dimensionless parameters are held to be 
the same for both the scale model and the real semicircular canal. 
 
Given the fundamental units M  (mass), L  (length), and T  (time), any physical parameters 
G may be written as: 
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1 1 1a b cG M L T=                      (3.27) 

 
where the exponents are rational numbers. 
 
The fluid velocity yɺ  within the canal is a function of: 
 

• fluid density ρ  

• fluid dynamic viscosity µ  

• cross-section radius of the duct r  
• canal length l  
• cupula Young’s modulus E  
• angular velocity of the head ω . 

 
Therefore, each of these parameters has the following dimension: 
 
Fluid density 

1 3

M
G

L
ρ= =  

Canal length 4G l L= =  

Fluid dynamic 
viscosity 2

M
G

LT
µ= =  

Cupula Young’s modulus 
5 ²

M
G E

LT
= =  

Cross-section 
radius 

3G r L= =  Pulsation of head angular 
acceleration 6

1
G

T
ω= =  

 
Table 5.1. Dimension of the physical parameters that influences fluid flow within a semicircular canal in terms 
of fundamental units. 
 
The fluid velocity can be written as: 
 

( , , , , , ) x y z L
y f r l E L M T

T
ρ µ ω= = =ɺ                  (3.28) 

so that 1, 0, 1x y z= = = − . 
 
According to Buckingham Pi theorem (1914), which provides a method for computing sets of 
dimensionless parameters from given variables, a physical variable iP  can be expressed by 

the following equation: 
 

1 2
1 2

n x y z
i nP G G G L M Tα α α= =⋯                   (3.29) 

 
where the iG  are n physical variables, and the exponents , , ,i x y and zα  are rational numbers.  
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Equation (3.29) can be expressed in matrix form relative to the fundamental units as: 
 
 1G  2G  ⋯  nG  P  

L  1a  2a  ⋯  na  x  

M  1b  2b  ⋯  nb  y  

T  1c  2c  ⋯  nc  z  

 
Table 5.2. Matrix form of the Buckingham Pi theorem. 
 
And iα are the solutions of the following linear system: 

 

1 1 2 2

1 1 2 2

1 1 2 2

n n

n n

n n

a a a x

b b b y

c c c z

α α α
α α α
α α α

+ + + =
+ + + =
+ + + =

⋯

⋯

⋯

                   (3.30) 

 
In this particular case, we have: 
 
 1G ρ=  2G µ=  3G r=  4G l=  5G E=  6G ω=  P  

L  -3 -1 1 1 -1 0 1 

M  1 1 0 0 1 0 0 

T  0 -1 0 0 -2 -1 -1 

Table 5.3. Matrix form of the Buckingham Pi theorem applied to our similitude problem. 
 
The correspondent linear system is: 
 

1 2 3 4 5

1 2 5

2 5 6

3 1

0

2 1

α α α α α
α α α

α α α

− − + + − =
+ + =

− − − = −
 

 
So that 
 

1 5 6

2 5 6

3 4 5 6

1

2 1

2 2 1

α α α
α α α
α α α α

= + −
= − − +
= − + + −

 

 
Finally, 
 

3 61 2 4 5
1 2 3 4 5 6y G G G G G Gα αα α α α=ɺ  

5 64 ² ²

²

l r E r
y

r r

α ααµ ρ ρ ω
ρ µ µ

    =      
     

ɺ  
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5 64 ² ²
; ;

²

l r E r
y f

r r

α ααµ ρ ρ ω
ρ µ µ

      =             

ɺ                  (3.31) 

 
It is therefore required to keep constant the following dimensionless parameters so as to 
ensure dynamic similitude between the scale model and the semicircular canal: 
 

• 
l

r
 
 
 

 which is a geometric parameter  

• 
²

²

r Eρ
µ

 
 
 

 which relates fluid properties with the Young’s modulus of the cupula 

• 
y rρ
µ

 
 
 

ɺ
 which is the Reynolds number  

• 
²rρ ω

µ
 
 
 

 which is the Womersley number that represents the pulsatile flow frequency 

in relation to viscous effects (1955). This dimensionless number is also equal to the 
product of the well known Reynolds and Strouhal number. In the present case, this 
number is small (less than 1) even for high frequency of head acceleration pulsation 
(e.g. f=10 Hz). This means that in any case the frequency of pulsation will be 
sufficiently low so that a parabolic velocity profile will have time to develop during 
each cycle, and the flow will be given to a good approximation by Poiseuille’s law. 

 
 
In the present case, we consider a simple step of constant angular velocity rather than a 
sinusoidal rotation that will be applied to the scale model. Therefore, the first three 
dimensionless parameters are taken into consideration for the choice of potential materials 
suitable for the manufacturing of the scale model. 
 

� First dimensionless number: 
l

r
 
 
 

 

This geometrical parameter can be easily maintained by adjusting the correct canal length to a 
chosen cross-section radius. 
 

� Second dimensionless number: 
²

²

r Eρ
µ

 
 
 

 

 
The main restraint of the scale model resides in maintaining the second dimensionless 
number, because it requires an extremely Young’s modulus for the cupula material. By 
considering a scale factor Ψ  the new cross-section radius is given by 'r r= Ψ . Then, for 
conserving the second dimensionless parameter, it may be written: 
 

² ' ' ² '

² ' ²

r E r Eρ ρ
µ µ

   =   
   

                   (3.32) 

 
From which 
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2
'

' .
'

E E k E
A

µ ρ
µ ρ

   = =   
   

                   (3.33) 

 
where ', ', 'E µ ρ  are the parameters of the scale model. 
 
The main limitation of the problem is that E  is considerably small, namely close to 5 Pa. For 
this reason, the coefficient k  has to be large as much as possible so that an adequate material 
can be found such that min' ' 0.005E E GPa> ≈ . In a practical approach, the density'ρ  and 

the scale factor Ψ  play a minor role in influencing k  in comparison with the potential impact 
the viscosity may have. That is, fluids having a viscosity around 106 times higher then the 
endolymph can be found and retained for the scale model. 
 

� Third dimensionless parameter: Re
y rρ
µ

 =  
 

ɺ
 

 

As long as 'Re Re= , by choosing a large enough value for the viscosity 'µ , the velocity of 
the fluid is relatively larger in the scale model experiment when all other variables are kept 
constant. In other words, the simulation of a chosen head rotation requires an even large scale 
model rotation. 
 

5.2. Choice of materials 
 

• Endolymph: Polidimethylsiloxane Silicone Oil 
 
For modeling the endolymph, an initial qualitative study with three different high viscosity 
fluids has been conducted. Results of this study are presented in table 5.4 for a maximum 
scale model rotation of 250 °/s. Red cells in the last column indicate that the criterion 

min' 'E E>  is satisfied. 

 
The polydimethylsiloxane group has been chosen among the analyzed materials to represent 
the endolymph, inasmuch as it stands for a high enough cupula elasticity modulus and as it 
provides experiments with higher rotational rates. Equally, the commercial easiness to find it 
renders it an attractive choice. The fluid presents other interesting features such as: clear, 
colorless, fluid, extremely high kinematic viscosities covering a wide range, little viscosity 
change with temperature. It can also be pointed out that the mentioned fluid covers a wide 
range of possible kinematic viscosities (from less than 0.65 till 20 million cSt), while 
maintaining practically constant density (978 kg/m3). 
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Fluid Dynamic 
viscosity (Pa.s) 

Density 
(kg/m3) 

Scale factor Angular 
Velocity (°/s) 

Young’s modulus 
E (GPa) 

20 75.4 5e-5 Glycerol 1.42 1260 
40 301.7 1e-5 
20 1.1 4.15 
40 4.3 1.04 
60 9.6 0.46 
80 17.1 0.26 

 
 

Peanut 
Butter 

200 333 

100 26.6 0.17 
20 1.1 0.22 
40 4.3 0.054 
60 9.6 0.024 
80 17 0.014 

78.3 979 

100 26.6 0.009 
20 0.9 0.274 
40 3.8 0.069 
60 8.5 0.030 
80 15.1 0.017 

88.0 978 

100 23.6 0.011 
20 0.8 0.409 
40 3.1 0.102 
60 7.0 0.045 
80 12.4 0.026 

 
 
 
 
 
 

Silicone 
Polydimethylsiloxane 

107.6 978 

100 19.3 0.016 
Table 5.4. Required experimental values for cupula material Young’s modulus and maximum simulated head 
angular velocity. 
 
 

• Cupula: silicone rubber 
 
Regarding to the cupula, low elasticity modulus silicone rubbers with 

min' ' 0.005E E GPa≈ ≈  have been considered. A convenient material is the “Super soft 

silicone rubber Ecoflex 10”. Note that by choosing the material’s lowest possible Young’s 
modulus, higher viscosity can be utilized, minimizing the angular velocity that will be applied 
to the scale model.  

5.3. Results 
 
In order to maintain the dimensionless numbers and to respect the constraint on the minimum 
Young’s modulus value, an Excel file was elaborated with a Visual Basic macro for a discrete 
set of scale factors as well as different fluid viscosities, and the Goal Seek optimization 
function was used. Results are shown in table 5.5. 
 
It turns out that the maximum scale factor 100Ψ =  is the most convenient, allowing higher 
simulated head rotations. The corresponding fluid kinematic viscosity is 

' 60000 0.06 ² /cSt m sν = = . For this task of representing the endolymph, we propose the 
polydimethylsiloxane Wacker AK 60,000 cSt Silicon Oil . 
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Angular velocity applied to the scale model 250 /sω = °  
Simulated head angular velocity 25 /sω = °  
 
Fluid kinematic viscosity (m²/s) Scale factor Young’s modulus of the cupula (GPa) 

0.01 30 0.0009 
0.03 60 0.0024 
0.05 80 0.0063 
0.07 90 0.0079 
0.08 100 0.0098 

Angular velocity applied to the scale model 250 /sω = °  
Simulated head angular velocity 30 /sω = °  
 
Fluid kinematic viscosity (m²/s) Scale factor Young’s modulus of the cupula (GPa) 

0.01 30 0.0006 
0.03 60 0.0024 
0.05 80 0.0043 
0.06 90 0.0055 
0.07 100 0.0068 

Angular velocity applied to the scale model 250 /sω = °  
Simulated head angular velocity 35 /sω = °  
 
Fluid kinematic viscosity (m²/s) Scale factor Young’s modulus of the cupula (GPa) 

0.01 30 0.0004 
0.03 70 0.0024 
0.05 90 0.0040 
0.06 100 0.0050 

 
Table 5.5. Quantitative estimation of possible configurations that keep constant all the dimensionless 

parameters. Red cells indicate that the criterion min' ' 0.005E E GPa> =  has been met.  
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Chapter 6. Conclusion and future works 

6.1. Overall conclusion 
 
The thesis presents models of the human vestibular system, and more particularly of the 
semicircular canals, as well as models for human spatial orientation perception. 
 

• In Chapter 2, the system endolymph / cupula has been modeled using finite-element 
simulations. In order to estimate the elastic properties of the human semicircular canal cupula, 
the latter has been modeled assuming it was attached around its periphery, and deformed 
according to thick and thin membrane theory. A three-dimensional finite-element model of 
the cupula has also been developed.  Comparison with the finite-element model has confirmed 
that the thin-membrane model is not appropriate, because the thickness of the cupula has the 
same order of magnitude as the radius of the cupula. Based on thick bending membrane 
theory, a relation between the pressure-volume coefficient K  and the Young’s modulus of the 
cupula has been derived. A value for E  has been computed based on the cupula radius and 
thickness and on the various estimates of the pressure-volume displacement coefficient K  or 
the cupula long time constant of the cupula. We have estimated that the Young’s modulus of 
the cupula is close to 5.4 Pa. It is notable that this value depends not only on the geometric 
dimensions of the cupula but also on the long time constant that we assumed. The shorter the 
long time constant, the larger the theoretical prediction for the cupula material’s Young’s 
modulus. However, our estimate is the same order of magnitude as a previous value derived 
by Groen et al. (1952), with values derived for the pike (Ten Kate, 1969), and with the 
Young’s modulus of the cupula of the lateral-line organs of the fish (Mc Henry et al., 2007). 
 
Using finite-element models, we have also studied two other shapes for the cupula: one with 
thick sides and a thin vertical center, the other being thick along its entire periphery. We have 
investigated their influence on the transverse displacement field of the cupula. It turns out that 
the cupula with thick sides along its entire periphery bends less as its stiffness is larger than 
the second model, and that the cupula having a thin vertical center exhibits a vertical 
asymmetrical transverse displacement. In that case, the lower part of the cupula, precisely 
where the hair cilia are located, is the most deflected. Since the mechanical stimulus of the 
stereocilia is determined by cupular shear strain that occurs near the crista, we have also used 
a finite-element model of the cupula so as to study the predicted shear strain right above the 
sensory epithelium. It turns out that first, the maximum shear strain occurs near the surface of 
the crista where the cilia are located, and, second, that the shear strain first appears at the 
center of the crista and then spread toward the periphery of the cupula and down the sides of 
the crista. 
 
According to numerous authors (Igarashi and Alford, 1969; Dohlman, 1971; Lim, 1971) the 
cupula is in reality not a homogenous structure. Traditionally it is thought to contain 
endolymph-filled vertical channels although this has recently disputed. By modeling a section 
of cupula material having empty vertical channels positioned on a hexagonal matrix, we have 
shown that in the case of a static transcupular pressure the stiffness of the cupula is strongly 
sensitive to the diameter of the channels. In particular 10 µm diameter channels have a small 
effect on the transverse displacement of the cupula while 30 µm channels tubes increases the 
displacement by 28.6 %. 
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Then we have investigated the fluid-structural dynamics that takes place in the semicircular 
canals of the vestibular system using the Comsol Multiphysics software. The endolymph has 
been modeled as an incompressible Newtonian fluid while the cupula was considered as an 
elastic solid. The fluid-structure interaction problem has been treated with a strong coupling 
between the fluid flow and structural displacements. First, a two-dimensional as well as a 
three-dimensional model of a single semicircular canal have been considered. Results 
provided by both models were in good agreement with previous analytical studies as regard 
cupula displacement and fluid flow velocity field. We have shown that: 
 

� in about 0.04 s fluid flow in the slender part of the semicircular canal can be 
approximated by a classic Poiseuille flow 

� for a step change in head angular velocity cupula displacement begins near the 
sensory epithelium and then spreads towards its center 

� displacement of the cupula through time is in good agreement with the classic 
torsion-pendulum model, i.e. described by two exponential terms 

 
In addition, we have considered a head centered canal as well as a canal located 30 mm away 
from an Earth vertical axis and have shown that both models predict similar results.  
 
