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Département Mathématiques, Informatique et Automatique
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Résumé

Les modèle de sûreté de fonctionnement et de maintenance de l’avion peut contenir des incertitudes
notamment sur la durée des opérations de maintenance ou sur le taux de fiabilité de certains com-
posants. Une première étude a porté sur l’analyse du type d’incertitude concernant les données
: une différence doit être faite entre une incertitude provenant de la variabilité d’une variable (ou
phénomène) et une incertitude épistémique provenant d’un manque d’information (ignorance). Le
fait de pouvoir prendre en compte cette différence permet aux ingénieurs de calculer des indicateurs
utiles à la gestion de la maintenance plus fidèles aux données réellement disponibles, et prenant en
compte les incertitudes sur les paramètres du modèle de sûreté de fonctionnement. Ces indicateurs
seront très utiles lors de la prise de décision dans un environnement incertain.

Le choix d’un modèle de représentation des données s’effectue tout d’abord selon la nature des données
à représenter. Dans le cadre des modèles de sûreté de fonctionnement, la méthode d’analyse choisie
est celle des arbres de défaillance. Un événement redouté pour un système est donc représenté par
une formule Booléenne fonction des événements élémentaires (par exemple, des pannes...) pouvant
survenir dans ses sous-systèmes. Ces événements élémentaires sont représentés grâce à des variables
Booléennes. Dans la théorie classique de l’analyse par arbres de fautes, les arbres de fautes sont des
fonctions Booléennes monotones. Cependant, pour des raisons pratiques et avec l’automatisation
de la génération des arbres, cette théorie a été étendue à des arbres de fautes non monotones, où
l’expression de l’événement redouté peut contenir des littéraux négatifs.

Lorsque l’on suppose l’indépendance stochastique des variables Booléennes lors de l’évaluation de
la probabilité d’une formule Booléenne, nous nous retrouvons face à un problème non-linéaire de n
variables, qui consiste à trouver le minimum et le maximum de l’expression, lorsque les probabilités
des événements élémentaires sont indépendantes, imprécises, et connues sous la forme d’intervalles.
La méthode de l’analyse par intervalles va être utilisée pour résoudre ce problème. Nous nous sommes
intéressés au cas où la formule Booléenne est décomposée sous forme de Diagramme de Décision
Binaire (plus connus sous l’acronyme anglophone de BDD, Binary Decision Diagram).

Une étude comparative avec l’analyse par intervalle montre que les résultats obtenus sont équivalents
dans le cas des fonctions Booléennes croissantes. Nous avons ainsi démontré que dans le cas des arbres
de fautes monotones, l’hypothèse de l’indépendance des sources d’information est une hypothèse
suffisante pour obtenir les bornes optimales de la probabilité de l’événement redouté en utilisant
une arithmétique d’intervalles näıve. Il n’est pas nécessaire de supposer l’indépendance stochastique
entre les variables Booléennes.

Lorsqu’il n’est fait aucune hypothèse d’indépendance stochastique sur les variables Booléennes – mais
qu’en revanche, il est supposé que les valeurs des probabilités attachées aux événements élémentaires



proviennent de différentes sources d’informations, qui elles, sont indépendantes –, les fonctions de
croyance peuvent alors être utilisées afin de fusionner ces informations, ainsi que pour la modélisation
d’incertitude.

Lorsque le ou les paramètres des lois de probabilités associées à un événement sont imprécis, il est
alors possible de représenter l’information à propos de la distribution de probabilité cumulée de
l’événement par une paire de distributions cumulées. La distribution de l’événement se situera alors
quelque part entre la distribution basse et la haute. On appelle P-box cette paire de distributions
de probabilités cumulées. L’utilisation d’une P-box à la place d’une distribution simple revient à
propager la famille de toutes les distributions de probabilités comprises dans la P-box.

Il est donc intéressant d’étudier les P-boxes obtenues pour les différentes lois de probabilités les plus
utilisées dans l’analyse de risque : les lois exponentielles, Weibull, exponentielle avec maintenance
périodique... L’étude de ces différentes P-boxes permettra par la suite de modéliser les probabilités
des événements élémentaires des Arbres de Fautes par des distributions de probabilités avec des
paramètres imprécis, et d’en déduire l’évolution du minimum et du maximum de la probabilité de
l’événement redouté. Les résultats ont été utilisés pour le développement d’un algorithme de calcul
permettant de calculer l’intervalle optimal de probabilité de l’événement redouté.

Cet algorithme a été tout d’abord testé et validé sur plusieurs formules Booléennes standards, ainsi
que sur des cas d’écoles tels que le modèle du Primary/Backup Switch, qui représente un Switch
d’avion permettant de passer d’un composant principal à son composant de secours. Il a ensuite été
testé sur le modèle du Rudder, i.e. d’une gouverne d’avion. Cet algorithme a été intégré dans un
logiciel s’interfaçant avec le logiciel Cécilia OCAS, développé par Dassault, qui calcule, à partir d’un
modèle dysfonctionnel d’un système, les arbres de fautes et les coupes minimales utiles aux études
de sureté de fonctionnement.

L’algorithme a ensuite été étendu en utilisant les résultats des lois de probabilités imprécises, per-
mettant ainsi de trouver les P-box optimales de la probabilité d’un événement redouté et de pouvoir
étudier son évolution à travers le temps. Cette extension a également été testée sur le modéle du
Primary/Backup Switch et celui du Rudder, et ce avec plusieurs loi de probabilités différentes, per-
mettant ainsi une simulation de différents scénarios de maintenance.

Mots clefs : Management de l’incertitude, Arbres de fautes, Probabilités imprécises, Fonctions de
croyance, Binary Decision Diagrams, Analyse par intervalles.



Abstract

The models used for RAMS (Reliability, Availability, Maintainability and Safety) studies of aircrafts
are full of uncertainty, like on the failure rates of some components, or on the time of maintenance
operations. A preliminary study was about the type of uncertainty generated by the data: there
is a fundamental difference between the variability of a phenomenon, and an epistemic uncertainty
induced by a lack of information (ignorance). Taking into account those two facets of uncertainty
allows engineers to compute the indicators that are useful for maintenance management in a more
realistic way. They will also be helpful for decision making in uncertain environment.

The choice of representation for data depends on their nature. In our context, Fault Tree Analysis
has been chosen for the safety analysis. The failure condition of a system is represented by a Boolean
formula, in function of the elementary events (e.g. failures, etc.) of the components and subsystems.
This elementary events are represented by a Boolean variable. In classical Fault Tree Analysis, fault
trees are monotonic Boolean functions. But for practical reasons, the use of models in Safety analysis
required to extend this theory to non monotonic fault trees, that can contain negative literals.

When the stochastic independence of the Boolean variables is assumed, we face a non linear optimiza-
tion problem with n variables. It consists in finding the minimum and maximum of the probability of
the Boolean expression, when the probabilities of the elementary events are independent, imprecise
and laying in an interval. In that case, we used Binary Decision Diagrams (BDD) to represent the
Boolean formula, in order to improve the computation.

When no assumption is made about stochastic independence, it is possible to assume that the values
of the probabilities of the elementary events are coming from independent sources of information
(experts, statistical studies, etc.). In that case, Belief Functions can be used in order to aggregate
these information, by means of a specific framework.

When these are the parameters of the probability law of elementary events that are imprecise, the
information can be represented by a pair of cumulative distributions (upper and lower distribution),
that will contain the real one. This way of representation is called a P-box. It is interesting to study
the P-boxes obtained with the widely used probability laws of RAMS studies (exponential, Weibull,
etc.), in order to deduce the evolution of the probability of a Failure Condition with time.

These results have been used in order to develop an algorithm that computes the optimal probability
interval for a Failure Condition. It has been validated first on standard Boolean formulas. Afterwards,
it has been tested on case studies like for a primary/backup switch, that illustrates a reconfiguration
case for a passive redundancy, and on the model of an aircraft rudder. It has been integrated in a tool
that takes in input the fault trees or minimal cut sets generated by the tool Cécilia OCAS, developed



by Dassault industry. OCAS is a model based safety tool that computes fault trees or minimal cut
sets from the dysfunctional model of a system. Hence, it has been extended to imprecise probability
laws in order to compute the evolution of the probability with time. It has been tested on the safety
model of the rudder, with different probability laws, allowing to test several maintenance scenarios.

Key words: Uncertainty management, Fault trees, Imprecise probabilities, Belief functions, Binary
Decision Diagrams, Interval analysis.
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Chapter 1

General Introduction

Survivability from potentially harmful events is a natural desire. Every business requires measures
and predictions to avoid unforeseen events that may affect it adversely. This becomes even more
important for a business involving complex systems and human lives, such as aviation industry. A
common practice to avoid disasters is to apply preventive maintenance policies. Hence, for Airline
Companies, maintenance cost is a very important consideration when they plan to buy an aircraft.
The maintenance cost can be roughly equal to the price of the aircraft.

Airbus is one of the two leading aircraft manufacturing companies of the world. In order to be
competitive, Airbus is trying to offer a comprehensive package to potential buyers which include
guidelines for maintenance planning during the life cycle of the aircraft. One of the main objectives
of these guidelines is to decrease maintenance costs, and at the same time improve the reliability of
the aircraft. From an airline operator perspective, such offers are very lucrative because downtimes
for the aircraft can have significant financial repercussions.

Keeping in mind the above facts, Airbus recently started a new project named as @MOST (Airbus
total Maintenance Operations Solutions & Technologies). The goal of this project is to significantly
improve the maintenance management, which should reduce the financial impact due to unnecessary
downtimes. This will be achieved by developing software that will be instrumental in decision making
with regard to maintenance and scheduling issues.

@MOST is a large project involving many interdisciplinary studies and their co-ordination. @MOST
is divided into seven further sub-projects. This thesis is part of one such sub-project named as the
Dispatch Impact Analysis (DIANA). DIANA is closely linked with decision support and diagnosis
sub-projects. For an airline operator, fulfilling the planed mission schedule is very important, due to
its reputation and costs involved in flights delay or cancellation. This is one factor driving the study
behind DIANA project. DIANA is a tool that will be used in helping the maintenance planning and
to assist the pilot in decision making. The tool is based on the analysis and the simulation of a model
of the aircraft or its sub-systems, by means of some stochastic computations and the use of model
checking. To be able to perform this kind of analysis, several research lines had been identified in
the scope of this project.

This PhD thesis describes the work done for one of such line: Uncertainty Management for complex
Boolean systems. In order to be able to get an optimized maintenance plan at the end of the
decision making process, we must deal with uncertainty at each step. There are many different kinds
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of information used in the process and each information item can generate some different kind of
imprecision/uncertainty. The goal will be to represent information as faithfully as possible, and then
to study the propagation of this imprecise information in the system and evaluate its impact on the
outputs. In the context of the project, it has been decided that the software Cécilia OCAS would
be used for the modeling part of DIANA. The quantitative analysis of this software being mainly
done by means of fault trees , which is a way to represent Boolean formulas in a Safety context, it
was natural to study the uncertainty propagation in this representation tool.

The goal of DIANA is different from the usual Safety Analysis; hence some computed indicators
will be different from the ones used for certification purpose. For example, whereas Safety is often
just considering a worst case scenario, it may be useful for operational purposes to consider different
variations of the parameters in order to capture more facets of the problem. In a real world scenario,
the knowledge of input values to these models is not always accurate and complete. The goal of such
study is to analyze the impact of the imprecision on input values on the outputs of the models. In
this thesis we will discuss different ways to represent uncertainty in fault tree analysis, and evaluate
the impact of some lack of knowledge on some parameters of the models. Imprecision can be better
dealt with by means of intervals that represent uncertainty. Instead of using a precise probability
value, we use an interval of possible values for the probability. It also allows us to represent the
ignorance on the value of a probability. That is the reason why we decided to use intervals to model
the probability of failures of the components, then we propagate a family of probabilities instead of
propagating a single one.

Model-based Safety analysis uses a representation of the architecture of the aircraft in order to
compute the probability of failure of some systems. From those models, we can extract some fault
trees, representing the failure conditions of a system as function of the failures of its components
and/or subsystems, by mean of and and or gates. Those fault trees can be written as Boolean
formulas for analysis and model checking purposes.

When the probabilities of the failures of the components are supposed to be lying in intervals, there
are several ways to deal with this information. Some of them will be discussed in this thesis. The
assumptions made on input probabilities also have a significant influence on the appropriate way to
manage and propagate the uncertainty in the model. Hence, according to the assumptions, different
techniques will be adopted. This thesis will discuss some different types of assumptions about the
dependence of the variables and/or their probabilities, and different ways to handle them.

The theoretical problem encountered in this study actually goes beyond fault tree analysis. It con-
cerns any large non-monotonic Boolean formula, and may have applications in any domain that uses
probabilistic computations on Boolean logic. It is not limited to fault trees. The context of this study
mostly impacts on some of the implementation choices, and on the application part of the thesis.
This thesis has been organized in 8 chapters. Appendices contain the additional material to explain
in depth certain algorithms, concepts and tools. A brief overview of the thesis is given below:

Part II is dedicated to the state of the art on the different domains and theories that have been used
to carry out this work.

After an introduction to RAMS (Reliability, Availability, Maintenance, Safety) domain, Chapter 2
explains the objectives of a Safety analysis, and the main steps of its methodologies. In this context,
we will also introduce fault tree analysis, which is a technique used to carry out some of the steps
of a Safety analysis. Nowadays, the trend of Safety analysis is to be more and more model based,
hence a new domain called MBSA (Model Based Safety Analysis) is expanding. The main objective
of this domain is to automatize the generation of some Safety documents and techniques, and fault
trees do not escape to that trend. Automated generation of fault trees is currently being developed,
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and this thesis will focus on the uncertainty management for this kind of fault trees.

In chapter 3, the background of fault tree analysis is presented in order to give an overview of the
existing theory that is behind this technique. The basics of Boolean logic and fault tree and the
probability computation from a fault tree are recalled. The use of Binary Decision Diagrams (BDD)
to compute this probability has been a huge improvement for the handling of very large systems. The
process of this probability computation is explained. It will be the basis of some of the uncertainty
management algorithms developed in the context of this PhD thesis.

Chapter 4 proposes an overview of recent uncertainty management frameworks. The complexity
of a faithful representation of the information requires some adapted methods, that will allow to
capture different facets of the uncertainty. These representations should really be adapted to the
situation to represent, hence this chapter makes an overview of representations and their application
context, depending on different dependency assumptions on the probabilities. In order to be able to
chose the best framework in the context of fault tree analysis, the mathematical theory behind this
technique is analyzed, i.e the computation of probabilities from a complex non monotonic Boolean
formula, with different assumptions.

Part III actually presents the main contributions of the thesis.

Chapter 5 describes the use of intervals in order to capture uncertainty and propagate it through
a complex non monotonic Boolean formula when the probabilities attached to the Boolean variables
are assumed to be independent. This approach faces a problem that is exponential in term of
computation time, which is not manageable for very large Boolean formulas. The proposed solution
to this complexity problem is to use a monotonicity study of the Boolean formula in order to reduce
the computation time when it is possible. An algorithm is proposed in this chapter: it computes the
range of the probability of a Boolean formula in function of the probability intervals of its variables,
by using some properties of monotonicity of the formula in order to reduce the computation time.

In chapter 6, the problem of computation of the range of a probability of a Boolean formula depend-
ing on the probability intervals of its variables remains the same, but the assumption made about
the dependency between the variables differs. We assume that the dependency between the variables
is unknown, but that the values of their probabilities are coming from independent sources of infor-
mation. In that case, belief functions can be used in order to compute the range of the probability of
the formula. Again this computation has an exponential complexity, hence the proposed solution is
to determine a formal equation from the properties of some particular ways to represent the Boolean
formulas.

The results of Chapter 7 can be used as an input for feeding the methods developed in chapter 5
and chapter 6. It focuses on how to model the imprecise inputs and their evolution across time. This
chapter describes the impact of an imprecise parameter on the probability laws that are generally
used to represent the probability evolution in quantitative Safety analysis. The use of intervals for
the parameters of such a probability distribution is given by a P-box, that is a pair of probability
distributions defining a minimum and a maximum distribution. This pair of distributions is used
to define input intervals in the previous chapters. The algorithm manages imprecise probability
distributions, and is able to compute the evolution of the range of the probability of a complex
Boolean formula across time.

Chapter 8 presents the implementation part of this research work. The context of the project
dictates the constraint and the goals of the computations, in term of scale of the Boolean formulas
to deal with, and of inputs to take into account. Hence the implementation of the algorithms
presented in chapters 5 and 7 is described, along with some discussion about heuristics to reduce the
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computation time. A comparison of different heuristics is elaborated, based on their efficiency and
on their complexity.

Fig. 1.1 summarizes the interaction between the different main chapters: an arrow from Part II to
Part III means that the theory described in the Chapter of Part II is required to understand the
Chapter of Part III. An arrow inside a same Part means that the results of a Chapter are needed or
useful for the comprehension of another Chapter.

Figure 1.1: Chapters interactions

Finally, in chapter 9 we conclude the thesis and present different perspectives and future research
directions.
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Résumé en français
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Introduction en français

Les coûts de maintenance constituent un paramètre important à prendre en compte par les compag-
nies aériennes lors de l’achat d’un avion. Durant toute son exploitation, ils peuvent s’élever quasiment
au prix de l’avion lui-même. C’est pour cette raison que lors de la conception, Airbus s’efforce de
diminuer significativement les coûts de maintenance, tout en conservant voir en améliorant la qualité
de ses avions.

La fiabilité des différents systèmes avioniques est également un facteur crucial à prendre en compte.
Les interruptions de missions et l’immobilisation de l’avion ont de grosses répercussions financières
pour la Compagnie. Elles peuvent provenir des frais d’aéroport, du dédommagement des passagers
lors de retards trop importants, ou en terme de rentabilité de l’avion.

C’est pour palier à tous ces problèmes et optimiser la maintenance des avions qu’Airbus a récemment
lancé le projet @MOST (Airbus total Maintenance Operations Solutions and Technologies).

Le but du projet @MOST est d’optimiser la planification de la maintenance, afin de réduire les
conséquences financières de certaines immobilisations inutiles. Bien entendu, ces économies ne doivent
pas être faites aux dépends de l’opérationnabilité de l’avion, de sa fiabilité et encore moins de la
sécurité des passagers. Il semble donc évident qu’une excellente analyse de risque sera une des clefs
principales afin de mener à bien cet objectif. Le management de l’incertitude liée aux modèles et aux
prédictions sera un facteur déterminant pour cette analyse de risque.

Le projet @MOST est un projet d’envergure Européenne constitué de plusieurs sous-projets. Cette
thèse à lieu dans le cadre du sous-projet Dispatch Impact Analysis (DIANA), qui a pour but de
développer un outil de support pour la maintenance et pour le pilotage de l’avion. L’objectif de cet
outil sera de fournir à l’équipage et à l’équipe de maintenance une liste des équipements à changer
ou réparer en priorité, en fonction des contraintes de sécurité, de fiabilité et d’opérationabilité.

Le but principal d’une telle liste est de permettre à l’équipe d’effectuer la maintenance de faÃ§on
préventive, afin d’éviter les interruptions opérationnelles. Cela permettra également de limiter
d’éventuelles diminution de performances, ou augmentations de coûts. Elle servira également de
support au pilote pour la gestion du dispatch, et l’aidera à optimiser sa conduite afin de la rendre
plus économique. Cet outil devra prendre en compte l’état de santé courant de l’avion, les prédictions
des pannes futures, le planning de missions, ainsi que l’impact fonctionnel des pannes éventuelles. Il
intégrera par exemple, des listes d’équipements telle que laMaster minimum equipment list (MMEL),
qui décrit les équipements/composants pouvant ne pas être opérationnels sans pour autant impliquer
une interruption de l’avion, ainsi que les conditions et procédures éventuellement associées à leurs
pannes.

Cette thèse a pour objectif principal la gestion de l’incertitude dans les systèmes Booléens complexes,
qui peuvent être utilisés afin de modéliser les dysfonctionnements dans les systèmes aéronautiques.
Pour pouvoir assurer une maintenance optimale, cette prise en compte de l’incertitude doit se dé-
cliner à toutes les étapes du processus de planification de la maintenance. On y rencontrera donc
plusieurs types d’information différentes, et chaque information peut générer un type d’imprécision
ou d’incertitude différent. Le but sera tout d’abord de représenter les incertitudes présentes de la
faÃ§on la plus fidèle possible à la réalité, puis d’étudier leurs propagations et leurs impacts.
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Etat de l’art sureté de fonctionnement

Dans l’industrie aéronautique, la sureté de fonctionnement regroupe les domaines de la fiabilité, la
disponibilité, la maintenabilité et la sécurité. Ils sont les premiers critères de bon fonctionnement de
l’avion, du bon déroulement de ses missions et de la sécurité de ses passagers et membres d’équipage.
Les compagnies aériennes ont besoin d’avoir la garantie d’acheter un produit fiable, pouvant être
aisément maintenu par leurs équipes de maintenance aéronautique. Un manque de fiabilité ou de
maintenabilité peut avoir des répercussions économiques et/ou humaines désastreuses pour une com-
pagnie.

C’est pour cette raison que les études de sureté de fonctionnement doivent être effectuées avec le
plus grand soin dans les phases de design. Ces études prennent en compte notamment l’architecture
de l’avion, le facteur humain et la fiabilité des différents composants constituant les systèmes et
sous-systèmes de l’avion. Elles sont basées sur des modèles et des prédictions. Leur but principal est
d’étudier les contre-temps ou dysfonctionnements éventuels, afin d’au mieux les éviter, et d’au pire,
essayer d’en minimiser les conséquences.

Il est très rare qu’un désastre provienne d’un seul évènement, la plupart du temps, c’est une succession
d’évènements imprévus qui conduisent à des catastrophes. Un ensemble d’évènements indésirables
menant à un évènement redouté, ayant des conséquences néfastes sur le système étudié, est appelé
évènement redouté (ER).

Identifier et analyser les risques

Des évènements redoutés peuvent provenir de différentes sources, les avions étant des systèmes très
complexes. Ils peuvent être mécaniques, hydraulique, électrique, logiciel, ou liés au facteur humain.
Il est souvent très difficile de prévoir les conséquences de ces derniers (Dejours, 1996)(Amalberti,
1996).

La notion de risque prend en comptes deux aspects différents : la fréquence des événements et la
gravité de leurs conséquences. Ces deux aspects fonctionnent avec une certaine dualité, car plus un
événement aura une probabilité d’occurrence élevée, plus ses conséquences devront être amoindries
afin de réduire le risque. De même, il faudra s’assure qu’un événement avec une gravité forte ait une
occurence très faible.

Des équipes d’ingénieurs seront donc en charge d’identifier les risques possibles pour les différents
systèmes d’un avion : il s’agira donc de lister tous les événements redoutés possibles pour chaque
composant, équipement ou sous-système, et d’étudier leurs conséquences, leur fréquence d’occurrence,
leurs dépendances, etc. Cette analyse sera résumée dans un tableau récapitulatif, c’est l’Analyse des
Modes de Défaillance, de leurs Effets et Criticité (AMDEC) (Stamatis, 2003). L’AMDEC sera ensuite
utilisée lors de la certification de l’avion, pour s’assurer que tous les critères de fiabilité et de sécurité
ont bien été respectés.

La gestion du risque passe soit par la prévention, soit par la protection (i.e. la mise en place de
procédures aidant à minimiser la gravité des conséquences, comme les procédures d’urgence par
exemple) ou par l’acceptation d’un risque résiduel que l’on juge acceptable. Elle passe aussi par la
prise en compte de l’incertitude, qui est omniprésente dans les modèles de prévisions. C’est pour cela
qu’une bonne gestion de l’incertitude est primordiale dans toute analyse de risques.
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Analyse de risque basée sur les modèles

Plusieurs outils informatiques ont été développés afin de mener à bien les études de sureté de fonc-
tionnement de systèmes complexes. Dans le cadre de cette thèse, nous utiliserons le logiciel Cécilia
OCAS, développé par Dassault et basé sur le langage AltaRica(Arnold et al., 2000).

Le langage AltaRica est basé sur les automates de mode(Point and Rauzy, 1999), qui permet de
décrire un système ayant plusieurs états, changeant en fonction d’événements survenant dans le
système. Il est ensuite possible de connecter plusieurs automates de mode entre eux, grâce à des flux
d’entrée/sortie. Par le biais de cette structure, il devient possible de modéliser le comportement d’un
système, en fonction du comportement des composants ou équipements qui le composent, et de leurs
interactions.

Figure 1.2: Modèle OCAS d’une gouverne d’avion

A partir du modèle hiérarchique des systèmes d’un avion, le logiciel Cécilia permet une analyse
qualitative, grâce à un outil de simulation puissant, et un calculateur permettant d’extraire du
modèle plusieurs indicateurs très intéressants comme l’ensemble des coupes minimales (définis dans la
section 2.2.1). Il autorise également une analyse quantitative, avec des études stochastiques effectuées
sur des arbres de fautes extraits du modèle (Rauzy, 2002).

Arbres de défaillances, Coupes Minimales

Les Arbres de défaillances (AdF) constituent un outil graphique utilisant des opérateurs Booléens
afin de représenter des châınes d’événements conduisant à un événement redouté. Cet événement
redouté sera alors décrit par toutes les combinaisons d’événements élémentaires pouvant conduire à
lui. Il sera représenté par le sommet de l’arbre, tandis que les événements de base constitueront les
feuilles, dans la partie basse de l’arbre.
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L’analyse par arbres de fautes peut être utilisée lors de la phase de conception du système, afin
d’aider à l’amélioration de sa structure, ou lors de la phase de certification. Il est également possible
d’utiliser les arbres de défaillances dans le but d’identifier les combinaisons d’événements les plus
critiques, ou d’analyser l’impact de la panne d’un composant sur le système.

En ce qui concerne les études quantitatives à partir des arbres de fautes, des procédés utilisant des
méthodes stochastiques telles que des simulation de Monte-Carlo (Rao et al., 2009) ont été largement
utilisées, mais elles présupposent que toutes les probabilités des événements de base soient connues
et précises. Cependant, ce n’est pas toujours le cas en pratique.

C’est pour cette raison que des travaux ont été effectués afin de prendre en compte l’imprécision ou
le manque de connaissance sur les probabilités de ces événements de base : Lev Utkin travailla sur
l’utilisation des probabilités imprécises dans les études de fiabilité(Utkin, 2004)(Utkin and Coolen,
2007), et Enrico Zio sur l’application d’une méthode de propagation jointe de données probabilistes
et possibilistes(Baudrit et al., 2006)(Baudrit et al., 2007) à des AdF(Zio and Baraldi, 2008).

Dans le chapitre qui va suivre, nous allons nous intéresser au problème de l’utilisation de probabilités
imprécises dans les arbres de défaillances.

Problème théorique

Comme nous l’avons vu dans le chapitre précédent, les arbres de fautes font partie des moyens
utilisés pour l’analyse de risque stochastique. Un arbre de défaillances peut être vu comme une
formule Booléenne, fonction de ses événements de base.

AdF et formules Booléennes

Definition 1.1 (Fonction Booléenne)
Une fonction Booléenne sur un ensemble de variables Booléennes X = {X1, ..., Xn} est une fonction
F : {0, 1}n → {0, 1}. Elle s’écrit à l’aide des formules Booléennes, constituées des variables
X1, ..., Xn et des opérateurs ∨ (disjonction), ∧ (conjonction) et ¬ (négation). ♦

Un littéral est soit une variable X1, soit sa négation ¬X1. X1 est un littéral positif et ¬X1 un littéral
négatif. Un minterm ω d’un ensemble X de variables Booléennes est une conjonction consistante
de toutes les variables de X , apparaissant positivement ou négativement. Les événements de base
d’un arbre de faute sont représentés par des variables Booléennes : elles peuvent prendre deux états.
Par exemple, on peut considérer les états ”en panne” (=1) ou ”ok” (=0). Mais par extension, elles
sont aussi utilisées pour des états plus généraux, qui pourraient représenter différents modes du
composant, comme ”jour” (=1) ou ”nuit” (=0).

Il existe plusieurs méthodes afin de calculer la probabilité d’un événement redouté à partir de sa
description sous forme de formule Booléenne, lorsque les probabilités des événements correspondant
aux variables Booléennes sont toutes précises, connues et indépendantes. Malheureusement, ceci
n’est pas toujours le cas en pratique, c’est pour cela que nous nous sommes intéressé aux cas où
certaines de ces hypothèses ne sont pas vérifiées.
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Probabilité imprécise d’une formule Booléenne

Soit X un ensemble de variables Booléennes X1, . . . , Xn, et F une formule Booléenne exprimée grâce
à ces variables. Les variables Xi peuvent prendre les valeurs Ai,¬Ai, où Ai représente un événement
atomique associé aux fautes élémentaires des composants. Les modèles de F , i. e. les expressions
qui la satisfont, forment un ensemble noté [F ] qui correspond également à l’ensemble des minterms
de F . La probabilité de la formule Booléenne F peut alors être écrite de la façon suivante :

P (F ) =
∑

ω∈[F ]

P ({ω}) (1.1)

Dans le cas où l’indépendance stochastique des variables Xi est supposée, cette formule s’écrit sous
la forme :

P (F ) =
∑

ω∈[F ]

[
∏

Ai∈L
+
ω

P (Ai)
∏

Ai∈L
−
ω

(1− P (Ai))], (1.2)

où L+
ω représente l’ensemble des littéraux positifs ω et L−ω l’ensemble de ses littéraux négatifs.

Lors que les probabilités des événements élémentaires P (Ai) sont mal connues, mais qu’il est possible
de leur déterminer une valeur minimum et une valeur maximum, alors il va être possible de calculer
une valeur minimum et maximum pour la probabilité de l’événement redouté décrit par la formule
F . Ainsi, plusieurs hypothèses sont traitées dans le cadre du calcul de ces bornes minimales et
maximales.

Différentes hypothèses traitées

Dans le cadre de cette thèse, différentes hypothèses d’indépendance seront discutées.

Tout d’abord, lorsqu’aucune hypothèse n’est faite à propos de l’indépendance des variables Xi :
calculer les bornes [lF , uF ] de la probabilité P (F ) se révèle être un problème d’optimisation linéaire
avec contraintes. Il peut être résolu en trouvant la solution aux problèmes d’optimisation suivants.

lF = min(
∑

ω�F

P ({ω})) et uF = max(
∑

ω�F

P ({ω})) (1.3)

sous la contrainte : li ≤
∑

ω�Ai

P ({ω}) ≤ ui, i = 1 . . . n et
∑

P ({ω}) = 1. C’est un cas particulier

du problème de satisfaction probabilistes NP-hard, traités par de la programmation linéaire (Hansen
et al., 2000).

