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Abstract

A huge amount of personal data is shared in real time by online users, increasingly

using mobile devices and (unreliable) wireless channels. There is a large industry ef-

fort in aggregation and analysis of this data to provide personalised services, and a

corresponding research effort to enable processing of such data in a secure and pri-

vacy preserving way. Secret sharing is a mechanism that allows private data sharing,

revealing the information only to a select group. A parallel research effort has been

invested in addressing the performance of real time mobile communication on lossy

wireless channel, commonly improved by using erasure codes. In this thesis, we bring

together the theoretically related fields of secret sharing and erasure coding, to provide

a rich source of solutions to the two problem areas. Our aim is to enable solutions that

deliver the required performance level while being efficient and implementable. The

thesis has the following contributions.

We evaluate the applicability of a new class of Maximum Distance Separable (MDS)

erasure codes to transmission of real time content to mobile devices and demonstrate

that the systematic code outperforms the non-systematic variant in regards to compu-

tation complexity and buffer size requirements, making it practical for mobile devices.

We propose a new Layered secret sharing scheme for real time data sharing in On-

line Social Networks (OSNs). The proposed scheme enables automated profile sharing

in OSN groups with fine-grained privacy control, via a multi-secret sharing scheme

comprising of layered shares. The scheme does not require reliance on a trusted third

party. Compared to independent sharing of specific profile attributes (e.g. text, images
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or video), the scheme does not leak any information about what is shared, including

the number of attributes and it introduces a relatively small computation and com-

munications overhead.

Finally, we investigate the links between MDS codes and secret sharing schemes,

motivated by the inefficiency of the commonly used Shamir scheme. We derive the the-

oretical links between MDS codes and secret sharing schemes and propose a novel MDS

code based construction method for strong ramp schemes. This allows the use of ex-

isting efficient implementations of MDS codes for secret sharing and secure computing

applications. We demonstrate that strong ramp schemes deliver a significant reduction

of processing time and communication overhead, compared to Shamir scheme.



Extrait

Une large quantité de données personnelles sont partagées en temps réel par des util-

isateurs en ligne, utilisant de plus en plus des terminaux mobiles avec connexion sans-fil.

L’industrie s’efforce d’accumuler et d’analyser ces données pour fournir de nouveaux

services ou des améliorations. La recherche fournit un effort équivalent pour permettre

de traiter ces données de façon sécurisée et protectrice de la vie privée. Les problèmes

de performance des communcations temps réels sur terminaux mobiles sur un canal

sans-fil sont aussi étudiés. Les codes à effacement sont un moyen courant d’améliorer

ces performances. Le secret sharing est un mecanisme permettant de partagé des

données privées, ne les révélant qu’à un groupe d’utilisateur choisi. Dans cette thèse,

nous lions théoriquement les secret sharing schemes et les codes à effacement, pour

fournir une source plus riche de solutions aux deux problèmes. Notre objectif est de

fournir des solutions ayant le niveau de sécurité souhaité, tout en restant efficace et

implémentable. Les contributions de cette thèse sont les suivantes.

Nous évaluons l’applicabilié d’une nouvelle classe de codes effacements à Max-

imum Distance Séparable (MDS) pour transférer du contenu temps réel à des ter-

minaux mobiles, et nous démontrons que le code systématique réduit grandement la

compléxité d’éxecution et la taille nécessaire des tampons en comparaison du code non

systématique, faisant de lui un bon candidat pour une application mobile.

Nous proposons un nouveau Layered secret sharing scheme pour le partage en

temps réel de données sur des réseaux sociaux (OSNs pour Online Social Network). Le

procédé permet de partager automatiquement un profile dans un groupe défini dans

iii



iv

un OSN, en utilisant un multi-secret sharing scheme formé de multiples couches. Le

procédé ne dépend nullement d’un tiers de confiance. Comparé à un partage simple

de chaque attributs (pouvant être un texte, une image ou une vidéo), le procédé ne

divulgue aucune information à propos de ce qui est partagé, pas même le nombre de

ceux-ci, et il induit une augmentation relativement faible du temps de calcul et des

données à envoyer.

Finalement, nous étudions les liens entre les codes MDS et les secret sharing

schemes, ayant pour motivation l’inefficacité du trs populaire Shamir secret sharing

scheme. Nous établissons les liens théoriques entre les deux domaines et nous propo-

sons une nouvelle construction de strong ramp schemes á partir de codes MDS. Ceci

permet d’utiliser les codes MDS existants et efficaces pour des applications de part-

age de secret et de calculs distribués et sécurisés. Nous évaluons et montrons une

réduction significative de temps de calcul et du coût de communcation en utilisant un

strong ramp scheme, en comparaison avec le procédé de Shamir.
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Résumé de la Thèse en Français

1 Introduction

1.1 Problèmes Liés à la Protection de la Vie Privée lors du Partage

de Données Personnelles en Temps Réel: Contexte et Motivation

Une incroyable quantité de données privées sont partagées à l’aide des sites de réseaux

sociaux (OSN pour Online Social Network) tels que Facebook, YouTube et les nom-

breux services gravitant autour de ceux-ci. Ces services sont devenus extrêmement

populaire avec environ 1.3 milliard d’utilisateurs pour Facebook.1 De même, plus d’un

milliard d’utilisateurs visitent YouTube chaque mois.2

Les utilisateurs de ces réseaux partagent de plus en plus d’informations privées

telles que leur nom, leur adresse, lieu d’étude et de travail, mais aussi de nombreuses

photos et vidéos. Avec cette notion de partage, il faut comprendre qu’un utilisateur

peut à la fois être créateur de données, mais aussi consommateurs.

L’accès à ces réseaux sociaux se fait de plus en plus souvent par terminal mobile (tel

que tablette et intelliphone): 52% des utilisateurs de Facebook accèdent à ce service

par ces plate-formes.

Cependant le partage de ces données personelles lève de nombreux problèmes si

celles-ci sont accessibles par d’autres utilisateurs ou entités que ceux ciblés. Dans la

majorité des cas, le fournisseur du service a aussi accès aux données personnelles de ses

1Facebook statistics as of January 2014, from http://www.statisticbrain.com/

facebook-statistics/
2YouTube statistics as of March 2014, from http://www.youtube.com/yt/press/statistics.html
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Résumé de la Thèse en Français xviii

utilisateurs, les utilisant pour rentabiliser ce service en leur fournissant des publicités

ciblées fonction des informations qu’ils ont renseigné dans leur profile. Les utilisateurs

doivent souvent l’accepter car quitter un réseau social pour un autre est complexe

sachant que chaque utilisateur a en moyenne une centaine d’amis, il doit les motiver

pour changer à leur tour de site. Ensuite, les règles de confidentialité régulant l’accès

aux profiles aux autres utilisateurs du même système (ou vu publiquement en dehors du

service) sont souvent complexes et demandent une importante intervention manuelle

[20]. Ceci nécessite le développement de mécanismes supplémentaires pour protéger le

cararctère privé des informations des utilisateurs.

A propos de la transmission de données, l’utilisation des terminaux mobiles pour

mettre en ligne des contenus personnels sur les serveurs de réseaux sociaux et pour

télécharger ces données intéressant qu’un certain nombre d’utilisateurs, crée un en-

semble de défis traditionnellement liés à la communication sans-fil sur des canaux

bruités. Ce qui est particulièrement pertinent lorsque l’accès l’information doit être

en temps réel ou en quasi temps réel, comme par exemple des contenus vidéos. Nous

notons que dans cette thèse, nous utilisons les termes temps réel (ou quasi temps réel)

dans un sens plus large que leur définition courante venant des domaines de la vidéo en

flux continu (streaming) et de la voix sur IP défini par 3GPP [35]: nous nous référons à

tout types de trafic ou services qui utilisent des données ayant une date limite d’arrivée.

Nous basons notre recherche sur des solutions en rapport avec les différent

problèmes de la protection de la vie privée et de l’intégrité de la transmission de

données, se focalisant sur les codes à effacement à Maximum Distance Séparabale

(MDS). Ces mécanismes sont traditionnellement utilisés pour parer les erreurs ou

pertes produites par les canaux sans-fil [65]. Le partage d’information dans un cadres

assurant une protection de la vie privée est généralement obtenu en utilisant des

mécanismes de partage de secrets (plus couramment nommés secret sharing scheme)

[97]. Nous considérons l’utilisation de codes MDS pour faire du secret sharing afin

d’améliorer la faible efficacité de ces derniers. Utiliser un unique mécanisme pour une
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double effet et dans deux différents domaines permettrait d’enrichir et d’apporter de

nouvelles solutions aux deux domaines et motiverait de plus amples développelements

de tels mécanismes.

1.2 Questions de Recherche

Dans cette thèse, nous abordons les questions concernant le partage de données privées

en temps réels à l’aide de terminaux mobiles.

Tout d’abord nous portons notre attention sur la transmission de ces données temps

réel sur un canal sans fil. Nous nous interrogeons sur l’applicabilité de codes à efface-

ments avancés (basé sur des codes MDS) qui ont récemment été proposés pour ce type

de canal. Notre objectif est de déterminer si de tels codes sont utilisables par des ter-

minaux mobiles (intelliphones, tablettes, etc.) qui ont des capacités de calculs réduites

et des ressources limitées, telles que leur mémoire.

