
 

 

 

 
 

 
Optimisation biniveau de structures aéronautiques composites 

 
Ce travail de thèse s’inscrit dans le domaine de l’optimisation de structures aéronautiques composites. 
On cherche à rendre possible le traitement de problèmes de dimensionnement de telles structures, 
telles que celles rencontrées dans l’industrie aéronautique. Ce type de problèmes présente deux 

aspects bloquants. En premier lieu, la taille des structures et le type de matériaux rendent le problème 
d’optimisation à la fois de très grande taille et de variables mixtes (continues, discrètes). D’autre part, 
le très grand nombre d’analyses de stabilité locale (flambage) nécessaires rend le problème 
d’optimisation très difficile à traiter en terme de coût de calculs. On cherche donc à résoudre le 
premier aspect au travers de schémas d’optimisation dits de décomposition qui permettent de 
décomposer le problème d’optimisation initial en une multitude de sous problèmes d’optimisations 
pouvant être résolus en parallèle et dont le couplage est résolu par un problème d’optimisation sur un 

ensemble de variables réduit. L’équivalence théorique entre les différents problèmes d’optimisation 
(en termes de minima locaux) est prouvée et on présente et développe un schéma adapté à la fois 
aux spécificités des composites et aux contraintes industrielles. Le second point est résolu de manière 

originale par le développement d’une stratégie d’approximation des contraintes de stabilité. Cette 
stratégie de mélanges d’experts se base sur des outils statistiques avancés et se révèle adaptée au 
comportement des composites. Les deux principales avancées de ce travail sont validées sur des cas 

test académiques et sur une structure aéronautique réaliste. Le fil directeur de ce travail est la 
mécanique des structures composites, néanmoins le caractère pluridisciplinaire du sujet nous a 
conduit à des incursions vers les domaines des statistiques (apprentissage), de l’analyse numérique 
(étude de l’équation aux dérivées partielles relative au flambage) et enfin de l’optimisation théorique. 
 
Mots clés : Optimisation de structure, matériaux composites, optimisation biniveau, mélange 
d’experts, flambage, structures aéronautiques.  

 
 

Bilevel optimization of large scale composite structures 
 
This work lies in the field of aerospace composite structures optimization. We are interested in making 
possible the treatment of large scale optimization problems, as the ones encountered in aerospace 

design offices. Resolution of such problem needs two main obstacles to be removed. First one lies in 

the typical large size of problems and the mixed type of design variables: continuous (geometric 
dimensions, internal loads) and discrete (ply orientations for laminates). Second one lies in the 
tremendous amount of local stability analyses (buckling) to be performed in one standard 
optimization. First aspect is solved with the help of decomposition methods that allow breaking up the 
initial optimization problem in a multitude of optimization sub problems of reduced dimensions. These 
problems can be solved concurrently, however the internal load redistribution makes them coupled 

and an upper level optimization problem is needed to solve this coupling. Innovative solutions, both in 
terms of composite material mechanics representation and in terms of theoretical 
optimization properties are presented. Second aspect is solved through the development of an 
innovative approximation scheme, tailored to buckling behaviour specificities, namely mixture of 
experts. In particular, the piecewise-like behaviour of such functions is considered. This innovative 
method relies on advanced statistical tools from unsupervised learning (clustering, law mixture). 
Finally the two main innovations are extensively discussed and tested over academic benchmark. They 

are eventually combined for a realistic structural optimization problem (fuselage panel) and allowed 
retrieving the same weight as traditional method with less iterations. Although the main theme is 

mechanics and structural optimization, the multidisciplinary aspect of the subject included some 
research questions and answers in statistics field (statistical learning), numerical analysis (buckling 
partial differential equation) and theoretical optimization. 
 
Keywords: structural optimization, composite materials, bilevel optimization, mixture of experts, 

buckling, aerospace structures. 
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Résumé étendu

Cette section propose un résumé étendu de la problématique de cette thèse et présente

de manière succincte les principales innovations contenues dans ce travail de thèse.

Le problème qu’on cherche à résoudre est précisément décrit, en particulier la nature

hiérarchique et ’multiniveau’ du dimensionnement de structures aéronautiques à Air-

bus. On présente ensuite les pierres d’achoppement de la résolution de tels problèmes

que sont la grande taille, le calcul des sensibilités. Ce contexte établi on apporte

alors de premiers éléments de réponse en adaptant un schéma issue de l’optimisation

multidisciplinaire à la spécificités des matériaux composites. Les différents schémas

utilisés en optimisation de structures sont présentés sur la base d’éléments théoriques

d’optimisation. Dans un premier temps, le problème initial à résoudre est transformé

de manière à justifier l’introduction de schémas de décomposition. Cette transforme re-

pose essentiellement sur la nature hiérarchique et de l’analyse et du dimensionnement

à Airbus. On commence donc par montrer l’équivalence des formulations d’un point

de vue théorique et justifier ainsi l’adéquation de ces schémas avec les besoins indus-

triels. Dans un premiers temps, les variables utilisées ainsi que les contraintes ne sont

pas décrites et l’étude de ces décompositions est introduite de manière théorique. Dans

un deuxième temps on applique ces décompositions aux spécificités des composites et

des contraintes de notre problème d’optimisation. En effet une telle décomposition

doit aussi se baser sur une représentation adaptées des composites. La description

fine de l’orientation des couches du composite ne parâıt pas adaptée aux besoins d’un

dimensionnement d’une grande structure faites de nombreuses sous-structures. Une

représentation plus adaptée aux besoins du dimensionnement est alors utilisée: les

paramètres de stratification. Ces derniers sont en effet plus appropriés pour un pro-

cessus de dimensionnement par optimisation car les contraintes de stabilité (souvent

dimensionnantes) dépendent simplement de cette représentation. D’autre part, l’un des

points bloquants de la résolution de tels problèmes consiste justement en les calculs
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de stabilité coûteux. Le deuxième élément de réponse consiste alors en l’utilisation de

modèles réduits ou modèles d’approximation non physiques. En effet, les contraintes

de stabilité doivent être évaluées un grand nombre de fois au cours d’une optimisa-

tion, or ces calculs sont coûteux (de l’ordre de la minute pour une évaluation et une

optimisation au niveau fuselage peut appeler ces contraintes plusieurs millions de fois).

L’intérêt d’un tel modèle d’approximation est donc de remplacer ces calculs répétés par

des formules analytiques issues de domaines tels que l’intelligence artificielle (réseaux

de neurones), probabilités et statistiques (krigeage), théorie de l’approximation (moin-

dres carrés mobiles) Néanmoins, l’application de ces méthodologies d’approximation

n’est pas évidente et la précision obtenue avec l’une ou l’autre de ces méthodes n’est

en général pas suffisante pour un processus de dimensionnement réaliste. Le manque

de précision a pour origine principal le comportement fortement non linéaire et dis-

continue des réponses de stabilités. Le comportement typique des contraintes de sta-

bilités et donc des codes de calcul d’Airbus est présenté. En particulier, le caractère

discontinu est mis en évidence et la présence de discontinuités ruinent la qualité de

l’approximation. Sur la base de ce comportement discontinu, une méthodologie orig-

inale de construction de modèles d’approximation est présentée et appliquée. Cette

méthodologie construit plusieurs modèles d’approximation plutôt qu’un seul. L’avantage

de cette méthode est donc de séparer les domaines de régularité des fonctions à ap-

procher et donc d’approcher localement chaque partie régulière de la fonction sur des

régions distinctes de l’approximation.

Motivations et présentation du problème

L’objectif de cette thèse est de rendre possible l’optimisation de grandes structures

aéronautiques composites au sein de bureau d’études des concepteurs d’avions tels

que celui d’Airbus. De fait l’orientation des grands avionneurs tels qu’Airbus est

d’augmenter de manière substantielle la part des matériaux composites dans les struc-

tures primaires des futurs avions de lignes civils. Les exemples récents de l’A-350 (plus

de 52% de structures primaires en matériaux composites) ou encore du Boeing 787

représentent bien cette tendance qui devrait à l’avenir même augmenter.

2
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Les matériaux composites dans l’aéronautique

Depuis les années 70, la part des matériaux composites dans les structures travaillantes

des avions Airbus ne cessent d’augmenter. De fait, leurs propriétés mécaniques et leur

plus faible masse volumique par rapport aux matériaux métalliques traditionnellement

utilisés (essentiellement des alliages à base d’aluminium). Les matériaux composites

sont de manière générale un assemblage de matériaux distincts qui ne se mélangent pas

mais qui ont entre eux de fortes propriété d’adhérence. On peut citer à titres d’exemple

le béton armé, le GLARE (composite fait d’aluminium et de fibre de verre, utilisé par

exemple sur l’A-380 sur les panneaux supérieurs de fuselage) ou encore les composites

naturels le bois. En général, les composites consistent en l’assemblage d’un renfort

ou squelette qui assure la tenue mécanique et d’une matrice qui redistribue les efforts

vers le renfort et assure la cohésion du squelette. Cette matrice a en général de faibles

propriétés mécaniques. Selon la nature de la matrice on distingue

• les composites à matrices organiques (CMO): carbone, silicium, verre...ce sont les

matériaux composites les plus utilisés dans l’industrie

• les composites à matrices céramiques (CMC) pour des applications très spécifiques

souvent liées à hautes températures (nucléaire, turbo-réacteur...)

• les composites à matrices métalliques (CMM): GLARE par exemple

Si ces trois types de composites sont utilisés sur une avion. On s’intéresse dans cette

thèse uniquement aux composites à matrices organiques et plus précisément aux strat-

ifiés. On appelle stratifié un matériaux composite fait de plusieurs couches (ou pli)

de nappes unidirectionnelles de fibres avec des orientations propres à chaque pli. La

séquence d’empilement est alors la donnée des angles de chacune des orientations, on

la note

[α1/α2/.../αn] (0.1)

pour une séquence d’empilement de n plis. Dans ce travail de thèse on considèrera

uniquement des stratifiés d’orientations possible [0, 45,−45, 90].

Au-delà de leur faible masse volumique, les matériaux composites et en particulier

les stratifiés présentent les avantages suivants:

3



LIST OF TABLES

• Peu ou pas de sensibilité à la fatigue ce qui conduit à une baisse en fréquence des

inspections et donc une diminution des coûts de maintenance

• Assez bonne tolérance aux dommages

• Peu ou pas de corrosion

Néanmoins les matériaux composites présentent encore de nombreux inconvénients

• Matériaux non-conducteurs et donc besoin de ’métalliser’ les structures

• Difficultés à détecter certains endommagements, les méthodes de diagnostic des

structures non destructives doivent être adaptées aux composites

• Résistance à des environnements extrêmes en particulier les températures hautes

• L’état de surface nécessite un traitement spécifique pour pouvoir être peint

• Certains assemblages (en particulier avec des structures métalliques) nécessitent

des techniques spécifiques

Mais le principal avantage et inconvénient des matériaux composites consiste en leur

possibilité de conception. De fait à la différence de matériaux métalliques homogène

et isotrope, les stratifiés sont par définition même des matériaux inhomogènes (leurs

propriétés mécaniques dépendent du point considéré, à l’échelle microscopique ou même

mésoscopique ces propriétés sont différentes entre la résine et le renfort) et anisotropes

(les propriétés mécaniques dépendent des directions considérées). Ces caractéristiques

sont en effet intéressantes

• on peut adapter le stratifié aux chemins d’effort que la structure va rencontrer

en favorisant certaines directions. On peut par exemple dans certaines parties

favoriser les orientations des plis à 0 si ces parties travaillent essentiellement

en sollicitation longitudinale et à l’inverse favoriser les plis à 90 si la structure

travaillent en sollicitation latérale. De même le phénomène de flambage qu’on

précise ensuite, pourra être mieux être prévenu avec des plis à 45 qu’avec un

matériau métallique.
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• on peut aussi adapter le stratifié et obtenir des couplages que les matériaux

isotropes ne peuvent pas faire apparâıtre. L’exemple de stratifiés non balancé

(plus de plis à 45 qu’à -45) est par exemple intéressant pour des applications en

aéroélasticité où ce caractère favorise un couplage négatif entre la torsion et la

flexion.

Néanmoins, cette plus grande liberté dans la conception ne va pas sans inconvénients

• Le caractère inhomogène et anisotrope complique considérablement l’analyse mécanique

de la structure. Une hypothèse simplificatrice couramment utilisée est d’homogénéiser

le stratifié en considérant des propriétés mécaniques moyennes sur toute l’épaisseur.

Si cette hypothèse peut être acceptable en première approximation, elle complique

déjà l’analyse de phénomènes classiques type flambage mais elle ne permet pas

l’étude fine de phénomènes plus compliqués. En particulier pour des phénomènes

non-linéaires ou bien liés à la structure même du stratifié (délaminage, rup-

ture, propagation de fissure), cette approximation ne peut pas être utilisée et

les modèles de prédictions n’ont pas la maturité des modèles pour les matériaux

homogène isotropes.

• La conception est plus complexe et difficile du fait même des nouveaux degrés de

liberté qu’elle introduit. D’un point de vue optimisation, les stratifiés font inter-

venir plus de variables (orientation des plis) et surtout ces nouvelles variables sont

désormais discrètes. La situation est donc bien plus complexe qu’en métallique,

où les principales variables d’optimisation sont les dimensions géométriques.

Structures de fuselage d’avions et comportement mécanique

Le fuselage d’un avion est un assemblage de panneaux renforcé dans le sens longitudinal

par des raidisseurs et dans le sens orbital par des cadres (ou lisses). Le fuselage reprend

plusieurs types d’efforts, d’une part les sollicitations dues aux efforts de voilure par

l’intermédiaire du caisson central qui reprend une partie de ces efforts et les redistribue

et d’autres part les efforts du au fuselage lui-même en appui sur le caisson central. Les

principales sollicitations que le fuselage reprend sont donc

• la traction sur l’extrados, les panneaux supérieurs travaillent donc essentiellement

en traction longitudinale.
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Figure 0.1: Principales sollicitations

• la compression sur l’intrados, les panneaux sous le fuselage travaillent essentielle-

ment en compression longitudinale

• les panneaux latéraux quant à eux reprennent les efforts de cisaillement induit

par la voilure ainsi que la torsion due à la flèche des ailes. Ils travaillent donc à

la fois en traction/compression et e cisaillement.

On a représenté Fig. 0.1 les principales sollicitations sur l’ensemble de l’avion. D’un

point de vue mécanique, la structure de fuselage est donc un ensemble de coques et

de plaques minces renforcées par des poutres qui travaillent essentiellement en mem-

brane (efforts plans). D’un point de vue modélisation, de simples modèles 2d sont

suffisants pour se représenter les efforts principaux que la structure globale rencon-

tre (par exemple hypothèse de contraintes/déformations planes). D’un point de vue

optimisation, les contraintes typiques de dimensionnement à ce niveau global de la

structure sont des limitations sur la valeur absolue des contraintes mécaniques, des

déformations ou encore des déplacements (typiquement pour l’encadrement des portes

des aéronefs). Au niveau sous-élément de la structure, les contraintes d’optimisation

cherchent à ne pas faire apparâıtre des phénomènes d’instabilité (ou de bifurcation).

Le phénomène d’instabilité le plus courant au niveau du sous-élément est le flambage,
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qui se traduit par un phénomène de flexion alors que la structure est sollicitée en com-

pression/cisaillement. Le phénomène de flambage est moins simple à prédire puisqu’il

s’agit d’un phénomène non-linéaire qu’on sait au moins prédire de manière partielle en

linéarisant les équations. Ce phénomène est courant dans les structures élancées telles

que celle de fuselage ou de voilure.

L’optimisation de structures aéronautiques

L’optimisation de structure cherche à tirer le meilleur d’une structure. Par ’tirer le

meilleur’ on entend bien souvent dans le domaine aéronautique trouver la structure

la plus légère qui résiste à l’ensemble des charges que l’avion va rencontrer durant

son utilisation. l’optimisation de structures cherche donc à automatiser le processus

de dimensionnement réalisé assez souvent sur la base de l’expertise de l’ingénieur en

structures. Néanmoins, la taille de plus en plus grande des espaces de design (ensemble

des variables que l’ingénieur structures a à sa disposition pour modifier la structure)

ne permet pas de trouver le meilleur design sans une automatisation du processus.

L’optimisation mathématique permet, une fois le problème formalisé, de trouver un

meilleur design. Ceci appelle plusieurs remarques

• La formalisation du problème d’optimisation n’est pas toujours évidente. Il

faut en premier lieu définir les variables d’optimisation. Selon les applications,

celles-ci peuvent être des dimensions continues (dimensions géométriques de la

structure), des variables discrètes (orientations des composites), des fonctions

(par exemple pour l’optimisation du profil d’une aile), des variables catégorielles

(type d’éléments structuraux, présence ou non d’un élément structural) et en-

fin la matière elle-même dans le cas de l’optimisation topologique. Sur la base

de ces variables d’optimisation, on définit ensuite la fonction objectif (critère à

optimiser) et les contraintes d’admissibilité. Bien souvent en optimisation de

structures aéronautiques la fonction objective est la masse totale de la struc-

ture considérée et s’évalue assez simplement pour peu qu’on dispose d’une bonne

paramétrisation de la structure. Les contraintes quant à elles sont en général bien

plus compliquées à évaluer car elles font intervenir en général un modèle physique,

ce dernier étant bien souvent dans le cadre du système de l’élasticité. Ce modèle

physique doit pouvoir être évalué rapidement sur la base des variables choisies. Ce

7
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dernier point peut s’avérer compliqué quand les variables d’optimisation ne corre-

spondent pas nécessairement aux variables physiques du modèle (par exemple les

proportions d’orientations dans un stratifié ne suffisent pas à prédire correctement

le flambage). Cette évaluation rapide nécessite donc des modèles d’approximation

numérique éprouvés. Ces modèles résolvent des systèmes d’équations aux dérivées

partielles de l’élasticité linéaire, par exemple, pour les structures de fuselages

considérées, l’approximation de contraintes planes du comportement mécanique

global du fuselage (principales sollicitations sont dans le plan) est résolue à l’aide

de la méthode des éléments finis. Le flambage par exemple est prédit sur la base

d’équations simplifiées elles aussi dérivées de l’élasticité (non linéaire) sur la base

d’hypothèses physiques raisonnables: équations de von Karman obtenues sur la

base des hypothèses de Kirchhoff, ces équations sont par exemple souvent résolues

numériquement à l’aide de méthodes spectrales type Rayleigh-Ritz.

• Les algorithmes d’optimisation différentiable en dimension finie permet en général

de trouver un minimum local et non un minimum global. Les méthodes de

gradient et de Newton et quasi-Newton, lorsqu’elles convergent et cette con-

vergence peut au moins être assuré théoriquement lorsque le point de départ

de l’optimisation est proche de l’optimum, trouvent uniquement un point satis-

faisant les conditions d’optimalité d’un minimum local (stationnarité du gradi-

ent et positivité de la hessienne). C’est-à-dire que le design trouvé par ce type

d’algorithme n’est a priori pas le meilleur design mais simplement un design qui

localement est le meilleur. Pour remédier à ces inconvénients, il existe plusieurs

stratégies comme par exemple lancer plusieurs optimisations avec des points ini-

tiaux différents (multistart). Néanmoins il n’y a pas d’assurance de converger

vers l’optimum global. Il existe des stratégies d’optimisation globales: algorithmes

génétiques, recuit simulé, essaim particulaire, colonies de fourmis... qui explorent

de manière plus complète l’espace de recherche. Mais ces stratégies, souvent ap-

pelées heuristiques, n’ont pas de propriétés de convergence théorique. Un avan-

tage considérable de ces méthodes est qu’elle ne requièrent pas les hypothèses de

régularité classique de l’optimisation différentiable (continuité, différentiabilité...)

et s’écrivent aisément pour des variables discrètes. Leur principal inconvénient est

le nombre élevé d’appels aux fonctions objectifs et contraintes. Enfin précisons
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que si le problème d’optimisation est convexe (fonction objectifs et contraintes),

tout minimum local est alors minimum global. Cela fournit par exemple une piste

d’amélioration pour l’optimisation de structures en aéronautique où les problèmes

ne sont en général pas convexe (par exemple la masse est fonction de l’aire de

section qui est un produit des dimensions locales), si l’on peut trouver une formu-

lation du problème convexe (par exemple en utilisant des variables ou des critères

plus physiques) on peut plus aisément trouver le meilleur design.

Présentation du problème

On présente dans cette section le problème formel qu’on cherche à résoudre. Dans

un premier temps, on explique en quoi la décomposition (et donc le multiniveau) se

révèle intéressante pour d’une part rendre possible et accélérer la résolution de très

grands problèmes d’optimisation non-linéaire. Puis on présente la processus de dimen-

sionnement à Airbus. Pour pouvoir être appliquée, un tel schéma de décomposition

doit pouvoir correspondre à ce processus. En particulier, on distinguera des niveaux

d’analyse de la structure, le schéma d’optimisation multiniveau doit faire apparâıtre ces

niveaux. Une structure hiérarchique apparâıt donc et c’est sur la base de cette structure

hiérarchique qu’on va cherche une décomposition appropriée. On voit donc apparâıtre

la notion d’optimisation multiniveau. On présente donc à la fin de cette section dans

un premier temps l’équivalence mathématique des formulations mathématiques puis les

décompositions naturelles que ces schémas induisent.

Le processus du dimensionnement à Airbus

Le processus d’analyse et de dimensionnement à Airbus consiste en un premier temps

aux calculs de redistribution des efforts sur la base d’un petit nombre de variables, dites

variables de rigidités. Une fois la redistribution des efforts calculées on analyse locale-

ment la stabilité de l’élément appelé super-raidisseur, composé d’un raidisseur et des

deux demi-panneau autour). Cette analyse en stabilité se base sur une description plus

fine de la structure: dimensions détaillées du raidisseur et dans le cas des composites

la connaissance de la séquence d’empilement est nécessaire.
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Problème formel

Une structure typique de fuselage comprend plusieurs milliers de panneaux et de raidis-

seurs. Chacune de ces sous-structures comprend plusieurs variables d’optimisation (par

exemple épaisseurs des panneaux, dimensions géométriques du profil de raidisseur) que

le concepteur peut modifier. Les contraintes d’admissibilité de la structure intervien-

nent sur chacune de ces sous-structures: déformations maximales dans chacun des pan-

neaux, des raidisseurs, contraintes de flambages (panneaux, raidisseur, sous-ensemble

du raidisseur...) tant est si bien que le nombre de contraintes est encore plus important

que le nombre de variables d’optimisation. Néanmoins, on comprend déjà que toutes

ces variables sont reliées entre elles par la redistribution des efforts, toute modifica-

tion d’une dimension locale d’un des raidisseurs implique une modification du terme

de rigidité de l’élément considéré et donc modifie (même faiblement) la redistribution

des efforts au niveau global. Ainsi donc toutes les variables locales influent sur les con-

traintes de tous les autres éléments par le biais de la redistribution des efforts. D’autre

part, les contraintes locales (type flambage) d’un élément dépendent essentiellement

des dimensions locales de l’élément considéré.

Minimiser la masse d’un fuselage s’écrit ainsi comme un problème de minimisation

de très grande taille avec une structure spécifique des contraintes. de fait certaines

des contraintes sont essentiellement globales (liées à la redistribution des efforts) et

d’autres globales-locales (liées à la fois aux dimensions locales mais aussi à toutes les

autres variables par la redistribution des efforts). Plus formellement, on peut écrire le

problème de la manière suivante:

• On considère que la structure est faite de N sous-structures, les dimensions locales

de l’élément i sont notées X(i) = (x1
i , . . . , x

ni
i ) où ni est le nombre de variables

locales de l’élément i.

• On note les variables de rigidités globales Y (i) de l’élément i. La redistribution

des efforts fait intervenir donc tous les Y (i). Ces variables de rigidités globales

dépendent directement des X(i) et on écrira donc Y (X(i)) = Y (i).

• On distingue les contraintes cKglob qu’on note avec un K en exposant qui sont les

contraintes globales liées à la redistribution des efforts (d’où le K pour signifier la
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résolution du système linéaire Kd = f). On désigne le calcul de la redistribution

des efforts par Φ, les efforts dans l’élément i sont donc désignés par Φ(i).

• Les contraintes cKiglob−loc globales-locales qui font à la fois intervenir les dimensions

locales et la redistribution des efforts, elles seront aussi désignées sous la forme

de RF car il s’agit souvent de Reserve Factor ou facteurs de réserve.

• Enfin les contraintes c(i)
loc qui font intervenir uniquement les dimensions locales, ce

sont des contraintes de types dimensions, bôıtes...

• Le problème de minimisation s’écrit donc

minX M(X) =
∑N

i=1m
(i)(X(i))

sous


cKglob(Y

(1), . . . , Y (N)) ≤ 0
cKiglob−loc(Φ

(i)(Y ), X(i)) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(0.2)

Le problème d’optimisation () s’écrit donc a priori en utilisant les variables d’optimisation

X. Néanmoins, cette écriture conduit à une dépendance complexe des contraintes

globales-locales puisque toutes les variables locales influent par le biais de la redistri-

bution des efforts, on a illustré cette dépendance Fig. ??.

L’optimisation de grande taille: vers la décomposition

Le problème (0.2) fait donc apparâıtre une structure particulière. De fait, comme on

peut le voir Fig. (0.2), les contraintes globales-locales dépendent essentiellement des

variables locales mais aussi finalement de toutes les autres variables par le biais de la

redistribution des efforts. Le problème a donc une structure quasi-bloc diagonale et

on cherche à exploiter cette structure de manière à décomposer le problème global

d’optimisation en plusieurs sous-problèmes d’optimisation pouvant être résolues en

parallèle. La décomposition naturelle de la structure en sous-éléments structuraux se

reflète donc le problème d’optimisation. L’objectif est alors de décomposer le problème

en sous-problèmes chacun écrit sur un sous-élément structural et de traiter correctement

le couplage entre les sous-problèmes (redistribution des efforts). D’autre part, cette

décomposition doit refléter aussi les différents niveaux d’analyse de la structure. En

effet, on distingue
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Figure 0.2: Profil de la jacobienne des contraintes globales-locales. On a représenté unique-
ment les termes dominants en valeur absolue. En réalité tous les termes sont non nuls et la
matrice est pleine, néanmoins on voit apparâıtre un profil bloc-diagonal dominant

12



LIST OF TABLES

• l’analyse globale de la structure: redistribution des efforts, basée sur une représentation

grossière de la structure où les seules variables sont les variables de rigidités Y

(aires de section...). Ce niveau d’analyse est en général réalisé par le biais une

analyse éléments finis et permet de calculer les contraintes globales (déplacements

prescrits, contraintes mécaniques). Notons qu’enfin ce niveau se fonde aussi sur

un certain nombre d’hypothèses mécanique : comportement plan (pas de flexion),

contraintes et déformations planes, raidisseurs approchés par des barres...

• l’analyse en stabilité essentiellement locale. A ce niveau l’analyse se base sur

une représentation plus fine du sous-élément structural (dimensions géométriques

détaillées, séquence d’empilement). Cette analyse se fonde elle aussi des hy-

pothèses mécaniques simplificatrices (plaques minces, théorie de Kirchhoff, pas

de torsion...) et est réalisée au moyen de méthodes numériques spécifiques (spec-

trales type Rayleigh-Ritz) valables pour des géométries simples (un panneau

trapézöıdale est par exemple approché par un panneau rectangulaire).

En définitive la décomposition doit non seulement se fonder sur la décomposition na-

turelle de la structure et aussi correspondre aux différents niveaux d’analyse (FEA puis

outils Airbus de stabilité).

Équivalence des formulation mono-niveau

Pour ce faire, le premier travail consiste en définir clairement les variables d’optimisation.

De fait, le problème initial ne fait pas explicitement apparâıtre les variables globales

ou de rigidités Y en tant que variables d’optimisation. Ainsi formulé le problème (0.2)

complique la résolution et la décomposition du problème, par exemple par le biais du

calcul des sensibilités. Pour simplifier ce dernier calcul et donner au problème une forme

plus adaptée à la décomposition on introduit alors les variables de rigidité Y comme

variables d’optimisation a priori indépendantes des variables locales. La cohérence en-

tre le niveau globale et le niveau locale est alors assurée par des contraintes égalités

qu’on peut relaxer. Cela conduit alors au problème bloc-angulaire suivant
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minX,Y M(Y ) =
∑N

i=1m
(i)(Y )

sous



cKglob(Y
(1), . . . , Y (N)) ≤ 0

cKiglob−loc(Y,X
(i)) ≤ 0

cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0
ϕ(X(i)) = Y (i)

(0.3)

Notons que dans le problème (0.3), on a écrit l’objectif comme étant uniquement fonc-

tion des variables de rigidités. Cela est réaliste dans la mesure où la masse peut souvent

se déduire de l’aire de section. Dans le chapitre deux de ce travail, on commence par

montrer que les deux problème sont équivalents en termes de problèmes d’optimisation.

On caractérise le minimum des deux problèmes par les conditions d’optimalité de

Karush-Kuhn-Tucker et on montre que le minimum (local) d’un problème l’est aussi

pour l’autre. L’intérêt de la réécriture du problème sous forme bloc angulaire est alors

de faire apparâıtre une décomposition plus adaptée à nos besoins. En effet, le problème

se décompose naturellement en un problème d’optimisation en Y puis des problèmes

en X(i). En fixant les Y on obtient alors N problèmes totalement séparables en X(i)

pouvant alors être résolus en parallèle. La difficulté réside alors dans la définition de

l’objectif local qu’on donne aux problèmes d’optimisation en X(i). Pour faire apparâıtre

l’une des décompositions qu’on utilise par la suite, notons qu’on peut relaxer les con-

traintes égalités en utilisant un pénalisation quadratique inexacte des contraintes, on

obtient alors

minX,Y M(Y,X) =
∑N

i=1m
(i)(Y ) + ||Y (i) − ϕ(X(i)||2

sous


cKglob(Y

(1), . . . , Y (N)) ≤ 0
cKiglob−loc(Φ

(i)(Y ), X(i)) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(0.4)

Pour l’instant aucun des problèmes (0.2), (0.3) et (0.4) n’est décomposé. On parle

donc de formulations mononiveau.

Présentation des schémas de décomposition utilisés

Sur la base de la réécriture du problème sous forme bloc angulaire, on s’intéresse alors

à des formulations d’optimisation biniveau. Plus précisément on cherche à écrire le

problème 0.3 sous la forme d’un problème d’optimisation en Y qui fait intervenir
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dans ces contraintes la résolution de problèmes d’optimisation en X(i). L’écriture du

problème sous forme biniveau générale est alors

• Niveau global (ou niveau système) :

minY M(Y ) =
∑N

i=1mi(Yi)

s. t.
{
cKglob(Y1, . . . , YN ) ≤ 0
γi(Y ) ≤ 0 pour i = 1 . . . N

(0.5)

• où γi pour i = 1 . . . N est une fonction de couplage calculée par le niveau inférieur

minXi hi(Xi, Y )

t. q

{
c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0

(0.6)

• de cette manière les contraintes basées sur une analyse éléments finis sont calculées

uniquement au niveau global et les N optimisations locales peuvent être calculées

en parallèle

On présente maintenant les différents schémas utilisés en précisant le niveau inférieur.

Rigidité Cible

L’idée principale du schéma Rigidité Cible est donc de réaliser au premier niveau (ou

niveau global) où la redistribution des efforts varient au niveau global, en considérant

comme contraintes d’optimisation les contraintes mécaniques et les déformations. A

ce niveau global, on considère uniquement les termes de rigidités (aires de sections,...).

Au niveau local, l’optimisation cherche le design local admissible le plus proche en

terme de rigidité. De cette manière, la redistribution des efforts varient peu entre les

optimisations locales et l’optimisation globale.

• Rigidité Cible définit γi(Y ) = 1
2 |ϕ(X∗i )− Yi|2

• où X∗i est
argminXi

1
2 ||ϕ(Xi)− Yi||2

t. q

{
c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0

(0.7)
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Dans le contexte de l’optimisation multidisciplinaire (MDO), le schéma Rigidité Cible

est proche du schéma CO (Collaborative Optimization). Avec la contrainte γi(Y ) ≤ 0,

on voit qu’à convergence (globale) le design local doit donc correspondre exactement

aux variables de rigidités du niveau supérieur et ainsi être admissible car résultat d’une

optimisation locale qui inclut les contraintes globales-locales (flambage) avec les efforts

corrects.

Maximum Marge

Ce schéma développé en premier lieu par Haftka et Sobieski dans les années 80 et

ensuite étendu dans une forme plus générale par Haftka, Liu et Watson sous le nom

Quasi Separable subsystem Decomposition (QSD).

• MaxMargin définit γi(Y ) = minXi∈ϕ−1(Y ){c
(i)
glob−loc(Y,X

∗
i )} et donc γi(Y ) =

−µ?i

• où µ?i vaut
argmaxµi,Xi µi

t. q


c

(i)
glob−loc(Y,Xi) + µi ≤ 0

c
(i)
loc(Xi) + µi ≤ 0
Yi = ϕ(Xi)

(0.8)

Le nom Maximum Marge vient du fait que l’optimisation locale cherche le design

local qui viole le moins les contraintes globales-locales et les contraintes locales. On

maximise donc au niveau local l’admissibilité et on contraint au niveau supérieur cette

marge à être positive. De manière équivalente, on pourrait minimiser l’opposé de la

marge et la contraindre au niveau supérieur à être négative.

Minimisation de masse locale MinMass

Ce schéma a été développé par A. Merval ((Merval 2008)) et propose de minimiser la

masse en local.

• MinMass définit γi(Y ) = c
(i)
glob−loc(Y,X

∗
i )

• où X∗i est
argminXi mi(Xi)

t. q


c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0
Yi ≤ ϕ(Xi)

(0.9)
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schéma Mix

Au cours de cette thèse nous avons aussi développé le schéma suivant

• ce schéma est une combinaison de MinMass et de Rigidité Cible

• γi(Y ) = max{c(i)
glob−loc(Y,X

∗
i ), |ϕ(X∗i )− Yi|}

• où X∗i est
argminXi ε1

2 |ϕ(Xi)− Yi|2 + (1− ε)mi(Xi)

t. q


c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0
Yi ≤ ϕ(Xi)

(0.10)

Approximation des contraintes coûteuses

On s’intéresse dans cette section à l’approximation des contraintes globales-locales

c(i)(Φ(i)(Y ), X(i)). Dans un premier temps le comportement typique de ces contraintes

est étudié et plus précisément le comportement des calculs de stabilités (flambage) sur

la base de la représentation du composite choisie. Ces contraintes font intervenir des

fonctions irrégulières dans le sens où ce sont on voit apparâıtre des discontinuités de la

dérivée et même dans le cas des outils métiers Airbus, des discontinuités induites par

des politiques de marge.

Comportement typique des contraintes de stabilité

On s’intéresse ici au comportement du flambage. Dans le cas des stratifiés, une représentation

classique des comportements plan (traction/compression, cisaillement) et hors-plan

(flexion) sont les paramètres de stratifications. Dans le cas général (pas de contraintes

sur les séquences d’empilement), ces derniers sont au nombre de 12 et permettent

un e représentation continue des différents comportements mécaniques du stratifié.

La loi constitutive (relation contraintes mécaniques/déformations) fait apparâıtre trois

tenseurs, souvent appelés A, B et D. Chacun décrivant des couplages différents

• le tenseur de membrane A : décrit les propriétés plan du stratifié. Ce dernier est

fonction des quatre paramètres de stratification de membrane ξA1,2,3,4.

• le tenseur de couplage B : décrit le couplage propriétés plan/flexion. Ce dernier

est nul dès que la séquence est symétrique.
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• le tenseur de flexion D : décrit le comportement hors-plan du stratifié. Le

phénomène de flambage dépend essentiellement des termes du tenseur D mais

aussi des propriétés de membrane qui apparaissent au second membre de l’équation

de flambage. De fait l’équation de flambage est grossièrement

D∆2w = λN∆w (0.11)

où w est le déplacement transverse du stratifié et N est le vecteur des flux

(Nx, Ny, Nxy) qui dépendent eux de la redistribution globales des efforts. Le

facteur de réserve de flambage est alors λ la plus petite valeur propre positive.

Notons enfin que D est fonction des paramètres de stratification de flexion ξD1,2,3,4.

Dans le cas des stratifiés que nous considérons dans cette thèse, de nombreux paramètres

de stratification s’annulent. Tant et si bien que seuls ξA1,2 et ξD1,2,3 sont non nuls. En

plus d’offrir une représentation compacte et continue du flambage, de nombreux travaux

ont permis d’écrire les équations dite de compatibilité qui permettent de contraindre

l’espace des ξD sur la base de la valeur des ξA (qui sont équivalents pour nos strat-

ifiés aux proportions angulaires). Dans cette thèse on s’intéresse au comportement

du flambage en fonction des ξD et des flux (Nx, Ny, Nxy). s On montre par exemple

des propriétés importantes pour l’optimisation, en particulier le fait que la facteur

de réserve de flambage est concave sur les ξD, ce qui permet d’assurer que le

problème de maximisation de ce facteur de réserve est bien posé. D’autre part, on

étudie numériquement le comportement du facteur de réserve lorsque les ξD et les flux

varient, on s’aperçoit alors que le comportement typique est de dérivée discontinue

par morceaux. On cherche donc une méthode d’approximation qui tire parti de cette

structure. On a représenté le comportement typique des calculs de flambage Fig.

Schéma original d’approximation des contraintes

L’un des principaux apports de cette thèse est de proposer un schéma original d’approximation

applicables à des fonctions comme les contraintes de stabilités. La principale diffi-

culté est donc d’approcher une fonction de dérivée discontinue ou même discontinue.

Les ’coins’ et les sauts de discontinuités empêchent en effet un modèle réduit ou

d’approximation d’atteindre une grande précision. L’idée pour améliorer la précision

est donc de partitionner l’espace en plusieurs régions et d’entrâıner sur chacune des

régions et essayant donc de contourner les discontinuités.
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Applications numériques et validation du schéma original

Le schéma original développé se base donc sur la notion de mélange d’experts. Le

partitionnement de la base est réalisé au moyen de l’algorithme EM appliqué sur le

couple (X,Y ) des entrées/sorties. On fait donc l’hypothèse que la loi conjointe (X,Y )

est de la forme suivante

K∑
i=1

αiN(µi,Γi) (0.12)

c’est-à-dire un mélange de gaussiennes. Chacune des gaussiennes est pondérée par un

facteur αi et est de paramètres µi (moyenne) et de matrice de variance-covariance Γi.

Le mélange est donc constituée de K gaussiennes ou K composantes. On estime donc

grâce à l’algorithme EM les paramètres des gaussiennes dans Rp+1 et on décompose ces

paramètres de la manière suivante

µk =

µXk
µYk

 , (0.13)

où µXk ∈ Rp sont les coordonnées en X de la moyenne µi et µYk ∈ R est la coordonnée

en Y de la moyenne µi. On décompose la matrice de variance-covariance de la manière

suivante

Γi =

ΓXi νi

νTi ξi

 , (0.14)

où ΓXi est la matrice de variance en X pour la composante i, νi ∈ Rp est Cov(X,Y )

pour la composante i et ξi = Var(Y ) ∈ R.

On peut donc dériver la loi marginale en X. On note alors la variable aléatoire κ

associée au couple (X,Y ) qui note l’appartenance à une composante. κi = k signifie

donc que l’échantillon (Xi, Yi) appartient à la composante k. On peut donc dériver la

loi de X|κ = k

X|κ = k ∼ N(µXk ,Γ
X
k ) (0.15)

et donc

< X = xi >= ∪Kk=1 < X = xi ∩ κ = k > (0.16)
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et on a finalement

X ∼
K∑
i=1

αkN(µXk ,Γ
X
k ) (0.17)

On peut alors calculer la probabilité postérieure d’appartenance à un cluster i en

utilisant la formule de Bayes.

P(κ = ki|(X,Y ) = (x, y)) =
P(κ = ki)P((X,Y ) = (x, y)|κ = ki)∑K
k=1 P(κ = k)P((X,Y ) = (x, y) | κ = k)

.

Dans notre cas gaussien, on a alors

P(κ = k) = αk,

(X,Y ) | (κ = k) ∼ N(µk,Γk),

ce qui conduit avec z = (x, y) à

P(κ = ki|(X,Y ) = (x, y)) =

det(Γki)
− 1

2αkie
− 1

2
(z−µki )

TΓ−1
ki

(z−µki )∑K
k=1 det(Γk)−

1
2αke

− 1
2

(z−µk)TΓ−1
k (z−µk)

. (0.18)

De la même manière, on peut aussi appliquer la formule de Bayes uniquement sur

les Xi

P(κ = ki|X = x) =

det(ΓXki)
− 1

2αkie
− 1

2
(x−µXki )

TΓX−1
ki

(x−µXki )∑K
k=1 det(ΓXk )−

1
2αke

− 1
2

(x−µXk )TΓX−1
k (x−µXk )

. (0.19)

On peut aussi réaliser un clustering en premier lieu sur les points d’apprentissage

(xi, yi) en utilisant 4.20. Ce clustering peut être réalisé de deux manières différentes

• On peut assigner un et un seul cluster à chaque couple (xi, yi) en prenant le max-

imum des P(κ = ki|(X,Y ) = (x, y)) sur les i = 1 . . .K (maximum a posteriori).

• On peut assigner un clustering flou, c’est-à-dire assigner une probabilité d’appartenance

à tous les cluster pour chacune des observations.
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Au cours de cette thèse nous avons surtout utilisé le premier type de clustering. Une

fois ce clustering réalisé on dispose alors de K bases qui forment une partition de la

base d’apprentissage initiale BA. On construit alors un modèle d’approximation ou

expert local sur chacune de ces régions. Tout type de modèle d’approximation peut

être construit. Au cours de cette thèse, nous nous sommes intéressé principalement aux

modèles suivants

• modèle polynomial : construit par simple régression linéaire. L’avantage de

ces modèles est la rapidité de construction. Néanmoins ce type d’expert local

n’est en général pas suffisamment précis.

• réseaux de neurones : permet d’approcher des fonctions plus complexes que

les modèles polynomiaux au prix d’un temps de construction plus élevé (choix du

nombre de neurones...)

• fonctions de bases radiales : pour des raisons de temps de constructions, on a

choisi la version interpolante où chaque fonction de base (gaussienne,...) est centré

sur un point d’apprentissage. On règle alors un unique paramètre (variance de la

gaussienne), le temps de construction est donc réduit par rapport à des réseaux

de neurones.

• moindres carrés mobiles : moindres carrés locaux centrés en chacun des points

d’apprentissage. Ce modèle est coûteux en temps de construction car implicite et

devant être recalculé en chacun des points d’évaluation (résolution d’un système

linéaire).

L’avantage des deux derniers modèles est qu’ils présentent, au moins théoriquement,

des propriétés d’approximation intéressantes (dont la fameuse convergence spectrale en

norme infinie, plus rapide que toute convergence polynomiale) pour peu que la fonction

à approcher soit régulière.

Une fois le clustering réalisé et le type d’expert local choisi, on construit donc sur

chacune de régions Bi
A un expert local fi. Le modèle global où l’on recombine tous les

experts locaux en un seul est donc

f(x) =
K∑
i=1

P(κ = i|X = x)fi(x) (0.20)
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Le terme P(κ = i|X = x) vient donc pondérer l’expert fi. Là encore on peut choisir

deux manière de recombiner suivant le modèle d’approximation qu’on cherche à con-

struire

• Ou bien on calcule une probabilité d’appartenance floue pour chaque nouvel x et

dans ce cas on appliquera tous les experts locaux pour un x donné. Le modèle

final sera alors régulier (C∞) et pourra par exemple être utilisé comme modèle

de substitution dans une algorithme d’optimisation différentiable. On parle alors

de recombinaison lisse.

• Ou bien on calcule une probabilité d’appartenance par maximum a posteriori.

Un nouvel x appartiendra donc à un et un seul cluster i et le modèle global

renverra donc uniquement la valeur de l’expert correspondant. On parle alors de

recombinaison discontinue.

Dans cette thèse cette méthode originale de construction de modèles d’approximation

est appliquée à de nombreuses reprises, en particulier pour l’approximation des con-

traintes de stabilité: approximation du facteur de réserve de flambage en paramètres de

stratification, approximation des résultats de codes de stabilité Airbus,...mais aussi dans

l’approximation de résultats d’optimisation (fonction valeur optimale) qui présentent

les mêmes caractéristiques. A titre d’exemple, on a représenté Fig. 0.4 les résultats de

l’approximation avec des experts locaux linéaires sur des fonctions analytiques linéaires

par morceaux (dont la fonction valeur absolue) en présence de bruit (différentes vari-

ances selon les régions). On compare dans chacun des cas la reconstruction avec la

fonction originale, on voit dans les deux cas que la reconstruction discontinue permet

de localiser les points de discontinuités et se révèle assez précise. Le clustering per-

met en effet de séparer les zones et d’entrâıner un expert local suffisamment bon dès

lors que le clustering a séparé correctement les points d’apprentissage. Dans de nom-

breux cas, cette stratégie s’est révélée adaptée dans la mesure où les composantes

était correctement détectée, néanmoins, la qualité du clustering EM reste assujet-

tie à l’échantillonnage des points d’apprentissage. D’autre part la détermination du

meilleur nombre de cluster reste délicate. Au cours de cette thèse, après avoir constaté

l’insuffisance des critères classiques (tels que la log-vraisemblance, AIC (Akaike Infor-

mation Criterion) ou BIC (Bayesian Information Criterion)), on a mis une point une

stratégie basée sur outils classiques d’estimations d’erreur dans les cas de régression
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Figure 0.3: Présentation de l’algorithme sur un cas test 1D
a) Fonction à approcher et base d’apprentissage. Cet exemple fait apparâıtre un point de
discontinuité et un point de discontinuité de la dérivée. On fixe ici le nombre de cluster à 3.
b) Clustering EM de la base d’apprentissage. On a tracé les lignes de niveau des fonctions
quadratiques associées aux trois composantes gaussiennes: métrique centrée sur la moyenne
et tournée et dilatée suivant la racine carrée de la matrice de variance-covariance (distance de
Mahalanobis associée à chacune des gaussiennes. On note que dans cette métrique les boules
sont des ellipsöıdes.
c) Apprentissage des experts locaux (en l’occurrence modèles quadratiques) et réseaux portiers
associés (P(κ = i|X = x)).
d) On trace les deux modèles globaux obtenus: recombinaison lisse et recombinaison discontinue.
On a comparé ces deux modèles avec un réseau de neurones et la vraie fonction. Le modèle
discontinu est de loin le plus précis, néanmoins il crée une discontinuité artificielle à x = 0.69

23



LIST OF TABLES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Comparison of approximations over the abs function

 

 

Samples

Overall quadratic regression

Neural network

Discontinuous piecewise linear approximation

Smooth piecewise linear approximation

True function

(a) Fonction valeur absolue avec bruit gaussien

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5
Comparison of approximations over a PC linear function

 

 
Samples
Neural network
Discontinuous piecewise linear approximation
Smooth piecewise linear approximation
True function
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Figure 0.4: Résultats d’approximation avec experts locaux linéaires sur des fonctions linéaires
par morceaux avec bruits

(validation simple/croisée).

On présente aussi les résultats de l’application de cette stratégie pur l’approximation

de calcul de flambage Fig. 0.5 et 2.90 on a appliqué cette stratégie à l’approximation du

facteur de réserve pour des séquences d’empilement orthotropes (deux variables ξD1,2).

On voit clairement Fig. 0.5 que la fonction à approcher fait apparâıtre quatre zones

(minimum de quatre hyperplans bien que dans ce cas précis la linéarité ne soit pas

prouvé théoriquement). Dans ce cas, notre stratégie de choix du meilleur nombre de

cluster donne bien 4 et l’on voit Fig. 2.90 que le clustering avec 4 composantes sem-

ble bien diviser la base d’apprentissage, ce qui est confirmée par le modèle reconstruit

(recombinaison discontinue).

Application et adaptation des schémas de décomposition

L’autre principal axe de recherche de ce travail consiste en l’adaptation et l’application

de schémas de décomposition. Cela signifie par exemple la recherche d’un schéma

de décomposition qui permet de retrouver le même optimum que le problème non

décomposé. Différents schémas de décomposition ont été implémentés et testés no-

tamment dans (Merval 2008), néanmoins aucun de ces schémas ne semblait trouver le
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Figure 0.6: Clustering et approximation
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2

Figure 0.7: a) treillis 10 barres b) profil en I

même optimum que le problème non décomposé. D’autre part, il a aussi fallu adapter

ces schémas aux spécificités du composite.

Validation sur un cas test classique de l’optimisation de structure

Dans un premier temps, on a utilisé un cas test classique de l’optimisation de struc-

tures : le treillis 10 barres pour comparer les différents mononiveau et biniveau. Il

s’agit d’un treillis composé de 10 barres, chacune de ces barres étant profilées en I (de

la même manière qu’un raidisseur). On cherche à minimiser la masse totale du treillis

sous des contraintes de rupture (|σ| 6 σ0.2) et des contraintes de flambage : flambage

de colonne (toute la section) et flambage local de l’âme du raidisseur. On a représenté

ce cas test Fig. 0.7. Ce cas test reflète bien les deux niveaux d’analyse mécanique de

nos problèmes d’optimisation de structure. La redistribution des efforts (déplacements,

déformations, contraintes, efforts et donc les contraintes d’optimisation associées) ne

dépend que des aires de section des barres alors que les contraintes de flambage font

intervenir la description détaillée du profil: moment d’inertie I (qui dépend des di-

mensions locales) pour le flambage de colonne et les dimensions de l’âme (considérée

comme une plaque) pour le flambage local. En plus d’avoir une structure proche de nos

problème, ce cas test est aussi connu pour montrer l’insuffisance d’un critère mécanique

d’optimalité classique (Fully Stressed Design) qui permet de décomposer le problème

d’optimisation en autant d’optimisation que de barres. On peut même artificiellement
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exagérer le caractère non-FSD optimal de ce treillis en changeant considérablement les

densités volumiques des barres diagonales. En effet, le critère FSD permet de trouver

le vrai optimum dans le cas isomatériau alors que dans le cas où la densité volumique

des barres diagonales est modifiée, le critère FSD est totalement sous-optimal. Ce

dernier cas est donc été notre cas de référence pour tester et valider les schémas de

décomposition. Ce cas bien qu’artificiel est plus réaliste car les grandes structures com-

posites peuvent être considérés comme formées de matériaux différents (dans la mesure

où les modules de rigidités apparents Ex, Ey, Gxy et νxy peuvent varier du sim-

ple au décuple avec les proportions, voir dans le Chapitre 3 Fig. 3.1). Les grandes

structures de fuselage composites peuvent donc être considérées comme des grandes

structures hyperstatiques et faites de matériaux différents, ce qui est précisément les

cas où les algorithmes d’optimisation basés sur le critère FSD sont sous-optimaux.

Ce cas test a donc permis dans un premier temps de comparer les différentes for-

mulations mononiveau, puis dans un second temps les schémas de décomposition. Les

différentes formulations mononiveau se sont révélées équivalentes en termes d’optimum

trouvé. Les formulation basées sur la structure bloc-angulaire se sont même avérées un

peu rapides en termes de convergence et surtout plus simples en termes de calcul de

sensibilités analytiques. L’introduction des variables de rigidités Y s’est donc avérée

justifié même dans le cas mononiveau. Dans le cas multiniveau, on a comparé les 4

schémas déjà présentées. Tous ces schémas se sont montrés sous-optimaux pour toutes

les configurations sous tous cas de charge. Bien que donnant de meilleurs résultats que

les schémas basés sur le critère FSD, aucun de ces schémas n’a semblé converger vers

l’optimum réel. Les résultats sur l’ensembles des configurations et des cas de charges

ont été les suivants:

• critère FSD : erreur relative de 6% en 14 itérations

• Rigidité Cible : erreur relative de 3.2% en 5 itérations

• MinMass : erreur relative de 3.1% en 4 itérations

• Mix : erreur relative de 2.9% en 5 itérations

• MaxMarge : erreur relative de 12% en 4 itérations
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décomposition (pire cas))

0 2 4 6 8 10 12 14 16
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Iterations

W
ei

gh
t

Comparison of multilevel methods (average case)

 

 
Mix
TR
MinMass
M

opt

10 % error

Best for TR and Mix
error < 2%

Erratic behavior of TR

Best point for MinMass

(b) Comparaison des schémas de
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Figure 0.8: Comparaison des schémas de décomposition dans le cas non-FSD optimal : pire
cas de charge et comportement typique

Les schémas Rigidité Cible, MinMass et Mix se comportent de la même manière et

les différences sont assez faibles. On a représenté leur comportement typique Fig. 0.8.

On a pu constater un léger avantage au schéma Mix.