Dans le cas où l’indépendance stochastique des variables Booléennes est supposée, la famille de
probabilité induite par les probabilités élémentaires P (Ai) n’est plus convexe. Ainsi, des contraintes
non-linéaires sont rajoutées au problème, et les algorithmes d’optimisation linéaire s’avèrent donc
inutilisables. Cependant, au lieu d’un problème à 2n variables, nous nous retrouvons avec un problème
d’optimisation non-linéaire à n variables. Nous avons donc choisi de traiter ce problème à l’aide de
l’analyse par intervalles. Cette méthode sera détaillée dans le chapitre suivant I.

La seconde hypothèse d’indépendance abordée dans cette thèse, sera celle de l’indépendance des
sources d’information. Dans ce cas, aucune hypothèse d’indépendance stochastique ne sera faite
sur les variables Booléennes, en revanche, on supposera que les valeurs des probabilités attachées
aux événements élémentaires proviendront de différentes sources d’informations, qui elles, seront
supposées indépendantes. Les fonctions de croyance seront utilisées pour modéliser le problème, les
détails de cette modélisation seront étudiés chapitre I.
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Cas de l’indépendance stochastique

Lorsque l’on suppose l’indépendance stochastique des variables Booléennes dans le problème posé
dans la section I, nous nous retrouvons donc face à un problème non-linéaire de n variables, qui
consiste à trouver le minimum et le maximum de l’expression , lorsque les probabilités des événements
élémentaires Xi sont indépendantes, imprécises, et connues sous la forme P (Xi) ∈ [li; ui].

L’analyse par intervalles va être utilisée afin de traiter ce problème.

Analyse par intervalles et formules Booléennes

Le principe de l’analyse par intervalles a été développé par des mathématiciens dans les années 60,
et consiste à utiliser des intervalles de valeurs au lieu d’une valeur précise.

Une arithmétique d’intervalle näıve a été définie, très simple à mettre en pratique, cependant elle a de
très fortes limitations dès lors qu’il y a répétition d’une même variable plusieurs fois dans l’expression
d’une fonction. Ce cas de figure est malheureusement très courant dans les formules Booléennes, où
les variables peuvent se répéter un grand nombre de fois dans l’expression. De ce fait, il est plus
judicieux d’analyser la fonction mathématique décrivant la probabilité de la fonction Booléenne, afin
d’en déduire l’intervalle image.

Plusieurs expressions peuvent être utilisées afin de décrire cette fonction lorsque les variables sont sup-
posées stochastiquement indépendantes. Elle peut être déduite de la formule de Sylvester-Poincaré,
aussi appelée principe d’exclusion-exclusion. Mais nous allons nous intéresser au cas où la formule
Booléenne est décomposée sous forme de Diagramme de Décision Binaire (plus connus sous l’acronyme
anglophone de BDD).

BDDs et probabilités de formules Booléennes

Un Diagramme de Décision Binaire est un moyen graphique de représenter une formule Booléenne.
Elle correspond à une décomposition de la formule sous forme d’arbre de Shannon, en plus compacte.
L’arbre de Shannon est basé sur l’itération pour toutes les variables Xi de la décomposition de
Shannon d’une formule F :

F = (Xi ∧ FXi=1) ∨ (¬Xi ∧ FX=0) (1.4)

Suivant quelques règles de simplification graphiques, le Diagramme de Décision Binaire arrive à
une représentation beaucoup plus compacte de la formule ; bien que la taille d’une BDD dépende
de l’ordre des variables dans lequel la décomposition de Shannon a été effectuée. C’est un graphe
comprenant au sommet l’une des variables, et à sa base, les feuilles 0 et 1.

Chaque chemin reliant le sommet et la feuille terminale 1 peut être vu comme une conjonction, et
la disjonction de tous les chemins correspond exactement à la formule Booléenne représentée. Si un
chemin contient le trait plein (resp. en pointillés) sortant du nœud d’une variable, alors le littéral
positif (resp. négatif) de cette variable apparaitra dans la conjonction. Il est alors possible de calculer
la probabilité de la formule booléenne en faisant la somme des produits des probabilités pour chaque
chemin.

C’est donc cette expression de la probabilité d’une formule Booléenne qui sera étudiée, afin de déter-
miner son intervalle [lF , uF ].
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Figure 1.3: Calcul de P(F) avec F = A ∨ (S ∧ C)

BBDs et analyse par intervalles

L’expression de la probabilité P (F ) d’une formule Booléenne en fonction de ses probabilités élémen-
taires est une fonction à n variables non monotone. Cependant, il est très important de remarquer
qu’elle est localement monotone, c’est à dire que lorsque l’on fixe toute ses variables sauf une, alors
elle est monotone par rapport à cette variable.

Ce résultat nous permet alors de déduire que les valeurs minimales et maximales de P (F ) seront
forcément atteintes pour des valeurs minimales ou maximales des probabilités élémentaires. Lorsque
la monotonicité de la formule Booléenne est connue, les bornes à utiliser pour le calcul de l’intervalle
image seront également connues. Dans le cas où la monotonicité est non-triviale, il faudra alors tester
les deux bornes possibles pour chaque variable, i.e. 2n combinaisons.

Une condition suffisante pour qu’une formule Booléenne soit monotone par rapport à une variable,
est que cette variable n’apparaisse que sous la forme de littéraux positifs (resp. négatifs) dans cette
formule. Dans le cas échéant, la formule sera croissante (resp. décroissante) par rapport à cette
variable.

Ce résultat sera utilisé pour le développement d’un algorithme de calcul permettant de calculer
l’intervalle [lF , uF ] optimal I.

Approche utilisant les fonctions de croyance

Dans le problème posé dans la section I, on ne fera aucune hypothèse d’indépendance stochastique sur
les variables Booléennes. En revanche, il sera supposé que les valeurs des probabilités attachées aux
événements élémentaires proviennent de différentes sources d’informations, qui elles, sont indépen-
dantes. Les fonctions de croyance peuvent être utilisées afin de fusionner des informations provenant
de plusieurs sources indépendantes, ainsi que pour la modélisation d’incertitude, c’est pour cette
raison que l’on va s’y intéresser dans ce chapitre.

Fonctions de croyance

La théorie des fonctions de croyance a été fondée dans les années 70 comme un cadre général de
représentation des incertitudes, dont la théorie des probabilités serait un cas particulier.

Soit Ω un ensemble fini. La masse m(Ai) d’un élément Ai de l’ensemble des parties exprime la
croyance allouée par une source que l’état actuel est Ai et non un autre état, ni un sous-état de Ai.
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à partir de la valeur de la masse d’un état, on peut définir un intervalle de probabilité, qui est borné
par deux mesures appelées croyance et plausibilité.

Réciproquement, un intervalle [li, ui] définit une unique fonction de croyance sur un ensemble binaire
Ωi. Afin d’effectuer la fusion d’informations provenant de plusieurs sources indépendantes, on peut
utiliser la règle de combinaison de Dempster-Shafer.

Definition 1.2 (règle de combinaison de Dempster-Shafer)
Pour deux masses m1 et m2, la masse jointe m1,2 peut se calculer de la façon suivante :
• m1,2(∅) = 0

• m1,2(S) =

∑

B∩C=S

m1(B)m2(C)

1−

∑

B∩C=∅

m1(B)m2(C)
, ∀S ⊆ Ω

La règle de Dempster-Shafer consiste à faire une somme conjonctive puis à renormaliser par rapport
aux sous-ensembles conflictuels. Cependant, dans le cadre des formules Booléennes, il n’y a pas de
conflits parmi les variables, donc le dénominateur de la formule se réduit à 1.

Plausibilité et Croyance d’une formule Booléenne

Combinaison de n fonctions de masse :
Pour n fonctions de masse mi, i = 1, . . . , n on Ωi, la masse jointe mΩ sur Ω peut être calculée de la
façon suivante pour chaque modèle partiel φ:

mΩ(φ) =
∏

i∈L+

φ

li
∏

i∈L−

φ

(1− ui)
∏

i/∈Lφ

(ui − li) (1.5)

La Croyance Bel(F ) d’une formule Booléenne F étant la somme des masses des modèles partiels
satisfaisant F , son calcul requiert l’énumération des 3n modèles partiels possibles, puis la vérification
de leur satisfaction. La Plausibilité Pl(F ) quant-à elle, est la somme des masses de tous les modèles
partiels compatibles avec F , i.e. ceux dont l’intersection avec F est non nulle. Elle peut se calculer
en utilisant sa dualité avec la Croyance, qui s’exprime par Pl(F ) = 1− Bel(¬F ).

Ces calculs ayant une complexité exponentielle, nous avons tenté de déterminer les cas de formules
Booléennes pour lesquelles il est possible de trouver une formule explicite pour le calcul de la Plau-
sibilité et de la Croyance. Ainsi nous avons pu prouver que les conjonctions, les disjonctions, et
les formes normales disjonctives de littéraux positifs ont des expressions pour la Croyance et la
Plausibilité qui se rapprochent énormément de celle de Sylvester-Poincaré :

Croyance d’une forme normale disjonctive de littéraux positifs

Bel(C1 ∨ ... ∨ Cm) =
m
∑

i=1

Bel(Ci)−
m−1
∑

i=1

m
∑

j=i+1

Bel(Ci ∧ Cj)

+
m−2
∑

i=1

m−1
∑

j=i+1

m
∑

k=j+1

Bel(Ci ∧ Cj ∧ Ck)− ...+ (−1)m+1Bel(C1 ∧ ... ∧ Cm),

où les Ci sont des conjonctions de littéraux positifs.
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Fonctions de croyance et Arbres de fautes

Dans la théorie classique de l’analyse par arbres de fautes, les arbres de fautes sont des fonctions
Booléennes monotones, bien que cette théorie ait été étendue pour des besoins pratiques. Dans le
cas des arbres de fautes monotones, il sera toujours possible d’écrire la formule Booléenne sous la
forme d’une forme normale disjonctive de littéraux positifs. Les résultats précédents pourront donc
être appliqués.

Dans le cas des arbres de fautes non monotone, on pourra utiliser une approximation de l’arbre
à l’aide de l’ensemble des coupes minimales, qui elles, sont automatiquement générées sous une
forme normale disjonctive de littéraux positifs. Une étude comparative avec l’analyse par intervalle
présentée à la section I, et les résultats obtenus correspondent à l’application de l’analyse par intervalle
pour les fonctions Booléennes croissantes. Nous démontrons donc ainsi que pour les arbres de fautes
monotone, l’hypothèse de l’indépendance des sources d’information est suffisante pour obtenir les
bornes optimales de la probabilité de l’événement redouté.

Lois de probabilités avec des paramètres imprécis

Les sections précédentes traitent de l’utilisation de d’intervalles afin de représenter la probabilité
d’un événement élémentaire dans un arbre de faute. Cependant, on peut se demander comment cet
intervalle sera lui-même déterminé. Cette section traite de la représentation de la distribution de
probabilité d’un composant, puis de l’obtention des intervalles de probabilité dans le cas de lois de
probabilité avec des paramètres imprécis.

Cas de paramètres précis

Les probabilités des évènements élémentaires sont représentées par des distributions de probabilités,
qui suivent différentes lois selon le comportement du composant. Les lois les plus utilisées sont en
général des loi exponentielles, pour modéliser les composants électroniques, ou des Weibull pour les
composants mécaniques possédant des phases de jeunesse et d’usure où la probabilité de panne sera
plus importante.

Les valeurs des paramètres utilisés pour ces lois proviennent d’étude statistiques établies lors des tests
des composants. Un échantillon est étudié, puis des méthodes de régression linéaire sont utilisées
afin de trouver les valeurs des paramètres ajustant au mieux le modèle aux observations (Morice,
1989). Lors de cette étape, les valeurs des paramètres comportent déjà une certaine imprécision,
étant donné que le modèle théorique ne colle jamais parfaitement avec les observations.

Il semble donc judicieux d’essayer de prendre en compte cette incertitude sur les paramètres en
compte lors de leur utilisation pour les études stochastiques des modèles. Nous nous intéresserons
donc au cas où la valeur de ces paramètres sera considérée comme appartenant à un intervalle.

Cas de paramètres imprécis

Lorsque le ou les paramètres des lois de probabilités associées à un évènement sont imprécis, il est
alors possible de représenter l’information à propos de la distribution de probabilité cumulée de
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l’évènement par une paire de distributions cumulées. La distribution de l’évènement se situera alors
quelque part entre la distribution basse et la haute. On appelle P-box cette paire de cumulées.

L’utilisation d’une P-box à la place d’une distribution simple revient à propager une famille de toutes
les distributions de probabilités comprises dans la P-box. Elle peut être justifiée pour d’autres raisons
que l’imprécision des paramètres, par exemple, si la moyenne et la variance d’une distribution sont
connues, mais pas sa loi. Ou alors, elles peuvent provenir de certains intervalles de confiance.

Le cas où la loi est connue et les paramètres appartiennent à des intervalles est un cas particulier de
P-box, étant donné que la famille de probabilités peut être décrite. La figure 1.4 illustre un exemple
de P-box pour une distribution exponentielle dont le paramètre λ est imprécis.

Figure 1.4: Exemple d’une P-box pour une distribution exponentielle

Il est donc intéressant d’étudier les P-boxes obtenues pour les différentes lois de probabilités les plus
utilisées dans l’analyse de risque : les lois exponentielles, Weibull, exponentielle avec maintenance
périodique... L’étude de ces différentes P-boxes permettra par la suite de modéliser les probabilités
des événements élémentaires des Arbres de Fautes par des distributions de probabilités avec des
paramètres imprécis, et d’en déduire l’évolution du minimum et du maximum de la probabilité de
l’évènement redouté.

Algorithmes et applications

Dans le cadre de cette thèse, les techniques d’analyse par intervalle décrites au chapitre I ont été
implémentées afin de pouvoir calculer les bornes exactes de la probabilité d’évènements redoutés
décrits par des arbres de fautes. Ces arbres de fautes seront générés automatiquement par le logiciel
Cécilia OCAS (I), et pris en entrée au format Aralia. Il est également possible d’utiliser des arbres
de fautes partiels, décrit par l’ensemble des coupes minimales d’un certain ordre.

Les entrées de l’algorithme seront donc constituées des intervalles [li, ui] (ou des valeurs) de proba-
bilités des évènements élémentaires Vi et de la formule Booléenne décrivant l’évènement redouté. Le
schéma 5.6 synthétise les entrées/sorties de l’algorithme.

Le principe de l’algorithme consistera à décomposer la formule sous forme de BDD, puis de la
parcourir afin de trouver des variables n’apparaissant que sous forme de littéral positif ou négatif.
Cela permet d’extraire des variables dont la monotonicité est connue. Lorsque la monotonicité d’une
variable est connue, on sait également déterminer l’intervalle de son image.

On aura donc en tous trois catégories de variables:
− Type 1: Les variables qui apparaissent seulement négativement dans la formule Booléenne
− Type 2: Les variables qui apparaissent seulement positivement dans la formule Booléenne
− Type 3: Les variables qui apparaissent positivement et négativement.
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Figure 1.5: Algorithme d’analyse par intervalles pour les arbres de défaillances

Dans ce dernier cas, la monotonicité de la formule par rapport à ces variables n’est pas triviales, et il
va donc falloir tester pour chaque variable les deux extrema de leur intervalle de probabilités. Nous
aurons donc un algorithme en 2k, où k est le nombre de variables de type 2.

Afin de permettre d’optimsier les temps de calcul, nous essayons de réduire au maximum le nombre
de variables dans le cas 3. Dans l’idéal, notre but serait de conserver en cas 3 seulement les variables
pour lesquelles la fonction est réellement non monotone. Pour se faire, nous avons donc comparé
trois méthodes de calcul:
− Cas ’A’: On utilise l’algorithme en décomposant la formule en une seule BDD
− Cas ’B’: On utilise l’algorithme en décomposant la formule sous plusieurs BDD en intervertissant
l’ordre des variables. Dans ce cas, on compare les différentes BDD et on élimine les variables de cas
3 au fur et à mesure du traitement.
− Cas ’C’: On réduit d’abord la formule grâce à des formules mathématiques de réductions de
formules Booléennes.

Cas Nb Variables Nb termes Type 1 ou 2 Type 3 Temps Total
A 19 3947 3 16 4 heures
B 19 3947 16 3 <1 minute
C 19 67 13 6 1 heure

Lorsque les probabilités des évènements élémentaires ne sont pas des intervalles, mais sont décrites
par des distribution de probabilités avec des paramètres imprécis, alors il est possible d’utiliser les
études faites lors du chapitre I afin d’étendre l’algorithme précédent, et d’être capable d’observer les
probabilités minimales et maximales de l’évènement redouté dans le temps.

La figure 7.7 schématise les entrées et les sorties de cet algorithme étendu.

Conclusion et perspectives

Le travail effectué dans le cadre de cette thèse permet d’estimer l’imprécision de la probabilité d’un
événement complexe connaissant la relation booléenne qui lie l’événement redouté et les événements



Figure 1.6: Algorithme de p-box pour les arbres de défaillances

élémentaires, ainsi que l’imprécision des probabilités des événements élémentaires. Ceci s’applique
naturellement à des arbres de fautes, mais aussi à n’importe quel type de formule Booléenne dont les
variables auraient des probabilités imprécises.

Le problème est abordé sous différents aspects, avec la distinction entre deux principales hypothèses :

• l’évaluation des bornes de la probabilité d’une formule Booléenne lors qu’on suppose l’indépendance
forte de ses variables, on utilise l’analyse par intervalle dans ce cas,

• l’évaluation des bornes de la probabilité d’une formule Booléenne, lors qu’on suppose que les
intervalles de probabilités sur les variables viennent de sources d’information indépendantes,
on utilise les fonctions de croyances dans ce cas.

Une comparaison entre les résultats de ces deux hypothèses est également discutée.

Une troisième partie de la thèse est consacrée à l’évaluation des distributions de probabilités dans
le cas où les paramètres de celles-ci sont imprécis. Les résultats de cette étude peuvent servir à
alimenter les deux précédentes, et permettent d’étendre le calcul de l’intervalle de probabilité d’une
fonction Booléenne à son évaluation dans le temps.

Plusieurs pistes de recherches peuvent être envisagées pour aller dans la continuité de ce travail.
Tout d’abord il serait intéressant de comparer ces algorithmes avec les analyses de Monte-Carlo, afin
d’évaluer les performances sur des cas pratiques.

Afin d’aller plus loin dans la propagation d’incertitude épistémique, il est possible d’envisager une
extension des algorithmes d’analyse par intervalle aux ensembles flous. Cela est possible en utilisant
le concept des α- coupes. Il serait également intéressant d’aborder les aspects dynamiques des études
safety grâce aux chaines de Markovs imprécises par exemple.
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In the aeronautical industry, RAMS engineering (Reliability, Availability, Maintenability and Safety)
is a crucial domain. RAMS studies are important from an industrial point of view, because of the
need to ensure the correct behavior of the product. The aircraft should be able to execute its missions,
and guarantee the safety of passengers and crews. From an airline point of view, it is also required
that a product should be properly and easily maintained, and should be reliable. The consequences
of the lack of one of these requirements can be a disaster, in terms of lives and/or in terms of costs.
That is why a serious RAMS study is required in the production of an aircraft. This kind of study
usually takes into account, as a non exhaustive list, the architecture of the aircraft, the environment,
threats, missions, the human factor and the reliability of the components (Lievens, 1976), (Pages and
Gondran, 1976), (Villemur, 1988).

The main goal of RAMS studies is to ensure the compliance of the system functions and performance,
and also to guarantee the safety of the people and the environment. Those studies are based on
predictions. Trying to predict what could happen to the aircraft, what could cause damages, failures,
or delays, and try to handle it if it is not possible to avoid it. It is impossible to ensure that an
accident will never happen. But it is possible to try to make this rate of occurrence very low. Also, a
good reliability and maintenance management can save huge costs for a company, that loses money
for each delay of the aircraft. Hence, in addition to the safety requirements for the aircraft, we will
have to deal with operational reliability, the maintenance down times and costs.
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The challenge is to anticipate failures, that can happen in a very complex system, and their conse-
quences. Illustration 2.1 shows the design process for a new system, using the experiments from the
past to improve the system.

Figure 2.1: Risk mastering

As far as safety is concerned, the decision policy will always be pessimistic, and will take for granted
Murphy’s law: ”If anything can go wrong, it will”. From an operationability point of view, the policy
can be different, and a bit more optimistic, as the goal is to be as much close to the real case scenarios
as possible.

This chapter presents an overview of the application of safety analysis in the aeronautical domain.
It is very unlikely that a disaster will be caused by only one event. Most of the time, a catastrophe
happens because of several causes. The root cause is one of multiple factors that contributed to
or created the undesired outcome. If it had been eliminated or modified, it would have prevented
this outcome. A contributing factor is an event or a condition that may have contributed to the
undesired outcome, but would not by itself have prevented its occurrence. Failure Conditions (FC)
are a combination of events that link to an undesired event. The main goal of safety analysis is to
identify and classify those failure conditions, hence to determine some requirements for the system,
and verify that they are met.

2.1 Safety analysis process

An aircraft is a very large and complex system, hence, failures or dysfunctions can come from many
components. Hardware, composed of electrical and mechanical devices, can either fail or break-down.
But failures can also come from software, that can have unexpected bugs (Lyu, 1996)(Geffroy and
Motet, 1998).They can also come from humans, as it is a man operated machine. New technologies
are based on innovation, and this also implies that failures and their consequences are not always well
mastered yet (Dejours, 1996)(Amalberti, 1996). The document ARP 4761 describes the recommended
practices for safety analysis for a commercial aircraft. Each company has their own methodologies,
but generally the steps of the ARP document are followed, and eventually improved.

The notion of risk includes two aspects: the occurrence of the initial cause, that is not deterministic
and cannot be predicted, and the consequences of this cause. These are notions of randomness and
severity. They will both be used in order to try to quantify the risk. The more the occurrence of a
risk will be frequent, and the more severe it will be, the more risky the situation will be. A very low
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occurrence can compensate a high risk, and vice versa (Magne and Vasseur, 2006).

It is very important to be able to allocate a maximum probability acceptable for each catastrophic
failure condition at system level, depending on the gravity of its consequences. Some safety require-
ments are defined for each failure condition. This is the first step of safety analysis, commonly known
as Functional Hazard Analysis or FHA.

In FHA, the functional description of a system is studied to find the impact of failure of a certain
function on overall system. More precisely, when a function fails, it leads to a certain failure state of
the system. Many function failures can lead to the same failure state. These failure states are also
referred to as Failure Condition(FC). Once these failure conditions are identified, they are ranked
in a table with their probability, their level of gravity and their consequences on the system. Some
safety requirements can be deduced from this classification.

Once the risks are identified, the next step is to use a top-down approach to list events or combinations
of events that lead to a particular failure condition. This process is known as Preliminary System
Safety Assessment (PSSA). The role of PSSA is to check the safety of the system architecture by
ensuring that the functional requirements defined by the FHA are met. This step is carried out with
help of fault tree analysis, which is a top down approach consisting in describing, for each FC listed
in the FHA, the combination of other events that can lead to it. From this description of the FC, we
develop a tree and from this tree some probabilistic computations can be done in order to evaluate
the expected frequencies of the failure conditions.

It is followed by the system safety assessment whose task is to ensure the safety of the implemented
system. It consists in verifying that the behavior and the probabilities of failure of the real system
meet the requirements described in the FHA and the PSSA. During the SSA, the different components
of the system are listed in a table, and their failure modes, their impacts and their frequencies are
studied. This is called Failure Modes and Effects Analysis (FMEA) (Stamatis, 2003). It is a bottom-
up approach, which may look very similar to FHA, because it is also based on an analysis of failures
and their impact on the system. FMEA is used for the certification of the aircraft, to ensure that all
the safety requirements, functional and probabilistic, are met. The output of the SSA is a document
containing all the results from previously described steps, necessary for the certification. Those results
will also be used at different steps of the life cycle of the product, by sending feedback to the designers
and system engineers, so that they improve the architecture. Some additionnal analysis, named as
Common Cause Analysis (CCA), are done in order to ensure that the independence assumptions
that are generally used for the quantitative analysis in FTA are correct.

After the classification of the failures modes and conditions, it remains to manage the risk and to
define the actions that must be taken for handling such failures. In that case, several solutions can
be put in practice to handle and reduce the risks. In order to manage the risk, there are two main
types of actions to take: prevention and protection.

Prevention consists in taking precautions during the design phase. There can be several ways to
do it: by mean of a good reliability and safety study, redundancies in the architecture, but also in
having a good maintenance of the systems.

Protection consists in every action that could help reducing the gravity of the consequences, like
emergency plans for example.

For every component, there will be different types of failure. The probability of each of them will
be represented by a probability distribution, but those probabilities can have different meanings,
depending on the type of event that we are dealing with. To each event will be attached a different
probability distribution. Those probability distributions will be given by some experts, via knowledge
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of failure rate. One of the widely used methods to carry out the probabilistic study of the failure
conditions is Fault Tree Analysis. The following section describes the main principles, concepts and
tools used in this method.

2.2 Fault tree analysis

Fault Tree Analysis (FTA) was originally developed in 1962 at Bell Laboratories by H.A. Watson.
It is a particular way to analyse the failure conditions of a system. It consists in describing these
conditions in a fault tree that can be used for the probability computations. A fault tree is a graphical
design technique that uses Boolean operators to identify the chain of events leading to a specific fault
or failure. An undesired event will be described as a combination of series of lower-level events. The
top of the fault tree represents the undesired event, also called top event . The leaves represent the
elementary events.

Fault tree analysis involves events that can be hardware wear out, material failure or malfunctions, but
also combinations of deterministic contributing factors. Fig. 2.2 depicts an example of an undesired
event ”Brake system fails”. It describes the link between the three possible causes ”Actuators fail”,
”Sensor fail”, and ”Control fail”, by means of the Boolean operators OR and AND.

Figure 2.2: Fault tree example for the failure of a brake system

Fault trees are very efficient tools to understand the logic leading to an undesired state. It helps
pointing out the compliance between the system and its safety and reliability requirements. By
analyzing the fault tree, it is possible to identify and prioritize different contributors leading to the
top event. The more complex and the least probable a path leading to the top event, the safer the
system.

Fault tree analysis can be used as a design tool that will be helpful for creating requirements and
improving the system’s architecture. By studying the impact of some failures on the system, or the
paths leading to some critical faults, it is possible to identify the most critical failures. Therefore,
one can change the system in order to improve its reliability, e.g. by adding some redundancies of
components, choosing more reliable components for a critical path, etc. In the same way, it is possible
to monitor and control the safety performance of a complex system, e.g. For how long is it allowed
to fly with a valve stuck closed? These results may also help in the creation of diagnosis manuals
and processes.

From a fault tree, it is possible to extract several indicators that will be instrumental for the analysis
of the system. They are useful for the evaluation of the impact of some particular failure or equipment
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on the system, or to determine the number of failures required to reach some particular FC. Minimal
Cut Sets and Importance measures are some of such indicators.

2.2.1 Minimal cut sets, importance measures

Minimal cut sets and importance measures are important indicators for fault tree analysis. They give
crucial information about how the system behaves depending on its components and architecture. A
Minimal Cut Set (MCS) is the set of all minimal conjunctions of events that are sufficient to lead
to the top event. The cardinality of each combination is called the order of the cut. For a given
order, it is possible to list all the combinations of events of this order. Such a list is instrumental
for ensuring some safety requirements, or to compute an approximation of the probability of the
top event. For example, a requirement for a catastrophic event is that no combination of events
should have a length inferior to 3, so that a single failure cannot cause a catastrophe. So by finding
no combinations of order less than 3, it ensures that the safety requirement is met. Importance
measures allow the evaluation of the role of a component in a system’s reliability. They inform about
how much a system failure depends on the failure of this component. Several types of importance
measures can be computed, such as:

• Conditional probabilities: the probability that the system fails if the component fails,

• Marginal importance measure: the rate, with which the availability of the system increases
with the availability of the component,

• Critical importance measure: the evaluation of the relative importance of the components
(highly dependent on the marginal importance factor),

• Diagnostic importance measure: the probability that the component failure has caused the
failure of the system, knowing that the system has failed

• Risk rising measure: measure of the importance that the availability of a component should be
ensured, to ensure the availability of the system,

• Risk decreasing measure: the maximum decrease of the risk that can be accessed by improving
the reliability of a component

• Pointcaré’s conditional probability: an approximation of the conditional probability that the
system fails if the component fails, with the sum of all minimal cut containing the component.

We can define other importance measures depending on the system under study and the model used.
Determining such indicators is part of the safety analysis; they can be used in the PSSA or the SSA.

2.2.2 Fault tree analysis tools

The probabilistic computation from a fault tree is done by mean of classical probability theory, when
the basic events are independent. In that case, several tools can be used to carry out the stochastic
analysis of a fault tree. Most of the existing tools used for fault tree analysis provide features to help
building a fault tree manually. After the user has built the fault tree, then these tools help for its
analyse by mean of some probabilistic calculators that helps computing the probability of the failure
condition, of the importance measures or of the MCS. RiskSpectrum Ris, Aralia SimTree (that is
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now included in GRIF software Sim), CAFTA Osys or Isograph FaultTree+ FTp are examples of
software providing such features.

But in all these software, fault trees has to be built by hand by the safety engineer, hence there
is room for human mistakes. The relevance of the study and its completeness will all depend on
the experience of the engineer. In order to improve and to ensure the exhaustiveness of the safety
analysis, the use of some integrated tools that allows automated fault tree generation is more and
more developed. In this case, the process of safety analysis is based on the use of a model of the
system: it is called Model Based Safety Analysis (MBSA).

2.3 Model-based Safety Analysis

The research about MBSA is quite recent, but it generates more and more enthusiasm from several
research teams, in industry or in academia. In this context, several tools and techniques have
been developed. Different languages and methodologies have been created in order to facilitate
the modeling of the failure behavior of systems. In top of the most popular ones, come the languages
AltaRica (Point, 2000) and Figaro (Pfeffer, 2009). The one chosen in our project is AltaRica, it has
more commercial applications than Figaro, which is a language used only in the tool KB3 developed
by EDF.

In this section, we will show how to build such a model by mean of the AltaRica language (Arnold
et al., 2000), and the tool Cécilia OCAS, from Dassault industry.

2.3.1 Modeling using AltaRica

Modeling using AltaRica is based on the FHA and the FMEA described in section 2.1, and on the
study of the system’s architecture. It consists in modeling the behavior of each component of a
system individually, and then in connecting them together following the architecture of the system,
in order to simulate and evaluate the propagation and the impact of components failures on the
system.