La seconde question porte sur la protection des données personnelles partagées sur

des réseaux sociaux. Nous nous focalisons sur le cas commun où un utilisateur partage

de multiples informations privées, l’ensemble formant son profile. Nous examinons

comment partager plusieurs informations piveées, tout en assurant qu’aucun indice ou

détail les concernant ne s’ébruite, comme leur nombre et leur taille - qui pourraient

être utilisées par des attaquants pour en connatre plus sur les utilisateurs.

Finalement nous étudions l’applicabilité du partage sécurisé de données person-

nelles dans un contexte de calcul sécurisé sur celles-ci, lorsqu’elles peuvent être con-

stituées de larges fichiers tels que des images ou des vidéos. Ce sont des scénario

communs dans les réseaux sociaux lorsque certains attributs deviennent accessibles à

de nouveaux participants. Le plus courant et le plus utilisé, le partage de secrets de

Shamir, est n’est pas réaliste au vu de son coût de communication. Ce mécanisme

génère des parts faisant la taille du secret à partager à parti duquel les parts sont con-

struites. Nous nous intéressons à des solutions pratiques pour permettre de partager

et faire des calculs sécurisés efficacement sur de telles données.
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1.3 Plan de la Thèse

Cette thèse est organisée de la façon suivante. Le Chapitre 2 fournit le contexte et un

aperçu des recherches effectuées dans les domaines des codes MDS, du secret sharing

et du calcul sécurisé et distribué entre plusieurs parties (MPC). Le Chapitre 3 présente

une analyse de l’applicabilité des schémas de codage à la volée pour des applications

temps réel sur des terminaux mobiles. Le Chapitre 4 inclus une présentation d’un

nouveau mécanisme de partage de multiples secrets (basé sur de l’encodage en couches)

et une évaluation de ses performances pour une utilisation dans un réseau social. Le

Chapitre 5 rapproche les deux domaines des codes à effacements et du partage de secret

(ainsi que le MPC) et présente une nouvelle méthode de construction de mécanisme de

partage de secret efficace construit à partir de code MDS. Nous concluons et exposons

les grandes lignes de possibles futures recherches. En appendice, un travail fait durant

la thèse est présenté. Bien que dans le domaine des applications temps réel et des

codes à effacement, il ne fait pas parti du cœur de cette thèse car il ne repose pas sur

l’utilisation de corps finis comme les autres travaux.

1.4 Contributions

Nos principales contributions présentées dans cette thèse sont les suivantes:

• Une nouvelle classe de code à effacements pour les applications ayant des con-

traintes de délai, les schémas de codage à la volée, ont récemment été présentés.

De précédentes recherches ont établi que ces codes offraient des améliorations

par rapport aux délais et aux capacités accessibles. Malgré leurs caractéristiques

prometteuses, peu est connu à propos des complexités des variantes systématique

ou non-systématique de ces codes, notamment pour une transmission en temps

réel de contenu multimédia. Nous cherchons à compléter ce manque en se fo-

calisant spécifiquement sur les métriques appropriées à des terminaux mobiles:

la taille nécessaire des tampons et la complexité de calculs des récepteurs. Nos

contributions sont les suivantes: nous évaluons les deux variantes sur un canal
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à effacements uniformément répartis ou en rafales. Les résultats obtenus sont

sans équivoque et prouvent que le code systématique est plus performant que sa

contre-partie non-systématique, que ce soit la taille nécessaire des tampons tout

aussi bien que la complexité du décodage. Ces résultats sont présentés dans le

Chapitre 3.

• Nous proposons un nouveau code de partage de donneées en couches et son ap-

plication à un réseau social. Dans les réseaux sociaux actuels et commercialement

offerts, l’accès aux informations contenues dans le profil d’un utilisateur est con-

trolé par le fournisseur du réseau social (e.g. Facebook et Google+), utilisant les

préférences choisies par l’utilisateur. Un nombre limité de règles, telles que celles

permettant de définir des groupes d’amis, permettent de préciser des niveaux

de protection, cependant elles sont complexes et nécessitent la présence d’un

parti de confiance (le fournisseur du service) pour assurer leurs applications. Le

mécanisme que nous proposons permet de partager automatiquement son pro-

fil dans des groupes de réseaux sociaux avec un contrôle fin des accès, via un

mécanisme de partage de multiples secrets formés de couches, créées à partir des

attributs (multiples secrets) du profile d’un utilisateur, les parts étant directe-

ment distribuées aux membres des groupes, sans nécessiter la présence d’un tiers

de confiance. Le mécanisme peut prendre la forme par exemple d’une extension

d’un navigateur internet, permettant l’automatisation de toutes ces opérations.

Nous étudions la sécurité du mécanisme contre des attaques visant à obtenir plus

d’informations à propos du profile d’un utilisateur. Nous fournissons aussi une

analyse théorique du niveau de sécurité pour chaque attributs du profile. La

Chapitre 4 présente cette contribution.

• Le partage de secret est une primitive importante dans beaucoup de protocoles

pour le MPC, et le mécanisme de Shamir est un des plus couramment utilisé

dans ce contexte. Cependant, le procédé de Shamir introduit un surcoût de
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communication, qui pourrait limiter son applicabilitité lorsque les données à

évaluer sont volumineuses. Les Strong ramp schemes, qui ont été proposés pour

minimiser le probème de surcoût, présentent un compromis entre l’efficacité et

le niveau de sécurité. Cependant, il n’y a que peu de constructions de tels

mécanismes, et à notre connaissance, aucune évaluation empirique de leurs per-

formances dans un contexte MPC n’a été réalisée. Nous proposons une nouvelle

méthode de construction des strong ramp schemes, en démontrant que les parts

d’un strong ramp schemes peuvent être directement extraites d’un code à efface-

ment systématique et MDS. Cette construction permet de tirer profit d’un large

nombre d’implémentations performantes et existantes de codes MDS pour le part-

age de secret et son application au MPC. Nous proposons aussi une construction

supplémentaire dérivée du mécanisme de Shamir. Finalement nous évaluons les

bénéfices en terme de performance des strong ramp schemes dans un scénario de

calcul distribué en implémentant deux de ces procédés dans le système SEPIA

MPC, et en les comparant au procédé de Shamir. Nous montrons que dans un

scénario de surveillance de pannes de réseaux avec 20 participants fournissant

les données en entrées et 20 participants faisant les calculs, le temps de calcul

est réduit d’un facteur d’environ 44, et le coût de communication est réduit 20

fois, comparé au MPC utilisant le procédé de Shamir. Ceci est présenté dans le

Chapitre 5.

2 Contexte et Travaux Connexes

Dans le Chapitre 2 de cette thèse, nous décrivons le contexte de cette thèse. Nous

commençons par présenter dans la Section 2.1 la définition des corps de Galois, des

propriétés de probabilité et de théorie de l’information qui sont la base des travaux

présentés par la suite. Ensuite nous présentons les codes à effacements dans la sec-

tion 2.2 et nous introduisons deux sous-catégories de ces codes: les codes MDS et les

schémas de codage à la volée. Nous présentons ensuite le second sujet majeur de cette
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thèse, le partage de secret dans la section 2.3, incluant les définitions de mécanismes

faits pour partager un ou de multiples secrets, et d’autres travaux connexes. Finale-

ment nous présentons une vue d’ensemble sur les travaux de recherches liant les codes

MDS et les ramp schemes, sous-catégorie des mécanismes de partage de secret.

3 Procédé d’Encodage à la Volée pour une Communica-

tion Multicast de Données Multimédia

Il existe deux classes de mécanismes de fiabilité utilisant respectivement des retrans-

missions et de la redondance. Les mécanismes ARQ récupèrent les paquets manquants

et les retransmettent. Par conséquent, la récupération d’un paquet manquant induit

un délai d’au moins un Round Trip Time (RTT). Cependant, cela peut ne pas être

acceptable pour des applications ayant des contraintes temporelles, c’est à dire ay-

ant une limite à partir de laquelle un paquet est considéré comme périmé et inutile

pour l’application le recevant. Comme présenté dans la Section 2.2, une solution com-

munément utilisée pour ne pas avoir ce délai additionnel est d’ajouter des paquets

de redondance au flux de données. Ce qui peut être fait en utilisant des codes à

effacements.

Comme précisé dans la Section 2.2.2.1, pour passer outre la limitation du nombre

de pertes permis dans un bloc de paquets encodé à l’aide d’un code à effacement par

bloc, d’autres approches utilisent des schémas de codage à la volée [73][101][104], qui

appartiennent à la classe des codes convolutionnels. Dans [73], les auteurs utilisent des

codes convolutionels non binaire et montrent que le délai dû au décodage peut être

réduit par l’utilisation d’une fenêtre glissante d’encodage des paquets de redondance,

plutôt que par bloc. Plus récemment dans [101] et [104], les auteurs proposent d’utiliser

des schémas de codage à la volée qui utilisent une fenêtre d’encodage élastique et

utilisent un canal de retour non fiable (quand accessible) pour réduire la complexité

d’encodage pour l’émetteur, sans impacter la quantité de données transférée. Comparé
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à [73], les deux propositions permettent d’avoir une communication fiable sous certaines

conditions. Cependant, la principale différence entre [101] et [104] est que le premier

propose un code non-systématique tandis que le second utilise sa variante systématique.

A notre connaissance, il n’existe pas d’étude quantifiant la compléxité des codes

convolutionels ayant une fenêtre d’encodage infinie, et analysant la taille nécesaire pour

leur mémoire tampon assurant un bon fonctionnement de ces codes. Dans un scénario

avec une unique source et un unique receveur, l’analyse théorique est triviale, le code

systématique proposant logiquement une amélioration en terme de délai. Cependant,

dans un contexte multicast, il est beaucoup plus compliqué d’estimer l’effet du nombre

de receveurs sur chacun des receveurs.