Le schéma MaxMarge qui est pourtant le seul de ces schémas pour lequel il existe

des propriétés théoriques d’équivalence entre le problème non décomposé et le problème

décomposé a un comportement très erratique et ne converge que rarement. Une étude

de l’historique des contraintes montre que la contrainte égalité n’est que très rarement

satisfaite. On a représenté Fig. 0.9 ce comportement erratique ainsi que le comporte-

ment en perturbant le point initial, on observe que le comportement varie énormément

malgré une faible perturbation du point initial.

Sur la base de cette sous-optimalité, nous avons donc cherché à modifier l’implémentation

et à appliquer le schéma de décomposition QSD dans une version totalement biniveau :

optimisation locales implicites dans la boucle d’optimisation supérieure. Le choix de la

formulation QSD s’est fait sur la base des résultats théoriques, puisqu’il s’agit du seul

schéma pour lequel on soit sûr que tout minimum trouvé par décomposition (QSD) est

bien minimum du problème original. L’adaptation faite par rapport au schéma QSD

original réside dans la relaxation de la contrainte égalité interniveau (ϕ(x) = Y ) traitée

par pénalisation quadratique inexacte plutôt que par contrainte égalité qui mène à un

comportement erratique de l’algorithme. La formulation est alors
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• Niveau global :

minY,b M(Y ) =
∑N

i=1mi(Yi) +
∑N

i=1 bi

t. q
{
cglob(Φ(Y1, . . . , YN )) ≤ 0
µ?i (Yi,Φi, bi) ≤ 0 pout i = 1 . . . N

(0.21)

• où µ?i pour i = 1 . . . N est la fonction de couplage calculée à partir de l’optimisation

de niveau inférieure :

min(µi,Xi) µi

t. q


c

(i)
glob−loc(Yi,Φi, Xi)− µi ≤ 0

c
(i)
loc(Xi)− µi ≤ 0

1
2 ||Yi − ϕ(Xi)||2 − bi − µi ≤ 0

(0.22)

L’une des difficultés de l’implémentation réside dans l’utilisation des dérivées post-

optimales. De fait le problème d’optimisation au niveau supérieur fait intervenir comme

contrainte une quantité calculée par des optimisations locales. Si un algorithme à base

de gradient est utilisé au niveau supérieur, on devra calculer les dérivées de la fonction

µ?. Si ce calcul s’effectue par différences finies alors le problème deviendra beaucoup

trop coûteux. On doit donc évaluer cette dérivée de manière analytique:

dµ?i
dYi

=
∂µ?i
∂Yi

+
∂Φi

∂Yi

µ?i
∂Φi

(0.23)

et
dµ?i
dYj

=
∂Φi

∂Yj

µ?i
∂Φi

(0.24)

avec les dérivées post-optimales suivantes

∂µ?i
∂Yi

= λT
∂c(i)

∂Yi
(0.25)
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et

∂µ?i
∂Φi

= λT
∂c(i)

∂Φi
(0.26)
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Figure 0.10: Comparaison de QSD et du problème non décomposé

Les résultats (par exemple Fig. 0.10 où l’on a représenté l’historique de la masse au

cours de l’optimisation avec QSD et l’historique pour l’optimisation non décomposée)

montrent que notre adaptation de QSD pour ce treillis trouvent bien le même op-

timum que les versions non décomposées. Au cours d’une comparaison avec de nom-

breuses optimisations, le schéma QSD a convergé dans la plupart des cas et en appelant

moins d’analyse éléments finis et d’itérations globales de l’optimiseur que le schéma non

décomposé.

Application et adaptation aux composites sur une structure réaliste de

fuselage

Sur la base des bons résultats obtenus sur le treillis, nous avons aussi cherché à adapter

le schéma QSD aux composites et en particuliers aux paramètres de stratification. On

a donc mis en place le schéma suivant

• M(Y ) =
∑N

i Ai +
∑N

i bi masse totale pénalisée par les budgets
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Figure 0.11: Panneau Maaximus

• L’optimisation locale est alors

min
(µi,(ei,ξ

(i)
D )

µi

t. q


RF

(i)
glob−loc(Φi, ei, ξ

(i)
D )− µi ≤ 0

c
(i)
comp(ξ

(i)
A , ξ

(i)
D ) ≤ 0

c
(i)
loc(ei)− µi ≤ 0

1
2 ||Ai − ϕ(Xi)||2 − bi − µi ≤ 0

(0.27)

et nous avons implémenté ce schéma sur une structure réaliste : panneau Maax-

imus 6 × 8 super-raidisseurs. Il s’agit d’un panneau sous le fuselage principalement

en compression, on a représenté ce panneau Fig. 0.11. Les contraintes d’optimisation

sont soit des contraintes en déformations soit des contraintes de stabilité (tolérance aux

dommages, flambage, post-flambage,...) calculées à l’aide d’un outil Airbus appelé Co-

fus. L’implémentation a nécessité d’une part le lien vers un solveur éléments finis avec

analyse de sensibilité (en l’occurrence MSC.Nastran SOL200), un optimiseur global

(Boss Quattro), des optimiseurs locaux (Matlab) et enfin un modèle d’approximation

de l’outil Cofus. A convergence le schéma QSD donne la même masse que le schéma

non décomposé avec moins d’itérations globales.
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Conclusion et perspectives

Cette thèse a cherché à rendre possible l’optimisation de grandes structures aéronautiques

composites par le biais de deux axes

• la décomposition du problème d’optimisation

• le développement de modèles d’approximation adaptée aux contraintes de stabilité

Après avoir analysé la structure du problème d’optimisation ainsi que le comporte-

ment des contraintes, nous avons pu développer et adapter des schémas de décomposition

aux spécificités du composite et développer une méthodologie adaptée au caractère non

régulier des contraintes de stabilité. L’application de ces schémas sur ces cas test

académiques et réalistes montre une bonne adéquation par rapport aux besoins indus-

triels. En particulier, l’adaptation du schéma QSD nous permet de retrouver le même

optimum que le problème non décomposé avec bien souvent moins d’appels aux analy-

ses éléments finis et d’itérations globales. La méthodologie de construction de modèle

d’approximation s’est révélée cruciale et adaptée car suffisamment précise pour rem-

placer les coûteuses analyses de stabilités locales (flambage).

Pour valider cette adaptation du schéma QSD, l’une des perspectives immédiates serait

d’appliquer cette décomposition à un cas test de plus grande taille (couronne de fuselage

ou fuselage entier). Une telle application nécessiterait une implémentation parallèle ce

qui n’a pas été fait au cours de cette thèse. De la même manière, la construction

du modèle réduit pourrait elle aussi s’effectuer de manière parallèle de la construc-

tion même de la base d’apprentissage à la construction des experts locaux. D’autres

perspectives, plus théoriques, consisteraient en l’étude approfondie et du schéma de

décomposition (convergence locale) et des propriétés d’approximation du schéma pro-

posé (convergence spectrale par morceaux par exemple). Enfin pour se rapprocher du

design final, l’une des perspectives en le traitement et l’introduction de contraintes

interéléments (continuités entre les plis). De manière générale, les contributions de

cette thèse pourraient être appliquées à d’autres domaines (dynamique des structures,

mécanique des fluides numériques) et enfin au domaine de l’optimisation multi disci-

plinaire.
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General introduction

A major concern in aerospace industry has always been the weight of the overall struc-

ture. Any extra weight in the air leads to excessive costs at the end of the life cycle

of the aircraft. It is even more critical than ever both for aircraft designers (such as

Airbus and Boeing) and also for air liners with the fuel prices skyrocketing. For the air-

craft designer the objective is to maximize the ultimate payload, allowing one aircraft

designer to be better able to compete the other one, possibly the other ones. Besides

market and competition concerns, the lightest structure is always preferable also for

security reasons. Indeed, quoting the Federal Aviation Administration official report

’Aircraft weight and balance handbook’ ((Handbook 2007))

’Excessive weight reduces the efficiency of an aircraft and the safety margin available if

an emergency condition should arise’

When an aircraft or any aerospace structure is designed, it is always made as light

as possible. ’As possible’ should be understood as ’with respect to required structural

strength allowables’. Composite materials have many often equivalent stiffness prop-

erties than the traditional aluminum structures for lighter designs. They also offers

a wider range of potential designs because of their anisotropic properties. Both long-

range aircraft designers are now using them to design primary structures of aircrafts.

However their use is, of course, not entirely problem-free: conduction issues, specific

failures issues... and it is not clear whether or not composite structures are always

cheaper (even though lighter) when cost considerations come into play, especially be-

cause composite material manufacturing and assembly has not reached the level of

maturity of the metal manufacturing and assembly. Eventually, one of their most in-

teresting features happen to add complexity to the design phase. Being more flexible

in terms of sizing, they, of course, can be tailored to specific structural needs but we
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also pay an extra cost for this wider design space. By allowing more potential designs

and making the material in itself a variable of the design, situation becomes more com-

plicated than in the case of metal structures. For metal structures, only dimensions

were to be tuned, this is not an easy task...but it becomes much more complicated in

the case of composite materials, mainly because of their discrete mechanical behavior

in contrast with the continuous mechanical behavior of metal.

This is where structural optimization comes in the scene. Structural optimization

has a long and independent history, though never far away from real life applications.

It traces back to the first work in calculus of variations and has a sound mathematical

basis. It aims precisely at studying and automating the whole design process and per-

fectly suits aircraft overall weight minimization. By writing the problem in a formal

way, studying optimality conditions and criteria, it helps find new designs in an auto-

mated manner that a humanly limited designer could not reach, even the most-skilled

one. Structural optimization strongly relies on mechanics, on applied mathematics and

on a computer implementation. It can integrate several antagonist objectives (multi-

objective optimization), uncertainties (robust optimization) and also be a part of the

more general multi disciplinary optimization field.

This work fits in the structural optimization field. Our main objective is to enhance

the treatment of very large structural optimization problems including the design of a

specific type of composite materials: laminates. The pitfalls of such large problems lie

first in the size of the problem that is hardly manageable with current computer re-

sources and second with the number of analyses needed to run such large optimizations.

Our structural optimization problems (typically fuselage structures) have quite an in-

teresting feature that the mechanical analyses they involve are hierarchical and exhibit

a structure that reflect the real structural components. In that framework, such opti-

mizations can be thought as the optimizations of many interconnected systems. This

leads to a large problem who could possibly be decomposed and then easier to solve

provided we correctly treat the coupling of all these elements. For fuselage structures,

this coupling remains essentially the internal loads redistribution that impact the sta-

bility analysis at sub-element level. In that context, the whole optimization problem

can be thought in the spirit of multi disciplinary optimization problems where each
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sub-component is considered as a discipline. Our problem though fits in the multilevel

optimization framework since it involves only one discipline (mechanics) and two dif-

ferent levels of mechanical analysis: internal load redistribution vs. stability analysis,

each of them being performed at a different level of representation of the structure. The

internal load redistribution is computed on a very coarse representation while stability

analysis needs a more detailed representation. This naturally advocates for a bilevel

optimization strategy

There are though very few differences between multilevel optimization and multi dis-

ciplinary optimization at least in terms of resolution, practical algorithms and also in

terms of the innovations required to allow the treatment of their respective problems.

Quoting Jaroslaw Sobieski, one major figure of the field, in a recent talk (Sobieski ),

multi disciplinary optimization tools still require research and development effort in the

following areas (among many others)

• Decomposition

• Sensitivity analysis

• Surrogate modeling

Decomposition is concerned with breaking up the large optimization problem into

many smaller problems allowing an efficient treatment. As far as optimization algo-

rithms using derivatives are involved, sensitivity analysis is often required to compute

these derivatives in an exact and quick way. Even though a suitable decomposition is

applied, the decomposed optimization problem can still be intractable because of many

repetitive legacy codes evaluations, surrogate modeling offer strategies to approxi-

mate the results of such codes. These three points are the essential research axes in

this work.

This work is intended to provide an innovative strategy to treat the optimization prob-

lem of a large composite aircraft structure. The three mentioned fields are investigated

and contributions to research effort are given allowing at the very end to treat the large

optimization problem. Being not really devoted to one subject over the others, this work

is intended to improve the treatment of such problems by enhancing an existing bilevel
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optimization strategy, the Quasi separable Subsystem Decomposition carried out

by several researchers (Sobieski, Haftka, Liu and Watson) with innovative and origi-

nal contributions ranging from the investigation of theoretical optimization properties,

the investigation of the optimization constraints, the development of a new surrogate

modeling capability, the numerical investigation of bilevel optimization schemes and

finally on the basis of all this material treat a realistic aircraft structural optimization

problem.
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1 Preliminaries

This chapter describes in more details the problem we are to solve and the different

difficulties that we encounter when sizing large composite structures such as fuselage

structures. Basics and fundamentals of structural optimization are presented, we also

give a brief description of the typical composite material that we address in this work:

laminated composites. The organization of the sizing process and the natural hierarchy

of the analysis of such aircraft structures are highlighted, enforcing the needs first for

a decomposition scheme that allows to break the large problem into many sub-problems

and second for a bilevel optimization that matches the different levels of analysis of the

structures.

1.1 Fundamentals of structural optimization

Structural optimization is concerned with getting the best out of human made struc-

tures. This definition, though simple, encompasses most of the applications of structural

optimization ranging from aerospace industry, automotive, buildings,... any human re-

alization where it is expected to find a better feasible design than the one found by

art or how-do of the engineers. Indeed the main objective of structural optimization is

to automate the design process that has been done through the early history of indus-

try and its ultimate objective is not only to get a better design but the best feasible

design. It basically includes tools ranging from applied mathematics (study of partial

differential equations, mathematical optimization, numerical analysis, sensitivity anal-

ysis, statistics), mechanics (modeling, mechanical optimality criteria) and computer

sciences (effective resolution of a partial differential equation (pde), of an optimization

problem, programming).

’Best’ should be considered carefully for it does not necessarily refers to a physical

measure rather to a measure of performance. This performance can be of course based
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on a physical quantity (compliance, stiffness,...) but also connected to cost (if a design

is a bit heavier but cheaper to manufacture). In the aerospace industry the main crite-

rion to be optimized is obviously the weight of the overall aircraft, satellite,...However

structural optimization is not aimed only at solving weight minimization problems, but

also multi objective optimization (several objectives being often opposed), robust opti-

mization (where some quantities are not free of errors are replaced by random variables).

’Design’ also refers to many different possibilities and involves degrees-of-freedom that

the engineer-designer has to modify. These are design variables and might be geomet-

rical dimensions, shapes, presence of holes in the structures...To make it more real let’s

take examples: for a fuselage structure made of reinforced panels, the geometric de-

scription of the stringer or thicknesses of the panels are typical geometrical dimensions

that the engineer-designer should modify to get to the best design, for aerodynamic

tailoring (maximizing the lift of the wing) the typical degree-of-freedom of the engineer

is the shape of the wing that has to be parameterized through some variables, however

these two types of variables does not modify drastically the design. Indeed, consider

geometric dimensions of a stringer profile, there is no way to change the type of pro-

file. This geometric description does not allow to change the concept used. The same

way parameterization of the shape profile only allows changes of the boundary of the

structure to design but not the concept itself. The ultimate structural optimization is

then the one that allows changes of the concept itself: it does not only size or find a

good shape for some salmon but finds out that a salmon is needed or not and where

it should be placed over the wing. Borrowing once again an example from Sobiesky,

parametric or shape optimization could find out that a biplane would perform better

if one of the two superimposed wings would be canceled (by making the dimensions

of the wing vanish), however only material (or topology) optimization would possibly

find out the other way around, namely creating another wing from a monoplane initial

design.

Finally ’feasible’ refers to a structure that will withstand the loads it will endure

throughout its life cycle. In particular one has to guarantee that the final design of the

structure respects some set of norms and certifications. These norms or certifications

involve physics: the building should resist its own weight, the aircraft should withstand
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loads it endures during different flight phases, the large and thin bridge should resist

against flutter effect...which means that the feasibility of the structure refers to a phys-

ical model. We then introduced the three main ingredients of a structural optimization

problem which are

• the objective function: a criterion that is to be minimized or maximized

• the optimization variables: the set of degrees-of-freedom that the engineer

can possibly modify. These variables might be scalar quantities (geometric di-

mensions), functions (shape optimization) or the domain of the structure itself

• the physical model: the equations (usually partial differential equations) that

model a physical response that is expected to remain below a given value (e.g

strain allowable) or that is to be maximized (e.g compliance). As far as mechanics

are involved a typical physical model involved in structural optimization is of

course linear elasticity model...Structural optimization problems that involve an

interaction with flows (flutter constraints for instance) has to consider a model

for the flows that can be Euler or Navier-Stokes equations.

One important characteristics of the physical model that is to be integrated in the

optimization is that it should be

• a physical model of some physical behavior that is very well known.

One has to use robust and validated numerical approximations of the pde of these

models. Indeed, the optimization process will iterate and possibly affect physical

parameters (material characteristics...) of a given model. If the limit of validity

of the physical model is quite fuzzy or if the model can not be trusted for some

values of the optimization variables, an optimization that involves this model

would not be very useful and significant. For instance, linear elasticity system of

pde’s is well known (well-posedness,...) and the numerical approximations have

been used for now more than 50 years1. So engineers, physicists and applied

mathematician have a quite clear of this model. As opposed to this models, crack
1and even longer. In the literature on the history of FEM methods (see (Felippa 2000)), the aeroe-

lastician M. J. Turner from Boeing company is often recognized as the initiator of FEM within space

and aircraft design offices. His joint paper ’Stiffness and Deflection Analysis of Complex Structures’

together with R. W. Clough, H. C.Martin and L. J. Topp ((Turner et al. 1956)) is considered as the

start of current FEM.
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propagation models did not reach this maturity and would hardly be a physical

model included in a structural optimization.

• a physical model for which numerical approximation schemes are also

validated and not too computationally demanding. The optimization pro-

cess will iterate over the objective functions or constraints that involve the nu-

merical approximation of the model (and possibly derivative of some physical

quantities if gradient-based optimization algorithms are involved). Even though

there exist strategy to alleviate this computational burden (e.g surrogate models),

a structural optimization that involves for which a sole run takes a few weeks is

hardly to be performed easily. Once again, the linear elasticity models fits in this

category since finite elements have been used for several decades and are not the

most demanding approximation methods in comparison for instance with Direct

Numerical Simulation (DNS) schemes for computational fluid dynamics or even

Large Eddy Simulation (LES) that demand excessive computational resources for

an optimization to be solved without any further strategy.

Let us just conclude about optimization algorithms. Structural optimization makes

use of almost all practical optimization algorithms from mathematical optimization

with some specific adaptations with regards to the variables and functions involved

• the classical gradient based and quasi-Newton methods (Sequential Quadratic

Programming SQP...) are classical tools for differentiable structural optimiza-

tion. Adaptation to mechanics led to specific linear approximation for constraints:

such as reciprocal approximation, convex linearization (CONLIN (Fleury 1989)),

method of moving asymptotes (MMA (Svanberg 1987))...They are often accom-

panied with theoretical convergence results often practical and fruitful (quadratic

convergence to a local minimum) provided they are used with a good initial

point. A valuable reference presenting most of these algorithms in the frame of

structural optimization is (Haftka & Gurdal 1992).

• whenever variables are discrete or the functions involved are discontinuous many

algorithms can be used (branch and bound, integer linear programming...) that

all try to explore as much as possible the design space. Many heuristics that

lie in the global optimization field can also be used: simulated annealing, ant
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colony, particle swarm optimization...one of them is now used on a daily basis and

especially for composite design: genetic algorithms or more generally evolu-

tionary algorithms. Most of these heuristics are nature-inspired techniques

that do not require, at least in their standard versions, the derivative. Another

valuable reference is (Gürdal et al. 1999).

1.2 From isotropic to anisotropic structures: composite

structures

The use of composites material in aeronautic structures is far from new. Their specific

strength ratio when compared to their specific weight allow considerable weight saving

with regards to traditional aluminum structures. First application for radar domes in

commercial aircrafts traces back to the early 40’s. Carbon Fiber Reinforced Plastics

(CFRP) have been used from the early seventies: vertical tail plane of the Airbus A-

300, elevators of B-727 and B-737 were made of composites. Boeing uses composites for

secondary structures of the B-777 (ailerons, rudder, trailing and leading edges). Airbus

reached a milestone when introducing composite material in primary structures, e.g

parts of the aircraft that essentially carry loads, for the central wing box of the A-380

(see Fig. 1.1 where we depicted the composite material distribution in the A-380).

The proportions of composite material in the coming A-350 reaches more than 52% of

composite primary structures. In definitive, the part of composites in civil aircraft has

been continually increasing since the modern age of aerospace industry. We depicted

Fig. 1.3 the evolution of the proportions of composite materials in Airbus aircrafts.

In this thesis we only address laminates. Laminates are made of several layers of

different orientations bonded together, each layer being made of long fibers reinforced by

a matrix. A laminate of N layers or plies is represented by the sequence of orientations

[α1/ . . . /αN ] (1.1)

We depicted such a laminate Fig. 1.2. Composite materials offer a wider range for

conception because of their anisotropic properties that can be tailored to specific struc-

tural parts. Regarding specific composite constraints, composite structures are limited
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Figure 1.1: Distribution of composite material in the A380

Figure 1.2: Laminates
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Figure 1.3: Evolution of the composite proportions in Airbus aircrafts

by strain allowables that are determined through coupon tests, while for metal struc-

tures, the mains limitations are stress allowables. Typical phenomena for composite

laminates design should prevent are

• fiber failure

• matrix failure

• fiber/matrix debonding

• delamination

• compressive and shear buckling

Typical orientations used in this thesis are [0◦/45◦/ − 45◦/90◦]. Feasibility rules

that come from both mechanical constraints but also manufacturing constraints are for

instance

• symmetric stacking: the whole stacking should be symmetric. This avoids

extension (in-plane)/ flexural (out-of-plane) coupling.

• balanced stacking: as many 45◦ plies as −45◦ plies. This is typical mechanical

constraints since it cancels the stretching/shear coupling at panel level and then

cancels the bending/twisting coupling at the whole structure level.
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• disorientation: no more than 45◦ of angular difference between two successive

plies. This is another mechanical constraint, it is expected to prevent the inter-

laminate stress concentrations.

• adjacency: no more than 4 successive plies of the same orientation. This pre-

vents delamination in case of impact.

• proportions: we impose a minimum proportion for each orientation (typically

8 to 10%).

These rules are not easy to handle in an optimization problem. Indeed, some of them

are completely discrete (disorientation, adjacency) while others can be treated in a con-

tinuous manner by means of inequality or equality constraints (proportions, balanced).

This illustrates one of the difficulties when sizing composite laminate structures: such

an optimization is by nature discrete, while mechanical behavior (internal load redis-

tribution) is at global level (or macroscopic level) continuous. This is illustrated in

the following section where we describe the modeling and the structural analysis of the

overall structure.

1.3 Modeling of the structure and natural hierarchy of the

structural analysis

The structural sizing of an aircraft at Airbus can be decomposed in three main stages

• Conceptual sizing: choices are made between different design alternatives. The

overall dimensions are set resulting in an estimated weight.

• Preliminary sizing: a finite element representation is built including stringer

definition, stringer and frames pitches. Stiffness’s properties are checked for a

set of load cases arising from aerodynamics, cabin pressure, trailing edge of the

empennage....At this point, the whole structural has to withstand to

• Detail sizing: at this stage, details of geometry and assembly process’s are

set. Clips, doors, rivets, bolts are precisely described. Regarding numerical

simulation, more advanced models (very fine meshes, non linear finite element

methods) are used for instance to check stress concentrations.
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Our analyses lies in the preliminary sizing stage. Large-scale optimization can not

be performed for the moment at the detail sizing stage mainly because of the high

computational cost of the mechanical analyses. Typical optimization variables at this

stage are stringer pitches, frame pitches, panels thicknesses at a global level and at

panel level detail of the geometry of the stringers. However, we still have different level

of sizing because of the hierarchy of the preliminary sizing that first sizes the structure

with respect to global stiffness properties (strains...) and also to stability constraints.

These different levels of sizing implies different levels of mechanical analysis that are the

backbone of our decomposition/bilevel strategy. For a typical fuselage structure, the

modeling and then the internal loads redistribution are based on mechanical assump-

tions that are described here. At panel (or sub-element) level, the main phenomenon

we want to prevent is instability and more specifically buckling.

1.3.1 Plane stress problems

A fuselage structure is an assembly of many thin panels reinforced in the longitudinal

direction by stiffeners (or stringers). In the orbital direction, the panels are supported

by frames. The conceptual sub-element level considered at local level is coined super-

stiffener, it is the artificial element made of the stiffener together with the two-halves

panels along each direction. The primary effect at the global structure level follows from

in-plane loads. For instance, top covers essentially endures tension in the longitudinal

direction, while bottom covers (under the fuselage) essentially endures compression in

the longitudinal direction. The central wing box redistributes different loads from the

wing. The lift of the wing causes a bending moment at the central wing box turning

into lateral tension/compression into panels and the swept wing causes twisting that

turns into shear in the panels. In definitive most of the panels are under complex

in-plane loading including shear that can be very high (for instance in the rear end).

Moreover, composite aircraft are not only sized through strains but also with respect

to impact considerations. We represented Fig. 1.4 the different loads all over the air-

craft together with the specific regions where impact has to be considered. In terms of

mechanical elements, the whole fuselage is considered as a whole assembly of thin shal-

low shells bonded with beams. Plane stress models (with however different membrane

behavior for each panel since the membrane A tensor depends on the proportions of

orientations) are then sufficient to give a relative accuracy of the global behavior of
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Figure 1.4: Main loads and impact regions over an Airbus aircraft

the structures. Since the flexural behavior is not considered at the full structural level,

each of these sub-elements are represented as a finite mesh with few finite elements and

the mechanical responses are usually very simple over each shell or beam. For instance

in our applications strain and stress are considered constant over each panel or beams.

The Finite Element Analysis (FEA) is often performed with classical softwares such

as MSC.Nastran. This implies that the redistribution of internal loads is performed

on the basis of only a few variables, that are denoted stiffness variables: these are

for instance cross-sections areas, proportions of orientations for laminates. This would

not be true if more advanced models were used at fuselage level. For instance, think of

three-dimensional linear elasticity model, the precise description of the structure should

be known to perform a FEA at global level, in particular, the detailed description of

the stacking sequence should be known to predict bending behavior for instance.

1.3.2 Stability constraints

A typical instability phenomenon that appears in thin-walled structures such that fuse-

lages is buckling. Buckling consists in a large deflection of a thin structure under com-

pression in the transverse direction. Depending on the type of buckling, the structure

might be very close to collapse (for instance Euler or global buckling of the whole super-

stiffener) or in the contrary it might be able to carry extra load even after buckling
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(for instance for thin metallic or composite plates, even tough this capability is less

pronounced for composite structures). Buckling is a typical non linear phenomenon

that still fits in the category of small strains but not anymore in the category of small

displacements. It is however often predicted (only the onset of buckling) through lin-

ear theory. In case of simple geometry for instance plates, buckling can be accurately

predicted with the help of linearized von Karman equations and often approximated

through spectral methods such as Rayleigh-Ritz methods. In case the behavior of the

buckled structure has to be investigated, three-dimensional elasticity models are used

leading to very expensive computations. In any case, the stability of the conceptual

element super-stiffener is not only ensured through buckling computations but also

through closed-form expressions, physical assumptions based on the how-do of the en-

gineers and also experimental studies. Furthermore, the final output that the engineer

checks to tell whether or not the structure will buckle is not the straightforward result

of the physical computations. There are some rules-of-thumb or also certification that

apply and change the output value on the basis of margin policies. This complicates

a bit more the computations of stability criteria usually denoted Reserve Factors.

These stability computations are often performed at Airbus with in-house tools (mostly

based on spectral methods) with all the difficulties associated to such in-house: legacy,

programming choices... that complicates the description of the output. Regarding the

input of such computations, buckling behavior needs a more precise description of the

geometry and the laminates (stacking sequences). Besides, the entry should feature also

results of the internal loads redistribution. One could predict the buckling behavior of

a thin plate with strains, stresses or displacement, however, it is often the forces (or

loads per unit length) that are the entries of our stability computations. This means

first that the FEA has to be performed before running the stability codes and second

that the sensitivity computations is quite complicated since buckling constraints de-

pends stiffness variables (and then on all variables) through these forces entries. To

illustrate this, take the following example: say that x is the local variables of a given

structures, Y the associated stiffness variable, we have Y = f(x), denote Φ the in-plane

mechanical response that we get from internal loads redistribution (e.g forces Nx for

instance), then the buckling critical reserve factor depends on x and also on Φ

RF (x,Φ) (1.2)
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to get the derivative of RF w.r.t x we need not only the partial derivative of the RF

w.r.t x but also w.r.t Y
dRF

dx
=
∂RF

∂x
+
∂Φ
∂x

∂RF

∂Φ
(1.3)

where the ∂Φ
∂x terms comes from a Finite Element sensitivity analysis. Another difficulty

associated to that sensitivity computation is that the FEA sensitivity only gives

∂Φ
∂Y

(1.4)

hence, we need to chain sensitivities to get finally

dRF

dx
=
∂RF

∂x
+
∂f

∂x

∂Φ
∂Y

∂RF

∂Φ
(1.5)

Eq. (1.5) is easy to derive formally but as far as practical and realistic softwares

are involved this chain rule is not straightforward to implement. In addition to that,

the stability in-house tools do not give analytical sensitivities of RF and then finite

differences are to be performed, leading to an excessive computational resources and

also to numerically unstable overall derivative.

1.4 Formal description of structural optimization problem in

the engineering context

When sizing a large aeronautic structure, we want to reduce the weight of structure

as much as possible under hard stability constraints. This is formally described as an

optimization problem with a huge number of variables (more than 10, 000) and a bigger

number of constraints (more than 100, 000). Note that we will only consider parametric

optimization of thin structures decomposed onto several structural elements.

1.4.1 Objective function

We consider a structure decomposed onto N elements. Each of these elements is de-

scribed by several variables that can be geometric variables (skin thickness, step be-

tween frames...) but also material-dependent variables (stacking sequence for laminate

composites); We denote X(i) = (x(i)
1 , . . . , x

(i)
ni ), the variables that describe the element

i where ni is the number of such variables. In all generality, there is no reason for ni to

be the same for all elements i = 1 . . . N . we suppose that the weight of element ii given
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by a simple relation between dimensions Xi and we denote M (i) = m(i)(x(i)
1 , . . . , x

(i)
ni )

or shorter M (i) = m(i)(X(i)) the weight of element i. Our global objective is therefore

denoted

M =
N∑
i=1

m(i)(x(i)
1 , . . . , x(i)

ni ) (1.6)

or shorter

M =
N∑
i=1

m(i)(X(i)) (1.7)

The first important remark is that this objective function is additively separable,

that is, the sum of functions independent from each other.

1.4.2 Constraints

As we said before, when sizing a large structure, we deal with a huge number of con-

straints. Difficulties of such problem do not come from the objective function but from

the constraints. from a mechanical point of view this is quite clear : dimensions of each

element change the global strength distribution and local constraints for each element

(local buckling or Euler buckling) depends on global stress distribution. we distinguish

different types

• global constraints on different nodes of the structure (maximal displacement or

stress)

• local mechanical constraints in one element (local buckling of the stiffener’s web,

Euler buckling) that depends on the global stress distribution

• local dimensions constraints (xmin < x < xmax)

• neighborhood (or shared) constraints that connects adjacent elements. These are

continuity design constraints (x(i)
1 = x

(i)
1 ).

There exist a lot of different constraints. These constraints are complicated since they

connect global analyses (FEA usually based on MSC.Nastran) and local analyses (usu-

ally based on skill tools). For instance, for a fuselage structure made of super-stiffeners,

stability constraints (local, Euler bucking, skin instability and compression or tension

strains) are computed by means of complex skill tools that take as in input the local

stress in the element that comes from the global analysis.
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Constraints are therefore strongly dependent on the global stress distribution, this

distribution is actually computed by means of an FEA. This FEA lies on a mesh.

Each element of this mesh is actually a structural element and so global stiffness (dis-

placements d, strain ε, stress σ, internal strength F ) are constant on each structural

element. Global stress distribution is not directly computed with detailed local dimen-

sions but through so-called stiffness variables. Namely, each element is described by

a few stiffness terms (denoted by Y (i)), which are for instance the cross-section area,

moment of inertia... They obviously depend on the detailed dimensions (we denote

this Y (i) = ϕ(X(i))) but they are enough to compute the stress distribution. We can

therefore write the different constraints with the following convention that if the con-

straints computations require the stress distribution and therefore an FEA, we make a

K appear in the notation, e.g cK (to recall that the constraints computations require

the assembly and the resolution of stiffness system Kd = f)

• cKglob(Y (1), . . . , Y (N)) are the maximal displacement constraints

• cK(i)
glob−loc(Y

(1), . . . , Y (N), X(i)) are local constraints which depend on stress distri-

bution : these are typically Reserve Factors computations

• cglob(X(1), . . . , X(N)) are shared constraints between elements : design continuity

constraints

• c(i)
loc(X

(i)) are purely local sizing constraints, e.g box constraints xmin ≤ x
(i)
j ≤

xmax.

This stiffness terms Y (i) are of great interest because they reduce the high number of

variables for each element to a low number of variables which are, in definitive, the only

ones we need to compute the global stress distribution. If stiffness terms are fixed, the

stress distribution is fixed and therefore the structural elements are decoupled which

allows to perform local optimizations concurrently. This allows also to distinguish

between hard constraints (cK) of high computational cost usually nonlinear and non

convex and easy constraints usually linear (or inverse linear) and not so expensive to

call and differentiate.
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1.4.3 Formal problem

Before giving the formal definition of the structural optimization problem, we must

remark that the weight of element i m(i) can be computed directly from the sole stiff-

ness terms. For instance, the cross-section area Ai of element i is enough to compute

the weight, this is why we indifferently denote it m(i)(X(i)) or m̂(i)(Y (i)) and m(X)

or m̂(Y ) the global weight (with X = (X(i), . . . , X(N)) et Y = (Y (i), . . . , Y (N)). The

only important characteristic is to remain the separability of the function. On the

other hand, constraints cK(i)
glob−loc do not directly imply the stiffness terms Y but rather

the stress inthe element i computed with the stiffness terms of of all the elements.

Therefore the constraint cK(i)
glob−loc for element i depends on all the element even though

it only concerns the element i. This is why we prefer to denote Φ(i)(Y ) the stress in ele-

ment i used to compute the RF of element i and the constraints cK(i)
glob−loc(Φ

(i)(Y ), X(i)).

Eventually, the minimization problem can be written as

minX M(X) =
∑N

i=1m
(i)(X(i))

s.t


cKglob(Y

(1), . . . , Y (N)) ≤ 0
c
K(i)
glob−loc(Φ

(i)(Y ), X(i)) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(1.8)

1.5 Objectives and motivations of this thesis

We can now turn to the main objective of this thesis, which is to find out efficient ways

to solve such problems. This resolution is to be find through different axes of research

and innovation

• the very nature of Problem (1.8) advocates for breaking up the large problem

into many smaller problems that are to be solved in parallel. Indeed once the

Y ’s are fixed, we end up N smaller sub-problems can be solved in parallel.

• find out an appropriate representation of the composite that can be used in

a continuous manner to be integrated in the optimization. Indeed, the very large

size of the optimization problems, the continuous internal loads redistribution also

advocates for gradient-based optimizations. First because heuristics such genetic

algorithms or simulated annealing or all of the specific methods Mixed Integer
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Non Linear Programming could hardly handle such a large number of variables

and constraints

• speed up the whole optimization by using surrogate models that should

ideally be very accurate for the global-local constraints. Indeed, these constraints

are the most computationally demanding constraints because of the number of

calls in a realistic optimization (several millions times) and of the sensitivity issue.

1.5.1 Early state of the art

This thesis is totally is the continuation of the work of A. Merval ((Merval 2008),

(Merval et al. )) who highlighted the needs for decomposition and surrogate models in

the frame of the sizing of metal structures. In particular, A. Merval shown that we

could get more accurate results if we divided the approximation space. However this

division was handmade and relied on mechanical criteria. Regarding decomposition,

A. Merval initiated thorough comparisons through its original test case that we used in

this thesis. However, results could not distinguish a given bilevel/decomposition among

the others since none of them led to the real optimum in numerical investigations. For

composite structures, this thesis is also in the continuation of the work of B. Liu. In

(Liu 2001), (Liu et al. 2004) the author highlighted and derived the existing scheme

Quasi separable Subsystem Decomposition for composite structures. The main

optimization problem was close to the one treated here: bilevel optimization of a com-

posite wing. In particular, the need for accurate surrogate models in high-dimensions

was highlighted to speed up bilevel optimization and a decomposition based on pro-

portions and real discrete optimizations at panel level is given. These references were

first answers to the problem of the optimization of large scale composite structures.

Owing to the different subjects this thesis intends to cover (decomposition, surrogate

models and composite optimization), a full state-of-the-art would hardly be useful if

presented at once. This is why a more detailed state-of-the-art is presented in each

related chapter.
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1.5.2 Decomposition/bilevel

Decomposition or bilevel formulations are used here in a synonymous meaning, while

they are not totally. As a matter of fact our aim is to derive and validate a decom-

position formulation that gives rise to a bilevel optimization scheme. To that extent,

decomposition then means breaking up the whole problem into many smaller prob-

lems. This decomposition should be done in such a way that one group of variables

have major influences on the overall structure and another group should have only

influence on the local design. Leading to an upper level optimization based only on a

few variables that include as constraints local optimization performed at lower level.

Typical choices for that group of upper level variables is of course the Y ’s stiffness

variables, while the lower level group would obviously be the X’s. Due to the nature of

the problem (objective that is additively separable), the lower level optimizations over

X could be performed only at sub-element i level, leading then to N sub-problems that

are solved concurrently.

At this point, we should mention that the typical decomposition/bilevel scheme that

we address in this thesis are very similar in spirit to Multi Disciplinary Optimiza-

tion (MDO) schemes. Indeed, our aim is to break up the large problem into into

many problems that matches the different levels of analysis. That is to say, an up-

per level where internal loads redistribution is considered and lower level where only

stability constraints are considered. This lower level of course should also use the

natural and structural decomposition of the overall structure and should be done at

structural sub-element level (typically super-stiffener level). One could imagine other

decompositions (stiffener level in one hand and panels in the other hand). However,

no matter what is the decomposition used, structural sub-elements can be thought

as systems connected between them and this interaction should be considered during

the design process. This is precisely the definition of MDO problems, for instance in

(Sobieszczanski-Sobieski & Haftka 1997). The main difference here is that we do not

consider different disciplines with different objectives rather different elements with the

same local objective (weight), but the overall goal remain the same that is decompos-

ing the whole optimization problem on the basis on its natural definition in terms of

interconnected systems (or sub-elements). We refer to the specific term of multilevel
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because our analysis of the whole structure implies different levels or representation:

in-plane properties based on a rough description of the structure (in MDO jargon, stiff-

ness variables are public variables, internal loads are coupling variables), out-of-plane

properties based on a more realistic description of the structure. We could think of

deeper level again more realistic (ply drop-offs for instance). Even though multilevel

seems a more appropriate term to our problem, our challenging tasks remain essentially

the same as in MDO: computational and organizational issues.

The current sizing process for very large structures relies essentially on classical mechan-

ical optimality criteria that are known in some cases (hyperstatic, redundant structures

or structures made of different material) that are known to be sub-optimal (though the

optimum is often near the real optimum, see (Haftka & Gurdal 1992)). Our objective

is then to find out a decomposition scheme that improves the optimum and possibly

finds the real optimum.

1.5.3 Adaptation to specific composite considerations

Such a decomposition should be adapted to composite laminate structures. In particu-

lar, we have a find a way to treat the different levels of analysis for composites. Propor-

tions of fiber orientations are a convenient way to treat the internal loads redistribution

since under plane stress assumptions and for symmetric laminates, the internal load

redistribution depend only on these variables. However, proportions are not enough

to describe the bending behavior (buckling...) and usually discrete optimization algo-

rithms are used to find out realistic stacking sequences (genetic algorithms...). In our

case for efficiency reasons, we want to use gradient-based optimizations algorithms and

then need a continuous relaxed representation of the bending behavior. This repre-

sentation should also ideally be adapted to our decomposition scheme and well-suited

for local optimizations problems (convexity properties for instance) and finally this

representation should also be convenient to design approximation models of buckling

constraints.

1.5.4 Approximations of stability constraints

Besides decomposition, buckling constraints are called too many times to get an efficient

resolution of large scale optimization problems. The other way of speeding up the whole
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optimization is by using approximation models or surrogate models. the very

nature of the buckling constraints (non linear, piecewise discontinuous) and Airbus

stability tools make this approximation no very good when using classical surrogate

models (polynomial regression, neural networks,...). The high dimension is also quite

challenging. Our objective is then to improve the accuracy of the approximation

by taking into account specific knowledge of the functions to be approximated.

This obviously implies the investigation of the nature of such functions.

1.6 Detailed outline

We can now give a detailed outline of the thesis.

1.6.1 Optimization properties and early presentation of the

decomposition/bilevel scheme

We start with the main core of our thesis which is essentially concerned with large-

scale optimization. In Chapter 1, a few fundamentals facts on theoretical optimization

are recalled ranging from basics optimality conditions to the less classical subject of

sensitivity of optimization with respect to the parameters. Roughly speaking, in the

multilevel or MDO framework we often consider optimization within optimization, and

whenever gradient-based methods are used, we need to assess the derivation of the inner

loop optimization with respect to its parameters. This post-optimal sensitivities are

to be used when implementing the decomposition/bilevel schemes. Moreover, eigen-

problem sensitivities (such as buckling) can be thought as post-optimal sensitivities,

we then give this useful and original interpretation. The original monolevel problem is

then shown to be equivalent to an optimization that uses directly stiffness variables as

optimization variables. This equivalence is the backbone of our decomposition/bilevel

schemes since they can be derived from decomposing the different equivalent monolevel

versions of our original problem.

1.6.2 Adaptation to specific composite representation

Before testing and validating we need first to find out a representation of the composite

and more precisely of the bending behavior that can be used within a decomposition

scheme and also that can be used to build approximation models. These two aspects
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are investigated in Chapter 3 by introducing a very classical and well known represen-

tation of laminates: the lamination parameters. We review some of their properties and

derive a quite rigorous proof of the concavity of the buckling critical load factor over

lamination parameters. Buckling critical load factor or Reserve Factor is a typical

eigenproblem parameterized by lamination parameters, loading... Based on the eigen-

problem sensitivities presented in the former chapter and on the Rayleigh-Ritz method,

we investigate the behavior of the Reserve Factor and show that it behaves essentially

as a piecewise differentiable function and relates this behavior to theoretical references.

Lamination parameters also offers a compact representation, few variables can be used

as predictive variables. An ideal approximation strategy for the buckling constraints

would be first to use lamination parameters and take into account the numerically ob-

served behavior. Furthermore, when used in the more complex and realistic stability

tools, buckling computations can also lead to real discontinuities.

1.6.3 Approximating discontinuous and derivative discontinuous functions

A whole new approximation strategy is developed in Chapter 4. This is aimed to han-

dle the specific behavior of buckling constraints. The main and quite simple idea is

to decompose the input space into many regions over each the function to approxi-

mate is simple (at least continuous). This is achieved by using tools from unsupervised

statistical learning such as clustering and density estimation. Our original strategy

relies on the Expectation-Maximization algorithm for Gaussian mixtures. We present

our algorithm on the basis of probability/statistics framework. Many test cases are

presented to evaluate our strategy that was coined by the author IMAGE (Improved

Metamodeling Approximation through Gaussian mixture of Experts). This

strategy lies in the field of mixture of experts. Several types of experts used throughout

this thesis are then briefly reviewed an an original interpretation of a standard approx-

imation model (weighted least squares) is given in terms of mixture of experts giving

more insight to improvement methods.

1.6.4 Numerical investigation of monolevel and bilevel schemes

The main tools of our bilevel schemes are at this point already presented, we then turn

to the investigation and comparison of the different schemes. However, before compar-

ing bilevel schemes, we need to set up first a test case, inherited from (Merval 2008).

56



1.6 Detailed outline

We also recall a few facts on sensitivity analysis from problems involving FEA’s. This

material is presented and applied in Chapter 5 where we also investigate the numerical

behavior of the different monolevel schemes.

Chapter 6 is concerned with the numerical comparison of the different bilevel schemes

already presented on the basis of our realistic test case. The important difference in

terms of implementation are highlighted. Indeed, such bilevel formulation can be im-

plemented in very various manners: either we chain optimizations, first a top level

optimization that finishes and then we send the results to the lower level optimizations

and then iterate back and forth, leading to a lot of optimizations, or we implement it

as a real bilevel optimization, only one upper level optimization is performed, where

some constraints involves solving at each iteration many local optimizations problems.

The alternating optimizations version is shown to be sub-optimal and we then turn to

a real bilevel implementation of the Quasi-separable Subsystem Decomposition

scheme. This QSD is shown to be optimal in our test case and is also shown to require

slightly less FEA’s and global iterations than the AIO version.

On the basis of this results, we turn to a realistic composite structure in Chapter

7, where we implement and apply the QSD scheme on the basis of the innovative ma-

terial we presented in the former chapters. First lamination parameters are used at

both levels, we then adapt the QSD scheme to lamination parameters and the stability

constraints computed through an Airbus in-house tool are approximated through the

IMAGE strategy extended to mixed variables. Finally post-optimal sensitivities are

chained with internal loads sensitivities. Detail of the implementation and results are

given in that final chapter.
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2 Monolevel and bilevel formulation

This chapter is concerned with the theoretical properties of the different formulations

that we apply in the sequel. Indeed, our large-scale optimization problem exhibits a

specific structure that is used to derive several classical decomposition schemes. This

chapter is also essentially concerned with the theoretical properties of optimization:

the basics of differentiable optimization are recalled, an important insight is given into

post-optimal sensitivities, that is the sensitivity of the optimum value function with

respect to problem parameters. Indeed, this derivative is a cornerstone of our bilevel

implementation. An original application of these classical results is given when deriving

the sensitivity of an eigenvalue problem. The original monolevel formulation is then

shown to be mathematically equivalent to the block-angular form. This block-angular

form is then transformed through inexact quadratic penalty, resulting in three different

monolevel instances of the same optimization problem, each of them leading to different

bilevel decomposition schemes. The different implementations will be presented and

validated on Chapter 6.

2.1 Motivation for decomposition techniques

The aim of decomposition techniques (a.k.a multilevel optimization) is twofold.

First it allows to treat problem of size out-of-scope due to memory limitations by break-

ing up a large problem into many smaller sub-problems. As outlined in the first

chapter, the size of typical structural optimization for fuselage structures is about sev-

eral thousands optimization variables and much more optimization constraints, making

the practical optimization hard to handle in one shot. Then the original problem is to

be decomposed into many smaller problems that can be solved in one-shot due to their

reduced size. The second important practical aspect that the decomposition schemes

want to reach is scalable optimization, the smaller sub-problems should be solvable

in parallel hence they should not depend on each other at sub-problem level. Their
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connection is to be solved at upper level by means of constraints. In this short section

we give more details on these two aspects to show and understand the objective of the

decomposition techniques before presenting them at the end of the chapter.

2.1.1 Large-scale problems with natural hierarchy

Large-scale problems arising in structural optimization often exhibits a specific struc-

ture. This structure is derived from the very nature of the structure to be optimized.

The global structure is made of many sub-elements all connected between them by in-

ternal loads redistribution. This implies also differences of level of analysis, the internal

loads redistribution is made at global level on a rough and coarse mesh of the fuse-

lage, e.g panels are represented by a few finite elements and typical responses such as

strains ε, stresses σ and forces (loads per unit length) Nx, ... are considered constant at

sub-element level. Furthermore only a few variables are needed to compute this redis-

tribution through a Finite Element Analysis. In general, internal loads redistribution

computations is based on simplified elasticity models and do not consider 3 dimensional

linear elasticity equations. Hence, a typical FEA over the fuselage involves only stiff-

ness variables such cross-section areas, proportions of layers orientations for laminates.

At sub-element level the mechanical analysis is much more detailed and is based on

more advanced modeling such as large deflections of thin plates (linear von Karman

equations for instance) for buckling, post-buckling behavior for thin plates,...The num-

ber of design variables is larger (detailed dimensions of the stiffener, stacking sequence

for laminates) and the analysis can be performed on different approximation meth-

ods (Rayleigh-Ritz for buckling, see appendix), classical closed-form expressions (for

damage tolerance, post-buckling), engineer formulations based on the art and experi-

ence...and in case more details are to be known a non linear finite elements analysis can

be performed. One of the most important feature of these analyses is that they usually

take as inputs responses computed from the internal loads redistribution, making these

constraints (typically buckling) not only depending of local sub-elements variables but

also on all coarse variables (or stiffness variables), these constraints are then referred to

global-local constraints and induce a natural hierarchy, analysis start with FEA, based

on its results, stability analysis at local level is performed. These different levels of

mechanical analysis were already outlined in the first chapter. They induce a natural

hierarchy on the analysis that translates into the optimization problem. Furthermore,
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we understand from a mechanical point of view that such global-local constraints es-

sentially depends on the detailed dimensions but also on the coarse stiffness variables,

making the constraints Jacobian block diagonal dominating. Typical such block diago-

nal dominating form is depicted Fig. 2.1. This structure is not the most appropriate to

be decomposed, indeed, roughly speaking ’everyone depends on everyone’, it does not

make appear any specific group of variables that could be used as upper level optimiza-

tion variables. This initial formulation will be however our reference problem and will

be referred to as All-in-One Optimization. This is why the first step that we achieve

in this chapter is to find equivalent formulations that exhibit a more valuable structure

for decomposition. The form that we will derive in the next sections is known in the

literature as block-angular structure and will introduce and use stiffness variables

as design variables. Besides decomposition, the block-angular structure has benefits in

terms of sensitivity computations. Indeed the profile of the constraint Jacobian is much

more simple to handle and has many more zero elements. See for instance Chapter 5

where we derive analytical sensitivities for the AIO problem. Other types of optimiza-

tion problem structures can be found in (Haftka & Gurdal 1992), (De Wit 2009) and

(de Wit & van Keulen 2011). Last but not least, we will see that block-angular decom-

position allows to fit the different levels of mechanical analysis, since in our approach

only the stiffness variables appear at the upper level and thus finite element analysis is

to be performed only at this level while only detailed variables appears at sub-element

level and only local stability analysis is performed while keeping constant responses

from the FEA performed at upper level.

2.1.2 Towards scalable optimization

The other immediate benefit of decomposition is that the smaller sub-problems can

be solved in parallel, allowing to speed up design. Indeed, we will see that, in the

block-angular transform, once the stiffness variables are fixes, the sub-problems are no

more connected among them and can be solved in parallel. Optimization at upper level

uses quantities computed through the resolution of the lower level optimizations as

constraints, making then one iteration of the upper level computationally demanding,

however, these constraints can be computed in parallel, as well as their sensitivities.

Hence, provided there are only a few iterations at global level and that sub-element

optimization are fast (for instance a well-posed convex problem solved by quasi-Newton
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Figure 2.1: Profile of the dominating elements in absolute value of the Jacobian of constraints.
Note that this profile is obtained after ordering variables and constraints, we sort the variables
sub-elements per sub-elements and constraints the same way. In reality all the elements of this
matrix are non zero, we only depicted the largest elements
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methods (SQP, GCM,...) using a smart initial point), the global process might be faster

than an all-in-one optimization.

2.2 Basics of differentiable optimization theory

We briefly recall in this section a few general facts on differentiable optimization theory

that will be used throughout this chapter and in next chapter as well. The optimal-

ity conditions for constrained problems are recalled together with a few remarks on

constraints qualification that are a pitfall in bilevel programming. Indeed, bilevel pro-

gramming involves ’optimization within optimization’, creating then implicit functions

that are computed through the resolution of an optimization problem. Such functions

are usually not differentiable whenever the implicit optimization problem has many

active constraints at the optimum and the local solution is at a point where any mod-

ification of the optimization parameters will make the set of active constraints change.

In case, such a function is differentiable, we recall here main results on its derivatives

that are often called post-optimal sensitivities. The first part is very classical and

does not present any innovation, emphasis is put on post-optimal sensitivity results.

An original application of this results is presented: derivative of an eigenvalue problem.