2.3.1.1 The AltaRica language

The AltaRica language was created at LaBRI in the 90’s (Point and Rauzy, 1999). It is based on
mode automata, that are programming constructs used to build systems with running modes. They
are defined as automata, whose states are labeled by data-flow equations, and which can be composed
with operators. The language allows representing generic elementary components, by describing their
internal states, the events that they can receive, their inputs. Their output will be described as a
function of the inputs, states and events. Fig. 2.3 depicts the structure of one component, also called
node.

AltaRica was created to model failure propagation in a system; hence the events of the node may
represent a failure or an error. But other types of event can also be represented, like an activation
order for example. Each event will be associated to a failure mode or a state. Fig. 2.4 is an example
of the evolution of the state of a component with the events that can occur. At the initial step, the
component is in the state Ok, and the output is the same as the input, which means that there is no
propagation of failure from this component. If the event Error occurs, the state of the component
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Figure 2.3: Structure of one component

becomes Err, and so does its output. The event Loss can occur when the component is in the Ok
state, or if it is already in the Err state, in both cases the state will become Lost, so will be the
output. It is interesting to note that if Lost can occur when the state is Err, the contrary is not true:
the system cannot get an error if it is already down.

Figure 2.4: Evolution of the state of a component with events

The tool Cécilia OCAS provides a graphical interface, to help for the modeling of each component.
Once the components are modeled with the language, some connections between the input and the
output of several components can be made, so that they can interact with each other.

2.3.1.2 System modeling and analysis

In order to connect two different components, it is possible to link one input and one output. But
their flows have to be consistent, e.g. they should be of the same type (predefined or personalized).
Two components can also interact with each other by means of some synchronization of the events or
the states. Some components can be used to describe some other components internally; it induces
the concept of hierarchy. The graphical interface of Cécilia OCAS is very helpful for the components
connections. Also, the tool helps to check the consistency of the model and to compile it. Once the
model is built, a simulation process can be used in order to validate it, and to verify that it behaves
as expected. At the beginning, fault trees were constructed by hand by the engineers designing the
system. Now, it is possible to automatically generate fault trees from a model of the architecture of
the system. The following section will describe this process.

A qualitative analysis of the model can be carried out with the tool OCAS. First, the simulation
tool allows the user to select some events, and to see their effects on the system in real time. It is
also possible to extract some information from the model, like the failure conditions for each failure
of each part of the system. For this purpose, the user will set some observers in order to check his
part of interest in the system. The quantitative analysis consists in computing the probability of
the failure of a system (or subsystem) from the probabilities of failures of its components. Several
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techniques can be used for this purpose, like fault trees (Volkanovski et al., 2009), Markov chains
(Norris, 1998), or Bayesian networks (Neapolitan, 2003). In the following sections, we will focus on
the techniques used in fault tree analysis.

This section describes some of the techniques where it is possible to use with the software Cécilia
ARBOR, from Dassault industry. Cécilia ARBOR (System analysis by mean of fault trees) allows
creating some fault trees, or to import automatically generated ones from Cécilia OCAS. It provides
some algorithms for computing the probability of the top event, and to carry out sensitivity analysis
on the models with Monte-Carlo simulations (Rao et al., 2009). They can be carried out on the
probability of the top event, but also on importance factors, that are described in section 2.2.1.
It is possible to define probability laws for representing the evolution of the failure probability of
each component, and to define probability of frequencies on the parameters of those distributions.
Then Monte-Carlo simulation will show the evolution of the probability of the top event. The tool
also allows extracting minimal cut sets from the tree, and computing importance measures for some
components. They will be introduced in the next section.

2.3.2 From architecture models to fault trees

With the help of some specialized tools, it is possible to extract some fault trees from a structural
model of the system. In the case where the model is built with the AltaRica language, the tool
Cécilia OCAS can compute a fault tree for any observer in the system. Different tools and methods
to extract a model can be used (Majdara andWakabayashi, 2009) (Winckell, 1998), but in this section,
we will focus on how to compile mode automata into fault trees (Rauzy, 2002). The compilation of
mode automata into fault trees results in a better efficiency of the assessment of the models, and a
simplification of the design. But it implies the loss of the sequencing of the events: a sequence will
become a conjunction of events.

The algorithm described in (Rauzy, 2002) uses a mode automaton representing a component of the
system under study, and computes a set of Boolean equations from failures conditions. The algorithm
is very efficient for models that are close to a block diagram representation. It is the principle use for
the automated generation of fault trees from an AltaRica model of the system. It is a very efficient
way to have an exhausted description of the failure conditions, and to ensure the completeness of the
analysis. Such generated fault tress have different properties from the fault trees that are written by
hand by safety engineer: they can contain negation of events.

Some other domains of aeronautical engineering are also closely related to safety analysis, as they
study the health of the aircraft. Diagnosis and Prognosis are fields that analyze, identify and predict
failures. They compute and deal with some indicators that are then used in safety analysis and more
generally RAMS studies, such as MTBF (Mean Time Between Failures), MTTF (Mean Time To
Failure), or RUL (Remaining Useful Life) that are defined in Appendix A.

2.4 Diagnosis and Prognosis

In simple words, diagnosis refers to a process that identifies the cause of occurrence for a given
abnormal behavior or symptom. Diagnosis is being used extensively in all kind of systems and it
has been under study and practice in aeronautics for several years. Different kinds of studies and
research are being carried out to improve diagnosis process so that troubleshooting of systems can
be done easily and more effectively. Different kind of sensors and software are added as part of the
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system design to get information which helps in diagnosis.

Generally it is possible to classify embedded software pieces which help for the diagnosis into three
main categories:

• The Real-Time Monitor: This type of diagnosis system (embedded software code and support-
ing sensors) is used primarily for the failure detection of critical functions in real time i.e as
soon as they occur.

• Continuous Built-in-Test (CBIT): this diagnosis system performs the failure detection on non-
flight critical functions and reports the status of real-time monitors (in background during the
flight). This report is not used by the crew but by the maintenance team at the ground.

• Initiated Built-In-Test (IBIT): This kind of diagnosis consists of test sequences performed on
the ground to check the system health status.

As with every measuring and detection system, the evaluation of uncertainty associated with the
diagnosis process is necessary. This evaluation has many fold purposes. With the help of these
evaluations we can compare different monitoring approaches and classify them according to desired
criteria. We can also verify the probability of detection in case of fault. Last but not the least, these
evaluations can also help in assessing the risk of false detection.

Figure 2.5: Advanced Diagnosis

This uncertainty may be contributed by sensors, sampling, imperfect/incomplete detection model,
arbitrary time confirmation method to filter transient behavior or other known/unknown sources.
The propagation of uncertainty is handled in the diagnosis step by building in real-time a confidence
level in the detection process (e.g. the symptom really exists or not) which is propagated in the
diagnosis algorithms (failure isolation and fault identification). The confidence level can be used
statistically for FMEA synthesis and in real-time.

Prognosis is proactive approach as compared to reactive approach of diagnosis. Prognosis emphasizes
on calculation and prediction of system’s health in future, by using its past and present. It determines
how the health state of a system will evolve in the future as function of the past and of the mission
profile. Prognosis is the prediction of the likely occurrence of an event or outcome. The concern
for prognosis in maintenance and schedule management is quite recent. Hence, it still requires
the development of related methods and tools as compared to diagnosis. Research in the field of
prognosis takes into account some already existing studies about mechanical degradation modeling
and life consumption, and some new investigations (Ribot, 2009), for instance the computation of
the RUL (Remaining Useful Life).

Existing safety models will be extended to include inputs from Diagnosis and Prognosis, along with
other necessary and important inputs in order to extend them in such a way that these models can
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be used dynamically for system analysis, predictions and decision making. This approach will be
part of the operationability models development.

Figure 2.6: Prognosis

In the above revised approach, inputs/outputs of the model use three different levels of Prognosis
namely: equipment RUL, system RUL, Aircraft RUL. Also, the inputs include the notion of degra-
dation mode and logical assertions that can be fused with diagnostic ones. The prognosis takes its
inputs from the advanced diagnosis and the mission profile as shown on fig. 2.6.

The model specifies input/output report formats such as the prognostic report format expected from
aircraft systems. Some techniques of validation and verification of prognostic and health management
technologies using the criteria of accuracy and precision are used in the model (Voisin et al., 2009)
(Hines and Usynin, 2008). Some industrial issues raised by prognostics are also part of the model,
e.g. knowledge is confined at supplier design office, then how to confirm degradation? In fig. 2.7, we
can see how they use simulation for the Prognosis analysis.

First, a full simulation is done to see the real behavior of the system, then the predictions are obtained
at a time t0, where we consider that we don’t know the future, and try to predict it. They compute
the hypothetical behavior of the system, an associated confidence interval, and the evolution of the
failure rate with time. These techniques of prognosis give some stochastic indicators that will be

Figure 2.7: How to use simulation for Prognosis study

used in the operationability models.
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Uncertainty is very present in risk management, as it is based on predictions of the future. So con-
sidering only stochastic uncertainty in predictions, models and inputs as ruled by precise probability
laws is not recommended. It is better to be conscious of the uncertainty of the models, and to try to
deal with it. That is the reason why uncertainty management is an important part of risk analysis.
The next section describes the mathematical models that are used for representing reliability.

This Chapter gave an overview about the models that are used in the context of our studies, about the
type of data that will be used in the models and also, it highlights the different sources of uncertainty
present among the different computation processes.
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Chapter 3

Logic and Fault Trees Analysis
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As discussed in Chapter 2, fault tree analysis is one of the tools used to carry out Safety Analysis.
The main objective in this thesis is to deal with imprecision in probabilistic data used for fault tree
analysis. Before going into detailed discussion of how to handle this imprecision, let us first go over
some basic concepts.

Basically, in fault tree analysis (FTA) theory, a fault tree can be seen as a special kind of Boolean
function, with only positive literals. Each variable of this Boolean function represents the failure S of
some component, that can be in either of two possible states, e.g. failed (S = 1) or not (S = 0). But
this theory is used beyond this assumption in practice, for the modeling and the simulation of the
systems with automatic tools like the one described in section 2.3. In this case, the Boolean variables
can be used to represent some other kind of states than just failures, e.g. ”day mode” (S = 1) and
”night mode” (S = 0). That is the reason why, this work will consider that a fault tree is a Boolean
function that can contain positive and negative literals. The next section recalls basic concepts about
Boolean functions.

3.1 Basics about Boolean functions

Let us suppose that X = (X1, ..., Xn) is a tuple of Boolean variables. An assignment of X is an
element σ of {0, 1}n.

Definition 3.1 (Boolean function)
A Boolean function on a set of variables X = {X1, ..., Xn} is a function F : {0, 1}n → {0, 1} ♦
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In order to manipulate Boolean functions, we use a syntax based on Boolean formulas .

Definition 3.2
The set F of Boolean formulas is built by structural induction from:

• A finite (or countable) set of Boolean variables X1, . . . , Xn,

• Some logic operators: ∧ (and), ¬ (negation). ♦

From those operators and variables, we can induce the operator ∨ (or) by A1∨A2 = ¬(¬A1∧¬A2),
and also the Boolean constants 1 : A1 ∨ ¬A1 and 0 : A1 ∧ ¬A1.

The set F of Boolean formulas is the smallest set verifying that:
• 0 and 1 are formulas.
• The variables of X are formulas.
• If F and G are formulas, then F ∧G and ¬F are formulas as well.

Example 3.1 F = (X1 ∧X2)∨X3 and G = (X1 ∨X2)∧ (X2 ∨X3) are Boolean formulas built from
the set of variables X = {X1, X2, X3}. ♦

There are other logical operators constructed from the usual ones ( ∧, ∨, ¬ ):
- Implies ( ⇒): F ⇒ G is short for ¬F ∨G.
- Equivalent ( ⇔ ): F ⇔ G is short for (F ⇒ G) ∧ (G ⇒ F ).
- If-Then-Else ( ite ): ite(F,G,H) is short for (F ∧G) ∨ (¬F ∧H) ⇔ (F ⇒ G) ∧ (¬F ⇒ H).

Definition 3.3
A literal is either a variable X1, either its negation ¬X1: X1 is a positive literal, and ¬X1 a negative
literal. X1 and ¬X1 are called inverse of each other.
A product is a conjunction of literals which never contains a literal and its inverse; a positive
product contains only positive literals.
A minterm or an interpretation ω on X is a product which contain, positively or negatively, all
the variables of X . We denote by minterm(X ) the set of all possible minterms (interpretations)
of X . ♦

Example 3.2 For the set X = {X1, X2}:
X1X2 and X1¬X2 are some minterms of X .
minterm(X ) = {X1X2,¬X1X2, X1¬X2,¬X1¬X2}.

A Boolean formula can always be expressed by a disjunction of minterms. For example the formula
F = (X1∧X2)∨ (X1∧¬X3) can be written as F = X1X2X3+X1X2¬X3+¬X1X2X3+¬X1¬X2X3.

Definition 3.4
It is possible to represent a minterm ω by the set ωc of its positive literals, called Herbrand ’s
representation.

Example 3.3 For the set X = {X1, X2, X3}, the mintermX1X2¬X3 will be represented by {X1, X2}.
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3.2 Boolean formulas and fault-tree analysis

In Boolean models of risk analysis, the variables represent the states of the elementary components,
and the formulas describe the failures of the system as function of those variables (Thomas, 2002).

As seen in Section 2.2.1, it is interesting to know the minimal sets of failures of elementary components
which imply a failure of the studied system, called minimal cut set .

Definition 3.5 (Implicants, Prime Implicants)
Suppose that F and G are two Boolean formulas built on a set X of variables. If all the minterms
of F are minterms of G, we say that F implies G, and we note it F |= G.
An implicant of F is a product term π such that π |= F .
An implicant is a prime implicant if it contains a minimal number of literals, i.e there is no smaller
product of π that implies F . We note PI[F ] the set of prime implicants of a formula F .

Any formula is equivalent to the disjunction of its prime implicants. For example, the formula
F = (X1 ∧X2) ∨ (¬X1 ∧X3) built on X = {X1, X2, X3} admits the following implicants : X1X2X3,
X1X2¬X3, ¬X1X2X3, X1X2, ¬X1X3 and X2X3. Between them, only X1X2, ¬X1X3 and X2X3 are
prime implicants.

In fault tree analysis, there is a fundamental asymmetry between positive literals (that represent fail-
ures) and negative literals (that represent that everything is OK): the latter one carry less information
than the first one.

In the example above, the product ¬X1 ∧X3 contains a negative literal (¬X1) that doesn’t contain
any interesting information. In fact, we would like to keep only X3 from this product, because the
information given by the negative literals are not so relevant. But we have X2∧X3 |= X3 so X2∧X3

is no more prime. The cut set that we want to obtain is {X1 ∧X2, X3}. A minimal cut set includes
the positive minimal part of the prime implicants of a formula F .

Definition 3.6 (Cut, Minimal Cut)
Let X be a set of variables, ω a minterm and ωc the Herbrand’s representation of ωc.

• ωc is a cut of F if ω satisfies F .

• ωc is a minimal cut if there is no subset of ωc that is a cut of F . We denote MCS[F ] the set
of minimal cuts of F . ♦

In order to formalize the link between minimal cut sets and prime implicants, we introduce a natural
order on the literals: for each variable X, we consider that X < ¬X. This order on literals is
extended to an order on the minterms: suppose that ω and ρ are two minterms built on the same
set of variables X = {X1, ..., Xn}. ω < ρ if for every Xi, ω[Xi] ≤ ρ[Xi] and if it exists at least one
Xi for which this inequality is strict.

A sufficient condition (but not necessary) for a formula to be monotonic is to contain only positive
or only negative literals. A formula is increasing if for all minterms ω and ρ we have: if ω |= F and
ρ < ω, then ρ |= F .

The prime implicants of an increasing formula only contain positive literals. Indeed, if ¬Xi ∧ ω
were a prime implicant of an increasing formula, then Xi ∧ ω would satisfy F (with the definition
of monotonic), it means that ω would satisfy it as well so ¬Xi ∧ ω is not prime. The notions of
prime implicants and of minimal cut sets are the same for monotonic formulas: if F is monotonic,
PI[F ]=MCS[F ].
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Definition 3.7 (Monotonic envelope)
If f is not monotonic, its minimal cut sets are prime implicants of a monotonic formula g. We will
then define the monotonic envelope ↑ f of a formula f built on a set of variables X such that:

Minterm(↑ f) = {π ∈ Minterms(X), ∃ρ ∈ Minterms(X) | ρ |= f and π ≤ ρ} (3.1)

♦

For any function, we have f |=↑ f and MCS[f ] = PI[↑ f ]

The main drawback of these computations is that they just give an approximation of the proba-
bility. It was really necessary to improve those computation times in order to be able to have an
accurate result for complex Boolean systems. That is the reason why the use of different formula
representation, such as Binary Decision Diagrams (BDD) has been introduced.

3.3 Binary Decision Diagrams (BDDs)

The concept of Binary Decision Diagrams (BDDs) has been used in safety analysis in order to
overcome the computation time problems with complex fault trees. It consists in a graphical way to
represent Boolean formulas, with a view to simplify the probability computations. Before introducing
the concept of BDDs, let us first talk about their origin: Shannon decomposition.

3.3.1 Shannon decomposition

Definition 3.8
Let us consider F a Boolean function on a set of variables X , and X a variable of X . The Shannon
decomposition of F related to X is given by:

F = (X ∧ fX=1) ∨ (¬X ∧ fX=0) (3.2)

♦

where FX=1 (resp. FX=0) is the function with all X replaced by the true value 1 (resp. the false
value 0).

When we choose an order for the variables of a set of variables X , and we apply recursively the
Shannon decomposition for each variable of a function F built on X , we get a binary tree; called
Shannon tree. Each internal node of this tree can be read as an if-then-else (ite) operator. Each
node contains a variable X , and has two edges: one edge pointing towards the node encoded by the
positive cofactor FX=1 and the other one towards the negative cofactor FX=0.

The leaves of the tree are the truth values of the formula 0 or 1. The expression obtained by the
product of variables going down from the root to the leaf 1 is a minterm, and the sum of all those
products gives the expression of the formula. But such a representation of the data is very costly in
memory space.

Example 3.4 The Shannon tree for the formula A∨ (S∧C) and the order A, S, C (the dotted edges
represent the else) is represented on Fig. 3.3. ♦
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Figure 3.1: Shannon tree of A ∨ (S ∧ C) and the order A,S,C

3.3.2 Basics about Binary Decision Diagrams

The principle of BDDs is to reduce the size of the Shannon tree by using reduction rules.

Definition 3.9 (BDD reduction rules)
There are two rules for reducing a Shannon tree in order to get a BDD:

R1 As all isomorphic trees encode the same function, one is sufficient. We will then need only
two leaves : 0 and 1.

R2 We delete all useless nodes: a node both outward edges of which point to the same node is
useless.

When we apply those two rules as often as necessary, we obtain the BDD associated to the formula.

A BDD is a directed graph without cycles. For a given ranking of variables, the BDD is unique up
to an isomorphism. The size of the BDD depends on the ranking that we choose for the variables.
We can use some heuristics to find rankings that leads to small BDDs.

In a BDD each path from the root to terminal node 1 can be seen as a product, and the disjunction
of all those products gives a representation of the function. A variable can be either present (in a
positive or negative polarity) in a path, or absent.

• a variable is present in a positive polarity in the corresponding product if the path contains the
then-edge of a node labeled by this variable,
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Example 3.5 (From the Shannon tree to a BDD)

Figure 3.2: From the Shannon tree to the BDD of the formula A ∨ (S ∧ C) and the order A,S,C

• a variable is present in the negative polarity in the corresponding product if the path contains
the else-edge of a node labeled by this variable,

• a variable is absent if the path doesn’t contain a node labeled by this variable.

3.4 Probability of a Boolean formula

For probability computation of a Boolean formula, the experimental approach consists in approxi-
mating the probability by computing a relative frequency from tests: if we realize N experiments
(where N is a very large number) in the same conditions, and we observe n times the event e, the
quotient n/N give an approximation of the probability P(e). Indeed, this probability can be defined
by: P (e) = lim

N→+∞
(n/N). In practice, it is very difficult to observe events such as complex scenarios

involving multiple, elementary events several times.

The analytical approach can be used when a failure condition is described as a Boolean function F of
atomic events. Such dreadful event probability is thus computed from the knowledge of probabilities
of atomic events, that are often given by some experts. The Boolean methods of risk analysis often
make the hypothesis that all these elementary events are independent.

There are two methods to calculate the probability of a Boolean formula, considering:
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• the Sylvester-Poincaré development, also known as inclusion-exclusion principle (letting each
Xi stand for product of literals):

P (X1 ∨ ... ∨Xn) =
n

∑

i=1

P (Xi)−
n−1
∑

i=1

n
∑

j=i+1

P (Xi ∧Xj)

+
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

P (Xi ∧Xj ∧Xk)− ...+ (−1)n+1P (X1 ∧ ... ∧Xn)

(3.3)

• the Shannon decomposition of the formula. This approach will be discussed in section 3.3.1.

• the formula as a sum of minterms.

As we have seen in section 3.1, a Boolean formula can be written as a sum of minterms, that are
mutually exclusive by definition. So the probability of a dreadful event is equivalent to:

P (f) =
∑

π∈Minterms(f)

P (π) (3.4)

The assumption of independance between the probabilities of the variables give the following formula:

P (f) =
∑

π∈Minterms(f)

∏

x∈π

P (x) (3.5)

But this method requires to have all minterms of f , that is very costly in computation time.

Practically, we can compute the probability of a formula f by applying Sylvester-Poincaré theorem
(3.3) to the minimal cut sets of the formula, more precisely, we compute an approximation of this
probability by making some simplifications:

1. We consider the monotonic envelope of the formula instead of using the formula itself. This
simplification is pessimistic because for each formula, f |=↑ f , means that P (f) ≤ P (↑ f).

2. We consider just the minimal cut sets of greatest probabilities. This simplification is optimistic
because it ignores some of the minterms of f .

3. We consider only the k first terms of Sylvester-Poincaré development. This simplification can
be optimistic if k is even, or pessimistic if k is odd.

The BDD representation of a formula can be more compact than the formula itself (sect. 3.3.2). The
computation of the probability using the BDD representation of the formula is faster than using the
formula or the Shannon decomposition.

We denote P the set of paths of the BDD, that reach the terminal leaf 1 and Ap the set of literals
contained by path p of P. If a literal a is present positively (resp. negatively) in the path p ∈ P,
we will say that a ∈ A +

p (resp. a ∈ A −
p ).

According to those notations, we have:

P (F ) =
∑

p∈P

∏

ai∈A
+
p

P (ai)
∏

aj∈A
−
p

(1− P (aj)) (3.6)
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Example 3.6 Let us consider the fault tree presented as an example in section 2.2 on fig. 2.2.

Let A be the event ”Actuators fail”, represented by a Boolean variable of same name, A = 1 means
that the actuators fail, and A = 0 that they didn’t fail. The same way, S is ”Sensors fail” and C is
”Control fails”. We will call F the top event ”Brake fails”. F can be expressed as a Boolean formula:

F = A ∨ (S ∧ C) (3.7)

Let us compute P(F).

1. Using Sylvester-Poincaré theorem

P (F ) = P (A∨(S∧C)) ⇔ P (F ) = P (A)+P (S∧C)−P (A∧S∧C) As all events are considered
as independent, we have P (S ∧C) = P (S)×P (C) and P (A∧ S ∧C) = P (A)×P (S)×P (C).
So we get:

P (F ) = P (A) + P (S)× P (C)− P (A)× P (S)× P (C) (3.8)

2. Using the formula of Shannon tree (3.2)

The computation of P (F ) from the Shannon tree is obtained by summing the probabilities of
all paths leading to 1:

Figure 3.3: Computation of P (F ) with F = A ∨ (S ∧ C) from Shannon tree

P (F ) = P (A) × P (S) × P (C) + P (A) × P (S) × (1 − P (C)) + P (A) × (1 − P (S)) × P (C) +
P (A)× (1− P (S))× (1− P (C)) + (1− P (A))× P (S)× P (C)
⇔ P (F ) = P (A)× P (S)[P (C) + (1− P (C))] + P (A)× (1− P (S))[P (C) + (1− P (C))] + (1−
P (A))× P (S)× P (C)
We get:

P (F ) = P (A) + (1− P (A))(P (S)× P (C)) (3.9)

3. From the BDD

The BDD representation of the formula (3.7) is F = A + (1 − A)SC (see fig. 3.2). Applying
equation (3.6) to this formula, P (F ) is given by:

P (F ) = P (A) + (1− P (A))(P (S)× P (C)) (3.10)

♦
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Figure 3.4: Computation of P(F) with F = A ∨ (S ∧ C) from BDD

As shown of this example, those three different ways to compute the exact probability of a top event
are equivalent in terms of results. But in practice, the computation from the BDD is much more
efficient to implement, because it is linear with the number of paths going to 1 in the BDD.

The probabilities of the elementary events that imply the top event are required to compute its
probability. Those probabilities are obtained from statistical studies of the physical components
and some of the mathematical concepts are described in Appendix A. With the expression of the
reliability as function of the failure rate, it is possible to see the evolution of the reliability from
the statistics inputs that we have on the failure rates. The shape of the failure rate will define the
behavior of the reliability function.

This thesis will use the mathematical concepts about representation of Boolean formulas described
in this chapter, as a base for the uncertainty management.
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Uncertainty theories and Reliability
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All the methods in classical risk analysis describe in the previous chapters assume that all probabilities
are precisely known. Moreover, it is usually assumed that a complete probabilistic information
about the system behavior and component reliability is known. It is also assumed that all system
components are stochastically independent. But these assumptions are not always verified in practice.

The aim of this chapter is to present some techniques and frameworks that have been already proposed
in uncertainty management, and that allows to capture different facets of uncertainty. In a second
step, we will expose the theoretical problem raised by the uncertainty in fault tree analysis, and
discuss different approaches, depending on the assumptions made for the modeling.
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4.1 Uncertainty theories

Uncertainty in risk analysis has mostly been captured from a probabilistic point of view, i.e. the
uncertainty about parameters of models is generally assumed to be caused by their variability. But
the uncertainty about the parameters can come from two sources (Baudrit et al., 2008). The first
one is actually the variability of the parameter that comes from the randomness of the information,
due to the natural variability of stochastic phenomena. The second source of uncertainty is linked
to the incompleteness or the imprecision of the information, due to a lack of knowledge. It is called
epistemic uncertainty.

The propagation of those two different sources of uncertainty requires different methods (Ferson and
Ginzburg, 1996). Modeling the knowledge with a unique probability distribution is natural when the
available information is random and precisely observed. It has some impact on the propagation of
uncertainty in risk analysis models. In order to model epistemic uncertainty, different frameworks
have been developed since the 80s, representing uncertainty with probability families. It is the case
in Possibility theory (Dubois and Prade, 1988)(Dubois et al., 2000), where fuzzy numbers are used as
a more expressive method than intervals. It is also the case for the theory of imprecise probabilities
(F. Coolen, 2010). The theory of belief functions provides a way of using mathematical probability
to quantify subjective judgments (G. Shafer, 1990).

4.1.1 Possibility theory

In order to handle flexible queries and to manage imprecise and uncertain information, a framework
based on Fuzzy set and possibility theory can help us to provide a solution. A fuzzy number can be
defined as an extension of a regular interval because a fuzzy number does not represent a single value;
it refers to a connected set of possible values. Each possible value in a fuzzy number has its own
weight which varies between 0 and 1. This is also known as membership function which describes a
subpart of a universe U whose boundaries are not strictly defined and a grade of membership (valued
in [0,1]) is attached to each element of U. The advantage of this kind of representation is that there
is a gradual transition between full membership and exclusion which enables us to have a better
representation of gradual properties, vague classes and approximate descriptions such as currently
used in natural languages when we speak of the real world.

In other cases, the problem can be ”how to represent an ill-known value x?”. In such cases, possibility
distribution concept is used to express a restriction on the approximate possible values of x and to
represent the extent to which a given element of U is possible as being the actual value of x. We can
see that fuzzy sets and possibility distributions both deal with a universe U but it should be noted
that they tackle with two different issues.

Probabilistic uncertainty is based upon an additive measure and is used in cases of repeated ex-
periments but in comparison, possibilistic uncertainty is based upon a non-additive measure and
generalizes the idea of ease of attainment in a situation.

Fuzzy sets can be used in many applications, e.g. they can act as a mean of translating linguistic
values into possibility distributions and the concept of approximate reasoning based on fuzzy sets
can be used in simulation of a large class of human reasoning operations. As an example, the paper
(Yager, 1982) introduce a measure of specificity of a possibility distribution and discusses applications
of fuzzy set theory to intelligent querying of databases and multiple criteria decision making. More
details about fuzzy numbers and possibility theory can be found in Appendix B.
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4.1.2 Belief functions

Belief functions theory was developed by Dempster and Shafer in the 70s. It is a mathematical
theory of evidence, that gives a framework that allows representing both variability and epistemic
uncertainty. It is based on the idea of obtaining degrees of belief for one question from subjective
probabilities for a related question, i.e. a probability derived from an individual personal judgment
about whether a specific outcome is likely to occur or not. Moreover, the principle is to use some rules
for the combination of information coming from different sources, in order to get a degree of belief
that takes into account all the available evidence. This theory has been used for several applications
in aggregation of information of different types and uncertainty management.

Let us consider Ω as a set of possible realizations (answers to a question), Ω is called frame of
discernment . When the knowledge is not enough to determine a probability for each member of the
set, it is possible to associate a mass function to the subsets of Ω rather than to single elements.

Definition 4.1 (Mass function)
A mass function m is a assignment of some non negative weights to different subsets of a set Ω
such that the sum of the mass of all subsets of Ω (i.e. the power set P [Ω]) is 1

∑

S∈P [Ω]

m(S) = 1,

and s.t. m(∅) = 0.

In this perspective, it is possible to represent total ignorance by assigning the mass of 1 to the set Ω.

Definition 4.2 (Focal element)
A set that receives a strictly positive mass is called focal element.

In order to combine two independent mass functions on a set Ω, Dempster-Shafer rule of combination
should be used.