Dans le Chapitre 3, notre objectif est de mesurer les bénéfices et les besoins de

fonctionnement des deux variantes de schéma de codage à la volée, d’un point de vue

de la taille de la mémoire tampon nécessaire pour les receveurs et de la compléxité,

tout ceci afin d’évaluer l’applicabilité de tels procédés à un scénario d’envoi de flux

multimédia sur un canal multicast. En particulier, cette analyse nous permettrait de

déterminer si ces codes sont utilisables dans un environnement multicast dans lequel les

receveurs seraient des mobiles (par exemple des intelliphones), qui ont de plus faibles

capacité de calculs et des ressources limitées, recevant par exemple des vidéos.

La Section 2.2 présente les caractéristiques des schémas de codage à la volée com-

parées aux codes en blocs. Ensuite nous analysons la taille des mémoires tampon

nécessaire à de tels codes sur un canal à effacements répartis uniformément dans

la Section 3.3 tandis que dans la Section 3.4 nous analysons leur complexité. Nous

présentons aussi dans la Section 3.5 une étude de la taille des mémoires tampon et de

la compléxité de ces codes sur un canal à pertes en rafales. Finalement, nous concluons

le chapitre dans la Section 3.6.
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4 Procédé de Partage de Secret en Couches pour le Part-

age Automatique d’un Profile dans un Réseau Social

Les procédés de partage de secret ont été largement utilisés dans de nombreuses ap-

plications liées à la cryptographie et aux calculs distribués [6], pour offrir des stockages

de données sécurisés, pour le MPC, les transferts inconscients généraux (generalised

oblivious transfer), etc. Comme présenté dans la Section 2.3, pour avoir un procédé

de partage de secret parfait (Section 2.3.1.1), la taille des parts (shares) doit être

supérieure ou égale à la taille du secret partagé. Les strong ramp schemes comme

présenté dans la Section 2.3.1.3 propose un compromis entre sécurité et coût de com-

munication pour partager de lourds fichiers.

Dans le Chapitre 4, nous étudions l’utilisation du partage de secret pour offrir à un

utilisateur d’un OSN la possibilité de partager son profil avec ses amis appartenant à

différents groupes, tout en lui laissant contrôler certains paramètres liés à la protection

de sa vie privée. Un utilisateur sauvegarde en toute confiance ses données privées sur

les serveurs du fournisseur des principaux OSN facilement accessibles au grand public.

L’accès au profil est ensuite géré par des politiques d’accès définissant quels attributs

(localisation, statut marital, date de naissance, intérêts, etc.) peuvent être vus et par

qui (amis proches, lointains, ou public). De nombreux challenges liés à la protection

de la vie privée dans les OSN ont été identifiés par des chercheurs [66], incluant la

dépendance à un tiers parti de confiance (TTP pour Trusted Third Party) pour gérer

les paramètres de confidentialités. Notons par ailleurs la compléxité discutable de ces

paramètrages dans les OSN actuels et leurs flexibilités limitées (les cercles de Google+

et les listes de Facebook sont un premier pas dans la direction d’améliorer cette flexib-

ilité). Ceci motive notre intérêt à utiliser des techniques de partage de secret pour offrir

à l’utilisateur un contrôle direct et précis des paramètres de confidentialité concernant

ses données personnelles.

Plus spécifiquement, nous considérons le besoin de l’utilisateur d’un OSN de part-
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ager de multiples attributs (secrets) constituant son profil avec différent niveaux de

sécurité (i.e. seuils d’accès), dans des groupes d’amis, sans dépendre d’un TTP. De

plus, un utilisateur d’OSN pourrait préférer ne pas dévoiler son niveau de protec-

tion désiré, et/ou le nombre d’attributs qu’il partage avec différents amis (ou groupes

d’amis). Il peut être aussi préférable de ne pas partager ses informations concernant

la garantie de sécurité de vie privée, car comme toutes informations, elles peuvent être

utilisées pour désidentifier des données anonymes [80]. Bien que ces données n’aient

pas encore été prouvées comme utiles pour désidentifier un utilisateur, éviter la di-

vulgation de celles-ci est une propriété requise lors du développement d’un mécanisme

de protection de vie privée. Comme mentionné dans la Section 2.3.2, les limitations

des procédés de partage de secret actuellement proposés se rapportent à les flexibilité

de leurs seuils de sécurité et à la divulgation de leurs paramètres définissant le même

seuil pour chaques secrets et/ou utilisant des parts publiques donnant explicitement le

nombre de secrets partagés.

Pour passer outre ces limitations, nous proposons un nouveau procédé de partage

de multiples secrets en couches, qui intègre récursivement les parts construites à partir

de secrets singuliers, en couches ayant une protection croissante, et qui encrypte chaque

couche avec une clé générée à partir d’une part additionnelle. Chaque secret est ainsi

protégé par un procédé de partage de secret fait pour partager un unique secret avec

son propre seuil, et le nombre de secrets partagés est caché dans les couches des parts,

ce qui assure que les seuils restes inconnus. Les principales contributions du Chapitre

4 sont les suivantes.

Nous proposons un nouveau procédé de partage de secret en couches qui offre une

flexibilité dans les paramètres de niveaux de confidentialité. Nous introduisons un part-

age de profile automatisé et garantissant la protection de la vie privée des utilisateurs

d’un OSN comme une utilisation possible de notre procédé. En générant des parts en

couches (comprenant un ensemble d’attributs choisis pour être partagés auprès d’un

groupe voulu) et en distribuant une part à chaque membre du groupe, l’utilisateur de
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l’OSN impose automatiquement le déploiement de sa politique de confidentialité au

sein des membres de ce groupe, sans dépendre d’un TTP.

Nous analysons la sécurité de notre procédé contre des attaques visant à

illégitimement obtenir des informations à propos des profiles des utilisateurs. Nous

montrons donc qu’aucune part en couches ne peut être obtenue par des attaques ayant

comme prémices des connaissances antérieures concernant les informations incluses

dans le profile. Nous fournissons aussi une analyse du nombre de parts en couches

qu’un attaquant peut obtenir, étant à un nombre arbitraire de sauts d’un utilisateur

cible dans son graphe social. Cette analyse peut être utilisée pour fournir aux util-

isateurs de l’OSN un seuil minimal de protection de leurs données. Nous démontrons,

en utilisant un exemple de graphe issu de Facebook, qu’un utilisateur ayant un nombre

d’amis variables (allant jusqu’à 100) peut garantir la sécurité de son profile même lor-

sque la probabilité de fuites de ses informations est de 10% (probabilité que soit ses

amis soit d’autres attaquants transmettent leurs parts à d’autres adversaires), sans

compromettre la capacité de ses amis à accéder aux informations du profile. Tout ceci

se reposant sur le nombre minimum de parts reçues.

Nous évaluons la complexité et le surcoût de communication induit par notre

procédé, en utilisant notre implémentation de génération et de décodage des parts

en couches. Elles utilisent soit le procédé de Shamir, soit un strong ramp scheme

pour chacune des couches. Notre procédé à un coût de communication similaire au

mécanisme näıf, pour lequel chaque secret est partagé indépendamment avec son propre

procédé de partage de secret. Le procédé en couches accrôıt la complexité, allant

jusqu’à l’accrôıtre de 160% pour le décodage. Cependant ce délai reste relativement

faible, en étant de l’ordre de la seconde (en utilisant un ramp scheme), même lorsque

le profile contient de large secrets (par exemple des images), ce qui peut être considéré

comme acceptable pour une utilisation en temps-réel.

Le Chapitre 4 est organisé de la façon suivante: dans la Section 4.2, nous présentons

les travaux connexes concernant la protection de la vie privée dans les OSN. Nous
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présentons notre procédé de partage de multiple secrets en couches et son utilisation

pour le partage de profile dans un OSN dans la Section 4.3. Les détails concernant

l’analyse de la sécurité de ce procédé sont fournis dans la Section 4.4, et dans la

Section 4.5, nous évaluons les performances de notre procédé en couches en termes de

complexité et coût de commnunication. Nous discutons des compromis/limitations de

notre procédé et des utilisations possibles d’autres schémas de partage de secret pour

générer les couches. Puis nous concluons ce chapitre dans la Section 4.7.

5 Codes Systématiques MDS et Strong Ramp Scheme

De plus en plus de données personnelles et professionnelles sont collectées, agglomérées

et analysées pour fournir de meilleurs services.3 La recherche fournit un effort

équivalent pour permettre de stocker et utiliser ces données de façon sécurisée en garan-

tissant le respect de leurs clauses de confidentialités, en réponse aux préoccupations du

public et aux stricts régulations protégeant ces données.4 MPC [24] est un mécanisme

par lequel plusieurs entités peuvent collaborer pour calculer une fonction choisie de

leurs entrées, assurant la confidentialité des entrées et l’intégrité du résultat. Le calcul

sécurisé d’entrées distribuées est applicable à de nombreux scénarios, permettant à de

multiples organisations d’utiliser conjointement leurs données privées ou confidentielles

pour offrir un meilleur service (par exemple, les fournisseurs d’accès à Internet peuvent

détecter et/ou diagnostiquer des pannes de réseaux [30]), et permettant par exemple

d’analyser des données personnelles stocker sur des terminaux mobiles de particuliers

[49].