2.2.1 Vocabulary

Let f be a function defined over some subset K of Rn. K will be the feasible set of f ,

for the moment we do not consider explicit constraints. We just think of K as the set

where some constraints are satisfied. We are interested in the following problem

min
x∈K

f(x) (2.1)

x? ∈ K is a global solution of Problem (2.1) whenever

∀x ∈ K f(x?) 6 f(x) (2.2)

x? ∈ K is a local solution of Problem (2.1) whenever x? minimizes f in a neighborhood

of x?. More formally, there exists ε > 0 s.t

∀x ∈ Bε(x?) f(x?) 6 f(x) (2.3)
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where Bε(x?) = {x ∈ K ||x − x?|| < ε} is the open ball of radius ε. A global solution

(resp. a local solution) is called a strict global solution (resp. a strict local solution)

provided the inequality in (2.2) (resp. (2.3)) is strict. Problem (2.1) has a global

solution whenever f is continuous and K is compact. In case K is closed but not

compact (hence not bounded), the existence of a global solution is ensured whenever f

tends to infinity at infinity on X, i.e

lim
x∈X,||x||→+∞

f(x) = +∞ (2.4)

Remark. Note that in the context of parametric structural optimization, we often

show that a minimum exists by using this result. See the chapter on parametric op-

timization in (Allaire 2007). See also the appendix where we show with that basic

argument that a global minimum exists for our test-case.

A set K is convex provided for any x and y in K, θx + (1 − θ)y also belongs to K

for all t ∈ (0, 1). A function f defined over a convex K is convex provided for any x

and y in K we have

∀θ ∈ (0, 1) f(θx+ (1− θ)y) 6 θf(x) + (1− θ)f(y) (2.5)

Convexity is of primary importance in optimization since it provides important features

about an optimization problem. For instance, for Problem (2.1) with K convex, in case

f is also convex, we have

• If x? is a local solution of (2.1) then it is a global solution.

• The set of all global solutions of (2.1) is convex.

• In case, f is strictly convex, (2.1) has at most one solution.

It should be noted that convexity is not by itself sufficient to ensure the existence of

a solution (think of x 7→ 1
x over R?

+) with no further assumption on K. In practical

algorithms, convexity plays also a very important role, since the following optimality

conditions that are necessary become sufficient in case of convexity.
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2.2.2 Optimality conditions

We will assume that f is C 2 over K. We first derive the optimality condition for an

unconstrained problem K = Rn.

min
x∈Rn

f(x) (2.6)

We summarize here the necessary and sufficient conditions for a point x? to be a

local solution of (2.6)

• Necessary conditions

– First order necessary condition: the gradient of f at x? is zero

∇f(x?) = 0 (2.7)

– Second order necessary condition: the Hessian of f at x? is positive

semi-definite

∀d ∈ Rn dT∇2f(x?)d > 0 (2.8)

• Sufficient conditions: if x? is s.t ∇f(x?) = 0 and ∇2f(x?) is positive definite,

then x? is a local minimum of (2.6).

Practically, it means that the first-order condition is not enough to say whether or not

we are at a local minimum of f . Indeed, a local maximum also satisfies the first-order

necessary condition (with the Hessian negative semi-definite) and there may be points

satisfying the first-order necessary condition (such points are often called critical or

stationary) that are neither local minimum nor local maximum (saddle points, at

these points the Hessian has both positive and negative eigenvalues). The two neces-

sary conditions are often denoted zero-slope (vanishing gradient) and non-negative

curvature (all the directions are ascent directions) conditions. Let f be a convex func-

tion, then its Hessian is non-negative at all x ∈ Rn. We then see that the first-order

necessary condition is also a sufficient condition for global minimum.

We now turn to optimality conditions for constrained problems of the sort

minx∈Rn f(x)

s.t
{
g(x) 6 0
h(x) = 0

(2.9)
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where the inequality constraints g : Rn 7→ RmI and the equality constraints h : Rn 7→
RmE will be assumed to be C 2. Recall that the Jacobian Dg(x) of g at x is the mI ×n
matrix

Dg(x) =


∂g1

∂x1
. . . ∂g1

∂xn
...

...
∂gmI
∂x1

. . .
∂gmI
∂xn

 (2.10)

hence in gradient notation (vector of partial derivatives)

Dg(x) =

 ∇g1(x)T
...

∇gmI (x)T

 (2.11)

This allows us to define the gradient of g at x with ∇g(x) = Dg(x)T .

Note m = mE + mI , E = 1 . . .mE , and I = mE + 1 . . .m (indexes of constraints)

and consider c : Rn 7→ Rm defined as c(x) = (h(x), g(x)), we will make use of the

Jacobian of c that we will denote A(x) = ∇c(x)T of size (m,n). So Aij = ∂ci
∂xj

.

The necessary and sufficient conditions for a constrained problem of type (2.9) make

appear natural quantities associated to the constraints called the Lagrange multipli-

ers (or Karush-Kuhn-Tucker multipliers) traditionally noted λ. They also make

naturally appear the Lagrangian function L : Rn × Rm defined as

L(x, λ) = f(x) + λT c(x) (2.12)

with λ = (λI , λE) ∈ RmI+mE . We can now state the first-order necessary conditions for

a point x? to be a local minimum of Problem (2.9) provided x? satisfies some regularity

condition for the constraints (constraint qualification) that we will develop briefly

in the next section.

There exists λ? ∈ Rm s.t

• Optimality condition (x?, λ?) is a stationary point of the Lagrangian w.r.t x.

∇f(x?) +A(x?)Tλ? = 0 (2.13)
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• Feasibility Constraints are satisfied at x?

h(x?) = 0, g(x?) 6 0 (2.14)

• Complementarity slackness conditions The Lagrange multipliers λ?I associ-

ated to inequality constraints satisfy the following relations

λ?I > 0 (2.15)

and

λ?TI g(x?) = 0 (2.16)

The set of Equations (2.13, 2.14, 2.15, 2.16) are the Karush-Kuhn-Tucker condi-

tions. Note that (2.13) is indeed a stationary point of L w.r.t to x

∇xL(x, λ) = ∇f(x) +∇cλ (2.17)

and (2.16) means that

• the multipliers corresponding to inactive constraints are zero

gi(x) < 0 =⇒ λ?i = 0 (2.18)

• The multipliers associated to inequality constraints are always nonnegative, this

will appear more clear when we will derive the interpretation of Lagrange multi-

pliers as the derivative of the objective function at the optimum w.r.t optimization

parameters.

We now turn to the regularity conditions of constraints that need to be satisfied at a

point x? to be a local minimum.

2.2.3 Constraint qualifications

There exist many different constraint qualification, some of them being quite sophisti-

cated. The purpose of that short section is to give only the most classical constraint

qualification. First denote I0(x?) = {i ∈ I s.t ci(x?) = 0}, the set of active (inequal-

ity) constraints at x?. Note that, λ?i = 0 does not necessarily implies that ci(x?) < 0.

However, in case we have λ?i = 0 =⇒ gi(x) < 0, this is referred to as
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• Strict Complementary Slackness Condition (SCSC) whenever we have

λ?i = 0 ⇐⇒ gi(x) < 0 ∀i ∈ I0(x?) (2.19)

Define the Linear Independence Constraint Qualification (LICQ) at x with

• (LICQ) The gradients of the active constraints {∇ci(x) s.t i ∈ E ∪ I0(x)} are

linearly independent∑
i∈E∪I0(x)

αi∇ci(x) = 0 =⇒ αi = 0 ∀i ∈ E ∪ I0(x) (2.20)

LICQ ensures that there exists at most one Lagrange multiplier λ? satisfying the

first-order optimality conditions. If we have λ? and µ? satisfying (2.13) at the same x?,

LICQ implies that λ? = µ?.

The following constraint qualification known as Mangasarian-Fromovitz, (MFCQ) is

weaker than LICQ and hence is more often satisfied. We say that the constraints ci at

x? are MFCQ qualified provided

• (MFCQ) The gradients of the active constraints {∇ci(x) s.t i ∈ E ∪ I0(x)}
are positively linearly independent

if
∑

i∈E∪I0(x)

αi∇ci(x) = 0 with αi > 0 for i ∈ I0(x) (2.21)

then

αi = 0 ∀i ∈ E ∪ I0(x) (2.22)

2.2.4 Second order conditions for constrained problems

In this section, we assume that f , g and h are twice continuously differentiable w.r.t x.

In that case, we have the following necessary conditions. As in the unconstrained case,

there exist sufficient conditions, quite close, that ensure practically that we did find a

local minimum

• (Necessary condition of second order for constrained problems (NC2CO))

Let x? be a local minimum of Problem (2.9) then

(a) Conditions (2.13), (2.14), (2.15) and (2.16) hold.
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(b) The Hessian of the Lagrangian is positive semi-definite

zT∇2
xxL(x?, λ?)z > 0 (2.23)

for all z 6= 0 in Rn s.t

∇gi(x?)z 6 0 ∀i ∈ I0(x?) (2.24)

∇gi(x?)z = 0 ∀i ∈ I s.t (λ?I)i > 0 (2.25)

∇hi(x?)z = 0 ∀i ∈ E (2.26)

• (Sufficient condition of second order for constrained problems (SC2CO))

Let x? be a point of Rn, if

(i) There exist λ?I and λ?E s.t conditions (2.13), (2.14), (2.15) and (2.16) hold.

(ii) We have

zT∇2
xxL(x?, λ?)z > 0 (2.27)

for all z 6= 0 in Rn s.t

∇gi(x?)z 6 0 ∀i ∈ I0(x?) (2.28)

∇gi(x?)z = 0 ∀i ∈ I s.t (λ?I)i > 0 (2.29)

∇hi(x?)z = 0 ∀i ∈ E (2.30)

Then x? is a strict local minimum of Problem (2.9).

2.2.5 Post-optimal sensitivity

Post-optimal sensitivity refers to the area of estimating the sensitivity of a problem of

optimization w.r.t problem parameters. The typical formulation of such a parameter-

ized problem is

minx∈Rn f(x; p)

s.t
{
g(x; p) 6 0
h(x; p) = 0

(2.31)

where p is some fixed parameter that remains unchanged during the optimization. We

formally define the optimal value function µ? : R 7→ R as

µ?(p) := minx∈Rn f(x; p)

s.t
{
g(x; p) 6 0
h(x; p) = 0

(2.32)
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The same way we can define not a function but ’multivalued’ function that associates

to p the set of minimizers of Problem (2.33). This is often called in the literature (see

(Fiacco 1983)) the solution set mapping x? : R 7→ 2Rn with

x?(p) := argminx∈Rn f(x; p)

s.t
{
g(x; p) 6 0
h(x; p) = 0

(2.33)

where 2Rn is the power set of Rn the set of all subsets of Rn. In case Problem (2.33)

has a unique solution, for instance in case of strict convexity of f , ellipticity of f and

g convex, x? turns out to be a vector-valued function and no more a point-to-set

mapping. In case Problem (2.33) is a convex parametric optimization problem for all

p, x?(p) is a convex and closed set of Rn but possibly empty (recall that convexity does

not ensure the existence of a minimum). Similarly to the solution set mapping we

can define Lagrange multipliers set mapping λ? that associate the Lagrange mul-

tipliers found at optimums. In the sequel, we will be interested in deriving properties

for the optimal value function µ?.

This is related to the estimation of the behavior of the optimal solution w.r.t an opti-

mization parameter. To make it more clear, we can think of a structural optimization

problem, for instance the weight of a structure made of an isotropic homogeneous ma-

terial of material characteristics (E, ν) is minimized under stability constraint, suppose

an optimum is found. A question that naturally arises is what would happen if we

do not know very precisely E and ν or if we want to replace the material by a ’close’

material E′ and ν ′. What would be the new optimum? Would that be close

to the original optimum? To make it more precise, suppose we do not know E at

δE > 0 and we could derive the derivative of µ?(E) w.r.t E, µ? being some optimal

value function (e.g weight...) then the real optimum lies in (in case ∂µ?

∂E > 0)

[µ? − δE∂µ
?

∂E
, µ? + δE

∂µ?

∂E
] (2.34)

Post-optimal sensitivity tries to answer these questions by giving Lagrange multipli-

ers a fundamental role that allows to get the derivative of the optimal value

function. Note that it is an old subject for it was studied in the early 40’s (Hotelling,

Roy, Samuelson...see (Löfgren 2011)) and the main results were already know from the

economists (shadow price or marginal utility, envelope theorem) and inspired
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the theoretical work of Bergé (Berge & Patterson 1963) (maximum theorem)1. How-

ever, no general rigorous results for nonlinear programming were derived until the

70’s. It traces back to the work of Fiacco, Mc Cormick (Armacost & Fiacco 1974),

(Fiacco 1976)... one of the first articles that applies it in an engineering context was

from Sobieski and Barthelemy (Sobieszczanski-Sobieski et al. 1981). The main results

stated here comes from the book of Fiacco (Fiacco 1983). However before giving these

rather technical results, we will just start with a quite classical example of the inter-

pretation of Lagrange multiplier for a simplified parametric optimization problem with

only one equality constraint and where the parameter only appears in the right hand

side.

µ?(p) := minx∈Rn f(x)
s.t

{
h(x) = p

(2.35)

We assume that is Problem (2.35) is well-posed and has a unique solution for all

p denoted x? (we will see that in reality solution should be locally unique) and the

associated Lagrange multiplier λ?. We introduce the Lagrangian of Problem (2.70)

which also depends on p.

L : Rn × R× R 7→ R
(x, λ, p) 7→ L(x, λ, p) = f(x) + λ.(h(x)− p) (2.36)

Note that

µ?(p) = f(x?) = L(x?, λ?, p) (2.37)

indeed at the optimum, the equality constraint is satisfied and we have

h(x?)− p = 0 (2.38)

However, x? and λ? depend on reality on p, so we make this dependence appear by

writing x?(p) and λ?(p). Now assuming that these functions do exist and that µ?(.),

x?(.) and λ?(.) are differentiable. We can now write

∂µ?(p)
∂p

=
∂L(x?(p), λ?(p), p)

∂p
(2.39)

1In reality, most of the following results were already known from mathematicians of the 19th cen-

tury: Zermelo, Darboux,...Hamilton himself derived the formulas in the context of infinite-dimensional

optimization problems, more precisely in what we call today optimal control theory
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and by applying chain rule, we get

dL(x?(p), λ?(p), p)
dp

=
∂x?(p)
∂p

∇xL(x?(p), λ?(p), p) +
∂λ?(p)
∂p

∇λL(x?(p), λ?(p), p)

(2.40)

+
∂L(x?(p), λ?(p), p)

∂p
(2.41)

Now using KKT conditions, we know that at the optimum the partial gradients of

the Lagrangian vanish. More precisely

∇xL(x?(p), λ?(p), p) = 0 (2.42)

and

∇λL(x?(p), λ?(p), p) = 0 (2.43)

Now inserting Eq. (2.39), Eq. (2.42) and Eq. (2.43) in Eq. (2.40), we get

dµ?(p)
dp

= −λ? (2.44)

We see that, in that simple case, the Lagrange multiplier λ? can be interpreted

simply as the derivative of the optimal value function with respect to p. In

economics, this interpretation is often referred to as the marginal price, that is the

price we have to pay by making the constraints harder to satisfy in the case of inequality

constraints. Indeed we could have derived exactly the same expression when changing

the equality constraint into an inequality constraint using the same equations. However,

we will see in an informal way that the treatment of inequality constraint is not as

straightforward as the equality constraint. Indeed, what will appear in the following

to derive post-optimal sensitivities results is that we need to assume that the set

of active inequality constraints remains unchanged in a neighborhood of p.

Consider the inequality parametric optimization problem

µ?(p) := minx∈Rn f(x)
s.t

{
g(x) 6 p

(2.45)

in that case the Lagrangian is

L : Rn × R× R 7→ R
(x, λ, p) 7→ L(x, λ, p) = f(x) + λ.(g(x)− p) (2.46)
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Using complementarity slackness condition (2.16), we still have

µ?(p) = f(x?) = L(x?(p), λ?(p), p) (2.47)

since

λ?(g(x?)− p) = 0 (2.48)

Now using KKT conditions we still have

∇xL(x?(p), λ?(p), p) = 0 (2.49)

but we do not have anymore

∇λL(x?(p), λ?(p), p) = 0 (2.50)

Indeed in case the constraint is active, the former equality is true, but in case it is

not this equality need not be satisfied. Just take the following trivial example

minx∈R2 x2 + y2

s.t
{
x2 + y2 6 p(= 1)

(2.51)

at the KKT point (x?(1), y?(1)) = (0, 0) and λ?(1) = 0, we have

∇λL((x?(1), y?(1)), λ?(1), 1) = −1 6= 0 (2.52)

To get to a tractable expression, we will need a further quite strong assumption that

in a neighborhood of p, the inequality constraint does not become active, this way λ?

is constant in a neighborhood and then

dλ?(p)
dp

= 0 (2.53)

and this way we get to the following expression of the post-optimal sensitivities similar

to Eq. (2.44).
dµ?(p)
dp

= −λ? (2.54)

We can now use this formula to explain the sign of the Lagrange multiplier associated

to an active inequality constraint. Suppose we now want to predict the new optimal

value for a close parameter p + h (where h is sufficiently small for the inequality con-

straint to remain active) and take h > 0 s.t the feasible space is greater (in the sense
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of inclusion) than the one of the original problem, we can write the first-order Taylor

development of µ?

µ?(p+ h) = µ?(p) + h
dµ?(p)
dp

+ o(||h||) (2.55)

then

µ?(p+ h) = µ?(p)− hλ? + o(||h||) (2.56)

in terms of optimal value of f

f(x?(p+ h)) = f(x?(h))− hλ? + o(||h||) (2.57)

since the feasible space for the perturbed problem is greater than the original one, we

necessarily have

f(x?(p+ h)) 6 f(x?(h)) (2.58)

and then λ? has to be nonnegative.

The former derivations were not at all rigorous. Indeed, we did not fuss over about

the hypotheses to ensure for instance, existence and regularity properties (continuity

and differentiability) of the optimal value function µ?, of the optimal solution func-

tion (provided it is a function) x? and of the optimal Lagrange multipliers function

(provided it is a function) λ?. We also saw that in case of inequality constraints there

were additional local assumptions such as there exists a neighborhood in the parameter

space in which the perturbed problem (for p + h) remains essentially the same as the

original unperturbed problem (for p). This hypothesis is essential or even critical since

it leads to a non-differentiable optimal value function whenever we switch from one

active constraint to another or when the active constraint ceases to be active, examples

of such non-differentiability can be found in (Haftka & Gurdal 1992) for instance. The

theory needed to derive such sensitivity results lies in classical technical tools described

below.

• The main ingredient to show existence and regularity properties of the optimal

functions is one of the most valuable theorem in applied mathematics, namely

the implicit function theorem. This theorem (and its multiple versions) in-

deed guarantees existence and regularity of implicit functions defined through an
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implicit relationship. More precisely, they treat the general problem of solving

an equation of the form

F (x, y) = 0 (2.59)

for x in terms of y, where F can handle a lot of different situations. In our

case, this is of course the KKT conditions with x = (x?, λ?) and y = p, but

in other fields that we mention in next chapters such as the sensitivity of the

solution of partial differential equation w.r.t parameters, the implicit relationship

is either the variational formulation (infinite dimension version) or directly the

linear system to solve whenever a finite-dimensional space of approximation has

been set (finite dimension). In the different but related area of bifurcation and

branching solutions of nonlinear problems (e.g buckling), the implicit function

theorem is an essential tool to exhibit the link between the eigenvalues of the

linearized problem (linear buckling) and bifurcation points of the nonlinear system

(nonlinear buckling). Roughly speaking, the implicit function theorem will ensure

the existence and the differentiability of functions of the sort of x?(.).

• The chain rule is the practical tool to get the expressions of the derivatives of the

implicit functions. Provided we can apply the implicit function theorem, namely

to get the existence, continuity and differentiability of the implicit function ϕ that

describes x in terms of y. The expression of the derivative follows easily from the

chain rule applied to

F (ϕ(y), y) = 0 (2.60)

we then get for instance for a one-dimensional parameter y

dϕ

dy
∇xF +

∂F

∂y
= 0 (2.61)

and then
dϕ

dy
= −(∇xF )−1∂F

∂y
(2.62)

meaning that usually we get analytical sensitivities of implicit functions by solving

linear systems involving the Jacobian of F w.r.t x.

• As said below, the implicit function may not be always differentiable. To get gen-

eral expression, one needs to go non smooth optimization using tools that gen-

eralize the notion of gradient such as sub-differential and Clarke’s sub-gradient.
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The following reference (Dempe 2002) is a valuable reference that introduces all

this material together with a lot of theoretical results on the optimal value func-

tion.

We now give without proof the two main rigorous results for sensitivity analysis,

proofs can be found in (Fiacco 1983). The first result deals with the hypotheses needed

to apply the implicit function. The second is a corollary that gives explicit expressions

to compute the post-optimal sensitivities of the optimal value functions. This theorem

basically extends the results that we informally derived in case when the parameter

only appears in the right hand member of constraints to the more general case when

there are several constraints and both objective functions and constraints depend on

p. Note that all these derivations are made for only one parameter p, but in practical

situations we have many optimization parameters and the derivative dµ?(p)
dp should be

seen as ∂µ?(p)
∂p .

Let’s recall the prototypical problem

minx∈Rn f(x; p)

(P(p)) s.t
{
g(x; p) 6 0
h(x; p) = 0

(2.63)

To assess the derivative of the optimal functions w.r.t, we need also to consider f , g

and h as function depending on both x and p in (P(p)).

Theorem 1. (Basic sensitivity theorem (Fiacco, 1976)) Consider x? a local minimizer
of (P(p)), if

(i) f , g and h are twice continuously differentiable w.r.t x, and ∇xf , ∇xg and ∇xh
are once continuously differentiable w.r.t to p in a neighborhood of (x?, p),

(ii) Second order sufficient conditions (SC2CO) hold at x? and the associated La-
grange multiplier are λ?E and λ?I ,

(iii) Linear independence constraint qualification (LICQ) holds at x?,

(iv) Strict complementarity slackness condition (SCSC) holds at x?,

Then

(a) x? is a local isolated minimizer, i.e locally unique and the associated Lagrange
multipliers are unique
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(b) For h sufficiently small, i.e in a neighborhood of p, note p′ = p + h, there exist
uniquely defined continuously differentiable functions x?(p′), λ?E(p′) and
λ?I(p

′) that satisfy the second-order sufficient conditions for Problem P(p′) s.t
x?(p) = x?, λ?E(p) = λ?E, and λ?I(p) = λ?I . x?(p′) is also locally unique and
the associated Lagrange multipliers are λ?E(p′) and λ?I(p

′). Denote also λ?(p′) =
(λ?E(p′), λ?I(p

′))

(c) For h sufficiently small, the set of active inequalities in Problem P(p′) remains
unchanged w.r.t the ones in Problem P(p), strict complementarity slackness con-
ditions also hold and satisfy LICQ.

This theorem is the first step to get to a tractable expression of the derivative of

the optimal value function. Indeed, once the existence and regularity of the implicit

functions is guaranteed, we can then apply the chain rule as a corollary. We now

state useful results with that expression. Based on the former theorem, we can define

formally the following function

• Define the (local) optimal value function µ?

µ?(p) = f(x?(p), p) (2.64)

note that, such a function µ? is a nested function in the sense it implicitly con-

siders the resolution of an optimization problem. The same way, when describing

structural optimization problem we define also nested constraints that implicitly

consider the resolution of the elasticity system of equations (or in discretized

version an FEA).

• Define the (local) optimal value Lagrangian L?

L?(p) = L(x?(p), λ?(p), p) (2.65)

We can now state the following theorem.

Theorem 2. (First-order derivative of the optimal value function (Fiacco, 1976)).
Whenever conditions of theorem 1 hold. Then there exists a neighborhood of p, i.e
there exists h > 0 s.t for any p′ ∈ [p− h, p+ h]

(a) The optimal value function and the optimal value Lagrangian are equal

µ?(p′) = L?(p′) (2.66)
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(b) The derivative of µ? w.r.t p is

dµ?(p′)
dp

=
∂f(x?, p′)

∂p
+
∑
i∈I

λ?i (p
′)
∂gi(x?, p′)

∂p
+
∑
j∈E

λ?j
∂hj(x?, p′)

∂p
(2.67)

Remark Note that the ∂f(x?,p′)
∂p term correspond to the partial derivative of f(x, p)

w.r.t p with no implicit dependence of x?(p). This is different from the total

derivative of f(x?(p), p) w.r.t p which is nothing else than dµ?(p)
dp . The same goes for

the ∂gi(x
?,p′)

∂p and ∂hj(x
?,p′)

∂p .

2.2.6 Original application of post-optimal sensitivities results

The following example illustrates the formulas seen below. Consider the following

classical result from linear algebra. Consider A a n× n symmetric matrix. The lowest

eigenvalue λ of A can be shown to be the (global) minimum value of the Rayleigh

quotient (this result is known as the Courant-Fisher theorem, see for instance

(Lascaux & Théodor 1987), and can be extended to self-adjoint linear operators, see

next chapter)

R(x) =
xTAx

xTx
(2.68)

over Rn. Equivalently, we have

λ1 := minx∈Rn xTAx
s.t

{
xTx = 1

(2.69)

Now consider a parametric eigenvalue problem, such as the ones that structural opti-

mization problems make appear: buckling constraints (computation of the critical buck-

ling load) or vibrations constraints (computation of the first fundamental frequency,

see (Gürdal et al. 1999)), flutter constraints (positive real part of the eigenvalue),...

Namely the matrix A depends on a parameter p and we note

λcr(p) := minx∈Rn xTA(p)x
s.t

{
xTx = 1

(2.70)

We know from linear algebra that λcr(p) = λ1, where λ1 is the smallest eigenvalue (that

might be repeated) and this minimum is attained for v1 an eigenvector of norm 1 s.t

A(p)v1 = λ1v1 (2.71)
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2.2 Basics of differentiable optimization theory

In this equality, we skipped the dependency but it is clear that both λ1 and v1 depend

implicitly on p. We are interested here in computing dλcr(p)
dp to get the sensitivity of

the eigenvalue w.r.t p. This is precisely the optimal value function considered in the

former sections. To apply the former theorems we need to ensure the hypothesis. Note

• f(x, p) = xTA(p)x, where we assume that A : R 7→Mn(R) is sufficiently regular,

for instance once continuously differentiable, and h(x, p) = xTx. Then we have

∇xf(x, p) = 2A(p)x (2.72)

and

∇2
xxf(x, p) = 2A(p) (2.73)

and

∇2
xpf(x, p) = 2A′(p)x (2.74)

and g(x, p) = xTx which does not depend on p. Then

∇xh(x, p) = 2x (2.75)

and

∇2
xph(x, p) = 0 (2.76)

and

∇2
xxh(x, p) = 2Id (2.77)

• Note that the gradient of the Lagrangian w.r.t x is then

∇xL(x, λ, p) = 2A(p)x+ 2λx (2.78)

which is precisely the eigenvalue system, we then have at the optimum v1

2(A(p)v1 + λ?)v1 = 0 (2.79)

and so we have

λ? = −λ1 (2.80)

and that the Hessian of the Lagrangian w.r.t x is

∇2
xxL(x, λ) = 2(A(p) + λId) (2.81)
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hence all the hypothesis of regularity are satisfied (i). Hypotheses (iii) (v1 is non

zero, by definition of an eigenvector) and (iv) are trivially satisfied (in case A is

such that λ1 = 0, we can still artificially make λ1 non zero by adding a constant,

this is known in numerical approximation of eigenproblems as the spectral offset).

Our main concern is about hypothesis (ii) which is that second order sufficient

conditions hold at x?. Indeed, second order sufficient conditions in that case take

the following form (with no inequality constraints)

zT∇2
xxL(v1,−λ1, p)z > 0 (2.82)

for any z s.t vT1 z = 0, i.e in the orthogonal space (v1)⊥. Eq (2.82) takes the

following form

∇2
xL(v1,−λ1, p) = 2(A(p)− λ1Id) (2.83)

and we already now that this matrix is positive semi-definite from necessary

conditions. We then need to ensure that this matrix is definite over (v1)⊥, stated

in other words, there is not v ∈ (v1)⊥ s.t v is an eigenvector for λ1. Clearly this is

ensured whenever λ1 is simple. In that case Ker(A− λ1Id) is the 1-dimensional

space generated with v1, in that case, we see that no vector from (v1)⊥ can be an

eigenvector for λ1. We then assume that λcr = λ1 is a simple eigenvalue and

sufficient second order conditions are then ensured.

We now apply Theorem (2) to get

∂λcr
∂p

=
∂f(v1, p)

∂p
(2.84)

and then
∂λcr
∂p

= vT1 A
′(p)v1 (2.85)

which corresponds to the formula found for instance in (Haftka & Gurdal 1992). This

derivation was not only to illustrate the post-optimal sensitivity since we will make use

of that formula to compute analytical sensitivities of buckling critical factor in Chapter

3. Note that in case where p also appears in the constraints, for instance for generalized

eigenvalues problems with constraints such as xTB(p)x = 1, the same can be applied

to derive the following formula

∂λcr
∂p

= vT1 (
∂A

∂p
+ λ1

∂B

∂p
)v1 (2.86)

with v1 the associated eigenvector whenever λ1 is simple.
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2.3 Monolevel and block-angular problems

2.3 Monolevel and block-angular problems

2.3.1 Original problem

We are concerned here with large scale optimization problems arising in engineering:

structural optimization, multidisciplinary optimization...which have the following form

minx M̂(x)

(AIO) s.t
{
ĉ(x) 6 0
ĉi(x) 6 0 ∀i = 1 . . . N

(2.87)

We will assume in the sequel that, both objective and constraints are computed on

the basis of a few responses systems Z that are function of all x through coarser vari-

ables Y . To illustrate this kind of problem, let’s think of a structural optimization

problem where most constraints are based on the analysis of the whole structure and

hence depend on the loads redistribution that is function of stiffness terms Y (cross

section area, quadratic momentum,...), when x are the precise geometric dimensions,

or material variables they usually not appear directly on the structural analysis. The

coarser variables Y are enough to analyze the structure. However, this coarser vari-

ables are often a function of the local design variables x, Y = ϕ(x). This dependence

naturally a hierarchical optimization problem, where the structural responses are com-

puted on the basis of the Y ’s and theses Y ’s are expected to match the x. This is not

uncommon in engineering optimization, most of constraints are computed on the basis

of systems responses (that depend on all variables) but only a few local design vari-

ables are concerned by each constraint. We denote this situation by using the following

relationships

m̂(x) = m(ϕ(x)) (2.88)

and

ĉ(x) = c(ϕ(x)) (2.89)

and

ĉi(x) = ci(x(i), Y ) (2.90)

where x(i) are the few local design variables involved in the computation of ci. Again,

in structural optimization, m can be the weight (that can often be computed through

local design variables or Y ’s), c can be the structural constraint that do not involve
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local geometry of substructures (linear maximum deformation for instance), and ci

can be local stability constraints (e.g buckling) that are based both on the structural

responses and local geometry. We do not consider here inter-element constraints (e.g

continuity of the design) over x(i) for different i’s. However, some coarse continuity

constraints can be ensured through the c(Y ). Problem 2.87 will be referred to as the

All-In-One (AIO) formulation (or Nested). Using the Y variables in the formulation

of the optimization problem leads to the classical block angular form

minx,Y M̂(Y )

(BAO) s.t


c(Y ) 6 0
ci(x(i), Y ) 6 0 ∀i = 1 . . . N
Yi = ϕ(x(i)) ∀i = 1 . . . N

(2.91)

2.3.2 Equivalence between All-In-One problem and Block-Angular problem

In the sequel we will show that first Problems (2.87) and (2.91) are equivalent in terms

of optimization, which means that any KKT point of one problem is actually a KKT

point of the other.

Theorem 3. x? is a minimizer of Problem (2.87) satisfying linear independence con-
straint qualification if and only if (x?, y?) is a minimizer of Problem (2.91) satisfying
linear independence constraint qualification.

Proof. For sake of simplicity, this proof is given for two sub-problems, adaptation to N
sub-problems is easy and only complicates notations. Our reference problem is then

minx M̂(x)

(AIO) s.t


ĉ(x) 6 0
ĉ1(x) 6 0
ĉ2(x) 6 0

(2.92)

and then BAO version is

minx,Y M̂(Y )

(BAO) s.t



c(Y ) 6 0
c1(x(1), Y ) 6 0
c2(x(2), Y ) 6 0
Y1 = ϕ(x(1))
Y2 = ϕ(x(2))

(2.93)
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Let x? be a minimizer of Problem (2.92) satisfying LICQ. In particular, there exists λ1,
λ2 and λ3 in R− such that(

∇x(1)m̂(x?)
∇x(2)m̂(x?)

)
=

(
∇x(1) ĉ(x?) ∇x(1) ĉ1(x?) 0
∇x(2) ĉ(x?) 0 ∇x(2) ĉ2(x?)

)λ1

λ2

λ3

 (2.94)

Consider Y ? = ϕ(x?) and using chain rule, we get(
∇x(1)ϕ∇Ym
∇x(2)ϕ∇Ym

)
=

(
∇x(1)ϕ∇Y c ∇x(1)c1 +∇x(1)ϕ∇Y c1 0
∇x(2)ϕ∇Y c 0 ∇x(2)c2 +∇x(2)ϕ∇Y c2

)λ1

λ2

λ3


(2.95)

where we skip the dependence of function w.r.t x and Y . We clearly have

 0
0
∇Ym

 =

 0 ∇x(1)c1 0 ∇x(1)ϕ

0 0 ∇x(2)c2 ∇x(2)ϕ

ϕ∇Y c ϕ∇Y c1 ϕ∇Y c2 −I




λ1

λ2

λ3

−∇Ym+ λT1∇Y c+ λT2∇Y c1 + λT3∇Y c2


(2.96)

from which it follows that (x?, y?) is a KKT point of Problem (2.91) with µ = −∇Ym+
λT1∇Y c + λT2∇Y c1 + λT3∇Y c2 being the KKT multipliers associated to the equality
constraints ϕ(x)− Y .
Now suppose that (x?, y?) does not satisfy linear independence constraints qualification,
there exist α1, α2, α3, α4 not all zeros such that

(
0 ∇xc1 ∇xc2 ∇xϕ
∇Y c ∇Y c1 ∇Y c2 −I

)
α1

α2

α3

α4

 = 0 (2.97)

then from last row, we get

α4 = ∇Y cα1 +∇Y c1α2 +∇Y c2α3 (2.98)

now inserting Eq.(2.98) into the first row, we get

∇xϕ∇Y cα1 + (∇xc1 +∇xϕ∇yc1)α2 + (∇xc2 +∇xϕ∇yc2)α3 = 0 (2.99)

and x? does not satisfy linear independence qualification constraints. Hence linear
constraints qualification of AIO imply linear constraint qualification of BAO. The last
part of the proof consists in taking one KKT point of BAO and shows it is also a KKT
point of AIO by using exactly the same computations, the other way around.
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2.4 Towards decomposition through inexact quadratic penalty

In this section we show by applying standard results of optimization theory that the

Block-angular problem optimization problem is equivalent to the inexact quadratic

penalty problem. We start with very briefly reviewing inexact and exact penalties and

states a classical result that shows in what sense these two problems are equivalent.

Most of the material described is derived from (Fletcher 1981).

2.4.1 Inexact and exact penalties

The main idea of penalty is simply to insert a given constraint into the objective func-

tion. This way we get rid of the constraint and the optimization becomes unconstrained.

Illustrate this in the following problem

minx f(x)
s.t

{
c(x) = 0

(2.100)

We want to replace this problem by an unconstrained problem where a certain function

is to be minimized

ϕ(x, γ) (2.101)

where γ is a penalty parameter that weights the constraint w.r.t to the objective func-

tion. Problem (2.100) is then replaced by

minx ϕ(x, γ) (2.102)

γ is Problem (2.102) is then a fixed parameter (exactly as the optimization parameter

p in the former sections). We will denote then xγ = x?(γ), i.e the solution of Problem

(2.102) for the corresponding value of γ, provided there exists a unique (global) solution.

The earliest penalty function that was introduced in (Courant 1994) is the quadratic

penalty

ϕ(x, γ) = f(x) +
1
2
γc(x)2 (2.103)

and in case when c is a vector-valued constraint in Rp we have

ϕ(x, γ) = f(x) +
1
2
γ

p∑
i=1

(ci(x))2 (2.104)

= f(x) +
1
2
γc(x)T c(x) (2.105)
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2.4 Towards decomposition through inexact quadratic penalty

in case of inequality constraints, this turns out to be

ϕ(x, γ) = f(x) +
1
2
γ

p∑
i=1

(max(0, ci(x))2 (2.106)

This penalty is the sum of squares of the constraints violations. We see that the

solution of the unconstrained problem for a given value of γ can be different from the

solution of the initial problem. This is why this type of penalty is called inexact

penalty. There exists however exact penalty which guarantees that the minimum

of the unconstrained problem is the same as the solution of the initial problem. For

instance, the L1 exact penalty

ϕ(x) = f(x) +
p∑
i=1

|ci(x)| (2.107)

this exact penalty does not use any parameter, since a (local) solution of the minimiza-

tion problem of ϕ is given by x? the solution of the initial problem. The main drawback

of this exact penalty approach is that the resulting problem is no more smooth (|.| being

not differentiable at 0) all the gradient-based methods or Newton-like and quasi-Newton

methods can not be applied anymore and one has to go nonsmooth optimization tools.

In the sequel, we only focus on inexact quadratic penalty. One important feature of

inexact penalty methods is they do not directly give an approximate solution of the

initial problem. In practice, inexact penalty leads to the following resolution

1. Choose a sequence of γk that goes to ∞. For instance, a typical such sequence is

given in (Fletcher 1981) as 1, 10, 102, ....

2. For γk, find a (local) minimizer x?k = x?(γk) of Problem (2.102).

3. Termination criterion is attained when c(x?k) is sufficiently small.

We then see that inexact penalty leads to a sequence of unconstrained minimization

problems, whose sequential resolution can be eased by using the solution of for γk as

a starting point for solving problem for γk+1, the same goes for the approximation of

the inverse of the Hessian of the objective function whenever quasi Newton (Broyden,

DFP, BFGS) methods are involved. This inexact penalty transforms leads then to

Sequential Minimization Optimization. However, one doe not solve many different

optimization problems in practice. In some situations when the parameter γ is well set
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(from experience for instance), one might end up with a reasonably good approximation

of the initial solution.

2.4.2 Equivalence of the inexact quadratic penalty for block-angular

problems

We now state the main theoretical result taken from (Fletcher 1981).

Theorem 4. (Penalty function convergence) If γk goes to ∞ then

(i) (ϕ(x?k, γk))k is non decreasing

(ii) (c(x?k)
T c(x?k)k is non decreasing

(iii) (f(x?k)k is non decreasing and c(x?k) → 0 and any accumulation point x? of
(f(x?k))k solves initial Problem 2.100.

In our case, this leads to the following problem, referred to as the Inexact quadratic

penalty block angular form (IQP-BAF)

miny,x f(y) + 1
2γ

k
∑n

i=1 ||ϕ(xi)− yi||2

(IQP −BAF ) s.t
{
c(y) 6 0
ci(y, xi) 6 0

(2.108)

Now using this theorem in combination with Theorem 3, we can state the following

theorem

Theorem 5. Problem AIO (2.87) and Problem IQP-BAF 2.108 are equivalent opti-
mization problems in the following sense:
Consider a sequence of parameters (γk)k that goes to ∞ and the associated sequence of
optimization problems and its associated local minimizers (x?k). Then any accumulation
point x? of (x?k)k is a (local) minimizer of the AIO problem.

This results is not only important for theoretical but also for practical reasons. In-

deed, we saw that we had three different monolevel instances of our optimization prob-

lem: AIO (2.87), BAO (2.91) and IQP-BAO (2.108), each of them will be decomposed

leading to different multilevel or decomposition-aggregation schemes. The fact these

three instances are equivalent is a first step to guarantee that we do not change the

optimum before decomposition. However, in practice and as noted before, we do not

solve a sequence of optimization problems but rather fix a reasonably good value for

the penalty parameter γ. We turn now to the brief description of the decomposition

schemes.
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2.5 Towards decomposition

We end this chapter with a presentation of the decomposition schemes that are to be

applied in Chapter 6. These schemes are only presented from a theoretical point of view

since we will make them more precise in the context of a real structural optimization

problem in Chapter 6 and practical resolution will be considered in Chapter 6 and not

in this chapter. For example, the decomposition approach of the initial problem (AIO)

is a practical resolution and does not rely on a decomposition or bilevel formulation.

The emphasis here is made on formulations independently from the resolution. Indeed,

the practical resolution of decomposition schemes is a full subject in the sense that

several strategies might be applied (alternating optimizations implementation or real

bilevel implementation). This is why we do not describe here the practical algorithm.

2.5.1 Decomposition scheme from the (AIO) initial problem

Before decomposing the block-angular versions of the optimization problem, we can

try to decompose the original problem (AIO). This leads to a classical algorithm of

practical resolution in structural optimization based on the Fully Stressed Criterion

(StiffOpt algorithm described in Chapter 6).

2.5.2 Target Rigidity and Mix schemes

We then mainly focus on formulations of decomposition techniques or bilevel optimiza-

tion scheme. The typical formulation of a decomposition scheme or bilevel optimization

scheme is the following

• Global-level (or system-level) :

minY M(Y )

s. t.
{
c(Y ) ≤ 0
µ?i (Y ) ≤ 0 for i = 1 . . . N

(2.109)

• where µ?i for i = 1 . . . N is the coupling function computed from the lower level,

we keep the notation for the optimal value function for it is often computed on

the basis of the value of the objective function at the optimum.

minxi hi(xi, Y )
s. t.

{
c(i)(Y, xi) ≤ 0

(2.110)
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Now depending on which monolevel problem is decomposed we get different schemes.

Target Rigidity is the straightforward decomposition from problem 2.108, which

leads to

• Global-level (or system-level) :

minY M(Y )

s. t.
{
c(Y ) ≤ 0
µ?i (Y ) ≤ 0 for i = 1 . . . N

(2.111)

• where µ?i for i = 1 . . . N is the function computed from the lower level :

minXi
1
2 ||ϕ(xi)− Yi||2

s. t.
{
ci(Y, xi) ≤ 0

(2.112)

we define µ?i (Y ) = 1
2 ||ϕ(x?i − Yi)||2, i.e the value of the objective function at the

optimum x?i , it is the optimal value function defined in the former sections.

we see that the constraint µ?i (Y ) 6 0 is in reality µ?i (Y ) = 0 or equivalently by

inserting the µ?i constraint into the objective of the upper level by inexact quadratic

penalty, we happen to have

• Global-level (or system-level) :

minY M(Y ) + 1
2

∑N
i=1 γ

k||ϕ(x?i )− Yi||2
s. t.

{
c(Y ) ≤ 0

(2.113)

This scheme, which was originally derived in (Ramanathan 1976) in the framework

of structural optimization is similar to the Collaborative Optimization scheme in the

Multi Disciplinary Optimization (MDO) framework derived in (Braun & Kroo 1997)

in the sense that they both intent to minimize the distance between coupling variables.

However, the main difference is that in CO the Y ’s variables are replicated into each

sub-problem and appear as optimization variables within the lower level problem and

the upper level optimization tries to minimize the difference between all replicates of

Y ’s by using intervening variables. In our framework, this approach could not lead to

something attractive in terms of computations since we want to keep the finite element

analysis at upper level while applying CO directly would lead to finite element analysis

performed at lower level.
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Remark One immediate pitfall of this scheme comes from constraint qualifications.

Indeed, at an optimum of the original problem x?, Y ?, we have

ϕ(x?i ) = Y ?
i (2.114)

Denote fi(xi, Y ) = 1/2||ϕ(xi) − Yi||2 and then the (local) gradient of the objective

function (by local, we mean w.r.t local variables) of sub-problem i is

∇xifi(xi, Y ) = 1/2∇xϕ(x?i )||ϕ(x?i )− Y ?
i || (2.115)

which is obviously zero, hence sub-problem i does not satisfy LICQ. Now suppose

that the initial problem AIO satisfies LICQ at x?, then BAO satisfies also LICQ, in

particular ∇xici(x?i , Y ?) are linearly independent hence nonzero. Since ∇xifi(x?i , Y ?) =

0 this implies that the Lagrange multipliers (of sub-problem i) associated to

ci are zero, which means precisely that the Strict Complementarity Slackness

Condition does not hold at x?. The sub-problem is called in that case degenerate.

Furthermore, we clearly see that we do not fit the conditions for the optimal value

function to be differentiated. Indeed, the (global) gradient at Y ? is

∇Y fi(x?i , Y ?) =


0
...

−1/2||ϕ(x?i )− Y ?
i ||

...
0

 (2.116)

which is also zero. This leads to a non-qualified problem and to the optimal

value function µ?i which is not smooth. As outlined in (DeMiguel & Murray 2006),

smoothness and qualification are usual assumptions to show local convergence proper-

ties. Moreover, as reported in (Alexandrov et al. 2000) and (Alexandrov & Lewis 1999),

this leads to non convergent algorithm in the case of CO, even when using a starting

point very close to the optimum the algorithm may not converge to the real optimum.

In our case, we also observed that Target Rigidity leads to sub-optimal design

even when starting at the real AIO optimum.

We now present a quite close original scheme that can be derived in our case based on

the following observation that the weight of element i can be computed both on the
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basis of the Yi and the design variables xi’s. This way we can write the local weight as

a convex combination of both objectives

εM̂(xi) + (1− ε)M(Yi) (2.117)

leading the Mix scheme

• Global-level (or system-level) :

minY M(Y )

s. t.
{
c(Y ) ≤ 0
µ?i (Y ) ≤ 0 for i = 1 . . . N

(2.118)

• where µ?i for i = 1 . . . N is the function computed from the lower level :

minxi εM̂(xi) + (1− ε)1
2 ||ϕ(xi)− Yi||2

s. t.
{
ci(Y, xi) ≤ 0

(2.119)

where µ?i (Y ) = 1
2 ||ϕ(x?i − Yi)||2

This way the degeneracy of the sub-problem can be avoided. However there is no

evidence neither theoretical nor computational that this scheme performs better than

Target Rigidity. In particular, the ε term should set carefully. These two schemes

are compared in Chapter 6 and the Mix scheme shows very slight improvement when

compared to Target Rigidity, it is still sub-optimal.

We finally present the MinMass scheme derived in (Merval 2008). This scheme is

close to Target Rigidity or Mix schemes in the sense that the constraint ϕ(xi) = Yi is

relaxed to allow more freedom in the local search.

• Global-level (or system-level) :

minY M(Y )

s. t.
{
c(Y ) ≤ 0
µ?i (Y ) ≤ 0 for i = 1 . . . N

(2.120)

• where µ?i for i = 1 . . . N is the function computed from the lower level :

minxi M̂(xi)

s. t.
{
ci(Y, xi) ≤ 0
ϕ(xi) > Yi

(2.121)

we define µ?i (Y ) = 1
2 ||ϕ(x?i − Yi), i.e the value of the objective function at the

optimum x?i , it is the optimal value function defined in the former sections.
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2.5.3 MaxMargin and QSD schemes

The scheme named MaxMargin (from Maximum Margin a.k.a Constraint Mar-

gin) is different from the latter schemes since is does not use the local objective of mini-

mizing the weight but instead maximize the feasibility of the design at lower level. From

a decomposition perspective, its early version decomposes the initial block-angular form

with the equality constraint. This scheme was carried out first by Sobiesky in the 80’s in

(Sobieszczanski-Sobieski et al. 1985), latter complemented in (BARTHELEMY 1988),

approximation models were inserted in this scheme in (Liu et al. 2004). The scheme

then extended in a more general form called Quasi Separable subsystem Decompo-

sition (QSD) by Haftka and Watson who gave theoretical results in ((Haftka & Watson 2005)),

one of them being that the decomposition does not introduce any artificial

minimum, any minimum of the decomposition/bilevel formulation is indeed

a minimum of the original problem. In our case, the original problem is (IQP-

BAF). Based on the equivalence results we derived in the former sections, we can then

conclude that any minimum of QSD is indeed a minimum of AIO. It was also

extended to mixed problems ((Haftka & Watson 2006)) and a recent realistic structural

optimization example is given in ((Schutte & Haftka 2010)).

• MaxMargin defines γi(Y ) = minxi∈ϕ−1(Y ){ci(Y, x∗i )} and therefore γi(Y ) = −µ∗i

• where µ?i is equal to

argmaxµi,xi µi

s. t.


ci(Y, xi) + µi ≤ 0
ci(xi) + µi ≤ 0
Yi = ϕ(xi)

(2.122)

and the QSD form in its general formulation introduces budget variables bi that

allows for non feasibility at local design level.

• Global-level (or system-level) :

minY,b M(Y ) +
∑N

i=1 bi

s. t.
{
c(Y ) ≤ 0
µ?i (Y, bi) ≤ 0 for i = 1 . . . N

(2.123)
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2. MONOLEVEL AND BILEVEL FORMULATION

• where µ?i for i = 1 . . . N is the coupling function computed from the lower-level

(or sub-element level) :

min(µi,xi) µi

s. t.
{
ci(Y, xi)− µi ≤ 0
1
2 ||Yi − ϕ(Xi)||2 − bi − µi ≤ 0

(2.124)

2.5.4 Towards realistic optimization problems

This chapter was essentially theoretical and was aimed at giving essential tools that

will be used throughout this thesis. However, we only insisted here on the structure of

our large problem to solve and only describe the theoretical aspects of decompositions.

Before applying these schemes that we introduced at the end of the chapter, we need

first to assess the types of variables that we are to use for composite representation and

also to investigate the behavior of the buckling constraints. This is done in the next

chapter
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problems

This chapter is concerned with the definition and the investigation of the buckling crit-

ical load factor for thin composite plates. The main objective of that chapter is first to

introduce the classical laminate representation that we use in this work: the well-known

lamination parameters and then to investigate the behavior of the buckling critical load

factor over this representation in order to be able to derive an efficient approximation

strategy. Basics of composite laminate theory are recalled, we do not delve into the very

precise derivation of the constitutive equation (A, B, D tensors) but simply indicate

how these tensors are computed on the basis of lamination parameters. The buckling

critical load factor for thin laminate plates is then defined formally and investigated,

this behavior is of utter importance since amongst all the stability constraints computed

at super-stiffener level by Airbus skill tools, the most complicated ones are derived from

this first computation that is skin buckling computation.

3.1 Motivations and basics of composite laminate theory

We briefly recall what are the pitfalls associated to laminate composite optimization.

Subject has been quite well investigated (see for instance (Gürdal et al. 1999)) and

heuristics to tackle with the discreteness of the variables have been developed. This

following section briefly introduces this subject.

3.1.1 Introduction

Composite structural optimization for thin-walled structures often exhibits a large com-

putational time due to repetitive stability analysis. For composite structure made of

thin plates or thin shallow shells (such as aircraft fuselage), buckling computation is of

primary importance since it is one of the critical sizing constraints when minimizing
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3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

the weight. This computational burden becomes even critical when we address lami-

nated composites and when the stacking sequence is to be optimized. In such cases,

one often goes to population-based methods (such as genetic algorithms) to address the

discreteness of the design variables. Such methods require many evaluations to ensure

that a reasonably good optimum was found. To circumvent such issues, one classical

strategy uses a continuous representation of the in-plane and out-of-plane behaviors of

the stacking sequence by means of either lamination parameters, polar invariant repre-

sentation or directly A and D tensors terms. This offers a way to treat the optimization

(for instance maximizing the buckling critical load of a laminate plate under a given

loading) as a continuous one, reducing the number of evaluations needed to converge

whenever the optimization problem is well posed (e.g convex). A good property of

lamination parameters is that most classical objective functions have interesting op-

timization properties when evaluated over the lamination space which happens to be

convex. However, this continuous relaxation has two majors drawbacks. First when

a continuous optimum is found, it usually does not match a discrete solution, there

is no practical stacking sequence that gives these optimal lamination parameters. A

new discrete optimization step is to be performed to identify a correct discrete solu-

tion and there is no evidence that the discrete optimum found by this step is the real

discrete optimum. The other important drawback is that not all sizing constraints can

be computed on the basis of lamination parameters. Some optimization constraints do

need the real stacking sequence to be computed: mechanical constraints (first-ply fail-

ure...), feasibility constraints (contiguity of same orientations to avoid matrix cracking

for instance). However, lamination parameters do provide a practical continuous repre-

sentation of in-plane and out-of-plane behavior making possible to build approximation

models of the expensive optimization constraints, such as buckling computations. Even

though continuous optimization over lamination is not performed, such an approxima-

tion model allows to perform discrete optimizations in a much more efficient way.