Second, we have developed a three-dimensional finite-element model of the entire set of 
semicircular canals and cupulae. The associated geometry has been constructed using a CAD 
software (CATIA V5) which has then been imported into the finite-element Comsol 
Multiphysics software. Unfortunately, during the simulation convergence problems due to 
inverted mesh were encountered. This kind of problem usually occurs when the mesh is too 
coarse. In the present case, a finer mesh was not possible as we were limited by the available 
RAM (8Go) which in turns limits the size of the model. To explain more clearly, the size of 
the model is conditioned by the size of the mesh, i.e. the number of degrees of freedom. The 
finer is the mesh, the larger are the size of the model and the required RAM. Even if the 
model has been meshed as fine as possible according to the available RAM, it was not enough 
fine for the computation to converge. However the available solutions provided by the model 
at the beginning of the simulation were promising as they were in good agreement with the 
previous 2D and 3D models.  
  
 

• In chapter 3, a virtual reality model that simulates the rotating chair test - one of the 
usual procedures carried out during a vestibular diagnosis – has been developed. This model 
also offers the possibility to simulate several head rotations while the simulated subject is 
rotated around an Earth vertical axis and to investigate in real time the state of each sensor. In 
addition, a Graphical User Interface has been developed and provides users with complete 
control over all model parameters and data processing. Regarding data processing, the user 
has the choice between plotting the displacement curve of each sensor, visualizing a dynamic 
three-dimensional animation of the SCC, and visualizing a dynamic virtual scene of the 
experiment. Both the 3-D animation and the virtual reality environment are very convenient 
as the user can observe what theoretically happens at the level of each sensor during any head 
rotation. This model also provides a better understanding of different kinds of erroneous 
motion sensations which may appear during combined rotation motions. 
 
The core of this virtual reality model computes in real time equations of motion in earth, chair 
and head coordinate system, and then project angular acceleration vectors into a reference 
frame attached to the semicircular canals. The orientation of the axes of this coordinate 
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system has been defined according to a recent study based on 3-D multiplanar reconstructions 
of computerized tomography scans (Della Santina et al. 2005). The resulting non-orthogonal 
system underlines the fact that all the canals are stimulated for any rotation. 
 
In addition, a similitude study has also been proposed in order to build a large scale model of 
the semicircular canals. It was found that four dimensionless parameters define the design 
features of the mockup, by considering a step change in head angular velocity, keeping 
constant the dimensionless parameters, and taking into account a minimum Young’s modulus 
of the cupula equal to 0.005 GPa. Thus we have determined that a scale factor 100A =  is the 
most convenient, allowing higher simulated head rotations. We have also looked for potential 
materials that could be used to build the scale model. We have proposed to use a highly 
viscous fluid for the endolymph such as the polydimethylsiloxane Wacker AK 60,000 cSt 
Silicon Oil, and to use a super soft silicone rubber for the cupula, e.g. ECOFLEX 00-10. 
 
 

• Chapter 4 has been devoted to models for human spatial orientation perception. First, 
we have investigated the Observer and Kalman filter model families and have shown why 
these two approaches are dynamically equivalent from an input-output blackbox. We have 
compared the Merfeld Observer model with the Borah Kalman filter model for a simple one-
dimensional case, i.e. a subject who experiences a yaw rotation around an Earth vertical axis 
in dark (angular velocity storage), and for a three-dimensional case, i.e. a subject who 
experiences a forward acceleration in dark (somatogravic illusion). Both models are 
structurally different in the sense that: 

 

1. Merfeld Observer model utilizes only four ad hoc parameters while the Borah Kalman 
filter model postulate 16 weighting factors 

2. In Merfeld Observer model, residuals simply add to the output, whereas in Borah KF 
model the residuals determine the rate of change of model outputs 

3. Merfeld Observer model work for large head tilts (nonlinear model), whereas Borah 
KF model is linearized near the upright position 

4. Merfeld considered faster dynamics for the otoliths 

5.  Merfeld considered only vestibular cues while Borah took into consideration 
vestibular as well as visual cues. 

 

However, despite all these differences, we have shown that both models predict similar results 
for perception of head angular velocity in the dark as well as perception of linear acceleration 
and pitch angle in response to a forward linear acceleration in darkness. 

We have also discussed the presence of low pass filters, also called shaping filters, used to 
limit the band of the process noises. First, these filters constitute a mathematical device to 
augment the size of the state vector by adding one more state that correspond either to head 
angular velocity or head linear acceleration. Second, these shaping filters control the 
magnitude of the process noise covariance. Third, we have argued that the consideration of 
these filters means that the brain expects head angular velocities and linear acceleration in a 
certain range of frequencies. In other words, these low pass filters somehow reflect past 
motion history, i.e. kind of motion our head has encountered in the past and that the central 
nervous system might expect. Unlike Borah who considered bandwidths and noise 
covariances as free parameters of his model, we have argued that these parameters can be 
ecologically justified based on human movement and threshold characteristics. 
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Second, in order to extend Borah steady state Kalman filter model to a general time-
continuous three-dimensional model that works for any head attitude, we have applied 
nonlinear estimation techniques to the problem of human spatial orientation perception. In 
particular, two models based on the extended and the unscented Kalman filters respectively, 
have been developed. The first model was based on Pommellet’s 1990 extended Kalman filter 
model. Several modifications of Pommellet’s model have been performed such as the 
consideration of different dynamics for the otolith organs, the use of fictitious process noise 
for the quaternion in order to reduce numerical instabilities of the filter, and  correction of 
some implementation errors as regard measurement noise. The second model was developed 
according to the hybrid version of the unscented Kalman filter. This novel technique is 
fundamentally different from the EKF in the sense that the EKF approximates the nonlinear 
functions of the state space model, whereas the UKF propagates a set of sigma points through 
the nonlinear functions, and then estimates the mean and covariance of the states based on the 
transformed sigma points.  

 

As the central nervous system is modeled as a continuous system, the differential equations 
for the estimated state vector x̂  and the error covariance matrixP  have been integrated 
between each measurement time step. For the EKF, fourth-order Runge-Kutta integration has 
been used to avoid numerical instabilities, whereas an Euler integration scheme appeared to 
be sufficient in the UKF to obtain accurate results. The direct consequence was a computation 
time about 2-3 times faster in favor of the UKF. 

 

Both models were successfully implemented and used to predict the responses to a number of 
vestibular, visual and visual-vestibular motion paradigms such as the somatogravic illusion, 
angular vection, vestibular Coriolis illusion and pseudo-Coriolis illusion. However, according 
to the results provided by both filters, it turned out that the UKF yields more accurate and less 
oscillatory responses than the EKF, for the same set of initial conditions and noise parameters. 
In addition, a sensitive study has been proposed so as to investigate the influence of the 
bandwidths and process noise covariance on the predicted perceptions of orientation, velocity, 
and acceleration for various motion paradigms. Results of this study are summarized in the 
table below: 

 
 High values of ωβ  High values of tβ  High values of tQ  

 

Yaw rotation in 
darkness 

 

Shorter perception of 
head angular velocity 

 

_ 

 

 

_ 

Forward linear 
acceleration in 
darkness 

 

_ 

Shorter perception and 
lower magnitude of head 
linear acceleration 

Quicker illusion of tilt 

Longer perception and 
higher magnitude of head 
linear acceleration 

Slower illusion of tilt 

Vestibular 
Coriolis illusion 

Shorter perception of 
head angular velocity 

Smaller and shorter 
perception of pitch 
angle 

 

_ 

 

_ 

Table 6.1. Summary of the sensitivity study of some of the parameters of the UKF model. 
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It has been shown that a high value of bandwidth of angular velocity tends to shorten the 
perception of head angular velocity. In addition, in the case of the vestibular Coriolis illusion, 
the perception of pitch angle becomes smaller and the associated sensation is also shortened. 
In the case of a forward acceleration in darkness, a similar phenomenon is observed for a high 
value of bandwidth of linear acceleration. The perception of linear acceleration is shortened 
and the associated magnitude is diminished. This involves a fast illusion of tilt. The inverse 
effect is obtained if a high magnitude of linear acceleration process noise covariance is 
considered. Therefore, we can see that the behavior of the developed model really depends on 
the assumed parameters for the bandwidths and noise covariances. It is the reason why these 
parameters must be estimated as accurate as possible. In chapter four, we have tempted to 
approximate these parameters based on ecological assumptions. For instance, we have 
determined that a bandwidth of angular velocity of 25 rad/s should reflect the spectrum of 
yaw head movements normally made in daily life 

6.2. Perspectives 
 

• Regarding the proposed models of the human semicircular canal cupula, the latter has 
been described in terms of its pressure-volume elastic coefficient K. However, the cupula is 
composed of two components: filamentous material (proteins) and an amorphous 
mucopolysaccharide substance (Hillman et al., 1979). This kind of structure, which resembles 
specific biopolymers (biological polysaccharides) or hydrogels, is much more like a 
viscoelastic material. Therefore, viscoelasticity models, such as Maxell or Kelvin-Voigt 
model, should be considered in future studies. These models would help investigators to 
answer two questions: Do the viscoelastic properties of the cupula have a significant influence 
on the dynamic response of the system cupula/endolymph?  Does the cupula behave more 
stiffly for fast deflections? 
 
Furthermore, another limitation of the presented study is that the cupula was assumed 
homogeneous because of the lack of knowledge of its mechanical properties. In order to build 
a more detailed and accurate model based on the structural examination of Silver et al. (1998), 
future experiments to determine, or at least estimate, the mechanical properties of each region 
of the cupula may be ultimately needed.  
 
Concerning the final three-dimensional fluid-structural finite-element model of the 
semicircular canals, we have obtained promising results. However a finer mesh needs to be 
considered in order to ensure the convergence of the simulation. Therefore, the size of the 
model - in terms of degrees of freedom – will increase and the simulations will have to be run 
on a supercomputer. Based on our 3-D simulations, we have estimated that at least 10-12 Go 
of RAM are required to avoid any swap between the main memory and the disk. 
In the future, this model could be used to study different kind of vestibular disorders such as 
the Ménière’s disease which is caused by an increase in pressure and volume of the 
endolymph.  
 

• In case of the developed virtual reality model, its major limitation is that it does not 
entirely represent the real diagnosis procedure. Currently, the way to explore the vestibular 
component of the inner ear is to record the vestibulo-ocular-reflex (VOR) – a reflexive eye 
movement due to the stimulation of the vestibular sensors - using different experiments 
including the rotary chair test. By examining this ocular reflex relatively to the imposed 
rotational movements the specialists are able to detect any vestibular deficiencies. A potential 
future application of this model could be its use during such diagnosis in order to have a 
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comparison between clinical results and those of the model.  To achieve this goal this first 
version has to be enhanced:  
 

1) by taking into account the link between the vestibular sensors and the vestibule-
ocular-reflex, i.e. the transfer functions between these two components (Note that vestibule-
ocular reflex models exist in the literature, e.g. Zupan, 1995) 

 
2) by incorporating eye movements in the virtual scene. 

 
• Regarding models for human spatial orientation perception, both the presented EKF 

and UKF models assume Gaussian noises. While this assumption may be valid in many cases, 
it is not always justified (Faisal et al., 2008). Therefore, a prospect would be to apply the 
Particle Filter technique to the three-dimensional model here presented. The particle filter, 
which was invented to numerically implement the Bayesian estimator is a completely 
nonlinear estimator that does not assume any specific Gaussian noise. The particle filter has 
some similarities with the UKF in that it transforms a set of points via known nonlinear 
equations and combines the results to estimate the mean and covariance of the state. However, 
in the particle filter the points are chosen randomly using Monte Carlo simulations, whereas 
in the UKF the points are chosen on the basis of a specific algorithm. Because of this, the 
number of points used in a particle filter generally needs to be much greater than the number 
of points generated by the UKF. On the other hand, the estimation error in a particle filter 
does converge to zero as the number of particles (and hence the computational effort) 
approaches infinity, which is not the case for the UKF. Therefore, although the Kalman filter 
can be used in nonlinear systems for state estimation, the particle filter may give better results 
at the price of additional computational effort. A future study regarding the application of 
particle filtering to a 3-D model of human spatial orientation should help to answer the 
following questions: Does particle filtering improve the performance of the three-dimensional 
UKF model for human spatial orientation estimation? Does the improved performance worth 
the increased computational effort? How many particles should we consider to get at least the 
same accuracy as the UKF? In that case, is the computation time comparable with that of the 
UKF? Does the unscented Kalman filter provides a good balance between the low 
computational effort of the Kalman filter and the high performance of the particle filter? 