MPC utilise le plus généralement les propriétés des procédés de partage de secret

ou des circuits brouillés (grabled circuits). Dans le Chapitre 5,nous portons notre

attention sur le MPC se reposant sur le partage de secret, qui est le plus apte à gérer

3McKinsey report on big data, http://www.mckinsey.com/insights/business_technology/big_
data_the_next_frontier_for_innovation

4EU data protection rules reform, http://ec.europa.eu/justice/newsroom/data-protection/

news/120125_en.htm

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://ec.europa.eu/justice/newsroom/data-protection/news/120125_en.htm
http://ec.europa.eu/justice/newsroom/data-protection/news/120125_en.htm
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un grand nombre de parties (les circuits brouillés sont principalement conçus pour du

calcul à deux parties [81]). La confidentialité du calcul est garantie par la sécurité du

procédé de partage de secret sous-jacent.

Le choix entre un procédé de partage de secret parfait tel que celui de Shamir et

un strong ramp scheme est un compromis entre une sécurité parfaite offerte par un

procédé de partage de secret parfait, en opposition à une compléxité réduite et un coût

de communication moindre offerts par un strong ramp scheme. Cependant un strong

ramp scheme garantie une meilleure sécurité qu’un ramp scheme générique, comme

décrit dans la Section 2.3.1. La sécurité est ici définie par des propriétés venant de la

théorie de l’information, et plus particulièrement de propriétés liées à l’entropie.

Comme présenté dans la Section 2.3.1.3, bien que les strong ramp scheme soient

prometteurs, peu de travaux concernant leurs constructions existent [4]. De précédents

travaux ont aussi étudié les liens entre les ramp schemes génériques et les codes MDS

[25] [22]. Par exemple, les auteurs de [85] proposent une méthode pour construire de

codes à seuil, utilisant des codes MDS. Mais ces méthodes ne sont pas applicables aux

strong ramp schemes. Tout compte fait, peu de constructions de strong ramp schemes

ont été proposées et, à notre connaissance, aucune évaluation de la performance de ces

porcédés n’a été présentée. Dans le Chapitre 5, nous avons donc pour but de répondre

à ces manques. Nos contributions peuvent se résumer de cette façon.

Tout d’abord, nous présentons une nouvelle méthode pour construire des strong

ramp schemes en utilisant n’importe quel type de codes MDS (qu’ils soient

systématiques ou non). A cette fin, nous démontrons que les paquets encodées (les

éléments redondants) produits par n’importe quel code MDS systématique [65] vérifient

les conditions définissant un strong ramp scheme. En utilisant les résultats de [59], nous

proposons une méthode pour construire un strong ramp scheme à partir de n’importe

que code MDS. Afin d’être exhaustif, nous montrons de plus comment construire des

codes MDS à partir de n’importe quel ramp scheme.

Ensuite nous présentons une seconde construction d’un strong ramp scheme, dérivée
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du procédé de Shamir. Cette méthode utilise une construction alternative (mais

équivalente à l’originale [97]) des parts à partir de points d’un polynôme, au lieu

d’utiliser les coefficients de celui-ci.

Finalement, nous évaluons les bénéfices des strong ramp schemes dans une ap-

plication MPC pour contrôler les pannes de réseau. Notre évaluation compare les

implémentations de (a) un strong ramp scheme basé sur un code MDS de Reed-Solomon

[90] et (b) un strong ramp scheme dérivé du procédé de Shamir, tout deux intégrés

dans la structure MPC de SEPIA [17]. Nous considérons un scénario réaliste avec

20 pairs fournissant leurs entrées et 20 pairs de calculs, utilisant les données fournies

par le contrôle des pannes de réseau venant de fournisseurs d’accès Internet. Nous

montrons par cet exemple que les strong ramp schemes peuvent réduire la compléxité

(mesurée en temps de calcul CPU) d’environ 44 fois, et le coût de communication pour

un pair offrant ses données de 20 fois, en comparaison des performances du procédé de

référence qu’est celui de Shamir.

6 Conclusion

Cette thèse aborde le challenge de partager des informations privées en temps réel,

à l’aide de terminaux mobiles ayant des ressources limitées (mémoires, capacité de

calculs et débits). Plus particulièrement, nous abordons trois questions de recherches

et proposons des contributions liés à ces problématiques. La première question est liée

à la complexité et les besoins en mémoire de deux variantes de schémas de codage

à la volée ayant une fenêtre d’encodage élastique conçu pour des applications temps

réel. La seconde question abordée est le problème du partage du profile privé d’un

utilisateur d’un OSN sans fuite d’information concernant ce profile et sans avoir à

dépendre d’un tiers parti de confiance. Finalement, nous abordons le problème de

l’applicabilité du partage sécurisé de large volume de données privées afin d’effectuer

des calculs sécurisés sur ces données. Nous détaillons ces trois contributions par la

suite.
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Applicabilité des Schémas de Codage à la Volée sur des Terminaux Mobiles

Les procédés de codage à la volée avec une fenêtre d’encodage élastique, proposés et

évalués dans de précédentes recherches, améliorent les performances des applications

temps réel en diminuant les délais de décodage [103]. Dans le Chapitre 3, nous compar-

ons les différences entre les variantes systématiques et non-systématiques de ces codes,

d’un point de vue des tailles mémoires nécessaires et de la complexité de codage et de

décodage, dans le cadre d’un scénario de multicast sans-fil dans lequel les receveurs

sont des terminaux mobiles.

A cette fin nous avons simulé et considéré deux types de canaux à effacements:

avec des pertes uniformément distribuées et le modèle de Gilbert-Elliott. Nos résultats

montrent que l’approche systématique est plus performante que celle non-systématique

pour les deux métriques considérées.

Procédé de Partage de Secret en Couches pour le Partage de Profiles sur

des Services OSN

Le Chapitre 4 étudie l’applicabilité des procédés de partage de secret pour une applica-

tion de partage de profiles dans un OSN, dans lequel les utilisateurs veulent se protéger

de fuites concernant les informations de leur profile, que ce soit auprès de partis tiers

(incluant les fournisseurs de l’OSN) ou d’autres utilisateurs malicieux. Les procédés

de partage de secret existants permettant de partager de multiples secrets ne satisfont

pas les contraintes fixées pour cette application, car par exemple, ils ne protègent pas

le nombre d’attributs inclus dans le profile, i.e. le nombre de secrets partagés par un

utilisateur.

Nous proposons un nouveau procédé de partage de secret en couches qui a les pro-

priétés voulus. Nous analysons ensuite la sécurité de ce procédé contre des attaquants

curieux mais honnêtes qui, après avoir reçus un ensemble de parts en couches, essayent

de reconstruire un plus grand nombre de secrets que ceux auxquels ils ont légitimement

accès. Ensuite, nous analysons le niveau de protection fourni par le procédé de partage
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de secret en couches dans un OSN; en utilisant les résultats de cette analyse, basés sur

l’étude d’un graphe social réel, nous apportons des lignes directrices sur le paramétrage

du niveau de sécurité de notre procédé. Finalement, nous avons implémenté notre

procédé et l’avons comparé avec une approche näıve consistant à utiliser un simple

procédé de partage de secret pour chaque secret. La comparaison se porte sur les

temps de calculs et le coût de communication. Nous avons montré qu’une meilleure

sécurité a un coût additionnel en terme de compléxité. Cependant nous avons aussi

montré qu’en sélectionnant avec soin les paramètres du procédé en couches (ie. en

utilisant un ramp scheme comme primitive lorsque de lourds secrets sont partagés),

noter procédé est utilisable par une application de partage de profiles, car les temps

de génération et de décodage des parts en couches sont de l’ordre de la seconde.

Strong Ramp Schemes et Codes MDS Systématiques

Dans le Chapitre 5, nous avons étudié les liens entre les ramp schemes, les strong ramps

schemes, les codes à effacements MDS et les codes à effacements MDS systématiques.

Le principal aboutissement théorique de ce travail était de prouver que les redond-

ances générées par un code MDS systématique vérifient les propriétés d’un strong ramp

scheme. Nous avons implémenté et intégré deux strong ramp schemes dans la structure

MPC de SEPIA, le premier procédé étant un dérivé du procédé de Shamir, et le second

utilisant le codes à effacements Reed-Solomon. Nous avons évalué expérimentalement

les différentes implémentations des strong ramps schemes en les comparant avec le

procédé de Shamir (originellement implémenté dans SEPIA) dans un scénario de

détection de pannes de réseau. Les résultats montrent que, premièrement, les strong

ramp schemes fournissent un compromis réaliste entre la parfaite sécurité offerte par

le procédé de Shamir et le temps de calcul nécessaire pour effectuer l’opération dis-

tribué voulue (étant ici une union de multiple ensembles). Nous avons aussi montré

que le coût de communication du protocole MPC est réduit en utilisant des strong

ramp schemes.
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Futurs Travaux

Les recherches présentées dans cette thèse peuvent être étendues de nombreuses façons:

• Nous avons montré dans le Chapitre 5 qu’un strong ramp scheme peut être con-

struit à partir de n’importe quel code MDS systématique. Nous avons utilisé

le code Reed-Solomon basé sur les matrices de Vandermonde sur un corps de

Galois binaire dans nos expérimentations. Le code que nous avons utilisé assume

un scénario dans lequel les pertes ne sont pas prévisibles. Cependant, dans un

contexte MPC comme celui mentionné dans le Chapitre 5, le nombre de parti-

cipants et les connections entre ceux-ci sont statiques. Cela pourrait permettre

aux participants de pré-calculer certains éléments nécessaires pour créer et/ou

décoder les parts. Par conséquent, optimiser l’implémentation des codes MDS

pour un tel scénario pourrait encore améliorer les performances de ces codes.