Since their first application to the design of composite in the seminal work of Miki

((Miki 1983), (Miki & Sugiyama 1991)), where the author derive a graphical proce-

dure to optimize stiffness properties, lamination parameters have been extensively

studied and covered as a practical and convenient tool to optimize laminated com-

posites. Early work by Miki allowed to bound the lamination space. Much work

94



3.1 Motivations and basics of composite laminate theory

was also done in describing the dependence of the buckling critical load in the lam-

ination space: Grenested ((Grenestedt 1989), (Grenestedt 1991), (Grenestedt 1990))

or Walker (Walker et al. 1996) investigated the influence of lamination parameters for

the buckling critical load in different cases (pure shear loading, non-orthotropic lami-

nates,...) through different approximation methods: orthotropic closed-form expres-

sion, finite strip method, Rayleigh-Ritz method... Grenested found out that non-

orthotropy decreases the buckling critical load for uniaxial compression loading and

in many situations the optimum in the lamination space belongs to the boundary

previously described by Miki, corresponding to angle-ply laminate [+θ/− θ] with con-

tinuous angle θ. However practical stacking sequences that satisfy manufacturability

constraints are not orthotropic nor angle-ply stacking sequences. A lot of work was

also done in applying directly the optimization problem in the lamination space and

then get from the continuous optimum a discrete solution usually by means of ge-

netic algorithms (Fukunaga et al. 1995), (Harrison et al. 1995). Lamination parame-

ters associated to real practical stacking sequence of orientations [0◦/45◦/ − 45◦/90◦]

exhibit a fractal structure that was exploited in (Terada et al. 2001) to derive a frac-

tal branch-and-bound method. The precise description of the feasible set of lamina-

tion parameters and more specifically the coupling between in-plane lamination pa-

rameters and out-of-plane lamination parameters was solved in (Diaconu et al. 2002),

(Bloomfield et al. 2009), resulting, amongst many things, into so-called compatibil-

ity equations that constrain the feasible space for out-of-plane lamination param-

eters based on the values of in-plane lamination parameters. These compatibility

equations describe a convex feasible set and can be directly integrated into an opti-

mization (Herencia et al. 2008b). Regarding the area of building approximations of

the buckling critical load over lamination parameter, much work was done with the

help of response surfaces (polynomial regression of degree 2) (Todoroki et al. 2003)

(Abu-Odeh & Jones 1998) (Harrison et al. 1995), Taylor-based first-order linear ap-

proximation (Herencia et al. 2008b), adaptive response surface (Todoroki & Sasai 2002).

The non-differentiability of the buckling critical load with respect to lamination pa-

rameters, which was already noticed in lot of work (see (Rousselet & Chenais 1990) for

general results on buckling critical load differentiability not specifically devoted to com-

posite) does not seem to have been considered when building approximation models.

Regarding potential property of the buckling critical load well suited for optimization,
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3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

concavity was cited in several references (Autio 2001), but to the authors’ knowledge,

it has never been proved on a sound mathematical basis for the general case (arbitrary

geometry, non-orthotropic laminate).

This chapter aims at studying numerically some properties of the buckling critical

load that will ease the construction of accurate approximations to be used within an

optimization process. The approximation of the buckling critical load over lamination

parameters is not restricted to continuous optimization over lamination parameters,

since such an approximation can be used when the stacking is directly addressed as

optimization variables. In particular, we show that the buckling critical load is concave

over lamination parameters. We also give numerical evidence of the piecewise behavior

of the buckling critical load depending on the region of the input space. Based on this

knowledge we will develop in the next chapter an original strategy to build piecewise

approximation models. The behavior of the buckling critical load both over lamination

parameters and varying loading conditions is covered.

3.1.2 Composite Laminate Theory, lamination parameters and feasible

stacking sequences

We present in this section the well-known lamination parameters. We start with their

definition in the case of a general laminate and we also briefly recall Composite Lam-

inate Theory. We describe the structure of the lamination space for feasible stacking

sequences for conventional laminates of orientation [0/45/ − 45/90] and describe the

compatibility equations.

3.1.2.1 Composite Laminate Theory for plates

The purpose of this section is not to recall the whole theory of laminates that can be

found for instance in (Reddy 2004) or (Daniel 1989) but simply to recall essential hy-

pothesis and definitions in the context of laminated thin plate theory that is the basis

of the original work presented in this chapter. We first start with the description of a

composite plate.

The composite plates considered in this chapter are rectangular domains of dimen-

sions a× b×h and are made of a number of perfectly bonded layers. These layers have
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3.1 Motivations and basics of composite laminate theory

different orientations and each layer is considered as a homogeneous anisotropic mate-

rial. Moreover the thickness of the laminate is assumed to be constant. There exist

several mathematical models used to determine stress and strain in plates (leading of

course to very different Finite Element Methods, see for instance the valuable reference

on FEM (Felippa 2000))

• Kirchhoff-Love theory for thin plate, which leads to Classical Plate Theory

• Mindlin-Reissner theory for thicker plates (but still moderately thick)

• Three-dimensional elasticity for very thick plates

One important feature of the first two models is that they provide a two-dimensional

modeling of the plate. They get rid of the thickness by simple assumption over the be-

havior of mechanical responses through the thickness. This leads to less computations.

The classification between these different thicknesses is a bit fuzzy and also strongly

depends on the phenomena we want to predict. In (Ventsel & Krauthammer 2001),

the authors sort plates with the ratio L
h where L is a typical characteristic length of

the plate with

• ratios s.t L/h > 100, the plate is very thin and called membrane. Such a plate

mostly carries lateral loads by axial tensile and shear forces that remain in-plane

and act on the middle surface. These forces are then referred to as membrane

forces.

• ratios s.t 10 < L/h < 100, the plate is called thin plate. Unlike membranes, thin

plates are not devoid of flexural rigidity. Depending on the relative part of mem-

brane forces w.r.t bending forces, the plate is referred to either stiff plate (mostly

carrying loads by bending and twisting moments) or flexible plate (mostly carry-

ing loads by a combination of bending, twisting moments with membrane forces).

In (Ventsel & Krauthammer 2001) the distinction between the two is made over

the ratio wmax/h where wmax is the maximum transverse displacement.

• ratios s.t L/h < 10, plate is called thick plate. Such thicknesses usually imply

three dimensional elasticity modeling and no specific mechanical assumption is

made over displacement, strain or stress.
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It is worth noting that the classification is not straight and highly depends on bound-

ary conditions, type of loading, material and also the accuracy we want to reach in

the prediction, what stage of the sizing we are in... For composite fuselage structures

for instance, we can take L as b the typical stringer pitch for it is smaller than a the

frame pitch. Typical dimensions for these quantities are b = 150mm to 200mm and

h = 1.6mm to 5mm leading to ratios in between 37 and 125. We see that plates are

then considered as thin plates but can also be membranes. Typical plates used in

aerospace are flexible plates because of their attractive weight-to-load ratio, regard-

ing mathematical modeling, thin plates are often analyzed though classical plate theory

based on Kirchhoff-Love theory at a preliminary sizing level. For more advanced siz-

ing stages, one often goes to three-dimensional elasticity to accurately predict specific

phenomena. In the sequel, we only focus on Kirchhoff-Love theory.

Kirchhoff-Love theory was first carried out by Love in the late 19th century and latter

extended by Kirchhoff based on the classical Kirchhoff’s hypotheses which are

(i) straight lines normal to the mid-surface remain straight after deformation

(ii) straight lines normal to the mid-surface remain normal after deformation

It is supplemented by the following kinematic assumption

(iii) thickness does not change during deformation

Note that Mindlin-Reissner theory generalizes the former theory by assuming hypothe-

ses (i) and (iii) but no more (ii). Denote u, v and w the displacement components of

the plates, under Kirchhoff hypotheses, u and v can be expressed

u(x, y, z) = u0(x, y)− z ∂w
∂x

(3.1)

and

v(x, y, z) = v0(x, y)− z ∂w
∂y

(3.2)

where u0 and v0 are mid-plane displacements. Using the strain-displacement equations

of classical plane elasticity theory,

εx =
∂u

∂x
, εy =

∂v

∂y
, , γxy =

∂v

∂x
+
∂u

∂y
(3.3)
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where εx, εy are in-plane normal strains and γxy is the in-plane shear strain. Now we

can define the mid-plane curvature during deformation

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = 2

∂2w

∂x∂y
(3.4)

Using inserting this in Eq. (3.1) and Eq. (3.2)

εx = ε0
x − zκx, εy = ε0

y − zκy, γxy = γ0
xy − zκxy (3.5)

where ε0
x, ε0

y and γ0
xy are mid-plane normal and shear strains. In-plane forces resultants

Nx, Ny and Nxy are obtained by integrating stress components over the thickness, with

σx, σy are in-plane normal stress components and τxy is the in-plane shear stress

Nx =
∫ h/2

−h/2
σxdz (3.6)

Ny =
∫ h/2

−h/2
σydz (3.7)

and

Nxy =
∫ h/2

−h/2
τxydz (3.8)

Moment resultants that are bending moments Mx and My and twisting moment Mxy

are obtained by

Mx =
∫ h/2

−h/2
σxzdz (3.9)

My =
∫ h/2

−h/2
σyzdz (3.10)

and

Mxy =
∫ h/2

−h/2
τxyzdz (3.11)

Now we use the constitutive equation (strain-stress relation) of each layer (i) of orien-

tation angle θ(i) with the principal axis. In the θ(i) reference axis with the assumption

of plane stress, this constitutive equation isσ
(i)
x

σ
(i)
y

τ
(i)
xy

 =

Q11 Q12 0
Q12 Q22 0

0 0 Q66


ε

(i)
x

ε
(i)
y

γ
(i)
xy

 (3.12)
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where the Qij terms are the reduced stiffness’s, that are obtained with E1, E2, ν12

and G12 the characteristic moduli of the layer (i) through

Q11 =
E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
(3.13)

and

Q66 = G12. (3.14)

Finally using this constitutive equation, we integrate the stress-strain relation piecewise,

layer by layer, and changing the references from θ(i) references axis to the principal

axis through transformation matrices, we get to the constitutive equation of the

laminate (details of the computations can be found in any references book on laminates

such as (Ashton & Whitney 1970), (Jones 1999), (Daniel 1989) or (Lekhnitskii 1968))



Nx

Ny

Nxy

Mx

My

Mxy

 =



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
x

ε0
y

γ0
xy

−κx
−κy
−κxy

 (3.15)

where the A, B and D sub-matrices are positive definite matrices, in the sequel we

will denote them A, B and D tensors. From the very equations, we clearly see that

this relation highlight the complicated mechanical behavior of the laminate, indeed

• the A tensor corresponds to in-plane properties. It is then often called the

membrane tensor. The A16 and A26 are extension-shear coupling terms. At

the whole structure level (assembly of several plates), this coupling corresponds

to the coupling between bending and twisting. One often want to design lami-

nate such that this coupling vanishes, this is ensured whenever the laminate is

balanced. However, for aeroelastic tailoring, this coupling can be useful to

design structures against flutter. Indeed, flutter corresponds to structural bend-

ing and twisting modes that are too close. Natural frequencies of bending and

twisting can be modified by the flows and become close, leading to a collapse of

the aircraft. In our application however, we will impose that these terms are zero.

• the B tensor causes coupling between bending and stretching in the plate

during transverse displacements. For a symmetric laminate, this B tensor van-

ishes. Since we only work with symmetric laminates, we will not consider this
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tensor anymore. One important consequence is that in-plane behavior does not

depend on the bending behavior. It is then independent and a membrane analysis

of the whole structure (by FEA for instance) can be performed without the knowl-

edge of the D tensor. It is worth noting that, as shown in (Gürdal et al. 1999),

symmetry is not a necessary condition for the B tensor to be zero, there exist

non-symmetric laminate for which the B tensor is zero.

• the D tensor corresponds to out-of-plane properties. It is the tensor-form

laminate generalization of the bending stiffness for homogeneous isotropic plate

defined as

D =
Eh3

12(1− ν2)
(3.16)

The main difference is that it weights some orientations over others (D11 is the

bending stiffness in the x-axis for instance) and more important the D16 and D26

term cause coupling between bending and twisting at plate level. These terms are

then referred to as bending-twisting coefficients, we will see in the sequel that

they usually complicate buckling analysis and often degrade the structure against

buckling (not in case of shear loading). Laminates with zero bending-twisting

terms are called orthotropic and are usually easier to handle (closed-form ex-

pressions for buckling for instance for simple domains). Unlike A16 and A26

terms, making bending-twisting terms zero is not obvious. Cross-ply laminates

for instance [+θ/−θ] are orthotropic, see other examples in (Gürdal et al. 1999).

We now turn to the definition of lamination parameters that allows the computations

of the A and D tensors.

3.1.2.2 Lamination parameters

As outlined in the introduction, lamination parameters were introduced in the early

seventies by Miki and since have been quite used as practical design variables since

lamination parameters allows to decompose the A, B and D tensor terms into two dis-

tinct types of variables: material-dependent variables which are the Tsai-Pagano

parameters and stacking-sequence dependent parameters which are the lami-

nation parameters.
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Consider a composite of given material characteristics E1, E2, G12 and ν12. Note

Q11, Q22, Q12 and Q66 the reduced stiffness’s. The Tsai-Pagano parameters (Ui)i=1...6

(or material invariants) are defined as


U1

U2

U3

U4

U5

 =


3/8 3/8 1/4 1/2
1/2 −1/2 0 0
1/8 1/8 −1/4 −1/2
1/8 1/8 3/4 −1/2
1/8 1/8 −1/4 1/2



Q11

Q22

Q12

Q66

 (3.17)

The in-plane (or stretching) lamination parameters are defined as

ξA{1,2,3,4} =
1
h

∫ h/2

−h/2
{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}dz (3.18)

Now the A tensor is expressed as an affine function of the in-plane lamination param-

eters as follows

A11 = h(U1 + U2ξ
A
1 + U3ξ

A
2 ) (3.19)

A22 = h(U1 − U2ξ
A
1 + U3ξ

A
2 ) (3.20)

A12 = h(U4 − U3ξ
A
2 ) (3.21)

A66 = h(U5 − U3ξ
A
2 ) (3.22)

A16 = h(U2
ξA3
2

+ U3ξ
A
4 ) (3.23)

A26 = h(U2
ξA3
2

+ U3ξ
A
4 ) (3.24)

(3.25)

Note that ξA4 = 0 whenever the angles are 0, 45 and 90.

The out-of-plane (or bending) lamination parameters are defined as

ξ
{1,2,3,4}
D =

12
h3

∫ h/2

−h/2
{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}z2dz (3.26)

The same way the D tensor is expressed as an affine function of the out-of-plane lami-
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nation parameters as follows

D11 =
h3

12
(U1 + U2ξ

D
1 + U3ξ

D
2 ) (3.27)

D22 =
h3

12
(U1 − U2ξ

D
1 + U3ξ

D
2 ) (3.28)

D12 =
h3

12
(U4 − U3ξ

D
2 ) (3.29)

D66 =
h3

12
(U5 − U3ξ

D
2 ) (3.30)

D16 =
h3

12
(U2

ξD3
2

+ U3ξ
D
4 ) (3.31)

D26 =
h3

12
(U2

ξD3
2

+ U3ξ
D
4 ) (3.32)

(3.33)

Note that ξD4 = 0 whenever the angles are 0, 45 and 90.

Note that we do not give the definition (similar except that there is not constant term in

the definition of B) for the ξB and the B for we assumed that all the stacking sequences

we consider are symmetric, hence the ξB’s are zero. It can be found in many articles,

such as (Bloomfield et al. 2009), (Herencia et al. 2008b), (Setoodeh et al. 2006).

One valuable feature of lamination parameters is that first they allow to tailor the

stacking sequence dependence when used within an optimization process. They are

a compact representation of the quantities of interest, for instance regarding in-plane

properties depending only on A terms, provided we work only with balanced stacking

sequences, the A tensor only depends on two variables ξA1,2 and therefore the quantities

of interest can be represented as a surface over the design space of lamination parame-

ters. For instance, one of the interesting optimization features of lamination parameters

are the simple dependence of laminate stiffness moduli (a.k.a laminate engineer

constants) defined as compliance matrix terms (inverse of in-plane stiffness tensor A)

S =

A11 A12 0
A12 A22 0
0 0 A66

−1

(3.34)

The laminate engineer constants are simply defined as

Ex =
1
S11

=
A11A22 −A2

12

A22
(3.35)
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and

Ey =
1
S22

=
A11A22 −A2

12

A11
(3.36)

and

Gxy =
1
S66

= A66 (3.37)

and

Ey =
S12

S11
= −A12

A11
(3.38)

These quantities depend simply on lamination parameters, as it is illustrated in Fig.

3.1. This simple dependency is the basis of the graphical procedure described in the

work of Miki for designing laminate under stiffness constraint (Miki 1983).

3.1.2.3 Compatibility equations

The feasible space (w.r.t positivity of A and D tensor) has been investigated from the

early work of Miki (Miki & Sugiyama 1991). Over the past ten years, much work has

been done in this area by Diaconu, Weaver et al. see for instance (Diaconu et al. 2002),

(Bloomfield et al. 2009), resulting on a convex subset that can be described by means

of compatibility equations. We will not describe here the quite technical way to

obtain these compatibility equations and we simply give the equation over lamination

parameters that are non zero in our study ξA1,2 and ξD1,2,3, since ξA3 = 0 because of the
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balanced property.

2|ξA,D1 |+ ξA,D2 − 1 6 0 (3.39)

2|ξA,D3 |+ ξA,D2 − 1 6 0 (3.40)

(ξAi − 1)4 − 4(ξDi − 1)(ξAi − 1) 6 0 i = 1, 2 (3.41)

(ξAi + 1)4 − 4(ξDi + 1)(ξAi + 1) 6 0 i = 1, 2 (3.42)

(2ξA1 − ξA2 − 1)4 − 16(2ξD1 − ξD2 − 1)(2ξA − ξA2 − 1) 6 0 (3.43)

(2ξA1 + ξA2 + 1)4 − 16(2ξD1 + ξD2 + 1)(2ξA1 + ξA2 + 1) 6 0 (3.44)

(2ξA1 − ξA2 + 3)4 − 16(2ξD1 − ξD2 + 3)(2ξA1 − ξA2 + 3) 6 0 (3.45)

(2ξA1 + ξA2 − 3)4 − 16(2ξD1 + ξD2 − 3)(2ξA + ξA2 − 3) 6 0 (3.46)

(2ξA1 − ξA2 + 1)4 − 16(2ξD1 − ξD2 + 1)(2ξA1 − ξA2 + 1) 6 0 (3.47)

(2ξA1 + ξA2 − 1)4 − 16(2ξD1 + ξD2 − 1)(2ξA1 + ξA2 − 1) 6 0 (3.48)

(2ξA1 − ξA2 − 3)4 − 16(2ξD1 − ξD2 − 3)(2ξA1 − ξA2 − 3) 6 0 (3.49)

(2ξA1 + ξA2 + 3)4 − 16(2ξD1 + ξD2 + 3)(2ξA1 + ξA2 + 3) 6 0 (3.50)

(ξA1 − ξA2 − 1)4 − 4(ξD1 − ξD2 − 1)(ξA1 − ξA2 − 1) 6 0 (3.51)

(ξA1 + ξA2 + 1)4 − 4(ξD1 + ξD2 + 1)(ξA1 + ξA2 + 1) 6 0 (3.52)

(ξA1 − ξA2 + 1)4 − 4(ξD1 − ξD2 + 1)(ξA1 − ξA2 + 1) 6 0 (3.53)

(ξA1 + ξA2 − 1)4 − 4(ξD1 + ξD2 − 1)(ξA1 + ξA2 − 1) 6 0 (3.54)

3.1.2.4 Feasible stacking sequences

We are interested here in conventional laminates of fiber orientations [0◦/45◦/−45◦/90◦].

We used the following common feasibility rules that both come from mechanical prop-

erties but also manufacturability properties

• Symmetric laminates. This ensures that the B tensor vanishes. Note that

there exist laminates with B = 0 that are not symmetric.

• Balanced laminates. The number of 45 layers is equal to the number of −45

layers. This makes the A16 and A26 terms of the A tensor vanish.

• Contiguity rule. No more than 4 successive layers of the same orientation.
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3.2 Behavior of the buckling critical factor

• Disorientation rule. No more than 45 of angle difference between 2 successive

layers. In particular [45/ − 45] is not allowed although many reference in the

literature on composite design allow it.

• Percentages rule. Each orientation should be represented in the laminate. We

took 8% as a minimum percentage of each orientation.

Based on these rules, the number of feasible stacking sequences remain relatively for

thin laminates. The number of feasible stacking sequences based on these rules for

a 2 × 10 layers symmetric laminate is for instance 7032. We found numerically that

we could very easily exhaust all feasible stacking sequences based on vector-oriented

programming language (such as Matlab) up to laminates of 34 layers. Our concern here

is not in finding such feasible stackings but it should be noted that for thicker laminates

the exhaustive search might take excessive memory resources unless proportions are

given and a discrete optimization is preferable. However, for relatively thin laminates

(such as the ones used for aircraft fuselage or wing) we consider that we have all

feasible stacking sequences and that an exact optimization can be performed by listing

all the feasible laminates. We depicted Fig. 3.2 the logarithm of the number of feasible

stacking sequences from 4 to 34 plies. This number Nfeas(n) where n stands for the

number of plies is approximated by

Nfeas = K1.72n (3.55)

where K = 0.12.

We computed the 5 nonzero lamination parameters for all feasible stacking sequences

from 8 to 32 plies. We obtained only 159 different values of the couple (ξA1 , ξ
A
2 ). We

also depicted the number of different stacking sequences associated with each value of

the couple (ξ1
A, ξ

2
A) in Fig. 3.4. We also depicted the distribution of feasible ξD1 , ξD2

and ξD3 Fig. 3.5 and 3.6.

3.2 Behavior of the buckling critical factor

In this section, we first recall some basic facts on buckling, including the definition of

the buckling critical factor for thin composite plates through variational formulation.

Based on this definition we show that this buckling critical factor is concave over the
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Figure 3.2: Natural logarithm of the number of feasible stacking sequences
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well-known lamination parameters. We then depict two interesting aspects: firstly, the

typical behavior of the buckling reserve factor when the stacking sequence varies and

secondly the typical behavior of its reciprocal when the loading conditions vary.

3.2.1 Generalities on buckling

The buckling phenomenon for thin plates and shells has been extensively studied since

the beginning of the 20th century. It consists in a large transverse deflection phe-

nomenon for thin-walled structures under compressive and shear in-plane loading. It

can not be described in the frame of small perturbations. We depicted an example of

shear buckling Fig. 3.7.

The first rigorous equations for large deflections of thin plates were written down

by von Karman in 1910. In their first derivation for isotropic homogeneous struc-

tures, these equations were a system of two nonlinear partial differential equations

of fourth order. As outlined in (Antman 2006), the mathematical analysis used to

solve these equations involved development of bifurcation theory, as it can be found in
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(Bloom & Coffin 2000), (Lebedev & Vorovich 2003) and (Antman & Renardy 2005). A

very brief introduction to bifurcation theory not specifically devoted to buckling can

be found in (Stakgold 1971). The major idea is that bifurcation points of the nonlinear

pde’s (or stability points where the trivial solution w = 0 ceases to be unique) are to

be found amongst the points where the linearized operator is not invertible thanks to

implicit functions theorem. The topological Leray-Schauder degree theory offers the

other way around. Namely, the points where the linearized operator is not invertible

(precisely the eigenelements of the linearized operator) are actually bifurcation points of

the original nonlinear pde system. We will not delve into the mathematical theory but

this brief explanation means that buckling is a nonlinear phenomenon that is often par-

tially solved through a linear eigenvalue problem. It is worth noting that the linearized

buckling can not describe the behavior of the material after buckling, it only predicts

the onset of buckling. Being an eigenfunction, the buckled transverse displacement is

known up to a multiplicative constant, which means that no maximal transverse dis-

placement can be computed through linear buckling. To study the behavior of the plate

or the shells after buckling one should go to nonlinear analysis, the first work on post-

buckling can be found in the seminal paper (Koiter 1962). Our concern here is on the

prediction of buckling, we will therefore study buckling of laminated composite plates

into the framework of linear buckling. Under Kirchhoff hypotheses, one can show (see

(Turvey 1995)) that the equation for buckling of a simply supported composite plate

leads to the following eigenvalue problem. The buckling critical factor is defined as
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3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

the smallest positive eigenvalue λ1 of

D11
∂4w

∂x4
+D22

∂4w

∂y4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 4D16

∂4w

∂x3∂y
+

4D26
∂4w

∂y3∂x
= λ1(Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+Nxy

∂2w

∂x∂y
) (3.56)

where w is the transverse displacement, with w = 0 on ∂Ω and ∆w = 0 on ∂Ω.

Nx, Ny and Nxy are the loads per unit length respectively for longitudinal, lateral

and shear loading, and equivalently the buckling critical load Ncr is defined as

Ncr = (λcr(Nx, Ny, Nxy). Note that equation (3.56) is valid for any geometry Ω. For

the numerical experiments in this chapter, we only focus on rectangular plates but, in

general, we can already see that buckling essentially depends on three different types

of parameters

• Ω: the domain where the buckling equation 3.56 is defined. Dependence of eigen-

value problems to the geometry is quite complicated. For rectangular plates

Ω = [0, a]× [0, b], the eigenvalues depend only on the aspect ratio a
b .

• D tensor: the idealized buckling problem studied in shape optimization (in (Ashbaugh 1999)

for instance) only defines bi-Laplacian and Laplacian operators. This corresponds

to buckling for isotropic homogeneous material under biaxial compression of the

same magnitude (Nx = Ny < 0). For composite, the D tensor makes the buckling

equation somewhat more complex since it weights the different derivatives and

we clearly see that the D16 and D26 (bending-twisting terms) are not part of the

bilaplacian.

• N = (Nx, Ny, Nxy): the loading conditions. When Nxy = 0 and Nx = Ny < 0,

note that the right-hand differential operator boils down to a laplacian.

Buckling problems of this type can be solved exactly in a few cases with simple ge-

ometry (rectangle, disk,...) and simple operators (bi-Laplacian which corresponds to

orthotropy, laplacian that corresponds to uniform biaxal compression with no shear),

many closed-form expressions can be found in (Lekhnitskii 1968). In the orthotropic

case, where D16 = D26 = 0, buckling of a rectangular composite plate of dimension

[0, a]× [0, b], under biaxial loading (no shear), the buckling critical factor is

λ1 = min
m,n∈N2

π2(D11m
4 + 2(D12 + 2D66)m2n2R2 +D22n

4R4)
a2(Nxm2 +Nyn2R2)

(3.57)
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3.2 Behavior of the buckling critical factor

where R = a/b is the aspect ratio and n (resp. m) is the number of half-waves of the

transverse displacement along x direction (resp. y direction). When no closed-form

expression can be derived, more complex geometry, non-orthotropic laminates, shear

loading, approximation methods are to be used. Amongst the classical methods, we

have

• Rayleigh-Ritz method: historically, this was the first method develop to tackle

with eigenvalue problem arising in vibration and buckling. This yields to solve

an eigenvalue problem over a finite-dimensional space which is the span of nat-

ural eigenfunctions for a simple operator, e.g sin( iπxa ) sin( jπyb ) for a rectangular

plate. The idea is therefore to write the variational characterization of eigen-

value as an optimization problem solved in this finite-dimensional space. The

Rayleigh-Ritz can be thought as a spectral method (see appendix). Unlike finite

element methods, matrices are usually dense. General introduction can be found

in (Courant 1994), (Akulenko & Nesterov 2005) and (Turvey 1995) for composite

buckling

• Finite strip method (see (Turvey 1995))

• Finite elements method

In general, the approximation finite-dimensional space Vh is included in the V Hilbert

space where the solution w belongs to (conformal approximation). Under this usual

property, the exact eigenvalues can be shown to be approximated by above through

these different approximation methods. In this chapter, most of the numerical compu-

tations were done with a Rayleigh-Ritz method.

A few basic facts can be noted in (3.57) regarding the dependence of λ1 with respect

to stacking sequence and loading conditions

• For fixed loading conditions, buckling critical factor is concave over the D tensor

variables, being the minimum of concave functions (linear). We will see in the

sequel that this can be established rigorously in the general non-orthotropic case,

for any loading and geometry Ω.

113



3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

• For fixed stacking sequence, hence fixed D tensor, the reciprocal of the buckling

critical factor is piecewise linear. We will see that numerically it seems to be a

good approximation for non-orthotropic laminates under biaxial loading.

• For fixed loading conditions, the buckling critical reserve factor is piecewise linear

on D hence on lamination parameters. In the general case (combined loading con-

ditions) this does not seem to be still valid, however, simple piecewise quadratic

models over lamination parameters are shown to be very accurate to predict the

buckling critical reserve factor.

• Define formally a buckling critical factor function

λcr : S3(R)++ × R3 7→ R+

(D,Nx, Ny, Nxy) 7→ λ1 = λcr(D,Nx, Ny, Nxy)
(3.58)

where D the out-of-plane (symmetric positive definite) tensor in S3(R)++ the

convex cone of symmetric definite positive tensors and N = (Nx, Ny, Nxy) the

loading conditions. We see that in the orthotropic case, λcr does have some partial

homogeneity properties (e.g λcr(κN) = κ−1λcr(N)). Most of these properties are

still valid in the general case (non-orthotropic and combined loading), this is

shown in the sequel.

3.2.2 Characterization of the buckling critical reserve factor and properties

In most cases, complex geometry, shear loading, non-orthotropic laminate, no closed-

form expression can be derived. One way to derive some properties of the buckling

critical reserve factor λ1 is through variational formulation. Let us define some nota-

tions for sake of clarity

• V = H̃2
0 (Ω) = {v ∈ H2

0 (Ω) s.t ∂v
∂n = 0}, the Hilbert space of feasible displace-

ment satisfying the boundary conditions (clamped1).

• H = H1
0 (Ω). Note that a key property is that V ↪→ H and this embedding is

continuous and compact. This ensures that the spectrum is countable.
1we do not derive it for the simply supported boundary conditions for we can not define straight-

forwardly the natural Hilbert space associated to ∆un = 0 (trace operator is not defined for ∆u since

it is in L2(Ω)), however, a posteriori, solution u is in H4(Ω) and the trace of the Laplacian can be

defined
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3.2 Behavior of the buckling critical factor

• aD : V × V 7→ R+ a continuous symmetric bilinear coercive form where D is an

element of S3(R)++

• bN : H×H 7→ R a continuous symmetric bilinear form that need not be positive

with N = (Nx, Ny, Nxy). A basic assumption to ensure existence of (realistic)

positive buckling eigenvalues is that there exists w ∈ H such that bN (w,w) ≥ 0.

In the case of buckling of composite laminate these bilinear forms are

aD(u, v) =
∫∫

Ω
D11

∂2u

∂x2

∂2v

∂x2
+D22

∂2v

∂y2

∂2u

∂y2
+ 2(D12 +D66)

∂2u

∂x∂y

∂2v

∂x∂y
+

4D16
∂2u

∂x2

∂2v

∂x∂y
+ 4D26

∂2u

∂y2

∂2v

∂x∂y
(3.59)

and

bN (u, v) =
∫∫

Ω
Nx

∂u

∂x

∂v

∂x
+ Ny

∂u

∂y

∂v

∂y
+

Nxy

2
(
∂u

∂x

∂v

∂y
+

∂u

∂y

∂v

∂x
) (3.60)

The coercitivity of aD simply follows from Poincaré’s inequality applied to the gradient

of u and from the positivity of the D tensor. We now have the following characterization

of λ1, known as the Courant-Fisher characterization

λcr(D,Nx, Ny, Nxy) = λ1 = min
w∈V\0

aD(w,w)
|bN (w,w)|

(3.61)

Let’s first recall a result from (Rousselet & Chenais 1990) that states that λcr is con-

tinuous over D,Nx, Ny, Nxy, differentiability can not be established as well, indeed,

what is shown in (Rousselet & Chenais 1990) is that λcr is differentiable whenever it is

a simple eigenvalue, in case it is a multiple eigenvalue only directional differentiability

can be established.

We can use (3.61) to derive some homogeneity properties. Let κ > 0 and D ∈ S3(R)++,

N = (Nx, Ny, Nxy), for any w ∈ V

aκD(w,w) = κaD(w,w) (3.62)

and

|bκN | = κ|bN (w,w)| (3.63)
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3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

Taking the infimum over V, we get

λcr(κD,N) = κλcr(D,N) (3.64)

and

λcr(D,κN) =
1
κ
λcr(D,N) (3.65)

(3.64) and (3.65) mean that λcr is homogeneous of degree 1 over D and homogeneous

of degree −1 over N . Applying Euler identity theorem (see appendix) to (3.64), (3.65)

whenever λcr is differentiable gives

6∑
i=1

Di
∂λcr
∂Di

= λcr (3.66)

3∑
i=1

Ni
∂λcr
∂Ni

= −λcr (3.67)

These equations can be used within an optimization process to save sensitivity analysis

computations. Note that by simply rewriting (3.65) in terms of the reciprocal of the

buckling critical reserve factor

1
λcr(D,κN)

=
κ

λcr(D,N)
(3.68)

and we see that the reciprocal of λcr is homogeneous of degree 1, which yields

Nx

∂ 1
λcr

∂Nx
+Ny

∂ 1
λcr

∂Ny
+Nxy

∂ 1
λcr

∂Nxy
=

1
λcr

. (3.69)

Note any of equations (3.66), (3.67) and (3.69) can be used to directly derive an exact

expression of the reciprocal of the buckling critical load factor whenever the partial

derivatives are simple (e.g piecewise constant). It should emphasized however that

these equations are not globally valid in the whole domain since the derivatives of λcr
do not exist everywhere. We will see in the sequel that these equations are valid piece-

wise, since λcr is differentiable over connected regions that can be easily describe.

The homogeneity of the buckling critical reserve factor, which was already noticed,

for instance with respect to the loading conditions in (Grenestedt 1991), can of course

be used to reduce the size of the regression problem. One way to use it would be

to build an approximation model over the sphere of radius {||N || = K} and use for
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3.2 Behavior of the buckling critical factor

instance the spherical coordinates (θ, φ) as approximation variables. However doing so

we would definitely reduce the dimension but we are likely to miss some simple depen-

dency of λcr over the natural variables N . We can also observe that if we consider the

buckling critical reserve factor defined over the panels thickness h and the lamination

parameters ξD instead of being defined over the D tensor, we get

λcr(κh) = κ3λcr(h) (3.70)

This equation means that we can get rid of panel thickness h and only focus on lami-

nation parameters. Finally, we can also observe that for the specific case of rectangular

plates, we have by applying the change of coordinates x′ = κx and y′ = κy

λcr(κa, κb) =
1
κ2
λcr(a, b) (3.71)

and the corresponding Euler identity. Note that the formula (3.71) is very similar

to the formula for the first eigenvalue of the Laplace operator that can be found in

(Henrot 2006) for instance. In this reference, it is shown that for an homothety κΩ,

the first eigenvalue of the Laplace operator µcr satisfies

µcr(κΩ) =
1
κ2
µcr(Ω) (3.72)

for any domain Ω.

3.2.3 Concavity of the buckling reserve factor over lamination parameters

We now turn on the concavity of λcr. To show that it is concave over the ξD, we first

show that it is concave over D, concavity being preserved by pre-composition by a

affine function (with h fixed), concavity over ξD will be ensured.

In this paragraph, the loading conditions remain fixed, we therefore skip them when

writing the dependency of λcr. We want to show that λcr is concave over S3(R)++. Let

α > 0, consider the upper level set Dα = {D ∈ S3(R)++ s.t λcr > α}. Let D(1) and

D(2) in Dα and θ ∈ (0, 1), let denote D(θ) = θD(1) +(1−θ)D(2). S3(R)++ being convex,

D(θ) is clearly a symmetric positive definite tensor and consider now the bilinear form

aD(θ) . It is clearly continuous, symmetric and coercive. Let w ∈ V we then have

aD(θ)(w,w) = θaD(1)(w,w) + (1− θ)aD(2)(w,w) (3.73)
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hence
aD(θ)(w,w)
bN (w,w)

= θ
aD(1)(w,w)
bN (w,w)

+ (1− θ)aD(2)(w,w)
bN (w,w)

(3.74)

Since D(1) and D(2) are in Dα, for all w ∈ V

aD(1)(w,w)
bN (w,w)

> α (3.75)

and
aD(2)(w,w)
bN (w,w)

> α (3.76)

hence for all w ∈ V
aD(θ)(w,w)
bN (w,w)

> α (3.77)

and D(θ) is in Dα. This implies that λcr is quasiconcave, since its upper level sets Dα

are convex. Being also homogeneous of degree 1, it is concave (see appendix). Note

that strict concavity cannot be ensured, this follows obviously from equation (3.57)

where we see that in the vicinity of (ξ1
D, ξ

2
D, 0) is a minimum of linear functions, hence

at a point where λcr is differentiable, there exists a neighborhood where λcr is linear

over (ξ1
D, ξ

2
D) and cannot be strictly concave. Another quick way to see that is to

note that, in case λcr is twice continuously differentiable over D, Euler identity for the

homogeneity of order 0 of each partial derivative of λcr w.r.t to Dj yields

∀j = 1 . . . 6
6∑
i=1

Di
∂2λcr
∂Dj∂Di

= 0 (3.78)

Equation (3.78) simply means that D belongs to the kernel of the Hessian Hλcr(D) of

λcr at D and hence Hλcr(D) is not definite.

Using the following definition of the reciprocal 1/λcr(N)

1/λcr(N) = max
w∈V

|bN (w,w)|
aD(w,w)

(3.79)

together with the following lower level sets Nα = {N ∈ R3 s.t 1/λcr(N) 6 α} and

the triangular inequality leads to the the quasi-convexity of 1/λcr(N) over N . Being

homogeneous or degree 1 it is convex. Strict convexity of 1/λcr(N) cannot be ensured

the same way as the strict concavity of λcr(ξD).
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3.2 Behavior of the buckling critical factor

Characteristics Graphite/Epoxy

E1 Longitudinal modulus 112 GPa

E2 Transverse modulus 8.2 GPa

G12 Shear modulus 4.5 GPa

t Elementary ply thickness 0.26 mm

Table 3.1: Graphite/Epoxy material characteristics

3.2.4 Influence of the material

We focus in this section on the behavior of the buckling critical reserve factor λcr when

the loading N is fixed and when the stacking sequence of the plate laminate varies. We

use lamination parameters ξD to assess this behavior. We focused here on lamination

parameters of conventional laminates [0◦/45◦/−45◦/90◦], in that case ξ4
D = 0. We then

restrict our study to the influence of (ξ1
D, ξ

2
D, ξ

3
D) over the feasible domain described in

(Bloomfield et al. 2009), (Herencia et al. 2008a) and (Herencia et al. 2008b)

2|ξ1
D| − ξ2

D − 1 6 0 (3.80)

and

2|ξ3
D|+ ξ2

D − 1 6 0 (3.81)

Note that it is a convex domain.The triangle in [−1, 1]2 that Eq. (3.80) will be referred

to as Miki’s triangle (with ξ3
D = 0) and the polyhedron in [−1, 1]3 defined both by Eq.

(3.80) and Eq. (3.81) will be referred to as Miki’s tetrahedron. The main interest of

the compatibility equations described in (Herencia et al. 2008a) is that they provide a

convex feasible set for ξD ∈ [−1, 1]3 for given in-plane lamination parameters ξA (or

equivalently proportions of fiber orientation). In an optimization process, this offers a

way to ensure compatibility in a continuous way between in-plane properties (A tensor)

and out-of-plane properties (D tensor). In the sequel we study the behavior of λcr all

over its definition domain with no regards to proportions, but we should keep in mind

that in practice, the out-of-plane are related to proportions (or equivalently ξA). Note

that most of the computations done in this paper were based on a Rayleigh-Ritz method

(see appendix) with N = 20×20 basis functions over a rectangular plates of dimensions

a = 650mm and b = 250mm, we chose a classical Graphite/Epoxy whose characteristics

are given Tab. 3.2.4.
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Figure 3.8: Results for orthotropic laminates under combined loading and pure shear loading
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Figure 3.9: Results for non-orthotropic laminates under combined loading and pure shear
loading

3.2.4.1 Behavior of λcr for orthotropic laminates under combined loadings and

pure shear

For uniaxial and biaxial compressive loadings, a closed-form equation is given by (3.57).

For fixed loading, it follows that λcr is piecewise linear over tensor D terms and therefore

piecewise affine over ξD. For combined loadings (including shear) or pure shear loading,

no closed form expression can be derived. The main reason for this is that the ∂2w
∂x∂y term

prevents from using the classical techniques as a double sine series (see (Reddy 2004)).

Correction formulas were given (see for instance (Whitney 1969)), but all of them were

approximation expressions based on simplified assumption (infinite length plate for

instance) and there is no evidence at the time being that

• for arbitrary loading (combined loading, pure shear), λcr is still piecewise affine

over ξD for orthotropic laminate

• for arbitrary loading, λcr can be defined in a piecewise manner for non-orthotropic

laminates
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3. OPTIMIZATION PROPERTIES FOR COMPOSITE PROBLEMS

In the sequel, we show numerically that λcr seems to be piecewise affine over ξD for

combined loading where shear is not very high. However, for pure shear loading, we ob-

served that λcr can still be defined in a piecewise manner but each part of the function

seems to be more complex than affine functions. The most important fact shown here

is that λcr behaves in a piecewise manner and a good approximation technique should

be able to detect these different regions or so-called modes and build an approximation

for each region.

To assess the evolution of λcr, we sample uniformly Miki’s triangle for ξ1
D, ξ

2
D and

compute for each couple of lamination parameters its associated λcr. The loading is

taken as a combined loading with shear and we also compute the associated sensitivities
∂λcr
∂ξ1
D

and ∂λcr
∂ξ2
D

and plot the phase portrait: for each couple we associate a point of the

gradient space.

The different plots depicted Fig. 3.8 were obtained for two different loading condi-

tions

• Combined loading: Nx = −50 N.mm−1, Ny = −20 N.mm−1, Nxy = 20 N.mm−1

• Pure shear loading: Nx = 0 N.mm−1, Ny = 0 N.mm−1, Nxy = 20 N.mm−1

For each loading case, we generated 800 couples (ξ1
D, ξ

2
D) uniformly distributed over

Miki’s triangle. We depicted the behavior of λcr Fig. 3.8 a) and ?? c). We can ob-

serve that for the first loading case, we clearly see the piecewise dependence of λcr

over (ξ1
D, ξ

2
D), as in the biaxial compression case of Eq. (3.57), λcr seems still de-

fined as the minimum of hyperplanes, making the overall function simply defined over

a sole hyperplane but not differentiable at the boundaries between hyperplanes. It

is worth noting that directional differentiability seems still valid as it is proved in

(Rousselet & Chenais 1990). For this loading case, λcr seems to be still defined as

piecewise linear, this is numerically ensured by the phase portrait Fig. 3.8 b), where

we see all the 800 points shrink down to only 4 different points, which means over each

region, λcr is linear or very close to be linear. For the pure shear loading case, this

dependence does not seem to hold, indeed, the regions are not as clearly defined as

in the combined loading. The phase portrait shows 4 different regions disconnected,
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3.2 Behavior of the buckling critical factor

which again means that λcr can be defined in a piecewise manner, though its behavior

over each region seems more complicated than linear.

3.2.4.2 Behavior of λcr for non-orthotropic laminates under combined loadings

and pure shear

We also depicted Fig. 3.9 the phase portrait for non-orthotropic laminates by making

the ξD varying in the Miki’s tetrahedron for the same loadings. We observe in both

cases that the phase portrait has the same structure that is to say 4 disconnected

components. However, the dispersion of these clusters are quite different for the two

loadings. In the first case, for combined loading, we observe a low variance over the

two first dimensions (∂λcr
∂ξ1
D
, ∂λcr
∂ξ2
D

) and bigger variations for the last dimension (∂λcr
∂ξ3
D

),this

would naturally indicate that λcr is close to depend linearly over the two first dimensions

and that it depends in a more complex manner over the last dimension. In case of pure

shear loading, the dependence is much more complex, it does not seem that there is a

dimension that has a bigger influence than the others. However, the main observation

that we can make is that in all cases, λcr seems to depend in a piecewise manner

and that the function is likely to be well approximated when taking advantage of this

structure.

3.2.5 Influence of the loading conditions

In this section, we are interested in the behavior of the λcr for fixed stacking sequence

when the loading conditions vary. In most cases, when loading conditions vary, the

reciprocal of λcr was found to be more easier to depict and interpret. This can be easily

seen again in the general formula (3.61) where all the stacking sequence dependence

appear in the numerator and all the loading conditions appear in the denominator.

Furthermore, it also follows from both theoretical and computational considerations.

Indeed, for instance in (Rousselet & Chenais 1990), the authors do not study directly

λcr but first use its reciprocal to show it is continuous and differentiable whenever it is

a simple eigenvalue. Numerically, it is preferable to compute the reciprocal of λcr that

is to find w and the largest κ such that

Lw = κKw (3.82)
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Figure 3.10: Evolution of the reciprocal of λcr for a fixed non-orthotropic stacking sequence
w.r.t loading conditions

where K is the matrix associated to the aD bilinear form (stiffness material matrix) and

L matrix associated to the bN bilinear form (geometry stiffness matrix) and eventually

λcr = 1/κ. Next, as noted before, in case of the orthotropic formula, we can observe

that 1/λcr is piecewise linear over N = (Nx, Ny). Regarding computational issues when

making the loading conditions vary, it can be noted that for general loading (including

shear) the feasible set (i.e the fluxes that gives rise to buckling, this is related to the

assumption of positivity of bN ) are not easy to describe. When the loading conditions

approaches near the boundary, the eigensolver might not converge or exhibit numerical

ill-conditioning behavior and λcr increases very quickly and behaves like an hyperbola.

What we observe Fig. 3.10 is that the reciprocal of λcr behaves quite simply. At first

glance, we could think it is piecewise linear, however the phase portrait show many

different regions where the gradient do not vary very much. We could imagine then

that a piecewise linear approximation would perform quite well.

3.3 Towards approximation strategy for discontinuous

functions

We investigated the behavior of the buckling criticial load factor over lamination pa-

rameters. This behavior numerically seems to feature regions of continuity (or even
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3.3 Towards approximation strategy for discontinuous functions

more regularity) well separated at least in the gradient space. Owing to this feature,

one appropriate approximation strategy should consider dividing the input space (or

learning space in the parlance of statistical learning) and build a local approximation

in each region. This is the innovative strategy that we present in the next chapter.
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4 Original strategy to approximate

discontinuous and derivative

discontinuous functions

In a lot of complex data-based approximation problems, the use of one sole predictor

(Artificial Neural Network, Support Vector Machines,...) often exhibits a lack of ac-

curacy especially in high-dimensional problems. This is due to the growing complexity

of the underlying functions that present different behaviors depending on the region. If

we think of computer experiment approximations for instance, the output of the true

function can be noisy, and/or computed according to different algorithms with respect

to the entries or feature discontinuities based on the underlying physics but also on the

programming methods. Despite its versatility, one simple predictor might not be enough

to correctly predict the output on the whole entries space. Ongoing research suggests to

replace one predictor by many of them, making the prediction more accurate by taking

into account the specific structure of the data. In this chapter, we present a general

framework to enhance the learning of several experts based on probabilistic clustering

techniques. The learning data is used to find an appropriate probabilistic description

of the data by means of mixtures laws. The input-output relationship is first modeled

as a specific distribution whose parameters are to be estimated. This estimation usu-

ally proceeds from maximum likelihood estimation. We first find the mixture law of the

input-output space and then design a clustering technique to separate the learning data.

This split of the data may be ”hard” or ”soft”, leading either to strictly defined clusters

or to probabilistic assignment of each learning point to the whole set of clusters. Once

this assignment is done, a local or fuzzy expert is built, making the overall predictor as

a hard or soft split following the model of one level tree whose leaves are simple predic-

tors : artificial neural network, quadratic regression...Generalization is done through

Bayesian approach of maximum a posteriori (MAP) estimation in the projection of the
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AND DERIVATIVE DISCONTINUOUS FUNCTIONS

mixture probability law in the entries space. This technique can be used to improve ac-

curacy in regression problems but also misclassification rate in classification problems.

Furthermore, the clustering part can be used to help parameter estimation in radial

basis network or weighted least square model. It can also be used for local polynomial

regression or kernel smoothing techniques.

4.1 Motivations

Our main objective in that chapter is to derive a new strategy to allow accurate approxi-

mations of the typical stability constraints to be used in an optimization process. These

functions typically features derivative discontinuities and also real discontinuities.

4.1.1 Typical behavior of stability constraints

As shown in the former chapter, stability constraints and more specifically buckling

computations exhibit derivative discontinuities with respect to the buckling analysis

parameters (lamination parameters w.r.t changes of the stacking sequence, forces w.r.t

changes in the loading conditions, geometric dimensions w.r.t a fixed profile). These

discontinuities are physical-based and relies on the very computation of the critical

buckling load factor (or Reserve Factor) formally defined as the smallest positive

eigenvalue of a pde. Moreover, if we think of a more general optimization where for

instance the shape of the stringer can change and takes different categorical variables

(T-shaped, I-shaped,...) the switch from one type of domain to another one also leads

to discontinuities. The physics behind lead to derivative discontinuities but they are

also practical reasons that can make the computation not of the critical buckling load

factor but of quantities derived from them really discontinuous. Think for instance of

margin policies, rule-of-thumbs that are based on the art of the engineer that favor one

buckling critical factor over another one for some prescribed values of the parameters.

These discontinuities can also derive from programming reasons, a common example

in in-house tools to reduce the number of outputs to check is to consider minimum

of several different buckling modes. To make this more clear, the Airbus skill tool

named COFUS (see also Chapter 7) which analyses the stability of a super-stiffener

(two halves thin shallows shells of possibly different curvature radii, thicknesses and

stacking sequences reinforced by a stiffener and simply supported on the frames) as
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an output for stiffener buckling that generally analyses the stability of the different

parts of the stiffeners (web, flange, foot) and gives the minimum buckling reserve fac-

tor. These types of buckling essentially depends on the geometric dimensions of the

stiffener, the stacking sequence of the stiffener but also on the in-plane properties of

the panels (proportions of orientations and forces (loads per unit length) that the two

half-panels endures). However, for some specific shapes or stringer, e.g Omega-shaped

stringers) this stringer buckling reserve factor also features a reserve factor associated

to the buckling o the small panel between the two webs of the stringer: this is typical

skin buckling and it essentially depends on the stacking sequences of the panels. This

example shows two essential characteristics of the functions we want to approximate,

first a given output when switching from one buckling type to another shows discon-

tinuities but also the variables that explains the behavior of the function can change.

So a clever strategy to accurately approximate these outputs should not only detect

discontinuities but also locally weights the predictive variables by allowing some vari-

ables to be more important in some areas and switching to other predictive variables

in other regions of the input space. There exists another type of functions that we

consider in this work, this the typical optimal value function (presented in Chapter

2). The functions that associates the value of the function at a minimum of a certain

optimization problems to parameters that govern this optimization problem. We saw

Chapter 2 that the derivative of that function w.r.t optimization parameters exists,

provided the minimum satisfies some conditions. However, as a global function this op-

timal value function (or design curves in aerospace jargon) often exhibits derivative

discontinuities from changes in the set of active constraints. On the bilevel context,

one often tries to build accurate approximations of this optimal value function. As

outlined in (Haftka & Watson 2005), constructions of such accurate approximations is

challenging due to the high number of input variables and also discontinuities. A last

but not least reason making these approximation hard to build is that the learning

points come from an optimization algorithm that may not always converge, or that

can stop because of a fixed number of iterations, or even worse the algorithm might

give no useful results (crash or get stuck in a non feasible point) making the quality of

the learning points hard to assess. An optimal strategy for approximating such results

should also consider the quality (or at least an ’approximation’ of the quality) as an

important feature associated to the construction of the approximation.
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4.1.2 From one expert to several experts

We should emphasize and recall here that these approximation are mainly used to speed

up design. When used within a design process approximation models were developed

to tackle the slowness of repetitive code evaluations. When used within a design pro-

cess these approximation methods are often called surrogate models. Surrogate models

arise from statistics and probability theory and are now widespread tools to approxi-

mate complicated functions. They are used inside the optimization process to approx-

imate the objective function or the constraints or they can directly approximate the

results of the optimization process as a function of the optimization problem parame-

ters (materials characteristics, load case in structural optimization for instance). They

are also widely used in the multilevel and multidisciplinary optimization framework

(Liu et al. 2004), (Merval 2008) and (Merval et al. ). Surrogate modeling offers many

ways to approximate function from sample data : artificial neural networks (ANN)

(Dreyfus 2005), moving least squares (MLS) (Nealen & Darmstadt 2004), radial ba-

sis functions (RBF) (Buhmann 2001), kriging (van Beers & Kleijnen 2004), support

vector machines (Smola & Schölkopf 2004), multivariate adaptive regressive splines

(MARS) (Friedman et al. 2001). A good overview of the existing surrogate models

can be found in (Friedman et al. 2001), (Kleijnen et al. 2005), (Wang & Shan 2007)

and (Simpson et al. 2008). In (Forrester & Keane 2009), Forrester and Keane provide

an intensive review of most of the surrogate models and compare them when used

within an optimization process. Nonetheless, one simple surrogate model might not be

enough to approximate a complicated function, especially when this function features

different behaviors depending on the region of the input space. This situation hap-

pens quite often in mechanics when computing critical buckling modes. For instance

in (Merval 2008) the optimization constraints to be approximated (reserve factors for

skin buckling and local web stringer buckling for a composite stiffened panel) happen

to be discontinuous and derivative-discontinuous which precludes the training of an ac-

curate surrogate model. Indeed surrogate models usually assume that the function to

approximate is smooth and are themselves smooth, resulting in a high variance around

the discontinuities and therefore on a overfitting that make the generalization power of

the surrogate model poorer. One way to prevent this overfitting would be to get rid of

this discontinuities first by building several surrogate models but also by dividing the
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input space into regions that do not feature discontinuities.