 

However, a well known and fundamental problem in particle filters is “particle collapse” or 
“particle degenerency” as a result of Bayes’rule. Recently, F. Daum and J. Huang have solved 
this problem by developing a new filter that implements Bayes’ rule using particle flow rather 
than with a pointwise multiplication of two functions. This new nonlinear filter has been 
shown to be vastly superior to the classic PF and the EKF as the computational complexity of 
this filter is many orders of magnitude less than the PF with optimal estimation accuracy for 
problems with dimension greater than 4.  Therefore, another prospect of this study would be 
to apply the nonlinear particle flow filter to the three-dimensional problem of human spatial 
orientation which would provide more accurate results as well as faster computation time than 
any other nonlinear estimation techniques. 
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Appendix 1:  
Numerical model for the resolution of the fluid flow 
within a single canal 
 
 
At the beginning of our work, we were interested in studying fluid dynamics that takes place 
within each semicircular of the inner ear so as to understand the dynamic behavior of the 
system cupula/endolymph. Therefore we developed a numerical tool that solves, for different 
head motions, the governing equations of the fluid flow in the slender duct of the lateral 
semicircular canal, so that motions and volume displacements of the cupula can be 
approximated. This numerical tool based on a Chebyshev spectral collocation method has 
been validated according to an analytical solution for a specific head motion. 
 
This work is not included in the core of this report as it does not really make any significant 
contribution. Indeed, modeling of the system endolymph/cupula based on the governing 
equations of fluid flow has already been investigated by many researchers (Van Buskirk, 
1977; Ten Kate, 1969; Oman et al., 1987; Damiano et al., 1996). However, we have chosen to 
add this work as an appendix as it constitutes a useful numerical tool implemented in Matlab 
which provides a fast and accurate solution for the fluid flow. In addition different profiles of 
head motion can be quickly studied. 
 

1. Modeling 
 
Spectral methods are well adapted for the resolution of unstationnary problems in 
incompressible fluid mechanics, in a simple geometry (a toroidal duct in the present study). 
This numerical approach provides an accurate and fast solution for the fluid flow, and permits 
to study the global behavior of the system. More particularly, by integrating the volume flow 
rate, the cupula volume displacement can be approximated for different head motions.  
 
1.1. Theoretical equation of the movement 
 
The developed model results from the Navier-Stokes equations applied to the endolymph, and 
takes into account the cupula as an elastic diaphragm. The fluid has a constant density ρ  and 
a kinematic viscosity υ . Several assumptions are considered: 
 

- The horizontal canal is subjected to rotational movements around an axis (Oz
�

) 
perpendicular to its plane, 

- The membranous wall is rigid, 

- Endolymph is modeled as an incompressible Newtonian fluid, the flow is laminar, 

- Inertia of the cupula is negligible with respect to the fluid inertia, 

- If ( , , )U V W  are the velocity vector coordinates of a fluid particle in a curvilinear 
coordinates system, it is assumed that the components U  and V  are null and  

( , , , ) ( , )W r z t W r tθ = , 

- A pressure-volume coefficient K  is assumed. This coefficient, defined as /= ∆ ∆K P V , 
characterized the volume displacement of the cupula ∆V when the latter experiences a 
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transcupular pressure ∆P . Different relations and values for this parameter have been 
suggested (Njeugna et al., 1986; Oman et al., 1987). In the present case, the value of 
13GPa/m3 is retained (Rabbitt et al., 2004). In addition, the coefficient K is related to a long 
time constant Lτ , which governs the return of the cupula to its rest position, following 

removal of any forcing. The relation between these parameters is discussed later. 

 
By applying the Navier-Stokes equations to the system and taking into account the presence 
of the cupula, the volume flow rate between the initial instant and the current t  is given by: 
 

 
0 0 0

( ) ( ) 2 . ( , )
t t a

V t Q t dt r W r t drdtπ∆ = =∫ ∫ ∫  (1) 

 
where a  is the radius of the duct and Q  the flow rate, and the governing integral-differential 
equation for the fluid flow is (Njeugna et al., 1986): 
 

 
0 0

( , ) 2 ( , )
. ( , )

t aW r t P K W r t
r W r t drdt r

t L L r r r

π µρ ∂ ∆ ∂ ∂ = − +  ∂ ∂ ∂ 
∫ ∫  (2) 

 
where ∆P  is the transcupular pressure and µ ρυ=  the dynamic viscosity. 
 
The initial and boundary conditions are ( ,0) 0W r = , ( , ) 0W a t =  respectively. The first 
condition means that the system is initially at rest. The second condition is the non-slip 

condition of the fluid at the duct wall. It must also be considered that 
0

0
r

W

r =

∂ =
∂

 which 

comes from the fact that even if the cylindrical coordinate system is not defined at 0r = , the 
fluid velocity remains finite at this position. 
 
∆P is the input of the system which is directly related to the angular acceleration of the head. 
Several expressions of ∆P can be found through the literature (e.g. Oman et al., 1972).  
 
3.2. Numerical modeling 
 
The aim of the numerical modeling is to provide an accurate tool for the resolution of the fluid 
flow in the slender part of the semicircular canal, not only for a step of pressure as Njeugna 
(1986) did, but for different kind of head motions. 
 

• Spatial discretization 
 

In order to solve the integro-differential equation (2) a spectral collocation method based on 
Chebyshev polynomials is used (Canuto et al., 1988; Jedrzejewski, 2001). Following standard 
procedures the conventional differentiation formulation can be described as follows. A one-
dimensional domain 1 1ξ− ≤ ≤  is considered. This domain of interest is discretized using N 
Gauss-Lobatto points defined as: 
 

 cosi
i

N

πξ  =  
 

, i=0,…,N (3) 
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An approximation of the function W(ξ) defined on [-1,1] is obtained by polynomial 
interpolation : 

 
0

( ) ( ) ( )
N

i i
i

W Wξ λ ξ ξ
=

=∑  (4) 

 
where iλ ξ( )  are the Lagrange interpolation polynomials. In the case of the Gauss-Lobatto 

points iξ , iλ ξ( )  are defined by: 

 1 ' ( )1 ²
( ) ( 1)

²
i N

i
i i

T

N c

ξξλ ξ
ξ ξ

+ −= − − 
 (5) 

where 
N

T '  is the first derivative form of the Chebyshev polynomial of order N , and 

0
2

N
c c= = , 1

i
c =  for 1i =  to  1N − . 

 
• Differentiation 

 
The ℓ th-order derivative of the approximate solution W(ξ) defined on [-1,1] is evaluated at 
the collocation points using a differentiation operator. This one is obtained by differentiating 
the interpolation functions as follows: 
 

 ( )

0 0

( ) ( ) ( ) ( )
N N

i k i k ik k
k k

d W
W D W

d
ξ λ ξ ξ ξ

ξ = =
= =∑ ∑

ℓ
ℓ ℓ

ℓ
 (6) 

 
where ikD is a differentiation matrix which links the derivative of W computed at the 

collocation points with the values of W at the same points. The zero-order differentiation 
matrix is the identity matrix whereas the first-order is defined by:  

1( 1)k
i

ik
k i k

c
D

c ξ ξ

+−=
−

 for i≠k 

2(1 ²)
i

ii
i

D
ξ

ξ
= −

−
 for i=1,….,N-1 

00
2 ² 1

6NN
N

D D
+= − =  

 
Higher orders of derivative are simply obtained by evaluating the differentiation matrix D  to 
the considered power. 
 

• Formulation of the governing equation 
 
For this problem, a first order temporal scheme is used. An implicit scheme is chosen for the 
viscosity terms in order to avoid a large numerical transient phenomenon. According to this, 
Eq. (2) can be written as: 
 

1 1 1

0 0

( , ) ( , ) ² ( , ) 2 ( , )
. ( , )

²

nt an n n nW r t W r t W r t P K W r t
r r W r t drdt

t r r r L L t

µ πρ ρ
+ + +∂ ∂ ∆

− + = − +
∆ ∂ ∂ ∆

 
 
 

∫ ∫   (7) 

 

If the following variable is substituted : 1
2
ar ξ= +( ) , then Eq. (7) finally becomes: 



 166 

 
1 1 1( , ) 4 1 ( , ) ² ( , )

² ( 1) ²

n n nW t W t W t

t a

ξ µ ξ ξρ
ξ ξ ξ

+ + + ∂ ∂− + = ∆ + ∂ ∂ 
 

     
1

0 1

² ( , )
( 1) ( , )

2

nt nP Ka W t
W t d dt

L L t

π ξξ ξ ξ ρ
−

∆ − + +
∆∫ ∫      (8) 

or in matricial form:  
  

(1) (2) 14 1
[ ] [ ] [ ] [ ( , )]

² (1 )
n

i
i

t
I D D W t

a

υ ξ
ξ

+
   ∆− + =     +   

 

   
12

0 1

[ ( , )]
( 1). ( , )

2

nt n
iW tt P Ka

W t d dt
L L t

ξπ ξ ξ ξ ρ
ρ −

 ∆ ∆ − + + 
 ∆ 

∫ ∫       (9) 

 

Eq. (9) takes the form of a linear system [ ] [ ]1nA W B+  =  . The boundary conditions are 

inserted in the first and last line of the matrix [A] which defines respectively the no-slip 
condition at the duct wall and a slope equal to zero at the centre of the cross section of the 
duct. The corresponding values in [B] are null. Finally the matrix [A] must be invert in order 

to obtain the velocity vector at each new time step 1nt + . 
 
In order to compute the integral term it should be noted that: 
 

   
1 1

01 1

1 1
N

j j
j

tW t d W dξ ξ ξ ξ ξ λ ξ ξ
=− −

 
 
 
 

+ = +∑∫ ∫,( ) ( , ) ( ) ( ) ( )      (10) 

 

 where jλ ξ( )  is entirely known. The terms 
1

1

1 j dξ λ ξ ξ
−

+∫ ( ) ( )  can thus be evaluated once at t=0. 

 
• Validation of the numerical parameters 

 
Several simulations in response to a pressure step are computed in order to test the required 
numerical parameters, i.e. the number of collocation points and the size of the time-step. As it 
can be seen in Fig. 1a, the numerical solution rapidly converges for a small number of 
collocation points. Therefore it is not necessary to retain a large value for N which would 
increase the computation time. Furthermore the value of the velocity field at any points can be 
obtained by using the interpolation function Eq. (4) in order to have a smooth velocity 
function. 
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Fig. 1. (a) Velocity curves for different numbers of collocation points. (b) Velocity curves for different time step 
at t=0.02s, with t0=0.02s and ∆P=0.05Pa. 
 
 
In order to obtain an accurate solution the size of the time-step ∆t must be carefully chosen. If 
the input is a pressure step, the size of the time-step will depend upon the duration time t0 that 
pressure needs in order to reach its final value. Numerically the rising part of the step of 
pressure is defined by a fourth order polynomial such as the pressure and its first time 
derivative are continuous functions. Then for 0t t>  the pressure keeps a constant value. For 

0 0.1t s= , a time step of 10-2 which constitutes a good compromise between the accuracy of 

the results and the computation time is retained. However, if one wants to decrease the value 
of 0t , for instance to 0.02 s, then the time step should at least be lower to 1.10-3. Fig. 1b 

illustrates this latter case by plotting some velocity curves for different time-step in response 
to a step of pressure of 0.05 Pa with t0 equal to 0.02 s. As it can be expected a time-step of  
0.01 s is not sufficient for giving an accurate result because the numerical solution has not yet 
converged. The two other studied time-steps give almost identical results at t=0.02 s.  
 
2. Validation of the spectral model 
 
In order to validate the spectral model, we use analytical solution available for the case of a 
step of pressure (Poncin, 1940; Obrecht, 1976).  
 
In the 40s, the problem of non stationary laminar viscous flow in a capillary tube was studied 
and solved by Poncin (1940). Afterwards this problem was reformulated by Obrecht by taking 
into account a punctual elasticity (Obrecht, 1976). He found an exact solution to Eq. (2) in 
response to a step of pressure:  

20 0
4

1 0

116
ii i x t

i i i

rJ x J x
a

W r t e
x J x

αβγ ϕ
∞ −

=

  
  
  
 
 
 
 

−
= ×∑

( )
( , )

( ) ( )
                    

(13) 
 
where :  

(a) (b) 
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• 
0

J  is the zeroth-order Bessel function of the first kind; 

• ix is the i th root of the equation: 4
1 0

2 0J x J x x xγ γ− × + =( ) ( ) ( ) ; 

• 2 4 212i i ix x xϕ γ γ−= +( ) ( ) ; 

• 
2

0

4
a P

L
β υρ= ; 

6

2

a K
L

πγ ρυ=  with 
0

P is the magnitude of the pressure step. 

 
Fig. 2 shows the response to a step of pressure of 0.05Pa with t0 equal to 0.1s for both the 
analytical solution and the spectral model. The analytical and numerical results differ a lot for 
t below 0.1s. This is due to the transient part of the numerical model which takes into account 
the raise of pressure. However the curves accurately match from t  close to 0.1s.  
 
 

 
Fig. 2. Comparison of the velocity curves of the analytical and spectral model at different instant. Result of both 
models clearly differs at t=0.02s because of the transient part of the spectral model. However, both models 
provide identical results at 0.1s so that velocity curves are superimposed. 
 
 
3. Study of different cases 
 
The major advantage of the spectral numerical model is the possibility to rapidly study several 
angular movements of the head, which are represented by different mathematical pressure 
functions. Two cases are here presented, a rotation of the head at a constant angular velocity 
and a sinusoidal angular acceleration of the head. 
 

• Constant head rotation 
 
This first case simulates a head rotation at a constant angular velocity. Practically, the subject 
is strapped into a rotating chair and experiences a rotation around a vertical axis at a constant 
angular velocity. The rotational motion starts at t=0 and stops at t=25s. This is implemented in 
the model by taking into account two short step of pressure (positive at t=0 and negative at 
t=25s) which represents the acceleration and deceleration of the head respectively. The 
upward and downward slope of theses steps are computed by using a fourth order polynomial 
so as to avoid numerical problems.  
 