• Nous avons pris pour exemples d’applications de nos procédés de partage de

secret des réseaux sociaux et des scénarios de réseaux. Un autre domaine pro-

metteur pour de futures recherches serait celui du stockage distribué de données.

Dans ce domaine, un certains nombre de travaux combinent cryptographie et

codes à effacements, par exemple [88], [91] [63]. Dans le Chapitre 5, nous

avons montré que les redondances d’un code MDS systématique peuvent être

utilisées telles quelles comme un strong ramp scheme. Par conséquent la suite

logique serait d’explorer la possibilité de supprimer la composante cryptograph-

ique utilisée dans les travaux cités précédemment, et n’utiliser que le strong

ramp scheme pour stocker de façon sécurisée et distribuée des données. De fu-

turs travaux pourraient examiner l’utilisation de procédés de partage de secret

dans ce domaine et les possibles gains que cela apporterait.

• Dans le Chapitre 3, nous abordons le sujet de l’efficacité de nouveaux codes

convolutionnels. En considérant les liens existants entre les codes en blocs et

les procédés de partage de secret vu dans le Chapitre 5, une possibilité pour de
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futures recherches seraient d’étendre les procédés de partage de secret dans la

même direction que les codes en blocs ont évolué vers les codes convolutionels,

puis vers les codes à fenêtre d’encodage élastique comme dans les schémas de

codage à la volée.



Chapter 1

Introduction

1.1 Privacy Issues in Real-Time Sharing of Personal

Data: Background and Motivation

There has been an explosion in the growth of shared personal data, with use of services

like Online Social Networks (OSNs), as represented by Facebook, YouTube and a

large number of related services. Such services have become hugely popular, with an

estimated 1.3 Billion users for the largest OSN, Facebook1. Similarly, more than 1

Billion unique users visit YouTube each month2.

OSN users are sharing both their personal information and content that relates to

them as individuals. General information is commonly included in OSN user profiles,

e.g., their name, contact details like place of residence, school, where they work, etc.

Other information includes updates of their activities, with both photos and videos fea-

turing prominently as preferred content. E.g., the average number of photos uploaded

per user in Facebook is 2051. Around 100 hours of video are uploaded to YouTube

every minute3. In line with data sharing, system users are both looking for and receiv-

1Facebook statistics as of January 2014, from http://www.statisticbrain.com/

facebook-statistics/
2YouTube statistics as of March 2014, from http://www.youtube.com/yt/press/statistics.html
3Although YouTube official statistics does not differentiate between user generated and other con-

tent, earlier reports refer to such content making the majority of YouTube videos

1

http://www.statisticbrain.com/facebook-statistics/
http://www.statisticbrain.com/facebook-statistics/
http://www.youtube.com/yt/press/statistics.html
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ing content and information updates that were uploaded by people of interest (e.g.,

their friends).

OSN services are increasingly accessed via mobile devices, with a reported 52 %

of all Facebook users (680) Million accessing the service from these platforms. Similar

trend can be noted for video sharing, with mobile viewing making up almost 40% of

total YouTube’s global watch time.

Figure 1.1 shows the OSN system and various users (that may belong to a specific

group, e.g., a group of friends). It also shows parties external to the system, that may

attempt to access the information shared by a selected user.

Figure 1.1: System for sharing personal information and content with user groups.
Other system users and/or external parties may also have access, directly or indirectly,
to this personal information.

Privacy issues arise when user’s personal information and shared content (e.g. social

or family photos and videos) is accessed either by other users of the system, that

were not the intended recipients, or by external parties. In most cases, the system
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itself accesses and uses this information to monetize their service, by analysing user

characteristics and providing suitable targeted advertisements (either directly or via

third parties). There are a number of reasons why this has become prevalent. The

service itself is free for the users and has to look for ways to monetize to support the

growth and provide support. Second, it is difficult for users to control their data use,

as the only action available to them may be to move to an alternative service provider.

However, moving is difficult as not only individual users but also their network of

friends would need to change the service. Considering the high level of interconnections

between users, this becomes impractical. Then, privacy settings regulating access to

information by other users of the same system (or external visibility of information) are

often complex and require a high level of manual intervention [20]. This necessitates

the development of additional mechanisms to protect the privacy of user’s data.

Considering data transmission, the use of mobile communications for both upload

of personal content to OSN servers and download of such content of interest to specific

users, brings a set of challenges traditionally related to wireless transmission over a

lossy channel. This is particularly relevant for information accessed in real or near

real-time, which is the case for e.g., video content. We note that in this thesis we use

the term real time (and near-real time) in a broader sense than what is commonly

referred to by the streaming or conversational traffic classes defined by 3GPP [35].

With real time, we refer to any type of traffic or service that has a deadline for the

arrival of associated data.

We base our research work on the related solutions to different problems of pri-

vacy and data transmission integrity, focusing on Maximum Distance Separable (MDS)

erasure codes. These codes have traditionally been used to combat impairments in-

troduced by wireless links [65]. Sharing of information in a privacy preserving way

is commonly achieved using secret sharing [97]. We consider the use of MDS codes

for secret sharing to improve the low efficiency of such mechanisms. Using the same

mechanism for a dual purpose and in two different domains will both enable richer and
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more diverse solutions in each individual domain and motivate further development of

such mechanisms.

1.2 Research Questions

In this thesis, we address the following research questions that relate to sharing of

private and real-time content and information using mobile devices.

First, we focus specifically on transmission of real time content shared by users

over wireless links, to mobile receivers. We question the practicality of advanced

erasure coding mechanisms (based on MDS codes) that have been recently proposed

for such links. Our aim is to determine whether such coding schemes are practical

in an environment consisting of mobile devices (smartphones, tablets, etc.) that have

lower processing capabilities than fixed devices and limited resources e.g. memory.

The second question relates to privacy of shared personal data in OSN services. We

specifically focus on the common case where OSN users are sharing multiple instances

of personal information. We consider how it may be possible to share a number of

personal files or attributes, without revealing anything about the shared data, including

the number of instances or their size - both of which may be used in privacy attacks.

Finally, we question the practicality of enabling both privacy preserving sharing of

personal data and secure computations on such data, when the data includes large files,

e.g. images or when there is a large volume of shared data. The latter is a common

scenario in OSNs, when a new set of connections is given access to specific user’s

data. The most popular and commonly used secret sharing mechanism, Shamir secret

sharing, is highly inefficient in regards to communications overhead. This mechanism

generates shares (based on the secrets, i.e., specific shared data) that are of the same

size as the original secret. Our interest is in practical solutions that would enable

efficient sharing and private computations of such data.
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1.3 Thesis Outline

The remainder of the thesis is organised as follows. Chapter 2 provides a background

and an overview of prior research work in the relevant areas of MDS codes, secret

sharing and secure Multi-Party Computation (MPC). Chapter 3 presents our analysis

of the practicality of on-the-fly codes for real time applications on mobile devices.

Chapter 4 includes a proposal for a novel multi-secret sharing scheme (based on layering

of shares) and evaluation of it’s performance in a OSN scenario. Chapter 5 brings

together the fields of erasure coding and secret sharing (and MPC) and presents a

novel construction method for efficient secret sharing schemes based on MDS codes.

We conclude and outline areas for future work in Chapter 6. A related work done during

the course of study, but not directly part of the main contributions, is presented in the

Appendix A.

1.4 Contributions

The major contributions of this thesis are as follows:

• A new class of erasure codes for delay-constraint applications, on-the-fly codes,

was recently introduced. Previous research has established that these codes of-

fer improvements in terms of recovery delay and achievable capacity. Despite

their promising characteristics, little is known about the complexity of the sys-

tematic and non-systematic variants of this code, notably for live transmission

of multimedia content. Our paper aims to fill this gap and targets specifically

the metrics relevant to mobile receivers with limited resources: buffer size re-

quirements and computation complexity of the receiver. As our contribution,

we evaluate both code variants on uniform and bursty erasure channels. Results

obtained are unequivocal and demonstrate that the systematic codes outperform

the non-systematic ones, in terms of both the buffer occupancy and computation

overhead. This is presented in Chapter 3.
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• We propose a novel Layered secret sharing scheme and its application to OSNs.

In current, commercially offered OSNs, access to users profile information is man-

aged by the service provider e.g. Facebook or Google+, based on the user defined

privacy settings. A limited set of rules such as those governing the creation of

groups of friends as defined by the user (e.g. circles, friend groups or lists) allow

the users to define different levels of privacy, however they are arguably complex

and rely on a trusted third party (the service provider) to ensure compliance.

The proposed scheme enables automated profile sharing in OSN groups with fine

grained privacy control, via a multi-secret sharing scheme comprising layered

shares, created from users profile attributes (multiple secrets), that are distrib-

uted to group members; with no reliance on a trusted third party. The scheme

can be implemented via e.g. a browser plugin, enabling automation of all opera-

tions for OSN users. We study the security of the scheme against attacks aiming

to acquire knowledge about users profile. We also provide a theoretical analysis

of the resulting level of protection for specific (privacy sensitive) attributes of the

profile. Chapter 4 presents this contribution.