Definition 4.3 (Dempster-Shafer rule)
For two masses m1 and m2, the joint mass m1,2 can be computed as follows:

• m1,2(∅) = 0

• m1,2(S) =

∑

B∩C=S

m1(B)m2(C)

1−

∑

B∩C=∅

m1(B)m2(C)
, ∀S ⊆ Ω

Shafer’s framework can represent the information about a subset of Ω by means of a pair of functions,
called Belief and Plausibility functions, denoted as (Bel, P l), such that:

Bel ≤ Pl

Definition 4.4 (Belief and Plausibility)
Let Ω be a set of elements, and the Ei’s the elements of P [Ω]. The belief of a set S is the sum of
the mass of all sets Ei from Ω that are included in it:

Bel(S) =
∑

Ei⊆S

m(Ei)
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The plausibility of a set S is the sum of the mass of all sets Ei of Ω that are compatible with it:

Pl(S) =
∑

Ei∧S 6=∅

m(Ei)

♦

The Belief and the Plausibility of a set S are non-additive measures. They can be seen as the upper
and lower bounds of a probability interval. This interval contains the precise probability of the set
S in the classical sense:

Bel(S) ≤ P (S) ≤ Pl(S)

Belief functions have several applications in uncertainty management (Dubois and Prade, 1985)(Dubois
et al., 1998), particularly for the modeling of incomplete information. One of the biggest challenges of
information and communication technologies is the modeling and processing of information. Different
formalisms can be used, but belief function theory allows to combine imprecision and uncertainty.
The information can take different forms (measures, data, knowledge...) with respect to the problems
that are concerned.

Belief functions have given good results in the domains of pattern recognition and information fusion
(T. Denoeux, 2012), (F. Pichon, 2012).

This theory is flexible enough to carry out the modeling of several different domains of information and
communication technologies, such as data analysis, diagnosis, decision support or image processing
(S. Petitrenaud, 2004)(Klir, 2006).

This framework is also used for reliability analysis of systems with data uncertainties and failure
dependencies, for components with multiple states (Sallak et al., 2008) (Sallak et al., 2010). This
approach consisting in evaluating reliability with belief functions through the Transferable Belief
Model (TBM) has been compared to a classical Monte-Carlo approach (Aguirre et al., 2011). It
turns out that this method has several advantages as compared to Monte-Carlo simulation. First
of all the propagation of both types of uncertainty: variability and epistemic uncertainty, without
having to select a precise probability distribution for the modeling of epistemic uncertainty. It also
prevents from adding artificial information in the reliability computations, and allows the fusion of
knowledge from different experts, in case of conflicting information.

Belief functions are a very powerful framework when it is necessary to deal with information that is
heterogeneous, comes from different sources, or from various frames of discernment.

4.1.3 Imprecise probabilities

Classical probability requires a very high level of precision and consistency of information, and thus
it is often too restrictive to cope carefully with the multi-dimensional nature of uncertainty. Perhaps
the most straightforward restriction is that the quality of underlying knowledge cannot be adequately
represented using a single probability measure. An increasingly popular and successful generalization
is available through the use of lower and upper probabilities.

Definition 4.5 (Upper and lower probabilities)
Upper and lower probabilities denoted by P (A) and P (A) respectively, are s.t. 0 ≤ P (A) ≤
P (A) ≤1.
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The special case with P (A) = P (A) for all events A provides precise probability, while P (A) = 0
and P (A) = 1 represents complete ignorance about A.

Definition 4.6 (Upper and lower probability envelopes)
Let P be a probability family on Ω. The lower and upper probability envelopes are defined by:

P∗(E) = infP∈PP (E)

P ∗(E) = supP∈PP (E)

♦

Upper and lower probability envelopes are the convex disclosure for a probability family. They also
are referred by the name coherent upper and lower probabilities (Walley, 1999).

The framework of imprecise probabilities introduces the concept of lower and upper previsions, but
for that, we need first to introduce the concept of gambles (T. Augustin, 2014).

Let Ω be a probability space.

Definition 4.7 (Gamble)
A gamble is a bounded mapping from Ω to R.

In the case of probabilities, we are indifferent between betting on events or on gambles: our betting
rates on events (a probability) determine our betting rates on gambles (its expectation).

Definition 4.8 (Lower and Upper previsions)
The lower prevision for a gamble f , P (f), is our supremum acceptable buying price for f ,
meaning that we are disposed to buy it for P (f)− ǫ (or to accept the reward f − (P (f)− ǫ)) for
any ǫ > 0.

The upper prevision for a gamble f , P (f), is our infemum acceptable selling price for f , meaning
that we are disposed to sell it for P (f) + ǫ (or to accept the reward P (f) + ǫ− f) for any ǫ > 0.♦

Proposition 4.1 There is a relationship between lower and upper previsions:

P (−f) = −P (f)

In the imprecise case, the lower and upper previsions for events do not determine the lower and upper
previsions for gambles uniquely. Lower and upper previsions are more informative than lower and
upper probabilities.

Imprecise probabilities provide new methods with greater flexibility than probability theory for un-
certain quantification. Its advantages include the possibility to deal with conflicting evidence, to
base inferences on weaker assumptions than needed for precise probabilistic methods, and to allow
for simpler and more realistic relevance with subjective information (F. Coolen, 2010).

4.2 Different types of independence

Uncertainty propagation in a model with several parameters always has to take into account the
dependence or independence of these variables. For variables that represent the observation of some
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phenomena, there are two different levels of dependence. First, the dependence between the sources
of information about the variables (coming from the observers), and second, the dependence between
the variables themselves (coming from the phenomena).

In classical probability theory, the notion of independence between two events captures the fact that
the frequency of occurrence of one of them has absolutely no impact on the frequency of occurrence
of the other one. This idea can be formalized in the context of precise probabilities, but in the scope
of other uncertainty management framework, some other definitions can be discussed.

4.2.1 Stochastic independence

The name of stochastic independence will refer to the independence of two events in the context of
precise probability theory.

Definition 4.9 (Stochastic independence)
Let X and Y be two random variables, FX and FY their marginal cumulative probability dis-
tribution, and FX,Y their joint cumulative probability distribution i.e. P (Y ≤ x) = FX(x),
P (Y ≤ y) = FX(y) and P (Y ≤ y) = FX(y).

X and Y are independent is equivalent to FX,Y (x, y) = FX(x)FY (y)∀(x, y). ♦

Proposition 4.2 Stochastic independence for two events A and B is equivalent to:

P (A ∩ B) = P (A)× (B)

Several other formalisms can be used in order to define this concept, using probability density dis-
tribution or mathematical expectation. In the case of dependency between the variables, the notion
of copulas can be used in order to model those dependences (Nelsen, 1998).

As far as classical probability theory is concerned, the notion of independence is unique. But once we
consider extended frameworks in uncertainty management, this notion can have several interpreta-
tions and be slightly more complex. In the following, we will present different notions of independence
in imprecise probability, that are recognized and presented in the work of I. Couzo et al. (Couso
et al., 2000). We will consider the random variables X and Y , and their imprecise probabilities PX

and P Y . PXY is the probability measure associated to the random vector (X, Y ).

4.2.2 Strong independence

The strong independence has been introduced in the context of imprecise probabilities, described in
section 4.1.3.

Definition 4.10
Let PX and PY be two probabilities families for two random variables X and Y . X and Y are
strongly independent when all the joint probabilities are under the form PXY = PX × P Y . In
other terms:

P(X,Y ) = {PX × P Y , s.t.PX ∈ PX and P Y ∈ PY =} = PX ⊗ PY



4.3 Uncertainty management in Reliability 49

This strong independence assumption has some applications in probabilistic logic for example. In
(Cozman et al., 2006), F.G. Cozman et al. study inference methods based on polynomial program-
ming are presented for strong independence for unconditional and conditional cases. The resulting
model generalizes Bayesian networks, allowing probabilistic assessments and logical constraints to
be mixed. It is also possible to compute lower and upper expectations under strong independence
assumption (de Campos and Cozman, 2005).

4.2.3 Epistemic independence

Epistemic independence is an extension of the independence notion to probability measures. It
represents the fact that the knowledge about the value of X has no impact on the knowledge about
the value of Y , even if the value of X may have impact on the value of Y and vice-versa.

In that case, the probability family containing the joint probability is:

PXY = {PXY s.t. PX|Y ∈ PX , P Y |X ∈ PY },

where PX , PY and PXY represent the probability measures modeling X, Y and the random vector
(X, Y ).

Some work has been done in order to determine how to compute upper and lower expectations under
epistemic independence in the framework of imprecise probabilities (C.P. de Campos, 2007).

4.2.4 Independence of information sources

The independence of information sources consists in a stochastic independence between the focal
elements in Dempster-Shafer theory (Couso and Moral, 2010). In this case, the probability distribu-
tions on the mass function of the focal elements are stochastically independent, but nothing is known
about the relationship betweenX and Y inside the focal elements. It is basically an assumption about
the independence of the sources where the information comes from (such as independent experts, or
independent statistical studies) but not about the dependence between the variable themselves.

Some other definitions of independence exist, like Complete independence, Conformational indepen-
dence, or Kuznetsov’s Independence (Cozman, 2003). They all are defined in the scope of imprecise
probabilities, and have several applications, depending on the type of model that is needed.

In reliability studies, the classical theory of probability is used in most of the cases for the quan-
titative analysis, even if the question of independence and dependences between the variables is
already raised (Mazars, 1981). Once extended to imprecise probability, the question of the kind of
(in)dependence linking the variables and/or the observers gets even more tricky, and their modeling
can add complexity to the problem.

4.3 Uncertainty management in Reliability

Utkin and Coolen (Utkin and Coolen, 2007), for example, worked on imprecise reliability using
imprecise probability theory, with upper and lower expectations instead of a single probability value
(Guth, 1991). They studied imprecise monotonic fault trees, and also the impact of some components
failure over the system under study by mean of imprecise importance measures. Some work has also
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been done in order to apply a framework of joint propagation of probability distributions and fuzzy
numbers to risk analysis in fault trees (Zio and Baraldi, 2008).

4.3.1 Interval reliability with partially known probabilities

Precise system reliability measures can always be computed if and only if it is assumed that (a)
the system structure is defined precisely and (b) there exists a function linking failure time of the
system and failure times of the components. In all other cases only interval reliability measures can
be obtained. In reality, it is difficult to fulfill the first condition. For example, for a newly developed
system or a system under development, statistical data is not sufficient or non-existent. Also in these
cases system stability is not observed from a statistical point of view. In short, in such cases we only
have partial information about system components.

The important question is how to trust the obtained results of reliability analysis if our assumption
is based only on experts experience. In this regard, many methods have been developed to compute
reliability bounds from initial incomplete information (Utkin, 2004). The idea presented in this
paper is to model the imprecision of the system by sets of possible probability distributions. These
probability distributions represent times to failure which are consistent with the available information.
After modeling the imprecision with these sets, lower and upper reliability measures are computed.

4.3.2 Interval analysis for importance measures

In the work described in paper (Utkin and Coolen, 2007), the reliability assessments that are com-
bined to describe systems and components may come from various sources. Some of them may be
objective measures based on relative frequencies or on well-established statistical models. A part of
the reliability assessments may be supplied by experts. If a system is new or exists only as a project,
then there are often insufficient statistical data on which we should base precise probability distribu-
tions. Even if such data exist, we do not always observe their stability from the statistical point of
view. Moreover, failure times may not be accurately observed or may even be missing. Sometimes,
failures do not occur at all or occur partially; leading to censored observations of failure times, and
the censoring mechanisms themselves may be complex and not precisely known. As a result, only
partial information about reliability of system components may be available, for example, the MTTF
or bounds for the probability of failure at a given time point.

4.3.3 Joint propagation of probability distributions and fuzzy numbers

In order to cope with different facets of uncertainty, a framework of joint propagation of probabilistic
and possibilistic data has been developed by Cédric Baudrit and applied to risk analysis (Baudrit
et al., 2006)(Baudrit et al., 2007). The principle of this framework is to add a subjective probability
about the objectives probabilities.

It also has been applied to event trees and fault trees (Zio and Baraldi, 2008). It consists in modeling
the uncertainty on the distribution parameters of each component by:

• a probability distribution, which will be a meta-probability,

• a fuzzy number if the information comes from some expert knowledge.
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This joint propagation is computed with an algorithm based on Monte-Carlo simulation and gives
some upper and lower bounds for the failure probability of the system. This technique allows the
simultaneous propagation of both variability and epistemic uncertainty. As far as probabilistic vari-
ables are concerned, it is quite similar to a classical Monte-Carlo simulation, and the assumptions
about the stochastic (in)dependence of these variables must hold. But, these variables should be
independent from the one that are represented by the fuzzy numbers. A framework has also been
developed in order to process the results obtained with this joint propagation, in order to be able to
use it for decision making (Purba et al., 2010).

The following chapters will deal with the relaxation of these assumptions in fault tree analysis.
However, some previous work has been carried out by other authors to drop these assumptions.

4.4 Fault trees under incomplete probabilistic information:

general framework

Let F be a Boolean formula expressed by means of the variables Xi and [F ] the set of minterms of
F . The probability of F, P (F ), can be written as the sum:

P (F ) =
∑

ω∈[F ]

p(ω) (4.1)

where p(ω) stands for P ({ω}).
In the case where P (Ai) is only known to lie in an interval, i.e. P (Ai) ∈ [li, ui], i = 1 . . . n, the
problem is to compute the tightest range [lF , uF ] containing the probability P (F ). Let P be the
convex probability family {P, ∀i P (Ai) ∈ [li, ui]} on Ω. In the following, we shall formally express
this problem under various assumptions concerning independence.

Without knowing the dependency between the variables of a fault tree Xi, i = 1 . . . n, finding the
tightest interval [lF , uF ] of the probability P (F ) of the failure condition described by this fault tree
boils down to a linear optimization problem under constraints. This goal is achieved by solving the
following two problems:

lF = min(
∑

ω�F

p(ω)) and uF = max(
∑

ω�F

p(ω))

under the constraints li ≤
∑

ω�Ai

p(ω) ≤ ui, i = 1 . . . n and
∑

p(ω) = 1.

Solving each of those problems can be done by linear programming with 2n unknown variables p(ω).
It is a particular case of the probabilistic satisfiability problem studied in (Hansen et al., 2000), where
known probabilities are attached to sentences instead of just atoms.

In the case where the independence of the Xi, i = 1 . . . n, is assumed,

p(ω) =
n
∏

i=1

P (Xi(ω)) (4.2)

where: Xi(ω) =

{

Ai if ω |= Ai

¬Ai otherwise
.
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When the independence of the xi’s is assumed (i.e. Ai independent of Aj, ∀i 6= j), this sum becomes:

P (F ) =
∑

ω∈[F ]

[
∏

Ai∈L
+
ω

P (Ai)
∏

Ai∈L
−
ω

(1− P (Ai))] (4.3)

where L+
ω is the set of positive literals of ω and L−ω the set of its negative literals.

The corresponding probability family PI = {
n
∏

i=1

Pi | Pi({Ai}) ∈ [li, ui]}, where Pi is a probability

measure on Ωi, is not convex. Indeed, take two probability measures P , P ′ ∈ PI , P =
n
∏

i=1

Pi and

P ′ =
n
∏

i=1

P ′i . For λ ∈ [0, 1], the sum λ
n
∏

i=1

Pi + (1 − λ)
n
∏

i=1

P ′i 6=
n
∏

i=1

(λPi + (1 − λ)P ′i ), so it is not an

element of PI .

This assumption introduces some non-linear constraints in the previous formulation, hence the pre-
vious method cannot be applied. Instead of a linear problem with 2n variables, now we have a
non-linear optimization problem with n variables. This problem can be solved by using Interval
Analysis, it will be discussed in Chapter 5.

When there is no knowledge about the dependency between the xi’s, but the information about P (Ai)
comes from independent sources, belief functions can be used to solve the problem of probability
evaluation. The information P (Ai) ∈ [li, ui] is totally linked to its source. li can be seen as the
degree of belief of Ai and ui as its plausibility: li = Bel(Ai) and ui = Pl(Ai) in the sense of Shafer.
In chapter 6, we will see how belief functions can be used to evaluate the probability of a Boolean
formula. The application of belief functions to Boolean formulas will depend on the structure of the
Boolean formula, we will see that for some particular cases, the results can be easily achieved, while
the general case can be complex. A formalization of these cases is proposed.
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In Chapter 3, we have seen the basics of fault tree analysis and how to compute probabilities from a
given fault tree. These computations assume that all the probabilities are precisely known, which is
not always possible in real life scenarios. The uncertainty management theories presented in Chapter
4 provides frameworks to deal with some uncertainty in such problems. The choice of a framework
will be dictated by different assumptions, e.g. it is possible to have different interpretations of the
independence of the Boolean variables. In this thesis, focus will mainly be on two main independence
assumptions: stochastic independence and independence of information sources.

Computing the probability of a Boolean formula when the events are assumed to be stochastically
independent, and when their probabilities are lying into intervals, is a non-linear problem with n
variables. It consists of finding an interval by minimizing and maximizing the probability P (F )
of the Boolean formula. For the purpose of finding the bounds of a continuous function from the
bounds of its variables, Interval analysis has been developed. The following section will present its
main principles. This Chapter was the subject of the paper (Jacob et al., 2011), and inspired three
other papers as well (Kreinovich et al., 2011a) (Kreinovich et al., 2011b) (Kreinovitch et al., 2012).
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5.1 Interval analysis

Interval analysis is a method developed by mathematicians since the 1950s and 1960s (R.E. Moore,
2009) as an approach to put bounds on rounding errors and measurement errors in mathematical
computation. It can also be used to represent some lack of information. So, instead of using a precise
value for a probability P which is not exactly known, lower and upper bounds P and P can be
estimated, such that P ∈ [P , P ].

The main idea of interval analysis is to find the upper and lower bounds, f and f , of a function f of
n variables {x1, ..., xn}, knowing the intervals of the variables: x1 ∈ [x1, x1], ...,xn ∈ [xn, xn].

5.1.1 Interval arithmetic, naive approach

The basic operations of naive interval arithmetic are, for two intervals [a, a] and [b, b] with a, a, b, b ∈ R

and a ≥ a, b ≥ b.
Addition : [a, a] + [b, b] = [a+ b, a+ b] (5.1)

Subtraction : [a, a]− [b, b] = [a− b, a− b] (5.2)

Multiplication : [a, a]× [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] (5.3)

Division :
[a, a]

[b, b]
= [min(

a

b
,
a

b
,
a

b
,
a

b
),max(

a

b
,
a

b
,
a

b
,
a

b
)] (5.4)

The equation of multiplication and division can be simplified for the intervals included in [0,1]:

Multiplication : [a, b]× [c, d] = [ac, bd]

Division :
[a, a]

[b, b]
= [

a

b
,
a

b
]

.

It is also possible to compute interval arithmetic on algebraic operations like square, square root,
logarithm and exponential functions:

Square : [a, a]2 =

{ [a2, a2] if a ≥ 0
[0,max(a2, a2)] if a ≤ 0 ≤ a
[a2, a2] if a ≤ 0

(5.5)

Square root :
√

[a, a] = [
√
a,
√
a] iff a ≥ 0 (5.6)

Logarithm : ln [a, a] = [ln a, ln a] (5.7)

Exponential : e[a,a] = [ea, ea] (5.8)

The major limitation in the application of interval arithmetic to more complex functions is the
dependency problem. Despite the similarity in the name, this is a different case then the stochastic
independence assumption that is discussed in Chapter 4.

Definition 5.1 (Dependency problem)
The dependency problem comes from the repetition of a same variable in the expression of a
function. It causes some difficulties to compute the exact range of the function, when it is not
monotonic.
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It must be pointed out that the dependency here is logical and not a stochastic, assumption made
in section 4.2.1 leading to formula 3.5. It is only depending on the structure of the Boolean formula
itself, and not about the relationship between the variables and/or observers, unlike the types of
(in)dependences discussed in section 4.2.

Let us take a simple example in order to illustrate this tricky problem.

Example 5.1 We consider the function f(x) = x2, with x ∈ [−1, 1]. If we write the function as
f(x) = x2 and we apply the equations 5.5, we get that f(x) ∈ [0, 1].

If we write the function as f(x) = x.x and we apply the equation 5.4, then we get a too wide result,
that is [−1, 1]. When using interval arithmetic, the expression of the function has influence on the
obtained boundaries, while it should not be the case. Fig. 5.1 displays the difference between the
two different ranges. The range obtained with the second expression is larger than the real range of
the function, it adds an artificial uncertainty to the results.

Figure 5.1: f(x) = x2, with x ∈ [−1, 1]

The reason of this problem comes from the fact that this calculation considers x2 = x.x as if there
were two different variables x and y ∈ [−1, 1]. It is equivalent to calculate the boundaries of a
function g(x, y) = x.y, while f is a function of one variable and not two. Fig. 5.2 displays the
difference between the two different ranges. ♦

Example 5.2 Let us take a second example. If we consider the function f(x) = x2 + x, displayed
on Fig. 5.2. When we apply the formulas (5.5) and (5.1), we get:
f(x) ∈ [−1, 1]2 + [−1, 1] = [0, 1] + [−1, 1] = [−1, 2]. But once again, this is larger than the real range
of the function that is [−1

4
, 2].

In fact, f can be factorized such that variable x only appears once, f can be written as: f(x) =
(x+ 1

2
)2− 1

4
. Then we can obtain the real range of the function. So one way to solve the dependency

problem in interval arithmetic is to be able to factorize the expressions of the functions in a such a
way that no variable appear more than once. But this is not always possible, or easy to do.

This dependency problem is an important issue when we want to apply interval analysis in Boolean
formulas. The goal is to compute the tighter range for the probability of a formula, knowing the
probability intervals of its variables.

5.1.2 Monotonicity and interval analysis

Proposition 5.1 Let us consider f a continuous monotonic real function. The boundaries of f
are on the boundaries of its definition domain.
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Figure 5.2: f(x) = x2 + x, with x ∈ [−1, 1]

• When f is increasing on [x, x], f([x, x]) = [f(x), f(x)],

• When f is decreasing on [x, x], f([x, x]) = [f(x), f(x)]. ♦

Proof This result can be proved from the extreme value theorem, which says that if a real-valued
function f is continuous in the closed and bounded interval [a,b], then f must attain its supremum
and infimum value, each at least once. That is, there exist numbers c and d in [a,b] such that:
f(c) ≤ f(x) ≤ f(d), x ∈ [a, b].

For the functions of more than one variables, different types of monotonicity need to be defined.

Definition 5.2 (Locally monotonic function)
A function f locally monotonic in relation to xi, i ∈ J1, ..., nK if the function obtained by fixing all
variables xj but one is monotonic with respect to the remaining variable xi, i 6= j (Fortin et al.,
2008).

Proposition 5.2 When a function f is locally monotonic and defined on a domain [x1, x1] ⊗
· · · ⊗ [xn, xn] the extrema of f are reached on the boundaries of the domain [xi, xi] of the xi, i =
1, . . . , n. ♦

This particularity about locally monotonic functions induces that the range of the function can be
founded by checking all the values of f at the boundaries of the domain [x1, x1]⊗ · · · ⊗ [xn, xn], i.e,
the images of the xi.

Hence the range f([x1, x1], ..., [xn, xn]) can be obtained by testing the 2n extreme values of the xi’s.
If the function is monotonically increasing (resp. decreasing) with respect to xj, the lower bound
of this range is attained for xj = xj (resp. xj = xj) and the upper bound is attained for xj = xj

(resp. xj = xj). The monotonicity study of a function is instrumental for interval analysis, and the
concept of configuration of n intervals will be used for the cases where the monotonicity cannot be
determined easily.

Definition 5.3 (Configuration of n intervals)
Given n intervals [xi, xi], i = 1..n, the n-tuple of values in the set X = ×i{xi, xi} is called an
extreme configuration.The extrema configurations zj, j = 1..2n, obtained by selecting for each
value one interval end, define the set H = ×i{xi, xi}, where zj has the form (xc1

1 , ..x
cn
n ), cn ∈ {0, 1}

with x0
i = xi and x1

i = xi and | H |= 2n.
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5.2 Probability of a Boolean formula and interval analysis

In order to find the tightest range of a function, we will have to look into its structure. It is possible
to determine precisely the range of a function that is monotonic from the range of its variables.
Hence, the study of the monotonicity of the probability of a Boolean formula with respect to the
probabilities of its variables is instrumental for its range computation.

Knowing the monotonicity of a function helps to determine its boundaries, and for some function
the monotonicity can be easily found, that is the reason why in this section, we are interested in
finding the monotonicity of the basics Boolean formulas. Studying the local monotonicity consists in
studying the sign of the partial derivative with respect to each variable.

Example 5.3 (Monotonicity of usual Boolean formulas) The monotonicity of the prob-
ability of the most usual Boolean formulas is studied with respect to the probability of the Boolean
variables.

Disjunction ∨
F = A ∨B
The probability associated to this formula is: P (F ) = P (A) + P (B)− P (A)× P (B) = a+ b− ab
We can see P(F) is increasing with respect to a and b.

Conjunction ∧
F = A ∧B
The probability associated to this formula is: P (F ) = P (A)× P (B) = ab
The function is increasing with respect to a and b.

Implication ⇒
F = A ⇒ B = ¬A ∧B
The probability associated to this formula is: P (F ) = (1− P (A)) + P (A)× P (B) = 1− b+ ab
∂
∂a
P (F ) = b ≥ 0 because b is ≥ 0

∂
∂b
P (F ) = a− 1 ≤ 0 because a is ≤ 1.

In conclusion, P (F ) is increasing with respect to a and decreasing with respect to b.

Equivalence ⇔
F = A ⇔ B = (A ∧B) ∨ (¬A ∧ ¬B)
The probability associated to this formula is: P (F ) = P (A) × P (B) + (1 − P (A)) × (1 − P (B)) =
ab+ (1− a)(1− b)
Partial derivative of this function is same for a or b:
∂
∂a
P (F ) = b − (1 − b) = 2b − 1 ≥ 0 when b ≥ 1

2
. In this case, the function will be increasing with

respect to a when b ≥ 1
2
and increasing with respect to be b when a ≥ 1

2
.

Exclusive Or △
F = A△B = (A ∧ ¬B) ∨ (¬A ∧ B)
The probability associated to this formula is: P (F ) = P (A) × (1 − P (B)) + (1 − P (A)) × P (B) =
a(1− b) + b(1− a)
Partial derivative of this function is same for a or b:
∂
∂a
P (F ) = 1− 2b that is ≥ 0 when b is ≤ 1

2
. Again here, the function will be increasing with respect

to a when b ≤ 1
2
and increasing with respect to be b when a ≤ 1

2
.

2 out of F1, F2, F3
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The function 2 out of F1, F2, F3 is a

F = (F1 ∧ ¬F2 ∧ ¬F3) ∨ (¬F1 ∧ F2 ∧ ¬F3) ∨ (¬F1 ∧ ¬F2 ∧ F3)
The probability associated to this formula is: P (F ) = P (F1)(1 − P (F2))(1 − P (F3)) + P (F2)(1 −
P (F1))(1−P (F3)) +P (F3)(1−P (F1))(1−P (F2)) = f1(1− f2)(1− f3) + f2(1− f1)(1− f3) + f3(1−
f1)(1− f2)

Partial derivative of this function is same for f1, f2 or f3:
∂

∂f1
P (F ) = (1− f2)(1− f3)− f2(1− f3)− f3(1− f2) = 1− f2 − f3 + 3f2f3

It’s more difficult to find the sign of such derivative, because we have a 2 variables function that has
a saddle point, and whose range cannot be deduced with a straightforward expression.

Figure 5.3: Partial derivative 1− f2 − f3 + 3f2f3

On the fig. 5.4 we can see the levels of the curve. The level 0 is in green, and the red part is the
domain where the derivative is positive.

Figure 5.4: Level curve of partial derivative 1− f2 − f3 + 3f2f3

The derivative is null for 1− f2 − f3 + 3f2f3 = 0 ⇔ f2 =
1−f3
1−3f3

, that is the equation of an hyperbola.

This means that the range of the function will be totally dependent on the value of the input
probabilities. It will be as complex to determine and check a rule to find the range from any
probability input, as to check the range of the function.

When the Boolean formula is monotone, and it is possible to prove it, the computation of its range is
straightforward. But when it is not the case, and/or when the monotonicity is difficult to find, this
computation can be more tricky.
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5.3 BDDs and interval analysis

Applying interval analysis to BDDs is one approach for dealing with imprecise BDDs. It would
permit us to be able to validate or invalidate some results even if we do not have all precise values
of the probabilities in input, but we know their boundaries.

One important thing to notice about the formula (3.6) used to compute the probabilities from a
BDD, is that it is locally monotonic 5.2. Let’s consider f a function of n variables {x1, ..., xn}.
Let us consider the Shannon decomposition of a Boolean formula F for a variable Xi, i ∈ J1, ..., nK.
Formula (3.8)with X = Xi can be written as: P (F ) = (1− P (Xi))× P (FXi=0) + P (Xi)× P (FXi=1),
where P (Xi) appears twice. It can be written as:

P (F ) = P (FXi=0) + P (Xi)× [P (FXi=1)− P (FXi=0)] (5.9)

In order to study the local variations of the function P (F ) following P (Xi), we fix all others Xj,j ∈
J1, ..., nK, j 6= i; the partial derivative of equation 5.9 with respect to P (Xi) is:

∂P (F )

∂P (Xi)
= P (FXi=1)− P (FXi=0)

[P (FXi=1) − P (FXi=0)] is a function of some P (Xj), j 6= i, so it is constant according to P (Xi), for
any i ∈ J1, ..., nK. The function P (F ) is locally monotonic with respect to all of its variables.

From these results, we can deduce that if P (Xi) ∈ [a, b], P (F ) is in:

• [P (fXi=0)+a×[P (fXi=1)−P (fXi=0), P (fXi=0)+b×[P (fXi=1)−P (fXi=0)] if P (fXi=1) ≥ P (fXi=0)

• [P (fXi=0)+b×[P (fXi=1)−P (fXi=0), P (fXi=0)+a×[P (fXi=1)−P (fXi=0)] if P (fXi=1) ≤ P (fXi=0)

But finding the sign of P (fXi=1)− P (fXi=0) is not so simple, as it depends on some other Xj. If we
are able to find this sign for each variable of the formula, we can find the exact interval of its values.

Another problem is that, as we saw before in section 5.1, one big issue of interval analysis is the
dependency problem. And for computation of probabilities with BDDs, it will be very present. As
explained in section 3.3.2, in the formula, there can be several instances of each variable, depending
on the structure of the BDD.

Let us take an example to illustrate the dependency problem in a BDD. We will consider the formula
F = (A ∧ B) ∨ (¬A ∧ ¬B) whose BDD is represented on 5.5.

Figure 5.5: BDD associated to the formula (A ∧B) ∨ (¬A ∧ ¬B)

The probability of f knowing that P (A) = a, P (B) = b, P (¬A) = 1− a and P (¬B) = 1− b is:

P (F ) = a× b+ (1− a)(1− b) (5.10)
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In fact the values of a and b are not known, the only information available is that a ∈ [a, a] and
b ∈ [b, b], with [a, a] and [b, b] included in [0, 1].