To improve the accuracy of a surrogate model, a common practice is to build sev-

eral surrogate models on the same common learning basis. One is more likely to find

a more accurate surrogate when building many surrogate models. As explained in

(Viana et al. 2009) several surrogate models prevents from building poorly fitted mod-

els. On the basis of the different surrogate models, one can the best one based on

the classical statistical techniques of cross-validation and bootstrap (see for instance

(Kohavi 1995) and (Picard & Cook 1984)) to obtain estimates of the generalization er-

ror of the different surrogate models. As pointed out in (Acar & Rais-Rohani 2009),

one of the drawbacks of choosing the best predictor is that we do not make use of all

the resources used in the construction of the discarded surrogate models. The chosen

predictor may be globally precise enough but may lack accuracy in some crucial ar-

eas of the input space (boundaries for instance), while one of several of the discarded

surrogate models may perform better in these very areas. One could overcome this

drawback by combining all the surrogate models by means of weights. This practice

of combination relies on the same basis as committees of machines in artificial intel-

ligence. A committee of machines is a collection of intelligent agents that vote and

decide all together, hoping that errors would cancel as there are several experts. In

the area of machine learning, this practice of combination appears in the bagging and

boosting techniques. In the case of ensemble of surrogate models, the different surro-

gate models may be simply averaged or weighted. Note that the weighting may be done

globally (constant weights over the input space) as it is done in (Viana et al. 2009) and

in (Acar & Rais-Rohani 2009) or locally (depending on the input space) as it is done

in (Zerpa et al. 2005) and in (Sanchez et al. 2008). Even though the idea of combining

several surrogate models seems appropriate to approximate functions, there is no evi-

dence that combining is always better than selecting the best surrogate, as it is pointed

out in (Yang 2003).

Our approach is in the framework of ensemble of locally weighted surrogate models

except it is also based on a partitioning of the learning basis, while in most of the de-

scribed techniques of ensemble, all the surrogate models are built on the same common

learning basis. Indeed, our concern is about the approximation of functions featuring
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discontinuities, heterogeneous behaviors and very different landscapes depending on

the region of the input space. This is why, in our approach, a surrogate model is built

over a specific region of the input space. From an optimization point of view, the global

surrogate model needs to be continuous and even smooth (for gradient-based optimiza-

tion techniques), this is why we combine them in a way that their errors are canceled,

especially in the vicinity of discontinuities. As pointed out, this approach slightly differs

from the ensemble of surrogate models, since each surrogate model, though applied over

the whole input space at the very end, is only built over a specific region of the input

space. Our approach is based both on the same idea as the committee of machines

but also on the ’Divide and Conquer’ principle. In the literature, this kind of approach

is referred to as mixture of experts (MoE’s). A general introduction of mixture of

experts can be found in (Friedman et al. 2001). One classical application is known as

hierarchical mixture of experts (HME) and is described in (Jordan & Jacobs 1994). In

this study, Jordan and Jacobs present a general architecture of mixture of experts for

supervised learning (regression and classification). This architecture is a tree structure

where each nonterminal produces a soft split of the input value coming from the up-

per level. This soft split consists in giving different weights to the lower sub levels by

means of a generalized linear model and the authors call it gating network. Each gating

network produces soft splits until the terminal leaves which produce output (real value

for regression and binary for classification) by means also of a generalized linear model.

These terminal leaves are called by the authors expert network. The parameters of the

different generalized linear models are estimated using a classical algorithm in statistics

: the Expectation-Maximization algorithm (EM algorithm) on the input-output space,

which means that in their study, partitioning and learning are based on the same al-

gorithm. We propose a different method where clustering is separated from learning.

The gating networks are not generalized linear models (GLIM) but Gaussian mixture

models (GMM) still estimated through EM algorithm. Based on the Gaussian mixture

models estimates, the input-output space (or conjoint space) is clustered with respect

to the maximum a posteriori (MAP), once this clustering is done, we have a certain

number of sub-bases and a surrogate model is trained over each sub-basis, this sur-

rogate model can be quadratic regression, artificial neural networks and moving least

squares regression, while in Jordan and Jacobs use a generalized linear model. All the

surrogate models are combined on the basis of the Gaussian parameters found by EM
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algorithm. Roughly speaking, our technique relies on a certain number of hard tasks

that try to answer the following questions

a) How do we cluster the learning basis ? Clustering (or automatic classification) is

one of most important areas of unsupervised learning. It aims at finding groups

whose individuals are close in some sense into a collection of points. There are

many different techniques to cluster data (K-means, K-medoids, quality thresh-

old clustering (QT clustering), density clustering see (Berkhin 2002) for instance

where most of the classical algorithms for clustering are reviewed). Some of them

are hard clustering : a point of the design space belongs to one and only one clus-

ter, some others are fuzzy clustering the points belong to several clusters, each

point is associated to a random vector defining the probabilities to lie within each

cluster.

b) Which local experts do we build and how do we combine them? As pointed out

in (Yang 2003), there is no reason that combining several surrogate will perform

better than only one, which means that the combination has to be done carefully

based on a reasonable way to cancel errors.

c) How to choose the number K of clusters? This is a rather difficult question

since there might not be perfect number of clusters. Indeed, we just want to

find a good number of clusters such that each expert would do well enough to be

combined. There might be different choices for K. The question of the number of

clusters is central in clustering theory and involves different tools from statistics,

probability theory and information theory. In (Burnham & Anderson 2004) some

of the common criteria to find the best number of clusters (Akaike Information

Criterion and the Bayesian Information Criterion (AIC, BIC) are thoroughly

investigated and compared).

As said earlier, our concern is mostly about the approximation of discontinuous func-

tions to the end of optimization. The clustering should be done such that the boundary

between clusters would be as close as possible to the real discontinuities. We assume

that these discontinuities may be distributed all over the domain and would naturally

divide the input-output space into bunches of points that are connected but that may
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be anisotropic. Clustering should also be done in such a way that the we have a cen-

ter and a parameterization of each cluster to combine the local surrogate models. To

that end, we assume that a good representation of the conjoint data for discontinuous

functions would be Gaussian mixture models. The EM algorithm would allow us to

find good estimates of the Gaussian parameters. EM clustering for Gaussian mixture

models gives such an anisotropic representation of the data and therefore a parameter-

ization of the clusters that makes possible to combine the different surrogate models

built on each cluster. In (Bradley et al. 1998) some of the benefits that can be taken

from using EM clustering are developed. Next, we describe our method by answering

the former questions. We first present the theoretical background of our proposed tech-

nique : Gaussian mixtures models, clustering based on the GMM estimates in section 2

and answer question a). We then focus on the combination of the local experts trained

on the basis of the clustering, this will allow us to answer question b) and derive the

original algorithm presented in section 3 to improve the accuracy of surrogate modeling

for discontinuous functions. In section 4, we validate our proposed algorithm on test

cases obtained from a discontinuous functions samples generator called Samgen and we

also give a practical answer to question c). In section 5, we finally test our proposed

algorithm on a structural optimization problem from aeronautics. We also give an

original interpretation of a standard surrogate model the weighted least squares (WLS)

in terms of mixture of experts based on a soft clustering and local quadratic experts

in section . The tool called Samgen we implemented to provide highly discontinuous

functions in arbitrary dimension is outlined in appendix C.

4.2 Mixtures of probability laws as a way to handle complexity

This section is devoted to the description of the formal mixture probability model.

Apart from the end of the section where we restrict ourselves to the specific case of

categorical variables and multivariate regression, we do not impose a specific proba-

bility density function. After a brief introduction to unsupervised learning, we first

describe mixture laws and the way the mixture parameters and laws components can

be estimated through classical maximum likelihood estimation.
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4.2.1 Unsupervised learning and density estimation

Unsupervised learning is concerned with the exploration of data. In this case, we do not

look for prediction based on learning data for new input data, but solely on a as much

as possible adequate description of the learning data base. More formally, suppose we

are given a set of N observations (x1, x2, . . . , xN ) of a random vector X in Rp having

probability density g, the goal is to estimate properties of the density to get a better

understanding of the data. Hence, the objective of unsupervised learning is to give an

insight of the data and not to predict new outcome. Indeed, in supervised learning the

overall goal is to be able to predict outcome or response for independent input based

on a learning database and the accuracy of the prediction can be measured directly. In

unsupervised learning, the lack of outcome makes this accuracy hard to assess. We will

see later that our technique combines unsupervised learning techniques with supervised

learning objective and hence such techniques have been called semi-supervised learning

techniques.

One particular area of unsupervised learning is related to partition a collection of

observations into subsets or ’clusters’. The observations lying in the same cluster share

properties that make them similar in some way. More precisely, observations within a

same cluster are similar amongst them and dissimilar with regard to the observations in

the other clusters. To achieve clustering, we are given a number of clusters K say, with

K < N and a measure of similarity between observations s(xi, xj). We therefore want

to find the optimal many-to-one mapping C : {1, . . . , N} → {1, . . . ,K}, that assigns to

observations one and only one cluster, e.g C(i) = k assigns the ith observation to cluster

k. This mapping is a many-to-one mapping, since in principle, we want to explain the

best we can the data hence, the number of clusters should be far less than the number

of observations. Formally, a clustering algorithm seeks a mapping C? minimizes the

’within-cluster’ similarity WC(C) :

WC(C) =
1
2

K∑
k=1

∑
C(i)=k

∑
C(j)=k

s(xi, xj) (4.1)

where the 1
2 factor accounts for the fact that each pair of observations lying in the same

cluster k is counted twice. We can also equivalently maximizes the ’between cluster’
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dissimilarity BC(C) :

BC(C) =
1
2

K∑
k=1

∑
C(i)=k

∑
C(j) 6=k

s(xi, xj) (4.2)

The equivalence between minimizing (4.1) and maximizing (4.2) follows from the fact

that the sum WC(C) +BC(C) is constant for all C ∈ A(N,K), where A(N,K) is the

set of all different assignments of K objects within a set of N objects, since for any C :

WC(C) +BC(C) =
1
2

K∑
k=1

∑
C(i)=k

( ∑
C(j)=k

s(xi, xj) +
∑

C(j)6=k

s(xi, xj)
)

=
1
2

N∑
i=1

N∑
j=1

s(xi, xj)

which does not depend on C. Clustering is, at least formally, a simple combinatorial

problem: once we are given a similarity measure s, clustering simply aims at minimizing

or maximizing the quantities below over the finite set A(N,K), set of k−permutations

(sequences without repetitions) of n elements. Unfortunately, the size of A(N,K) in-

creases very fast making practical clustering based on these optimizations unfeasible

whenever N is big (N > 10), recall that Akn = n!
(n−k)! . It should be noted however

that this approach does not suffer the curse of dimensionality usually encountered in

supervised learning and also this formal clustering problem is non-parametric in the

sense it simply assigns one cluster to each observation and it uses the raw data with no

specific parametric model. We end this section with the non-parametric description of

the most popular algorithm for clustering : K-means, we will see later that K-means

has a rather natural parametric description from the Gaussian mixture point of view.

4.2.2 K-means algorithm

In practice, standard clustering algorithms seek ways to simplify the problem through

the following iterative process :

1. Start with an initial partition of the data : C0

2. At each iterative step, through a given prescription, assign clusters to observations

that improve the performance function, e.g minimize (4.1) or maximize (4.2).
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3. When there is no better assignment for the given prescription, stop the clustering

Benefit of that simple procedure is that it gives a rather straightforward way to cluster

data, once a similarity measure and a prescription have been chosen; the drawback is it

can converge to sub-optimal clustering. For K-means algorithm, the similarity measure

is the classical squared l2-norm

s(xi, xj) = ||xi − xj ||2 (4.3)

Hence, the within-cluster similarity is

WC(C) =
K∑
k=1

Nk

∑
C(i)=k

||xi − x̂k||2 (4.4)

where Nk is the number of observation lying in cluster k and x̂k is the mean of all

observations lying in cluster k. This leads to the following algorithm, known as K-

means algorithm (described for instance in (Friedman et al. 2001))

1. Start from an initial clustering C1 (at random for instance).

2. From clustering at step n, Cn, solve for any k = 1 . . .K, argminm1,...,mp∈Rp
∑N

c(i)=k ||xi−
m||2, which leads to mn+1

k = x̂k.

3. From the set of meansmn+1
1 , . . . ,mn+1

K , assign a new clustering Cn+1 with Cn+1(i) =

argmink=1...K ||xi −mn+1
k ||2

4. Repeat, step 2 and 3 until convergence

K-means algorithm is an approximate procedure to solve

min
C,{m1,...,mK}

K∑
k=1

Nk

∑
C(i)=k

||xi −mk||2 (4.5)

In K-means, we use the classical Euclidean norm. Owing to its simplicity, this algorithm

is one of the most popular clustering algorithms. Nonetheless, in some situations, it

might not capture all the complexity of the data. To explain this, we will have a

more probabilistic point of view of K-means that will show how to improve K-means

algorithm.

137



4. ORIGINAL STRATEGY TO APPROXIMATE DISCONTINUOUS
AND DERIVATIVE DISCONTINUOUS FUNCTIONS

4.2.3 Mixture laws

Mixture laws offer a way to represent the underlying structure of complex data. In the

sequel, we will only focus to the finite case of mixture laws. We say that a real random

vector X comes from a mixture model of K laws with density probability functions

(gk)l=1...K if its probability density function is

x→ g(x) =
K∑
k=1

αkgk(x) (4.6)

where the αk’s weight each law into the mixture with ∀k, αk ≥ 0 and
∑K

k=1 αk = 1.

In the latter, we consider parameterized laws, i.e each law gk is determined through a

record θk of parameters. So we can note it

g(x) =
K∑
k=1

αkG(x, θk) (4.7)

For univariate normal distribution, θk = {µk, σ2
k} where µk is the expectation and σ2

k

the variance. For multivariate normal distribution in Rp, θk = {µk,Γk} where µk ∈ Rp

and Γk is the variance-covariance matrix, symmetric positive definite matrix of size

p. We already see that the number of parameters to be set can grow quickly with

the number of individual components K and even more quickly with the dimension p.

For instance, for fully free multivariate Gaussian mixture in dimension p where fully

free means that all the terms of variance-covariance matrices are to be estimated, the

number of free parameters is

K +K(p+
p(p+ 1)

2
)

summing up for instance with K = 10 and p = 5 to 210 terms. Mixture density

estimation consists in finding the parameters that best describe the sample (xi)i=1...n.

This is to be achieved through maximum likelihood estimation. Namely, we will try to

find the mixture parameters that are the most likely to give the sample. As we will see

in the next section, maximum likelihood estimation consists in a nonlinear optimization

problem. The increasing number of parameters, as in the example mentioned, show that

classical nonlinear programming techniques (SQP...) will rapidly become unfeasible.

EM algorithm is a statistical algorithm that aims at solving this type of problem.
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4.2.4 Estimation of mixture parameters and mixture components

parameters through maximum likelihood : EM algorithm

Our objective is to fit a mixture model to data. An important and classical measure

of the goodness of a probabilistic model, i.e a probability density function x → gθ(x)

with parameters θ is the likelihood. By ’measure of goodness’ we mean a measure

w.r.t parameters θ and independent real data sample X = (x1, . . . , xN ), the likelihood

L(θ; X) is then

L(θ; X) =
N∏
i=1

gθ(xi) (4.8)

Likelihood function is to be thought as a function of θ with fixed X. This measure is

to be maximized over the space of parameters. Indeed, L(θ;X) is the density of the

observed data under the model gθ. We often consider the logarithm of the likelihood,

called log-likelihood

l(θ; X) =
N∑
i=1

log gθ(xi) (4.9)

and instead of maximizing the log-likelihood, we often minimize the negative of the

log-likelihood. The maximum likelihood estimation seeks θ̂ that minimize −l(θ; X). In

case of simple probability density function, e.g one simple univariate normal distribu-

tion where the mean µ and the standard deviation σ2, the log-likelihood happens to

be minimum at the classical estimate µ̂ = 1
N

∑N
i=1 xi and σ̂2 = 1

N−1

∑N
i=1(xi − µ̂) and

exhibits simple variations (convex or so). But with more sophisticated density func-

tion such as mixture models, this function may exhibit numerous local minima. This

behavior and the high number of optimization variables prevent from using classical

deterministic optimization algorithms.

The EM algorithm aims at solving maximum likelihood parametric estimation prob-

lems for mixture densities as
∑

k αkG(θk, x). The EM algorithm was first described in

(Dempster et al. 1977).

The idea is to introduce a ”latent” discrete random variable κ. This random variable

is called latent since it is not observed. κ ranges from 1 to K and indicates which

component of the mixture is to be used. We therefore now consider the mixture law of

X in the context of the joint distribution of (X,κ). Notice that this law is the marginal
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law of X. Indeed that the random couple (κ,X) is governed by

∀k,Ω, P(κ = k,X ∈ Ω) = αk

∫
Ω
G(θk, x)dx

Now suppose that the latent variable κ is observed, let us note (K,X) = {(κi, Xi)i} this

virtual sample and let Xk be the sub-sample of X of the data xi for which the associate

latent variable ki is equal to k, let Nk be the size of Xk . Then it is easy to get the

maximum likelihood estimation for θk and αk, namely

θ̂k = arg max
θ
l(θ; Xk), α̂k =

Nk

N

Actually, we do not know the ki’s whenever they have a physical existence. If the

parameter set θ = {θk, αk} was known, ki could be recovered through a Bayes posterior

estimation

γi,k(θ) = P(Ki = k | θ,X = Xi) (4.10)

which is called the responsibility of model k for observation i. Indeed, an estimation

of the latent variable may be estimated through the MAP (maximum a posteriori)

estimation:

k̂i = arg max
k

γi,k(θ)

A similar method is used in the proposed technique for ”hard clustering”. We can now

derive the EM algorithm as an iterative relaxation of these two steps. Let us describe

the (n+ 1)th iteration

1. Take the estimates at the previous step {(θ̂(n)
k , α̂

(n)
k )k}

2. Expectation Step. Compute associate responsibilities γ̂(n)
i,k for i = 1 . . . N, k =

1 . . .K:

γ̂
(n)
i,k =

α̂
(n)
k g

θ̂
(n)
k

(xi)∑K
j=1 α̂

n
j gθ̂nj

(xi)
(4.11)

3. Maximization Step. Compute the weighted maximum likelihood estimators for

each component of the mixture:

θ̂
(n+1)
k = arg max

θ

[
N∑
i=1

γ̂
(n)
i,k logG(θ, xi)

]
(4.12)

α̂
(n+1)
k =

∑N
i=1 γ̂

(n)
i,k∑K

j=1

∑N
i=1 γ̂

(n)
i,j

(4.13)
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The algorithm is decreasing in a monotonous way but convergence towards local minima

is possible in the general case (see (Wu 1983)).

4.2.5 Towards supervised clustering: regression

So far, we described mixture laws and clustering from an unsupervised point of view.

In this section, we outline the path from unsupervised learning towards supervised

learning and more precisely the methods that we will describe in details in the next

section. In fact, this technique is part of semi-supervised technique since it does use

unsupervised learning tools to achieve supervised learning.

We now assume that we have (xi, yi)i=1...N a set of N observed data points from a

random variable Z = (X,Y ), where X is vector-valued random variable lying in R and

Y a random variable lying in R. Instead of solely modeling the marginal law of X, we

can consider Z as a vector-valued random variable lying in Rp+1 and model its density.

Once this density has been estimated we can easily derive the marginal law of X. To

illustrate our point, we will take the example of Gaussian mixtures of K components

and get the marginal law. Suppose we have set the number of clusters to K. We esti-

mate through EM algorithm the parameters of the K multivariate Gaussians in Rp+1

such that

Z ∼
K∑
k=1

αkN(µk,Γk), (4.14)

where the αk’s are the mixture parameters, i.e for all k ∈ i . . .K, αk ∈ [0, 1] and
∑K

k=1 αk = 1

and µk ∈ Rp+1 is the mean of the Gaussian distribution k and denote

µk =

µXk
µYk

 , (4.15)

where µXk ∈ Rp is the X−coordinates of the mean µk and µYk ∈ R is the Y−coordinate

of the mean µk. Γk is the variance-covariance matrix of size p+ 1 and denote

Γk =

ΓXk νk

νTk ξk

 , (4.16)

where ΓXk is the covariance-variance matrix of X for Gaussian k, νk ∈ Rp is Cov(X,Y )

for Gaussian k and ξk = Var(Y ) ∈ R.
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From this, we can derive the marginal law of X. Recall that κ is the associated latent

variable added to Z to mean which component it belongs to. More precisely, κi = k

means that the ith data belongs to component k. From the conjoint law of (X,Y ), we

can derive the law of X|κ = k

X|κ = k ∼ N(µXk ,Γ
X
k ) (4.17)

and since

< X = xi >= ∪Kk=1 < X = xi ∩ κ = k > (4.18)

and finally, we have

X ∼
K∑
i=1

αkN(µXk ,Γ
X
k ) (4.19)

4.3 Posterior probabilities, hard and soft clustering and Bayes

optimal boundaries

Once a mixture law has been fitted to the data,e.g all parameters have been estimated

through EM algorithm, we first need to cluster the learning data and provide from these

parameters a classifier that will be used for new data where outcome is unknown. This

is done through maximum a posteriori estimation, we therefore need to estimate the

probability for a new entry point to lie on each cluster without knowing its response.

4.3.1 Bayesian estimation of maximum a posteriori: probabilistic and

geometric clusterings

We can now compute the posterior probabilities, that is to say, the probability for a

given (x, y) ∈ Rp+1 to lie within cluster ki. It is given by Bayes’ formula where κ

denotes the discrete random variable associated with the clusters

P(κ = ki|(X,Y ) = (x, y)) =
P(κ = ki)P((X,Y ) = (x, y)|κ = ki)∑K
k=1 P(κ = k)P((X,Y ) = (x, y) | κ = k)

.
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For the particular case where (X,Y ) is assumed to be a Gaussian mixture model :

(X,Y ) ∼
∑K

k=1 αkN(µk,Γk) we have for all k ∈ {1, . . . ,K}

P(κ = k) = αk,

(X,Y ) | (κ = k) ∼ N(µk,Γk),

which leads with z = (x, y) to

P(κ = ki|(X,Y ) = (x, y)) =

det(Γki)
− 1

2αkie
− 1

2
(z−µki )

TΓ−1
ki

(z−µki )∑K
k=1 det(Γk)−

1
2αke

− 1
2

(z−µk)TΓ−1
k (z−µk)

. (4.20)

The a posteriori probability in Equation (4.20) represents a fuzzy probabilistic clus-

tering. Indeed, being a probability, this quantity need not be 0 or 1, it represents the

probability for a given observation (x, y) to be explained by law ki. It therefore offers

a simple soft clustering of the observed data. Indeed, consider

(P(κ = ki|(X,Y ) = (x, y)))ki∈[1,...,K] (4.21)

which is a vector in RK with components lying in (0, 1) and we say that (x, y) is soft-

clustered with respect to the mixture law, the point is given a probability to lie in

each cluster defined by the mixture law. But we could have said that one point should

lie in one cluster and only one, this will lead us to the hard clustering version. We

first describe the hard clustering version from the probabilistic point of view and then

describe it from a geometric point of view by means of Mahalanobis distance. These

two approaches do not coincide. Actually, the probabilistic one is the more general

since not all probability distributions induce distances (e.g stable law). Nonetheless, in

the case of K-means clustering they do coincide. We first begin with the probabilistic

approach instead of giving each point a set of K probabilities to lie in all clusters, we

may want to assign each point to one and only one cluster. Being probabilities, we say

that the cluster i an observation (x, y) lies in is simply the law i that gives the highest

posterior probability

i := argmaxki∈[1,...,K]P(κ = ki|(X,Y ) = (x, y) (4.22)

At this point, we define so-called geometric clusters with respect to the mixture law,

as said earlier this geometric point of view can not be applied to all mixture laws, since
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we need to define a distance from the laws parameters, if we think of a non-parametric

law, such as stable distributions which are not Levy, normal or Cauchy . Assume again

that our mixture law is a Gaussian mixture. We can define the Mahalanobis distance

associated to component law i of parameters (µi,Γi) which is

DM (ω1, ω2) = ||ω1 − ω2||Γ−1 =
√

(ω1 − ω2)TΓ−1
i (ω1 − ω2) (4.23)

where ω1 and ω2 are in Rp. It does define a distance in Rp since the inverse of the

variance-covariance matrix Γi is also a positive definite symmetric matrix. We then

define the geometric cluster i in the set of observations as all the observations that are

the closest to the center i (i.e component mean µi) with respect to the Mahalanobis

distance inherited by the variance-covariance matrix Γi.

We can now go back to K-means algorithm and interpret from these points of view

and make the probabilistic approach resemble the geometric one. Indeed, in section 1,

we presented K-means as a geometric algorithm, but if we assume that the data come

from the following mixture

X ∼
K∑
i=1

αiN(µi, σ2Id) (4.24)

where the weights are the same αi = 1
K and σ ∈ R. We see that the probabilistic hard

clustering for an observation X assigns it to cluster i for which the Mahalanobis distance

(which shrinks down to to the Euclidean distance) is the minimum. This is precisely the

way, an observation is given a cluster in standard K-means. To follow this geometric

interpretation, we can say that K-means finds centers of balls that best capture the

structure of the data, while EM clustering generalizes this by allowing the balls

to be mapped into ellipsoids (where the half-axes directions are the eigenvector

of the variance-covariance matrix and their length are governed by the inverse of the

corresponding values) and also to be weighted amongst them. The other way around is

to explicit K-means as a probabilistic algorithm, this allows us to derive a soft version

of K-means where each point is given a set of K probabilities. This gives insight to

K-means algorithm and also explain some of the drawbacks of this algorithm, since the

we assumed that the mixture law is
∑K

i=1 αiN(µi, σId), that is all laws share the same

variance-covariance matrix σ2Id which is diagonal. This strong hypothesis is known in
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statistics as homoscedascity, this is quite a strong hypothesis since the underlying

assumption for the data is that dimensions are not correlated.

4.3.2 Practical issues : choice of the number of clusters

The choice of the number of components is extremely important. We present here three

strategies to set this number. The first two ones are classical tools from unsupervised

learning where the number of clusters is roughly speaking chosen through maximum

likelihood estimation penalized by the number of parameters to estimate (AIC, BIC).

Cross-validation and bootstrap may be also used to estimate the best number. A more

recent suggestion from Tibshirani et al. in (Tibshirani et al. 2001) known as the gap

curve is described. We will go back to this issue by presenting an original way which

finds the best number of clusters to the end of regression by means of simple and cheap

predictors (linear and experts).

4.3.2.1 Classical tools : AIC, BIC

We briefly introduce classical metrics to assess the quality of the fit for a given number

of clusters and then design procedures to derive the best number (if any) of clusters.

First, recall the basis metrics to estimate the goodness of a fit is the log-likelihood since

it is directly the probability to observe the data under the parameters. This explains

why these metrics will be used in most procedures to find the best number of clusters.

First, let us define the Akaike Information Criterion and the Bayesian Informa-

tion Criterion as a log-likelihood weighted by the number of free parameters to set,

in (Burnham & Anderson 2004), these two metrics are thoroughly described. The un-

derlying assumption of that the model that best explains the data is the simplest with

respect to the number of free parameters. This relies on a more general assumption

usually known as the Occam’s razor that roughly speaking says that it is always better

to reduce the number of entities when the additional cost is moderate. This simple

assumption turns out to be in the statistical learning the same idea as limiting the

number of parameters to prevent the model building from overfitting. Historically, the

first criterion was the Akaike Information Criterion (AIC) defined as

AIC = 2k − 2l(θ;X) (4.25)
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where k denotes the number of free parameters. Bayesian Information Criterion penal-

izes more the number of free parameters and also makes use of the number of observa-

tions in the learning sample, this criterion (BIC) is defined as

BIC = k log(n)− 2l(θ;X) (4.26)

where n is the number of observations. Again, when comparing two models, as in

our case the mixture density estimation for different number of components, with these

criteria we favor the ones with lower AIC or BIC. It is worth noting that, most of modern

implementations of EM algorithm or EM clustering (e.g MIXMOD, EMMIX,...) offer

AIC or BIC to choose the best number of clusters.

4.3.2.2 Gap statistics

Another approach suggested in (Tibshirani et al. 2001) is to compare the different met-

rics for the observed sample with the same metrics fir data lying in the same design space

but uniformly generated. For instance, the idea is to compare the two log-likelihoods

for a varying number of clusters and more specifically the difference between them.

Indeed, when computing the log-likelihood of the uniform data which has not specific

structure and so which should not be well explained by finite mixtures, we are likely

to detect a gap (or in statistics jargon an ’elbow’) in the differences between the two

curves. This gap is expected to be the highest for the best number of clusters.

To illustrate these different criteria, we used the following examples. We generated

samples from a Gaussian mixture of 4 components and 6 components to see whether or

not the correct number of components can be detected through the use of log-likelihood,

AIC, BIC and their corresponding gap curve. Raw data are represented for both mix-

tures in Fig. 4.1. These are mixtures of different numbers of components in R2, the

associated samples occupies a domain Ω = [xminxmax] × [yminymax]. We generated

in each case the same number of samples uniformly distributed. These samples are

referred to as artificial data. For i = 2 . . .Kmax clusters, the EM algorithm is applied

both on the real data and on the artificial data and the associated criteria are com-

puted. Results of these computations are depicted Fig. 4.2. We first observe that the

gap curves associated to both AIC and BIC are obviously the same for they are defined

up to an additive constant. In both cases, we observe that the maximum of the gap
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Figure 4.1: Two different mixtures of Gaussians in R2

curves are given for the right number of clusters, even though it does not make a narrow

peak around the correct number of clusters. This even more flat for log-likelihood.

4.4 Building the overall expert for the regression case

In this section, we most specifically turn on the case of regression and show how the

mixture density estimation (e.g for Gaussian mixture for instance) previously described

from an unsupervised point of view can be used to derive an algorithm for supervised

learning. We will focus to regression but the latter can be also applied to classification

problems. We will keep the same notations as in the previous sections and assume

we have (xi, yi)i=1...N a set of N observations, we will also consider that at this point

mixture density estimation has been done through EM algorithm and that we then

have an estimation of the mixture parameters. We do not need to restrict ourselves to

the case of Gaussian mixtures though we use them as an example since we can derive

easy analytical formulas from Gaussian mixture and also a geometric interpretation

from the Mahalanobis distance. Nevertheless, we can derive the same procedure for

arbitrary distributions with analytical probability density functions, since at the very

end, we need first to maximize log-likelihood and hence need analytical formulas for

this density, and second to be able to write the marginal distribution for X (without

knowing the outcome Y). For instance, the same procedure can be easily derived for

Students or χ2 distributions. We should however note that the computation of the

marginal law might not be as straightforward as in the Gaussian case, but this can be
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Figure 4.2: Usual criteria for assessing the goodness of the fit: AIC, BIC, log-likelihood and
associated gap curves. These gap curve are obtained by taking the difference between each
criterion for the raw data and the corresponding criterion for artificial uniform data
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4.4 Building the overall expert for the regression case

still approximated numerically.

Note that at the very end, we want to be able to estimate

E(Y |X = x) (4.27)

which is the expectation of Y knowing that the entry is x. Suppose now that we hard-

clustered our learning data (joint data) into clusters (Ci)i=1...K , and that we build a

surrogate model fi(x) = E(Y |X = x, κ = i). We can now write

E(Y |X = x) =
K∑
i=1

E(Y |X = x, κ = i)P(κ = i|X = x) (4.28)

where

P(κ = i|X = x) =
P(κ = i)P(X = x|κ = i)∑K

j=1 P(X = x|κ = j)
(4.29)

The final approximation model is simply described by Eq. (4.28). In the rest of this

section, we describe the different steps to achieve to get this final model and a formal

algorithm that can be used in any context (classification or regression). We though

restrict test cases and examples to regression.

4.4.1 Building local expert

The learning basis is split into K learning sub-bases and an expert fk is trained over

each sub-basis k. Any surrogate model can be used, we give results obtained using the

following different local experts :

• linear regression: the most simple expert (apart from the constant expert which

leads to radial basis functions regression). It can be computed easily and the

multivariate linear regression parameters are directly given by the Gaussian com-

ponent parameters

fk(x) =
Covk(X,Y )

Vark(X)
(x− Ek(X)) + Ek(Y )

= (ΓXk )−1νk(x− µXk ) + µYk . (4.30)

In that case, once the EM algorithm is done, all the parameters of the Mixture of

Experts (MoE) are computed. In this particular case, clustering and learning are

not separated as in (Jordan & Jacobs 1994). This MoE is therefore very cheap
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to compute. Note that a numerical instability (apart from EM algorithm that

might converge very slowly) can arise from the inversion of the variance-covariance

matrices Γk (for clustering) and ΓXk (to build local experts and combine them).

This should be done carefully using for instance QR factorization1.

• quadratic regression: the original response surfaces, which are quadratic poly-

nomials over Rd as extensively described in (Myers et al. 2009). They are also

relatively inexpensive to build however there is no easy formula that can be de-

rived from the Gaussian components parameters. In our case, we computed it in

a simple way taking care of the inversion of the system.

• artificial neural networks: we use here the classical Multi Layer Perceptron (MLP)

as a local expert; MLP models are thoroughly described in (Haykin 2008). We use

one-layer networks and the number of hidden neurons is classically determined

through a cross-validation procedure and the network is trained using Levenberg-

Marquardt algorithm.

• moving least squares (MLS): the MLS expert is the most complicated expert

to compute for it is an implicit model that needs to be recomputed at each

new evaluation point. We implemented a moving least squares method based on

the Backus-Gilbert approach that can be found in (Fasshauer 2005). We also

implemented a golden ratio search to optimize the hyper-parameter σ (width of

the Gaussian kernel, see appendix B). A landmark paper on MLS is (Levin 1998)

and a brief introduction can be found in (Nealen & Darmstadt 2004).

• radial basis function (RBF): radial basis functions models are linear combination

of radial functions (e.g Gaussian, thin plate...), these radial functions are usually

centered around learning points and the coefficients of the linear combination

are found through least-squares minimization. In case there are as many radial

functions as learning points (each radial being centered at each point), the linear

system to be minimized through least-squares happens to be square and the RBF

models interpolates the learning points. An important aspect of these two models

1All these matrices are symmetric positive definite but they can become nearly-singular especially

in case of redundant data (linearity), QR factorization performs better than Gaussian reduction and

even Choleski factorization. A good introduction to these methods can be found in (Saad 1992)
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4.4 Building the overall expert for the regression case

(MLS and RBF) is that they are the basis of meshless and pseudo-spectral meth-

ods in the related field of approximation theory of pde’s. Another very important

aspect of these approximation models is that they feature, provided the function

f to approximate is smooth (e.g infinitely continuously differentiable), spectral

convergence in ||.||∞ norm, which is convergence faster than any polynomial

convergence (e.g typical convergence rate is O(N−m)) for any m where N is the

number of learning points) and in case the function f to approximate is analytical

(e.g can be developed as a power series everywhere on its definition domain), the

convergence is even faster and is O(cN ), where c ∈ (0, 1). A good overview is

these specific methods can be found in (Fasshauer 2007) and (Wendland 2005).

However, it should be noted that the functions to approximate are usually not

regular (e.g buckling) and this spectral convergence results are usually derived in

’ideal’ conditions such as simple domain or input space (rectangle or hypercubes)

and then do not fit our requisites.

Nonetheless, any surrogate model can be used (kriging, support vector regression, mul-

tivariate adapted regressive splines) as a local expert and can be perfectly improved

using an ensemble of surrogate models, or boosting (Meir & Ratsch 2003). Moreover,

a local expert can be a black-box or itself an MoE and so on.

4.4.2 Combining local experts

Once we build our local experts fk, we want to predict the response y for a new entry

x ∈ Rd. This is done by combining them. We form a linear combination of the local

experts fk. A natural idea is that this linear combination should not be constant over

the whole input space and should give more weight to expert fk when x gets closer to

the center of cluster k with respect to the natural Mahalanobis distance inherited by

the variance-covariance matrix of Gaussian k. Namely the global model f̂ is

f̂(x) =
K∑
i=1

βi(x)fi(x), (4.31)

where β(.) = (β1(.), . . . , βK(.)) is an expert that gives the local weights (local in the

sense that it does depend on x). A natural gating network would be
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β(x) = (P(κ = 1|X = x), . . . ,P(κ = K|X = x)), (4.32)

such that the global model would be

f̂(x) =
K∑
i=1

P(κ = i|X = x)fi(x). (4.33)

Equation (4.33) is the classical probability expression of mixture of experts (as it can

be found in (Jordan & Jacobs 1994)). Note that this expression may represent a lot of

different situations and therefore a lot of different MoE’s. For instance, the weighted

least squares can be interpreted as an Moe using that equation . To use Equation

(4.33) we need to know what is the law of κ knowing that X = x and without knowing

that Y = y, this can be easily obtained with the Gaussian parameters found by EM

algorithm. Indeed, from the conjoint law (X,Y ) ∼
∑K

k=1 αkN(µk,Γk), we can derive

the law of X|κ = k without knowing Y

X|κ = k ∼ Nd(µXk ,Γ
X
k ), (4.34)

such that the global Gaussian Mixture Model law of X is

X ∼
K∑
k=1

αkN(µXk ,Γ
X
k ). (4.35)

Note that this Gaussian Mixture Model is different from the one we would have obtained

by applying EM only on the inputs X’s for it is the projection on the input space of

the conjoint law. Therefore we can derive equivalently the posterior probability from

Bayes’ formula

P(κ = ki|X = x) =

det(ΓXki)
− 1

2αkie
− 1

2
(x−µXki )

TΓX−1
ki

(x−µXki )∑K
k=1 det(ΓXk )−

1
2αke

− 1
2

(x−µXk )TΓX−1
k (x−µXk )

. (4.36)

Note that the global model defined with Equation (4.33) and Equation (4.36) is

completely smooth. In the sequel, this mixture of experts will be referred to as smooth

mixture. At this point, we can think of another way of combining the local surrogate

models that takes more advantage from the clustering made by the EM algorithm.

Indeed, based on the Gaussian parameters estimated on the clustering step, we can
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predict which cluster a new given entry x lies in and simply assign to this entry x the

corresponding local surrogate model. This means that we can, at least formally, define

a partitioning of the whole input space: X = ∪Kk=1Xk and simply define the law of k

knowing that X = x as a uniform discrete law such that the global model would be

f̂(x) =
K∑
k=1

χClXk
(x)fk(x) (4.37)

where

χClXk
(x) =

{
1 if k = argmaxj=1,...,KP(κ = j|X = x)
0 if k 6= argmaxj=1,...,KP(κ = j|X = x)

(4.38)

and Equation (4.42) defines the most simple mixture of experts where a new entry x is

given a cluster k and the predicted value is simply fk(x). An important feature of this

mixture of experts is that it is not continuous, indeed at the boundary between two ad-

jacent clusters1 the two adjacent local surrogate models need not to match resulting in

a globally discontinuous model. This mixture of experts will be referred to as hard

mixture of experts. In the case when the functions to approximate is discontinuous

or derivative-discontinuous the hard mixture version is likely to be more accurate than

the smooth version. Besides being discontinuous, the hard mixture version may create

artificial discontinuities where the original function does not have ones (see Fig. 2.

d)). In this article, we are mainly concerned with approximating functions that are

objective or constraints functions of an optimization problem that is to be solved on

the basis of a gradient-based method, this is why we will focus on the smooth mixture

of experts. Indeed, in such applications, we are not only concerned with the accuracy

of the approximation but also with the regularization of the original approximation. In

terms of accuracy the hard version is likely to perform better (see for instance Fig. 2.

d)) but the optimization algorithm may fail to converge due to the non-differentiability

of the global approximation model.

Our algorithm, called IMAGE (Improved Metamodeling Approximation through

Gaussian mixture of Experts), is presented here and results of this method are given

in the following sections with the help first of simple test cases and buckling computa-

tions approximations. This method is also illustrated step-by-step on a one-dimensional

test case in Fig. 4.3.
1This boundary is often known in Probability as the optimal Bayes classifier
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1. Assemble Z the conjoint learning basis where zi ∈ Rd+1 contains inputs xi ∈ Rd

and output yi ∈ R, see Fig. 4.12. a)

Z =


x

(1)
1 . . . x

(1)
n

...
...

x
(d)
1 . . . x

(d)
n

y1 . . . yn

 . (4.39)

2. Set the number of clusters K. In Fig. 4.3 the number of clusters was set to 3.

3. Apply EM algorithm to Z with K to get α̂k, µ̂k and Γ̂k, estimates of the real

Gaussian parameters.

4. Hard clustering of the data, see Fig. 4.3 b). zi = (xi, yi) belongs to cluster ki
where

ki = argmaxj=1,...,KP(j|(X,Y ) = (xi, yi)). (4.40)

where P(κ = j|(X,Y ) = (xi, yi)) is computed using Equation (4.20)

5. Split the conjoint learning basis into K clusters Z = ∪Ki=1Z
(i).

6. For i = 1 . . .K

a) Remove outliers using for instance Mahalanobis distance.

b) Split randomly Z(i) = Z
(i)
learn ∪ Z

(i)
test into learning basis and test basis.

c) Train local expert fi on Z(i)
learn, choose the best expert fi with Z(i)

test, see Fig.

4.3 c).

7. Combine all the experts for the smooth version with

f̂(x) =
K∑
i=1

P(κ = i|X = x)fi(x). (4.41)

where P(k = i|X = x) is computed using Eq. (4.36), and the hard mixture with

f̂(x) =
K∑
k=1

χClXk
(x)fk(x) (4.42)

see Fig. 4.3 d) where we plotted both smooth and hard versions of the mixture

of experts.
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8. Estimate the generalization errors with the help of another data base BV (vali-

dation basis) if available. If not, cross-validation or bootstrap techniques can be

applied.

4.4.3 Simple analytical examples

In this section, the performance of this algorithm is evaluated on very sample examples.

Our main objective is to be able to detect and grasp region of continuity or smoothness

of the function to approximate. We therefore applied our algorithm on two simple

test cases, the first being the absolute value function over [−1, 1], the second being a

piecewise continuous function defined with three linear components. For the absolute

value function, a Gaussian noise of equal variance all over the domain is added. In

the second case, a Gaussian noise is added with different variances for each linear

component. To assess the goodness of the fit, we compared with overall approximation

models: quadratic regression and artificial neural network (built all over the domain).

Results are depicted Fig. . In each case, the number of clusters was determined by

finding the first ’elbow’ of the gap curves. We observe that the clustering detects the

region where the function is linear in each case. The local experts in these simple

examples are set to be linear. However in each case, the hard recombination creates

artificial discontinuities near kinks of the original function.

4.5 Application of this original strategy to buckling

computations approximation

We end this section with a practical application test case of the algorithm previously

described. This test case illustrates the approximation power of our EM clustering

method. While initially derived to handle the approximation of functions that feature

discontinuities and derivatives discontinuities, our method can be also applied, without

any restriction, to perfectly smooth functions approximation to improve the accuracy

of the approximation. Indeed, we build experts on small regions of the design space

and then recombine them to get a global surrogate model in a smooth way, this method

can achieve higher accuracy than a sole surrogate models due the localization of the

experts. Indeed, an expert is, roughly speaking, located around the mean of the law
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Figure 4.3: Sketch of the proposed algorithm for a 1D test case samgen 1D 1 a) Original
function and learning basis. Note that samgen 1D 1 features two C0 and C1 discontinuities.
EM clustering is expected to separate them well enough to locally build an accurate surrogate
model.
b) EM clustering on the learning basis for K = 3. We depict the contour lines of the quadratic
function associated to the variance-covariance matrix Γi at 3× 10−6 for i = 1 . . . 3. Note that
these lines are simply the balls of radius 3×10−6 centered at µi for the 3 Mahalanobis distances
associated with the variance-covariance matrices.
c) Local quadratic experts and gating networks. See that the gating network associated to
cluster 2 is quite steep. This is due to the relative small size of cluster 2.
d) Global surrogate models obtained through the mixture of local quadratic experts. We plotted
the soft and the hard mixture versions. We also depicted a reasonably good artificial neural
network to compare. We observe that the smooth predictor is very accurate on clusters 1 and 3
is a little bit less accurate on cluster 2. While the artificial neural network does not generalize
very well at the boundaries of the domain, the global smooth predictor performs better at these
boundaries due to the local behavior of the surrogate models. The hard mixture predictor
is much more accurate since it does not regularize the discontinuities. It creates though an
artificial C0 discontinuity at x = 0.69.
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Figure 4.4: Comparison of the hard and smooth piecewise linear approximation with overall
approximation models over simple derivative-discontinuous functions

component it is associated with and the variance-covariance matrix supports direc-

tions (principal components of the data lying in the associated cluster) where this

expert is to be mainly applied. Therefore, we can expect, several experts ’localized’

and trained with fewer examples to perform better than a sole surrogate model trained

with all the data, even in the case of smooth functions, where there is apparently no

obvious need for clustering the learning basis.

This following test case is in the spirit of the buckling description of the former chapter,

we want to approximate the critical buckling load factor λcr except that in this case the

design variables are no more lamination parameters but directly ply angles of two-layer

laminate. The aim of that test case is not only to illustrate the technique and show

some results but also to illustrate that ply angles are not appropriate design variables

for laminated composite design and optimization since we will see that buckling is not

convex or concave w.r.t these variables. In this case recall that the partial differential

equation that models linear buckling for a thin rectangular plate of width a and length

b made of a two-layer laminate [α1\α2] simply-supported at the edges

157



4. ORIGINAL STRATEGY TO APPROXIMATE DISCONTINUOUS
AND DERIVATIVE DISCONTINUOUS FUNCTIONS

−100
−50

0
50

100

−100

−50

0

50

100
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

 

α
1

Ritz skin buckling reserve factor for a rectangular plate made of a two−layer laminate vs. the first two angles of the laminate (uniaxial loading N
X
 ≤ 0)

α
2

 

R
F

R
itz

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

(a) Original function

−100

−50

0

50

100

−100

−50

0

50

100

0.04

0.06

0.08

0.1

0.12

0.14

Data set

(b) Data base

Figure 4.5: Original function to approximate and data base

D11(α1, α2)
∂4w

∂x4
+ 2D12(α1, α2)

∂4w

∂x2y2
+ 2(D16 +D26)(α1, α2)(

∂4w

∂x3y
+
∂4w

∂y3x
) (4.43)

+4D66(α1, α2)
∂4w

∂x2y2
+D22(α1, α2)

∂4w

∂y4
= Nx

∂2w

∂x2
(4.44)

where w is the unknown transverse displacement, Nx the load case and D are stiffness

terms that depend on a nonlinear manner on α1, α2. The buckling reserve factor (RF)

is defined as being the first eigenvalue of 4.43. In some cases, when D16 and D26 are

zero, analytical solutions can be derived, but in the general case, an approximation

method is to be used. For that type of problem and geometry, Rayleigh-Ritz methods

are often used since they provide an approximation of the buckling reserve factor faster

than Finite Elements Methods. Note that Rayleigh-Ritz methods are often less precise

than FEM but they are much easier to implement. In this regression case, the function

to approximate was the reserve factor as a function of α1, α2. In Fig. B.3(b), we

depicted the original function computed on a fine mesh, the learning samples we used

to build surrogate models. We tried several neural networks for a different number of

neurons and depicted Fig. 4.5 the best neural net estimated through cross-validation

together with the generalization error over the fine mesh. Finally, we depicted Fig. 4.7

the surrogate model obtained with the original procedure we describe in this chapter.

We clearly see that the error has the same distribution for both surrogate models but

is lower in the case of our procedure.
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Figure 4.7: Approximation and error for the original method presented
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4.6 Application to the approximation of buckling critical

factor over lamination parameters and forces

In this section, we evaluate our original algorithm over the functions described and

studied in Chapter 3. We want to approximate the buckling critical load factor λcr
over lamination parameters and forces (loads per unit length) in case first of biaxial

compression and also in case of combined loadings including shear loading. The result-

ing approximations models are then inserted into an optimization loop where we want

to maximize λcr over lamination parameters. The results are also compared with the

maximization of λcr over feasible stacking sequences and a strategy to find the optimal

stacking from the continuous optimum is presented and applied.

4.6.1 Piecewise polynomial approximation in lamination space

The behavior of λcr(ξ1
D, ξ

2
D) for orthotropic laminates for combined loading (with low

shear) seems to be piecewise linear (or close to be linear). We then want to approximate

λcr based on a mixture of linear experts (referred to as MOL). The number of clusters is

chosen through a range of potential clusters by minimizing the generalization error for

the mixture of linear experts. We depicted Fig. 4.9 the result of the EM clustering for

4 clusters on the orthotropic data for combined loading. We see that the hyperplanes

are correctly detected through the clustering.

For pure shear and non-orthotropic laminates, the phase portraits showed that the

linear dependence does not hold, however λcr does not seem to behave in a very com-

plicated way over each cluster. We then build an approximation of λcr on the basis of

a Mixture of Quadratic models (MOQ).

4.6.2 Piecewise polynomial approximation in forces space

When the loading conditions vary, the dependence of 1/λcr seems to get less simple as

linear as the plate endures less compression and more complex loading with tension for

instance. However for pure compression loading cases, 1/λcr is close to be piecewise

linear, we then build an approximation model as a mixture of quadratic models since it

is expected to be able to handle different situations. It should be noted that if ordinary

least squares are used, a linear model can not totally be recovered from a polynomial
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regression due to the L2 minimization that regularizes polynomial coefficients. So more

advanced techniques should be used to build purely linear experts and quadratic experts

in different regions (best-subset selection, lasso, least angles regression, compressed

sensing see the corresponding chapter in (Friedman et al. 2001)).

4.6.3 Piecewise rational approximation in the general case

Based on the behavior of λcr with respect to lamination parameters and of 1/λcr with

respect to loads per unit length N , we want to build an approximation model as a

mixture of (quadratic) rational experts

fi(x) =
a0 + a1ξ

1
D + ...+ an−1(ξ2

D)2 + an(ξ3
D)2

b0 + b1Nx + ...+ bn−1N2
y + bnN2

xy

(4.45)

such models will be referred to as Mixture of Rationals (MOR).

4.6.4 Using directly Rayleigh-Ritz active buckling modes

It is worth noting when using Rayleigh-Ritz method, we usually get an extra informa-

tion by looking at the eigenvector wcr associated to λcr. Indeed, it can be written

wcr =
N∑
i=1

αiui (4.46)

where the ui’s are the basis functions. These basis functions can be associated to

’natural’ modes (that is eigenfunctions of the unperturbed operator or over a more

simple geometry). Suppose we take functions of the type

sin(iπx/a) sin(jπy/b) (4.47)

We can associate each eigenvector wcr to the ’closest natural mode’ simply by finding

the largest (in magnitude) component wijcr of wcr. However, this process can lead to

wrong associated modes, in the case where we have two or more large components in

wcr, the numerical approximation is likely to invert the corresponding natural modes

(’mode crossing’). Next there exists another difficulty in detecting and approximating

mode per mode that is the veering phenomenon. Veering consists in two eigenvalues

that get close and suddenly and abruptly diverge from each other (or veer). This

sudden change makes the function more difficult to follow and the associated modes
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are no more orthogonal and starts to interact with each other, making impossible to

follow one mode within the veering zone. Veering is a quite classical phenomenon

in structural dynamics, but to the author’s knowledge no veering example has been

reported for buckling studies, however veering could be quite hard to detect and may

be mixed up with crossing. Veering is reported to happen in any parameter dependent

generalized eigenvalue problems. Next, finite element methods buckling do not provide

such information, since the critical buckled shape (wcr) is defined over local, mesh-

dependent, non natural basis functions (P1 basis functions...). Post-treatment of the

transverse displacement is needed when identifying the corresponding natural mode.