 169 

An appropriate picture of the cupula displacement is the volume flow rate integral defined by 
Eq. (1). It can be seen that ∆V varies exponentially according to two time constants like the 
behavior defined by the torsion pendulum model (Fig. 3a). Physically, that means the 
sensation of rotation associated with the short time constant is instantaneous. However this 
sensation reduces exponentially, with a time constant Lτ , even though the angular velocity 

remains at a constant level. The value of this long time constant directly depends on the 
parameter K .The higher the cupula stiffness is, the lower the time constant governing its 
return to its rest position. Fig. 3b shows the normalised volume displacement of the cupula for 
a constant head angular velocity and for different values of K . The relation between K  and 

Lτ  seems to be linear, which is consistent with other studies (e.g. Van Buskirk et al., 1977).  

In the present model, a value ofK  equal to 13GPa/m3 yields a time constant close to 6.6s. 
Therefore, if one wants to consider the time constant of 4.2s - recently derived by Dai et al. 
(1999) - the value of K  should be taken close to 20.4 GPa/m3.  
 

 
 Fig. 3. Normalized volume displacement of the endolymph for a head angular rotation at a constant angular 
velocity. (a) The rotation is stopped at t=25s. (b) The rotation is maintained and the plots are for different values 
of K . 
 

• Sinusoidal angular acceleration 
 
Here a sinusoidal angular acceleration is considered. It is implemented in the model by a 
sinusoidal pressure 0 cos( )P P tω∆ = . From the analytical solution of the fluid velocity Eq. 

(13), an expression for the outflow in response to a sinusoidal pressure can also be derived by 
using the step response and the convolution product. In a steady state the outflow is given by: 

4 4
0

1

4
( ) cos( )

( )
i

i i
i i

a P x
Q t D t

L x

π ω φ
ρ υ ϕ

∞

=
= +∑                       (14) 

where 
2

4 4i

i

D
x

δ
δ

=
+

, a
ωδ
υ

=  and  
2

arctan i
i

xφ
δ

 =  
 

. 

 
The outflow curves are shown in Fig. 4 for two different frequencies. In addition the outflow 
expression according to Poiseuille’s law is also plotted. It can be noticed that in steady state, 

Eq. (14) can be reduced to its first term with the ratio 4
1 1/ ( ) 1/ 32x xϕ ≈ . Therefore, Eq. (14) 

can be approximated in steady state by: 
4

0

8

a P
Q

L

π
ρ υ

≈              (15) 
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which is analogous to Poiseuille’s law. This result only holds for frequencies superior to 
0.08Hz (Fig. 4).  
 

Fig. 4. Outflow curves for the numerical model (continuous line), analytical model (dashed 
line) and the Poiseuille’s expression (dotted line). 
 
It should be noticed that the required time-step ∆t depends on the value of the pulsation ω. 
According to the value of ω the size of ∆t must be carefully chosen in order to ensure the 
calculations to be independent of ∆t. For example a frequency of 0.08Hz requires a time-step 
of 0.1 whereas from 0.5Hz a time step of 0.01 must be chosen (Fig. 10). 
 
 
Conclusion 
 
The proposed numerical model simulates the flow of endolymph in a semicircular canal by 
considering the cupula as an elastic diaphragm. The velocity profiles, the outflow, and the 
volume displacement can be computed for different kinds of pressure, i.e. for different head 
motions. The numerical parameters have been analysed and then evaluated in order to ensure 
the convergence of the results. The major advantage of this numerical model is its flexibility 
that gives it an ability to be parametric. It has been shown that in response to a step of angular 
velocity the cupula behaves like the original torsion pendulum model, i.e governed by two 
time constants. The long time constant governing the return of the cupula to its rest position 
directly depends on the value of K  representing its stiffness. It is shown that the higher the 
value of K  is, the lower the long time constant is. In case of a sinusoidal angular acceleration 
of the head, the analytical and numerical models give identical results except during the 
transient part. Furthermore, it can be noticed that for frequencies higher than 0.08Hz, 
Poiseuille’s law relating the pressure to the outflow gives similar results. 
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Appendix 2: Quaternions and spatial rotation 
 
Quaternions provide a convenient mathematics notation for representing orientations and 
rotations of objects in three dimensions. Compared to Euler angles they are simpler to 
compose and avoid the problem of gimbal lock. Compared to rotations matrices they are more 
efficient because the representation of a rotation as a quaternion (4 numbers) is more compact 
than the representation as an orthogonal matrix (9 numbers). 
 
 A quaternion is a generalized complex number consisting of four components such as: 
 

0 1 2 3q q iq jq kq= + + +  

 
where 0q , 1q , 2q and 3q  are real numbers and ² ² ² 1i j k= = = − . 

 
The four element unit quaternion vector 0 1 2 3( , , , )q q q q  can be transformed into a 3 by 3 

direction cosine matrix (DCM) which is defined by: 
 

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

q q q q q q q q q q q q
DCM q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − + −
 = − − + − +
 
 + − − − + 

 

 
The quaternion parameters 0 1 2 3( , , , )q q q q  can be converted into the equivalent three Euler 

angles (roll, pitch, yaw) by comparing elements in the direction cosine matrix, as function of 
the Euler rotation angles, with elements in the direction cosine matrix, as function of a unit 
quaternion vector. 
 
The following relationships between DCM elements and individual Euler angles can be 
derived: 
 

0 1 2 3
2 2 2 2
0 1 2 3

2( )
tan

q q q q
a

q q q q
φ

 +=  
− − + 

 

 

( )3 1 2 0sin 2( )a q q q qθ = − −  

 

2 1 0 3
2 2 2 2
0 1 2 3

2( )
tan

q q q q
a

q q q q

 +Ψ =  
+ − − 
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Appendix 3: Example of Simulink model used to 
generate sensors output for motion paradigms in 
darkness 
 
 
 
 

SCC outputs 

Quaternion outputs 

Otolith outputs 

Head angular velocity for 
Coriolis stimulation 

Head angular acceleration for 
the somatogravic illusion 

Quaternion 
integrator 

Gravity 
vector 

Otolith transfer 
functions 

SCC transfer 
functions 

Gravity vector 
rotation 

Head angular velocity for 
yaw rotation 
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Appendix 4: EKF and UKF models: Matlab code 
 

• Graphical user interface 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Contact: Pierre Selva (pierre_bhc@hotmail.fr)  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Begin initialization code - DO NOT EDIT  
function  varargout = EKF_GUI(varargin)  
gui_Singleton = 1;  
gui_State = struct( 'gui_Name' ,       mfilename, ...  
                   'gui_Singleton' ,  gui_Singleton, ...  
                   'gui_OpeningFcn' , @EKF_GUI_OpeningFcn, ...  
                   'gui_OutputFcn' ,  @EKF_GUI_OutputFcn, ...  
                   'gui_LayoutFcn' ,  [] , ...  
                   'gui_Callback' ,   []);  
if  nargin && ischar(varargin{1})  
    gui_State.gui_Callback = str2func(varargin{1});  
end  
  
if  nargout  
    [varargout{1:nargout}] = gui_mainfcn(gui_State,  varargin{:});  
else  
    gui_mainfcn(gui_State, varargin{:});  
end  
% End initialization code - DO NOT EDIT  
  
% ************************************************* ***************  
% --- Executes just before EKF_GUI is made visible.  
  
function  EKF_GUI_OpeningFcn(hObject, eventdata, handles, va rargin)  
movegui( 'center' );  
%GUI initialization  
set(handles.edit1, 'String' , '10' ); %bandwidth in head angular velocity  
set(handles.edit2, 'String' , '1' );  %bandwidth in head linear acceleration  
set(handles.edit3, 'String' , '1' );  %process noise in head angular velocity  
set(handles.edit4, 'String' , '1' );  %process noise in head linear 
acceleration  
set(handles.edit5, 'String' , '0.0001' );  %fictitious process noise quaternion  
set(handles.edit6, 'String' , '0.0001' );  %measurement noise SCC  
set(handles.edit7, 'String' , '0.0001' );  %measurement noise otolith  
set(handles.edit8, 'String' , '0' );       %measurement noise quaternion  
set(handles.edit9, 'String' , '0.0001' );  %measurement noise vision  
set(handles.ekf, 'Value' ,1);  
set(handles.ukf, 'Value' ,0);  
handles.xekf=0;  
handles.choix_dark=1;  
handles.xukf=[];  
handles.choix=1;  
handles.ukf=0;  
handles.ekf=1;  
handles.model=1;  
handles.simulation=zeros(1,2);  
  
handles.br=str2num(get(handles.edit1, 'String' ));  
handles.bt=str2num(get(handles.edit2, 'String' ));  
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handles.Q_w=str2num(get(handles.edit3, 'String' ));  
handles.Q_A=str2num(get(handles.edit4, 'String' ));  
handles.Q_quat=str2num(get(handles.edit5, 'String' ));  
handles.Rscc=str2num(get(handles.edit6, 'String' ));  
handles.Roto=str2num(get(handles.edit7, 'String' ));  
handles.Rquat=str2num(get(handles.edit8, 'String' ));  
handles.Rvision=str2num(get(handles.edit9, 'String' ));  
handles.Q=[handles.Q_quat*eye(4,4) zeros(4,21);  
           zeros(3,4) handles.Q_w*eye(3) zeros(3,18 );zeros(3,25);  
                 zeros(3,10) handles.Q_A*eye(3) zer os(3,12);  
                 zeros(12,25)];  
     
handles.Rdark=diag([handles.Rquat,handles.Rscc,hand les.Rscc,handles.Rscc,ha
ndles.Roto,handles.Roto,handles.Roto]);  
    
handles.Rlight=diag([handles.Rscc,handles.Rscc,hand les.Rscc,handles.Rvision
,handles.Rvision,handles.Rvision,handles.Rvision,ha ndles.Rvision,handles.Rv
ision,handles.Roto,handles.Roto,handles.Roto,handle s.Rquat]);  
  
handles.output = hObject;  
handles.ukfangvel_V=0;  
handles.ukfangle_V=0;  
handles.ukflinvel_V=0;  
handles.ukflinacc_V=0;  
handles.ekfangvel_V=0;  
handles.ekfangle_V=0;  
handles.ekflinvel_V=0;  
handles.ekflinacc_V=0;  
    
% Update handles structure  
guidata(hObject, handles);  
  
  
% **************** Create the output VARARGOUT func tion DO NOT EDIT  
function  varargout = EKF_GUI_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output;  
  
   
%************************************************** **********************  
% **************** update of the parameters specifi ed by the user*********  
%************************************************** **********************  
  
% bandwidth  
function  edit1_Callback(hObject, eventdata, handles)  
handles.br=str2num(get(hObject, 'String' ));  
guidata(hObject, handles);  
  
function  edit1_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
function  edit2_Callback(hObject, eventdata, handles)  
handles.bt=str2num(get(hObject, 'String' ));  
guidata(hObject, handles);  
  
function  edit2_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
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    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
% process noise in head angular velocity  
function  edit3_Callback(hObject, eventdata, handles)  
handles.Q_w=str2num(get(hObject, 'String' ));  
handles.Q(5:7,5:7)=handles.Q_w*eye(3);  
guidata(hObject, handles);  
  
function  edit3_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
% process noise in head linear acceleration  
function  edit4_Callback(hObject, eventdata, handles)  
handles.Q_A=str2num(get(hObject, 'String' ));  
handles.Q(11:13,11:13)=handles.Q_A*eye(3);  
guidata(hObject, handles);  
  
function  edit4_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
% fictitiou process noise for the quaternion  
function  edit5_Callback(hObject, eventdata, handles)  
handles.Q_quat=str2num(get(hObject, 'String' ));  
handles.Q(1:4,1:4)=handles.Q_quat*eye(4);  
guidata(hObject, handles);  
  
function  edit5_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
% measurement noise  
function  edit6_Callback(hObject, eventdata, handles)  
handles.Rscc=str2num(get(hObject, 'String' ));  
handles.R(2:4,2:4)=handles.Rscc*eye(3);  
handles.Rlight(1:3,1:3)=handles.Rscc*eye(3);  
guidata(hObject, handles);  
  
function  edit6_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
function  edit7_Callback(hObject, eventdata, handles)  
handles.Roto=str2num(get(hObject, 'String' ));  
handles.R(5:7,5:7)=handles.Roto*eye(3);  
handles.Rlight(10:12,10:12)=handles.Roto*eye(3);  
guidata(hObject, handles);  
  
function  edit7_CreateFcn(hObject, eventdata, handles)  