The goal is to compute the interval associated to P (f) = [f, f ].

If we apply the equation of multiplication of two intervals ((5.3)) to expression, we obtain that:
[f, f ] = [ab, ab] + (1− [a, a])(1− [b, b])

⇔ [f, f ] = [ab, ab] + [1− a, 1− a]× [1− b, 1− b]) ⇔

[f, f ] = [ab+ (1− a)(1− b), ab+ (1− a)(1− b)] (5.11)

Remark 5.1 This result is obviously wrong, because we use two different values for the same
variable in the same expression: first we consider that a = a, then that a = a and we do the
computation.

Let us consider that events A and B are associated with the following intervals, respectively [a, a] =
[0.3, 0.8] and [b, b] = [0.4, 0.6], using expression (5.11), we have that [f, f ] = [0.2, 0.9]. By neglecting
dependencies, we introduce a strong artificial uncertainty in the expression.

We know that the function is locally monotonic, so the boundaries of P (F ) will be obtained for
the boundaries of the variables a and b. To find the correct bounds, we will have to explore the 22

configurations 5.3:

• a× b+ (1− a)(1− b) = 0.3× 0.4 + 0.7× 0.4 = 0.54

• a× b+ (1− a)(1− b) = 0.3× 0.6 + 0.7× 0.4 = 0.46

• a× b+ (1− a)(1− b) = 0.8× 0.4 + 0.2× 0.6 = 0.44

• a× b+ (1− a)(1− b) = 0.8× 0.6 + 0.2× 0.4 = 0.56

The result is P (F ) ∈ [0.44, 0.56], and we can notice that it is much tighter than the previous one.
That is the reason why it is so important to find ways to optimize the results of interval analysis.

Example 5.4 (BDDs of usual formulas and range computation) As we have seen in sec-
tion 3.4, there are different ways to compute the probabilities of a Boolean formula in function of
the probabilities of its variables. Either we can compute it directly from the Boolean formula, or we
can use the Shannon decomposition and compute this probability recursively, see equation (3.8).

Disjunction ∨

F = A ∨ (¬A ∧B) from the BDD
The probability associated to this formula is:
P (F ) = P (A) + (1− P (A))P (B) = a+ (1− a)b
It is not obvious that P (F ) is increasing for a and
b once the probability is computed from the BDD.

Conjunction ∧
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F = A ∧B from the BDD
The probability associated to this formula is:
P (F ) = P (A)× P (B) = ab
Here the BDD form is same than the original func-
tion, and it is obviously increasing for a and b.

Implication ⇒

F = A ⇒ B = ¬A ∨B
The probability associated to this formula is:
P (F ) = (1− P (A)) + P (A)× P (B) = 1− b+ ab
Here the BDD form is same than the original func-
tion, hence the monotonicity determination is the
same as in section 5.3.

Equivalence ⇔

F = A ⇔ B = (A ∧B) ∨ (¬A ∧ ¬B)
The probability associated to this formula is:
P (F ) = P (A)×P (B)+(1−P (A))×(1−P (B)) =
ab+ (1− a)(1− b)
Once again the BDD form is the same as the
original function, hence the monotonicity deter-
mination is the same than in section 5.3. ♦

The fact that the BDD and the original form of the Boolean formula are same or not does not
depend on the monotonicity of the Boolean formula. In the case of the disjunction, the addition of
the negation of the variable A in the BDD makes the monotonicity of the formula less obvious than
in the original formula. But for very big Boolean formulas, it is also possible for the BDD form to
be much more simple than the formula itself, so in that case, it is possible that the monotonicity will
be easier to study on the BDD form.

Moreover, every different expression of the same Boolean formula can make the monotonicity easier
to determine for some variables and not for others. For example, if we write the disjunction as
F = A∨(¬A∧B), the monotonicity with respect to B is obvious, while if we write it F = B∨(¬B∧A),
now the monotonicity of A is trivial. For complex Boolean formulas, the more different equivalent
expressions of the formula we get, the more chances there are for the determination of its monotonicity
with respect to its different variables.

5.4 BDD-based interval analysis algorithm

An algorithm has been implemented in a generalised fault tree from the result of section 5.3, in order
to compute the range of the probability of the top event. As seen in the previous sections, the input
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of the algorithm is a Boolean function F where a probability interval [v.lb, v.up] is associated to each
variable X of F (the lower/upper bound of its probability interval).

The variableX of the BDD representation of F is characterized by the following additional attributes:
path.value (= 1 if the variable appears as a positive literal in this path, = 0 otherwise) and type ∈
{0,1,2}. The output is a text file with the probability interval of F , [PF .lb, PF .up]. Fig. 5.6 summarizes
the inputs and outputs of the algorithm.

Figure 5.6: BDD-based interval analysis algo inputs/output

The BDD is represented by a set Pa of paths with the following format:

< Xpath1

1
: value, . . . , Xpath1

n1
: value > · · · < Xpathm

1
: value, . . . , Xpathm

nm
: value > (5.12)

where m is the number of paths and ni, i = 1, . . . ,m is the number of literals (positive or negative)
in a path i. For example, Pa = < A : 1 >< S : 0, C : 1 > for the BDD represented in fig. 3.3.b.

In the next step, the variables are split into three categories:

− Type 0: Variables that only appear negatively in the Boolean formula
− Type 1: Variables that only appear positively in the Boolean formula
− Type 2: Variables present in the Boolean formula along with their negation.

We need to find the configuration that determines the minima and maxima for the probability of F.

We know the exact corresponding bounds of the input probabilities for the 2 first categories from
section 5.3, so the optimal configuration is known for these variables:

− if X.type = 0, v.ub is used for calculating PF .lb and v.lb is used for PF .ub,
− if X.type = 1, v.lb is used for calculating PF .lb and v.ub is used for PF .ub,
− if X.type = 2, PF .lb (as well as PF .ub) can be reached for X.lb or X.up, and all possible extreme
values for V must be explored. The total number of these tuples of bounds (configurations) is 2k,
where k is the number of variables classified as Type 2; hence the problem is at most NP-hard.

The last step consists of BDD-based calculations. These calculations are carried out by considering
all m paths leading to leaf 1 from the top of the BDD.



5.5 Example of the Primary/Backup Switch 65

Let ~zj = (Xc1
1j , . . . , X

cn
nj ), j ∈ 1, . . . , 2n, ci ∈ {0, 1} be a configuration (section 5.3). For each config-

uration ~zj we calculate P~zj(F ) =P (F [Xc1
1j , . . . , X

cn
nj ]). The extremal values of P (F are obtained by

exploring all extremal configurations: P (F ) = mini=1,...,2n Pzi(F ) and P (F ) = maxi=1,...,2n Pzi(F ).

The notation introduced in eq. (3.6) is extended to take the category of a variable into account. Let
Xl be the set of variables belonging to the path l; X 2+

l (resp. X 2−
l ) the set of positive (resp. negative)

literals of Type 2 in path l; X+
l (resp. X−

l ) the set of variables of Type 1 (resp. Type 0) in path l.

Let us consider now a configuration (Xc1
1 , . . . , Xck

k ) for variables of Type 2, with X.c = X.lb if Xc = 0
and X.c = X.ub if Xc = 1:

Cl(X
c1
1 , . . . , Xck

k ) =
∏

X∈X2+

l

X.c ·
∏

X∈X2−

l

(1−X.c).

We have then:

P (F ) =
∑

l=1,...,m

(
∏

X∈X+

l

X.lb ·
∏

X∈X−

l

(1−X.ub) · min
i=1,...,2k

Cl(X
c1
1 , . . . , Xck

k )) and

P (F ) =
∑

l=1,...,m

(
∏

X∈X+

l

X.ub ·
∏

X∈X−

l

(1−X.lb) · max
i=1,...,2k

Cl(X
c1
1 , . . . , Xck

k ))

that extends eq. (3.6) when the probability of the atomic events is given by an interval.

5.5 Example of the Primary/Backup Switch

In this case study, we consider the safety models as described in Chapter 2. We will take the example
of a small reconfigureable system: a Primary/Backup Switch. It is constituted of three components:

• A primary supply

• A back-up supply

• A switch that selects the active supply between the primary or the backup one

When a fault occurs in the Primary supply, then it switches to the Back-up supply. But it may also
happen that the Switch gets stuck: in this case, it will be impossible to switch to Backup supply.

The software Cécilia OCAS is used to model the architecture and the behavior of the system thanks
to the AltaRica language, which is a mode-automata based language. From this description, some
algorithms (Rauzy, 2002) will extract fault trees or Minimal Cut Sets for any undesired event selected
by the user by means of observers. Fig.6.2 shows the OCAS model of the Primary/Backup Switch.

In the following, we will study the undesired event corresponding to the fact that the whole system
is down, written as Obs.KO. The OCAS tool extracts the fault tree associated to this event, as
displayed on Fig.6.2.

Therefore, this fault tree is equivalent to the Boolean formula:

Obs.KO = P.Fail ∧ (B.Fail ∨ (S.stuck ∧ ¬S.activeB)),

where P.Fail stands for a failure of the Primary supplier and B.Fail for a failure of the Backup
supplier. S.stuck represents the fact that the Switch is stuck and is not able to activate the Backup,
and S.activeB is the activation order of the Switch.
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Figure 5.7: a) OCAS model of the Primary/Backup Switch b)Fault tree associated to event Obs.KO

Figure 5.8: BDD of the Observer.KO for the Primary/Backup Switch

The BDD of this formula is represented on the Fig.5.8

The total paths extracted from this BDD are just 2: < B.Fail : 0, P.Fail : 1, S.activeB : 0, S.stuck :
1 >< B.Fail : 1, P.Fail : 1 >

In this case study, the values taken for the interval probabilities associated to the events are:

• P.Fail has an imprecise probability of P (P.Fail) = 10−4 + /− 50%

• B.Fail has an imprecise probability of P (B.Fail) = 10−4 + /− 10%

• S.stuck has a precise probability of P (S.stuck) = 10−5

• An activation order of the Switch is given, i.e. P (S.activeB) = 1

The results of the computation of the range of the probability of the eventObs.KO is [4.5×10−9, 1.65×
10−8]. In this particular case, a computation with the naive interval arithmetic would lead to the
same result, because the expression Obs.KO = P.Fail∧ (B.Fail∨ (S.stuck ∧¬S.activeB)) does not
include any repetition of variables, but it is not the case for general Boolean formulas.

When naive interval computations are applied directly to complex Boolean formula, it is highly
probable to have several repetitions of one variable along with its negation, and the resulting interval
is too imprecise and sometime totally useless. Moreover this imprecision is artificially induced by
the computations, which is undesirable in the context of uncertainty management. The algorithm
presented in this chapter allows to compute the exact range of the probability of any formula, without
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adding any artificial uncertainty. The price to pay is an highest complexity for the computations. We
pointed out that there are two cases when a variable and its negation appear in a Boolean expression:
the case when there exists an equivalent expression where each variable appear with the same sign,
and its probability is then monotonic in terms of the probability of atomic events; the case where
such an equivalent expression does not exist. Then this probability will not be monotonic in terms
of some variables, and the interval computation has NP-hard theoretical complexity.

Even if in practical fault-trees the latter situation does not prevail, the potentially exponential com-
putation time can make it hardly applicable to very big systems, hence some heuristics will be needed
to tackle this issue.
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Chapter 6

Independent sources of information: Belief
functions approach
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When the probability information attached to the variables of a Boolean formula comes from inde-
pendent sources of information, belief functions can be used in order to compute the aggregation
of these information. This chapter investigates ways to compute the belief and the plausibility of a
failure condition, when belief and plausibility of the contributing events are known, and are given by
independent sources of information. It has been the subject of two articles, (Jacob et al., 2012a) and
(F. Aguirre, 2013).

6.1 Belief and plausibility of a Boolean formula

In the case of Boolean variables, the frame of discernment introduced in section 4.1.2 contains only
two elements Ωi = {Ai,¬Ai}. These two elements are non trivial and disjoints, hence a probability
interval [li, ui] is equivalent to a belief and plausibility measures (Bel, P l) with Bel ≤ Pl. For any
event Ai, a source Si of information gives a probabily interval [li, ui] that contain its probability. It
is possible to find a unique atomic mass function mi:

• Bel({Ai}) = li = mi({Ai});
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• Pl({Ai}) = 1−Bel({¬Ai}) = ui =⇒ mi({¬Ai}) = Bel({¬Ai}) = 1− ui;

• The sum of masses is mi({Ai}) +mi({¬Ai}) +mi(Ωi) = 1, so mi(Ωi) = ui − li.

This modeling framework differs from the usual one when atomic variables are supposed to be stochas-
tically independent. Here, the independence assumption pertains to the sources of information, not
the physical variables.

When n sources of information are considered, the mass function over all Ω is : mΩ = m1⊕· · ·⊕mn.
In order to find this mΩ for n atomic mass functions, we can use the associativity of Dempster
rule of combination 4.3. Here, Ai, i = 1, . . . , n are atomic symbols, they are always compatible, i.e.
Ai ∧ Aj 6= ∅ for all Ai, Aj, i 6= j. So the denominator is one in Dempster’s equation.

In the case of a Boolean function constructed from n Boolean variables, then we need n sources. The
mass function over all Ω is : mΩ = m1 ⊕ · · · ⊕mn.

A focal element (4.2) of mΩ is made of a conjunction of terms of the form Ai, ¬Aj and Ωk (which
is the tautology), for i 6= j 6= k. Hence it is a partial model. Let P(F ) bet the set of partial models
φ of a Boolean formula F , that are under the form of conjunction of elements λi ∈ {Ai,¬Ai,Ωi}:
φ = ∧

i=1,...,n
λi .

Then, let P(F ) = {φ = ∧
Ai∈L

+

φ

Ai ∧
¬Ai∈L

−

φ

¬Ai |= F}, with L+
φ (resp. L−φ ) the set of positive (resp.

negative) literals of φ.

Proposition 6.1 (Combination of n atomic mass functions) For n atomic massesmi, i =
1, . . . , n on Ωi, the joint mass mΩ on Ω can be computed as follows for any partial model φ:

mΩ(φ) =
∏

i∈L+

φ

li
∏

i∈L−

φ

(1− ui)
∏

i/∈Lφ

(ui − li) (6.1)

♦

The belief in a Boolean formula F can hence be written as:

Bel(F ) =
∑

φ�F

mΩ(φ)

Its plausibility is:

Pl(F ) =
∑

S∧φ 6=∅

mΩ(φ)

It theoretically requires 3n computations due to the necessity of enumerating the partial models for n
atomic variables. Indeed, all conjunctions φ = ∧

i=1,...,n
λi must be checked for each λi ∈ {Ai,¬Ai,Ωi}.

Verifying that a partial model implies F also requires 2n computations. Plausibility computation
requires to determine partial models not incompatible with F . From the partial models, it will need
at most 2n computations. But it can also be computed by using the duality of belief and plausibility
given by:

Pl(F ) = 1− Bel(¬F ) (6.2)
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Example 6.1 Belief functions of the disjunction F = A1 ∨ A2

A1 ¬A1 Ω1

A2 A1 ∧ A2 ¬A1 ∧ A2 A2

l1l2 (1− u1)l2 (u1 − l1)l2
¬A2 A1 ∧ ¬A2 ¬A1 ∧ ¬A2 ¬A2

l1(1− u2) (1− u1)(1− u2) (u1 − l1)(1− u2)
Ω2 A1 ¬A1 Ω

l1(u2 − l2) (1− u1)(u2 − l2) (u1 − l1)(u2 − l2)

♦

Partial models that imply F are {A1, A2, A1 ∧ ¬A2, A2 ∧ ¬A1, A1 ∧ A2}, so:
Bel(F ) = (u1− l1)l2+ l1(u2− l2)+ l1l2+ l1(1−u2)+ l2(1−u1) = l1+ l2− l1l2, that also reads 1− (1−
l1)(1−l2). Likewise, partial models that are compatible with F are {A1∧A2,Ω, A1, A2,¬A1,¬A2, A1∧
¬A2, A2 ∧ ¬A1}, hence Pl(F ) = u1 + u2 − u1u2 = 1− (1− u1)(1− u2).

In the case of a function of 3 variables, there will be 33 configuration to check. We can summarize
them in a 3 dimension array of 3 columns, row and depth. In order to be able to represent it on the
paper, it will be split in 3 arrays of dimension 2.

A3 A1 ¬A1 Ω1

A2 A1 ∧ A2 ∧ A3 ¬A1 ∧ A2 ∧ A3 A2 ∧ A3

l1l2l3 (1− u1)l2l3 (u1 − l1)l2l3
¬A2 A1 ∧ ¬A2 ∧ A3 ¬A1 ∧ ¬A2 ∧ A3 ¬A2 ∧ A3

l1(1− u2)l3 (1− u1)(1− u2)l3 (u1 − l1)(1− u2)l3
Ω2 A1 ∧ A3 ¬A1 ∧ A3 A3

l1(u2 − l2)l3 (1− u1)(u2 − l2)l3 (u1 − l1)(u2 − l2)l3

¬A3 A1 ¬A1 Ω1

A2 A1 ∧ A2 ∧ ¬A3 ¬A1 ∧ A2 ∧ ¬A3 A2 ∧ ¬A3

l1l2(1− u3) (1− u1)l2(1− u3) (u1 − l1)l2(1− u3)
¬A2 A1 ∧ ¬A2 ∧ ¬A3 ¬A1 ∧ ¬A2 ∧ ¬A3 ¬A2 ∧ ¬A3

l1(1− u2)(1− u3) (1− u1)(1− u2)(1− u3) (u1 − l1)(1− u2)(1− u3)
Ω2 A1 ∧ ¬A3 ¬A1 ∧ ¬A3 ¬A3

l1(u2 − l2)(1− u3) (1− u1)(u2 − l2)(1− u3) (u1 − l1)(u2 − l2)(1− u3)

Ω3 A1 ¬A1 Ω1

A2 A1 ∧ A2 ¬A1 ∧ A2 A2

l1l2(u3 − l3) (1− u1)l2(u3 − l3) (u1 − l1)l2(u3 − l3)
¬A2 A1 ∧ ¬A2 ¬A1 ∧ ¬A2 ¬A2

l1(1− u2)(u3 − l3) (1− u1)(1− u2)(u3 − l3) (u1 − l1)(1− u2)(u3 − l3)
Ω2 A1 ¬A1 Ω

l1(u2 − l2)(u3 − l3) (1− u1)(u2 − l2)(u3 − l3) (u1 − l1)(u2 − l2)(u3 − l3)

6.1.1 Conjunctions and disjunctions of atoms

The case where Boolean formulas are only written with positive or negative atoms makes the com-
putations easier.



72 Independent sources of information: Belief functions approach

Proposition 6.2 (Belief of a conjunction of n atoms) The belief of a conjunction C+
A =

∧

k∈K Ak of n atoms Ai, i ∈ K = [1, n] is given by the formula:

Bel(CA) =
n
∏

i=1

li (6.3)

Similarly, the belief of a conjunction of negative atoms C−A =
∧

k∈K ¬Ak is given by the formula:

Bel(CA) =
n
∏

i=1

(1− ui) (6.4)

♦

Proof The conjunction of CA atoms can be seen as one partial model, hence equation (6.1) gives:

Bel(CA) = Bel(∧k∈KAk)

= mΩ(CA)

=
n
∏

i=1

li

Proposition 6.3 (Belief of a disjunction of n atoms) The belief of a disjunction DA =
∨

k∈K Ak is a disjunction of n atoms A1 . . . An is given by:

Bel(DA) = 1−
n
∏

i=1

(1− li).

Proof

Bel(DA) = Bel(∨k∈KAk)

=
∑

φ�DA

mΩ(φ)

The partial models that satisfies DA are all the combinations of different conjunctions of the atoms
Ak.

Making the sum of all of these combinations is very similar to the inclusion-exclusion principle Brualdi
(2004), applied to the terms of the disjunctions. Hence, we get a result that is similar to a probability
computation:

Bel(DA) =
n

∑

i=1

li −
n−1
∑

i=1

n
∑

j=i+1

lilj +
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

liljlk − ...+ (−1)n+1l1 . . . ln (6.5)

This formula can be factorized as:

Bel(DA) = 1−
n
∏

i=1

(1− li) (6.6)
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Once the belief of a formula F is computed, its plausibility can be deduced with the duality equation
(6.2).

Proposition 6.4 (Plausibility of a conjunction of n atoms) The plausibility of a con-
junction CA of n atoms is given by:

Pl(CA) =
n
∏

i=1

ui (6.7)

♦

Proof

Pl(CA) = 1− Bel(¬CA) = 1− Bel(¬A1 ∨ · · · ∨ ¬An)

By using equation 6.6, we get:

Pl(CA) = 1− [1−
n
∏

i=1

(1− Bel(¬Ai))] =
n
∏

i=1

Pl(Ai)

Proposition 6.5 (Plausibility of a disjunction of n atoms) The plausibility of a dis-
junction DA of n literals is given by:

Pl(D) = 1−
n
∏

i=1

(1− ui). (6.8)

♦

Proof

Pl(D) = 1− Bel(¬D) = 1− Bel(¬A1 ∧ · · · ∧ ¬An)

By using equation (6.4), we get:

Pl(D) = 1−
n
∏

i=1

Bel(¬Ai) = 1−
n
∏

i=1

(1− Pl(Ai))

It is also possible to generalize it to a formula written as a disjunction of conjunctions of atoms.

Proposition 6.6 (Belief of a disjunctive atomic normal form)

Bel(C1
A ∨ ... ∨ Cm

A ) =
m
∑

i=1

Bel(Ci)−
m−1
∑

i=1

m
∑

j=i+1

Bel(C i
A ∧ Cj

A)

+
m−2
∑

i=1

m−1
∑

j=i+1

m
∑

k=j+1

Bel(C i
A ∧ Cj

A ∧ Ck
A)− ...+ (−1)m+1Bel(C1

A ∧ ... ∧ Cm
A )

where C i
A are conjunctions of atoms. ♦

During the computation, the conjunctions of conjunctions, such as Ci ∧ Cj ∧ Ck must be simplified,
deleting redundant atoms. Note that this apparent additivity of a generally non-additive function is
due to the specific shape of focal elements (partial models). In general, for S and T Boolean formulas,
we cannot write Bel(S ∨ T ) = Bel(S) + Bel(T ) − Bel(S ∧ T ), because there are focal elements in
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S ∨ T that are subsets of neither S nor T nor S ∧ T . Here due to the DANF form, all partial models
of C1 ∨ ... ∨ Cm are conjunctions of literals appearing in the conjunctions.

A similar result holds for computing the plausibility of a DNF.

Plausibility of a disjunctive atomic normal form (DANF)

Pl(C1 ∨ ... ∨ Cm) =
m
∑

i=1

Pl(Ci)−
m−1
∑

i=1

m
∑

j=i+1

Pl(Ci ∧ Cj)

+
m−2
∑

i=1

m−1
∑

j=i+1

m
∑

k=j+1

Pl(Ci ∧ Cj ∧ Ck)− ...+ (−1)m+1Pl(C1 ∧ ... ∧ Cm),

where Ci are conjunctions of atoms.

Thanks to the duality between belief and plausibility, both computations are quite similar, hence the
time complexity does not increase.

6.1.2 Conjunctions and disjunctions of literals

In the more general case, we can compute the belief and plausibility of conjunctions and disjunctions
of literals indexed by K ⊆ {1, . . . , n}.

The belief of a conjunction C =
∧

k∈L+

C

Xk ∧
∧

k∈L−

C

¬Xk of literals Xi, i ∈ K is given by:

Bel(C) =
∏

i∈L+

C

li
∏

i∈L−

C

(1− ui) (6.9)

Likewise the belief of a disjunction D =
∨

k∈L+

D

Xk ∨
∨

k∈L−

D

¬Xk is given by:

Bel(D) = 1−
∏

i∈L+

D

(1− li)
∏

i∈L−

D

ui (6.10)

We can deduce the plausibility of conjunctions and disjunctions of literals, noticing that

Pl(C) = 1−Bel(D)

.

Proof

Pl(C) = Pl(∧i∈L+Xi ∧ ∧i∈L−¬Xi)

=
∏

i∈L−

(1− li)
∏

i∈L+

ui

= 1− (1−
∏

i∈L−

(1− li)
∏

i∈L+

ui)

= 1− Bel(∨i∈L−¬Xi ∨ ∨i∈L+Xi)

= 1− Bel(D)
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Hence, the plausibility of a conjunction C, and of a disjunction D of literals Xi, i ∈ K are respectively
given by:

Pl(C) =
∏

i∈L+

C

(1− li)
∏

i∈L−

C

ui;

Pl(D) = 1−
∏

i∈L+

D

li
∏

i∈L−

D

(1− ui)

The general case of a Boolean formula with positive and negative literals is more tricky. Of course
we can assume the formula is in DNF format. But it will be a disjunction of conjunctions of literals,
not of atoms, and it is no longer possible to apply the propositions given in section 6.1.1. Indeed
when conjunctions contain opposite literals, they have disjoint sets of models but their disjunctions
may be implied by partial models (focal elements) that imply none of the conjuncts.

For instance consider A∨ (¬A∧B) (which is just the disjunction A∨B we know how to deal with).
It does not hold that Bel(A ∨ (¬A ∧ B) = Bel(A) + Bel(¬A ∧ B), since the latter sum neglects
m(B), where B is a focal element that implies neither A nor ¬A ∧ B. However if C1 ∨ ... ∨ Cm are
pairwise mutually inconsistent partial models such that no disjunction of Ci and Cj contains a partial
model implying neither Ci nor Cj, the computation can be simplified since then Bel(C1∨ ...∨Cm) =
m
∑

i=1

Bel(Ci). For instance, the belief in an exclusive OR Bel((A1∧¬A2)∨ (A2∧¬A1)) is of this form.

Proposition 6.7 The set of partial models Φn = {φ1, . . . , φn} satisfies the inclusion/exclusion
principle if and only if, for any pair φi, φj one of the two following conditions is satisfied:

• ∃p 6= q ∈ {1, . . . , D} s.t. p, q ∈ (L+
〉 ∩ L−| ) ∪ (L+

| ∩ L−〉 ).

• L+
〉 ∩ L−| = ∅ and L+

| ∩ L−〉 = ∅ ♦

This condition tells us that for any pair of partial models, :

• either conjunctions φi, φj contain at least two opposite literals,

• or events φi, φj have a non-empty intersection and have a common model.

Proof Let us start with the ”only if”. Consider a pair {φi, φj} that differs on at exactly one literal,
and without loss of generality let us assume φi

p = Xp and φj
p = ¬Xp. For any index q 6= p, consider

the singletons Xi ∈ φi, Xj ∈ φj

• if φi
q = φj

q = ¬Aq, we set X i
q = Xj

q = ¬Aq;

• if φi
q = φj

q = Aq, we set X i
q = Xj

q = Aq;

• else if φi
q = φj

q = Ωi, we set (arbitrarily) X i
q = Xj

q .

By construction, X i ∈ φi, Xj ∈ φj and X i, Xj differs only on dimension Ωp, meaning that (X i∨Xj) ∈
Ω.

Let us now deal with the ”if” part of the proof. The proof when φi, φj are disjoint and differs on two
literals. The only way to have φq

i ∩ φq
j = ∅ is for φq

i and φq
j to be two opposed literals.
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Considering the second case (non-empty intersection), consider that for any event φ and for any
dimension, we have either φq = Xq, φq = ¬Xq, φq = Ωq. Now, as having φi ∩ φj = ∅ for two events
implies that for any dimension q, φi

q ∩φj
q 6= ∅, this also implies φi

q ⊆ φj
q or φ

i
q ⊇ φj

q (as if they are not
the same singleton, then one of them is the whole space Ωq)

These conditions allow us to check, once a formula has been put in DNF, whether or not the inclu-
sion/exclusion principle applies. As seen in section 6.1.1, a particular case where it always applies
are disjunctions of partial models having only positive (negative) atoms. More generally, the in-
clusion/exclusion principle applies to disjunctions of partial models which can, via a renaming, be
rewritten as a disjunction of conjunctions of positive literals: namely, whenever a single variable
never appears in a positive and negative form in two of the conjunctions.

Example 6.2 For instance consider the formula (X1∧¬X2)∨(¬X1∧X2)∨X3, with φ1 = X1∧¬X2,
φ2 = ¬X1 ∧X2, φ3 = X3.

We have L+
1 = {1},L−1 = {2},L+

2 = {2},L−2 = {1},L+
3 = {3},L−2 = ∅. Thus it satisfies Proposition

6.7, and

Bel((X1 ∧ ¬X2) ∨ (¬X1 ∧X2) ∨X3) =

Bel(X1 ∧ ¬X2) + Bel(¬X1 ∧X2)

+Bel(X3)− Bel(X1 ∧ ¬X2 ∧X3)− Bel(¬X1 ∧X2 ∧X3)

(other terms are 0)

=l1(1− u2) + (1− u1)l2 + l3(1− l1(1− u2)− (1− u1)l2) ♦

Example 6.3 An example where the inclusion/exclusion principle cannot be applied, consider the
formula X1 ∨ (¬X1 ∧ X2) (which is just the disjunction X1 ∨ X2 we already considered above). It
does not hold that Bel(X1 ∨ (¬X1 ∧X2) = Bel(X1) +Bel(¬X1 ∧X2), since the latter sum neglects
m(X2), where X2 is a focal set that implies neither X1 nor ¬1 ∧X2.

Note that this remark suggests that normal forms that are very useful to compute the probability of
a Boolean formula efficiently may not be useful to speed up computations of belief and plausibility
degrees. For instance, X1 ∨ (¬X1 ∧ X2) is a binary decision diagram for the disjunction, and this
form prevents Bel(X1 ∨X2) from being computed using the inclusion/exclusion principle. ♦

6.1.3 Inclusion exclusion principle for belief functions

This work, along with the work of F. Aguirre et al. (Sallak et al., 2012), determines the cases where
inclusion exclusion results hold for more general cases other than Boolean formula. This is the main
subject of work done in (). It particularly gives a framework for the case of monotonic functions,
and of multi-states systems (i.e. functions that takes a finite set of values).

Although the framework that is retained in this article may seem restrictive at first, it can be applied
to a number of practical situations, and that one particular application is the evaluation of system
reliability is described.

Such results facilitate computations; and are particularly useful when using imprecise probabilistic
models. An interesting perspective to this study is to look for conditions under which other models
(e.g., general lower probabilities) satisfy the exclusion/inclusion principle. Other perspectives of the
current study include looking at other problems of reliability analysis, such as importance measures
used to detect critical components.
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6.2 Belief functions and fault tree analysis

In this thesis, the guideline is the application of different uncertainty management theories to fault
tree analysis. The results proved in section 6.1 applies here, as a fault tree can be written as a
Boolean formula (monotonic, or not).