• Secret sharing is an important primitive in many protocols for MPC, and Shamir

secret sharing scheme is one of the most commonly used schemes in MPC. How-

ever, Shamir scheme introduces a significant communication overhead, which

might limit its applicability to MPC involving large volumes of data. Strong

ramp schemes, which have been proposed to alleviate the overhead issue, present

a compromise between efficiency and the level of security. However, there are

only a few known constructions for strong ramp schemes, and, to the best of

our knowledge, no empirical evaluation of their performance in MPC has been

conducted so far. In this work we propose a novel construction method for strong

ramp schemes, by demonstrating that the shares of a strong ramp scheme can be

directly extracted from the encoded packets of a systematic MDS code. This con-

struction allows to leverage a large number of existing efficient implementations
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of MDS codes towards secret sharing and MPC applications. We also propose an

additional construction method based on Shamir secret sharing. Finally, we eval-

uate the performance benefits of strong ramp schemes in MPC by implementing

two of these schemes in the SEPIA MPC framework4, and comparing them with

Shamir secret sharing scheme. We show that in a network outage monitoring

scenario with 20 input peers and 20 privacy peers, the processing time is reduced

by around 44 times, and the communication overhead is reduced by 20 times,

compared to MPC using Shamir scheme. This is presented in Chapter 5.

1.4.1 List of Publications

• G. Smith, J. Lacan, E. Lochin, R. Boreli, ”Memory and Complexity Analysis of

On-the-Fly Coding Schemes for Multimedia Multicast Communications”, IEEE

ICC 2012, 2012

• G. Smith, P-U. Tournoux, R. Boreli, J. Lacan, E. Lochin, ”On the Limit of Foun-

tain MDC Codes for Video Peer-To-Peer Networks”, IEEE WoWMoM Workshop

on Video Everywhere, 2012

• G. Smith, R. Boreli, M-A Kaafar, ”A Layered Secret Sharing Scheme for Auto-

mated Profile Sharing in OSN Groups”, 10th International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services (MOBIQUIT-

OUS), December 2013

• G. Smith, R. Boreli, M-A Kaafar, ”A Layered Secret Sharing Scheme and its

Application to Online Social Networks”, Technical Report, August 2013

• G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, G. Smith, ”Mitigating Receivers

Buffer Blocking by Delay Aware Packet Scheduling in Multipath Data Trans-

fer”, The 3rd International Workshop on Protocols and Applications with Multi-

Homing Support (PAMS 2013), 2013

4http://sepia.ee.ethz.ch/

http://sepia.ee.ethz.ch/
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Chapter 2

Background and Related Work

In this chapter we describe the background and the context of this thesis. We begin

by introducing Galois fields, some probability and information theory results, which

are the mathematical background that most of the following work relies on. We then

present the erasure codes and introduce two sub-categories of such codes: MDS and

on-the-fly erasure codes. We then present the second major topic of this thesis, secret

sharing, including the definitions of schemes designed to share either single or multiple

secrets and related work in this area. Finally, we present an overview of research work

that links MDS and a class of secret sharing schemes, ramp schemes.

2.1 Mathematical Background

2.1.1 Galois Fields

Galois fields are widely used in many areas of computer science, as they define arith-

metic operations over a finite number of elements [45].

Definition 1. In abstract algebra, a field is a non-empty set of elements F that allows

addition +F and multiplication ×F operations, satisfying the following properties:

Closure of F under addition and multiplication for all a and b in F, a+F b and

a×F b are in F.

9
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Associativity of the addition and the multiplication for all a, b and c in F,

(a+F b) +F c = a+F (b+F c) and (a×F b)×F c = a×F (b×F c).

Commutativity of the addition and the multiplication for all a and b in F,

a+F b = b+F a and a×F b = b×F a.

Existence of additive and multiplicative identity elements there exists an ele-

ment 0F ∈ F such that for all a ∈ F, 0F +F a = a and there exists 1F ∈ F/{0F}

such that for all a ∈ F, a×F 1F = a.

Existence of additive and multiplicative inverse for all a ∈ F, there exists an

element −Fa ∈ F such that a+F (−Fa) = 0F, and for all a ∈ F/{0F}, there exists

a−1 ∈ F such that a×F a
−1 = 1F (which define the subtraction and the division).

Distributive property of the multiplication over the addition for all a, b and

c in F, a×F (b+F c) = a×F b+F a×F c.

While (Q,+,×), (R,+,×) and (C,+,×) are well know examples of fields, they are

infinite. Yet infinity is only theoretical in any real systems which are obviously limited

in memory. Thus, we will focus on finite field, also referred as Galois field named in

honour of Évariste Galois. We will denote it GF(q) where q is the order of the Galois

field, i.e. the number of elements in the field.

The order of a Galois field is equal to pm where p is prime and m an integer greater

or equal than 1, and all Galois field of the same order are isomorphic. The proofs of

these properties are not included in this thesis, as they are unrelated to our work. In

the following, we focus on the Galois fields that are commonly used in coding theory

and secret sharing.

2.1.1.1 Prime Galois Fields

A Galois field GF(q = pm) is referred as a prime field if m = 1, i.e. q = p is a prime

number. The field ( Z
pZ ,+ Z

pZ
,× Z

pZ
) is a prime Galois field of order p, where Z

pZ represents
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the integers 0, · · · , p− 1, + Z
pZ

is the addition modulo p and × Z
pZ

is the multiplication

modulo p. The additive and multiplicative neutral elements are, respectively, 0 and 1.

2.1.1.2 Binary Field

A Galois field is referred to as a binary field if it’s order is equal to 2m, thus all the

elements in the field can be represented by precisely m bits. One way to construct

such a field is to use a polynomial basis representation.

Let F be the set of polynomials having a degree lower or equal than m − 1 with

binary coefficients, i.e. in the field GF(2). If a ∈ F, a =
∑m−1

i=0 aiX
i, where a0, · · · am−1

are binary values. Let +F be the polynomial addition: if a =
∑m−1

i=0 aiX
i and b =∑m−1

i=0 biX
i, a +F b =

∑m−1
i=0 (ai + bi)X

i, where + is the addition modulo 2, which

is equivalent to a binary XOR. Thus +F is the bitwise XOR of two strings of m

bits. To define multiplication, first an irreducible polynomial P of degree m with

binary coefficient is chosen. We note that a polynomial is irreducible if it cannot be

factored into a product of two or more non-trivial polynomials. The multiplication

on F is then define as the polynomial multiplication modulo P . Such a definition of

GF(2m) = (F,+F,×F) is a Galois field of order 2m.

For example, using the same notation for the Galois field and the set of elements,

(GF(24),+GF(24),×GF(24)) defines with P = x4 +x+ 1 is a Galois field of order 16. Let

a = x3 + x2 + 1 and b = x2 + x+ 1 be two elements of GF(24), then:

a+GF(24) b = (x3 + x2 + 1) +GF(24) (x2 + x+ 1)

= x3 + x

a×GF(24) b = (x3 + x2 + 1)×GF(24) (x2 + x+ 1)

= (x3 + x2 + 1)× (x2 + x+ 1) mod x4 + x+ 1

= x5 + x2 + 1 mod x4 + x+ 1

= x2 + 1
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These operations can be implemented in hardware using AND, XOR circuits and

shift registers. This has resulted in their popularity for use in error correction code

mechanisms, originally used in the physical layer [90].

2.1.1.3 Extended Galois Field

The polynomial representation used in the binary fields can be generalized for any fields

GF(pm) where p is a prime and m ≥ 1. Thus, a field of order pm can be constructed

using the set of polynomials of degree at most equal to m− 1, with coefficients in Z
pZ .

As previously noted, the operation of addition is realised via the polynomial addi-

tion, where the coefficients are summed over Z
pZ . Similarly, the multiplication operation

is realised using the polynomial multiplication modulo an irreducible polynomial of de-

gree m, with coefficients in Z
pZ .

2.1.1.4 Summary and Discussion

Galois fields, and more precisely prime fields and binary fields are commonly used due

to the supported arithmetic operations. The choice of the type of field is commonly

driven by the type of data that the codes will be applied to. For example, binary and

prime fields are, respectively, better suited for binary and for integer input data types.

We note that while the definitions of the operations are related to the type of field, all

fields define an addition, a subtraction, a multiplication and a division, thus providing

all the necessary tools to perform linear operations. Therefore in the remainder of this

thesis we will not specifically refer to the type of field that is used for our proposals.

The only exception to this rule is Chapter 5, where, due to the nature of the topic

(MPC) we will differentiate between the binary fields and prime fields, as the different

field types enable a different set of arithmetic operations in MPC.
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2.1.2 Probability and Information Theory

In this thesis, a number of results are related to probability and entropy. The purpose

of this section is to remind the reader of well-known definitions and properties that we

use in the remainder of this thesis.

2.1.2.1 Probability and Conditional Probability

Let A and B be two random events, Pr(A) and Pr(B) their corresponding probability.

Definition 2 (Independent events). Two events A and B are independent if and only

if

Pr(A,B) = Pr(A)Pr(B) ,

where Pr(A,B) is the probability of the events A and B happening simultaneously.

Definition 3 (Conditional probability). The probability of A given the event B is

referred as Pr(A|B) and is defined as

Pr(A|B) =
Pr(A,B)

Pr(B)
,

when Pr(B) > 0. If Pr(B) = 0, the probability of A given B if not formally defined,

however it is usually set to 0.