 176 

if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
function  edit8_Callback(hObject, eventdata, handles)  
handles.Rquat=str2num(get(hObject, 'String' ));  
handles.R(1,1)=handles.Rquat;  
handles.Rlight(13,13)=handles.Rquat;  
guidata(hObject, handles);  
  
function  edit8_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
function  edit9_Callback(hObject, eventdata, handles)  
handles.Rvision=str2num(get(hObject, 'String' ));  
handles.Rlight(4:9,4:9)=handles.Rvision*eye(6);  
guidata(hObject, handles);  
  
  
function  edit9_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
  
  
%************************************************** **********************  
% ******** Run of the simulation ************  
%************************************************** **********************  
  
function  pushbutton2_Callback(hObject, eventdata, handles)  
  
handles.simulation(1,2)=1; % means the simulation button has been pushed  
  
if  handles.model==1  % yaw rotation in darkness  
% generation of the sensors output using a simulink  model  
    sTime=40;  
    y=[];  
    choix=handles.choix_dark;  
    options=simset( 'SrcWorkspace' , 'current' );  
    sim( 'EKF_entreedarkbis' ,[],options);  
    y(1,:)=yq_dark(:,1)';  
    y(2:4,:)=yscc_dark(:,1:3)';  
    y(5:7,:)=yoto_dark(:,1:3)';  
    handles.y=y;  
    handles.R=handles.Rdark  
    guidata(hObject, handles);  
  
elseif  handles.model==2  % forward acceleration in dark  
    % load output sensor measurements  
    load y_forw_acc_comp.mat ;  
    % or can generate sensor measurements using a simul ink model  
    % sTime=100;  
    % y=[];  
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    % choix=handles.choix_dark;  
    % options=simset('SrcWorkspace','current');  
    % sim('EKF_entreedarkbis',[],options);  
    % y(1,:)=yq_dark(:,1)';  
    % y(2:4,:)=yscc_dark(:,1:3)';  
    % y(5:7,:)=yoto_dark(:,1:3)';  
    handles.R=handles.Rdark  
    handles.y=y;  
    guidata(hObject, handles);  
  
elseif  handles.model==3  % yaw circular vection  
    % load output sensor measurements  
    load y_yawvection_40s_cte ;  
    handles.y=y;  
    handles.R=handles.Rlight;  
    guidata(hObject, handles);  
  
elseif  handles.model==4  % forward linear vection  
    load y_linvection_40s_cte ;  
    handles.y=y;  
    handles.R=handles.Rlight;  
    guidata(hObject, handles);  
  
elseif  handles.model==5  % roll vection  
    load yrollvection_40s_cte ;  
    handles.y=y;  
    handles.R=handles.Rlight;  
    guidata(hObject, handles);  
  
elseif  handles.model==6  % coriolis  
    % generate sensor outpus using a simulink model  
    sTime=220;  
    y=[];  
    choix=handles.choix_dark;  
    options=simset( 'SrcWorkspace' , 'current' );  
    sim( 'EKF_entreedarkbis' ,[],options);  
    y(1,:)=yq_dark(:,1)';  
    y(2:4,:)=yscc_dark(:,1:3)';  
    y(5:7,:)=yoto_dark(:,1:3)';  
    handles.y=y;  
    handles.R=handles.Rdark  
    guidata(hObject, handles);  
  
elseif  handles.model==7  % off-vertical axis rotation  
    % load sensor outputs  
    load y_OVAR45_v2;  
    handles.y=y;  
    handles.R=handles.Rdark  
    guidata(hObject, handles);  
  
elseif  handles.model==8  % pseudo-coriolis  
    % load sensor outputs  
    load ypseudocoriolis_simulink_avecy ;  
    handles.y=y;  
    handles.R=handles.Rlight;  
    guidata(hObject, handles);  
end  
  
% if the EKF algorithm is selected  
if  handles.ekf==1  
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% if the selected experiment is performed in darkne ss  
if  handles.model==1 || handles.model==2 || handles.mo del==6 || 
handles.model==7 
 
[handles.xekf,handles.angleekf,handles.timeekf]=EKF _dark(handles.br,handles
.bt,handles.Q,handles.Rdark,handles.y,handles.model ); 
 
if  handles.model==1  

set(handles.ekfangvel, 'Value' ,1);    
handles.ekfangvel_V=get(handles.ekfangvel, 'Value' );  
set(handles.ekfangle, 'Value' ,1);    
handles.ekfangle_V=get(handles.ekfangle, 'Value' );  
set(handles.ekflinvel, 'Value' ,0);   
handles.ekflinvel_V=get(handles.ekflinvel, 'Value' );  
set(handles.ekflinacc, 'Value' ,0);   
handles.ekflinacc_V=get(handles.ekflinacc, 'Value' );  

    
elseif  handles.model==2  

set(handles.ekflinacc, 'Value' ,1); 
handles.ekflinacc_V=get(handles.ekflinacc, 'Value' );  
set(handles.ekfangvel, 'Value' ,0); 
handles.ekfangvel_V=get(handles.ekfangvel, 'Value' );  
set(handles.ekfangle, 'Value' ,1); 
handles.ekfangle_V=get(handles.ekfangle, 'Value' );  
set(handles.ekflinvel, 'Value' ,0); 
handles.ekflinvel_V=get(handles.ekflinvel, 'Value' );  

end  
% display of the computation time  
        handles.timeekf=(round(handles.timeekf*100) )/100;  
        set(handles.tpsekf, 'String' ,[num2str(handles.timeekf), 's' ]);  
  
% if the selected experiment is performed in the li ght  
 
else  
    
[handles.xekf,handles.angleekf,handles.timeekf]=EKF _light(handles.br,handle
s.bt,handles.Q,handles.Rlight,handles.y);  
 
if  handles.model==3  

set(handles.ekfangvel, 'Value' ,1); 
handles.ekfangvel_V=get(handles.ekfangvel, 'Value' );  
set(handles.ekfangle, 'Value' ,1); 
handles.ekfangle_V=get(handles.ekfangle, 'Value' );  
set(handles.ekflinvel, 'Value' ,0); 
handles.ekflinvel_V=get(handles.ekflinvel, 'Value' );  
set(handles.ekflinacc, 'Value' ,0); 
handles.ekflinacc_V=get(handles.ekflinacc, 'Value' );  

 
elseif  handles.model==4  

set(handles.ekflinacc, 'Value' ,1); 
handles.ekflinacc_V=get(handles.ekflinacc, 'Value' );  
set(handles.ekflinvel, 'Value' ,1); 
handles.ekflinvel_V=get(handles.ekflinvel, 'Value' );  
set(handles.ekfangvel, 'Value' ,0); 
handles.ekfangvel_V=get(handles.ekfangvel, 'Value' );  
set(handles.ekfangle, 'Value' ,1); 
handles.ekfangle_V=get(handles.ekfangle, 'Value' );  

 
elseif  handles.model==5  

set(handles.ekfangvel, 'Value' ,1); 
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handles.ekfangvel_V=get(handles.ekfangvel, 'Value' );  
set(handles.ekflinacc, 'Value' ,0); 
handles.ekflinacc_V=get(handles.ekflinacc, 'Value' );  
set(handles.ekflinvel, 'Value' ,0); 
handles.ekflinvel_V=get(handles.ekflinvel, 'Value' );  
set(handles.ekfangle, 'Value' ,1); 
handles.ekfangle_V=get(handles.ekfangle, 'Value' );  

end  
% display of the computation time  
        handles.timeekf=(round(handles.timeekf*100) )/100;  
        set(handles.tpsekf, 'String' ,[num2str(handles.timeekf), 's' ]);  
end  
  
% if the UKF algorithm is selected  
 
elseif  handles.ukf==1  
[handles.xukf,handles.angleukf,handles.timeukf]=UKF (handles.br,handles.bt,h
andles.Q,handles.R,handles.y);  
 
if  handles.model==1 || handles.model==3  

set(handles.ukfangvel, 'Value' ,1); 
handles.ukfangvel_V=get(handles.ukfangvel, 'Value' );  
set(handles.ukfangle, 'Value' ,1); 
handles.ukfangle_V=get(handles.ukfangle, 'Value' );  
set(handles.ukflinvel, 'Value' ,0); 
handles.ukflinvel_V=get(handles.ukflinvel, 'Value' );  
set(handles.ukflinacc, 'Value' ,0); 
handles.ukflinacc_V=get(handles.ukflinacc, 'Value' );  

 
elseif  handles.model==2  

set(handles.ukflinacc, 'Value' ,1); 
handles.ukflinacc_V=get(handles.ukflinacc, 'Value' );  
set(handles.ukfangvel, 'Value' ,0); 
handles.ukfangvel_V=get(handles.ukfangvel, 'Value' );  
set(handles.ukfangle, 'Value' ,1); 
handles.ukfangle_V=get(handles.ukfangle, 'Value' );  
set(handles.ukflinvel, 'Value' ,0); 
handles.ukflinvel_V=get(handles.ukflinvel, 'Value' );  

 
elseif  handles.model==4  

set(handles.ukflinacc, 'Value' ,1); 
handles.ukflinacc_V=get(handles.ukflinacc, 'Value' );  
set(handles.ukflinvel, 'Value' ,1); 
handles.ukflinvel_V=get(handles.ukflinvel, 'Value' );  
set(handles.ukfangvel, 'Value' ,0); 
handles.ukfangvel_V=get(handles.ukfangvel, 'Value' );  
set(handles.ukfangle, 'Value' ,1); 
handles.ukfangle_V=get(handles.ukfangle, 'Value' ); 

 
elseif  handles.model==5  

set(handles.ukfangvel, 'Value' ,1); 
handles.ukfangvel_V=get(handles.ukfangvel, 'Value' );  
set(handles.ukflinacc, 'Value' ,0); 
handles.ukflinacc_V=get(handles.ukflinacc, 'Value' );  
set(handles.ukflinvel, 'Value' ,0); 
handles.ukflinvel_V=get(handles.ukflinvel, 'Value' );  
set(handles.ukfangle, 'Value' ,1); 
handles.ukfangle_V=get(handles.ukfangle, 'Value' );  

end  
% display of the computation time  
      handles.timeukf=(round(handles.timeukf*100))/ 100;  
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      set(handles.tpsukf, 'String' ,[num2str(handles.timeukf), 's' ]);  
end  
guidata(hObject, handles);  
  
  
%************************************************** **********************  
% ******* selection of the simulated experiment *** *******  
%************************************************** **********************  
  
function  popupmenu1_Callback(hObject, eventdata, handles)  
switch  get(handles.popupmenu1, 'Value' )  
    case  1  
        handles.model=1;handles.simulation=zeros(1, 2);  
        handles.choix_dark=1; handles.sTime=100;  
        handles.xekf=[];  
        guidata(hObject,handles);  
    case  2  
        handles.model=2;handles.simulation=zeros(1, 2);  
        handles.choix_dark=2;handles.sTime=100;  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
    case  3  
        handles.model=3;handles.simulation=zeros(1, 2);  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
    case  4  
        handles.model=4;handles.simulation=zeros(1, 2);  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
    case  5  
        handles.model=5;handles.simulation=zeros(1, 2);  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
    case  6  
        handles.model=6;handles.simulation=zeros(1, 2);  
        handles.choix_dark=3;handles.sTime=220;  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
   case  7  
        handles.model=7;handles.simulation=zeros(1, 2);  
        handles.xekf=[];handles.xukf=[];  
        guidata(hObject,handles);  
    case  8  
         handles.model=8;handles.simulation=zeros(1 ,2);  
         handles.Q(1:4,1:4)=1e-6*eye(4);  
        guidata(hObject,handles);  
end  
  
function  popupmenu1_CreateFcn(hObject, eventdata, handles)  
if  ispc && isequal(get(hObject, 'BackgroundColor' ), 
get(0, 'defaultUicontrolBackgroundColor' ))  
    set(hObject, 'BackgroundColor' , 'white' );  
end  
  
%************************************************** **********************  
% *********** Save the state vector to a .mat file *************  
%************************************************** **********************  
function  pushbutton12_Callback(hObject, eventdata, handles)  
        if  handles.simulation(1,2)==1;  
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            if  handles.ekf==1  
            EKF_save(handles.xekf,handles.angleekf) ;  
            elseif  handles.ukf==1  
            EKF_save(handles.xukf,handles.angleukf) ;  
            end  
        else  
                 errordlg({ 'You have to run a simulation' }, 'Error!' );  
        end  
         
 %************************************************** **********************        
% ********  selection of the EKF / UKF algorithm ** **********  
%************************************************** **********************  
  
function  ekf_Callback(hObject, eventdata, handles)  
handles.ekf=get(hObject, 'Value' );  
handles.ukf=0;  
guidata(hObject, handles);  
  
  
function  ukf_Callback(hObject, eventdata, handles)  
handles.ukf=get(hObject, 'Value' );  
handles.ekf=0;  
guidata(hObject, handles);  
  
  
% ************************************************* *****  
% ************** PLOT ***************************** *****  
% ************************************************* *****  
  
% ******* plot all the state variables ************ *****  
function  pushbutton7_Callback(hObject, eventdata, handles)  
    if  handles.simulation(1,2)==0  
            errordlg({ 'You have to run a simulation' }, 'Error!' );  
            return  
    end  
  
t=0:0.04:(size(handles.y,2)-1)*0.04;  
if  handles.ekf==1  
   for  i=1:25  

figure( 'Name' ,[ 'EKF  x(' ,num2str(i), ')' ], 'NumberTitle' , 'off' );  
      plot(t,handles.([ 'xekf' ])(i,:));  
      title([ 'x(' ,num2str(i), ')' ])  
   end  
  figure( 'Name' ,[ 'EKF perceived roll angle' ], 'NumberTitle' , 'off' );  
      plot(t,handles.angleekf(1,:));  
      title( 'EKF perceived roll angle' )  
      figure( 'Name' ,[ 'EKF perceived pitch angle' ], 'NumberTitle' , 'off' );  
      plot(t,handles.angleekf(2,:));  
      title( 'EKF perceived pitch angle' )  
      figure( 'Name' ,[ 'EKF perceived yaw angle' ], 'NumberTitle' , 'off' );  
      plot(t,handles.angleekf(3,:));  
      title( 'EKF perceived yaw angle' )  
  
 elseif  handles.ukf==1  
    for  i=1:25  
  figure( 'Name' ,[ 'UKF  x(' ,num2str(i), ')' ], 'NumberTitle' , 'off' );  
      plot(t,handles.([ 'xukf' ])(i,:), 'r' );  
      title([ 'x(' ,num2str(i), ')' ])  
    end  
  figure( 'Name' ,[ 'UKF perceived roll angle' ], 'NumberTitle' , 'off' );  
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      plot(t,handles.angleukf(1,:), 'r' );  
      title( 'UKF  perceived roll angle' )  
      figure( 'Name' ,[ 'UKF perceived pitch angle' ], 'NumberTitle' , 'off' );  
      plot(t,handles.angleukf(2,:), 'r' );  
      title( 'UKF  perceived pitch angle' )  
      figure( 'Name' ,[ 'UKF perceived yaw angle' ], 'NumberTitle' , 'off' );  
      plot(t,handles.angleukf(3,:));  
      title( 'UKF perceived yaw angle' , 'r' )  
  end  
  
figure( 'Name' , 'Caption' , 'Position' ,[30 300 300 400], 'NumberTitle' , 'off' )  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 350 250 22], 'String' , 'EKF-UKF 
states variables' , 'Fontsize' , ...  
    14, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 
0.8], 'FontWeight' , 'bold' );  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 300 250 22], 'String' , 'x1 to x4 : 
quaternions' , 'Fontsize' , ...  
    11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 0.8]);  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 260 250 22], 'String' , 'x5 to x6 : 
perceived angular velocity' , 'Fontsize' , ...  
    11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 0.8]);  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 220 250 22], 'String' , 'x7 to x10 : 
perceived linear velocity' , 'Fontsize' , ...  
    11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 0.8]);  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 180 250 22], 'String' , 'x14 to x19 : 
SCC TF' , 'Fontsize' , ...  
    11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 0.8]);  
uicontrol( 'Style' , 'Text' , 'Position' ,[20 140 250 22], 'String' , 'x20 to x25 : 
Otoliths TF' , 'Fontsize' , ...  
    11, 'ForegroundColor' ,[0 0 0], 'BackgroundColor' , [0.8 0.8 0.8]);  
  