However, in case this information is provided, this offers a natural way to approximate

the critical buckling load by approximating mode per mode and building classifiers that

gives the corresponding natural mode to a new input and hence apply the corresponding

approximation model. This can be done since the regions that separates each natural

buckling mode are usually quite simple in the input space, we depicted Fig. 4.8, the

different natural modes when the flux vary both over the flux sphere and over spherical

coordinates angles space (θ, φ), since the active mode does not depend on the norm of

the flux. We clearly see Fig. 4.8 a) that the associated regions are quite simple over the

sphere but for the (θ, φ) space Fig. 4.8 b) the regions are not easily separated, which

prevents from building accurate classifiers. Such an approximation strategy could lead

to interesting results but it is only possible when Rayleigh-Ritz are used and when we

have access to the eigenvectors. This is not as general as the method we want to apply.

4.7 Numerical results

We describe the different results obtained with the suggested strategies to approximate

λcr in the different situations

• For fixed loading: we approximate λcr first for orthotropic laminates (over ξ1
D and

ξ2
D) and then for [0/45/90] laminates (over ξ1

D, ξ2
D and ξ3

D) for both combined

loading and pure shear loading.

• For a fixed non-orthotropic stacking sequence: we approximate λcr first for biaxial

loading (over Nx and Ny) and then for combined loading (over Nx, Ny and Nxy).
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Figure 4.8: Active buckling modes found by Rayleigh-Ritz method for different representations
a) directly in the (Nx, Ny, Nxy) spaces for normalized flux b) in the spherical coordinates (θ, ϕ)

• In the general case when stacking and loading vary: we approximate λcr over ξ1
D,

ξ2
D, ξ3

D, Nx, Ny and Nxy.

In all situations, the learning stage of the approximation models is based on three

different bases: learning basis BA, test basis BT and validation basis BV . The learning

in itself is directly based on BA, to compare several approximation model built over BA,

we use BT to rank them and chose the best one and finally at the end of this selection

process, the generalization error and the other accuracy metrics are computed over the

validation basis BV . Following for instance (Friedman et al. 2001), we have a classical
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Figure 4.9: Automatic clustering (normalized output)
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Figure 4.10: Original function and piecewise linear approximation for buckling of orthotropic
laminates

partition of 60 % for BA, 20 % for BT and 20 % for BV . To assess the goodness of

the fit, we use several classical metrics, amongst them, we use the Mean Squared Error

(MSE) and Lack Of Fit (LOF) defined as

MSE =
1
NV

NV∑
i=1

|f̂(xi)− yi|2 (4.48)

and

LOF =
MSE

Var({yi}i=1...NV )
(4.49)

where NV is the number of points in the validation basis, y is the real output function

and f̂ is the approximation model. The LOF simply divides the MSE by the variance of

the output to avoid scaling effect. However the knowledge of only the MSE might not

be enough for accuracy evaluation. Indeed, first it does not provide any clue regarding

the relative error and more important it is an average over a whole basis and does

not give any insight on the distribution of the error. Suppose we have two different

approximation models, one giving a very good approximation for a majority of points

and being very bad for a small amount of points, it will be equivalent in terms of

MSE to an approximation model that has a medium error for all points, while the first

approximation model is likely to be preferable when used within a population-based

algorithm (such as genetic algorithms). This is why, we add several metrics

• L1 and L∞ errors:
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4.7 Numerical results

– Mean relative error:

Êrel =
1
NV

NV∑
i=1

|f̂(xi)− yi|
|yi|

– Mean absolute error:

Êabs =
1
NV

NV∑
i=1

|f̂(xi)− yi|

– Max relative error:

Emaxrel = max
i=1...NV

|f̂(xi)− yi|
|yi|

– Max absolute error:

Emaxabs = max
i=1...NV

|f̂(xi)− yi|

• Cumulative error distribution.

– α− quantiles:

Qα =
Card{xi ∈ BV s.t |f̂(xi)−yi|

f̂(xi)
6 α%}

NV

the proportion of the validation points that are below a relative error of α%.

– Quantile curve: curve obtained by making α varying from 0% to Emaxrel %

Note also that the number of points used in each case corresponds to the total

points used for all bases. To the end of comparison, in each case we compared with

a reasonably good artificial neural network built over the whole domain with classical

techniques such as cross-validation for the choice of the number of hidden units.

4.7.1 Approximation models for varying stacking

For the approximation of λcr for orthotropic laminates, we used N = 420 points for

the first loading case (combined, Nx = −50N.mm−1, Ny = 20N.mm−1 and Nxy =

20N.mm−1) and N = 430 points for the second loading case (pure shear). For the

combined loading case, a mixture of linear experts was built and for the pure shear

case, a mixture of quadratic models. We see Tab. 4.1 that the mixture models per-

forms equally as the artificial neural network (ANN) for the pure shear and performs
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Figure 4.11: Quantile curves for orthotropic and non-orthotropic laminates under combined
loading and pure shear loading
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better for the combined loading. The quantiles curves shown in Fig. 4.12 and the quan-

tiles Q1% and Q0.1% show that the hard recombination of mixture models even when

they show the same accuracy in terms of MSE are much more accurate for a large

amount of validation points. For combined loading for instance, the quantile curve is

very close the y-axis, which means the approximation model is close to be exact but

for a few points for which the mixture model gives bad accuracy. This might be due

to misclassification, the wrong local expert is called for these few points, while the

ANN regularizes the error over the whole domain. The ANN is of a reasonably good

accuracy over all validation points but can not achieve very high accuracy even for a

small amount of validation points. Regarding the relative error measures, the mixture

models always perform better than ANN.

In the case of non-orthotropic laminates, N = 853 points were used for combined

loading and N = 768 points in the case of pure shear loading. Results are in Tab. 4.2,

again we observe the same behavior, the mixture models are by far better in terms of

relative error while the MSE show the same tendency. The quantile curves clearly shows

that the hard recombination of mixture models are better for a majority of points. Re-

garding the smooth recombination, no clear conclusion can be drawn since it performs

better than ANN for pure shear loading and it is less accurate for combined loading.

To illustrate the algorithm, we depicted Fig. 4.7 the results of the clustering for K = 4

clusters (determined by the strategy already presented) and we also compare Fig. 4.10

the real function with the approximation model.

4.7.2 Approximation models for varying loading conditions

Based on the observations made, λcr is approximated through its reciprocal, the result

of the approximation is then inverted and the accuracy is measured on λcr. For the

first case (no shear), N = 468 points were used with Nx ∈ [−100, 0] and Ny = [−50, 50]

and for the second case 940 points were used with Nx ∈ [−100, 0], Ny = [−50, 50] and

Nxy = [0, 50]. In both cases, the stacking sequence that was fixed was a non-orthotropic

one [−45/ − 45/0/45/90/ − 45/0]S . Results are in Tab. 4.3. In that case, mixture of

quadratic models performs better for all accuracy metrics. Quantiles measures and

quantiles curves show the same tendency as in the former test cases. Mixture models

are much more accurate for a large number of points of the validation basis.
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Ny and Nxy for an non-orthotropic laminate
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Figure 4.12: Quantile curves for the approximation of λcr a) over Nx and Ny b) over Nx, Ny
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Loading Combined loading Pure shear loading
Type MOL ANN MOQ ANN

MSE 8.5.10−8 7.8.10−7 2.1.10−6 1.7.10−6

LOF(%) 9.1.10−4 8.5.10−3 8.5.10−4 6.7.10−4

Êrel(%) 7.10−3 1.6.10−1 8.8.10−3 3.4.10−3

Êabs 3.1.10−5 6.3.10−4 2.4.10−4 8.1.10−4

Emaxrel (%) 1.16 1.6 0.9 0.5
Emaxabs 4.6.10−3 5.4.10−3 2.5.10−2 7.5.10−3

Q1%(%) 99.7 99.7 100 99.7
Q0.1%(%) 98.8 43.6 97.9 92.9

Table 4.1: Results for the approximation of λcr for orthotropic laminates for combined loading
and pure shear loading

4.7.3 Approximation models in the general case

In that case, we make both stacking sequence and loading vary. We distinguished

two cases, one with non-orthotropic laminates and no shear loading (biaxial loading

including tension/compression). Dimension of regression in that case is 5: ξ1
D, ξ2

D,

ξ3
D, Nx and Ny. We used 5, 400 points ranging in Miki’s tetrahedron for lamination

parameters and Nx ∈ [−100, 0] and Ny ∈ [−50, 50]. In the second, we added shear

loading, dimension of regression was then 6 and we used 8, 400 points within the same

domain with Nxy ∈ [0, 50]. Results are in Tab. 4.4. For both regressions, results show

that ANN’s give lower MSE, but for all the other accuracy metrics, the mixture of

rational experts give a better accuracy. Regarding quantile errors, we have the same

tendency as in the other cases, that is mixture models gives a better accuracy for most

points than ANN’s.

4.7.4 Conclusion on the accuracy of the approximation

We see that in many cases, mixture models offer quite a good performance in terms

of the accuracy of the approximation. For most cases, the hard recombination

was found to be better than the smooth recombination and a reasonably

good artificial neural network. In case one type of variables, amongst stacking or

loading, is fixed, the accuracy is very high allowing to use the approximation models

within an optimization process. When material and loading vary the quality of the
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Loading Combined loading Pure shear loading
Type MOQ ANN MOQ ANN

MSE 6.9.10−4 2.7.10−4 1.7.10−4 9.3.10−4

LOF(%) 3.10−2 1.2.10−2 3.4.10−4 1.9.10−3

Êrel(%) 7.7.10−2 1.4.10−1 3.10−2 7.6.10−2

Êabs 6.4.10−3 1.2.10−2 7.10−3 1.8.10−2

Emaxrel (%) 5.1 1.3 0.47 0.9
Emaxabs 3.8.10−1 8.8.10−2 8.9.10−2 0.15
Q1%(%) 98.2 99.8 100 100
Q0.1%(%) 89 48.1 93.1 79.9

Table 4.2: Results for the approximation of λcr for non-orthotropic laminates for combined
loading and pure shear loading

approximation degrades, this is of course due to the dimension but also of the growing

complexity of λcr much modes are indeed covered when making material and loading

vary. What these results suggest is that approximation models should take advantage

of this mode-based structure to improve the accuracy of the approximation. However,

doing so requires a fairly good number of learning points within each mode, which is

not an easy task to obtain without prior knowledge.

4.8 Applications to optimization: maximization of the

buckling critical load factor

4.8.1 Optimization problem

In order to illustrate the interest of the approximation of λcr, we consider a stacking

sequence optimization to maximize buckling critical factor of a composite plate under

combined loading. The optimization problem can be stated as follows
maxλcr(ξD1 , ξ

D
2 , ξ

D
3 )

s.t. 2|ξ1
D| − ξ2

D − 1 6 0
2|ξ3

D|+ ξ2
D − 1 6 0

where some parameters are fixed: the material, the dimensions of the plate a and b,

the total number of plies n, the loading with Nx, Ny and Nxy.
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Loading Biaxial loading Combined loading
Type MOQ ANN MOQ ANN

MSE 1.93.10−6 4.8.10−5 3.6.10−3 6.6.10−3

LOF(%) 2.1.10−4 5.10−3 2.6.10−1 4.7.10−1

Êrel(%) 5.1.10−3 9.3.10−2 4.10−1 7.1.10−1

Êabs 1.10−4 2.10−3 1.1.10−2 1.7.10−2

Emaxrel (%) 1.4 2 11.1 29.4
Emaxabs 3.9.10−2 9.9.10−2 1.1 1.1
Q1%(%) 99.9 99.4 90.4 81.8
Q0.1%(%) 98.8 75.6 65.9 28.9

Table 4.3: Results for the approximation of λcr for varying loadings (biaxial loading and
combined loading)

4.8.2 Two approaches

Two approaches will be compared to solve this problem:

• an explicit approach: it consists in listing all the feasible stacking sequences for

a fixed number of plies n and computing the buckling load with a Rayleigh-Ritz

method. The optimization problem is written as follows

max
feasible SS

λcr(SS)

where the acceptable stacking sequence space is generated by listing the whole of

the possible combinations of angles [0◦,±45◦, 90◦] which comply with the manu-

facturing rules: balanced (±45◦), symmetric, contiguity (maximum of 4 equal suc-

cessive layer orientations), disorientation (two consecutive ply orientation should

not differ from more than 45◦), and finally a proportion rule with a minimum

of 8% for each orientation. The buckling critical factor λcr is computed with a

Rayleigh-Ritz (RR) method on the subset of feasible stacking sequences. The

optimal stacking sequence SS? is referred as the reference solution of the opti-

mization problem.

• a two-step approach composed of a continuous optimization in the out-of-plane

lamination parameters space followed by a post-identification to find the associ-

ated optimal stacking sequence.
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Loading Biaxial loading Combined loading
Type MOR ANN MOR ANN

MSE 7.6.10−3 3.4.10−3 1.9.10−2 7.10−3

LOF(%) 3.8.10−1 1.7.10−1 3.8.10−1 1.3.10−1

Êrel(%) 0.9 1.6 0.67 1.25
Êabs 3.2.10−2 3.6.10−2 3.3.10−2 3.7.10−2

Emaxrel (%) 20.9 40.5 31 22.4
Emaxabs 1.23 0.7 3.64 1.56
Q1%(%) 73.7 43.6 84.6 55.6
Q0.1%(%) 19.5 4.1 28.6 6.6

Table 4.4: Results for the approximation of λcr for varying non-orthotropic laminates and for
varying flux

1. solve the continuous optimization problem
maxλcr(ξD1 , ξ

D
2 , ξ

D
3 )

s.t. 2|ξ1
D| − ξ2

D − 1 6 0
2|ξ3

D|+ ξ2
D − 1 6 0

and determine the optimal out-of-plane lamination parameters (ξD)? =

(ξD1 , ξ
D
2 , ξ

D
3 )?. The concavity of λcr ensures that any local maximum is a

global maximum and that a gradient-based methods (such as SQP,...) will

converge to a global maximum.

2. from the optimal vector (ξD)? find the associated SS? by solving{
maxλcr(SS)
s.t. ξD(SSfeasible) ∈ N((ξD)?)

where N((ξD)?) denotes the neighborhood of the optimal vector (ξD)?. To

define this neighborhood, we consider the ball B((ξD)?, r) of center (ξD)?

and of radius r chosen such that the cardinal of points inside B is equal

to 20 (fixed number). The reason for choosing the best stacking within a

neighborhood is again related on the concavity of λcr. Indeed, this ensures

that the discrete optimum can not be too far away from the continuous

optimum. There is no reason however that the discrete optimum is the

closest discrete stacking sequence. This local research could definitely be

improved by constructing a new distance that will weights the influence of

each ξiD (based on the Hessian of λcr at the optimum for instance).
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4.8 Applications to optimization: maximization of the buckling critical
load factor

explicit 2-step with RR 2-step with MOQ

optimal SS [−45/− 45/− 45/0/45/45/0/0/45/90]s
Error at optimum (%) exact exact 0.03%
Number of λcr evaluations 7032 269 + 20 39 + 20

Table 4.5: Optimization result with the combined loading Nx = −50N.mm−1, Ny =
20N.mm−1 and Nxy = 20N.mm−1.

4.8.3 Comparison of the optimization results

We consider the Graphite/Epoxy material given in Tab. 3.2.4, a plate of 650 × 250

mm with 10 × 2 plies according to the symmetry. A piecewise polynomial regression

of degree 2 (MOQ) is build to approximate the buckling critical factor λcr and is

used in the optimization process to reduce computational time (compared with the RR

approach).

4.8.3.1 A combined loading example

First the combined loadingNx = −50N.mm−1, Ny = 20N.mm−1 andNxy = 20N.mm−1

is considered. We report in table 4.5 the results obtained with the two approaches: in

all cases we obtained the same optimal stacking sequence, the only difference results

in the number of objective function evaluations: 7032 by listing all the feasible subset

of stacking sequences with 10 × 2 plies, 269 function evaluations for the continuous

optimization by using the 2-step approach with the RR method to compute λcr instead

of 39 evaluations with the MOQ approximation. For the SS-identification process,

20 more evaluations of λcr are required to build the neighborhood B((ξD)?, r) of the

optimal vector and then choose the optimal stacking sequence.

The convergence of the optimization process is compared on Fig. 4.13. Due to the

smoothness of the quadratic approximate model (MOQ), the number of iterations is

drastically reduced with 9 iterations instead of 21 with the RR method. Fig 4.14 shows

the feasible out-of-plane lamination parameters in Miki’tetrahedron. The considered

neighborhood of the continuous solution is also represented and contains the feasible

optimal solution. As expected, we can see that these optimal parameters are on the

boundary of the domain. The use of a piecewise polynomial approximation of the λcr
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4. ORIGINAL STRATEGY TO APPROXIMATE DISCONTINUOUS
AND DERIVATIVE DISCONTINUOUS FUNCTIONS

Figure 4.13: Objective function during the optimization process with the combined load

Figure 4.14: Optimal solution in the lamination parameters space (the 7032 feasible ξD are
illustrated by a black dot market) under the combined loading
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4.8 Applications to optimization: maximization of the buckling critical
load factor

explicit 2-step with RR 2-step with MOQ

optimal SS [−45/− 45/− 45/− 45/90/45/45/45/45/0]s
Error at optimum (%) exact exact 0.1%
Number of λcr evaluations 7032 38 + 20 32 + 20

Table 4.6: Optimization result with the shear loading Nx = Ny = 0N.mm−1 and Nxy =
20N.mm−1.

Figure 4.15: Objective function during the optimization process with the shear loading

offers many advantages in term of convergence, computing time and makes it possible

in this case to find the reference solution.

4.8.3.2 A pure shear loading example

To confirm these first very promising results, a second loading case is considered with

Nx = Ny = 0N.mm−1 and Nxy = 20N.mm−1. The results are presented in Table

4.6. As previously, the reference stacking sequence is found by the 2-step approach in

both cases: with the RR method or the MOQ method to compute λcr. The number of

iterations is very close and Fig. 4.15 confirms that the objective function converges in

a similar way (8 or 9 iterations). One more time, the optimal solution belongs to the

boundary of the Miki’ tetrahedron as shown in Fig. 4.16.

4.8.4 Conclusion of the optimization applications

The use of our approximate model of λcr is particularly useful for the optimization

strategy developed here. The approach in 2 stages with MOQ makes it possible to find

the reference solution with few evaluations of the objective function, and in a negligible

computational time. If the number of plies n would be higher, acceptable space would

be larger and thus one could clarify all the combinations with difficulty. One will prefer
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4. ORIGINAL STRATEGY TO APPROXIMATE DISCONTINUOUS
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Figure 4.16: Optimal solution in the lamination parameters space (the 7032 feasible ξD are
illustrated by a black dot market) under the shear loading

in this case to use an evolutionary algorithm (genetic algorithm, ...) coupled with

the MOQ approximation for the objective function to perform the stacking sequence

identification.

4.9 EM estimation of hyperparameters for memory-based

methods

In this section, we show that the hyperparameters of well-known approximation meth-

ods in the case of regression : rbf, moving least squares can be thought as mixture

density parameters and therefore can be set through maximum likelihood estimation

for mixture densities. In particular, the support points for regressive RBF’s and kernel

centers and kernel smoothing methods are interpreted as means of the same number

of individual probability laws. We also show the the well-known regression technique

of Weighted Least Squares can be seen as a soft homoscedastic Gaussians mixture of

polynomial experts. Finally, we carry out a locally varying weight for Moving Least

Squares based on fully-free Gaussian mixture where the weight function is interpreted

as the expectation of the variance-covariance matrices.
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4.9 EM estimation of hyperparameters for memory-based methods

These methods arise from different areas of supervised learning : for instance radial ba-

sis functions are usually derived from classical neural networks theory, more precisely,

they are a particular case of multilayer perceptron where the activation functions of the

neurons are univariate Gaussian probability density functions. Kernel smoothing meth-

ods like local polynomial regression (or moving least squares in the engineering context)

arise from statistics theory where they were historically derived from the apparently un-

supervised methods for density estimation (like Parzen windowing or nearest neighbors

methods). Although they are quite different, they do share a common feature, when

used in supervised learning (e.g regression) the prediction for a new entry needs to be

computed at each time. Unlike neural networks that provide a quite simple closed-form

expression of the model, these methods do not provide easy to handle analytical ex-

pression. If we think of interpolating radial basis functions all the data base is needed

to predict the outcome of a new entry, indeed the analytical expression they produce

uses all the inputs values. Local polynomial regression are even more complicated since

they do not provide any closed-form expression, and the model needs to be computed

for any new prediction (i.e an optimization problem of small size must be solved for

each new point prediction). In all cases, all the data or a subsequent part of the data

is used for a new prediction, making this kind of methods useless from the compression

point of view.

4.9.1 Radial basis network

The major idea of radial basis functions network is to explain the data by a model of

the form

f(x) =
M∑
i=1

αiφi(||x||) (4.50)

where the one-dimensional functions φi’s are called radial functions since they only

depend on the norm of the entry. There many choices for the type of radial functions,

but we will focus on Gaussian density function since there are by far the most popular

and also because they provide a connection with mixture density estimation. Note that

each radial function is expected to locally capture the structure of the data and they

are defined together with so-called support points (xi)1...M where the radial functions
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are centered at. In our case of Gaussian density functions, these φi turns out to be

φx(||x||) =
1√
2πσ

e−
1

2σ2 (x−xi)T (x−xi) (4.51)

Note suppose we have set the xi and σ to some values, then building the radial basis

functions network (i.e computing the αi’s) is straightforward through classical least

squares estimation

minα∈RM

N∑
i=1

(yi −
M∑
j=1

αje
− 1

2σ2 (x−xi)T (x−xi))2 (4.52)

whose solution can be easily derived analytically.

Note that, when building interpolating radial basis functions network, we take as many

basis functions as observations in the sample, the support points xi are set to be ob-

served inputs. In that case, 4.52 has as many equations as variables and there exists

one and only one solution α? that makes the residual sum of squares vanish. This

procedure however cannot be applied to very large data sets in high dimension and still

needs an estimation of σ the standard deviation (or in the kernel smoothing methods

jargon: the width of the Gaussian kernel). We need therefore good procedures to set

σ and the xi’s. We could extend the optimization problem 4.52 with adding the xi’s

and the σ as optimization variables but the resulting optimization problem would no

longer be convex and the algorithms used to solve this kind of problem are exactly the

same as in neural network training (BFGS, Levenberg-Marquardt). Another approach

is to estimate the hyperparameters xi and σ separately from the αi’s. It is where mix-

ture density estimation come to help. Indeed, these hyperparameters can be thought

as means and variance of Gaussian mixture of M components. Once a number of M

radial basis functions has been chosen, we apply EM algorithm on the joint database

for an homoscedastic mixture (Γi = σ2Id) and get maximum likelihood estimators of

the support points xi’s and σ by computing the marginal laws of X exactly as we did

in the former section. We do need to restrict to homoscedascic mixture and we could

run the EM algorithm for fully free Gaussian mixtures. This would result in differ-

ent variance-covariance matrices for supports points and would allow the model f to

capture more sophisticated behavior of the underlying function. Finally a common
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4.9 EM estimation of hyperparameters for memory-based methods

practice with radial basis functions is to renormalized basis functions φ̂i of the form

φ̂i(x) =
φi(x)∑M
j=1 φj(x)

(4.53)

to avoid regions of the input space where all φi’s are low-valued, which creates holes.

Note that in the context of mixture of experts, rbf networks with renormalized basis

functions are exactly mixture of constant experts for a soft clustering. Indeed, the

form of f is nothing else than a mixture of expert where the local expert is a sole scalar

value (fk(x) = αk with the same notations as in the former section). In this context

we see that αk is somehow related to the expectation of the fuzzy cluster Ck (weighted

expectation of Y ).

4.9.2 Weighted Least Squares

We give here an interpretation of the weighted least squares regression. Say we have X =

(x1, . . . , xn) ∈ Rd together with their output values Y = (y1, . . . , yn). A local Weighted

Least Squares regression at point x̂ ∈ Rd consists in finding the best multivariate

polynomial approximation fx̂ :

fx̂ = argminp∈Qd
s

n∑
i=1

θ(||xi − x̂||)||p(xi)− yi||2 (4.54)

where Πd
s is the set of multivariate polynomials of d−variables and degree s and θ

is a symmetric positive and decreasing function : maximum value at 0 and 0 when

|x| → +∞ : which can be strictly positive or compactly-supported. θ is called a weight

function. A very popular choice for θ is

θ(r) =
1√

(2π)dσ2d
e−

1
2
r2

σ2 (4.55)

This regression fx̂ is a local approximation which is valid only in the neighborhood of

x̂. Note that the moving least squares regression consists in a global weighted least

squares by making the x̂ varying (or moving) over the whole domain Rd, this global

model happens to be continuous and even smooth whenever the weight function is

smooth (Levin 1998). We depicted several WLS regression on different points together

with the MLS regression Fig. 4.17. Another way to get a global model is by using a
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Figure 4.17: Weighted least squares regressions (polynomials of degree 2 and σ = 0.1) of the
function x→ cos(4x) at different points and moving least squares regression

partition of unity. Namely, we have K so called support points x̂1, . . . , x̂K , a local WLS

regression f̂x̂j = f̂j is built at each support point x̂j and the global model is

FWLS(x) =
K∑
i=1

βi(x)f̂i(x) (4.56)

where

βj(x) =
e−

1
2

||x−xj ||
2

σ2∑K
i=1 e

− 1
2

|||x−xi|
σ2

(4.57)

This popular model has an obvious interpretation in terms of MoE and soft clustering.

Assume that the law1 of X ∼
∑K

j=1
1
KNd(x̂j , σ2Id). In that case, we have, keeping the

same notations as in section 2

P(X = x|j) =
1√

(2π)dσ2d
e−

1
2

||x−x̂j ||
2

σ2 (4.58)

and

P(j|X = x) =
e−

1
2

||x−x̂j ||
2

σ2∑K
i=1 e

− 1
2

||x−x̂i||
σ2

(4.59)

1In the former examples we focused on Gaussian mixture models that were fully free, i.e. all the

parameters of the Gaussian mixture models are not constrained and EM algorithm estimates all the

parameters. There are more simple Gaussian mixture models that assume that all the means are

the same or all of the variance-covariance matrices are of the form σ2In (this hypothesis is known in

statistics as homoscedascity)
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4.10 Towards the numerical implementation of decomposition/bilevel
schemes

and we see that

FWLS(x) =
K∑
i=1

P(κ = i|X = x)f̂i(x) (4.60)

and the WLS model is an MoE for X ∼
∑K

j=1
1
KNd(x̂j , σ2Id) using a soft partitioning

and where local experts are multivariate polynomial regression experts weighted by the

probabilities of the soft partitioning.

4.10 Towards the numerical implementation of

decomposition/bilevel schemes

We presented an original strategy to approximate typical buckling constraints that

appear in our large-scale optimization problem. We observed that this strategy achieves

a reasonable accuracy for idealized buckling computations. In the next chapter, we get

to the practical implementation of our bilevel scheme by first presenting a reasonable

test case and finding out the real optimum first by monolevel methods. This innovative

strategy will be used in the construction of our real aircraft structure test case in

Chapter 7.
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5 Monolevel optimization schemes

In this chapter, we describe the different mono-level schemes that can be used to solve

Problem (1.8) on the basis of the equivalence of optimization problems described in

Chapter 2. Indeed, we want to compare the results of multilevel schemes on the basis

of mono-level schemes results. Moreover, the different mono-level schemes that we

describe in this section will help us to favor one decomposition of the optimization

variables amongst several. Indeed, the classical AIO (All-In-One) uses all local design

variables without using directly stiffness terms y, while BAO formulations does use

explicitly Y terms. These different mono-level schemes are the basis of the multilevel

schemes that we will compare and apply in the next chapter. In particular, we will

see that different mono-level schemes imply different multi-level schemes (AIO scheme

implies non-hierarchical methods such as the one presented in the next chapter) while

BAO-like formulations imply hierarchical methods as Target Rigidity, this was already

outlined in Chapter 2 but in this chapter, we make this appear for the real structural

optimization problem we want to solve.Before describing the mono-level schemes, we

start first with a description of the test case we will use throughout this chapter and in

the next chapter and second with a brief description of sensitivity analysis.

5.1 Formal description of the test case

To compare the different decomposition methods we investigated in Chapter 2, we used

the same test case as in (Merval 2008): the 10-bar truss. This is a classical example

in structural optimization. It is a truss made of 10 bars (tension/compression only).

Each of these 10 bars is I-profiled. This truss and the dimensions of the I-profile are

depicted Fig. . A load case is set on nodes 4 and 5 and we optimize the dimensions

of the truss for this load case under the constraints of local buckling of the web of the

bar, Euler buckling, tension and compression/tension yield stress limits. We did not

impose maximal displacements nor continuity design constraints.
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5. MONOLEVEL OPTIMIZATION SCHEMES

2

Figure 5.1: a) 10 bar truss b) I-profile

We note that this test case gathers all the difficulties of the problem (??) for any

modification of the detailed dimensions changes the stress distribution and we have

global-local constraints that link the global stress redistribution with local design.

5.1.1 Analytical expression of the objective function

We keep the convention, defined in the first chapter, that the dimensions are sorted in

the bars order.

X = (x(1)
1 , x

(1)
2 , x

(1)
3 , . . . , x

(10)
1 , x

(10)
2 , x

(10)
3 ) (5.1)

The weight of the straight bars is easily obtained, with L the length of the bar and ρ1

the volumic density

m(i)(x(i)
1 , x

(i)
2 , x

(i)
3 ) = (x(i)

1 x
(i)
2 + 2x(i)

1 x
(i)
3 )Lρ1 (5.2)

For i = 1 . . . 6, the weight of the diagonal bar is :

m(i)(x(i)
1 , x

(i)
2 , x

(i)
3 ) = (x(i)

1 x
(i)
2 + 2x(i)

1 x
(i)
3 )
√

2Lρ2 (5.3)

For bars i = 7 . . . 10. we consider that the diagonal bars do not have the same volumic

density to allow us to amplify the hyper-static configuration of the truss.

Global weight is therefore

M(X) =
N∑
i=1

m(i)(x(i)
1 , x

(i)
2 , x

(i)
3 ) (5.4)
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5.1 Formal description of the test case

or

M(X) =< X,AX > (5.5)

with

A =


A1

. . .
Ai

. . .
AN

 (5.6)

where

Ai =


ρ1L

0 1 2
1 0 0
2 0 0

 for i = 1 . . . 6

ρ2L
√

2

0 1 2
1 0 0
2 0 0

 for i = 7 . . . 10

(5.7)

Weight is therefore a quadratic function where we sort the nodes such that the ma-

trix M would be of minimal band. This quadratic function is not definite (det(A) =∏N
i=1 det(Ai) = 0), nor positive ({−2.13, ..., 2.13...} ∈ Sp(M)) and therefore the func-

tion M is not convex. Nonetheless, the function M̂ is convex for variables Y . Prac-

tically, it means that most of the usual optimization gradient-based methods are not

guaranteed to converge to the global minimum when applied over x variables.

5.1.2 Stress computations and constraints

5.1.2.1 Stress computation

We briefly review the computation of stress inside the bars. Recall that we are in

the linear elastic domain (small perturbations) and we look for the approximate solu-

tion of the linear elastic equations with the hypothesis that bars are only subject to

compression and tension. The computation is then

1. initial detailed configuration of the truss : X ∈ R30 and load case

2. computation of stiffness terms : (A, I) ∈ R10×R10,with A the cross-section areas

of bars and I the quadratic momentum.

Ai = x
(i)
1 x

(i)
2 + 2x(i)

1 x
(i)
3

Ii = x
(i)
1

((
x

(i)
2

)3

12 +
(
x

(i)
2

)2
x

(i)
3

2

) (5.8)
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3. we loop on the elements (bars) and we assemble the stiffness matrix with the

stiffness terms KA ∈ M10(R). We depicted Fig. 5.2, the pattern of this matrix.

We know that the nonzero terms of this matrix are of the form EAi
Li

(with E

Young modulus of the material and Li length of the bar i) such that the partial

derivative matrices ∂KA
∂Ai

used to compute analytical sensitivity are constant and

easy to compute.

4. we assemble the external strength vector f associated with the load case specified

5. we solve

KAd = f (5.9)

to compute the displacements d.

6. we get from it the strain disitrbution εi and the stress distribution σi inside each

bar i from Hooke’s law ( σi = Eεi).

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 36

Sparsity pattern of stiffness matrix

Figure 5.2: Pattern of the stiffness matrix KA

5.1.2.2 Optimization constraints

The computations made before will allow us to express the optimization constraints.

As said before, we do not consider for the moment design continuity constraints and
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5.1 Formal description of the test case

maximal displacement constraints. Namely, we do not have cKglob and cglob in our opti-

mization problem.

On the one hand, we have the local design constraints :

1 ≤ x(i)
1 ≤ 5

10 ≤ x(i)
2 ≤ 100

0.1 ≤ x(i)
3 ≤ 80

(5.10)

for i = 1 . . . 10.

On the other hand we have in the case of tension, the tensile yield stress, and in

the case of compression, we have the local buckling constraint, the Euler buckling

constraint and the yield stress

• tensile yield stress , for σi ≥ 0

1− σtens
σi
≤ 0 (5.11)

where σtens material admissible

• compressive yield stress, for σi ≤ 0

1− σcomp
σi

≤ 0 (5.12)

where σcomp compression allowable

• local buckling of the web :

1−
σloc,i
σi
≤ 0 (5.13)

where σloc,i = 4π2E
12(1−ν2)

(
x

(i)
1

x
(i)
2

)2

• Euler buckling :

1−
σEul,i
σi

≤ 0 (5.14)

where σEul,i = π2EIi
L2
i

As we can see, any of these 4 constraints depend on σi and then the stress distribution

and then depend on all the dimensions. To make the notation a little bit clearer, we did

not make the dependence on Xi appears in the constraints but in reality we must write
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σi(x
(1)
1 , x

(1)
2 , x

(1)
3 , . . . , x

(10)
1 , x

(10)
2 , x

(10)
3 ), σEul,i(x

(i)
1 , x

(i)
2 , x

(i)
3 ) and σloc,i(x

(i)
1 , x

(i)
2 , x

(i)
3 ).

Eventually, we have 10 constraints for each bar and then 100 constraints for the problem

which is written formally

minX∈R30 M(X) =< X,AX >=
∑10

i=1 < Xi, AiXi >

s. t.



1 ≤ x(i)
1 ≤ 5 for i = 1 . . . 10

10 ≤ x(i)
2 ≤ 100 for i = 1 . . . 10

0.1 ≤ x(i)
3 ≤ 80 for i = 1 . . . 10

1− σtens

σi(x
(1)
1 ,x

(1)
2 ,x

(1)
3 ,...,x

(10)
1 ,x

(10)
2 ,x

(10)
3 )
≤ 0 for i = 1 . . . 10

1− σcomp

σi(x
(1)
1 ,x

(1)
2 ,x

(1)
3 ,...,x

(10)
1 ,x

(10)
2 ,x

(10)
3 )
≤ 0 for i = 1 . . . 10

1− σloc,i(x
(i)
1 ,x

(i)
2 ,x

(i)
3 )

σi(x
(1)
1 ,x

(1)
2 ,x

(1)
3 ,...,x

(10)
1 ,x

(10)
2 ,x

(10)
3 )
≤ 0 for i = 1 . . . 10

1− σEul,i(x
(i)
1 ,x

(i)
2 ,x

(i)
3 )

σi(x
(1)
1 ,x

(1)
2 ,x

(1)
3 ,...,x

(10)
1 ,x

(10)
2 ,x

(10)
3 )
≤ 0 for i = 1 . . . 10

(5.15)

Problem (5.15) is therefore a non-convex quadratic under nonlinear constraints.

These constraints turn out not to be convex, as we will see in the following section.

5.1.3 Existence of a minimum and feasible set

We investigate a little deeper the optimization constraints together with the existence

of a minimum of this problem.

5.1.3.1 Existence of a minimum

We denote Uad ∈ R30 the set of all feasible configurations for (5.15), we denote cK :

R30 −→ R40 optimization constraints that depend on σi. By continuity of σi, σloc,i
and σEul,i (note that σloc,i is continuous over the feasible domain since x(i)

2 ≥ 10), cK

is continuous and even smooth. The set of feasible configurations with respect to the

complicated constraints (the constraints that depend on σi) is then the reciprocal of

(] − ∞, 0])40, cK being continuous this set is then closed. On the other hand Uad is

bounded with respect to the first three box constraints. Eventually, Uad is a compact

set being a closed bounded subset of R30. M as a bilinear function, is continuous

and the existence of at least one minimum of the global weight is therefore ensured.

Note that M being non-definite and non-positive does not ensure the unicity of such a

minimum. This is why, we do not denote any minimum X∗ for it may not be unique

(and numerical experiments tend to prove that there are several minima) but it makes

sense to denote M∗ the minimal value of the objective function at this or these minima.

188



5.1 Formal description of the test case

1
2

3
4

5

0

20

40

60

80

100
0

20

40

60

80

Figure 5.3: Section S1 of the feasible set for bar 1

5.1.3.2 Feasible set

A question that naturally arises is the connexity of the feasible set since there is no

reason for Uad to be connected (the continuous reciprocal of a connected set need not

be connected). In the case Uad is connected, we can equally ask if it is also convex.

For the moment, we can only look at numerical experiments. We draw a section of Uad

(we fix the dimension of bars 2 to 10) and explore the section of Uad for bar 1. We

depicted this section in Fig. 5.3 and Fig. 5.4.

The feasible set seems to be connected but not convex as we can see in Fig. 5.4.

We also investigated the pattern of the Jacobian matrix of constraints. Recall that

∇cK that lies in M30,40(R) contains the partial derivatives of each constraint with

respect to all the design variables xi. Note that this derivatives (also known as sensi-

tivities) can be calculated explicitly (see next section). To show the structure of this

Jacobian (that can be useful to implement new algorithms), we depicted the relevant

terms of this matrix, namely the terms whose absolute value is more 10−3, in Fig.

5.1.3.2. As we can see ∇cK has an almost block diagonal pattern that can be explained

by the fact the local dimensions of bar i have a bigger influence of the constraints that

concerns bar i than the other, which is perfectly normal from a mechanical point of
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Figure 5.5: Pattern of the Jacobian matrix of the constraints. The x-axis represent the
design variables sorted element by element and y-axis represent the constraints sorted element
by element as well
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view. But we see also that

• Dimensions x(1)
1 and x(3)

1 (namely the thickness of the flange of bar 1 and 3) have

quite a big influence on the constraints of bar 7 and 8.

• Dimension x
(4)
1 has quite a big influence on the constraints of bars 9 and 10

• Dimension x
(7)
1 has quite a big influence on the constraints of bars 1 and 3.

5.2 Sensitivity analysis

In structural optimization problems, one often needs to compute derivatives of the

constraints and the objective functions. Usually, the gradient of the objective function

is quite easy since it is the weight of the structure or the area of a profile, namely it is a

simple product between dimensions. The constraints are quite difficult to differentiate

since it involves a finite-element analysis and therefore the resolution of a large system

of equations. In the AIO case, it becomes quite cumbersome since the FEA is based

on the stiffness variables while we want to differentiate the constraints with respect to

the design variables.

5.2.1 AIO formulation

We saw that Problem (1.8) involves constraints (c(i)
glob−loc(Y

(1), . . . , Y (N), X(i))) that are

functions of both design variables X and the internal loads that depend on stiffness

variables Y , which only depend on the design variables X. Eventually, such constraints

boil down to only depend on design variables X. This leads to the so-called nested

formulation) of the constraints, that is a formulation that only depends on the design

variables and make not appear any stiffness variables, whilst they obviously appear in

the computation of the constraints. We start by describing the simple case where we

differentiate such a constraint c(x, u(x)) where x are the stiffness variables and u the

displacements. The nested formulation is therefore ĉ

ĉ(x) = c(x, u(x)) (5.16)

where

K(x)u(x) = f(x) (5.17)
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and we want the derivative of ĉ with respect to x. This derivative is often called the

total derivative of c. Applying the chain rule to (5.16) with respect to the i−th variable

xi we get

dĉ

dxi
(x) =

∂c

∂xi
(x, u(x)) +

∂c

∂u
(x, u(x))

∂u

∂xi
(x) (5.18)

where ∂.
∂u denotes the derivative with respect to the second variable. Note that usually

the first two terms on the right side can be computed easily. We describe in the following

section how to compute the last term ∂u
∂xi

(x).

5.2.2 Direct method and numerical aspects

To compute ∂u
∂xi

(x), we start with the differentiation of (5.17) with respect to xi

∂K

∂xi
(x)u(x) +K(x)

∂u

∂xi
(x) =

∂f

∂xi
(x) (5.19)

we assume that the load case does not depend on x and we obtain the following linear

system to solve

K(x)
∂u

∂xi
= −∂K

∂xi
(x)u(x) (5.20)

to obtain ∂u
∂xi

. This is called the direct method to compute sensitivities of the displace-

ment u with respect to xi. There exist other methods

• Finite differences: it consists in forming an approximation of the derivative,

e.g forward or centered finite differences. Despite it is easy to implement, it might

be inaccurate (especially when the stepsize is fixed or not controlled) and may

require a huge number of finite element analyses, in case fast reanalysis techniques

are to be used it can however lead to efficient performance.

• Adjoint method: it is also an analytical method as the direct method. It usually

much cheaper than the direct method in case when there are few constraints.

More precisely, when there are more constraints than design variables (which is

our case and usual in structural optimization) the direct method is cheaper than

the adjoint. this is the reason why we will not use it
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5.2 Sensitivity analysis

• Semi-analytical methods: it consists in computing some intermediate deriva-

tives by finite differences and the others by an analytical way. Typical inter-

mediate derivative are the stiffness matrices derivatives. Suppose we have to

differentiate a stiffness matrix K w.r.t A where the non zero terms in K are EA
L ,

finite-differences in that case are for instance exact. This is done for instance in

MSC.Nastran.SOL200.

We end this section with a very important remark. When we want to compute the

sensitivities of u for all design variables (x1, . . . , xN ), we have to solve N linear systems

of the form (5.20). This would lead to N × N3 = N4 flops since solving a linear

system is in general of order O(N3). But we can make use of the fact it is the same

matrix K(x) for all systems and this matrix is symmetric positive definite. A good

idea is therefore to first make the Choleski decomposition of K(x), namely to compute

L lower triangular matrix with positive diagonal terms such that LLT = K(x), this

requires N3 flops and solve system (5.20) by

1. Solve by backward substitution LY = −∂K
∂xi

(x)u(x) : N2 operations

2. Solve by forward substitution LTX = Y : another N2 operations

This way, computation of all sensitivities boil down to a complexity of order O(N3),

this is precisely the same complexity as a FEA. Computations of all sensitivities boil

down to only one finite element analysis.

5.2.3 Sensitivity analysis for the AIO formulation

We investigate the computation of analytical sensitivitie with respect to stiffness vari-

ables. In what follows, we extend this computation to the AIO case. More precisely, we

want to differentiate the constraints with respect to x, while the FEA relies on stiffness

variables Y .

Recall the following notations

• N the number of elements indexed by i = 1 . . . N

• ni is the number of design variables for element i

• n =
∑N

i=1 ni is the total dimension of the optimization problem
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• X = (x(1)
1 , . . . , x

(2)
n1 , . . . , x

(N)
1 , . . . , x

(N)
nN ) the design variables

• Y = (Y1, . . . , YN ) the stiffness variables. Note that we assume there is only one

stiffness variable per element, while in all generality there may be several.

• ϕ : Rn 7→ RN the mapping from the design variables to the stiffness variables

(area of profiles). Note that ϕ is pretty simple and the Jacobian of ϕ, Dϕ(X) ∈
MN,n(R) is easy to obtain and is block diagonal

Dϕ(X) =



∇ϕ1(x(1)
1 , . . . , x

(1)
n1 )

. . .

∇ϕi(x(i)
1 , . . . , x

(i)
ni )

. . .

∇ϕi(x(N)
1 , . . . , x

(N)
nN )


(5.21)

• Φ : RN 7→ RN the mapping from the stiffness variables to the internal loads. Note

that Φ is the FEA and what we saw in the preceding section allows us to from

the Jacobian matrix of Φ at point Y DΦ(Y ) ∈MN (R)

DΦ(Y ) =


...

...
∇Φ1(Y ) . . . ∇ΦN (Y )

...
...

 (5.22)

Recall now that our global-local coupling constraints are written cK(X,Φ(Y )) and then

can be written as well cK(X, (Φ◦ϕ)(X)), this leads to the nested multilevel formulation

of constraints

ĉ(X) = cKglob−loc(X, (Φ ◦ ϕ)(X)) (5.23)

For the moment we consider a scalar constraint. Applying the chain rule twice we

obtain the analytical expression of constraints derivative with respect to x(i)
j

∂ĉ

∂x
(i)
j

(X) =
∂cK

∂x
(i)
j

(X,Φ(ϕ(X)))+
∂cK

∂yi
(X,Φ(ϕ(X)))◦

(
∇Φi(ϕ(X))◦ ∂ϕi

∂x
(i)
j

(X)
)

(5.24)

Where ∂.
∂yi

denotes the derivative with respect to the i−th second variable (namely

strength Fi) and therefore is a scalar. Now consider vector constraints sorted in the

order of the elements i
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5.2 Sensitivity analysis

• c : Rn × RN 7→ Rm with

• m =
∑N

i=1mi where mi is the number of coupling constraints of element i, e.g

for the ten bar truss mi = 4 and m = 40, ĉ is therefore written as

c(X,Y ) =



c
(1)
1 (x(1)

1 , . . . , x
(1)
n1 , Y )

...
c

(1)
m1(x(1)

1 , . . . , x
(1)
n1 , Y )

...
c

(N)
1 (x(N)

1 , . . . , x
(N)
n1 , Y )

...
c

(N)
mN (x(N)

1 , . . . , x
(N)
n1 , Y )


(5.25)

• Denote by DXc(X,Y ) ∈ Mm,n(R) the Jacobian of the constraint c with respect

to the the design variables X (in other words the partial Jacobian matrix of c

with respect to the first vector variable X. DXc is obviously block diagonal since

c(i) the vector constraint for element i does not depend on design variables of

elements j 6= i

DXc(X,Y ) =


Dc(1)(X(1), Y )

. . .
Dc(i)(X(i), Y )

. . .
Dc(N)(X(N), Y )


(5.26)

where Dc(i)(X(i), Y ) ∈ Mmi,ni(R). Note that DXc can be computed by simple

differentiation, it consists in differentiating the local constraints : local buckling,...

For a large number of design variables this can become cumbersome but any

symbolic derivator will do it.

• Denote also by DY c(X,Y ) ∈ Mm,N (R) the Jacobian matrix of c with respect to

the second vector variable, that is the vector of internal strength (or displace-

ments, constraints...). In the usual case, only internal strength Fi in element i

appears in the constraints c(i), (see for instance the constraints of the ten bar

truss). This means that the derivatives of c(i) with respect to the internal forces

Fj for j 6= i is 0. This gives us a particularly sparse and easy to compute matrix
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DY c

DY c(X,Y ) =


∇y1c

(1)

. . .
∇yic(i)

. . .
∇yN c(N)

 (5.27)

where ∇yN ∈ Rmi . For instance, for the ten bar truss, the nonzero elements of

this matrix are only 1 and −1.

Finally, summing up ((5.24)) for i = 1 . . . N and j = 1 . . . ni we end up with the

following formula where Dĉ(X) is the total multilevel Jacobian matrix of the constraints

with respect to the design variables

Dx̂(X) = DXc(X,Φ(ϕ(X))) +DY c(X,Φ(ϕ(X)))DΦ(Φ(ϕ(X)))Dϕ(X) (5.28)

5.3 Mono-level methods

5.3.1 AIO Method

By AIO optimization (All-In-One), we mean the resolution of (6.12) at once. Namely

we do not take into consideration the structure of the problem we do not look for a

decomposition onto sub-problems. We solve (6.12) as a whole problem. This is of

course possible for the ten bar truss problem given its relative small size (30 variables)

but practically impossible for real large structures. The AIO formulation is exactly the

one in (6.12).

5.3.2 Formal description of AIO

In AIO optimization, the optimization variables are only the local dimensions. Though

the stiffness variables are implicitly considered in the computation of constraints. They

are nonetheless really computed for the FEA relies on them. The formal AIO problem

is therefore

(AIO)

minX∈Rn M(X) =
∑N

i=1m
(i)(X(i))

sous


cKglob(ϕ(X)) ≤ 0
c

(i)
glob−loc(X

(i),Φ(ϕ(X))) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(5.29)
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5.4 SAND original formulation

Note that AIO is only the nested formulation of the original problem. We do not

make the stiffness variables directly appear in the optimization problem.

5.3.3 Practical implementation

To solve by AIO, we used the fmincon function of Matlab. This is based on SQP

algorithm. It forms a quadratic approximation of the objective function. Note that our

objective function is already quadratic but not convex, while SQP algorithm uses a con-

vex quadratic approximation based the Broyden-Fletcher-Goldsharb-Shanno (BFGS)

formula that, roughly speaking, approximates the Hessian by a definite positive ma-

trix. This approximation is usually not controlled by trust region methods (see (? )

for further details). It also uses a linear approximation of constraints. Practically, we

then computed analytically the gradient of the objective function and the Jacobian of

the constraints for fmincon works better with analytical gradients instead of comput-

ing them by finite differences. Moreover, we scaled the detailed dimensions to make

them lie in [0, 1]30 (this changes of course the analytical gradients). This is usual in

optimization and improves accuracy and convergence speed.

5.4 SAND original formulation

The original SAND formulation (as described in [3] for instance) comes from MDO

problems. The main idea is to convert a multi disciplinary problem into a mono-level

problem, the analysis and the design are then performed at the same time (Simultaneous

ANalysis and Design. In structural optimization, SAND formulation treat mechanical

characteristics (displacement, strength...) as optimization variables a priori indepen-

dent from the local variables and force them to be dependent through the equilibrium

equation that appears as an optimization constraint that way the analysis is not made

for the inequality constraints but only for N equality constraints (namely the equilib-

rium equation). That way, the Jacobian of the inequality constraints are much easier

to compute since we differentiate with respect to Xi in one hand and on the other hand

with respect to the strength Fi. More formally, the original SAND formulation for our

problem is
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(SAND)

minX,F∈Rn×RN M(X,F ) =
∑N

i=1m
(i)(X(i))

sous



F = Φ(ϕ(X))
cKglob(F ) ≤ 0
c

(i)
glob−loc(X

(i), F ) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(5.30)

On the one hand, we get more optimization variables (n + N instead of n for AIO)

and more constraints (m inequality constraints and N equality constraints while AIO

only has m inequality constraints) but on the other hand, the constraints are much

more simple in the sense we consider that the Xi’s and the Fi are independent, the

only coupling constraints are the N equality constraints (equilibrium equation). Un-

fortunately the first results for our test case show that convergence is much slower that

in the AIO, though it does converge to the real optimum. The low rate of convergence

can be explained that the N equality constraints are very hard to satisfy, this suggests

that the analysis has to remain within the inequality constraints, nonetheless the idea

of artificially separate variables that are strongly dependent among them is interesting,

indeed it gives the problem a block angular form (see (Haftka & Gurdal 1992)). To ex-

plain this, we must investigate deeper the structure of the Jacobian of the constraints.

Let us use the 10-bar truss. Suppose we sort the constraints in the order of the elements

: the first four constraints are local constraints of bar 1, the next four constraints are

the local constraints of bar 2 and so on. If we are to compute the Jacobian of the

constraints (sorted in this order) we end up with the Jacobian matrix depicted Fig.

where it has a dominating block diagonal form but it is though a full matrix (we made

only appear elements greater than 10−3 but in reality all the elements are nonzero).

One could ask if there would not be a way by reorganizing or changing the groups

of variables to make this matrix have a nicer profile : block diagonal, block compan-

ion... This is achieved by SAND-like methods, which are the structural optimization

versions of the BAO formulation of the second chapter. Indeed, suppose we organize

our optimization variables this way : (F1, ..., FN , x
(1)
1 , ..., x

(1)
n1 , ..., x

(N)
N , ..., x

(N)
nN and keep

the same order of the constraints. Now the local constraints of element i depend of

course on all the Fi’s (global sensitivities) and of the Xi’s but no more on the Xi’s for

i 6= j. This is the key idea of SAND, that way the Jacobian of the constraints (and the

problem) has a so called block angular form depicted Fig. 5.6.
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Figure 5.6: Profile of the Jacobian of the constraints for SAND and SAND2

Though the problem is bigger but has a nicer form. This is the reason why we derive

the original following formulation, which exploits this artificial separation of variables

and its block angular form but keep the FEA within the inequality constraints.