It follows that if two events A and B are independent, Pr(A|B) = P (A). For

simplification but without loss of generality, we will consider in the following that all

the probabilities of events are greater than 0.

Lemma 1. Let A,B,C be three events, then

Pr(A,B|C) = Pr(A|B,C)Pr(B|C) ,

where Pr(A|B,C) is the probability of event A given events B and C.
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Proof.

Pr(A,B|C) ,
Pr(A,B,C)

Pr(C)

=
Pr(A,B,C)

Pr(B,C)
× Pr(B,C)

Pr(C)

, Pr(A|B,C)× Pr(B|C)

(2.1)

Corollary 1. Let A1, · · · , An and B be n+ 1 events, then by recurrence of Lemma 1,

Pr(A1, · · · , An|B) =
n∏
i=1

Pr(Ai|Ai+1, · · · , An, B) .

2.1.2.2 Information Theory

Information theory, founded by Shannon in 1948 [98], focuses on quantification of the

amount of information contained in a message. The most relevant aspect of Shannon’s

work in regards to this thesis is his definition of entropy, which quantifies the minimum

number of bits needed to transfer a message, which can also be interpreted as its

randomness.

Definition 4 (Entropy). The Shannon entropy function [98] for a random variable A

with values from a finite non empty set F, is defined as

H(A) = −
∑
a∈F

Pr(A = a) · log2(Pr(A = a)) .

P r(A = a) is the probability of A having a specific value a from the set F.

Definition 5 (Conditional Entropy). The entropy of A given B, that is the amount
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of randomness in A knowing the value of B, is defined as

H(A|B) =
∑
b∈FB

Pr(B = b)H(A|B = b)

=
∑
b∈FB

Pr(B = b)(−
∑
a∈FA

Pr(A = a|B = b) · log2(Pr(A = a|B = b)))

= −
∑
b∈FB

∑
a∈FA

Pr(A = a,B = b) · log2(Pr(A = a|B = b))

(2.2)

Lemma 2. Let A and B be two random variables, then

H(A,B) = H(B) +H(A|B)

Proof.

H(A,B) = −
∑
a∈FA

∑
b∈FB

Pr(A = a,B = b) · log2(Pr(A = a,B = b))

= −
∑
a∈FA

∑
b∈FB

Pr(A = a,B = b) · (log2(Pr(B = b)) + log2(Pr(A = a|B = b)))

= −
∑
a∈FA

∑
b∈FB

Pr(A = a,B = b) · log2(Pr(A = a|B = b))

−
∑
b∈FB

log2(Pr(B = b))

∑
a∈FA

Pr(A = a,B = b)


= H(A|B)−

∑
b∈FB

log2(Pr(B = b)) · Pr(B = b)

= H(A|B) +H(B)

(2.3)

Lemma 3. If A and B are independent variables,

H(A|B) = H(A) , and

H(A,B) = H(A) +H(B) .
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Proof. Let A and B be independent variables, then using Definition 2,

H(A|B) = −
∑
b∈FB

∑
a∈FA

Pr(A = a,B = b) · log2(Pr(A = a|B = b))

= −
∑
b∈FB

∑
a∈FA

Pr(A = a)Pr(B = b) log2(Pr(A = a))

= −
∑
a∈FA

Pr(A = a) log2(Pr(A = a))

∑
b∈FB

Pr(B = b)


= −

∑
a∈FA

Pr(A = a) log2(Pr(A = a))× 1

= H(A) .

(2.4)

Having H(A,B) = H(B) + H(A|B), we can thus conclude that H(A,B) = H(A) +

H(B).

Lemma 4. Let A,B and C be three variables, then:

H(A,B|C) = H(A|B,C) +H(B|C) .

Proof.

H(A,B|C) = H(A,B,C)−H(C)

= H(A|B,C) +H(B,C)−H(C)

= H(A|B,C) +H(B|C) +H(C)−H(C)

= H(A|B,C) +H(B|C)

(2.5)
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2.1.3 Markov Chain

2.1.3.1 Definitions

A Markov chain is defined as a succession of random variables X1, · · · , Xt, · · · with

the Markov property : given the current known state, the future and the past states

are independent [60]. More formally, it means that for any t > 0,

Pr(Xt+1 = x|X1 = x1, · · · , Xt = xt) = Pr(Xt+1 = x|Xt = xt) .

Such process, referred as Markov chain can be represented by a directed graph

where each node corresponds to a state of the process, i.e. and element of the set of

the possible values of the Xi, and the links between the nodes as the probability to

transition from the state xt to xt+1 (the value is equal to Pr(Xt+1 = x|Xt = xt)).

2.1.3.2 Two State Markov Chains

In the remainder of this thesis, we only use two state Markov chains. Let x1 and x2 be

the two possible states and Xi be the random process defining the Markov chain. Let

p1 be the probability to go from the state x1 to x2 and p2 from the state x2 to x1. The

probability to stay in x1 is thus equal to 1 − p1, and to stay in x2 is equal to 1 − p2.

More formally: Pr(Xi+1 = x2|Xi = x1) = p1 and Pr(Xi+1 = x1|Xi = x2) = p2.

We will derive two results from the above definitions, relevant to the work in the

remainder of this thesis: the first one being the average probability to be in the state

x2 when the system is in a steady state (assuming a considerable time period in which

the system was functional); the second one is the average time the system was in the

state x2 knowing that the previous state was x1.

Lemma 5. The probability that the current state is x2 when the system is in a steady

state (regardless of the starting state) is equal to

lim
i→+∞

Pr(Xi = x2) =
p1

p1 + p2
.
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Proof. For all i > 1,

Pr(Xi+1 = x2) = Pr(Xi+1 = x2 and (Xi = x1 or Xi = x2))

= Pr((Xi+1 = x2 and Xi = x1) or (Xi+1 = x2 and Xi = x2))

= Pr(Xi+1 = x2 and Xi = x1) + Pr(Xi+1 = x2 and Xi = x2)

= Pr(Xi+1 = x2|Xi = x1)× Pr(Xi = x1)

+ Pr(Xi+1 = x2|Xi = x2)× Pr(Xi = x2)

= p1 × Pr(Xi = x1) + (1− p2)× Pr(Xi = x2) .

(2.6)

From we which we can write:

lim
i→+∞

Pr(Xi+1 = x2) = p1 × lim
i→+∞

Pr(Xi = x1) + (1− p2)× lim
i→+∞

Pr(Xi = x2)

= p1 × lim
i→+∞

Pr(Xi+1 = x1) + (1− p2)× lim
i→+∞

Pr(Xi+1 = x2)

= p1 × (1− lim
i→+∞

Pr(Xi+1 = x2))

+ (1− p2)× lim
i→+∞

Pr(Xi+1 = x2)

= p1 + (1− p1 − p2)× lim
i→+∞

Pr(Xi+1 = x2) .

(2.7)

Which proves that

lim
i→+∞

Pr(Xi+1 = x2) =
p1

p1 + p2
.

Lemma 6. The average length L of a continuous stay in the state x2 is equal to 1
p2

.

Proof. The length of a stay in x2 is equal to i if knowing that the original state is

X0 = x1 and the following is X1 = x2, then for all j = 1, · · · , i Xj = x2 and Xi+1 = x1.
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This event has the probability

Pri = Pr(Xi+1 = x1, Xi = x2, · · ·X2 = x2|X1 = x2, X0 = x1)

= Pr(Xi+1 = x1|Xi = x2)× Pr(Xi = x2|Xi−1 = x2)× · · · × Pr(X2 = x2|X1 = x2)

= p2 × (1− p2)i−1 .

(2.8)

Thus on the average,

L =

+∞∑
i=1

i× Pri

=
+∞∑
i=1

i(p2 × (1− p2)i−1)

= p2 ×
1

p22

=
1

p2
.

(2.9)

2.2 Erasure Codes

A communication channel is commonly modelled either as an error channel, in which

information can be erroneous, or an erasure channel, where the information received

is error free, however with some portion missing [33]. In Figure 2.1, we represent both

the binary error channel (left side of the figure) and the binary erasure channel (right

side of the figure). We denote by p the probability that an input information unit (e.g.

a bit) is incorrectly received; this means that the bit is modified in the error channel

and erased in the erasure channel, with a probability p, i.e., the Bit Error or Erasure

Rate. The same bit is received correctly with a probability 1− p. This representation

can be generalized to a packet error/erasure channel, where the input is an information



Chapter 2. Background and Related Work 20

packet, and p denotes the Packet Error/Erasure Rate (PER). To enable recovery of the

originally transmitted information in the presence of such errors or erasures, a common

approach is to add redundancy to the information prior to transmission. This is done

by applying Forward Error/Erasure Correction (FEC) codes [64].

Figure 2.1: Representation of a binary error channel (left hand side) and a binary
erasure channel (right hand side) with a probability of error/erasure p

In the remainder of the document, we will primarily focus on the erasure chan-

nel, although we note that the two areas are very closely related. Erasures can be

encountered for a number of reasons, as for example a buffer overflow in a router

(that results in packet losses), a physical connection impairment e.g., cable damage

or wireless transmission loss, where the errors have been detected (using a checksum

for example [15]) in a known location, e.g., a sequence number. We will also focus on

linear codes, i.e. codes that rely on linear operations of the input data to construct the

encoded data packets. These are commonly defined by their generator matrix, which is

multiplied by the vector input to generate the vector output containing the redundan-

cies. These schemes can be classified into two major classes: block and convolutional

codes.