  
  
% ********* plot Euler angles *******************  
  
function  pushbutton9_Callback(hObject, eventdata, handles)  
    if  handles.simulation(1,2)==0  
            errordlg({ 'You have to run a simulation' }, 'Error!' );  
            return  
    end  
  
t=0:0.04:(size(handles.y,2)-1)*0.04;  
  
if  handles.ekf==1  
    figure( 'Name' ,[ 'EKF perceived roll angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleekf(1,:));  
    title( 'EKF perceived roll angle' )  
    figure( 'Name' ,[ 'EKF perceived pitch angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleekf(2,:));  
    title( 'EKF perceived pitch angle' )  
    figure( 'Name' ,[ 'EKF perceived yaw angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleekf(3,:));  
    title( 'EKF perceived yaw angle' );    
     
elseif  handles.ukf==1  
    figure( 'Name' ,[ 'UKF perceived roll angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleukf(1,:), 'r' );  
    title( 'UKF perceived roll angle' )  
    figure( 'Name' ,[ 'UKF perceived pitch angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleukf(2,:), 'r' );  
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    title( 'UKF perceived pitch angle' )  
    figure( 'Name' ,[ 'UKF perceived yaw angle' ], 'NumberTitle' , 'off' );  
    plot(t,handles.angleukf(3,:), 'r' );  
    title( 'UKF perceived yaw angle' )  
end  
  
% ******* Plot the results provided by the EKF **** *******  
function  plotekf_Callback(hObject, eventdata, handles)  
    if  handles.simulation(1,2)==0  
            errordlg({ 'You have to run a simulation' }, 'Error!' );  
            return  
    end  
  
t=0:0.04:(size(handles.y,2)-1)*0.04;  
if   handles.ekfangvel_V==1  
    figure1 = figure( 'Name' , 'EKF perceived angular 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure1, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'roll' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(5,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure1, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'pitch' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(6,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure1, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'yaw' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(7,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
end  
     
if   handles.ekflinvel_V==1  
    figure2 = figure( 'Name' , 'EKF perceived linear 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure2, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'Vx' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(8,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure2, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
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    hold( 'all' );  
    title( 'Vy' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(9,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure2, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'Vz' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(10,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
end  
  
if    handles.ekflinacc_V==1  
    figure3 = figure( 'Name' , 'EKF perceived linear 
acceleration' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure3, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  hold( 'all' );  
    title( 'Ax' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(11,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure3, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' ); hold( 'all' );  
    title( 'Ay' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(12,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure3, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );hold( 'all' );  
    title( 'Az' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xekf(13,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
end  
if   handles.ekfangle_V==1  
    figure4 = figure( 'Name' , 'EKF perceived 
angles' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure4, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  hold( 'all' );  
    title( 'Roll angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleekf(1,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure4, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' ); hold( 'all' );  
    title( 'pitch angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleekf(2,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
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    ylabel( 'rad' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure4, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );hold( 'all' );  
    title( 'Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleekf(3,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad' , 'FontSize' ,12);  
end  
  
  
% ******* Plot the results provided by the UKF **** *******  
function  plotukf_Callback(hObject, eventdata, handles)  
    if  handles.simulation(1,2)==0  
            errordlg({ 'You have to run a simulation' }, 'Error!' );  
            return  
    end  
  
t=0:0.04:(size(handles.y,2)-1)*0.04;  
 
if   handles.ukfangvel_V==1  
    figure5 = figure( 'Name' , 'UKF perceived angular 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure5, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'roll' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(5,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure5, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'pitch' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(6,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure5, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'yaw' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(7,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad/s' , 'FontSize' ,12);  
end  
     
if   handles.ukflinvel_V==1  
    figure6 = figure( 'Name' , 'UKF perceived linear 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure6, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'Vx' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
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    plot(t,handles.xukf(8,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure6, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'Vy' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(9,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure6, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  
    hold( 'all' );  
    title( 'Vz' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(10,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s' , 'FontSize' ,12);  
end  
  
if    handles.ukflinacc_V==1  
    figure7 = figure( 'Name' , 'UKF perceived linear 
acceleration' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure7, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  hold( 'all' );  
    title( 'Ax' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(11,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure7, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' ); hold( 'all' );  
    title( 'Ay' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(12,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure7, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );hold( 'all' );  
    title( 'Az' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.xukf(13,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'm/s²' , 'FontSize' ,12);  
end  
if   handles.ukfangle_V==1  
    figure8 = figure( 'Name' , 'UKF perceived 
angles' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
    subplot1 = 
subplot(3,1,1, 'Parent' ,figure8, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );  hold( 'all' );  
    title( 'Roll angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleukf(1,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad' , 'FontSize' ,12);  



 187 

     
    subplot2 = 
subplot(3,1,2, 'Parent' ,figure8, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' ); hold( 'all' );  
    title( 'pitch angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleukf(2,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad' , 'FontSize' ,12);  
     
    subplot3 = 
subplot(3,1,3, 'Parent' ,figure8, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );hold( 'all' );  
    title( 'Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    plot(t,handles.angleukf(3,:), 'LineWidth' ,1);  
    xlabel( 'Time (sec)' , 'FontSize' ,10);  
    ylabel( 'rad' , 'FontSize' ,12);  
end  
  
 
% ******* Plot the results provided by both the EKF  and UKF ***********  
  
function  pushbutton15_Callback(hObject, eventdata, handles)  
 if  handles.simulation(1,2)==0  
            errordlg({ 'You have to run a simulation' }, 'Error!' );  
            return  
 end  
  
t=0:0.04:(size(handles.y,2)-1)*0.04;  
if   handles.ukfangvel_V==1 || handles.ekfangvel_V==1  
    figure10 = figure( 'Name' , 'EKF-UKF perceived angular 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
        subplot3 = 
subplot(3,1,3, 'Parent' ,figure10, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'yaw' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

 
if  handles.ekfangvel_V==1  

      plot(t,handles.xekf(7,:), 'LineWidth' ,1);  
      end  
     if  handles.ukfangvel_V==1 
      plot(t,handles.xukf(7,:), '--r' , 'LineWidth' ,1);  
     end  
  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'rad/s' , 'FontSize' ,12);  
subplot1 = 
subplot(3,1,1, 'Parent' ,figure10, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  
hold( 'all' );  
title( 'roll' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
    if  handles.ekfangvel_V==1  

    plot(t,handles.xekf(5,:), 'LineWidth' ,1);  
    end  
    if  handles.ukfangvel_V==1  
     plot(t,handles.xukf(5,:), '--r' , 'LineWidth' ,1);  
    end  
  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
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ylabel( 'rad/s' , 'FontSize' ,12);  
   
subplot2 = 
subplot(3,1,2, 'Parent' ,figure10, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'pitch' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
 
     if  handles.ekfangvel_V==1  

    plot(t,handles.xekf(6,:), 'LineWidth' ,1);  
     e nd 
     if  handles.ukfangvel_V==1  

plot(t,handles.xukf(6,:), '--r' , 'LineWidth' ,1);  
     end  
  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'rad/s' , 'FontSize' ,12);  
end  
     
  
if   handles.ukflinvel_V==1 || handles.ekflinvel_V==1  
 
figure11 = figure( 'Name' , 'EKF-UKF perceived linear 
velocity' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
subplot1 = 
subplot(3,1,1, 'Parent' ,figure11, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'Vx' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

 
if  handles.ekflinvel_V==1  

plot(t,handles.xekf(8,:), 'LineWidth' ,1);  
      end  
     if  handles.ukflinvel_V==1  
      plot(t,handles.xukf(8,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s' , 'FontSize' ,12);  
     
subplot2 = 
subplot(3,1,2, 'Parent' ,figure11, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'Vy' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
     

if  handles.ekflinvel_V==1  
    plot(t,handles.xekf(9,:), 'LineWidth' ,1);  

     end  
     if  handles.ukflinvel_V==1  
     plot(t,handles.xukf(9,:), '--r' , 'LineWidth' ,1);  
    end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s' , 'FontSize' ,12);  
     
subplot3 = 
subplot(3,1,3, 'Parent' ,figure11, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
    box( 'on' );   hold( 'all' );  
    title( 'Vz' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
 

if  handles.ekflinvel_V==1  
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       plot(t,handles.xekf(11,:), 'LineWidth' ,1);  
      end  
     if  handles.ukflinvel_V==1  
     plot(t,handles.xukf(11,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s' , 'FontSize' ,12);  
     
end  
  
if    handles.ukflinacc_V==1 || handles.ekflinacc_V==1  
     
figure12 = figure( 'Name' , 'EKF-UKF perceived linear 
acceleration' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]); 
subplot1 = 
subplot(3,1,1, 'Parent' ,figure12, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'Ax' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
 

if  handles.ekflinacc_V==1  
plot(t,handles.xekf(11,:), 'LineWidth' ,1);  

      end  
     if  handles.ukflinacc_V==1  
      plot(t,handles.xukf(11,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s²' , 'FontSize' ,12);  
     
subplot2 = 
subplot(3,1,2, 'Parent' ,figure12, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' ); hold( 'all' );  
title( 'Ay' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

if  handles.ekflinacc_V==1  
      plot(t,handles.xekf(12,:), 'LineWidth' ,1);  
      end  
     if  handles.ukflinacc_V==1  
      plot(t,handles.xukf(12,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s²' , 'FontSize' ,12);  
    
subplot3 = 
subplot(3,1,3, 'Parent' ,figure12, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );hold( 'all' );  
title( 'Az' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

 
if  handles.ekflinacc_V==1  

      plot(t,handles.xekf(13,:), 'LineWidth' ,1);  
      end  
     if  handles.ukflinacc_V==1  
      plot(t,handles.xukf(13,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'm/s²' , 'FontSize' ,12);  
 
end  
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if   handles.ukfangle_V==1 || handles.ekfangle_V==1  
 
figure13 = figure( 'Name' , 'EKF-UKF perceived 
angles' , 'NumberTitle' , 'on' , 'Position' ,[200 80 700 650]);  
subplot1 = 
subplot(3,1,1, 'Parent' ,figure13, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );  hold( 'all' );  
title( 'Roll angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

 
if  handles.ekfangle_V==1  

      plot(t,handles.angleekf(1,:), 'LineWidth' ,1);  
      end  
     if  handles.ukfangle_V==1  
      plot(t,handles.angleukf(1,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'rad' , 'FontSize' ,12);  
     
subplot2 = 
subplot(3,1,2, 'Parent' ,figure13, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' ); hold( 'all' );  
title( 'pitch angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  

 
if  handles.ekfangle_V==1  

      plot(t,handles.angleekf(2,:), 'LineWidth' ,1);  
      end  
     if  handles.ukfangle_V==1  
      plot(t,handles.angleukf(2,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'rad' , 'FontSize' ,12);  
     
subplot3 = 
subplot(3,1,3, 'Parent' ,figure13, 'YGrid' , 'on' , 'XGrid' , 'on' , 'FontSize' ,12);  
box( 'on' );hold( 'all' );  
title( 'Yaw angle' , 'FontSize' ,12, 'FontWeight' , 'bold' );  
 

if  handles.ekfangle_V==1  
      plot(t,handles.angleekf(3,:), 'LineWidth' ,1);  
      end  
     if  handles.ukfangle_V==1  
      plot(t,handles.angleukf(3,:), '--r' , 'LineWidth' ,1);  
     end  
legend( 'EKF' , 'UKF' );  
xlabel( 'Time (sec)' , 'FontSize' ,10);  
ylabel( 'rad' , 'FontSize' ,12);  
     
end  
  
   
% ********  selection of the curves to plot ******* **  
function  ekfangvel_Callback(hObject, eventdata, handles)  
handles.ekfangvel_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ekflinvel_Callback(hObject, eventdata, handles)  
handles.ekflinvel_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
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function  ekflinacc_Callback(hObject, eventdata, handles)  
handles.ekflinacc_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ekfangle_Callback(hObject, eventdata, handles)  
handles.ekfangle_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ukfangvel_Callback(hObject, eventdata, handles)  
handles.ukfangvel_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ukflinvel_Callback(hObject, eventdata, handles)  
handles.ukflinvel_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ukflinacc_Callback(hObject, eventdata, handles)  
handles.ukflinacc_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
function  ukfangle_Callback(hObject, eventdata, handles)  
handles.ukfangle_V=get(hObject, 'Value' );  
guidata(hObject, handles);  
  
  
  

• Extended Kalman filter function (in darkness) 
 
function  [xe,angle,tps]=EKF_dark(br,bl,Q,R,y,modele)  
tic  
  
% *************************  
% initialisation  
% *************************  
xe=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0]';  
P=diag([0.01*ones(1,4) 1e-2*ones(1,21)]);  
h=0.01; % Runge Kutta time step integration  
%%sensors transfer functions  
ta_scc=80;tscc=6;  
Ko=33.3;tl_oto=10;t1_oto=0.016;t2_oto=5;  
[Ascc,Bscc,Cscc,Dscc]=tf2ss([ta_scc*tscc 0 0],[ta_s cc*tscc ta_scc+tscc 1]);  
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto* t2_oto t1_oto+t2_oto 
1]);  
  