6.2.1 Belief and plausibility of a Minimal Cut Set

From a Fault-tree F , an approximation can be obtained by means of minimal cuts. For a given order
(maximal number of atoms in conjunctions), appropriate software can find the set of all Minimal
Cuts that lead to the top event. The disjunction of all those Minimal Cuts will give us a partial
Fault-tree which will be an approximation of F . Fig. D.2 is an example of such a Partial Fault-tree.

Figure 6.1: Example of Partial Fault Tree

The Boolean formula F represented by this tree will always be under the form of a disjunction
of conjunctions of atoms C1 ∨ ... ∨ Cm. The formula written in this form will be referred to as a
Disjunctive Atomic Normal Form (DANF) (excluding negative literals). The results presented in
section 6.1.1 makes the computation of the belief and the plausibility of the formula straightforward.

For non monotonic fault trees, as the one that can be automatically generated by Model Based Safety
Analysis tools, the inclusion-exclusion principle will only hold if the Boolean formula associated to
the fault tree satisfies the proposition 6.7.

6.2.2 Comparison between Interval Analysis and Dempster-Shafer The-
ory

Table 6.2.3 summarizes the results obtained using the two methods seen in section 5.3 and 6.1 applied
to Boolean formulas: (i) the belief functions method with the assumption that the probability values
come from independent sources of information, and (ii) the full-fledged interval analysis method
under the assumption that all atomic events are independent. These two assumptions do not reflect
the same kind of situations. In particular the independence between sources of information may be
justified if elementary components in the device under study are different from one another, which
often implies that the sources of information about them will be distinct. However the fact that such
elementary components interact within a device tends to go against the statistical independence of
their respective behaviors.

Those results are given for the basic Boolean operators with variables A, B, C and D. The probability
interval used for those computations are: P (A) ∈ [0.3, 0.8], P (B) ∈ [0.4, 0.6], P (C) ∈ [0.2, 0.4], and
P (D) ∈ [0.1, 0.5].
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Table 6.1: Comparison between Interval Analysis and Dempster-Shafer Theory

Operator Formula Belief Functions (i) Interval Analysis (ii)
OR A ∨B lF = lA+lB− lAlB = 0.58 lF = lA + lB − lAlB = 0.58

uF = uA + uB − uAuB =
0.92

uF = uA + uB − uAuB =
0.92

AND A ∧B lF = lAlB = 0.12 lF = lAlB = 0.12
uF = uAuB = 0.48 uF = uAuB = 0.48

IMPLIES A ⇒ B lF = (1 − uA) + lBuA) =
0.44

lF = 1− uA + lBuA = 0.52

uF = 1 − lA(uB − lA) =
0.94

uF = 1− lA + uBlA = 0.88

ExOR A△B lF = lA(1− uB) + lB(1−
uA)

[0.44,0.56]

uF = uA + uB − lAlB −
uAuB

[lF , uF ] = [0.2, 0.8]
Fault-
tree
(Fig.
D.2)

F lF = lAlB + lBlC lD +
lAlC lD − 2lAlBlC lD

lF = lAlB+(1−lA)lBlC lD+
(1− lB)lAlC lD

uF = uAuB + uBuCuD +
uAuCuD − 2uAuBuCuD

lF = uAuB + (1 −
uA)uBuCuD + (1 −
uB)uAuCuD

[lF , uF ] = [0.1292, 0.568] [lF , uF ] = [0.1292, 0.568]
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In Interval Analysis, knowing the monotonicity of a formula makes the determination of its range
straightforward. A Boolean formula is monotonic with respect to a variable when we can find an
expression of the formula where this variable appears only in a positive or negative way. It is the
case for the formulas And, Or, and Implies.

But when the monotonicity is not easy to study, an exhaustive computation for all intervals bound-
aries must be carried out, like for the Equivalence and the Exclusive Or.

The difference between the results varies a lot with the formula under study. Sometimes, using
the Dempster-Shafer theory give the same results as interval analysis, hence, in those cases, the
dependency assumption does not have a big influence on the output value; e.g in case of conjunction
and disjunction of literals, but also disjunction of conjunctions of atoms (as shown in table 6.2.3).
This is not surprising as focal elements also take the form of conjunctions of literals, and their masses
are products of marginals. The fact that in such cases the same results are obtained does not make the
belief function analysis redundant: it shows that the results induced by the stochastic independence
assumption are valid even when this assumption is relaxed, for some kinds of Boolean formulas.
For more general kinds of Boolean formulas, the intervals computed by using belief functions are in
contrast wider than when stochastic independence is assumed.

In general, the probability family induced by the stochastic independence assumption will be included
in the probability family induced by the belief functions. This proposition can be proved using the
results of Fetz (Fetz, 2001) and Couso and Moral (Couso and Moral, 2010). Any probability measure
in P(m) = {P ≥ Bel} dominating a belief function induced by a mass function m can be written in

the form: P =
∑

E⊆Ω

m(E) · PE where PE is a probability measure such that PE(E) = 1 that shares

the mass m(E) among elements of E. For a function of two Boolean variables x1 and x2, with two
ill-known probability values P1(A1) = p1 and P1(A2) = p2, p1 is of the form l1 + α(u1 − l1) for some
α ∈ [0, 1] and p2 is of the form l2 + β(u2 − l2) for some β ∈ [0, 1]. The explicit sharing, among
interpretations, of the masses m(E), induced by probability intervals [l1, u1] and [l2, u2], that enables
P = P1P2 to be recovered is:

1. The masses on interpretations bear on singletons, hence do not need to be shared.

2. The masses on partial models are shared as follows

• m(A1)β is assigned to A1A2, m(A1)(1− β) to A1¬A2.

• m(A2)α is assigned to A1A2, m(A2)(1− α) to ¬A1A2.

• m(¬A1)β is assigned to ¬A1A2, m(¬A1)(1− β) to ¬A1¬A2.

• m(¬A2)α is assigned to A1¬A2, m(A2)(1− α) to ¬A1¬A2.

3. m(Ω) is shared as follows: αβm(Ω) to A1A2, (1−α)βm(Ω) to ¬A1A2, α(1−β)m(⊤) to A1¬A2,
(1− α)(1− β)m(⊤) to A1A2.

It can be checked that the joint probability P1P2 is the form
∑

E⊆Ω

m(E) · PE using this sharing of

masses. This result can be extended to more than 2 variables. It indicates that the assumptions
of source independence is weaker than the one of stochastic independence, and is of course stronger
than no independence assumption at all. So the belief function approach offers a useful and tractable
approach to evaluate the impact of stochastic independence assumptions on the knowledge of the
probability of dreadful events in fault-tree analysis.
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6.2.3 Example of the Primary/Backup Switch

Let us take again the example of the Primary/Backup Switch described in section5.5. The OCAS
model and the associated fault tree are recalled:

Figure 6.2: a) OCAS model of the Primary/Backup Switch b)Fault tree associated to event Obs.KO

The fault tree can be represented by the formula : Obs.KO = P.Fail ∧ (B.Fail ∨ (S.stuck ∧
¬S.activeB)), whose truth table is given on Fig. 6.3.

Figure 6.3: Truth table of Obs.KO

Fig. 6.4 depicts the partial models that satisfy or are compatible with Obs.KO.

The same intervals values than in section 5.5 are taken for the interval probabilities associated to the
events:

• P.Fail has an imprecise probability of P (P.Fail) = 10−4 + /− 50%

• B.Fail has an imprecise probability of P (B.Fail) = 10−4 + /− 10%

• S.stuck has a precise probability of P (S.stuck) = 10−5

• An activation order of the Switch is given, i.e. P (S.activeB) = 1
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Partial models Bel Pl Partial models Bel Pl

1 B P 42 ¬P St Sa

2 B ¬P 43 ¬P ¬St Sa

3 B 44 P ¬St Sa

4 ¬B P 45 B P ¬Sa

5 ¬B ¬P 46 B ¬P ¬Sa

6 P 47 ¬B P ¬Sa

7 ¬B 48 ¬B ¬P ¬Sa

8 ¬P 49 B St ¬Sa

9 ! 50 B ¬St ¬Sa

10 B Sa 51 ¬B St ¬Sa

11 B ¬Sa 52 ¬B ¬St ¬Sa

12 Sa 53 P St ¬Sa

13 ¬B Sa 54 ¬P St ¬Sa

14 ¬B ¬Sa 55 ¬P ¬St ¬Sa

15 ¬Sa 56 P ¬St ¬Sa

16 B St 57 B P St

17 B ¬St 58 B ¬P St

18 St 59 ¬B P St

19 ¬B St 60 ¬B ¬P St

20 ¬B ¬St 61 B P ¬St

21 ¬St 62 B ¬P ¬St

22 P Sa 63 ¬B P ¬St

23 P ¬Sa 64 ¬B ¬P ¬St

24 ¬P ¬Sa 65 ¬B ¬P Sa ¬St

25 P St 66 ¬P Sa

26 ¬P St 67 ¬B ¬P ¬Sa ¬St

27 ¬P ¬St 68 ¬B ¬P ¬Sa St

28 Sa St 69 B P Sa St

29 Sa ¬St 70 B P Sa ¬St

30 ¬Sa ¬St 71 B P ¬Sa St

31 ¬Sa St 72 B P ¬Sa ¬St

32 P ¬St 73 B ¬P Sa St

33 B P Sa 74 B ¬P Sa ¬St

34 B ¬P Sa 75 B ¬P ¬Sa ¬St

35 ¬B P Sa 76 B ¬P ¬Sa St

36 ¬B ¬P Sa 77 ¬B P Sa St

37 B St Sa 78 ¬B P Sa ¬St

38 B ¬St Sa 79 ¬B P ¬Sa St

39 ¬B St Sa 80 ¬B P ¬Sa ¬St

40 ¬B ¬St Sa 81 ¬B ¬P Sa St

41 P St Sa

Figure 6.4: Partial models for the computation of Bel(Obs.KO) and Pl(Obs.KO)
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Normally, the belief and the plausibility of the event Obs.KO should be computed by making the
exhaustive sum of the masses of the partial models described on Fig.6.4. In order to simplify the
equations, we will denote P.Fail by P , B.Fail by B,S.stuck by St and S.activeB by Sa.

But the fact that the Boolean expression is constituted of four Boolean variables appearing only once
each, shows it satisfies the proposition 6.7. The inclusion/exclusion principle can then be applied,
by writing the formula as a DNF.

Obs.KO = (¬B ∧ P ∧ ¬Sa ∧ St) ∨ (B ∧ P ∧ ¬Sa ∧ ¬St)
∨(B ∧ P ∧ ¬Sa ∧ St) ∨ (B ∧ P ∧ Sa ∧ ¬St) ∨ (B ∧ P ∧ Sa ∧ St)

The belief will be obtain by computing:

Bel(Obs.KO) = Bel(¬B ∧ P ∧ ¬Sa ∧ St) + Bel(B ∧ P ∧ ¬Sa ∧ ¬St)
+Bel(B ∧ P ∧ ¬Sa ∧ St) + Bel(B ∧ P ∧ Sa ∧ ¬St) + Bel(B ∧ P ∧ Sa ∧ St)

(other terms are 0)

And the plausibility:

Pl(Obs.KO) = Pl(¬B ∧ P ∧ ¬Sa ∧ St) + Pl(B ∧ P ∧ ¬Sa ∧ ¬St)
+Pl(B ∧ P ∧ ¬Sa ∧ St) + Pl(B ∧ P ∧ Sa ∧ ¬St) + Pl(B ∧ P ∧ Sa ∧ St)

(other terms are 0)

With the above values, we obtain the same result than in section 5.5, i.e. [4.5× 10−9, 1.65× 10−8].

The use of belief functions in the general case of Boolean formulas that does not satisfy the propo-
sition 6.7 remains difficult because of the computation time required. But this chapter gives a
straightforward way to handle some particular cases of Boolean formulas. The demonstration of the
equivalence with the interval arithmetic in the case of monotonic fault trees is a result that can be
interesting for the Common Cause Analysis introduced in 2.1. It shows that it is sufficient to prove
the independence of information sources instead of the stochastic independence, which can be easier
to verify in practice.
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In this chapter, we will see the origin of the intervals used in interval analysis as discussed in the
chapters 5 and 6. The probabilities that are attached to the variables comes from statistical studies
on the different components of the system. Some uncertainty comes from these statistical studies,
and can be handled by different means. This chapter will focus on the use of P-boxes to cope with
the imprecision on certain parameters of probability laws. This study has been subject of one article
(Jacob et al., 2012b).

7.1 Probability intervals generation

In the previous chapters, we assumed that the probability attached to every Boolean variable was
contained in an interval. In order to understand the source of this imprecision, we will first explain
the statistical analysis from where these values are extracted.
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7.1.1 Using linear regression

The probabilities of the Boolean variables in a fault tree generally represent the failure of a component
or equipment of the system from which the fault tree was generated. These probabilities are provided
by the equipment suppliers or manufacturers. Generally, they calculate such probabilities based on
statistical studies of the component or the system. Such studies involve test of components and
collection of their results. In the end, techniques such as regression analysis are used to determine
the probability laws that may fit the failure probability of the components.

In statistics, regression analysis is a statistical technique used for estimating some relationships
between some variables, when the focus is on the relationship between a dependent variable and one
or more independent variables. It includes several techniques for modeling and analyzing several
variables. It is widely used for prediction and forecasting, where its use has substantial overlap
with the field of machine learning. The analysis begins with the construction of a regression model.
It may be important to confirm the goodness of fit of the model and the statistical significance of
the estimated parameters. The estimation target is a function of the independent variables called
regression function. When the sample tend to be representing a straight line, i.e. the relationship
between two variables is under the form Y = a+ bX, where X is an explanatory variable and Y is a
dependent variable; the regression analysis is called linear regression. Linear regression attempts to
model the relationship between two variables by fitting a linear equation to observed data.

In reliability studies, the components failure is generally following exponential or Weibull probability
laws, as explained in appendix A. Those laws are represented by a straight line when depicted
on a logarithmic scale. Fig. 7.1 represents a data sample of some measures following a Weibull
distribution.

Figure 7.1: Weibull sample on a logarithmic scale

The statistical studies consist in finding the equation of the straight line that fits best the sample, in
order to get the probability distribution modeling the data. Hence, the uncertainty on the parameters
computation seems obvious, as it is not possible to fit to all values of a real sample, the model will
try to fit as much as possible. Some values will be left over, it is not possible to cope with all the
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sample in a straight line. That is the main reason why the imprecision of probability distributions
used for describing the probability of failure of components and equipments is not taken into account
in the model when considering a precise parameter. It is only possible to find a confidence interval ,
whose width depends on the number of samples. The following sections give some indications about
the way to capture more faithful information in those probability distributions.

7.1.2 Definition of a P-box

A cumulative distribution allows to define a probability measure on R. A natural way to give an
approximation of a probability that is not well known is to consider a pair [FT , FT ] of cumulative
distributions in order to represent this uncertainty. Those cumulative distributions generalize the
notion of interval, and are called p-boxes(Destercke et al., 2008) (Utkin and Destercke, 2007).

A p-box represent the class of probability measures whose distribution function is bounded by F and
F :

FT (x) ≤ FT (x) ≤ FT (x)∀x ∈ R (7.1)

Conversely, a p-box can be induced by a probability family P by:

∀x ∈ R,FT (x) = P ([0, x]), FT (x) = P ([0, x]) (7.2)

P-boxes may be used in many different kinds of situations involving incomplete information about a
quantity. There are different ways to obtain p-boxes from data and analytical analysis.

Sometimes a probability distribution is known to have a particular shape while its parameters are
not known precisely but only as intervals. Such distribution is known as a distributional p-box or
parametric p-box (Montgomery, 2009). Distributional p-box or parametric p-box is easy to obtain
by enveloping extreme distributions given the possible parameters.

If we have precise knowledge about the parameters such as mean and variance of a distribution but
we do not know the type of the distribution family, the distribution cannot be specified precisely due
to missing family type. In such cases, envelopes of all distributions matching given moments can
be constructed from inequalities that enclose all distribution functions having specified parameters.
These are basically distribution-free p-boxes because they make no assumption about the family or
shape of the uncertain distribution.

An empirical distribution is often used when all members of a population can be measured, or when
random sample data are abundant. This empirical distribution may be generalized to a p-box when
those data have non negligible measurement uncertainty represented by interval ranges about each
sample value. Such a p-box can be specified by cumulating the lower endpoints of all the interval
measurements into a cumulative distribution forming the left edge of the p-box, and cumulating the
upper endpoints to form the right edge. The broader the measurement uncertainty, the wider the
resulting p-box.

Uncertainty about the shape of a probability distribution may arise when the sample size of the
empirical data characterizing it is small. In traditional statistics several methods have been proposed
to account for this sampling uncertainty about the distribution shape, which are distribution-free in
the sense that they make no assumption about the shape of the underlying distribution. While at
the same time, there are related confidence-band methods that include assumptions about the shape
or family of the underlying distribution, which can often result in tighter confidence bands.



86 Imprecise probability laws

A p-box can be constructed as the envelope of the various cumulative distributions when there are
multiple possible probability distributions that might describe a variable, and an analyst cannot
select any of them based on available information. With a sensitivity study, it is also possible to
account for the uncertainty about the correct distribution but such studies become more complex
as the number of possible distributions grows; and combinatorially more complex as the number of
variables, for which there could be multiple distributions, increases.

7.2 Probability laws with imprecise parameters

This section will focus on the cases where the parameters of the widely used reliability distributions
are imprecise. It is the case of distributional p-box, as the probability distributions are known, but
the not the parameters.

7.2.1 Exponential distribution

Recall that the reliability analysis of an aircraft takes into account, among others, the electronic
components. Their probabilities of failure are modeled with constant failure rates λ(t) = λ, because
they do not have any burn-in nor any wear-out periods, respectively at their beginning and their
end of life. Moreover, when the failure rate is constant, equation (A.7) becomes R(t) = e−λt, i.e., an
exponential distribution.

The probability density function is given by:

fT (t) = λe−λt (7.3)

And is represented in Fig. 7.2.a). Its cumulative distribution, depicted in Fig. 7.2.b) is given by:

FT (t) = 1− e−λt (7.4)

Figure 7.2: a) Exponential density function b) Cumulative distribution

7.2.2 Exponential law with imprecise failure rate

If the only information available about the failure rate λ is an interval containing it, then there are
different probability distributions representing the failure of the component, as will be presented in
the sequel.
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The goal is to find the range of the cumulative distribution, when the failure rate is imprecise:
λ ∈ [λ, λ]. In interval analysis, knowing the monotonicity of a function makes the determination of
its range straightforward.

The function 1 − e−λt is strictly increasing with λ, hence the range of the cumulative distribution,
when λ is varying, for every t > 0 and λ > 0, is given by the expression:

FT (t) = {1− e−λt, s.t. λ ∈ [λ, λ]} = [1− e−λt, 1− e−λt] (7.5)

The range of the cumulative distribution with respect to some values of λ and in time interval
t = [0, 10] is represented in Fig. 7.3.a).

For the probability density function, it is a little bit more complex. The derivative with respect to λ
of the function fT (t) is:

∂

∂λ
fT (t) = (1− λt)e−λt (7.6)

This means that the function will be increasing with respect to λ when λt < 1, and decreasing
otherwise. The range of the function will depend on λ and t, as illustrated on Fig. 7.3.b).

Figure 7.3: a) Range of the cumulative distribution b) Range of the probability distribution (0.1 < λ < 0.3,
0 < t < 10)

In the following, we give different interpretations of the probability of failure of a component, as used
in fault tree analysis.

7.2.2.1 Occurrence of an atomic failure before time t

In the quantitative analysis of a safety model, each component (or type of component) of this model
will have its own failure rate, and its own failure probability. The main goal of this analysis is to
ensure that, at each time t, the probability that the system has failed remains below a certain value.
We are interested in the probability of failure of a component or system before time t, hence the
cumulative distribution will be used for our computations.

When the parameter λ is imprecise, and its possible values are known to lie within the interval [λ, λ],
the probability distribution will be contained in the p-box (Ferson et al., 2003):

{P, P (T < t) ∈ [1− e−λt, 1− e−λt]}, (7.7)

where a p-box is an ordered pair of cumulative distributions, representing the probability family.
This family (7.7) contains more probability distributions than those with an exponential distribution.
However it is enough to use the p-box when computing probability bounds of events of the form T < t.
But it will not be the case for computing other indicators, e.g. the variance.
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7.2.2.2 Occurrence of an atomic failure between t1 and t2

In some cases, it can also be useful to compute the probability that the event will occur between two
dates t1 and t2. This can be expressed as the conditional probability t1 < T < t2 given that T does
not occur before t1:

P (T < t2|T ≥ t1) =
e−λt1 − e−λt2

1− e−λt1
(7.8)

When λ ∈ [λ, λ], the partial derivative of P (T < t2|T ≥ t1) with respect to λ must be computed in
order to find the p-box of the probability distribution.

∂

∂λ
P (T < t2|T ≥ t1) =

t2e
−λt2 − t1e

−λt1

(1− e−λt1)2
(7.9)

By noticing that the function xe−λx is decreasing with λ when x is fixed, we can deduce that ∂
∂λ
P (T <

t2|T ≥ t1) is strictly negative. Hence, P (T < t2|T ≥ t1) is decreasing with respect to λ, and the
p-box containing the probability that the event occurs between t1 and t2 is:

P (T < t2|T ≥ t1) ∈
[

e−λt1 − e−λt2

1− e−λt1
,
e−λt1 − e−λt2

1− e−λt1

]

. (7.10)

7.2.3 Exponential distribution with periodic maintenance

It is also possible to represent schedules of preventive maintenance by means of probability distribu-
tions. Indeed, some components are preventively replaced or repaired with a period of length θ: this
maintenance task will reset the probability of failure to 0 after θ flight hours (FH). The cumulative
distribution representing this probability of failure in this case is a periodic function that can be
written as:

for k ∈ N, P (T < t) = 1− e−λ(t−kθ), if t ∈ [kθ, (k + 1)θ] (7.11)

If the failure rate λ is imprecise, then the probability of failure is the same as in the section 7.2.2.1
on the interval [0, θ]:

for k ∈ N, P (T < t) ∈ [1− e−λ(t−kθ), 1− e−λ(t−kθ)], if t ∈ [kθ, (k + 1)θ] (7.12)

If both the failure rate and the period are imprecise, then it is still possible to compute the range
of the resulting cumulative distribution: we can consider that the period θ can be any value in the
interval of time [θ1, θ2]. In this case, the size of the interval probability will grow very quickly with
the size of the interval [θ1, θ2]. The minimum and maximum cumulative distributions, denoted by
P (F < t) and P (F < t), are given for k ∈ N by the following expressions:

P (T < t) =

{

0 for kθ1 < t < kθ2
1− e−λ(t−kθ1), for t ∈ [kθ2, (k + 1)θ1]

P (T < t) = 1− e−λ(t−kθ1), for t ∈ [kθ2, (k + 1)θ2]

An example of those p-boxes for λ ∈ [0.5, 0.6] and T ∈ [θ1, θ2] is shown on Fig. 7.4.

7.2.4 Weibull distribution

In the case of a hardware component, it can be useful to model its burn-in period (i.e. the fact that
the failure rate is high at the beginning but will decrease after some time) and its wear-out phase
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Figure 7.4: An example of periodic maintenance with θ ∈ [θ1, θ2] and λ ∈ [0.5, 0.6]

(i.e. the fact that after some time, the failure rate of the component increases). Therefore, the failure
rate has the shape of a bathtub curve, as shown on Fig.7.5.

Figure 7.5: Bathtub Curve

In order to model the reliability in this case, the Weibull law is used. It is a two parameters law,
described by the formula:

R(t) = e−(
t
η
)β (7.13)

where η is the scale parameter and β the shape parameter.

The probability density function of a Weibull law is given by the expression:

fT (t) =
β

η
(
t

η
)β−1e−(

t
η
)β (7.14)

And its cumulative distribution is:
FT (t) = 1− e−(

t
η
)β (7.15)

From equation (A.5), the expression of the failure rate as a function of t is:

λ(t) = β.
1

ηβ
.tβ−1 (7.16)

In order to get a bathtub curve, we will chose:

• a value β1 < 1 for the burn-in phase (t0 to t1),

• β = 1 for the useful life (t1 to t2),

• a value β2 > 1 for the wear-out phase (t > t2).
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. a) β1 < 1 . b) β = 1 . c) β2 > 1

Figure 7.6: Variation of the Weibull distribution with η

In the wear-out phase, the reference origin of the failure rate and the cumulative function is not 0,
hence in order to be able to shift the distribution to starting time t2, a location parameter γ should
be added:

FT (t) = 1− e−(
t−γ
η

)β (7.17)

Despite the fact that the parameter β is different for each phase of the bathtub curve, the failure
rate is a continuous function. Therefore, there will be a constraint for each change of phase, that
will ensure the continuity. When the scale parameter η remains the same for all the phases, this
constraint is expressed as below:

{

β1.
1

ηβ1
.tβ1−1
1 = 1

η

β2.
1

ηβ2
.(t2 − γ)β2−1 = 1

η

⇔
{

β1.(
t1
η
)β1−1 = 1

β2.(
(t2−γ)

η
)β2−1 = 1

(7.18)

Like the failure rate curve, the global cumulative distribution will be composed of three pieces of
cumulative distributions with different parameters. To ensure the continuity of the global one, the
cumulative distribution of each new phase should start from the last value of the previous phase.

When the parameters of a Weibull law are imprecise, they should still verify the constraints of β
for each phase, and the ones expressing the continuity of λ(t) (equation 7.18). Fig. 7.6 shows the
variation of the failure rate with the variation of η for the three different phases of the bathtub curve.

The imprecision pervading the parameters β and η of the Weibull law affects the value of the time
points where the phases change in the bathtub curve (t1 and t2), due to equation (7.18). These time
points become themselves intervals.

In order to find the range of the cumulative distribution with the different parameters, the mono-
tonicity study of the function will also be required, as in section 7.2.2. In this case, we have a two
parameter function, hence we compute its gradient.

−→∇P (T < t) =

∣

∣

∣

∣

∂
∂η
P (T < t)

∂
∂β
P (T < t)

=

∣

∣

∣

∣

∣

β. tβ

ηβ+1 e
−( t

η
)β

ln( t
η
).( t

η
)βe−(

t
η
)β

(7.19)

By noticing that t, η, β and e−(
t
η
)β are always positive, we can conclude that the partial derivative

∂
∂η
P (T < t) is positive. But the partial derivative ∂

∂β
P (T < t) is positive when η > t and negative

otherwise, because of the term ln( t
η
). Equation (7.18) implies that for η > t1, P (T < t) is decreasing
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with respect to β for t < t1. This means that the p-box of a Weibull distribution will be:

[1− e
−( t

η
)β
, 1− e−(

t
η
)β ], for t ∈ [0, t1] (7.20)

Between t1 and t2, β is fixed to 1, hence the bounds for the cumulative distribution are:

[1− e
−

t−t1
η + P (T < t1), 1− e−

t−t1
η + P (T < t1)], for t ∈ [t1, t2] (7.21)

When t > t2, the quantity (t2 − γ) is computed through equation (7.18). Now the partial derivatives
are similar to the ones in equation (7.19), replacing t by t− γ. Hence the condition for ∂

∂β
P (T < t)

being positive is that t < γ + η, so we get the range of the cumulative distribution:

[1− e
−( t−γ

η
)β

+ P (T < t2), 1− e−(
t−t2
η

)β + P (T < t2)], for t < γ + η (7.22)

[1− e
−( t−γ

η
)β
+ P (T < t2), 1− e−(

t−t2
η

)β + P (T < t2)], for t > γ + η (7.23)

Once we know the impact of imprecise parameters on one probability distribution, we can use it in
the computation of the probability distribution of an undesired event described by a fault tree.

7.2.5 Extension to probability laws with imprecise parameters

In the case of fault tree analysis, the probability of a undesired event is described with a Boolean
formula F , function of N Boolean variables Vi, i = 1 . . . N representing the failure (or states) of its
components. When the probability of Vi is represented by a probability distribution with an imprecise
parameter, we have a p-box for the cumulative probability that undesired event occurs before a given
date. The variables Vi are supposed to be stochastically independent, and they can follow different
probability distributions. Also, their parameters can be of different types: some can be precise, when
the information is available and well known, some can be imprecise.

Figure 7.7: P-box algorithm
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The goal will be to find the p-box describing the undesired event probability across time from the
p-boxes of the variables Vi. The best way to carry out this computation is discretization of the
time, and to find for each t and for each Vi, the associated interval I(t, Vi). Of course, if all input
probability distributions are precise, the probability of the undesired event will be precise. When Ti

is a random variable representing the failure time of the component Vi, we have that:

Ii(t, Vi) = [P (Ti < t), P (Ti < t)]

Let us consider two variables V1 and V2 with exponential laws, and respective imprecise parameters
λ1 ∈ [0.1, 0.14] and λ2 ∈ [0.1, 0.2]. The two first graphs of Fig. 7.8 depicts the intervals Ii(t = 6, Vi)
associated to these variables.

Figure 7.8: Example of aggregation of two exponential p-boxes with F = V1 ∨ V2

For the same time point, the range of the probability of variable Vi is given by the interval Ii(t, Vi).
So, for this time t, the algorithm presented in 5.4 can be used to compute the probability of the
undesired event.

In order to compute the range of the cumulative distribution of the undesired event for all time
instants, we apply the algorithm for all k time instants, k = To

Ts
, where To is the observation interval

and Ts is the time step. An example of the result given by the algorithm for an undesired event
described by the Boolean formula F = V1∨V2, and for a time step of 1, is depicted on the last graph
of Fig. 7.8.

At this point, we can use the approach described in section 5.4, where the available probability
information are intervals (Ii) associated to each Boolean variable Vi. Hence, the same algorithm can
be applied. Following this method, the algorithm has been extended to take into account several
probability distributions.

7.3 Example of the Primary/Backup switch

The sensitivity analysis algorithm is applied to the fault tree, with the following imprecise parameters
for the distributions:
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• P.Fail possesses an exponential distribution with an imprecise failure rate λ = 10−4 + /− 50%
and a precise periodic maintenance of period θ = 30 FH

• B.Fail possesses an exponential distribution with an imprecise failure rate λ = 10−4 + /− 10%
and a precise periodic maintenance of period θ = 35 FH

• S.stuck possesses an exponential distribution with a precise λ = 10−5

• An activation order of the Switch occurs after t = 80 FH

On Fig. 7.9, we can observe the minimum and maximum cumulative distributions of the event
Obs.KO, for a duration of 100 flight hours (around three or four months for a commercial aircraft).
The picture lays bare the effect of periodic maintenance on those distributions.