5.5 Block Angular form (SAND2)

Instead of separating forces and local dimensions, one could artificially separate stiffness

variables and local dimensions and force them to dependent with equality constraints

(Y = ϕ(X)), this way we have the following problem

(SAND2)

minX,Y ∈Rn×RN M(X,Y ) =
∑N

i=1m
(i)(Y (i))

s.t



Y = ϕ(X)
cKglob(Y ) ≤ 0
c

(i)
glob−loc(X

(i),Φ(Y )) ≤ 0
cglob(X(1), . . . , X(N)) ≤ 0
c

(i)
loc(X

(i)) ≤ 0

(5.31)

which is precisely the BAO scheme described in the second chapter. However because

of similarity with the SAND formulation, we keep the SAND-like names. Note that the

objective function is now convex being linear.

199



5. MONOLEVEL OPTIMIZATION SCHEMES

5.6 Block Angular form new version (SAND3)

We can improve the former formulation (SAND2)

• with skipping the equality constraints ϕ(Xi) = Yi and

• with eliminating one design variable, e.g for ten bar truss x(i)
1 = Yi

x
(i)
2 +2x

(i)
3

• Formally, we only consider a set of reduced design variables X̂(i), the others

can be deduced from them and the stiffness variables

It turns out that

• We reduce the number of optimization variables, it boils down to n

• We skip the equality constraints and therefore ensure compatibility between

design and stiffness variables

• We just add one (linear and easy) constraint on the vanished design variables

This leads to the following formulation (SAND3):

(SAND3)

minX̂,Y ∈Rn−N×RN M(X̂, Y ) =
∑N

i=1m
(i)(Y (i))

s.t


c(Φ(Y )) ≤ 0
c

(i)
gl (X̂(i),Φ(Y )) ≤ 0

c
(i)
loc(X̂

(i), Yi) ≤ 0

(5.32)

In definitive, 5.32 has the following characteristics

• It has the same form and the same number of constraints and variables

as AIO

• Sensitivities are still easy to compute and M is still convex

• However, in our example the relationship was pretty easy to derive

since Y = φ(X) is a very simple formula. In case this equation is not as

simple (just think of the quadratic momentum for I-shaped beam), an

approximation method is to be used to inverse this formula (Newton

or Quasi-Newton methods,...) making this transform not so easy and

cheap
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Figure 5.7: Usual behavior of AIO

5.7 Overall comparison and finding a good initial point

On the one hand, we tested the three methods (AIO, SAND2, SAND3) detailed in the

preceding section on a bases of 80 load cases. More precisely, we make FX4 × F Y4 vary

on [−10000,−7000,−5000, 0, 5000]× []− 15000,−10000,−7000,−5000, which gives 20

load cases and FX5 , FX4 in the same range, which gives 20 other cases. This is done

for the case ρ1 = ρ2 and the case ρ2 = 100ρ1 since in this case the non-FSD optimality

id reinforced and StiffOpt does converge to a very sub-optimal design. To test all the

methods on the same conditions, we applied the same convergence criteria to all of

them. convergence is obtained when difference between two iterations is below TolM

for the objective function and TolX, namely

• ||Xk+1 −Xk|| < TolX = 10−3

• |M(Xk+1)−M(Xk)| < TolM = 10−5

5.7.1 AIO

AIO convergence under these criteria is usually ensured after 30 iterations. The typical

behavior of AIO is depicted Fig. 7
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5.7.2 SAND2

This new global method does much better than AIO both in terms of iterations :

equivalent for case ρ1 = ρ2, but 25 % less in the case ρ2 = 100ρ1, but also in terms of

computation time. The sensibilities are in this case much easier to compute analyti-

cally since the Xi’s and the Yi’s are considered independent from each other there is

no differentiation of Yi’s with respect to the Xi’s (in terms of computation it saves a

product of matrices per iteration). This is unexpected since SAND2 has more optimiza-

tion variables (40 while AIO has only 30) and has N = 10 more constraints (equality

f(Xi) = Yi) but as said in [3] the original SAND formulation (where the strengths

are added to the optimization variables while in our case it is the stiffness variables)

prevents to continually reanalyze the structure and can be more efficient than AIO.

The difference between SAND2 and AI0 is depicted Fig.

5.7.3 Finding a good initial design

We anticipate a bit with the next chapter where we detail the standard sub-optimal

decomposition algorithm called StiffOpt. We will not describe it here but simply uses

to speed up convergence of the mono-level schemes. Indeed it can be used to get a good

initial point since it makes the weight rapidly decreases (after one or two iterations) the

weight is quite close to convergence). We then re-investigated the mono-level methods

to see if it could give good starting points. Indeed all of these formulations (AIO,

SAND2, SAND3) seem very stable (i.e, not initial point too much depending and
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Figure 5.9: Comparison of SAND2 and AIO

converge for all load cases). Numerical experiments show that convergence is very much

sped up when starting from a neighborhood of the optimum. One could naturally ask

how to find a good initial point:

• As we will see in the next chapter, the algorithm called StiffOpt gives a near

optimal point very quickly (since it converges in a few iterations and the

computations can be distributed). The idea was then to couple Stiffopt with

all of these formulations.

• We start from an initial (better if feasible) point and run StiffOpt for one or

two iterations and use the configuration obtained asan initial point for AIO,

SAND2 and SAND3

The algorithm is then

1. X0 initial configuration

2. Run 1 or 2 iterations of StiffOpt : gives Xstiff

3. Start AIO, SAND2 or SAND3 (with the modifications needed) at Xstiff

Numerical results show that convergence is much faster with using this strategy. In

average half of the number of iterations is required to converge (see detailed results).

Results are even better with only one iteration of StiffOpt R.
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5.7.4 Overall comparison

We compared all the mono-level methods. Including the StiffOpt initialization to assess

first the different optima and also see if one of the mono-level methods (that do not

use the same set of design variables) seems to be better. In this case, this would give

a natural decomposition onto variables that can be used for multilevel technique.

We see that the SAND2 and SAND3 methods perform slightly better than AIO. This

favors decomposition/bilevel methods based on a decomposition with stiffness terms at

upper level and a lower level made of local design variables in comparison with methods

that would only decompose the problem over X.

5.8 Towards decomposition/bilevel schemes

We describe our test case and apply on it the different monolevel schemes we saw

in the second chapter. We did not test and implement the IQP-BAO version, for it

has mainly a theoretical interest. We see that getting the analytic sensitivities is
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Formulation N iter T (s) Best case Worst case

AIO 42 1.02 21 117

SAND2 39 0.83 20 101

SAND3 36 0.63 21 59

STIFAIO 18.8 1.01 4 40

STIFSAND2 22.4 1.4 4 43

STIFSAND3 19.5 0.83 4 47

Table 5.1: Synthesis of the results for mono-level methods

far from trivial and that the different practical formulations we apply gives the

same optimum, which numerically proves that they are equivalent. The block-angular

versions (SAND2, SAND3) seems also to perform better in terms of number of

iterations and execution time. This results in more simple analytic sensitivies

computations. Finally we also apply the StiffOpt algorithm presented in the next

chapter to get a good initial design that helps speed up convergence. We can

now turn to decomposition/bilevel schemes implementation and comparison in the next

chapter.
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6 Bilevel formulations from bi-stages

techniques to real bilevel implementation

This chapter evaluates the different multilevel schemes in a realistic context. In par-

ticular, we emphasize the importance of the different implementations. Indeed, bilevel

formulations as the ones described in Chapter 2, are only theoretical formulations, where

some constraints of the upper level are defined through an implicit local optimization.

This apparent simplicity of the formulation hides difficulties in terms of implementa-

tion, indeed, a bilevel problem may be solved approximately through the resolution of a

sequence of optimizations, alternating between upper level optimization and lower level,

’optimization then optimization’. It can be solved as a well as it is formulated that

is to say a real bilevel implementation, ’optimization in optimization’. The differ-

ent schemes are then applied and tested over the 10 bar truss test case. Alternating

optimizations implementation is shown to be sub-optimal and we then turn to a real

bilevel implementation of the Quasi Separable subsystem Decomposition that finds out

the same optimum is the monolevel schemes.

6.1 Differences between bi-stages and bilevel optimizations

When facing a bilevel optimization formulation, the question of the implementation is

of huge importance. It is an optimization problem where some constraints are com-

puted on the basis of some codes that include the resolution of an optimization. From

a conceptual point of view, we could think of these constraints as implicit functions

for which we have a code or software that produce the results. It is quite similar to

mechanical constraints that involve the resolution of some non-linear problems (large

deflections, non-Hookean materials,...). In such a case, the optimization should only

see some executable that takes some inputs and gives the physical quantities that are

to be constrained. This implies that finally the bilevel problem is in reality a monolevel
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problem. It is often denoted this way in the mathematical literature on bilevel opti-

mization. The same way, bilevel optimization can be understood in a different manner.

Indeed, most of the structural optimization problems involve at some point equilibrium

equations, or eigenproblems whose solutions also satisfy some minimization principles

(the unknown displacement u minimizes the strain energy, the critical buckling eigen-

mode minimizes the Rayleigh quotient,...in terms of elliptic pde’s this means that there

are symmetric bilinear forms behind), which means even a mono-level optimization

scheme such that AIO, solves at each iteration many different optimization problems

over different variables and could be called multilevel.

We will not fuss over about the correct term and simply keep the former notations

and denominations that is bilevel optimization is an optimization that includes

optimization within some of its constraints. We should simply keep in mind that

the bilevel formulation implies that optimization are performed at different levels. To

get to a tractable implementation whenever gradient-based methods are concerned, one

should definitely use post-optimal sensitivities to avoid finite-differences computations

that would rerun the optimization many times. To help reduce complexity of the so-

lution of the upper level problem, one common heuristic is to approximate the bilevel

problems by a sequence of optimizations. As described in (Tosserams et al. 2009), the

bilevel optimization can be solved

• either as a real bilevel implementation, fixing the Y ’s variables and solving

at each global iteration all the optimization local sub-problems

• or as sequential optimizations, first solve (entirely) the optimization problem

with the local variables fixed and then solve all the local optimization problems

with the new Y ’s fixed and iterate back and forth.

We refer to the first implementation as bilevel implementation and to the second as

alternating or bi-stages optimizations. We first describe the implementation and the re-

sults obtained for alternating optimizations and then turn to a real bilevel optimization

for the QSD scheme.
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6.2 Bi-stages schemes

6.2 Bi-stages schemes

6.2.1 Decomposition based on Fully Stressed Design criterion : StiffOpt

Early attempts to decompose large-scale structural optimization problems on the basis

its natural decomposition into structural sub-elements gave rise to a mechanical opti-

mality criteria known as Fully Stressed Desgin criterion. This means that for weight

minimization at fixed internal loads, we can decompose the large problem made of N

structural sub-elements into N local weight minimization at each element level. Cou-

pled with the stress-ratioing technique, the FSD criterion leads to the algorithm called

StiffOpt. This criterion was extensively covered in the eighties, it is a mechanical crite-

rion that appears to be false for a lot of optimization problems. However, it is a quite

simple algorithm that can be applied to any structure quite easily. When internal loads

vary, this criteria in connection with the stress-ratio update technique usually offers fast

convergence. Nonetheless, for hyper-static or redundant structures and also structure

made of different materials1 the FSD criterion is known to be sub-optimal. Classical

test cases on truss showed even for simple stress constrained weight minimization the

FSD criterion can lead to sub-optimal design for some loading cases. Even worst, buck-

ling constraints make this criterion more false. However, since it can give good initial

design points for other methods and that it is a first attempts to decompose, we briefly

review the StiffOPt algorithm based on this criterion.

6.2.1.1 Brief description of StiffOpt

Roughly speaking, StiffOpt algorithm starts from an initial design (X local variables),

computes the associated stiffness variables and the internal load redistribution. Under

this fixed internal loads, every sub-element is optimized with respect to weight under

global-local constraints (buckling). This results in new local design variables, and the

stiffness terms are updated and so is the internal loads redistribution. Unlike other mul-

tilevel schemes presented in the sequel (Target Rigidity,...) StiffOpt does not include an

upper level optimization but simply an update and a new FEA. It is worth noting that,

if we take the original AIO problem and artificially modify its analytical sensitivities by

cutting off the extra block diagonal entries (most of modern gradient-based optimizers

1And large-scale composite structures lie in this category whenever stacking sequences are optimiza-

tion variables, since their stiffness moduli Ex, Ey and νxy vary with the orientation angles proportions.
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(fmincon from MathWorks, nlpql from Saunders et al., gcm from Samtech) accept

user-supplied analytical gradients of objective and constraints functions), we end up

with same results as StiffOpt.

Indeed, StiffOpt is formally

1. For a given Xk, we compute Y k and Φk

2. Solve

(StiffOpt)
minX∈Rn M(X) =

∑N
i=1m

(i)(X(i))

s.t

{
ĉ(i)(X(i),Φk) ≤ 0
c

(i)
loc(X

(i)) ≤ 0
(6.1)

3. Update Xk+1 check convergence

6.2.1.2 Improvement of StiffOpt based on sensitivity

The former algorithm gives a natural way to improve StiffOpt. Indeed, we see that the

internal loads are not updated whilst the local optimization process. This can be done

by computing the sensitivities of stress distribution at step 1 and use them to update

stress distribution using a Linear Approximation (or Reciprocal)

1. For a given Xk, we compute Y k, Φk and DkΦ =
(
∂Φi
∂Yj

(Yk)
)

1≤i,j≤N

2. Solve

(StiffOpt L)
minX∈Rn M(X) =

∑N
i=1m

(i)(X(i))

s.t

{
ĉ(i)(X(i),Φk + (ϕi(Xi)− Yk)∂Φi

∂Yi
) ≤ 0

c
(i)
loc(X

(i)) ≤ 0
(6.2)

3. Update Xk+1 and check convergence

Note that we used the classical Linear Approximation, better results are obtained

with the Reciprocal Approximation (more suitable for structural optimization prob-

lems)

(StiffOpt R)
minX∈Rn M(X) =

∑N
i=1m

(i)(X(i))

s.t

{
ĉ(i)(X(i),Φk + (ϕi(Xi)− Yk) Y k

ϕi(Xi)
∂Φi
∂Yi

) ≤ 0

c
(i)
loc(X

(i)) ≤ 0

(6.3)

Results are better than the original StiffOpt, as observed in Fig. 6.1, in terms of

optimal weight and number of iterations.
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Figure 6.1: Comparison between different versions of StiffOpt

6.2.2 Bi-stages or alternating optimization schemes

This section is the most important since we apply here the most classical decomposi-

tion techniques in structural optimization, these were already outlined in Chapter 2,

but we make them more precise here. However, it is worth noting that we did imple-

ment and test these schemes on the basis of bi-stages optimization (a.k.a alternating

optimizations), which means that we first optimize the upper level and then, based

on the results obtained at this level, we realize local optimizations where upper level

parameters (mainly stiffness’s and hence internal loads redistribution fixed). The local

optimization results are sent to upper level to update it, this process goes back and forth

and is repeated alternatively to reach convergence. This is a fixed point resolution, the

underlying idea is that real bi-level programming is too computationally expensive to

be interesting. We refer also refer to these implementations as 0-order schemes, since

at this point, we do not consider post-optimal sensitivities of local optimizations. In

the next section, we will describe a fully bilevel scheme : Quasi Separable Subsystem

Decomposition that is simply the real bilevel implementation of the Maximum Margin

scheme that we describe in this section. This real bilevel is made possible thanks to
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the use of post-optimal sensitivities and surrogate models (in the next chapter).

6.2.2.1 Formal description

Recall that the typical bilevel decomposition has the following general form.

• Global-level (or system-level) :

minY M(Y ) =
∑N

i=1mi(Yi)

s. t.
{
cKglob(Y1, . . . , YN ) ≤ 0
γi(Y ) ≤ 0 for i = 1 . . . N

(6.4)

• where γi for i = 1 . . . N is the coupling function computed from the lower-level

(or sub-element level) :

minXi hi(Xi, Y )

s. t.

{
c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0

(6.5)

• that way the hard constraints (based on FEA) are only computed on the global-

level and the N local optimizations can be performed concurrently

6.2.2.2 Target Rigidity

The main idea is to first realize optimization at upper level where internal loads vary,

taking into account stress and strain constraints. This gives optimal stiffness terms

(cross-sections, quadratic momentum whenever bending is involved...) and at local

level we try to find the local design that best matches the stiffness terms (i.e the closest

in terms of Euclidean distance over dimensions) and that satisfies local constraints

(buckling). This way the internal loads are expected not to vary too much when

updating the stiffness terms at upper level.

• Target Rigidity defines γi(Y ) = 1
2 |ϕ(X∗i )− Yi|2

• where X∗i is
argminXi

1
2 ||ϕ(Xi)− Yi||2

s. t.

{
c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0

(6.6)
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As already outlined, Target Rigidity is very close to Collaborative Optimization in the

MDO framework. From constraint γi(Y ) ≤ 0 at upper level, we see that at convergence

of the global-level optimization, we expect to have a local design that perfectly matches

the stiffness variables and hence this local design is feasible since it is the results of

local optimization that includes global-local constraints.

6.2.2.3 Maximum margin (a.k.a Constraint margin)

Recall that this scheme was carried out first by Haftka and Sobiesky in the 80’s and

then extended in a more general form by Haftka, Liu and Watson under the QSD

scheme.

• MaxMargin defines γi(Y ) = minXi∈ϕ−1(Y ){c
(i)
glob−loc(Y,X

∗
i )} and therefore γi(Y ) =

−µ?i

• where µ?i is equal to

argmaxµi,Xi µi

s. t.


c

(i)
glob−loc(Y,Xi) + µi ≤ 0

c
(i)
loc(Xi) + µi ≤ 0
Yi = ϕ(Xi)

(6.7)

Note that the very name Maximum Margin comes from the fact that the local

optimization seeks the local design that least violates both the global-local constraints

and the local constraints (e.g buckling constraints and local ratio constraints). In this

case we maximize the margin (the feasibility) and constrain at upper level this margin

to be positive. It would have been totally equivalent to minimize the negative margin

and constrain at upper level this margin to be negative.

6.2.2.4 Local mass minimization MinMass

This scheme was carried out by Merval in his PhD thesis (Merval 2008).

• MinMass defines γi(Y ) = c
(i)
glob−loc(Y,X

∗
i )

• where X∗i is
argminXi mi(Xi)

s. t.


c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0
Yi ≤ ϕ(Xi)

(6.8)

213



6. BILEVEL FORMULATIONS FROM BI-STAGES TECHNIQUES TO
REAL BILEVEL IMPLEMENTATION

6.2.2.5 Mix scheme

• This scheme is a combination of MinMass and Target Rigidity

• γi(Y ) = max{c(i)
glob−loc(Y,X

∗
i ), |ϕ(X∗i )− Yi|}

• where X∗i is
argminXi ε1

2 |ϕ(Xi)− Yi|2 + (1− ε)mi(Xi)

s. t.


c

(i)
glob−loc(Y,Xi) ≤ 0

c
(i)
loc(Xi) ≤ 0
Yi ≤ ϕ(Xi)

(6.9)

6.2.2.6 Practical implementation as alternating optimizations

We see that a bilevel optimization involves solving local optimization problems to com-

pute constraints of the global optimization problem. As outlined before, one way to

reduce the complexity is to consider the stiffness terms and stress distribution are fixed

during the local optimizations and we do not take into consideration the variation of

the Xi’s while optimizing the Y ’s at the global level. The algorithm is therefore:

1. Iteration k : given detailed configuration Xk

2. Resolution of {minY M(Y )|cKglob(Y ) ≤ 0, cglob−loc(Y,Xk) ≤ 0}

3. We obtain Y k
1 , . . . , Y

k
N

4. For i = 1 . . . N , we solve {minXi hi(Xi, Y )|cglob−loc(Y k, Xi) ≤ 0}

5. Update Xk+1 and Mk+1

6. Check convergence for M and Xk and check feasibility of the structure, if con-

vergence end if not go to 1.

6.3 Overall comparison for alternating optimizations

implementation

6.3.1 StiffOpt

StiffOpt has a very good behavior in the first case (ρ1 = ρ2). Typical behavior in this

case is depicted Fig. 6.2. We can see that we have a very fast decreasing weight and

that StiffOpt always gives feasible configuration.
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Figure 6.2: Usual behavior of StiffOpt in the first case

But in the second case (ρ2 = 100ρ1), StiffOpt does not behave that nice, we usually

observe an error at convergence of 3 − 4%. Average behavior in that case is depicted

Fig. ?? and for few cases the error goes up to 12%, this is depicted Fig. 6.3. We

noted the following interesting fact that in the second case, the weight at optimum is

nothing else than the weight of the optimum found in the first case with respect to the

ρ2 = 100ρ1. In other words, if we take the optimal configuration found in the first case

and compute its weight for ρ2 = 100ρ1 we find the same weight as StiffOpt. StiffOpt

optimal configurations are actually very close in both cases.

(a) Average behavior of StiffOpt in the sec-

ond case

(b) Worse behavior of StiffOpt

Figure 6.3: Average and worse cases for StiffOpt in the hyperstatic case
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6.3.2 Overall comparison

Eventually, we compared the behavior of all methods for two load cases (in the second

case ρ2 = 100ρ1). We obtained the following results over 40 different load cases for the

ten bar truss

• FSD criterion : relative error 6% in 14 iterations

• Target Rigidity : relative error 3.2% in 5 iterations

• MinMass : relative error 3.1% in 4 iterations

• Mix : relative error 2.9% in 5 iterations

• MaxMarge : relative error 12% in 4 iterations

Finally, we depicted Fig. 6.4 and 6.5 the results we obtained for MinMass, Target

Rigidity and the so-called Mix schemes, for the same starting points. Note in the

appendix are shown the detailed results load by load case. Note also we do not converge

for all load cases and the minimum weight reported is the best feasible configuration

over the optimization history.
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Figure 6.4: Comparison of multilevel methods : worst and average cases in the second case
(ρ2 = 100ρ1)

Finally, we depicted the erratic and ill-conditioned behavior of MaxMargin Fig. 6.6,

where we studied the behavior for close starting points. The equality constraint seem
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Figure 6.6: Erratic behavior of MaxMargin in the first case (ρ2 = ρ1)

As a conclusion, we observed that over the various bilevel/decomposition schemes,

Maximum Margin has a very erratic behavior while MinMass, Target Rigid-

ity and the Mix schemes perform better. However, all of them are sub-optimal.

6.4 Adaptation of QSD scheme to composite structural

optimization problem

In this section, we first recall the QSD scheme, already presented in Chapter 2 and

describe the adaptation we have made to solve our original problem first by relaxing the

equality constraints as suggested in Chapter 2 and second with adaptation to specific

composite considerations: lamination parameters as described in Chapter 3. In the

application of this scheme to a realistic structure, we also applied our original strategy
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to build approximation of buckling constraints computed through Airbus in-house tools.

This is described in Chapter 7.

6.4.1 Adaptation to equality constraints

Haftka et al. carried out the initial scheme

• Global-level (or system-level) :

minY M(Y ) =
∑N

i=1mi(Yi)

s. t.
{
cglob(Φ(Y1, . . . , YN )) ≤ 0
µ?i (Yi,Φi) ≤ 0 for i = 1 . . . N

(6.10)

• where µ?i for i = 1 . . . N is the coupling function computed from the lower-level

(or sub-element level) :

min(µi,Xi) µi

s. t.


c

(i)
glob−loc(Yi,Φi, Xi)− µi ≤ 0

c
(i)
loc(Xi)− µi ≤ 0
Yi = φ(Xi)

(6.11)

As observed in the former section, the equality constraint makes the algorithm

very unstable and ruins convergence. We adapted this formulation based on

the inexact quadratic penalty block angular version presented in Chapter 2

(IQP-BAF). This allows us to add budgets bi as suggested by Haftka, Liu and Watson.

• Global-level (or system-level) :

minY,b M(Y ) =
∑N

i=1mi(Yi) +
∑N

i=1 bi

s. t.
{
cglob(Φ(Y1, . . . , YN )) ≤ 0
µ?i (Yi,Φi, bi) ≤ 0 for i = 1 . . . N

(6.12)

• where µ?i for i = 1 . . . N is the coupling function computed from the lower-level

(or sub-element level) :

min(µi,Xi) µi

s. t.


c

(i)
glob−loc(Yi,Φi, Xi)− µi ≤ 0

c
(i)
loc(Xi)− µi ≤ 0

1
2 ||Yi − ϕ(Xi)||2 − bi − µi ≤ 0

(6.13)
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6.4.2 Adaptation to composite specific considerations

In this section, we explain how to adapt this QSD scheme to the specific composite

considerations, in particular, we use here the different results obtained in the framework

of this thesis. The main idea is that we want to decompose the main problem variables

into two sets of distinct variables that will be of course connected to each other and

keep this distinction between upper level variables, whose FEA depends on and lower

level variables, whose buckling constraints depend on. For geometric dimensions, this

connection was ensured through cross-section dimensions Y = ϕ(X). Indeed, FEA

depends only on Y and once the internal loads are computed on the basis of the Y ’s, the

local design X’s (geometric dimensions) are used to compute the stability constraints

(buckling) with loads as parameters. For laminate, this is not that easy. Suppose for

instance that we work with ply angles orientations as optimization variables, we can not

separate them between stiffness-dependent variables and stability-dependent variables

and the number of variables depends on the thickness of the laminate. However if we

think of constitutive law’s in terms of A, B and D tensors, we see that they are much

better suited to decomposition. Indeed

• They can vary continuously

• There is always the same number of variables for they are 3 dimensional

symmetric tensors

• In case of symmetric laminate (B = 0), the in-plane (membrane) and out-

of-plane (bending) behavior can be decoupled(
N
M

)
=
(
A 0
0 D

)(
ε
−κ

)
(6.14)

where ε is the strain tensor (plane strain ε = (εx, εy, εxy))), κ are the curvature

components, N the forces and M moments. We see that the in-plane behavior

does not depend on D.

We see that we have kind of a natural decomposition through this constitutive equation.

Roughly speaking, everything that depends on internal loads redistribution will be

linked to A and everything that depends on out-of-plane behavior (e.g buckling) will

be linked to D. This quite general, for laminate, this means that
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• membrane behavior (maximum deformation, Poisson ratio mismatch,...) will only

depend on proportion of orientations, or equivalently in relative thickness. A

depends on the proportion

• out-of-plane behavior will only depend on the order of stacking.

This advocates the use of A and D tensor variables as optimization variables. However,

these variables are not very easy to handle. In particular it might not be very simple to

describe the feasible space and the constraints connection between A and D. Further-

more, there are 12 variables. This is why we used another continuous representation,

namely the lamination parameters ξ. We saw in Chapter 3 that they are continuous

variables and they describe as well the in-plane behavior (ξA) as the out-of-plane (ξD).

Moreover, some (but not all) manufacturability constraints can be imposed in the lami-

nation space and much work has been done to write the connection constraints between

ξA and ξD (compatibility equations). Next, out-of-plane lamination parameters are also

quite a good choice for optimizations variables, since the skin buckling critical reserve

factor is concave over ξD. However it is worth noting that the buckling constraints are

still coupled with ξA and Y through internal loads redistribution. Indeed, recall that

buckling critical reserve factor is defined as the smallest positive eigenvalue λ such that

D(ξD, X)∆2w = −λN(ξA, Y )∆w (6.15)

and Eq. (6.15) is a simplified form of the real buckling equation for composite plates,

however we clearly see the dependence of the operators involved in buckling. In terms

of the QSD scheme, this turns out to be the following representation

• Y = (Ai, ξ
(i)
A , bi) for i = 1 . . . N , where Ai is the cross section area for super-

stringer and ξ
(i)
A are the lamination parameters for skin and stringer and bi the

budget. Note that this is totally equivalent to use proportions of angles orien-

tations since we have (for conventional [0/90/45/ − 45] laminates) the following

relationship

ξ1
A = p0 − p90 (6.16)

ξ2
A = p0 + p90 − 2p45 (6.17)

ξ3
A = 0 (6.18)
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whenever the laminate is balanced. We see that proportions can be easily derived

from in-plane lp’s and the other way around. In both cases, it boils down to only

2 variables per stacking. Note that all the maximum deformation, maximum

displacement or maximum stress constraints can be computed on the basis of

these variables.

• X(i) = (ei, ξ
(i)
D ) where ei are the local dimensions (e.g stringer profile dimen-

sions,...) and ξ(i)
D are the out-of-plane lamination parameters of skin and stringer.

For conventional [0/90/45/−45] laminates ξ4
D = 0 but in general we have ξ3

D 6= 0

even for balanced laminates.

The optimization formulation is therefore

• M(Y ) =
∑N

i Ai +
∑N

i bi the total weight penalized by the budgets.

• The local optimization is then

min
(µi,(ei,ξ

(i)
D )

µi

s. t.


RF

(i)
glob−loc(Φi, ei, ξ

(i)
D )− µi ≤ 0

c
(i)
comp(ξ

(i)
A , ξ

(i)
D ) ≤ 0

c
(i)
loc(, ei)− µi ≤ 0

1
2 ||Ai − ϕ(Xi)||2 − bi − µi ≤ 0

(6.19)

The reason why we do not use the margin in the compatibility constraints between ξA
and ξD is that we numerically observed that the real feasible (manufacturable) stacking

sequences often lie on the boundary of the domain defined by these equations.
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6. BILEVEL FORMULATIONS FROM BI-STAGES TECHNIQUES TO
REAL BILEVEL IMPLEMENTATION

6.5 Detailed results

In this section, we give results and details about the practical implementation for the

academic test case, the 10 bar truss. This test case is complicated enough to see

what are the key points of such an implementation. Roughly speaking, we obviously

need an optimizer that accepts constraints computed through an optimization. This

means that if the same algorithm is used at both levels it can be called inside the main

call. The other main point is about sensitivity computations, we need to compute

post-optimal sensitivity ∂µ∗i
∂Yi

, if finite-differences are to be used this will become totally

intractable, since another local optimizations are to be called for perturbed optimization

parameters. Specific post-optimal sensitivity needs to be set.

6.5.1 Practical implementation

There is quite a big step between the formal description and the implementation of a

bilevel optimization. In this section, we describe on a the (not so simple) example of

the 10 bar truss how this implementation was made. For some points (especially chain

ruling of sensitivities), we will see it was even more complicated than the MAAXIMUS

panel implementation in the next chapter, so it is worthwhile to have quite a good

picture of what is done for this test-case.

6.5.1.1 Post-optimal sensitivities and chain ruling

First, gradient based optimization methods are used, which means that we need to

differentiate the optimal margin µ? with respect to Y terms and of course b budgets

as well. This is a bit tricky since the parameters of the local optimization involved

are not directly Y but quantities computed on the basis of these Y ’s namely forces (or

loads). This particular derivative is of very huge importance since it couples all the

sub-elements. Former 0-order multilevel schemes are in fact quite the same algorithm

but this derivative set to 0. Roughly speaking, the upper level does not see the change

in the local optimization induced by a perturbation of the parameters while they vary

during the main loop optimization.

Regarding this post-optimal sensitivity, note that
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6.5 Detailed results

• µ?(Y, b) = (µ?1(Y1,Φ1(Y ), b1) . . . µ?N (YN ,ΦN (Y ), bN )) can be computed in a dis-

tributed way and analytical derivatives are available

dµ?i
dYi

=
∂µ?i
∂Yi

+
∂Φi

∂Yi

∂µ?i
∂Φi

(6.20)

• where ∂µ?i
∂Yi

and ∂µ?i
∂Φi

are post-optimum sensitivities computed with the Lagrange

multipliers λ found at local optimization, based on post-optimal sensitivities re-

sults
∂µ?i
∂Yi

= λT
∂ci

∂Yi
(6.21)

• where ∂ci

∂Yi
is the derivative of local constraints w.r.t to Yi and ∂Φi

∂Yi
is the derivative

of the FEA response found by direct or adjoint methods (e.g SOL200 sensitivity

analysis responses).

6.5.1.2 Optimizers

As outlined before, the optimizers should be called in the main loop whose constraints

call the same optimizers. If we think pf µ∗i as an implicit function that can be computed

through any programming code, we therefore think of it as an external task. However,

this can be done in Matlab with the fmincon function and also in Boss Quattro. In

terms of optimization architecture, this means that we have a call to the optimizer in

the function that computes the constraints. For instance, the main call will be of the

kind

[x_opt,f_opt,exitflag,output,lambda] = fmincon(@(X)main_objective(X,strcase,truss),...

X_0,[],[],[],[],lbnd,ubnd,@(X)main_contr(X,lc,truss),options2);

where main contr is of the following structure

function [con,con_eq,grad,grad_con_eq] = main_contr(X,lc,truss)

% Computation of yield stress constraints

...

% Sensitivity of yield stress constraints

...

% Local optimization based constraints computation and post-optimal sensitivity calls
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REAL BILEVEL IMPLEMENTATION

for i=1:10

if nargout < 3

[x_opt,f_opt,exitflag,output,lambda] = ...

sub_opt([0 1 10 0.01],Y(i),phi(i),b(i),i,50,truss);

...

elseif nargout > 2

[x_opt,f_opt,exitflag,output,lambda,loc_rig,err_rig,...

d_mu_d_y,d_mu_d_phi,d_mu_d_b] =...

...sub_opt([0 1 10 0.01],Y(i),phi(i),b(i),i,50,truss);

....

% chain rule

grad_con(20+i,1:10) = (d_mu_d_y.*(ind == i)’+...

grad_phi(i,ind)’.*d_mu_d_phi);

grad_con(20+i,11:20) = d_mu_d_b.*(ind == i);

...

end

where sub opt is the local optimization calls

function [x_opt,f_opt,exitflag,output,lambda,loc_rig,...

err_rig,d_mu_d_y,d_mu_d_phi,d_mu_d_b] =...

...sub_opt(X_0,Y_i,Phi_i,b_i,i,N_iter,truss)

...

[x_opt,f_opt,exitflag,output,lambda] = fmincon(@(X)sub_objective(X),...

X_0,[],[],[],[],lbnd,ubnd,...

@(X)sub_constr(X,Y_i,Phi_i,b_i,i,truss),options);

...

if nargout > 5

...

if nargout > 7

...

% post optimal sensitivities

d_mu_d_y = lambda.ineqnonlin’*[grad_y_c_1;grad_y_c_2;grad_y_c_3];

...

% Post-optimal sensitivities comptutation

d_mu_d_phi = lambda.ineqnonlin’*[grad_phi_c_1;grad_phi_c_2;grad_phi_c_3];

...
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6.5 Detailed results

d_mu_d_b = lambda.ineqnonlin’*[grad_b_c_1;grad_b_c_2;grad_b_c_3];

end

end

6.5.2 Results for 10 bar truss

The main important result from this numerical experiments is that QSD converges

to the same optimum as AIO for all load cases. We used in a first time all the

same starting points as the ones previously used for alternating optimizations imple-

mentation. The typical behavior of QSD versus AIO is depicted Fig. 6.7 and 6.8.
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Figure 6.7: Comparison of AIO optimization and proposed decomposition on load case 1

1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5 AIO history log

Iteration

F
un

ct
io

n 
va

lu
e

 

 

AIO optimization
AIO optimum

1 2 3 4 5 6 7 8 9 10 11
8

8.5

9

9.5

10

10.5

11
x 10

4

Iterations

W
ei

gh
t(

kg
)

Convergence of the quasi−separable decomposition for load case 1

 

 

qs decomposition convergence
AIO optimum

Figure 6.8: Comparison of AIO optimization and QSD on load case 2
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To validate this behavior with many more optimizations, we extended our numerical

experiments through a collaboration with NLR in the framework of the MAAXIMUS

project (see the corresponding section Collaborations & Publications), we com-

pared the AIO optimization and our adaptation of QSD optimization on the 10 bar

truss

• For 21 different starting points randomly generated in R30

• For the 40 load cases

• Both configurations : isostatic (ρ1 = ρ2) and hyperstatic (ρ1 = 100ρ2)

Resulting in 1680 optimizations for which we compared the number of FEA’s and overall

optimizations iterations (global cycle optimizer) before convergence. AIO converged

for 1634 cases while QSD for 1574 cases. For the optimizations that did converge,

each time the optimum was the same as the AIO one, over the cases that both converged,

we had

• For AIO, on average : 171 FEA’s (including sensitivities computations)

and 64 global cycle iterations

• For QSD, on average : 170 FEA’s (including sensitivities computations)

and 51 global cycle iterations

Fig. 6.9, 6.10, 6.11 shows the comparison between AIO and QSD for the first three

load cases, for each load case, we depict the total number of finite elements call (stiffness

assembly plus resolution of linear system), we distinguish the calls for simple constraints

evaluation from the calls for sensitivities evaluations. The same way we compare the

number of global iterations before convergence. Note that a feature of the SQP imple-

mentation is that it often calls several times the objective and constraint functions per

optimization iteration. While others algorithms, like CONLIN for instance, call once

the functions per iteration.

6.6 Towards a real aircraft structure

We saw that the alternating optimizations implementation failed to attain the real

optimum, while the real bilevel implementation of QSD allows to find the same
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Figure 6.9: Comparison of AIO and QSD: load case 1
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Figure 6.10: Comparison of AIO and QSD: load case 2

optimum as the monolevel methods. Based on this promising result we turn now

to the application of QSD to real aircraft structure based on most the material we have

presented so far.
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Figure 6.11: Comparison of AIO and QSD: load case 3
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7 Application to MAAXIMUS panel

In this section, we describe the implementation of the QSD scheme that we previ-

ously described to a realistic aircraft structure, namely a panel of 6× 8 composite pan-

els reinforced by Ω−shaped stringers, this test case comes from the European research

project MAAXIMUS (More Affordable Aircraft through eXtended, Integrated and Ma-

ture nUmerical Sizing) and then will be denoted the MAAXIMUS panel. We start with

some specific applications to take into account the stacking sequences. In particular,

we describe the construction of surrogate models of Airbus in-house buckling code for

varying stacking sequences based on lamination parameters. The set of feasible stack-

ing sequences for manufacturability constraints is briefly described in connection to the

construction of approximation models of buckling constraints. We then turn on the im-

plementation and gives some details about the different tools used (MSC.Nastran, Boss

Quattro).

7.1 Surrogate models of buckling constraints

We very briefly describe here adaptation to IMAGE that were done in order to take

into account the mixed variables we naturally encounter when dealing with laminated

composite design and optimization. With very few modification, EM clustering works

exactly the same for mixed variables resulting in a globally continuous model over

discrete value.

7.1.1 Use of IMAGE for mixed variables for surrogate over lamination

parameters

The idea of this extension is simply to add a small perturbation over the discrete

values. Say we have x = [x1, . . . , xd] where there is a discrete dimension say x1. If

we run IMAGE, the EM algorithm will not manage to find clusters, essentially there

229



7. APPLICATION TO MAAXIMUS PANEL

will be a dimension (discrete one) which does not vary. This leads to a very high

ill-conditioning of the variance matrix of the associated cluster. In geometric terms,

the ellipsoid become degenerate since one eigenvalue vanishes. We simply add a small

perturbation ε over the diagonal of the variance-covariance matrix Γ = Γ + εId. A

rule of thumb that we carried out was to select ε such that ε = ∆xi/100 where ∆xi
is the average step between successive discrete values of xi. In the case when xi is the

laminate thickness for instance, ∆xi = tply the elementary ply thickness.

7.1.2 Early results

We applied this modified IMAGE technique to build a surrogate model simply over

lamination parameters coming from feasible stacking sequence and we also evaluate

this surrogate over a test basis made of feasible stacking sequences.

In the first case, we used the Rayleigh-Ritz computations of the skin buckling of a

laminate panel where only out-of-plane stiffness tensors appear. In that case, the

dimension of regression was 4 : (h, ξD1 , ξ
D
2 , ξ

D
3 ) note that only h is discrete in that re-

gression. The learning basis was made of 3, 200 points coming from feasible stacking

sequences of number of plies ranging from 8 to 32.
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In the second case, we used the same simple Rayleigh-Ritz computation of the skin

buckling but for a stringer reinforced panel. Dimensions and stacking sequence of the

stringer were fixed, and we considered internal load redistribution to make in-plane

stiffness tensor appear in the expression. In that case, the dimension of regression was

6 : (h, ξA1 , ξ
A
2 , ξ

D
1 , ξ

D
2 , ξ

D
3 ) note that in that case h, ξA1 , ξ

A
2 are discrete in that regression.

The learning basis was made of 5, 400 points coming from feasible stacking sequences

of number of plies ranging from 8 to 32.
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Figure 7.3: Results

7.1.3 Airbus stability tool: COFUS

COFUS is a former stability in-house code at Airbus. It was aimed at computing stability

critical reserve factor for curved stiffened panels. More precisely, it analyses
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7.2 Practical implementation

• Maximum deformation

• Buckling of skins, stringer, local web of stringer

• Global buckling of the whole cross-section

• Post-buckling

• Damage Tolerance

Different types of buckling are studied including skin buckling, stringer buckling (crip-

pling), Euler buckling of the assembly (or global buckling), general buckling of the

assembly of several super-stringers. However for MAAXIMUS test case we decided

to froze stringer geometric dimensions and stringer web and cap stacking sequences

(these two stacking can be different). This was aimed at reducing the complexity of

the function. However, these fixed variables were based on previous optimizations were

all variables were free with fixed internal loads. However it is worth noting that in our

case even though the stringer variables were fixed, the local stringer varies still varies,

since the thickness and stacking of skins and forces vary, changing the redistribution of

forces at super-stringer (stiffening ratio hypothesis).

7.2 Practical implementation

A whole QSD implementation of MAAXIMUS panel implied

• An upper level optimizer that needs to be linked to a FEA (and sensitivity of

FEA) tool. We took standard Boss Quattro optimization engine (GCM algorithm

was chosen Globally Convergent Method)

• A FEA and sensitivity FEA tool. We chose MSC.Nastran and built a SOL200

(Optimization and sensitivity analysis solution of Nastran) session for the MAAX-

IMUS panel. We used classical Nastran cards MAT2 to connect lamination param-

eters defined as DESVAR. Indeed, we created a link between G the normalized A

tensor (G = A
h ) defined over lp’s (or equivalently proportions).

• A lower level optimization that could give the post-optimal sensitivities of the

local optimizations. In terms of IT architecture, this means that the local opti-

mization should be seen by the upper level as an external task; However at the
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7. APPLICATION TO MAAXIMUS PANEL

time of this implementation. Boss Quattro could not handle this since an opti-

mization was different from an external task. Which means we had to implement

the local optimization as a real external task that could not be done with Boss

Quattro. For efficiency reasons, we chose fmincon optimizer of Matlab

The general framework is given in the following slides. However, it is worth noting that

the trickiest part was not in the definition of tasks separately where a good knowledge

of each tool was sufficient to handle each task (FEM, optimization,...) but in the

connection between different tasks. Indeed, we had to tackle the following issues

• SOL200 driver: to link the SOL200 FEA and sensitivity analysis, we had to

write our own fit-to-purpose driver to Boss Quattro. One of the issue was about

collecting the sensitivities terms and to write them in an appropriate format

for Boss Quattro. This was done through a Shell script. However, it should be

noted, there does exist a SOL200 driver in Boss Quattro but at the time when this

implementation, the documentation was not clear about the different limitations

(in terms of number of load cases for instance).

• Local optimizations external tasks: as explained before, we had to use the external

task capability of Boss Quattro to link the different local optimizations. This was

done USERtask files. We also had to write the sensitivities of the optimizations

in the correct format for Boss Quattro.

• Chain ruling: despite the relative complexity of that test case, chain ruling sensi-

tivity computation dµ?i
dYj

were more simple to do that in the ten bar truss test-case.

Indeed, we used the Chain ruling option from the optimization engine of Boss

Quattro and this was automatically done.
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7.3 Post-identification

Once the upper level optimization is done, we have continuous variables for thicknesses

and lamination parameters. We need to go back to discrete stacking sequence. To do

we simply minimize the Euclidean distance between feasible stacking sequences and

their continuous values

min
SS∈set of feasible SS

|h(SS)− h?|
∑
i=1

|ξi(SS)− ξi?| (7.1)

However, to get consistent internal load redistribution, we did this post-identification

in five steps

1. First round off thicknesses and in-plane lamination parameters (or equiv-

alently proportions) to get all the discrete upper level Y variables. Based on these

stiffness variables values, we reran static analysis to get the correct internal loads

redistribution

2. Based, on these stiffness variables values and internal loads, we reran local opti-

mizations to get the optimal out-of-plane lamination parameters (still continuous)

3. Identify amongst the stacking of given thickness and proportions the one(s) that

give the closest out-of-plane lamination parameters.

4. Check whether the panel is still feasible with respect to buckling constraints

computed with real COFUS code

the obvious drawbacks of that approach is that it might give a good set of stacking

that minimizes the weight, however there is no guarantee that

• it gives the optimal one w.r.t to stability and strains constraints

• it gives blended stacking sequences

7.4 Detailed results on MAAXIMUS panel

Detailed results are given in the following pages. The main important result is that we

found the same optimum than AIO. We found out an optimal weight of 26.9 kg

with the QSD at the 4th iteration and the same AIO session gave an optimal weight of
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26.9 kg at the 7th iteration. Since we used GCM algorithm, the number of finite elements

calls is exactly the same as the number of iterations.
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7.5 Conclusion and ways forward

We saw that we could derive a bilevel optimization scheme that gives the optimal weight

for the simple test-case. As we saw it in the former chapter, as opposed to other de-

composition/bilevel schemes that were implemented as alternating optimizations, this

QSD scheme was found to be give the optimal weight for all loading cases, for most

starting points with less FEA calls and less global cycles iterations than a monolevel

scheme (AIO).

Based on the specific composite considerations, we were able to derive this scheme

for more realistic structures including the MAAXIMUS panel test case. It has the

following features

• Allows to decompose the global problem into several local optimiza-

tions that can be solved in parallel.

• The composite representation adopted allows to integrate surrogate

models of buckling constraints.

• It gives a lower bound of the weight, the optimal weight found by ap-

plying QSD is indeed the best conceptual design (continuous variables)

• However this weight will always be less than the one found by rounding

off the thicknesses and proportions.

• There is no guarantee that the rounding-off process would give blended

stacking sequences. However, we saw that in the MAAXIMUS test

case, we saw that it naturally gives a table.

Ways forward

• Apply this decomposition scheme to more complex structures: barrel

• One improvement would be to allow the lower level to give directly

stacking sequences instead of continuous lp’s, through the use for in-

stance of a continuous optimization that converge to discrete values

(applying for instance ideas of topology optimization over angles den-

sities)
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• Find a way to enforce the continuity constraints or find a heuristic that

allows to find an optimal set of blended stacking sequences based on

the continuous variables values.
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Conclusion & Perspectives

We have presented a formal problem that naturally arises in the structural optimiza-

tion for large-scale composites structures of aircraft. The analysis of the problem shown

that decomposition and more specifically bilevel optimization schemes could help

treat this kind of problem. The natural decomposition of such problems was mostly

based on the physics of the problems both from the natural decomposition of

the global structure into sub-structural elements and also from the differ-

ent levels of analysis of the mechanical behavior used in the aerospace industry

and more especially at Airbus. The main innovations lied in first the type of

decomposition and then bilevel scheme to use, then in the adaptation of the

composite representation needed and also on the approximation of buckling

constraints that features discontinuities.

The analysis of the problem lied essentially in the three first chapters. We started

with the formal description of the optimization problem and enforced the needs for

a decomposition scheme and then a bilevel optimization formulation that matches the

process of sizing used at Airbus. One important feature of the bilevel scheme we pointed

out was that it should feature membrane mechanical behavior of the whole structure

only at the upper level of optimization. This way the analysis of the whole structure,

performed by the Finite Element Method is only performed at global level of optimiza-

tion. The second level should feature only stability analyses. After presenting formally

the problem, we then emphasized the need for fast stability analysis to perform local

optimizations and then enforced the need for surrogate models of buckling constraints.

In the second chapter, basics of differentiable optimization are recalled to highlight

two important facts. First we presented a quite rigorous framework to differentiate

implicit functions defined through local optimizations. This was referred to as the
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post-optimal sensitivity. After presenting these classical results, we gave an original

application of these results that allows us to differentiate eigenvalue problem

(and buckling is typically such as problem). If the formula for eigenvalue sensitivity

were not new the way we obtain them was original. This chapter also illustrated the

equivalence of the monolevel formulations, from the original problem, denoted as AIO,

we introduce the classical block-angular formulation by using stiffness variables as op-

timization variables. The real coupling between sub-elements was treated as equality

constraints. These equality constraints were then relaxed by inexact quadratic penalty,

leading to three different instances of the original problems. The different multilevel

formulations were then introduced in this framework as natural decomposition of each

of this instance.

We turned to real composite representation in the third chapter. We introduced the

practical composite representation that we adopted in this work, namely the lamina-

tion parameters and investigate the dependence of the buckling with respect

to these variables. Besides from the buckling dependence over lamination parame-

ters, this representation appeared to be well adapted to our bilevel needs since

it offers a natural decomposition between in-plane behavior (that feeds the

FEA at upper level) and out-of-plane behavior (that feeds buckling analysis

of lower level). Two important aspects are then shown, first buckling critical load

factor (or Reserve Factor) is shown to be concave over bending lamination param-

eters. Then the very nature of the buckling constraints over lamination parameters

and also over loadings was investigated. The buckling critical load was shown to be-

have in a piecewise continuous manner. An appropriate approximation strategy

(or surrogate models construction) should take this into account.

On the basis of the observed behavior of buckling constraints, that is piecewise dif-

ferentiable, an original and innovative strategy to take this feature into account was

presented in Chapter 4. This strategy allows to divide the input space into regions

where the functions are expected to behave more regularly. This strategy uses tools

from unsupervised statistical learning from clustering to probability density

estimation. Our strategy does rely on first density estimation performed through EM

algorithm and then to clustering and local approximation models constructions. These
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local approximation models are called experts and the whole strategy is an instance of

mixture of experts. This strategy led to an algorithm called IMAGE that we tested

and validated over the piecewise differentiable examples that are buckling constraints.

This comparison shows a very good accuracy of the approximation when compared

to a classical global surrogate model. This strategy seems then appropriate to

be used within an optimization process to approximate buckling constraints.

The fifth chapter illustrated the monolevel instances of our optimization problem. We

first presented a classical test case that gathers most of the difficulties of our initial

problem: the 10 bar truss. However we can still handle this problem for it has a reason-

able size. Analytical sensitivities computations were recalled since they are a valuable

tool in structural optimization and they were also chained with post-optimal sen-

sitivities. The different monolevel schemes were presented in the realm of

our test case. Numerical experiments shown that the block-angular transform

algorithms, denoted in this chapter SAND2 and SAND3 because of their

similarity to the SAND formulation, performed quite well and were a numer-

ical evidence for introducing stiffness variables as optimization variables.

The sixth chapter decomposed the monolevel formulation introduced in the former

chapters. Different classical schemes are tested over the 10 bar truss test case. We gave

insight intro differences of implementations, indeed bilevel formulation may be solved

either as alternating optimizations (sequences of successive optimizations) or as a real

bilevel optimization scheme. This resulted in a more sophisticated implementa-

tion which was presented in detail. On the basis of theoretical properties, we chose

to implement the Quasi separable subsystem Decomposition as a real bilevel

optimization. We adapted the QSD scheme to allow equality constraints through

inexact quadratic penalty. In particular, post-optimal sensitivities were required to get

to a tractable upper level optimization. Results on the 10 bar truss shown first that

the optimum was the same as the AIO and the number of global iterations

and finite elements calls was slightly less than AIO.

Finally in the seventh chapter most of the material presented in former chapters is

used to solve a real aircraft structure optimization problem, namely a panel
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made of 6× 8 composite super-stiffeners. The QSD scheme was adapted for lam-

ination parameters at both level, the local buckling constraints computed from

an Airbus stability tool were approximated through the original approximation

method presented in the fourth chapter. These approximations were used at the

local optimization level and post-optimal sensitivities were retrieved from the local op-

timums and chained at upper level with internal loads sensitivities computed through

a FEA solver. The implementation together with results were given, the same opti-

mum was found than the AIO method. Real stacking sequences were then

derived from the continuous optimums by simple post-identification.

In definitive, we answered the original problem and find ways to improve

the process of sizing of large-scale composite structures in the aerospace

industry. This work could be carried on through the investigation of both

physics (buckling) and theoretical abstract properties arising from optimiza-

tion and probability. This investigation was indeed necessary first to un-

derstand the quite complicated problematic and to propose new innovative

strategies. This thesis has also been sprinkled with fruitful collaborations in

many different areas such as comparisons of the IMAGE strategy with other

innovative methods (EADS-IW, EADS-Russia, Onera), implementation of

the IMAGE strategy in the Boss Quattro software (Samtech), composite

laminate material (Airbus-UK), comparison of the bilevel implementations

(NLR)...and many others things that are listed in the next part where we

also mention publications.