  
% **********************************  
% Main algorithm  
% **********************************  
wait=waitbar(0, 'Please wait' );  
  
for  i=2:size(y,2)  
    waitbar(i/size(y,2));  
    z(:,i)=y(:,i)+sqrt(R)*randn(size(y,1),1);  
    xe(:,i)=xe(:,i-1);  
    % 4 order Runge Kutta integration          
       for  j=1:4  
           s01=statespacemodel(xe(:,i),br,bl,Ascc,A oto);  
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s02=jacobian(xe(:,i),br,bl,Ascc,Aoto)*P+P*jacobian( xe(:,i),br,bl,Ascc,Aoto)
'+Q;  
           xe1=xe(:,i)+h*s01;  
           P1=P+h*s02;  
           s11=statespacemodel(xe1,br,bl,Ascc,Aoto) ;  
           
s12=jacobian(xe1,br,bl,Ascc,Aoto)*P1+P1*jacobian(xe 1,br,bl,Ascc,Aoto)'+Q;  
           xe2=xe(:,i)+h*(s01+s11)/4;  
           P2=P+h*(s02+s12)/4;  
           s21=statespacemodel(xe2,br,bl,Ascc,Aoto) ;  
           
s22=jacobian(xe2,br,bl,Ascc,Aoto)*P2+P2*jacobian(xe 2,br,bl,Ascc,Aoto)'+Q;  
           xe(:,i)=xe(:,i)+h*(s01+s11+4*s21)/6;  
           P=P+h*(s02+s12+4*s22)/6;  
       end  
        
       % Measurement matrix  
       H(1,:)=[2*xe(1,i) 2*xe(2,i) 2*xe(3,i) 2*xe(4 ,i) zeros(1,21)];  

 a=[Ascc(1,2) Ascc(1,1) 0 0 0 0;0 0 Ascc(1,2) Ascc( 1,1) 0 0;0 0 0 0   
Ascc(1,2) Ascc(1,1)];  

b=[416.25 4162.5 0 0 0 0;0 0 416.25 4162.5 0 0;0 0 0 0 416.25 
4162.5];  

H(2:7,1:25)=[zeros(3,4) eye(3) zeros(3,6) a zeros(3 ,6); zeros(3,19) 
b];  

        
       % predicted measurement  
       z_est(1,i)=xe(1,i)^2+xe(2,i)^2+xe(3,i)^2+xe( 4,i)^2;  
       z_est(2:7,i)=H(2:7,:)*xe(:,i);  
       % Kalman gain  
       K=P*H'*inv(H*P*H'+R);  
       % update of the predicted state vector      
       xe(:,i)=xe(:,i)+K*(z(:,i)-z_est(:,i));  
       % update of the covariance matrix   
       P=(eye(25)-K*H)*P*(eye(25)-K*H)'+K*R*K';  
end  
       
tps=toc;  
  
% ************************************************* *****  
% Computation of Euler angles from quaternion param eters  
%************************************************** ****  
    duration=(size(y,2)-1)*0.04;  
    t=0:0.04:duration;  
    q0=xe(1,:)';  
    q1=xe(2,:)';  
    q2=xe(3,:)';  
    q3=xe(4,:)';  
    t=t';  
    options=simset( 'SrcWorkspace' , 'current' );  
    sim( 'quat_euler' ,[],options);  
    angle=angle';  
    close(wait);  
 
 

• Extended Kalman filter function (experiment in light) 
 
function  [xe,angle,tps]=EKF_light(br,bl,Q,R,y)  
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tic  
% *************************  
% initialisation  
% *************************  
xe=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0]';  
P=0.0001*eye(25,25);  
step=0.01; % Runge Kutta time step integration  
%%sensors transfer functions  
ta_scc=80;tscc=6;  
Ko=33.3;tl_oto=10;t1_oto=0.016;t2_oto=5;  
[Ascc,Bscc,Cscc,Dscc]=tf2ss([ta_scc*tscc 0 0],[ta_s cc*tscc ta_scc+tscc 1]);  
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto* t2_oto t1_oto+t2_oto 
1]);  
  
% state propagation equations  
f=@(x)[0.5*(-x(5)*x(2)-x(6)*x(3)-x(7)*x(4));  
       0.5*(x(5)*x(1)+x(7)*x(3)-x(6)*x(4));  
       0.5*(x(6)*x(1)-x(7)*x(2)+x(5)*x(4));  
       0.5*(x(7)*x(1)+x(6)*x(2)-x(5)*x(3));  

 -br*x(5);-br*x(6);-br*x(7);x(11);x(12);x(13);-bl*x (11);-bl*x(12);-  
 bl*x(13);  
 x(15);   
Ascc(1,2)*x(14)+Ascc(1,1)*x(15)+x(5);x(17);Ascc(1,2 )*x(16)+Ascc(1,1)*
x(17)+x(6); x(19);  

      Ascc(1,2)*x(18)+Ascc(1,1)*x(19)+x(7);  
      x(21);  

Aoto(1,1)*x(21)+Aoto(1,2)*x(20)+(19.62*(x(2)*x(4)-x (1)*x(3))-x(11));  
x(23); Aoto(1,1)*x(23)+Aoto(1,2)*x(22)+(19.62*(x(3) *x(4)+x(1)*x(2))-

x(12));  
x(25); Aoto(1,1)*x(25)+Aoto(1,2)*x(24)+(9.81*(x(1)* x(1)+x(4)*x(4)-
x(3)*x(3)-x(2)*x(2))-x(13));];  % nonlinear state equations  

  
% measurement equations  
h=@(x) 
[Ascc(1,2)*x(14)+Ascc(1,1)*x(15)+x(5);Ascc(1,2)*x(1 6)+Ascc(1,1)*x(17)+x(6);  
Ascc(1,2)*x(18)+Ascc(1,1)*x(19)+x(7);x(5);x(6);x(7) ;x(8);x(9);x(10);Coto(1,
2)*x(20)+Coto(1,1)*x(21);Coto(1,2)*x(22)+Coto(1,1)* x(23);  
Coto(1,2)*x(24)+Coto(1,1)*x(25);x(1)*x(1)+x(2)*x(2) +x(3)*x(3)+x(4)*x(4);];  
  
%jacobian of f  
gradf=@(x) [0 -0.5*x(5) -0.5*x(6) -0.5*x(7) -0.5*x( 2) -0.5*x(3) -0.5*x(4) 
zeros(1,18);0.5*x(5) 0 0.5*x(7) -0.5*x(6) 0.5*x(1) -0.5*x(4) 0.5*x(3) 
zeros(1,18);0.5*x(6) -0.5*x(7) 0 0.5*x(5) 0.5*x(4) 0.5*x(1) -0.5*x(2) 
zeros(1,18);0.5*x(7) 0.5*x(6) -0.5*x(5) 0 -0.5*x(3)  0.5*x(2) 0.5*x(1) 
zeros(1,18);zeros(3,4) -br*eye(3) zeros(3,18);zeros (3,10) eye(3) 
zeros(3,12);zeros(3,10) -bl*eye(3) zeros(3,12);zero s(2,4) [0;1] zeros(2,8) 
[0 1;Ascc(1,2) Ascc(1,1)] zeros(2,10);zeros(2,5) [0 ;1] zeros(2,9) [0 
1;Ascc(1,2) Ascc(1,1)] zeros(2,8);zeros(2,6) [0;1] zeros(2,10) [0 
1;Ascc(1,2) Ascc(1,1)] zeros(2,6);zeros(1,19) 0 1 0  0 0 0;-19.62*x(3) 
19.62*x(4) -19.62*x(1) 19.62*x(2) zeros(1,6) -1 0 0  zeros(1,6) Aoto(1,2) 
Aoto(1,1) 0 0 0 0;zeros(1,19) 0 0 0 1 0 0;19.62*x(2 ) 19.62*x(1) 19.62*x(4) 
19.62*x(3) zeros(1,6) 0 -1 0 zeros(1,6) 0 0 Aoto(1, 2) Aoto(1,1) 0 
0;zeros(1,19) 0 0 0 0 0 1;19.62*x(1) -19.62*x(2) -1 9.62*x(3) 19.62*x(4) 
zeros(1,6) 0 0 -1 zeros(1,6) 0 0 0 0 Aoto(1,2) Aoto (1,1);];  
  
% **********************************  
% Main algorithm  
% **********************************       
wait=waitbar(0, 'Please wait' );   
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for  i=2:size(y,2)  
    waitbar(i/size(y,2));  
    z(:,i)=y(:,i)+sqrt(R)*randn(size(y,1),1);  % sensors output  
    xe(:,i)=xe(:,i-1);  
    % 4 order Runge Kutta integration                    
       for  j=1:4  
           s01=f(xe(:,i));  
           s02=gradf(xe(:,i))*P+P*gradf(xe(:,i))'+Q ;  
           xe1=xe(:,i)+step*s01;  
           P1=P+step*s02;  
           s11=f(xe1);  
           s12=gradf(xe1)*P1+P1*gradf(xe1)'+Q;  
           xe3=xe(:,i)+step*(s01+s11)/4;  
           P3=P+step*(s02+s12)/4;  
           s21=f(xe3);  
           s22=gradf(xe3)*P3+P3*gradf(xe3)'+Q;  
           xe(:,i)=xe(:,i)+step*(s01+s11+4*s21)/6;  
           P=P+step*(s02+s12+4*s22)/6;  
       end  
  
       % jacobian of h  
       a=[Ascc(1,2) Ascc(1,1) 0 0 0 0;0 0 Ascc(1,2)  Ascc(1,1) 0 0;0 0 0 0 
Ascc(1,2) Ascc(1,1)];  
       b=[416.25 4162.5 0 0 0 0;0 0 416.25 4162.5 0  0;0 0 0 0 416.25 
4162.5];  
       H(1:13,1:25)=[zeros(3,4) eye(3) zeros(3,6) a  zeros(3,6);  
                     zeros(3,4) -eye(3) zeros(3,18) ;  
                     zeros(3,7) -eye(3) zeros(3,15) ;  
                     zeros(3,19) b;  
                     2*xe(1,i) 2*xe(2,i) 2*xe(3,i) 2*xe(4,i) zeros(1,21)];  
  
       % predicted measurement  
        z_est(1:12,i)=H(1:12,:)*xe(:,i);  
        z_est(13,i)=xe(1,i)^2+xe(2,i)^2+xe(3,i)^2+x e(4,i)^2;  
         
        %cross covariance  
        P12=P*H';       
        %Kalman filter gain  
        K=P12*inv(H*P12+R);         
        % update of the predicted state vector      
        xe(:,i)=xe(:,i)+K*(z(:,i)-z_est(:,i));      
        % update of the covariance matrix   
        P=(eye(25)-K*H)*P*(eye(25)-K*H)'+K*R*K';  
  
end  
  
% ************************************************* *****  
% Computation of Euler angles from quaternion param eters  
%************************************************** ****  
tps=toc;  
duration=(size(y,2)-1)*0.04;  
t=0:0.04:duration;  
q0=xe(1,:)';  
q1=xe(2,:)';  
q2=xe(3,:)';  
q3=xe(4,:)';  
t=t';  
options=simset( 'SrcWorkspace' , 'current' );  
sim( 'quat_euler' ,[],options);  
angle=angle';  
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close(wait); 
 

• Unscented Kalman filter function 
 
function  [xe,angle,tps]=UKF(br,bl,Q,R,y)  
tic  
% *************************  
% initialisation  
% *************************  
  
xe0=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'; % state vector  
h=0.01; % Runge Kutta integration time step  
P=1e-4*eye(25);  % initial covariance matrix P  
dt=0.04; % update time step of the estimated state vector  
xe=zeros(25,751); % estimated state vector  
xe(:,1)=xe0;  
n=size(xe(:,1),1); % dimension of the state vector  
alpha=0.5; beta=2; kappa=3-n; lambda=alpha^2*(n+kap pa)-n; % parameters of 
the UKF  
  
%%sensors transfer functions  
ta_scc=80;tscc=6;  
Ko=33.3;tl_oto=10;t1_oto=0.016;t2_oto=5;  
[Ascc,Bscc,Cscc,Dscc]=tf2ss([ta_scc*tscc 0 0],[ta_s cc*tscc ta_scc+tscc 1]);  
[Aoto,Boto,Coto,Doto]=tf2ss([Ko*tl_oto Ko],[t1_oto* t2_oto t1_oto+t2_oto 
1]);  
Ascc1=Ascc(1,1);  
Ascc2=Ascc(1,2);  
Aoto1=Aoto(1,1);  
Aoto2=Aoto(1,2);  
Coto1=Coto(1,1);  
Coto2=Coto(1,2);  
  
% ************************************  
% noisy output generation  
% ***********************************  
if  size(y,1)==7  
    zr=zeros(7,751);  
    for  i=1:size(y,2)  
    zr(:,i)=y(:,i)+sqrt(R)*randn(7,1);  
    end  
     
elseif  size(y,1)==13  
    zr=zeros(13,751);  
    for  i=1:size(y,2)  
    zr(:,i)=y(:,i)+sqrt(R)*randn(13,1);  
    end  
end  
  
  
% **********************************  
% Main algorithm  
% **********************************  
  
wait=waitbar(0, 'Please wait' );  
  
for  k=2:size(y,2)  
    waitbar(k/size(y,2));  
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    xe(:,k)=xe(:,k-1);  
  
    % if the re-normalization is considered at each tim e step  
    % xe(1,k)=xe(1,k)/sqrt(xe(1,k)^2+xe(2,k)^2+xe(3,k)^ 2+xe(4,k)^2);  
    % xe(2,k)=xe(2,k)/sqrt(xe(1,k)^2+xe(2,k)^2+xe(3,k)^ 2+xe(4,k)^2);  
    % xe(3,k)=xe(3,k)/sqrt(xe(1,k)^2+xe(2,k)^2+xe(3,k)^ 2+xe(4,k)^2);  
    % xe(4,k)=xe(4,k)/sqrt(xe(1,k)^2+xe(2,k)^2+xe(3,k)^ 2+xe(4,k)^2);  
  