Figure 7.9: Evolution of the p-box of the event Obs.KO for a duration of 100 FHs

The study of this p-box can give crucial information about the probability of undesired events, such
as Obs.KO : when the area between the minimum curve and the maximum curve is tight, computa-
tions are reliable. The larger it is, the more uncertainty we will get. But even under uncertainty, it
can still be possible to ensure safety, if the upper probability of the undesired event is below a legal
threshold. For instance, in our case study, the maximum probability is always less than 1.8 × 10−5

for 100 flight hours, with this maintenance schedule.

In safety analysis, the requirements to meet for each failure condition are described in the PSSA,
mentioned in section 2.1. They are classified with respect to their probability of occurrence, their
severity and some other features. This classification defines the legal probability threshold to be
met. In the example, the event Obs.KO meets a requirement of an event occurring less than 10−4

over the 100 first flight hours, but not the threshold of 10−5. In case a threshold of 10−5 is required
by the PSSA for this event, then we must change the maintenance schedule in order to meet this
requirement. The algorithm allows to test easily several scenarios of maintenance, in order to find
one that ensures the threshold of 10−5. With a periodic maintenance of the primary supplier every
19 flight hours instead of 25, and of the backup supplier every 22 flight hours instead of 35, this
requirement can be met despite the uncertainty about the inputs, as shown on Fig. 7.10.

Being able to model the impact of incomplete information on probabilistic safety analysis is very
useful for maintenance management. It allows the user to select the best representation for available
data, in order to get a faithful advice. Precise data can be used when they are available, but they
do not need to be assumed so when they are not. Consequently, more facets of uncertainty can be
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Figure 7.10: A different scenario of maintenance schedule

taken into account, and especially the difference between the variability of failure times and the lack
of knowledge on distribution parameters.This difference can be very crucial in a decision process,
where confidence about the computations plays a decisive role.

The computation time of this algorithm is exponential with respect to logical variables that appears
both in positive and negative forms in the fault-tree (in practice there are very few of them), but
the complexity of the Boolean functions makes the monotonicity difficult to determine. Hence, some
efforts must be done in the implementation of the algorithm in order to be able to reduce computation
time.
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An aircraft must fulfill some operational requirements in order to achieve its mission. For example, it
must satisfy certain predefined conditions prior to taking off, called dispatch requirements. Dispatch
requirements must be met before aircraft is allowed to fly, otherwise, the mission has to be adapted
to the current state of the aircraft, or canceled. These conditions concern maintenance facilities
at the current airport and at the next destinations, the current functional state of the aircraft and
the intended mission. Therefore, missions and maintenance activities must be adjusted regularly,
based up on the current status of the above mentioned parameters. This leads us to the core issue of
developing evaluation methods which assess operational reliability and can suggest a suitable mission
under given circumstances.

DIANA is a tool that will be used in helping the maintenance planning and to assist the pilot in
decision making. The crew and maintenance team will be able to use it for maintenance support.
Indeed, DIANA should be able to provide the list of priorities for the equipments to maintain, in
terms of potential failures, future missions, cost and reliability constraints. It will also take into
account the list of equipments that do not work properly and have some influence on the efficiency
or the energy consumption. Also each airport has different maintenance facilities, therefore DIANA
must take into account the availability of maintenance facilities at airports and those at the aircraft
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operator’s base. Moreover, DIANA must also consider unexpected events, such as failure of some
equipments or changes in maintenance facilities at the next destination of the aircraft.

In order to compute the priorities mentioned above, DIANA uses safety models extended to support
operationability requirements. Safety models are architectural and/or functional representations of
the equipments of aircraft to capture the health status of aircraft. These models are further extended
to incorporate environment variables such as a change in aircraft mission.

At the moment, Airbus has a good expertise in safety models. The goal in the @MOST project
is to design an Operational model of the aircraft, based on the already existing safety models. In
our point of view, and from the discussion in the @MOST meetings, the main difference between
the existing Safety model and the foreseen Operational model is that in the safety model only the
dreaded events are considered, whereas in the operational model it is necessary to also model the
events whose occurrence impacts on maintenance even if they do not impact on safety.

So, the extension of the safety models will take into account more issues, because some failure can have
minimal impact on the safety, but have impact on the operationability, or decrease the performances
of the aircraft. Also, the model will now take into account the different phases of the flight, and the
missions of the aircraft, in order to improve the pertinence indicators for the Decision Support. As
in the safety analysis, the goal of the operational analysis is to build a model of the system, with
their sub-systems and components in a hierarchical way, and to study the failure propagation. From
this new operational model we can also generate fault trees for some prescribed events to be avoided,
as they can have a negative impact on the safety or the operationability.

DIANA will also help from the pilot support point of view, by providing some input to help for the
dispatch. It will provide the list of items that could be operationally relevant to help the pilot in his
decision, and some indications and advice for the most economic use of the aircraft. In order to be
able to make the best possible decisions at the end of the process, we must deal with uncertainty at
each step. There are many different kinds of information used in the process and each information
item has some kind of imprecision/uncertainty in it. The goal will be to represent information as
faithfully as possible, then to study the propagation of this imprecise information in the system and
evaluate its impact.

We first studied the impact of uncertainty pervading the available input values on already existing
models. The goal was to exploit the results this study at the decision making step. Hence, the
indicators used will be different from the ones used for certification purpose. In a real world scenario,
the knowledge of input values to these models is not always accurate and complete. The goal of such
study is to analyze the impact of the imprecision on input values on the outputs of the models. That
is the reason why efficient computation algorithms are needed, in order to deal with the complexity
of the models.

After presenting all the theoretical background in Part II, developed algorithms in Chapters 5 and
7, and deducing relevant conclusions, it is also important to implement them in a software to use in
a real life application. In this chapter we will describe the implementation of previously established
concepts in a computer software and apply it on a case study.

8.1 Implementation of the algorithm

In this section, we will present implementation of the algorithm corresponding to the method of
imprecise probability computations for BDDs described in the section 5.3. This algorithm is able to
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compute the exact bounds of the probability of a Boolean function, given the interval ranges of its
atomic probabilities. It has been coded in C++ language, and is based on BDD packages named
CUDD and BuDDy along with other open source libraries, details of which can be seen in Appendix
D. We call this implementation as BDD based interval analysis.

8.1.1 Monotonicity and computational complexity

In Fault-Tree Analysis theory, modeling conventions are generally such that all variables appear only
positively in the Boolean formula of the top event: no variable appears with a negation, so the
probabilistic formula is monotonic and increasing. But in practice, there are several cases where
some variables can appear negatively, and sometimes even both negatively and positively, so that the
top formula can be non-monotonic. This can be due to:

• Fact that some negations are introduced due to compilation: this is clear in BDDs and also in
fault-trees obtained from so-called Mode Automata (Rauzy, 2002). In this case, the expression
is still monotonic as long as the Boolean formula could also be expressed without negative
literals (e.g. the connective OR).

• State modeling: in some systems, it is necessary to use variables that model some special
states, or modes, which no longer represent a failure, and the global formula may depend on
such variables and their negation. It is not necessary increasing with respect to these variables.

• Exclusive Failures: sometimes, failures cannot physically occur simultaneously, they are then
represented by mutually exclusive events or failure modes. Mutual exclusion implies non-
monotonicity.

In practice, those kind of variables are very few compared to ”usual” failures; hence, the algorithm
will only have NP-hard complexity for them, and be linear for all other variables. Then there are
some variables for which we don’t know the monotonicity of top formula. For these variables of
unknown monotonicity, we must compute all possible cases to get exact bounds of the probability of
the top formula, given the interval ranges of its atomic probabilities. Therefore, it is very important
to reduce the number of variables for which top formula’s monotonicity is unknown to reduce com-
putation times. The computational complexity is exponential with respect to variables of unknown
monotonicity. Different techniques were explored to reduce the number of such variables. In sections
below we will discuss comparison of these techniques.

8.1.2 Flow chart of the implemented software

Before going into detail of different techniques to determine monotonicity of top formula with respect
to its variables, it is relevant to briefly discuss top level implementation of the software code. This
will help in understanding different techniques to determine monotonicity, described afterwards.

In order to compute exact bounds of the probability of the top formula, given the interval ranges
of its atomic probabilities, we have two approaches implemented in the software. We can do this
either by using Minimal cut sets or by using fault trees. Flow chart of the implementation is shown
in Appendix D. In order to perform computations on the given input files, we parse the input file.
For example, in the flow chart we can see that we read input file in aralia format and parse it to
convert it into boolean formula. Then, we parse Boolean formula to construct a BDD representing
this boolean formula and so on. All these steps use different algorithms, which are described below.
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This section presents some of the algorithms used in the implementation of the software. The algo-
rithm 1, is the top level algorithm of the software and describes the computation process from input to
output of results. Some processes used in this algorithm such as SplitV ariables, ComparisonOfCat
and CombinationI are further explained in algorithms 2, 3 and 4 respectively.

Algorithm 1 Interval Analysis for BDD

Parse input file with formula F
Create a list V of variables of F with attributs lb, ub (lower/upper bound), type, path.value
NV = length(V)
Step1:
Pa = BuDDy(CUDD(formula F)) {create a BDD from F using the format of eq. E.1}
P = set of paths of Pa
Step2: Split the variables in 3 types
Create 2 tables Type(F ) and Type(BDD F ) of size NV

SplitVariables(F) {Split the variables in 3 types from the Formula F}
SplitVariables(BDD F) {Split the variables in 3 types from the BDD of F}
ComparisonOfCat(F, BDD F) {To keep as few variables from type 2 as possible}
Step3: Compute the interval [Pmin,Pmax] of P (Pa)
Product1 2InPath()
for each i = 1 to 2t2 do

CombinationI(i)
Pmin =min(Pmin,[i].lb)
Pmax =max(Pmax,[i].ub)

end for

Store the interval [PF .lb, PF .ub] of P (Pa), PF .lb =Pmin and PF .ub=Pmax in the output file

Algorithm 2 Split the variables in 3 types

SplitVariables(Boolean formula){Split the variables in 3 types from any Boolean Formula}
Iterator i = 0
for each variable v ∈ V do

if Only ¬v appears in F then
set Type(Boolean formula)[i] = 0 {v is type 0}

else if Only v appears in F then
set Type(Boolean formula)[i] = 1 {v is type 1}

else if v and ¬v appears in F then
set Type(Boolean formula)[i] = 2 {v is type 2}

end if
i = i+ 1

end for
ComparisonOfCat(Boolean formula1, Boolean formula2) {To keep as few variables from Type 2 as possible}
Iterator i=0
for Each variable v ∈ V do

if Type(Boolean formula1)[i]= 0 or Type(Boolean formula2)[i]= 0 then
set v.type = 0{v is type 0}

else if Type(Boolean formula1)[i]= 1 or Type(Boolean formula2)[i]= 1 then
set v.type = 1{v is type 1}

else
v.type = 2{v is type 2}
t2 = 2 + 1

end if
i = i+ 1

end for

8.1.3 BDD-based fault tree analysis

In the context of fault tree analysis, we take the fault tree generated by Cécilia OCAS software, i.e.
a complex Boolean formula, and parse it to develop a BDD representing this fault tree. Afterwards,
we generate all paths of this BDD leading to 1 i.e over which top formula evaluates to true. Then we
traverse these paths to do the computations presented in 5.4. As discussed earlier, these computations
have exponential complexity with respect to number of variables whose monotonicity is unknown,
therefore before performing these computations, we try to reduce number of unknown monotonicity
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Algorithm 3 Product1 2InPath

Product1 2InPath() {Compute for each path the products that are constant (Type 0, Type 1)}
for each path ∈ P do

Vpath = {v | v ∈ V ∧ v ∈ path} {v belongs to this path}
V 0
path = {v | v ∈ Vpath ∧ v.type = 0}, V 1

path = {v | v ∈ Vpath ∧ v.type = 1}

V 1+

path
= {v | v ∈ V 1

path ∧ v.value = 1}, V 1−

path
= {v | v ∈ V 1

path ∧ v.type = 0}

V 0+

path
= {v | v ∈ V 0

path ∧ v.value = 1}, V 0−

path
= {v | v ∈ V 0

path ∧ v.type = 0}

V 2
path = {v | v ∈ Vpath ∧ v.type = 2}

if length(V 2
path)=length(Vpath) then

path.c1 2min = 1, path.c1 2max = 1 {There is no variable of type 0 or type 1 in this path}
else

path.c1 2min =
∏

v∈V
1+

path

v.lb ∗
∏

v∈V
1−

path

(1− v.lb) ∗
∏

v∈V
0+

path

v.ub ∗
∏

v∈V
0−

path

(1− v.ub)

path.c1 2max =
∏

v∈V
1+

path

v.ub ∗
∏

v∈V
1−

path

(1− v.ub) ∗
∏

v∈V
0+

path

v.lb ∗
∏

v∈V
0−

path

(1− v.lb)

end if

end for

Algorithm 4 CombinationI

{Compute one element of the vector [i], i ∈ {1, ..2t2}}
[i].lb = 0, [i].ub = 0
(z1, z2, . . . zt2)← binary(i)
for j = 1 to t2 do

if zj = 0 then
vj .c = vj .lb {The lower bound is used for the corresponding v ∈ V 2}

else
vj .c = vj .ub{The upper bound is used for the corresponding v ∈ V 2}

end if
end for
for each path ∈ P do

V 2+

path
= {v | v ∈ V 2

path ∧ v.path.value = 0} {positive literals of Cat3 in the path}

V 2−

path
= {v | v ∈ V 2

path ∧ v.path.value = 1} {negative literals of Cat3 in this path}

path.t2 =
∏

v∈V
2+

path

v.c ∗
∏

v∈V
2−

path

(1− v.c) {A same value of bound is used for all paths of the BDD for this combination}

{Compute the min and max value of this path, using the values calculated by Product1 2}
path.t2 min = path.c1 2min ∗ path.t2
path.t2 max = path.c1 2max ∗ path.t2
[i].lb = [i].lb+ path.t2 min {Add the lower bound of this path for the combination i}
[i].ub = [i].ub+ path.t2 max {Add the upper bound of this path for the combination i}

end for
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variables. For this purpose we developed few different methods. These methods are described in
sections below.

8.1.3.1 Single BBD-based analysis using fixed variable order

Since we use BuDDy package to develop BDD, BuDDy explores the order of variables of top formula
in order to optimize the size of the BDD. This optimization is not rigorous and is very basic one.
This results in a selection of one variable order and its corresponding BDD.

In order to determine the monotonicity of top formula with respect to each variable, we use paths of
the BDD to check if a given variable appears positively, negatively or both. If a variable appears only
positively, the top formula is monotonically increasing, if the variable appears only negatively then
top formula is monotonically decreasing and if the variable appears both positively and negatively,
then we declare this variable as unknown type of monotonicity. This algorithm is shown in 1. As
the Boolean formulas to deal with are very large, the default order of variables chosen by BuDDy
package is not efficient enough to reduce variables of unknown type of monotonicity. But still it does
effectively calculates monotonicity of some variables.

8.1.3.2 Multiple BBD-based analysis using different variable orders

In order to determine monotonicity of maximum number of variables, we tried to override the default
variable order of BuDDy package and introduced our own variable orders. In this approach we use
different variable orders and generate corresponding BDDs. Theoretically we could use all possible
variable orders and corresponding BDDs but it requires lot of computational time and resources. We
adapted a single heuristic. We take the order of variables as they appear in top formula and then
shift each variable to right by one. We repeat this process for the number of total variables present
in the top formula. This heuristic generates the number of BDDs equal to the number of variables
in the top formula.

The principle consist in the fact that everytime that a BDD is parsed and the variables splited in
three categories, chances to find information about the monotonicity of the variables increases. It is
not possible to estimate in advance the number of variables whose monotonicity will be determined at
each parsing, but it is a certain way to find out more information than with a single-BDD approach.
Then, the best order and its corresponding BDD is chosen among these BDDs as the one which has
least number of paths: these paths are used for the rest of the probability computations.

We have found this heuristic to be very efficient in our results, as we will discuss in the case study
section later on. Though we did not explore many heuristics but other kind of heuristics can also be
used with this software.

8.1.3.3 Simplification of top formula using binary mathematics

Another quite different approach to reduce the number of variables of unknown monotonicity is to
simplify the top formula, which is a boolean formula, by using boolean arithmetic. In order to achieve
this simplification, we adapted an open source Python library called simbool. Basic idea behind
this approach is to reduce number of literals in the top formula by boolean simplification. After
obtaining the simplified formula, we use this simplified formula to generate BDD and corresponding
paths instead of default top formula obtained from fault tree generated by Altarica.
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This technique gives mixed results. Even though we were able to reduce the number of laterals by
a factor approaching 60, in certain cases, after boolean simplification but resulting BDDs were not
able to decrease more number of variables of unknown monotonicity type as compared to multiple
BBD-based analysis using different variable orders.

8.1.4 Minimal cut sets based analysis

In this approach we use minimal cut sets to evaluate exact bounds of probability. Minimal cut sets
are generated by OCAS software in Aralia format as shown in Appendix C. In this case top formula is
always monotonic. Hence, this approach is not affected by monotonicity and related computational
complexity. For example, in the case study presented in next section, the loss of the rudder is
considered as a catastrophic event, so following the safety requirements, the order of minimal cut
sets of this loss should be at least 3. We can verify it with the OCAS tool of sequence generation.
For example, the sequence (’B.loss’ & ’Bus 4PP.loss’ & ’Hyd Y.loss’) leads to the loss of the rudder.
All sequences generated by OCAS are presented in Appendix C.

8.2 Case Study

In this section we will present the result of our implemented software and its application to a real life
example. The example chosen as case study is taken from aeronautics domain. It is the safety model
of the working of Rudder of an aircraft. It is a pertinent model in term of safety because it takes into
account some reconfiguration and supports many type of redundancies such as active redundancy,
passive redundancy, and some which implies priorities as well.

8.2.1 Rudder System - the composition

The Rudder system is composed of:

1. Calculators
- 3 primary calculators (P1, P2, P3)
- 1 secondary calculator (S1)
- 1 emergency autonomous equipment, constituted by a Back-up Control Module (BCM) and
2 Back-up Power Supply (BPS B, BPS Y)

2. Servo-commands
- 3 servo-commands: S/C Green (G), S/C Blue (B), S/C Yellow (Y)

3. External power supply
- 2 electric sources (Bus 2PP, Bus 4PP)
- 3 hydraulic sources (Hyd Green, Hyd Blue, Hyd Yellow)

The OCAS model of this system is represented in fig. 8.1.
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Figure 8.1: Rudder’s OCAS model

8.2.2 System behavior

In absence of failures, the rudder will use the 3 hydraulic sources, all servo-commands will be active,
the secondary calculator will be inactive and the emergency autonomous equipment as well. Some
hidden failures can appear on the inactive components, and active failures on the active one.

When a calculator detect that there is failure on itself on or the servo-command that it con-
trols, it will disengage. If the 3 calculators disengage, then the secondary calculator will command
the Green servo-command.
If the secondary calculator fails as well, then the BCM will command in priority the Yellow servo-
command, and the Blue in case of failure of the Yellow one. The components Inhin BCM, Inhib BFS,
Comm and ori are virtual components that has been created to make some logic between input con-
ditions. For example, the output of or3 is activated if the primary calculator P3 or the BCM are
working properly. Then the servo-command Yellow (Y) will be activated if the Hyd Y is Ok.

8.2.3 Fault tree analysis of Rudder system

In this section we will use our software to analyze the rudder system presented in previous section.
We will also compare the result of different techniques we implemented in order to reduce number of
variables of unknown type of monotonicity and hence the computational complexity.

In the first step, we will take the fault tree generated by the Altarica software and parse it get the
top formula as a boolean formula of its variables. This process is explained in the flow chart in
Appendix D. Let us designate each technique as a case: case ’A’ represents the method where we use
single BBD-based analysis using fixed variable order, case ’B’ represents the method where we use
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multiple BBD-based analysis using different variable orders and case ’C’ represents the method where
we use simplification of top formula using binary mathematics. The Rudder system has 19 variables
in its top formula obtained from the fault tree (without boolean simplification), and consists of 3947
number of literals.

This model is used for safety analysis and it is has also been used as part of the operational reliability
analysis. It is genuinely non-monotonic because of the explicit use of states that do not refer to
failures. The failures (elementary events) taken into account are: loss of a component (e.g. B.loss

means loss of the Y servo-command), a hidden failure and an active failure (that can occur in S1
and BCM). An excerpt from the detailed generated fault tree in the Aralia format, for the loss of
the first primary calculator P1 is given on Appendix C.3. Sub-trees are automatically generated and
given names (DTN3578, etc.), one per line in the figure.

The BDD representation of F, with alphabetical order of the variables has 640 paths and are displayed
in Appendix E.1. Fig. E.1 depicts the BDD associated to these paths.

The probabilities of some variables are known: P(Hyd i.loss)= e−0.004t, P(Bus iPP)= e−0.0003. But for
some others, only an interval containing the probability values is known: i.[lb,ub] =e−[0.0015,0.0025]t, i ∈
{Y,B,G}, Pi[lb,ub]=e−[0.0004,0.0005]t, i = 1, . . . , 3,
S1.Active failure[lb,ub]=[0.015, 0.0345], Hidden failure =[0.005, 0.007] .

Using the algorithm described in section 7.2.5 on the whole fault-tree (that is non-monotonic) we for
instance obtain the interval I1 = [0.00742951, 0.00965619] after 20 flighthours. With the extended
algorithm described in section 7.2.5, it is possible to see the evolution of the probability thought
time, as shown on the Fig. 8.2.

Figure 8.2: Evolution of the probability of P1.hs

8.2.4 Comparison of the different cases

In this section we will present the results of the case study of Rudder system. The table 8.2.4
summarizes the results of three different methods i.e case ’A’, ’B’ and ’C’ evaluated on the Rudder
system.
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In case ’A’, the default order of variables and resulting BDD is able to determine only 3 variables
for their monotonicity, so there remain 16 variables as unknown type of monotonicity out of 19 total
variables. This leads us to 216 computations.

In case ’B’, we use 19 different variable orders, as described by the heuristics presented in section
8.1.3.2. Among these 19 orders we chose the one which gives us minimum number of paths. This
approach is able to resolve 16 variables for their monotonicity. 3 variables were still unknown for
their monotonicity. This leads us to 23 number of cases for computations. This is drastically less than
that of case ’A’ but we spend some extra computations in evaluation of best BDD and variable order.
Compared to case ’A’, this time is much less than the time consumed in computing 216 computations
of case ’A’.

In case ’C’, boolean simplification also requires considerable amount of computations. For the Rudder
system example, top formula simplification was huge. We were able to reduce number of literals to
67 from 3947 of the original formula, which is of the order of 60. But it took almost 1 hour to achieve
this simplification. After the simplification, the formula was used to generate BDD and resulting
paths. This approach was able to find monotonicity for 13 variables, leaving behind 6 variables for
unknown type of monotonicity.

Comparing the results shown in 8.2.4, we can see that computational complexity is exponential
with respect to variables of unknown monotonicity. As discussed in section 8.1.1, the algorithm to
find monotonicity of variables requires paths of the BDD representing the top formula. Then, the
aim is to find the BDD which results in paths able to resolve monotonicity of maximum number of
variables. Such BDD, in turn, depends on order of the variables. Hence, the main objective is to
find the order of variables that leads us to minimum number of variables of unknown monotonicity.
At present we still need more insight on what can lead us to the right variable order. For the given
example of Rudder system, clearly the case ’B’ takes least amount of time over all, and hence is the
most efficient method.

Case No. of Variables No. of Literals Variables resolved Total Time
A 19 3947 3 4 hours
B 19 3947 16 <1 minute
C 19 67 13 1 hour

All of these methods are not always able to determine the monotonicity of all the variables, but they
improve significantly the computation time. They can be more or less efficient, depending on the
Boolean formula that they have to deal with. The advantage of the Boolean formula reduction is
that once that it is done, it can be used to deal with all the scenarios done from this formula. But
a reduction of the formula size do not imply any size reduction in the BDD, when the variables are
taken in the same order.

The multiple-BDD principle is based on randomness, hence the improvement in computation time is
fluctuating. But in the case of the rudder, it gives a very impressive reduction of computation time.
It is possible to add different orders and respective associated BDDs in order to have more chances
to determine the monotonicity of maximum possible variables. Any additional knowledge from the
user about the monotonicity of variables can also be taken into account in the model.
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Conclusion

This thesis work was initiated with the main objective to improve the uncertainty management
in existing risk analysis techniques for the main application to preventive maintenance of aircraft.
Uncertainty can have many different kinds of forms and is always present in risk management. Precise
probability laws, mostly used in existing techniques of quantitative safety quantitative analysis, do
not cover all forms of uncertainty that may exist in models. To overcome this limitation, this work was
done in order to be able to cope more facets of uncertainty and propagate them into the models used.
This thesis proposed the use of different uncertainty management techniques in order to propagate
probability intervals in Fault Tree Analysis, which is a well known approach for safety analysis. In
this work, Boolean formulas are used as the basis of models for uncertainty management studies, as
they can be used for representing a fault tree.

9.1 Contributions

The first part of this work was to formalize the problem of computing the probability interval of
a Boolean formula representing a faulty event in terms of probability intervals of failures of com-
ponents, under the assumption of stochastic independence. When using the theory of imprecise
probabilities instead of classical theory of probability, the problem of computing the probability of
Boolean formulas becomes tricky and taking into account partial ignorance can add complexity to
the computations.

Applying naive interval arithmetic directly to Boolean formula may result in a very imprecise interval
due to repetitions of a variable and its negation. In Chapter 5, we have developed an efficient
algorithm based on monotonicity analysis to reduce this imprecision. Our algorithm can compute
the exact range of the probability of any formula without adding any artificial uncertainty (i.e.
uncertainty induced by the computation itself, not by the inputs). Hence, we could prove that this
range is always smaller than the one computed applying naive interval arithmetic. The downside of
this algorithm is that the computations remains exponential with the number of variables that are
found appearing both positively and negatively in the expression. Some heuristics trying to decrease
it (restricting exponential complexity to variables variables with respect to whom the monotonicity
of the formula is hard to determine) are discussed in Chapter 8. The intervals used in this approach
may be coming from probability laws with imprecise parameters, as described in Chapter 7.
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Our second contribution is alternative formulation in the theory of belief functions under assumption
of information source independence, and determination of cases where the import export formula
can be used (Chapter 6). Belief functions can be helpful, because it proposes a way to propagate
probability intervals, without making any assumption about the dependence of the variables, but only
about the sources of information that the probability values come from (statistical studies, experts,
etc.). Using Belief functions for computing the resulting probability interval of a Boolean formula
is also an NP-hard problem. In this thesis, cases where the computation can be straightforward are
described.

The third contribution of this thesis is the comparison of the two approaches mentioned before,
and the application to examples from aircraft maintenance (Chapter 7 and 8). Both approaches
can be applied for uncertainty management in aircraft maintenance in order to cover more facets of
uncertainty with better results as compared to existing techniques. Depending on the context, those
two approaches can be equivalent, or complementary.

9.2 Perspectives

The work done during this thesis can be used in the scope of a decision making process, i.e. the
intervals of probabilities for a failure condition computed by our developed algorithms can be used
as an indicator for supporting decisions. For example, the width of an interval (or of a p-box) can
be related to the quality of the result. A wider interval suggests lesser confidence about the result
and vice versa. Similarly, other indicators exist as well. Further research should be carried out to
figure out all the indicators with varying degrees of influence on the final decision. It will also be
interesting to propagate the information contained in these imprecise probabilities along the different
stages of decision making process in order to be able to make the best possible decision. Intervals
and p-boxes are also a way to indicate a part of ignorance in the results, hence this aspect will have
to be taken into account. An extension to fuzzy numbers would also be interesting in order to model
and propagate epistemic uncertainty.

In the belief function approach, we demonstrated that when a Boolean formula satisfies certain prop-
erties, it is possible to use computations that are very similar to the classical probability computations
in order to compute the belief and the plausibility of the formula. Some more investigations can be
done in order to find practical methods to prove that the formula satisfies those properties. This
could lead to a huge improvement of the computation time, and a better scalability of this frame-
work for complex systems. It would also be very interesting to try to compute probability intervals
of failure conditions under weaker independence assumptions, and to compare the results with those
of the approaches described in this thesis.

The last point is that this thesis focuses on the uncertainty management in Fault Tree Analysis.
But one of the major drawback of this approach is that it is static, and it does not cope with the
dynamic part of safety analysis. The dynamic part of safety analysis can be handled by the algorithms
developed by ONERA in the context of @MOST project (Teichteil-Königsbuch et al., 2011). Those
algorithms are based on Markov chains. In order to cope with uncertainty in dynamic part of Safety
analysis, a good research direction can be to study the use of imprecise Markov chains and their
application to dynamic safety analysis (Cooman et al., 2007).
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carlo. In Qualita 2011, pages 80–80, 2011.

R. Amalberti. La conduite des systèmes à risques. PUF, 1996.
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P. Ribot. Vers l’intégration diagnostic/prognostic pour la maintenance des systèmes complexes. PhD
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Appendix A

Mathematical definitions for RAMS

The aim of this section is to recall some basics about the mathematical modeling used for the
quantitative studies of reliability (Barlow and Proschan, 65).

Definition A.1 (Reliability)
The reliability R(t) of a system, also called the survival function, is the probability that the system
does not fail before time t. It can be expressed as:

R(t) = P (T > t) (A.1)

where T is a random variable representing the failure date. ♦

The reliability expresses the fact that a system is performing the required mission under given
conditions for a given time interval [0,t].

Definition A.2 (Probability of failure)
The probability of failure of a system before time t, called failure distribution FT (t) = P (T ≤ t),
is the complement of its reliability:

FT (t) = 1−R(t) (A.2)

♦

Definition A.3 (Failure density function)
The failure density function fT (t) expresses the probability that the system fails between t and
t+ dt:

fT (t)dt = P (t ≤ T < t+ dt) (A.3)

♦

Definition A.4 (Failure rate)
The failure rate λ of a system is the frequency of its failure. λ is often considered as proportional
to the probability that a failure occurs at a specified time point t, given that no failure occurred
before this time:

λ(t)dt = P (t ≤ T ≤ t+ dt | T > t) (A.4)

♦
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The failure rate is a function of the system health state, and in general it is time dependent. It is a
value for which statistical studies can be carried out, because it is a frequency (Barlow and Proschan,
1975).