Perspectives

We derived and adapted an existing bilevel optimization scheme to solve our initial

problem. This scheme in conjunction with the new approximation method that we de-

velop allowed us to get first promising results for a real aircraft structure. How-

ever this scheme together with the approximation method need to tested and validated

on more complicated aircraft structures. This will be a first step to achieve, another

one will be to compare such a bilevel optimization not only in terms of optimization

iterations and finite elements calls but also on the basis of computer performance for a
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real parallel session, which was not implemented in this work. Indeed, the main objec-

tive of decomposition/bilevel optimizations schemes is to make the resolution scalable

and each global iteration can be largely reduced by parallel computations of both con-

straints and sensitivities. The optimal parallel architecture should have as many as

processors as sub-elements to reach a good performance.

Regarding theoretical properties of the QSD scheme, we already mentioned some of

them (as in (Haftka & Watson 2005)), one could ask whether or not we could derive

local convergence properties as for instance in (DeMiguel & Murray 2006). This would

be a very important feature, however such a convergence is not easy to reach since

one might encounter theoretical pitfalls as the optimal value function not always dif-

ferentiable. Another way of improvement would be to show that under reasonable

assumption the upper level problem over lamination parameters is convex. This work

is a first step towards this property since we investigated the local level optimization

(i.e maximization of the buckling critical load). It is worth noting that even though we

obtain some properties of convexity in simple cases, the real set of constraints for in-

stance used in the panel test case (post-buckling) damage tolerance...) would also need

investigation, in particular for their behavior over lamination parameters and forces.

As far as global approximations of discontinuous or derivative-discontinuous functions

are needed, the original strategy presented in this work could be applied to other fields

of applications: basically any numerical computations that include a critical mode over

many of them (vibrations, structural dynamics...) or any discontinuity in the response.

In very different context, one possible application would be the approximation of CFD

computations for different parameter (Mach number...) in such a case the response

might be defined by regions. Regarding the very algorithms, many improvements and

research could be achieved. First from a theoretical point of view, we have not found

out what kind of discontinuities are very likely to be detected by the clustering part.

The same way, suppose that the clustering does detect the real pieces of the functions,

this is highly dependent on the sampling, would we observe convergence of the pieces

to real pieces of the functions? In such a case, if the function to be approximated is

smooth enough over each piece, one could use RBF or MLS approximations locally,

would we get at the end a spectral convergence for piecewise analytic functions for
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instance? No specific work was done in this thesis to enhance local experts, this would

be a first step to achieve to improve the accuracy of the approximation.

The whole optimization problem and the bilevel scheme need to be modified to in-

corporate realistic continuity constraints, this is the difficult problem of blending, the

plies should satisfy continuity all over the structure or at least large parts of the struc-

ture. This complicates much more the optimization problem for there is no easy way to

insert inter-elements constraints, as already noted in (Liu et al. 2004) and (Liu 2001).

In-plane lamination parameters would possibly be a coarse and rough way to ensure at

least global continuity of the proportions at upper level optimization, such constraints

would easily be integrated. However detailed blending stacking sequences is still a

completely discrete and combinatorial problem, even though compatibility equations

between out-of-plane and in-plane could help identify blended stacking sequences on

the basis of their proportions.

Most of the innovation derived in this thesis can be applied to many different prob-

lems arising in engineering optimization. The frontier in between MDO and multilevel

formulations is quite fuzzy and most of the material we presented and improve in this

work can be applied to MDO problems.
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Collaborations & publications

Collaborations

As already mentioned, most of this work was related to the European reserach project

MAAXIMUS and more specifically the Work Package leaded by Airbus-France and

Onera. This research was mainly conducted under both supervision of Airbus-France

and Onera. Fruitful collaborations were initiated from first MAAXIMUS projects but

also from EADS and Onera internal projects, we give here a list of the most significant

collaborations of this thesis

• In the framework of MAAXIMUS Work Package 2.4 (led by Airbus-France), de-

cision was taken to compare the results of our bilevel approach (QSD)

with the results from NLR (J. Vankan) who implemented a BLISS-like

scheme. The test case was the 10 bar truss that was formally specified in the

frame of this thesis. Resulting in a quite intensive comparison whose results can

be found in the NLR deliverable of WP 2.4. Many parameters where evaluated

including the number of total FEA’s, number of global iterations,... Results can

be briefly summarized

– In average, QSD took slightly less FEA calls and global iterations

to converge than the BLISS like scheme of NLR.

– In terms of local evaluation, QSD called many more times the local

analyses (buckling) than the NLR’s scheme since NLR has implemented an

adaptive strategy for approximating local analyses. Our QSD scheme did

not feature surrogate models, hence comparison can hardly be done on

the same basis.

• In the framework of MAAXIMUS Work Package 2.3 (led by Onera), the IMAGE

software was developped and exchanged through partners. In particular, decision
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was taken to integrate in the optimization software Boss Quattro (B.

Colson) of Samtech the IMAGE algorithm. This resulted in a collaboration

with Samtech and an executable of the EM clustering was integrated on top of

the surrogate models capability of Boss Quattro (we represented this integration

Fig 7.9)

• In the EADS framework decision was taken to evaluate the capability of IMAGE

as a prediction tool. Several comparisons over many test cases ranging from

simple analytic test cases to the most recent Airbus stability tools were ran by

EADS-IW. In particular, surrogate models of the current Airbus stability tool

were constructed using IMAGE and MACROS solution for surrogate modeling

and optimization, developed by DATADVANCE company, and accuracies of these

surrogate models were compared. This was a challenging test case for the regres-

sion was in dimension 20, leading to very large databases (more than 200, 000

points). It turned out that MACROS results are more accurate (the error of

MACROS is two times lower) but IMAGE results are also satisfactory.”

• In the Onera framework, the IMAGE algorithm was also tested over buck-

ling critical factors approximation obtained through Detailed Finite

Elements Methods (non linear FEM with Samcef code). These buckling

computations came from the Department of Mechanics of Composite Structures

(DMSC). In the framework of the Airbus/Onera project Artemis, IMAGE was

applied to aerodynamic numerical simulation results (Applied Aerody-

namics Department DAAP) because of the apparent piecewise behavior of

the aerodynamic response to approximate (CD drag coefficient) with respect to

flight cases parameters.

• In the Airbus framework, IMAGE was applied in an operational context

to approximate some stability computations for the A-350(-1000). This

was also the occasion to collaborate with Airbus-Spain.

• Finally, IMAGE was applied to approximate modal displacements in

structural dynamics with the Department of Structural Mechanics of

ISAE-Sup’Aéro (J.Morlier). Recent collaboration also led to other approxi-

mation strategies including compressed sensing.
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Figure 7.9: Integration of IMAGE into Boss Quattro

• This has also been the occasion for the author to supervise four trainees at

Airbus and ISAE-Sup’Aéro.

Publications

Book chapter

• On ensemble learning through mixtures probability densities estima-

tion : from EM learning to memory based methods, D. Bettebghor, M.

Samuelides, to appear in Recent advances in dynamics and control of neural net-
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works, Cambridge Scientific Publishers, UK.

Articles

• Surrogate modelling approximation using a mixture of experts based

on EM joint estimation, D. Bettebghor, N. Bartoli, S. Grihon, J. Morlier,

M. Samuelides, Structural and Multidisciplinary Optimization, 43, 2, 243–259,

Springer, 2011.

• Approximation of buckling critical factor for composite panels, D. Bette-

bghor, N. Bartoli, Structural and Multidisciplinary Optimization, 46, 4, 561-584,

Springer, 2011

• Large-scale optimization of composites structures through Quasi Sep-

arable Decomposition bilevel scheme, D. Bettebghor, S. Grihon, to be sub-

mitted

Research projects deliverables and technical reports

• Utilisation de IMAGE et mise en place d’un processus itératif D. Bet-

tebghor, N. Bartoli, Onera Technical Report, 2012.

• Embed surrogate models for multilevel optimization for composite

fuselage barrel, D. Bettebghor, N. Bartoli, M. Samuelides, Onera MAAXIMUS

Deliverable WP 2.4.9, 2011.

• Specification of IMAGE (Improving Metamodelling Approximation

through Gaussian Experts) : application to the approximation of buck-

ling analysis, D. Bettebghor, Airbus Technical Report, 2010.

• Review of metamodeling strategies for structural analysis and opti-

mization : application to composite stiffened panels optimization, D.

Bettebghor, N. Bartoli, M. Samuelides, Onera MAAXIMUS Deliverable WP 2.3.9,

2010.

• Review of global and multilevel strategies for large-scale structural

optimization : towards composite fuselage optimization, D. Bettebghor,

Airbus Technical Report, 2009.
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International peer-reviewed conferences

• Comparison of methods for approximation of stability constraints for

composite structures, S. Alestra, D. Bettebghor, E. Burnaev, S. Grihon, P.

Prikhodko, DYNACOMP 2012 1st International Conference on Composite Struc-

ture Dynamics, May 2012, Arcachon, France.

• Compressed sensing applied to modal analysis and modeshapes recon-

struction, J. Morlier, D. Bettebghor, IMAC XXX A Conference and Exposi-

tion on Structural Dynamics, Society for Experimental Mechanics, January 2012,

Jacksonville, U.S.A.

• Surrogate-based bilevel optimization for laminated composite stiffened

panels, D. Bettebghor, S. Grihon, 2nd Int. Conf. Engineering Optimization,

Lisbonne, 6-9 Sept. 2010.

• Using Mixture of Experts Surrogate Models and EM learning for mul-

tilevel structural optimization, D. Bettebghor, N. Bartoli, S. Grihon, A. Mer-

val, J. Morlier, M. Samuelides, ECCM 2010 IV European Conference on Compu-

tational Mechanics, Paris, 16-21 May 2010.

• Numerical optimisation of advanced composite structures, D. Bette-

bghor, S. Grihon, ECCM 2010 IV European Conference on Computational Me-

chanics, Paris, 16-21 May 2010

French national peer-reviewed conferences

• Enhancing approximation of critical buckling factor for laminated com-

posites, D. Bettebghor, M. Samuelides, N. Bartoli, 12th Onera-DLR Aerospace

Symposium, June 2012, Braunschweig, Germany

• Optimisation biniveau de structures aéronautiques composites, D. Bet-

tebghor Journée Scientifique de l’Onera - Optimisation multidisciplinaire, Janvier

2012, Palaiseau

• Applications des mélanges d’experts á l’approximation de calculs de

stabilités pour les composites, D. Bettebghor, N. Bartoli, Journée Scientifique

de l’Onera - Modèles de substitution, Janvier 2012, Palaiseau
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• Approche en paramètres de stratification pour l’optimisation biniveau

de structures composites, D. Bettebghor, S. Grihon, N. Bartoli, J. Morlier,

10 ème colloque national en calcul de structures, Mai 2011, Giens

• Optimisation multiniveau de structures aéronautiques, D. Bettebghor, M.

Samuelides, S. Grihon, J. Morlier, A. Merval, 9 ème colloque national en calcul

de structures, Mai 2009, Giens

• Conception optimale : outils d’aide au dimensionnement et au diag-

nostic de structures aéronautiques, J. Morlier, D. Bettebghor, Journee 3AF

: Conception robuste des structures par la simulation, Airbus France, Novembre

2009, Toulouse.
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A More on optimization and numerical

approximation

A.1 Quasiconcave functions and homogeneous functions

We recall here some basic definitions and properties of quasiconcave functions and

homogeneous functions. In particular, we also give the Euler identity formula for ho-

mogeneous functions. Let f : V 7→ R defined over a convex subset V of a vector space,

f is quasiconcave if

∀x, y ∈ V ∀θ ∈ (0, 1)f(θx+ (1− θ)y) > min(f(x), f(y)) (A.1)

or equivalently, a quasiconcave function can be defined in terms of upper level sets

Sα = {x ∈ V |f(x) > α} that is, f is quasiconcave if for any α ∈ R, Sα is a convex

set. This is the definition we used in this article. Quasiconcavity (and quasiconvexity)

are a generalization of the well known concavity, a concave function is quasiconcave.

Quasiconcave functions often appear in economics (e.g Cobb-Douglas function), game

theory and optimization. These are assumptions for the minmax theorem.

Let f : U 7→ V a function defined a vector space U that maps to another vector

space V . f is said to be positive homogeneous of degree α whenever

∀x ∈ U ∀κ ∈ R+ f(κx) = καf(x) (A.2)

Linear functions are homogeneous functions of degree 1, the determinant function over

n × n matrices is homogeneous of degree n. One important feature of homogeneous

functions whenever they are continuously differentiable is that they admit the Euler

identity characterization. f : Rn 7→ R is a positive homogeneous functions if and only

if

∀x ∈ Rn
n∑
i=1

xi
∂f

∂xi
= αf(x) (A.3)

261
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To obtain (A.3), we simply differentiate (A.2) at κx with respect to κ to get

n∑
i=1

xi
∂f(κx)
∂xi

= ακα−1f(x). (A.4)

It is worth noting that, if F is homogeneous of degree α and continuously differentiable,

then its derivative is homogeneous of degree α−1. We end up with the following useful

property, whose proof together with a lot of results and examples on quasiconcave and

homogeneous functions can be found in (Simon & Blume 1994). Let f be a homoge-

neous function of degree 1 and quasiconcave then f is concave.

A.2 Rayleigh-Ritz approximation for buckling and sensitivity

analysis

We briefly recall here the Rayleigh-Ritz method for buckling computations. Note that,

Rayleigh-Ritz methods are also widely used in structural dynamics, vibrations, quan-

tum chemistry,... The main idea is to write the solution of a partial differential equation

system or eigenproblem as a linear combination of test functions. Unlike finite element

methods, the test functions are defined over the whole domain and satisfy boundary

conditions. These basis functions are usually based on a closed-form solutions of a close

unperturbed problem. This means that Rayleigh-Ritz methods are used when solving a

pde or eigenproblem close in some sense (simple geometry, simple differential operator)

to a simple one and are not as general as finite element methods. They are also close

to spectral methods in the sense the test functions are defined over the whole domain

and their convergence properties are usually quite good whenever the problem remains

close to an original simple problem. In addition to that, as in spectral methods, the

discretization step lead to dense matrices and high accuracy can be achieved with much

less degrees of freedom than in finite elements methods.

Consider the following Sturm-Liouville problem under its variational form: find λ ∈ R
and u ∈ V− 0 such that

a(u, u)− λb(u, u) = 0 (A.5)

with prescribed boundary conditions (e.g u = 0 on the boundary of the domain),

with a and b being bilinear symmetric forms defined over V, for sake of simplicity we
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A.2 Rayleigh-Ritz approximation for buckling and sensitivity analysis

will assume that they are both coercive and restrict ourselves to eigenproblems. The

minmax theorem (or variational characterization) for eigenvalues are local minima of

the Rayleigh ratio

R(u) =
a(u, u)
b(u, u)

(A.6)

To ensure unicity of eigenmodes it is convenient to add a normalization condition1 over

u (see (Haftka & Gurdal 1992), e.g b(u, u) = 1, ||b||∞ = 1. Let’s take b(u, u) = 1. The

process of computing eigenvalues and eigenmodes of (A.5) boils down to solving the

following problem:
minu∈V R(u)
s.t b(u, u) = 1

(A.7)

Instead of solving Problem (A.7), we solve it over a finite-dimensional space VN . Con-

sider (u1, . . . , uN ) the basis of VN ∈ V and let’s denote for v ∈ Vh

v(x, c) =
N∑
i=1

ciui(x) (A.8)

where c ∈ RN , and we can write finite-dimensional approximation of a and b

a(v, v) = aN (c) =
N∑

i,j=1

aijcicj (A.9)

with

aij = a(ui, uj) (A.10)

and

b(v, v) = bN (c) =
N∑

i,j=1

bijcicj (A.11)

with

bij = b(ui, uj) (A.12)

and denote byA andB the (symmetric positive definite) matrices of elements (aij)16i,j6N

and (bij)16i,j6N . We can write the KKT optimality conditions of Problem (A.7) over

RN

minc∈RN |bN (c)=1 aN (c) (A.13)

1This is indeed necessary to ensure unicity of the eigenmodes, since they are defined up to a

multiplicative constant. This is even more critical when we are to compute the derivative of the

eigenmodes
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and so c ∈ Rn a local minimum of Problem (A.13) necessary satisfies the following

conditions (and any point satisfying this is also a local minim since aN and bN are

convex)
1
2
∇an(c)− λ∇bN (c) = (A− λB)c = 0 (A.14)

with

bN (c) = ctBc = 1 (A.15)

And the linear equation defined Eq. (A.14) has a nontrivial solution if and only if

det(A− λB) = 0 (A.16)

that the Lagrange multiplier λ is an eigenvalue of A relatively to B.

To make this method more clear, let’s take the example of composite plate buckling. As

outlined in this paper, for simple geometry like plate, there exists closed-form solution

whenever the laminate is orthotropic and the loading is biaxial. In that case, buckling

equation boils down to

D11
∂4w

∂x4
+D22

∂4w

∂y4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
=

Nx
∂2w

∂x2
+Ny

∂2w

∂y2
(A.17)

Closed form solution of Eq. (A.17) are obtained considering the following test func-

tions

wij(x, y) = sin(iπ/x) sin(jπ/y) (A.18)

and writing Eq. (A.17) we obtain the corresponding eigenvalues λij as defined in

Eq.(3.57). We therefore use (wij)i,j∈[1,N ] as test functions, leading to matrices A and

B of size N2 ×N2 defined as

A(i−1)N+j,(k−i)N+l = aD(wij , wkl) (A.19)

and

B(i−1)N+j,(k−i)N+l = bN (wij , wkl) (A.20)

and λcr is found as the smallest positive eigenvalue of A relatively to B. It is worth

noting here that when making the parameters of that buckling computation vary, there
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is no need to reassemble each time the full matrices A and B. One easy way to save

computation is to assemble elementary matrices once for all such that for instance

AD = D11A11 + . . .+D16A16 (A.21)

where Aij are matrices of size N2 ×N2 computed while performing the first analysis.

This allows to perform new computations for new values of D faster, since the assembly

becomes negligible and the main part of the computations lies in the eigensolver.

Suppose now we want to compute the sensitivity of λcr w.r.t to any design variable

x.
∂λcr
∂x

= wTcr(
∂A

∂x
+ λcr

∂B

∂x
)wcr (A.22)

with wcr the associated eigenvector whenever λcr is simple.
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B Detailed results for monolevel and

bilevel schemes for the 10 bar truss

In this appendix, we give the detailed results for all methods and for all load cases over

the ten bar truss test case.

We give the following results. For methods that gives the same optimum as AIO:

• M? is the optimum of the objective at convergence

• N iter is the number of iterations to converge

• T is the time (in seconds) of computation
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B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

B.1 AIO

(a) Node 4 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 2.5483 17 0.3921

2 1.8925 17 0.3189

3 1.5132 21 0.3642

4 1.2636 32 0.4638

5 2.4083 18 0.3143

6 1.7723 26 0.4053

7 1.4115 25 0.4090

8 1.1642 19 0.3148

9 2.2800 23 0.3424

10 1.6706 29 0.4172

11 1.3083 20 0.3536

12 1.0654 11 0.2191

13 2.1796 23 0.3314

14 1.5729 22 0.3494

15 1.2246 23 0.3631

16 0.9290 31 0.4988

17 2.0959 33 0.4618

18 1.4887 30 0.4331

19 1.1614 15 0.2487

20 0.9999 16 0.2918

Mean 22 0.36

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 24 0.4758

2 1.0368 16 0.3285

3 0.8901 30 0.5205

4 0.7921 25 0.3661

5 1.2235 29 0.4293

6 0.9794 21 0.3789

7 0.8311 24 0.3260

8 0.7300 40 0.7651

9 1.1661 38 0.5726

10 0.9167 21 0.3744

11 0.7641 25 0.4373

12 0.6682 24 0.4294

13 1.1034 19 0.4146

14 0.8490 18 0.4001

15 0.6830 28 0.4636

16 0.5682 21 0.3689

17 1.0357 27 0.4831

18 0.7370 16 0.3013

19 0.6606 61 1.0421

20 0.6078 27 0.5306

Mean 27 0.47

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 29 0.6090

2 83.9084 26 0.5368

3 67.1776 34 1.0388

4 54.9260 33 0.7966

5 108.8153 25 0.6961

6 84.0800 34 0.8526

7 67.1866 56 1.3643

8 54.8726 30 0.6247

9 112.3718 31 0.8757

10 85.5374 36 0.8693

11 67.6381 28 0.6811

12 54.9854 31 0.6922

13 115.8133 32 0.7618

14 87.5727 48 1.4087

15 68.9753 43 1.0108

16 56.4905 78 2.1126

17 118.1611 72 1.7954

18 89.1981 34 1.1239

19 70.4585 36 1.0140

20 56.2708 28 0.7547

Mean 38 0.98

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 48 1.1506

2 49.7108 38 0.9090

3 41.4366 33 0.8756

4 35.3700 21 0.4934

5 61.9194 26 0.7293

6 49.7795 31 0.8593

7 41.4344 67 1.6093

8 35.3391 31 0.6973

9 64.9241 37 0.8450

10 50.5048 33 0.7184

11 41.6223 117 2.1125

12 35.3747 44 1.1601

13 69.1238 41 0.9630

14 53.4686 36 0.7939

15 42.8165 58 1.2260

16 35.9087 39 0.8238

17 72.1353 74 1.5962

18 54.2698 48 1.1931

19 43.3478 81 1.8566

20 36.2441 35 0.7802

Mean 46 1.06

Table B.1: AIO Load case applied at node 4 and 5 case ρ1 = 100ρ2
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B.2 SAND2

B.2 SAND2

(a) Node 4

Load M? (kg) N iter T (s)

1 2.5483 24 0.3509

2 1.8925 40 0.5151

3 1.5132 29 0.7496

4 1.2636 40 0.8793

5 2.4083 22 0.3476

6 1.7723 32 0.5391

7 1.4115 28 0.5030

8 1.1642 38 1.0525

9 2.2800 26 0.3835

10 1.6706 50 1.0137

11 1.3083 27 0.6198

12 1.0654 36 0.8988

13 2.1796 34 0.6471

14 1.5729 37 0.8665

15 1.1967 29 0.5995

16 0.9290 31 0.6583

17 2.0959 34 0.5060

18 1.4887 53 0.9033

19 1.1614 24 0.5051

20 0.9999 23 0.4075

Mean 32 0.64

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 21 0.4467

2 1.0368 26 0.4451

3 0.8901 30 0.5175

4 0.7921 52 0.9753

5 1.2235 26 0.5101

6 0.9794 32 0.6206

7 0.8311 28 0.5616

8 0.7300 56 0.9329

9 1.1661 26 0.5709

10 0.9167 27 0.5884

11 0.7641 38 0.8274

12 0.6624 29 0.5780

13 1.1034 26 0.4236

14 0.8490 35 0.4815

15 0.6830 29 0.5411

16 0.5503 33 0.9868

17 1.0357 28 0.6075

18 0.7370 22 0.7213

19 0.6436 19 0.6195

20 0.6063 24 0.6390

Mean 30 0.62

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 30 0.5609

2 83.9084 34 0.5992

3 67.1776 30 0.5552

4 54.9260 28 0.6974

5 108.8153 27 0.5272

6 84.0800 24 0.3770

7 67.1866 22 0.4422

8 54.8726 21 0.4733

9 112.3718 34 0.5263

10 85.5374 37 0.5535

11 67.6381 30 0.5284

12 54.9854 27 0.4614

13 115.8133 36 0.5847

14 87.5727 36 0.6050

15 68.9753 37 0.5375

16 55.7383 21 0.4099

17 118.1611 40 0.5902

18 89.1981 40 0.6395

19 70.4395 37 0.4206

20 56.6674 27 0.4303

Mean 30 0.52

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 44 1.2314

2 49.7108 32 0.6404

3 41.4366 35 0.8103

4 35.3700 52 1.3719

5 61.9194 23 0.6647

6 49.7795 33 0.6804

7 41.4344 82 1.8426

8 35.3391 101 2.3263

9 64.9241 55 1.3356

10 50.5048 31 0.9265

11 41.6223 47 1.3052

12 35.3747 72 2.1568

13 69.1238 56 1.1381

14 53.4686 53 1.3098

15 42.8165 35 0.6882

16 35.9087 30 0.6396

17 72.1353 46 0.9084

18 54.2698 41 1.1469

19 43.3478 56 1.4749

20 36.2441 40 1.0091

Mean 48 1.14

Table B.2: SAND2 Load case at node 4 and 5
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B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

B.3 SAND3

(a) Node 4 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 2.5483 45 0.8626

2 1.8925 25 0.4573

3 1.5132 26 0.5350

4 1.2636 40 0.7150

5 2.4083 24 0.4030

6 1.7723 33 0.5829

7 1.4115 29 0.5656

8 1.1642 23 0.4437

9 2.2800 36 0.6640

10 1.6706 35 0.6342

11 1.3083 24 0.5535

12 1.0654 22 0.4247

13 2.1796 29 0.5649

14 1.5729 30 0.6153

15 1.1967 29 0.5454

16 0.9290 28 0.4810

17 2.0959 29 0.5088

18 1.4887 42 0.7935

19 1.1614 20 0.4269

20 0.9999 27 0.4638

Mean 30 0.56

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 17 0.3972

2 1.0368 28 0.4593

3 0.8901 32 0.5349

4 0.7921 39 0.5597

5 1.2235 23 0.5295

6 0.9794 32 0.4035

7 0.8311 31 0.4852

8 0.7300 33 0.5157

9 1.1661 37 0.6764

10 0.9167 27 0.5634

11 0.7641 26 0.4817

12 0.6624 33 0.6346

13 1.1034 31 0.6560

14 0.8490 24 0.4343

15 0.6830 52 0.8862

16 0.5503 42 0.9944

17 1.0357 42 0.8428

18 0.7370 27 0.6906

19 0.6436 15 0.4246

20 0.6063 16 0.4754

Mean 30 0.58

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 31 0.5424

2 83.9084 28 0.4371

3 67.1776 25 0.4326

4 54.9260 25 0.5094

5 108.8153 32 0.5277

6 84.0800 23 0.3974

7 67.1866 27 0.3653

8 54.8726 26 0.4843

9 112.3718 39 0.7221

10 85.5374 44 0.5232

11 67.6381 28 0.3972

12 54.9854 21 0.4093

13 115.8133 35 0.3855

14 87.5727 40 0.6162

15 68.9753 41 0.6254

16 55.7383 27 0.3531

17 118.1611 54 1.0180

18 89.1981 43 0.6088

19 70.4395 43 0.5984

20 56.6674 51 0.6046

Mean 34 0.53

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 36 0.7296

2 49.7108 40 0.7949

3 41.4366 32 0.6307

4 35.3700 49 1.3436

5 61.9194 48 1.1839

6 49.7795 33 0.7171

7 41.4344 29 0.8028

8 35.3391 41 1.1493

9 64.9241 42 1.0099

10 50.5048 37 0.9126

11 41.6223 39 0.7543

12 35.3747 32 0.6977

13 69.1238 49 0.8926

14 53.4686 40 0.7526

15 42.8165 33 1.0303

16 35.9087 20 0.4311

17 72.1353 59 1.0485

18 54.2698 36 0.6377

19 43.3478 42 0.7307

20 36.2441 27 0.4833

Mean 38 0.83

Table B.3: SAND3 Load case at node 4 and 5
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B.4 STIFAIO

B.4 STIFAIO

(a) Node 4 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 2.5483 12 0.6560

2 1.8925 10 0.8357

3 1.5132 15 0.7622

4 1.2636 14 0.7753

5 2.4083 9 0.8186

6 1.7723 12 0.8510

7 1.4115 14 0.8495

8 1.1642 10 0.7521

9 2.2800 14 0.8733

10 1.6706 10 0.8332

11 1.3083 14 0.8343

12 1.0654 10 0.7660

13 2.1796 14 0.9274

14 1.5729 13 0.8570

15 1.2246 14 0.7142

16 0.9290 15 0.7418

17 2.0959 21 0.9982

18 1.4887 16 0.7853

19 1.1614 10 0.7465

20 0.9999 6 0.6360

Mean 12.65 0.8

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 8 0.6673

2 1.0368 9 0.7178

3 0.8901 9 0.7203

4 0.7921 13 0.7972

5 1.2235 8 0.7837

6 0.9794 10 0.7559

7 0.8311 12 0.7326

8 0.7300 9 0.6885

9 1.1661 11 0.7778

10 0.9167 10 0.6844

11 0.7641 15 0.7890

12 0.6624 11 0.6798

13 1.1034 10 0.7714

14 0.8490 21 0.8028

15 0.6922 6 0.6326

16 0.5503 7 0.6056

17 1.0357 15 0.8970

18 0.7370 11 0.7442

19 0.6436 5 0.6601

20 0.6063 4 0.6189

Mean 10.2 0.72

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 22 1.0390

2 83.9084 15 0.9695

3 67.1776 15 0.8647

4 54.9260 12 0.8438

5 108.8153 20 1.1189

6 84.0800 15 1.0230

7 67.1866 14 0.9850

8 54.8726 10 0.8115

9 112.3718 33 1.4759

10 85.5374 23 1.1684

11 67.6381 16 1.0209

12 54.9854 9 0.9320

13 115.8133 40 1.8721

14 87.5727 30 1.4421

15 68.9753 24 1.1734

16 56.4905 27 0.8195

17 118.1611 28 1.4492

18 89.1981 28 1.3813

19 69.8998 16 0.9897

20 58.6315 16 0.8101

Mean 20.65 1.10

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 11 0.8040

2 49.7108 13 0.8393

3 41.4366 14 0.7244

4 35.3700 12 0.7478

5 61.9194 12 0.9475

6 49.7795 13 0.9270

7 41.4344 19 0.8484

8 35.3391 12 0.8600

9 64.9241 19 1.0344

10 50.5048 17 1.0022

11 41.6223 14 0.8526

12 35.3747 17 0.8371

13 69.1238 37 1.3270

14 53.4686 25 1.2873

15 42.8165 23 0.9318

16 37.2068 6 0.5979

17 72.1353 32 1.3062

18 54.2698 35 0.9709

19 43.9612 4 0.7238

20 36.5319 5 0.5942

Mean 17 0.90

Table B.4: STIFAIO Load case at node 4 and 5
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B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

B.5 STISAND

(a) Node 4 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 2.5483 15 0.7206

2 1.8925 18 1.0373

3 1.5132 18 1.0794

4 1.2636 13 1.7451

5 2.4083 19 1.1175

6 1.7723 21 1.1797

7 1.4115 16 1.0212

8 1.1642 20 0.9436

9 2.2800 20 0.9485

10 1.6706 23 1.3884

11 1.3083 15 1.1015

12 1.0654 12 1.0273

13 2.1796 22 1.0366

14 1.5729 22 1.0687

15 1.2246 20 0.8310

16 0.9290 20 1.2015

17 2.0959 28 1.1132

18 1.4887 27 0.9026

19 1.1614 12 1.1353

20 0.9999 7 0.6492

Mean 18.4 1.06

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 29 1.1659

2 1.0368 16 0.7998

3 0.8901 11 1.1251

4 0.7921 12 0.9201

5 1.2235 18 2.0823

6 0.9794 15 1.0274

7 0.8311 18 1.1722

8 0.7300 9 1.5634

9 1.1661 15 1.0353

10 0.9167 12 2.2093

11 0.7641 18 1.1493

12 0.6624 18 1.8567

13 1.1034 18 1.0075

14 0.8490 29 0.9933

15 0.6922 9 0.7607

16 0.5503 4 0.6590

17 1.0357 28 1.7076

18 0.7372 27 2.4184

19 0.6436 6 1.2293

20 0.6063 4 0.6223

Mean 15.8 1.27

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 39 1.1832

2 83.9084 21 1.0172

3 67.1776 18 0.8739

4 54.9260 14 0.8615

5 108.8153 36 1.3174

6 84.0800 25 1.1641

7 67.1866 14 0.9377

8 54.8726 10 0.8690

9 112.3718 38 1.1702

10 85.5374 39 1.1682

11 67.6381 47 1.5054

12 54.9854 22 1.1332

13 115.8133 43 1.3155

14 87.5727 22 0.9919

15 68.9753 30 1.0501

16 56.4905 11 1.7475

17 118.1611 37 1.3546

18 89.6012 26 1.3289

19 69.8998 26 3.1187

20 58.6315 13 1.6101

Mean 26.55 1.29

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 18 1.0574

2 49.7108 25 3.1027

3 41.4366 16 1.1184

4 35.3700 9 1.0982

5 61.9194 22 1.2026

6 49.7795 30 2.1993

7 41.4344 14 1.0765

8 35.3391 10 0.9717

9 64.9241 26 1.2925

10 50.5048 20 1.8941

11 41.6223 42 3.3185

12 35.3747 12 1.0087

13 69.1238 21 2.0392

14 53.4701 10 1.7628

15 42.8165 34 2.4533

16 37.2068 4 1.3867

17 72.1367 10 0.8427

18 54.2698 35 2.3047

19 43.9612 4 1.4380

20 36.5319 4 1.7601

Mean 18.3 1.66

Table B.5: STIFSAND Load case at node 4 and 5
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B.6 STIFSAND2

B.6 STIFSAND2

(a) Node 4 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 2.5483 17 0.4176

2 1.8925 16 0.5011

3 1.5132 20 0.6021

4 1.2636 13 0.5942

5 2.4083 17 0.5012

6 1.7723 25 0.5405

7 1.4115 16 0.7156

8 1.1642 16 0.5621

9 2.2800 22 0.5346

10 1.6706 27 0.6932

11 1.3083 21 0.7560

12 1.0654 16 0.6962

13 2.1796 22 0.6684

14 1.5729 30 0.7202

15 1.2246 13 0.4375

16 0.9290 16 1.6134

17 2.0959 27 0.6903

18 1.4887 29 0.6032

19 1.1614 10 0.5887

20 0.9999 7 0.4607

Mean 19 0.64

(b) Node 5 case ρ2 = ρ1

Load M? (kg) N iter T (s)

1 1.2911 13 0.5042

2 1.0368 17 0.7535

3 0.8901 11 0.3865

4 0.7921 15 0.4859

5 1.2235 22 0.5260

6 0.9794 20 0.4593

7 0.8311 17 0.4151

8 0.7300 10 0.4301

9 1.1661 17 0.4599

10 0.9167 12 0.4229

11 0.7641 24 0.5088

12 0.6624 16 0.4547

13 1.1034 17 1.2814

14 0.8490 21 0.8429

15 0.6922 9 0.4038

16 0.5503 4 0.3480

17 1.0357 31 0.7256

18 0.7370 20 0.4677

19 0.6436 6 0.4019

20 0.6063 4 0.3385

Mean 15.3 0.53

(c) Node 4 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 108.0930 29 0.6681

2 83.9084 21 0.5862

3 67.1776 17 0.5550

4 54.9260 14 0.6887

5 108.8153 29 0.7600

6 84.0800 19 0.6226

7 67.1866 18 0.7807

8 54.8726 10 0.5767

9 112.3718 47 1.0063

10 85.5374 28 0.6764

11 67.6381 22 0.7799

12 54.9854 13 0.6238

13 115.8133 37 0.7248

14 87.5727 23 0.6389

15 68.9753 33 0.5913

16 56.4905 11 1.3584

17 118.1611 28 0.6987

18 89.1981 37 0.8382

19 69.8998 23 0.7025

20 58.6367 13 2.0168

Mean 23.6 0.79

(d) Node 5 case ρ2 = 100ρ1

Load M? (kg) N iter T (s)

1 61.5738 19 0.5181

2 49.7108 20 0.4901

3 41.4366 15 0.4440

4 35.3700 13 0.6365

5 61.9194 18 0.8422

6 49.7795 14 0.6751

7 41.4344 13 0.5949

8 35.3391 15 0.7731

9 64.9241 17 0.7765

10 50.5051 19 1.3824

11 41.6223 15 0.5211

12 35.3747 12 0.6047

13 69.1238 23 0.9725

14 53.4701 13 1.3864

15 42.8165 34 1.4972

16 37.2069 4 1.1622

17 72.1367 9 0.5978

18 54.2698 30 0.8200

19 43.9612 4 0.3870

20 36.5319 4 2.4111

Mean 15.5 0.87

Table B.6: STIFSAND2 Load case at node 4 and 5

273



B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

B.7 StiffOpt

(a) Node 4 case ρ2 = ρ1

M? (kg) Err Iter T (s)

1 2.5498 0.06 % 30 3.09

2 1.8947 0.12 % 33 3.39

3 1.5162 0.20 % 11 1.49

4 1.2651 0.12 % 14 1.63

5 2.4098 0.06 % 29 3.25

6 1.7736 0.07 % 26 3.20

7 1.4129 0.09 % 17 2.18

8 1.1657 0.12 % 11 1.40

9 2.2816 0.07 % 31 3.72

10 1.6723 0.10 % 30 3.61

11 1.3098 0.11 % 12 1.73

12 1.0669 0.14 % 8 1.10

13 2.1811 0.07 % 26 3.20

14 1.5743 0.09 % 16 2.21

15 1.1977 0.09 % 16 1.93

16 0.9313 0.25 % 12 1.30

17 2.0975 0.07 % 26 3.41

18 1.4908 0.14 % 19 1.99

19 1.1632 0.16 % 9 1.01

20 1.0473 0.14 % 8 1.07

Mean. 0.11 % 19.2 2.23

(b) Node 5 case ρ2 = ρ1

M? (kg) Err Iter T (s)

1 1.2940 0.23 % 27 2.78

2 1.0396 0.27 % 22 2.52

3 0.8926 0.28 % 19 2.07

4 0.7951 0.38 % 5 0.60

5 1.2262 0.22 % 23 2.70

6 0.9816 0.23 % 20 2.34

7 0.8334 0.28 % 18 1.98

8 0.7325 0.34 % 14 1.44

9 1.1683 0.19 % 21 2.53

10 0.9190 0.25 % 20 2.05

11 0.7666 0.32 % 20 2.17

12 0.6649 0.38 % 12 1.31

13 1.1057 0.21 % 20 2.19

14 0.8516 0.30 % 13 1.61

15 0.6863 0.48 % 8 0.95

16 0.5539 0.65 % 6 0.65

17 1.0382 0.24 % 14 1.90

18 0.7405 0.48 % 7 0.80

19 0.6480 0.68 % 8 0.83

20 0.6514 0.43 % 9 1.10

M 0.34 % 15.3 1.73

(c) Node 4 case ρ2 = 100ρ1

M? (kg) Err Iter T (s)

1 121.71 12.59 % 30 3.24

2 90.19 7.50 % 33 3.56

3 71.13 5.90 % 16 1.93

4 57.94 5.50 % 14 1.64

5 121.56 11.72 % 29 3.42

6 90.13 7.20 % 26 3.40

7 71.09 5.81 % 17 2.22

8 57.77 5.28 % 11 1.39

9 121.36 8.0 % 31 3.84

10 90.06 5.29 % 30 3.57

11 70.86 4.78 % 12 1.72

12 57.48 4.54 % 8 1.06

13 121.54 4.94 % 26 3.37

14 90.21 3.02 % 19 2.48

15 70.52 2.25 % 16 1.96

16 56.61 0.21 % 12 1.25

17 121.82 3.10 % 26 3.48

18 90.77 1.77 % 19 2.11

19 71.14 0.98 % 9 1.04

20 57.38 4.11 % 8 1.09

M 5.22 % 19.6 2.39

(d) Node 5 case ρ2 = 100ρ1

M? (kg) Err Iter T (s)

1 72.57 17.86 % 27 2.96

2 54.02 8.67 % 22 2.69

3 43.31 4.54 % 19 2.22

4 36.25 2.51 % 5 0.65

5 72.69 17.40 % 23 2.80

6 54.93 10.36 % 20 2.43

7 44.36 7.06 % 18 2.03

8 37.29 5.52 % 14 1.45

9 73.60 13.37 % 21 2.58

10 55.97 10.83 % 20 2.10

11 45.34 8.93 % 20 2.22

12 37.95 7.28 % 12 1.38

13 74.63 7.98 % 20 2.24

14 56.61 5.89 % 13 1.62

15 45.34 5.90 % 8 0.97

16 37.37 4.08 % 6 0.67

17 75.28 4.36 % 14 1.90

18 56.40 3.93 % 3 0.47

19 44.13 1.81 % 8 0.82

20 37.94 7.16 % 8 0.96

M 7.77 % 15.05 1.76

Table B.7: STIFFOPT Load case at node 4 and 5
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B.8 Target Rigidity

B.8 Target Rigidity

(a) Node 4 case ρ2 = ρ1

Load M? Err Iter T (s)

1 2.6397 3.59 % 1 6.66

2 1.9119 1.03 % 9 20.44

3 1.5356 1.48 % 1 27.49

4 1.2854 1.73 % 1 19.89

5 2.5018 3.89 % 1 4.11

6 1.7982 1.46 % 1 21.73

7 1.4283 1.19 % 13 31.90

8 1.1909 2.29 % 1 19.88

9 2.3864 4.67 % 1 12.22

10 1.6727 0.13 % 10 25.08

11 1.3354 2.07 % 1 24.12

12 1.0920 2.50 % 1 15.31

13 2.2709 4.19 % 5 19.78

14 1.6048 2.02 % 1 24.92

15 1.2215 2.08 % 7 32.34

16 0.9602 3.36 % 1 16.50

17 2.1855 4.27 % 1 28.90

18 1.4665 1.49 % 4 24.28

19 1.1699 0.73 % 13 20.57

20 0.9855 5.77 % 10 13.78

M. 2.50 % 4.2 20.5

(b) Node 5 case ρ2 = ρ1

Load M? Err Iter T (s)

1 119.26 10.33 % 2 20.52

2 85.36 1.73 % 1 33.78

3 68.08 1.34 % 2 26.45

4 55.61 1.24 % 1 7

5 119 9.36 % 2 31.19

6 85.24 1.38 % 1 7

7 68.11 1.37 % 1 6.01

8 55.51 1.16 % 1 20.48

9 119.13 6.02 % 2 26.69

10 86.01 0.55 % 2 10.02

11 68.44 1.18 % 1 5.32

12 56.46 2.68 % 1 14.89

13 121.19 4.64 % 2 31.92

14 89.43 2.12 % 2 9.81

15 70.89 2.78 % 13 29.47

16 59.85 5.94 % 15 13.90

17 122.95 4.05 % 15 27.42

18 91.08 2.11 % 15 9.11

19 75.03 6.49 % 7 5.72

20 59.78 8.46 % 9 12.86

3.75 % 4.7 17.48

Table B.8: Target Rigidity Load case at node 4

B.9 MinMass
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B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

(a) Node 4 case ρ2 = ρ1

Load M? Err Iter T (s)

1 2.6397 3.59 % 1 7.49

2 1.9026 0.53 % 3 13.16

3 1.5055 0.50 % 5 20.62

4 1.2854 1.73 % 1 23.18

5 2.5018 3.89 % 1 3.8

6 1.7679 0.25 % 13 20.07

7 1.4361 1.74 % 1 22.59

8 1.1909 2.29 % 1 22.88

9 2.3864 4.67 % 1 4.16

10 1.6749 0.25 % 5 20.03

11 1.3354 2.07 % 1 22.67

12 1.0920 2.50 % 1 18.27

13 2.2775 4.49 % 1 20.23

14 1.6000 1.72 % 15 20.76

15 1.2302 2.80 % 1 23.76

16 0.9601 3.35 % 1 19.52

17 2.1807 4.04 % 12 23.51

18 1.4678 1.41 % 13 16.43

19 1.1943 2.83 % 1 17.29

20 0.9907 5.27 % 15 16.48

2.48 % 4.65 17.84

(b) Node 4 case ρ2 = 100ρ1

Load M? Err Iter T (s)

1 118.82 9.93 % 2 9.19

2 85.36 1.73 % 1 6.84

3 68.21 1.53 % 1 5.48

4 55.61 1.24 % 1 5.59

5 118.80 9.17 % 2 12.18

6 85.24 1.38 % 1 18.66

7 68.11 1.37 % 1 5.27

8 55.51 1.16 % 1 5.51

9 119.43 6.28 % 2 20.05

10 86.04 0.59 % 1 23.67

11 68.44 1.18 % 1 10.75

12 56.43 2.63 % 2 14.7

13 121.09 4.56 % 2 20.87

14 89.48 2.17 % 1 6.76

15 70.82 2.67 % 2 12.47

16 59.74 5.75 % 13 16.62

17 123.24 4.30 % 1 13

18 91.19 2.24 % 3 6.04

19 74.40 5.59 % 6 6.85

20 59.86 8.61 % 11 12.25

3.7 % 2.75 11.64

Table B.9: MinMass Load case at node 4
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B.10 Mix scheme

B.10 Mix scheme

(a) Node 4 case ρ2 = ρ1

Load M? Err Iter T (s)

1 2.6397 3.59 % 1 3.42

2 1.9216 1.54 % 1 17.58

3 1.5356 1.48 % 1 20.46

4 1.2854 1.73 % 1 15.97

5 2.5018 3.89 % 1 4.74

6 1.7810 0.49 % 14 20.84

7 1.4326 1.49 % 15 26.02

8 1.1909 2.29 % 1 20

9 2.3864 4.67 % 1 4.23

10 1.6924 1.30 % 13 24.08

11 1.3354 2.07 % 1 20.5

12 1.0920 2.50 % 1 18.6

13 2.2595 3.67 % 9 23.02

14 1.6048 2.02 % 1 17.78

15 1.2302 2.80 % 1 25.47

16 0.9601 3.35 % 1 16.95

17 2.1278 1.52 % 13 26.77

18 1.4489 2.67 % 13 18.86

19 1.1943 2.83 % 1 21.82

20 0.9915 5.19 % 13 19.27

M. 2.55 % 5.15 18.32

(b) Node 4 case ρ2 = 100ρ1

Load M? Err Iter T (s)

1 121.36 12.27 % 2 25.57

2 85.36 1.73 % 1 25.02

3 68.21 1.53 % 1 29.16

4 55.61 1.24 % 1 25.00

5 120.31 10.56 % 2 26.41

6 84.20 0.14 % 5 19.83

7 68.11 1.37 % 1 6.44

8 55.51 1.16 % 1 19.93

9 119.10 5.99 % 2 24.9

0 10 85.99 0.53 % 2 19.98

11 67.42 0.32 % 3 29.67

12 56.18 2.17 % 3 19.09

13 120.31 3.88 % 7 17.78

14 88.64 1.22 % 3 16.25

15 70.84 2.70 % 2 15.22

16 59.82 5.89 % 15 16.71

17 122.48 3.65 % 15 17.15

18 91.03 2.05 % 12 17.96

19 74.53 5.78 % 15 22.61

20 59.83 8.56 % 8 13.43

M. 3.64 % 5.05 20.4

Table B.10: Mix Load case at node 4
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B. DETAILED RESULTS FOR MONOLEVEL AND BILEVEL
SCHEMES FOR THE 10 BAR TRUSS

(a) Node 4 case ρ2 = ρ1

Load M? Err Iter T (s)

1 2.7840 9.25 % 7 19.02

2 1.9431 2.67 % 6 17.63

3 1.6871 11.49 % 1 18.4

0 4 1.6111 27.50 % 1 12.39

5 2.5358 5.30 % 1 22.1

0 6 1.9391 9.41 % 1 15.96

7 1.5471 9.60 % 1 21.13

8 1.4240 22.32 % 1 18.87

9 2.3958 5.08 % 1 20.65

10 1.7991 7.69 % 1 20.25

11 1.4208 8.60 % 1 24.27

12 1.3237 24.24 % 1 20.32

13 2.2558 3.50 % 3 11.21

14 1.5938 1.33 % 2 18.24

15 1.2924 8 % 1 19.94

16 0.9535 2.64 % 9 9.7

0 17 2.1941 4.68 % 1 21.34

18 1.6616 11.62 % 1 21.34

19 1.2337 6.23 % 2 14.34

20 1.0339 1.14 % 1 14.77

M. 9.11 % 2.15 18.09

(b) Node 4 case ρ2 = 100ρ1

Load M? Err Iter T (s)

1 165.41 53.03 % 9 20.78

2 98.46 17.34 % 4 23.45

3 90.72 35.04 % 4 25.86

4 58.42 6.36 % 1 24.79

5 114.32 5.06 % 10 24.02

6 107.44 27.78 % 10 24.04

7 75.43 12.27 % 3 13.15

8 58.27 6.19 % 1 22.12

9 116.12 3.34 % 6 20.94

10 108.25 26.55 % 4 28.46

11 68.43 1.17 % 9 19.57

12 59.12 7.52 % 1 12.03

13 119.10 2.84 % 3 23.70

14 112.85 28.86 % 6 21.24

15 71.32 3.40 % 1 19.32

16 64.06 13.40 % 2 15.62

17 134.31 13.67 % 3 23.32

18 99.18 11.19 % 3 11.72

19 73.17 3.85 % 1 14.52

20 65.20 18.30 % 4 15.91

M. 14.86 % 4.25 20.22

Table B.11: MaxMarge case at node 4 case ρ2 = 100ρ1
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Optimisation biniveau de structures aéronautiques composites 

 
Ce travail de thèse s’inscrit dans le domaine de l’optimisation de structures aéronautiques composites. 
On cherche à rendre possible le traitement de problèmes de dimensionnement de telles structures, 
telles que celles rencontrées dans l’industrie aéronautique. Ce type de problèmes présente deux 

aspects bloquants. En premier lieu, la taille des structures et le type de matériaux rendent le problème 
d’optimisation à la fois de très grande taille et de variables mixtes (continues, discrètes). D’autre part, 
le très grand nombre d’analyses de stabilité locale (flambage) nécessaires rend le problème 
d’optimisation très difficile à traiter en terme de coût de calculs. On cherche donc à résoudre le 
premier aspect au travers de schémas d’optimisation dits de décomposition qui permettent de 
décomposer le problème d’optimisation initial en une multitude de sous problèmes d’optimisations 
pouvant être résolus en parallèle et dont le couplage est résolu par un problème d’optimisation sur un 

ensemble de variables réduit. L’équivalence théorique entre les différents problèmes d’optimisation 
(en termes de minima locaux) est prouvée et on présente et développe un schéma adapté à la fois 
aux spécificités des composites et aux contraintes industrielles. Le second point est résolu de manière 

originale par le développement d’une stratégie d’approximation des contraintes de stabilité. Cette 
stratégie de mélanges d’experts se base sur des outils statistiques avancés et se révèle adaptée au 
comportement des composites. Les deux principales avancées de ce travail sont validées sur des cas 

test académiques et sur une structure aéronautique réaliste. Le fil directeur de ce travail est la 
mécanique des structures composites, néanmoins le caractère pluridisciplinaire du sujet nous a 
conduit à des incursions vers les domaines des statistiques (apprentissage), de l’analyse numérique 
(étude de l’équation aux dérivées partielles relative au flambage) et enfin de l’optimisation théorique. 
 
Mots clés : Optimisation de structure, matériaux composites, optimisation biniveau, mélange 
d’experts, flambage, structures aéronautiques.  

 
 

Bilevel optimization of large scale composite structures 
 
This work lies in the field of aerospace composite structures optimization. We are interested in making 
possible the treatment of large scale optimization problems, as the ones encountered in aerospace 

design offices. Resolution of such problem needs two main obstacles to be removed. First one lies in 

the typical large size of problems and the mixed type of design variables: continuous (geometric 
dimensions, internal loads) and discrete (ply orientations for laminates). Second one lies in the 
tremendous amount of local stability analyses (buckling) to be performed in one standard 
optimization. First aspect is solved with the help of decomposition methods that allow breaking up the 
initial optimization problem in a multitude of optimization sub problems of reduced dimensions. These 
problems can be solved concurrently, however the internal load redistribution makes them coupled 

and an upper level optimization problem is needed to solve this coupling. Innovative solutions, both in 
terms of composite material mechanics representation and in terms of theoretical 
optimization properties are presented. Second aspect is solved through the development of an 
innovative approximation scheme, tailored to buckling behaviour specificities, namely mixture of 
experts. In particular, the piecewise-like behaviour of such functions is considered. This innovative 
method relies on advanced statistical tools from unsupervised learning (clustering, law mixture). 
Finally the two main innovations are extensively discussed and tested over academic benchmark. They 

are eventually combined for a realistic structural optimization problem (fuselage panel) and allowed 
retrieving the same weight as traditional method with less iterations. Although the main theme is 

mechanics and structural optimization, the multidisciplinary aspect of the subject included some 
research questions and answers in statistics field (statistical learning), numerical analysis (buckling 
partial differential equation) and theoretical optimization. 
 
Keywords: structural optimization, composite materials, bilevel optimization, mixture of experts, 

buckling, aerospace structures. 
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