%unscented transformation  
%%1) weights  
WM = zeros(2*n+1,1);  
WC = zeros(2*n+1,1);  
for  j=1:2*n+1  
  if  j==1  
    wm = lambda / (n + lambda);  
    wc = lambda / (n + lambda) + (1 - alpha^2 + bet a);  
  else  
    wm = 1 / (2 * (n + lambda));  
    wc = wm;  
  end  
  WM(j) = wm;  
  WC(j) = wc;  
end  
c = n + lambda;  
  
%%2)Sigma points generation  
  
  A = chol(P)';  
  X = [zeros(size(xe(:,k))) A -A];  
  X = sqrt(c)*X + repmat(xe(:,k),1,size(X,2));  
  
%%3) Sigman points transformation (propagation)  
Y = [];  
  
% if the Runge Kutta integration is considered  
% for i=1:(2*n+1)  
%        for j=1:4  
%            s01=xdot(X(:,i),Ascc,Aoto,br,bl);  
%            xe1=X(:,i)+h*s01;  
%            s11=xdot(xe1,Ascc,Aoto,br,bl);  
%            xe2=X(:,i)+h*(s01+s11)/4;  
%            s21=xdot(xe2,Ascc,Aoto,br,bl);  
%            X(:,i)=X(:,i)+h*(s01+s11+4*s21)/6;  
%        end  
% end  
% Y=X;  
  
% if the Euler integration is considered  
for  i=1:(2*n+1)  
    for  j=1:4  
    dot_x=zeros(size(X));  
    % classic formulatoin ofr the quaternion  
    dot_x(1,i)=0.5*(-X(5,i)*X(2,i)-X(6,i)*X(3,i)-X( 7,i)*X(4,i));  
    dot_x(2,i)=0.5*(X(5,i)*X(1,i)+X(7,i)*X(3,i)-X(6 ,i)*X(4,i));  
    dot_x(3,i)=0.5*(X(6,i)*X(1,i)-X(7,i)*X(2,i)+X(5 ,i)*X(4,i));  
    dot_x(4,i)=0.5*(X(7,i)*X(1,i)+X(6,i)*X(2,i)-X(5 ,i)*X(3,i));  
        % formulation 2 for the quaternion  
    % dot_x(1,i)=0.5*(-X(5,i)*X(2,i)-X(6,i)*X(3,i)-
X(7,i)*X(4,i))+0.9*X(1,i)*(1-X(1,i)^2-X(2,i)^2-X(3, i)^2-X(4,i)^2);  



 197 

    % dot_x(2,i)=0.5*(X(5,i)*X(1,i)+X(7,i)*X(3,i)-
X(6,i)*X(4,i))+0.9*X(2,i)*(1-X(1,i)^2-X(2,i)^2-X(3, i)^2-X(4,i)^2);  
    % dot_x(3,i)=0.5*(X(6,i)*X(1,i)-
X(7,i)*X(2,i)+X(5,i)*X(4,i))+0.9*X(3,i)*(1-X(1,i)^2 -X(2,i)^2-X(3,i)^2-
X(4,i)^2);  
    % dot_x(4,i)=0.5*(X(7,i)*X(1,i)+X(6,i)*X(2,i)-
X(5,i)*X(3,i))+0.9*X(4,i)*(1-X(1,i)^2-X(2,i)^2-X(3, i)^2-X(4,i)^2);  
    dot_x(5,i)=-br*X(5,i);  
    dot_x(6,i)=-br*X(6,i);  
    dot_x(7,i)=-br*X(7,i);  
    dot_x(8,i)=X(11,i);  
    dot_x(9,i)=X(12,i);  
    ot_x(10,i)=X(13,i);  
    dot_x(11,i)=-bl*X(11,i);  
    dot_x(12,i)=-bl*X(12,i);  
    dot_x(13,i)=-bl*X(13,i);  
    dot_x(14,i)=X(15,i);  
    dot_x(15,i)=Ascc2*X(14,i)+Ascc1*X(15,i)+X(5,i);  
    dot_x(16,i)=X(17,i);  
    dot_x(17,i)=Ascc2*X(16,i)+Ascc1*X(17,i)+X(6,i);  
    dot_x(18,i)=X(19,i);  
    dot_x(19,i)=Ascc2*X(18,i)+Ascc1*X(19,i)+X(7,i);  
    dot_x(20,i)=X(21,i);  
    dot_x(21,i)=Aoto1*X(21,i)+Aoto2*X(20,i)+(19.62* (X(2,i)*X(4,i)-
X(1,i)*X(3,i))-X(11,i));  
    dot_x(22,i)=X(23,i);  
    
dot_x(23,i)=Aoto1*X(23,i)+Aoto2*X(22,i)+(19.62*(X(3 ,i)*X(4,i)+X(1,i)*X(2,i)
)-X(12,i));  
    dot_x(24,i)=X(25,i);  
    
dot_x(25,i)=Aoto1*X(25,i)+Aoto2*X(24,i)+(9.81*(X(1, i)*X(1,i)+X(4,i)*X(4,i)-
X(3,i)*X(3,i)-X(2,i)*X(2,i))-X(13,i));  
  
%   % Euler integration  
    X(:,i) = X(:,i) + 0.01 * dot_x(:,i);  
end  
end  
Y = X;  
  
  
mu = zeros(size(Y,1),1);  
S  = zeros(size(Y,1),size(Y,1));  
C  = zeros(size(xe,1),size(Y,1));  
for  i=1:size(X,2)  
   mu = mu + WM(i) * Y(:,i);  % predicted state mean  
end  
for  i=1:size(X,2)  
   S = S + WC(i) * (Y(:,i) - mu) * (Y(:,i) - mu)'; % covariance of the 
estimated state  
   C = C + WC(i) * (X(1:size(xe,1),i) - xe(:,k)) * (Y(:,i) - mu)';  % 
cross-covariance Pxy  
end  
     
P=S+Q; %predicted state covariance  
xe(:,k)=mu;  
     
     
 %% update  
 % recompute a new set of sigma points  
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 %%1) weights  
WM = zeros(2*n+1,1);  
WC = zeros(2*n+1,1);  
for  j=1:2*n+1  
  if  j==1  
    wm = lambda / (n + lambda);  
    wc = lambda / (n + lambda) + (1 - alpha^2 + bet a);  
  else  
    wm = 1 / (2 * (n + lambda));  
    wc = wm;  
  end  
  WM(j) = wm;  
  WC(j) = wc;  
end  
c = n + lambda;  
  
%%2)sigma points  
  A = chol(P)';  
  X = [zeros(size(xe(:,k))) A -A];  
  X = sqrt(c)*X + repmat(xe(:,k),1,size(X,2));  
   
  %%3) SP propagation through the measurement equatio ns  
  z = [];  
  if  size(zr,1)==7  
    for  i=1:(2*n+1)  
        z(1,i) = sqrt(X(1,i)^2+X(2,i)^2+X(3,i)^2+X( 4,i)^2);  
        z(2,i) =Ascc2*X(14,i)+Ascc1*X(15,i)+X(5,i);  
        z(3,i) =Ascc2*X(16,i)+Ascc1*X(17,i)+X(6,i);  
        z(4,i) =Ascc2*X(18,i)+Ascc1*X(19,i)+X(7,i);  
        z(5,i) =Coto2*X(20,i)+Coto1*X(21,i);  
        z(6,i) =Coto2*X(22,i)+Coto1*X(23,i);  
        z(7,i) =Coto2*X(24,i)+Coto1*X(25,i);  
         
end  
  elseif  size(zr,1)==13  
      for  i=1:(2*n+1)  
          z(1,i)=Ascc2*X(14,i)+Ascc1*X(15,i)+X(5,i) ;  
          z(2,i)=Ascc2*X(16,i)+Ascc1*X(17,i)+X(6,i) ;  
          z(3,i)=Ascc2*X(18,i)+Ascc1*X(19,i)+X(7,i) ;  
          z(4,i)=-X(5,i);  
          z(5,i)=-X(6,i);  
          z(6,i)=-X(7,i);  
          z(7,i)=-X(8,i);  
          z(8,i)=-X(9,i);  
          z(9,i)=-X(10,i);  
          z(10,i)=Coto2*X(20,i)+Coto1*X(21,i);  
          z(11,i)=Coto2*X(22,i)+Coto1*X(23,i);  
          z(12,i)=Coto2*X(24,i)+Coto1*X(25,i);  
          z(13,i)=X(1,i)^2+X(2,i)^2+X(3,i)^2+X(4,i) ^2;  
      end  
  end  
  
  mu = zeros(size(z,1),1);  
  S  = zeros(size(z,1),size(z,1));  
  C  = zeros(size(xe,1),size(z,1));  
  for  i=1:size(X,2)  
      mu = mu + WM(i) * z(:,i);  
  end  
  for  i=1:size(X,2)  
      S = S + WC(i) * (z(:,i) - mu) * (z(:,i) - mu) ';  % covariance of the 
measurement Py  
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      C = C + WC(i) * (X(1:size(xe(:,k),1),i) - xe( :,k)) * (z(:,i) - mu)';  
% cross-covariance  
  end  
  
  S = S + R;  
  K = C / S; % Kalman gain matrix  
  xe(:,k) = xe(:,k) + K * (zr(:,k) - mu); % update of the predicted state  
  P = P - K * S * K';  % update of the covariance matrix  
end  
  
tps=toc;  
% ************************************************* *****  
% Computation of Euler angles from quaternion param eters  
%************************************************** ****  
  
    duration=(size(y,2)-1)*0.04;  
    t=0:0.04:duration;  
    q0=xe(1,:)';  
    q1=xe(2,:)';  
    q2=xe(3,:)';  
    q3=xe(4,:)';  
    t=t';  
    options=simset( 'SrcWorkspace' , 'current' );  
    sim( 'quat_euler' ,[],options);  
    angle=angle';  
close(wait);  
 
 
 
 
  
 
 
 
 
  
  
 
 



 

 
 

   

 

 

 
Modélisation du système vestibulaire et modèles non-linéaires 

de perception de l'orientation spatiale 

 
 
L’oreille interne est un organe fascinant du corps humain. Elle contient des organes sensoriels très 
précis et hypersensibles, ce qui lui permet de jouer un rôle majeur dans la perception de nos 
mouvements et de notre orientation spatiale. 
Dans un premier temps, ce travail de thèse à porté sur la modélisation du fonctionnement des 
senseurs d’orientation de l’oreille interne. Un démonstrateur type « Réalité Virtuelle » a été développé 

sous Matlab/Simulink afin de visualiser en temps réel l’état de chaque senseur. Une modélisation plus 
détaillée par éléments finis et tenant compte d’interactions fluide/structure a permis d’étudier la 
dynamique des fluides au sein de chaque capteur ainsi que le déplacement de membranes - éléments 
clés permettant de coupler le déplacement du fluide avec la stimulation de cellules sensorielles. 
Dans un second temps, ce travail de thèse s’est orienté vers le développement de modèles non-
linéaires et tridimensionnels de perception de l’orientation spatiale. Ces modèles supposent que notre 

cerveau estime/calcul nos perceptions d’orientation, de vitesse, et d’accélération de façon 
« optimale ». Par conséquent, les modèles développés se sont appuyés sur deux techniques 
d’estimation non-linéaires basées sur le filtre de Kalman (« Extended Kalman filter » & « Unscented 
Kalman filter »). En réponse à différent profils de stimulation, ces modèles permettent de prédire 
diverses illusions sensorielles connues dans le monde de l’aéronautique. En tant qu’applications 
potentielles, ces modèles pourraient être utilisés d’une part lors d’investigation de crash d’appareil afin 
de détecter si le pilote a été sujet à un phénomène de désorientation spatiale, et d’autre part pour le 

développement d’algorithmes de contrôle des simulateurs de vols.  
 
Mots clés : Système vestibulaire, Fluide/structure interaction, Modèles éléments-finis, Réalité virtuelle, 
Estimation optimale, Filtres de Kalman non-linéaire, Illusions sensorielles 
 

Modeling of the vestibular system and nonlinear models 
for human spatial orientation perception 

 
The non-auditory section of the human innner ear, the vestibular system, is recognized as the prime 

motion sensing center. The vestibular system is comprised of two primary sensory organs and 
represents an inertial measuring device which allows us to sense self-motion with respect to the six 
degrees of freedom in space. 
The scope of the work presented in this thesis concerns on one hand the modelling of the vestibular 

sensors, and on the other hand nonlinear models for human spatial orientation perception. 
First, a virtual reality model of the vestibular sensors has been developed so as to visualize in real 
time the state of each sensor in response to any kind of head motion. Second, a three-dimensional 
model of the entire set of canal using fluid-structural finite-elements simulations has been proposed. 
Using a strong coupling between the fluid flow and the structural displacements and also an Arbitrary 
Lagrangian Eulerian (ALE) approach for the moving mesh, we analyze displacements of the cupulae 
and fluid velocity during head rotation. 

Third, we developed a nonlinear model of human spatial orientation based on the Unscented Kalman 
Filter. This model successfully predicts the responses to a number of vestibular, visual and visual-
vestibular motion paradigms. It turns out that the UKF yields more accurate and less oscillatory 
responses than Pommellet’s Extended Kalman Filter model. As a prospect, this model could be used to 
investigate aircraft crashes so as to detect whether or not pilots have experienced a phenomenon of 
spatial disorientation. 

 

Key words : Vestibular system, Fluid/Structure interaction, Finite-element models, virtual reality, 
Optimal state estimation, Nonlinear Kalman filtering, Sensory illusions 
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