The conditional probability of the failure rate can be written as:

λ(t)dt =
fT (t)dt

R(t)
=

−R′(t)

R(t)
, (A.5)

where R′(t) is the derivative of R(t) with respect to the time.

The solution of this differential equation is:

ln(R(t)) =

∫ t

0

λ(u)du+ c,where c is a constant. (A.6)

Hence, the reliability expressed in terms of the failure rate has the expression:

R(t) = e−
∫ t
0
λ(u)du (A.7)

With the expression of the reliability as function of the failure rate, it is possible to see the evolution
of the reliability from the statistics inputs that we have on the failure rates. The shape of the failure
rate will define the behavior of the reliability function.

From the probability distribution of the reliability function, it is possible to compute some useful
indicators about the failure times of a component.

Definition A.5 (Mean Time To Failure (MTTF))
Mean time to failure (MTTF) measures average time to failures with the modeling assumption
that the failed system is not repaired. ♦

Definition A.6 (Mean Time Between Failure (MTBF))
Mean Time Between Failures (MTBF) is the predicted elapsed time between inherent failures of a
system during operation. MTBF can be calculated as the arithmetic mean time between failures
of a system. The MTBF is typically part of a model that assumes the failed system is immediately
repaired, as a part of a renewal process. ♦

Definition A.7 (Remaining Useful Life (RUL))
The Remaining Useful Life (RUL) of a component/equipment/system, is defined as the expected
time after which it will fail. Fig. A.1 depicts how the predictions are used in order to evaluate this
remaining time. ♦

MTTF, MTBF and RUL are values that are often used in Prognosis 2.4. They can be computed
from the probability distribution of the component, but the Prognostic analysis consists in reassessing
them with the evolution of the state of the system.
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Figure A.1: Remaining Useful Life (RUL)
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Appendix B

Possibility Theory

In the Possibility Theory, information is represented by a possibility distribution. It is a way to
represent the knowledge of one agent related to the state of the World. The formal definition of a
possibility distribution is that for:
U: Set of states of the world
x: Ill-known variable
L: Possibility scale ([0,1], finite interval, ...)

}

πx :
U → L
u 7→ πx(u)

such that:

πx(u) ∈ L, and ∃u s.t.πx(u) = 1

By convention:
πx(u) = 0 iff x = u is impossible
πx(u) = 1 iff x = u is possible
πx(u) < πx(u

′) ⇔ x = u’ is more plausible than x = u

Let’s take an example: we take the concept of ”teenager”, and we want to represent it on an age
scale.
We consider a teenager:
- If he is more than 20 and less than 12, he is definitely not a teenager. The possibility distribution
will be null for those values.
- If he is called teenager, than it is very possible that he is between 15 and 18, so the possibility for
those values will be 1, it is the core of the distribution.
- If he is in [12,15] (resp. [18,20]), the more he will be close to 15 (resp. 18), the more chances are
that he will be considered as a teenager.

We obtain the possibility distribution depicted in fig. B.1:

Some particular cases of fuzzy sets:

• Precise information: x = u0 : πx(u) = 1 if u = u0, and 0 otherwise (fig. B.2.a)

• Incomplete but clear information: x ∈ [a,b] : πx(u) = 1 if u ∈ [a,b], and 0 otherwise
(fig. B.2.b)



118 Possibility Theory

Figure B.1: Fuzzy set representing the concept of ”Teenage”

• Total ignorance: : πx(u) = 1 ∀ u (fig. B.2.c)

a) b) c)

Figure B.2: Representation of: a) precise information, b) interval information, c) total ignorance

Such a distribution can be interpreted as a set of nested confidence intervals; it is called α-cuts,
where α is the possibility degree. An α-cut will be define by: [a∗, a

∗] = {a, π(a) ≥ α}
The figure B.3 shows an α-cut. By taking different values for α, we get different associated intervals.
For α= 1, we obtain the kernel of the possibility distribution.

Figure B.3: α-cut

For an event A of U, two measures are defined:

- Possibility measure: Π(A) = sup {π(a)}
a ∈ A

- Necessity measure: N(A) = inf {1− π(a)}
a ∈ A

Those measures express respectively the degree of plausibility and the degree of certainty of A.
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Aralia format

This appendix illustrates the format of the fault trees that are taken in input of the algorithms
descrided in chapters 5 and 7.

C.1 The syntax

The Aralia syntax is a way to write Boolean formulas. This syntax is, for F1, ..., Fn formulas, and
X1, ..., Xn variables:

−F1 Negation (¬)
F1|...|Fn Disjunction (∨)
F1&...&Fn Conjunction (∧)

F1 = ... = Fn Equivalence (⇔)
F1#...#|Fn Exclusive or (△)
F1 => F2 Implication (⇒)
F1?F2 : F3 If-Then-Else (ite)

@(k, [F1, ..., Fn]) k out of F1, ..., Fn

C.2 Example of a partial fault tree in Aralia format for the

Rudder model

There are 21 minimal cut of order 3.

/* Order of products :
3 21
*/

g.1 := (’B.loss’ & ’Bus 4PP.loss’ & ’Hyd Y.loss’);
g.2 := (’B.loss’ & ’Bus 4PP.loss’ & ’Y.loss’);
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g.3 := (’B.loss’ & ’G.loss’ & ’Hyd Y.loss’);
g.4 := (’B.loss’ & ’G.loss’ & ’Y.loss’);
g.5 := (’B.loss’ & ’Hyd G.loss’ & ’Hyd Y.loss’);
g.6 := (’B.loss’ & ’Hyd G.loss’ & ’Y.loss’);
g.7 := (’BCM.hidden failure’ & ’Bus 2PP.loss’ & ’Bus 4PP.loss’);
g.8 := (’BCM.hidden failure’ & ’Bus 2PP.loss’ & ’G.loss’);
g.9 := (’BCM.hidden failure’ & ’Bus 2PP.loss’ & ’Hyd G.loss’);
g.10 := (’Bus 2PP.loss’ & ’Bus 4PP.loss’ & ’Y.loss’);
g.11 := (’Bus 2PP.loss’ & ’G.loss’ & ’Y.loss’);
g.12 := (’Bus 2PP.loss’ & ’Hyd G.loss’ & ’Y.loss’);
g.13 := (’Bus 4PP.loss’ & ’Hyd B.loss’ & ’Hyd Y.loss’);
g.14 := (’Bus 4PP.loss’ & ’Hyd B.loss’ & ’Y.loss’);
g.15 := (’Bus 4PP.loss’ & ’P2.loss’ & ’Y.loss’);
g.16 := (’G.loss’ & ’Hyd B.loss’ & ’Hyd Y.loss’);
g.17 := (’G.loss’ & ’Hyd B.loss’ & ’Y.loss’);
g.18 := (’G.loss’ & ’P2.loss’ & ’Y.loss’);
g.19 := (’Hyd B.loss’ & ’Hyd G.loss’ & ’Hyd Y.loss’);
g.20 := (’Hyd B.loss’ & ’Hyd G.loss’ & ’Y.loss’);
g.21 := (’Hyd G.loss’ & ’P2.loss’ & ’Y.loss’);
’Rudder.Output.false’ := (g.1 | g.2 | g.3 | g.4 | g.5 | g.6 | g.7 | g.8 | g.9 | g.10 | g.11 | g.12 | g.13 | g.14
| g.15 | g.16 | g.17 | g.18 | g.19 | g.20 | g.21);

C.3 Example of a fault tree in Aralia format

P1.Status.hs := ((-B.loss & DTN3578) | (B.loss & DTN3617));
DTN3578 := ((-BCM.active failure & DTN3503) | (BCM.active failure & DTN3577));
DTN3503 := ((-BPS B.active failure & DTN3500) | (BPS B.active failure & DTN3502));
DTN3500 := ((-BPS Y.active failure & DTN3483) | (BPS Y.active failure & DTN3499));
DTN3483 := ((-Bus 2PP.loss & DTN3482) | (Bus 2PP.loss & DTN3480));
DTN3482 := ((-Hyd B.loss & DTN3478) | (Hyd B.loss & DTN3481));
DTN3478 := ((-Hyd Y.loss & DTN3475) | (Hyd Y.loss & DTN3477));
DTN3475 := (P1.loss & DTN3474);
DTN3474 := ((-P2.loss & -S1.active failure) | (P2.loss & DTN3473));
DTN3473 := ((-P3.loss & DTN3471) | (P3.loss & DTN3472));
DTN3471 := (-S1.active failure | (S1.active failure & DTN3470));
DTN3470 := (-S1.hidden failure & Y.loss);
DTN3472 := (-S1.active failure | (S1.active failure & -S1.hidden failure));
DTN3477 := (P1.loss & DTN3476);
DTN3476 := ((-P2.loss & -S1.active failure) | (P2.loss & DTN3472));
DTN3481 := ((-Hyd Y.loss & DTN3479) | (Hyd Y.loss & DTN3480));
DTN3479 := (P1.loss & DTN3473);
DTN3480 := (P1.loss & DTN3472);
DTN3499 := (-BPS Y.hidden failure & DTN3498);
DTN3498 := ((-Bus 2PP.loss & DTN3494) | (Bus 2PP.loss & DTN3497));
DTN3494 := ((-Bus 4PP.loss & DTN3493) | (Bus 4PP.loss & DTN3482));
DTN3493 := ((-G.loss & DTN3492) | (G.loss & DTN3482));
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DTN3492 := ((-Hyd B.loss & DTN3487) | (Hyd B.loss & DTN3491));
DTN3487 := ((-Hyd G.loss & DTN3486) | (Hyd G.loss & DTN3478));
DTN3486 := ((-Hyd Y.loss & DTN3484) | (Hyd Y.loss & DTN3485));
DTN3484 := (P1.loss & DTN3474);
DTN3485 := (P1.loss & DTN3476);
DTN3491 := ((-Hyd G.loss & DTN3490) | (Hyd G.loss & DTN3481));
DTN3490 := ((-Hyd Y.loss & DTN3488) | (Hyd Y.loss & DTN3489));
DTN3488 := (P1.loss & DTN3473);
DTN3489 := (P1.loss & DTN3472);
DTN3497 := ((-Bus 4PP.loss & DTN3496) | (Bus 4PP.loss & DTN3480));
DTN3496 := ((-G.loss & DTN3495) | (G.loss & DTN3480));
DTN3495 := ((-Hyd G.loss & DTN3489) | (Hyd G.loss & DTN3480));
DTN3502 := (-BPS B.hidden failure & DTN3501);
DTN3501 := ((-BPS Y.active failure & DTN3498) | (BPS Y.active failure & DTN3499));
DTN3577 := (-BCM.hidden failure & DTN3576);
DTN3576 := ((-BPS B.active failure & DTN3574) | (BPS B.active failure & DTN3575));
DTN3574 := ((-BPS B.hidden failure & DTN3549) | (BPS B.hidden failure & DTN3573));
DTN3549 := ((-BPS Y.active failure & DTN3547) | (BPS Y.active failure & DTN3548));
DTN3547 := ((-BPS Y.hidden failure & DTN3538) | (BPS Y.hidden failure & DTN3546));
DTN3538 := ((-Bus 2PP.loss & DTN3533) | (Bus 2PP.loss & DTN3537));
DTN3533 := ((-Bus 4PP.loss & DTN3532) | (Bus 4PP.loss & DTN3531));
DTN3532 := ((-G.loss & DTN3530) | (G.loss & DTN3531));
DTN3530 := ((-Hyd B.loss & DTN3520) | (Hyd B.loss & DTN3529));
DTN3520 := ((-Hyd G.loss & DTN3512) | (Hyd G.loss & DTN3519));
DTN3512 := ((-Hyd Y.loss & DTN3509) | (Hyd Y.loss & DTN3511));
DTN3509 := (P1.loss & DTN3508);
DTN3508 := (P2.loss & DTN3507);
DTN3507 := ((-P3.loss & DTN3505) | (P3.loss & DTN3506));
DTN3505 := ((-S1.active failure & DTN3504) | (S1.active failure & DTN3470));
DTN3504 := (S1.hidden failure & Y.loss);
DTN3506 := ((-S1.active failure & S1.hidden failure) | (S1.active failure & -S1.hidden failure));
DTN3511 := (P1.loss & DTN3510);
DTN3510 := (P2.loss & DTN3506);
DTN3519 := ((-Hyd Y.loss & DTN3516) | (Hyd Y.loss & DTN3518));
DTN3516 := (P1.loss & DTN3515);
DTN3515 := (P2.loss & DTN3514);
DTN3514 := ((-P3.loss & DTN3513) | (P3.loss & DTN3472));
DTN3513 := ((-S1.active failure & Y.loss) | (S1.active failure & DTN3470));
DTN3518 := (P1.loss & DTN3517);
DTN3517 := (P2.loss & DTN3472);
DTN3529 := ((-Hyd G.loss & DTN3524) | (Hyd G.loss & DTN3528));
DTN3524 := ((-Hyd Y.loss & DTN3521) | (Hyd Y.loss & DTN3523));
DTN3521 := (P1.loss & DTN3507);
DTN3523 := (P1.loss & DTN3522);
DTN3522 := ((-P2.loss & DTN3507) | (P2.loss & DTN3506));
DTN3528 := ((-Hyd Y.loss & DTN3525) | (Hyd Y.loss & DTN3527));
DTN3525 := (P1.loss & DTN3514);
DTN3527 := (P1.loss & DTN3526);
DTN3526 := ((-P2.loss & DTN3514) | (P2.loss & DTN3472));
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DTN3531 := ((-Hyd B.loss & DTN3519) | (Hyd B.loss & DTN3528));
DTN3537 := ((-Bus 4PP.loss & DTN3536) | (Bus 4PP.loss & DTN3480));
DTN3536 := ((-G.loss & DTN3535) | (G.loss & DTN3480));
DTN3535 := ((-Hyd G.loss & DTN3534) | (Hyd G.loss & DTN3480));
DTN3534 := (P1.loss & DTN3506);
DTN3546 := ((-Bus 2PP.loss & DTN3545) | (Bus 2PP.loss & DTN3537));
DTN3545 := ((-Bus 4PP.loss & DTN3544) | (Bus 4PP.loss & DTN3543));
DTN3544 := ((-G.loss & DTN3542) | (G.loss & DTN3543));
DTN3542 := ((-Hyd B.loss & DTN3520) | (Hyd B.loss & DTN3541));
DTN3541 := ((-Hyd G.loss & DTN3539) | (Hyd G.loss & DTN3540));
DTN3539 := ((-Hyd Y.loss & DTN3509) | (Hyd Y.loss & DTN3523));
DTN3540 := ((-Hyd Y.loss & DTN3516) | (Hyd Y.loss & DTN3527));
DTN3543 := ((-Hyd B.loss & DTN3519) | (Hyd B.loss & DTN3540));
DTN3548 := (-BPS Y.hidden failure & DTN3538);
DTN3573 := ((-BPS Y.active failure & DTN3571) | (BPS Y.active failure & DTN3572));
DTN3571 := ((-BPS Y.hidden failure & DTN3555) | (BPS Y.hidden failure & DTN3570));
DTN3555 := ((-Bus 2PP.loss & DTN3554) | (Bus 2PP.loss & DTN3537));
DTN3554 := ((-Bus 4PP.loss & DTN3553) | (Bus 4PP.loss & DTN3552));
DTN3553 := ((-G.loss & DTN3551) | (G.loss & DTN3552));
DTN3551 := ((-Hyd B.loss & DTN3550) | (Hyd B.loss & DTN3529));
DTN3550 := ((-Hyd G.loss & DTN3509) | (Hyd G.loss & DTN3516));
DTN3552 := ((-Hyd B.loss & DTN3516) | (Hyd B.loss & DTN3528));
DTN3570 := ((-Bus 2PP.loss & DTN3562) | (Bus 2PP.loss & DTN3569));
DTN3562 := ((-Bus 4PP.loss & DTN3561) | (Bus 4PP.loss & DTN3560));
DTN3561 := ((-G.loss & DTN3559) | (G.loss & DTN3560));
DTN3559 := ((-Hyd B.loss & DTN3558) | (Hyd B.loss & DTN3541));
DTN3558 := ((-Hyd G.loss & DTN3556) | (Hyd G.loss & DTN3557));
DTN3556 := (Hyd Y.loss & DTN3509);
DTN3557 := (Hyd Y.loss & DTN3516);
DTN3560 := ((-Hyd B.loss & DTN3557) | (Hyd B.loss & DTN3540));
DTN3569 := ((-Bus 4PP.loss & DTN3568) | (Bus 4PP.loss & DTN3567));
DTN3568 := ((-G.loss & DTN3566) | (G.loss & DTN3567));
DTN3566 := ((-Hyd B.loss & DTN3565) | (Hyd B.loss & DTN3535));
DTN3565 := ((-Hyd G.loss & DTN3563) | (Hyd G.loss & DTN3564));
DTN3563 := (Hyd Y.loss & DTN3534);
DTN3564 := (Hyd Y.loss & DTN3480);
DTN3567 := ((-Hyd B.loss & DTN3564) | (Hyd B.loss & DTN3480));
DTN3572 := (-BPS Y.hidden failure & DTN3555);
DTN3575 := (-BPS B.hidden failure & DTN3549);
DTN3617 := ((-BCM.active failure & DTN3587) | (BCM.active failure & DTN3616));
DTN3587 := ((-BPS B.active failure & DTN3584) | (BPS B.active failure & DTN3586));
DTN3584 := ((-BPS Y.active failure & DTN3579) | (BPS Y.active failure & DTN3583));
DTN3579 := ((-Bus 2PP.loss & DTN3481) | (Bus 2PP.loss & DTN3480));
DTN3583 := (-BPS Y.hidden failure & DTN3582);
DTN3582 := ((-Bus 2PP.loss & DTN3581) | (Bus 2PP.loss & DTN3497));
DTN3581 := ((-Bus 4PP.loss & DTN3580) | (Bus 4PP.loss & DTN3481));
DTN3580 := ((-G.loss & DTN3491) | (G.loss & DTN3481));
DTN3586 := (-BPS B.hidden failure & DTN3585);
DTN3585 := ((-BPS Y.active failure & DTN3582) | (BPS Y.active failure & DTN3583));
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DTN3616 := (-BCM.hidden failure & DTN3615);
DTN3615 := ((-BPS B.active failure & DTN3613) | (BPS B.active failure & DTN3614));
DTN3613 := ((-BPS B.hidden failure & DTN3595) | (BPS B.hidden failure & DTN3612));
DTN3595 := ((-BPS Y.active failure & DTN3593) | (BPS Y.active failure & DTN3594));
DTN3593 := ((-Bus 2PP.loss & DTN3592) | (Bus 2PP.loss & DTN3537));
DTN3592 := ((-Bus 4PP.loss & DTN3591) | (Bus 4PP.loss & DTN3589));
DTN3591 := ((-G.loss & DTN3590) | (G.loss & DTN3589));
DTN3590 := ((-Hyd G.loss & DTN3588) | (Hyd G.loss & DTN3589));
DTN3588 := ((-Hyd Y.loss & DTN3521) | (Hyd Y.loss & DTN3534));
DTN3589 := ((-Hyd Y.loss & DTN3525) | (Hyd Y.loss & DTN3480));
DTN3594 := (-BPS Y.hidden failure & DTN3593);
DTN3612 := ((-BPS Y.active failure & DTN3610) | (BPS Y.active failure & DTN3611));
DTN3610 := ((-BPS Y.hidden failure & DTN3601) | (BPS Y.hidden failure & DTN3609));
DTN3601 := ((-Bus 2PP.loss & DTN3600) | (Bus 2PP.loss & DTN3537));
DTN3600 := ((-Bus 4PP.loss & DTN3599) | (Bus 4PP.loss & DTN3598));
DTN3599 := ((-G.loss & DTN3597) | (G.loss & DTN3598));
DTN3597 := ((-Hyd B.loss & DTN3596) | (Hyd B.loss & DTN3590));
DTN3596 := ((-Hyd G.loss & DTN3521) | (Hyd G.loss & DTN3525));
DTN3598 := ((-Hyd B.loss & DTN3525) | (Hyd B.loss & DTN3589));
DTN3609 := ((-Bus 2PP.loss & DTN3608) | (Bus 2PP.loss & DTN3569));
DTN3608 := ((-Bus 4PP.loss & DTN3607) | (Bus 4PP.loss & DTN3606));
DTN3607 := ((-G.loss & DTN3605) | (G.loss & DTN3606));
DTN3605 := ((-Hyd B.loss & DTN3604) | (Hyd B.loss & DTN3590));
DTN3604 := ((-Hyd G.loss & DTN3602) | (Hyd G.loss & DTN3603));
DTN3602 := (Hyd Y.loss & DTN3521);
DTN3603 := (Hyd Y.loss & DTN3525);
DTN3606 := ((-Hyd B.loss & DTN3603) | (Hyd B.loss & DTN3589));
DTN3611 := (-BPS Y.hidden failure & DTN3601);
DTN3614 := (-BPS B.hidden failure & DTN3595);
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Appendix D

Implementation

D.1 CUDD

The CUDD package provides functions to manipulate Binary Decision Diagrams (BDDs), Algebraic
Decision Diagrams (ADDs), and Zero-suppressed Binary Decision Diagrams (ZDDs).

The CUDD package can be used in three ways:

• As a black box. In this case, the application program that needs to manipulate decision
diagrams only uses the exported functions of the package. The rich set of functions included in
the CUDD package allows many applications to be written in this way. An application written
in terms of the exported functions of the package needs not concern itself with the details of
variable reordering, which may take place behind the scenes.

• As a clear box. When writing a sophisticated application based on decision diagrams, efficiency
often dictates that some functions be implemented as direct recursive manipulation of the
diagrams, instead of being written in terms of existing primitive functions.

• Through an interface. Object-oriented languages like C++ and Perl5 can free the programmer
from the burden of memory management. A C++ interface is included in the distribution of
CUDD. It automatically frees decision diagrams that are no longer used by the application and
overloads operators. Almost all the functionality provided by the CUDD exported functions is
available through the C++ interface, which is especially recommended for fast prototyping.

(cite http://vlsi.colorado.edu/ fabio/CUDD/ )

D.2 BuDDy

BuDDy is a Binary Decision Diagram library, with :many highly efficient vectorized BDD opera-
tions,dynamic variable reordering,automated garbage collection, a C++ interface with automatic
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reference counting. Although it does not have the GNU public license, the code is open for modifi-
cations and is in public domain. BuDDy is implemented in C but has a wrapping C++ interface.

BuDDy has an internal garbage collection mechanism optimizing its memory usage, totally transpar-
ent, if desired, to use the C++ interface. It also has a cache that saves the last results of operations.
Almost everything performance related is configurable through the interface, and the library begins
runs with default values, so you can start using it without being familiar with all the possible con-
figurations.

BuDDy has a rich set of operations, which can help you implement very complex operations with
only a few code lines. Among the operations in the interface are the abilities to define the variables
(inputs) of the expressions, refer a large vector of binary variables as a vector of encoded integers,
and create a vector of expressions.

D.3 Boost C++ library

Boost is a set of libraries for the C++ programming language that provide support for tasks and
structures such as linear algebra, pseudorandom number generation, multithreading, image process-
ing, regular expressions, and unit testing. Boost libraries are intended to be widely useful, and
usable across a broad spectrum of applications. The Boost license encourages both commercial and
non-commercial use. Boost works on almost any modern operating system, including UNIX and
Windows variants.

The libraries are aimed at a wide range of C++ users and application domains. They range from
general-purpose libraries like the smart pointer library, to operating system abstractions like Boost
FileSystem, to libraries primarily aimed at other library developers and advanced C++ users, like
the template metaprogramming (MPL) and domain-specific language (DSL) creation (Proto).

In order to ensure efficiency and flexibility, Boost makes extensive use of templates. Boost has been
a source of extensive work and research into generic programming and metaprogramming in C++.

Use of high-quality libraries like Boost speeds initial development, results in fewer bugs, reduces
reinvention-of-the-wheel, and cuts long-term maintenance costs. And since Boost libraries tend to
become de facto or de jure standards, many programmers are already familiar with them. Ten of
the Boost libraries are included in the C++ Standard Library’s TR1, and so are slated for later full
standardization. More Boost libraries are in the pipeline for TR2. Using Boost libraries gives an
organization a head-start in adopting new technologies.

(cite http://www.boost.org/)

D.4 wxWidget

wxWidgets (formerly wxWindows) is a widget toolkit and tools library for creating graphical user
interfaces (GUIs) for cross-platform applications. wxWidgets enables a program’s GUI code to
compile and run on several computer platforms with minimal or no code changes. It covers systems
such as Microsoft Windows, OS X (Carbon and Cocoa), iOS (Cocoa Touch), Linux/Unix (X11, Motif,
and GTK+), OpenVMS, OS/2 and AmigaOS. A version for embedded systems is under development.



D.5 RPN format 127

wxWidgets is used across many industry sectors, most notably by Xerox, Advanced Micro Devices
(AMD), Lockheed Martin, NASA and the Center for Naval Analyses. It is also used in the public
sector and education by, for example, Dartmouth Medical School, National Human Genome Research
Institute, National Center for Biotechnology Information, and many others. wxWidgets is used in
many open source projects, and by individual developers. A wide choice of compilers and other tools
to use with wxWidgets, allows development of highly sophisticated applications on a tight budget.

It is free and open source software, distributed under the terms of the wxWidgets License, which
satisfies those who wish to produce for GPL and proprietary software.

D.5 RPN format

Reverse Polish notation (RPN) is a mathematical notation where we put operands first and the
operator after the operands. RPN is also known as Postfix Notation. The basic feature of RPN
is that it does not require parenthesis to write mathematical formula or expression. Word ”Polish”
refers to the nationality of logician Jan Lukasiewicz, who invented (prefix) Polish notation in the
1920s. RPN was developed to reduce memory access in computer implementation of mathematical
formula and expressions. It also helps in using computer stack memory to evaluate expressions.

During the thesis, while developing a software to parse Aralia file and to build a BDD from the file,
it was very complex and tedious to parse parenthesis of final expression of the boolean formula of the
Aralia file. To overcome this issue, RPN notation is used in the Aralia parser. First the Aralia file
is read and parsed to construct the final boolean formula from given variable expressions. Then this
final boolean formula is converted to RPN notation. Finally, a BDD is constructed from this RPN
notation of the final boolean formula.

The working principal of this parser is explained in the following section; first the conversion to
RPN is explained with help of an algorithm which not only takes into account the precedence among
operators but also the parentheses. After, the process of creation of BDD from this RPN expression
is explained.

The algorithm of conversion to RPN format is shown in 5. This algorithm is explained with a simple
example as shown in Figure D.1. The formula in normal mathematical expression with parenthesis
is read and is conversed to RPN notation following the steps of the algorithm.

For example, consider the formula A + (B − C)/D. According to the algorithm, we start with an
empty RPN string, an empty operators stack and the normal mathematical expression string as
shown in step 1 of Figure D.1. We then tokenize the normal mathematical expression string. We
read the tokens of the string in a while loop. If the token is a variable, in this case ’A’, we add it to
the RPN string as show in step 2 of Figure D.1.

If the token is an operator, in this case ’+’, and the stack is empty, or the top value of stack is
starting parenthesis ’(’ or the precedence of the current operator is greater than the top operator on
the stack, then we store this operator on the stack as show in step 3 of Figure D.1 (because in this
case stack was empty). If the token is starting parenthesis ’(’, we add it to the stack as show in step
4 of Figure D.1.

If the token is closing parenthesis ’)’, as show in step 8 of Figure D.1, we remove items from operator
stack till the starting parenthesis ’(’ and add the operators removed from stack to RPN string. We
then discard ’(’ from stack and ’)’ from expression string. When there are no more tokens left, we
add all the operators in the stack to the end of RPN string as show in step 10 of Figure D.1.
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Figure D.1: Example of RPN algorithm for the formula A+ (B − C)/D

Algorithm 5 Conversion to RPN

Parse Aralia file and get final boolean formula expression with parentheses and precedences.
Tokenize the boolean formula expression
Initialize Operator stack and RPN string
while there are tokens remaining in the expression do

T = next token from expression
if T == ’(’ then

push T onto the stack
else if T is a variable or numeric literal then

add T to the RPN output string
else if T is ’&’, ’|’ or ’ !’ then

if (operator stack is empty) or (the value at the top of the stack is ’(’) or (precedence(operator at top of stack) < precedence(T))
then

push T onto the operator stack
else

add the operator at the top of the stack to the RPN string
pop the stack
while (the stack is not empty) and (the top of the stack is not ’(’) and (precedence(T) < precedence(operator at top of stack))
do

push T onto the stack
end while

end if
else if T is ’)’ then

while top of operator stack is not ’(’ do
add the operator at the top of the stack to the RPN string
pop the stack

end while
else

report error
end if
while operator stack is not empty do

add the operator at the top of the stack to the RPN string
pop the stack;

end while
return RPN string

end while
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D.6 Aralia file Parser

The algorithm in Figure 6 explains the Aralia parser functionality. Aralia file has a format where last
line is the Formula and lines before that are variables of the formula with their boolean expressions.
The format is simple where variable name is followed by ”:=”symbol and then the boolean expression
for the variable is given. The end of line is indicated by ’;’. The software opens the Aralia file from
disk and reads the whole file and counts the total number of lines. Then it reads the last line which
is Formula and split it into two strings: top event name on left side of ”:=” and boolean equation
on right side. Finally, each line of file is read, and the variables in boolean equation of Formula are
replaced with expressions read from each line.

Algorithm 6 Aralia file parser

Open Aralia file for reading and count total number of lines.
Split last line of Aralia file (Formula) into two parts.
store top event name in ”expression” string and formula in ”variable” string
for each line in Aralia file do

read variable name from the line
search ”variable” string for this variable name
replace variable name in ”variable” string with expression on right hand side of the read line

end for

return ”variable” string as final boolean formula



130 Implementation

Figure D.2: Simplified Flowchart of the software



Appendix E

BDDs with different orders

This appendex illustrates the BDDs that are used in Chapter 8. They are the files that the algorithm
has to parse in order to compute the range of the probability of the Boolean formula.

E.1 Paths of the BDD of P1.hs

A BDD can be represented by a set Pa of paths with the following format:

< V path1

1
: value, . . . , V path1

n1
: value > · · · < vpathm

1
: value, . . . , V pathm

nm
: value > (E.1)

where m is the number of paths and ni, i = 1, . . . ,m is the number of literals (positive or negative)
in a path i.
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Figure E.1: BDD given by CUDD for P1 hs
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Figure E.2: Best BDD given for P1 hs and order
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Figure E.3: Best BDD given for P1 hs and order (Part 1)
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Figure E.4: Best BDD given for P1 hs and order (Part 2)
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