2.2.1 Block Codes

The main principle of a block code is to use k source packets to send n encoded packets

(with n ≥ k), that are built from the k packets using the encoding mechanism. In

Figure 2.2, we illustrate the construction of a (4, 6) block code: from 4 input packets, 6

packets are generated; this is repeated for each block of 4 input packets. The addition
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of n − k repair packets to a block of k source packets at the encoding side allows the

decoder, on the receiving side, to rebuild all k source packets, if a maximum of n− k

packets are lost from the n packets sent. If more than (n− k) losses occur within any

block, decoding becomes impossible, as the coding mechanism is tightly coupled to a

specific block size n.

Figure 2.2: Generation of the encoded packets for a (4, 6) block code.

Block codes can be categorised by their characteristics such as their correction

capability and based on whether the original input data is directly included (sent)

amongst the encoded packets. We define two of these characteristics which are relevant

for the remainder of this thesis: the MDS and systematic properties of codes.

Definition 6 (MDS Code). A block code (k, n, d) is MDS if the minimum Hamming

distance d between two codewords amongst the set of possible encoded codewords is

equal to n− k+ 1, which is the Singleton bound [99]. MDS code can correct up to n−k
2

errors and n− k erasures.

For a packet based erasure block code, this simply means that from any k encoded

packets (amongst the n generated), the k original information packets can be recovered.

In this thesis, we will focus on MDS codes. Therefore block codes will be defined by

the two parameters (k, n). We note that the size of the corresponding generator matrix

for MDS codes is n× k.

Definition 7 (Systematic code). A (k, n) code is systematic if the k input packets are

directly included amongst the n encoded packets.

The difference between various block codes (e.g. Low Density Parity Check (LDPC)

[38] or Reed Solomon codes [93]) is related to the specific linear combination method
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used to create the redundancy packets. The difference is reflected in both the encod-

ing/decoding complexity (number of additions and multiplications defined in a chosen

field, as explained in 2.1.1) and in the correction capability. E.g., the LDPC code

commonly uses XOR operations, resulting in a linear complexity [28], however this

code does not belong to the MDS family. On the other hand, Reed-Solomon codes

[90] are MDS codes, however they have a less efficient implementation than the LDPC

block codes: [93] presents implementation details for a Reed-Solomon code, reporting

a complexity of O(nlog2n) on a binary field.

Two examples of generator matrices defining a Reed-Solomon code are the Van-

dermonde matrix [90] and the Cauchy matrix [10]. Equation 2.10 shows how the k

inputs Pi are encoded into the n outputs Ei using a Vandermonde matrix, where the

coefficients αi are all distinct. We note that the Cauchy variant of the Reed-Solomon

code encodes the output packets in a similar way, however using the Cauchy matrix in

place of the Vandermonde matrix.



1 α1 · · · αk−11

1 α2 · · · αk−12

...
. . .

...

1 αn · · · αk−1n


·



P1

P2

...

Pk


=



E1

E2

...

En


(2.10)

Block codes were originally used to correct errors or erasures in communication

links. Their use has been extended to a number of other application areas, to name

but a few: protection of information stored on a Compact Disc [115], distributed

storage [63] and secret sharing schemes [29]. In Chapter 5, we propose a construction

method for strong ramp scheme (defined later in this chapter, with Definition 10) based

on the systematic MDS codes.
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2.2.2 Convolutional Codes

Block codes can correct up to n − k erasures in a single block. In a bursty erasure

channel [2], erasures are not uniformly distributed over the code blocks (i.e. some

blocks will incur a high number of losses while others will have no losses). Convolutional

coding schemes have been proposed in order to better handle this problem. These

codes follow the same concepts as the block codes, but additionally include memory.

Therefore, convolutional coding schemes are defined by three parameters (k, n,m)

as they are usually based on a sliding encoding window of size k × m. We note

that parameters k and n are the same as in the block code definition. To encode n

packets which will be sent on the network, k×m previous information packets are used

[73]. In Figure 2.3, we represent the generation of the encoded packets of a (4, 6, 2)

convolutional code. Each block of 4 input packets is used to generate 12 encoded

packets (2 blocks of 6). The encoding window containing the packets used to generate

the encoded packets is referred to as the sliding window, of a fixed size; an input packet

stays in this window for m encoding operations.

Figure 2.3: Generation of the encoded packets for a (4, 6, 2) convolutional code.

2.2.2.1 On-the-fly Codes

Neither block nor convolutional codes proposed by [73] use acknowledgements, and as

a result, they cannot enable full reliability. One possible solution would be to combine

Automated Repeat reQuest (ARQ) with such coding mechanisms. ARQ mechanisms

allow the receivers to send acknowledgements to the sender to ask for the missing

packets, which can be retransmitted. Combining ARQ and erasure codes is known as
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Hybrid ARQ [87], however this mechanism may not be practical for time constrained

applications on links that have a long delay, as the missing packets may be retransmit-

ted too late for the applications to make use of them. To handle this problem, authors

in [101] and [104] propose an on-the-fly code with an infinite encoding memory (referred

to as an elastic encoding window) and an acknowledgement path, used to decrease the

number of packets in the encoding window. We note that the acknowledgement packets

are only used, when possible, to decrease the encoding complexity.

In network coding, this approach enables the creation of “infinite” linear combin-

ations of packets [102]. In this context, the purpose of having an infinite window is

not to protect the data, but to fully use the network capacity, by sending only useful

packets to every receiver. A packet is called useful when it is utilised at the receiver

side to retrieve missing packets. In this case, only linear combinations of source data

packets are sent i.e. the code is non-systematic. In [102], the authors use the concept

of a “seen” packet, which enables the receiver to acknowledge a source data packet

Pi when a repair packet, that contains a linear combination including Pi, is received.

More precisely, Pi is acknowledged by a repair packet when Pi is the first not yet

seen or obtained packet contained in this repair packet. This allows the receivers to

acknowledge packets (even) before decoding them, thus enabling the source to reduce

the size of the encoding window [101].

In [104], the authors propose to use an on-the-fly code with an infinite encoding

window to protect the data. However, the main objective is to enable a fully reliable

coding scheme for real-time applications such as voice over IP (VoIP) or streaming

video [103] for which they prove the efficiency of such a scheme compared to commonly

used block coding schemes. This code is systematic, i.e. the source data is included

directly in the encoded data.

While bringing a potential for performance improvement of real-time applications

compared to the case when block codes are used [103] and having beneficial properties

in bursty erasure channels [73], an infinite window size is not practical in real systems
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due to resource limitations such as the memory of the system. To the best of our

knowledge, prior to our work on this topic, there has been no existing study that

quantified the complexity and analysed the buffer size requirements of convolutional

codes with an infinite encoding window. In a point to point scenario, the analysis

is trivial as the systematic codes would logically produce an improvement in terms

of delay. However in a multicast context, it is much more complex to estimate the

impact of the multicast group size on each receiver within the group. We investigate

this problem in Chapter 3.

2.3 Secret Sharing Schemes

Secret sharing schemes were introduced by both Shamir in [97] and Blakley [8] in 1979.

The original motivating problem was to calculate the required number of locks and keys

distributed amongst n participants to protect documents, that could be retrieved if t

out of the n participants collected their keys. They solve this problem, in computer

science, via secret sharing schemes. In a secret sharing scheme, a dealer securely

shares a secret (any data) with a group of participants, by first generating n secret-

based shares using a cryptographic function. The dealer subsequently distributes these

shares to n participants, as shown in Figure 2.4. By aggregating shares, participants

can gain access to the secret when the number of combined shares reaches the threshold

t. Their methods are using respectively polynomial interpolation [97] and hyperplane

projection [8].

Since these early works, this research area has been extensively studied. For ex-

ample, new constructions of secret sharing schemes were proposed in [78] and [57] using,

respectively, the Chinese remainder theorem and XOR operations to achieve the shar-

ing of secrets in a secure way. Theoretical bounds for efficiency of these schemes were

also investigated in e.g., [11]. Additional-features were also introduced e.g., the robust-

ness of the scheme in [56]. This scheme can correctly recover the secret in the presence

of a bounded number of corrupt shares. Verifiability of a scheme was first addressed
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Figure 2.4: Secret sharing mechanism.

in [110], to detect a dishonest dealer. Finally, these schemes have been applied in new

applications with specific constraints, such as in [114] for private localisation, and in

[108] for key recovery in a distributed OSN.

In this thesis, we primarily focus on the most commonly used threshold secret

sharing schemes that are based on linear operations on a Galois field. In the following

sections, we introduce schemes that are designed for sharing, first, a single secret and

then multi-secret sharing schemes. We consider the security offered by selected schemes

and the communications requirements for the distribution of shares, by comparing the

share size to that of the secret.

2.3.1 Single Secret Sharing

2.3.1.1 Threshold Secret Sharing Scheme

In a threshold secret sharing scheme, a dealer securely shares a secret S with a group

of n participants, by generating n shares E1, · · · , En from the secret using a specific

cryptographic function. By aggregating a subset of t shares (threshold), with t ≤ n,

the original secret can be recovered. If strictly less than t shares are collected by any

participant, the secret should remain protected. Formally:

Definition 8 (Threshold Secret Sharing Scheme). Let S be a secret and E1, · · · , En
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be shares. A (t, n) threshold secret sharing scheme satisfies the following property, for

any set of indices i1, ..., ix, where x is the number of shares available to any participant:

H(S|Ei1 , · · · , Eix) =


H(S), if x < t

0, if t ≤ x ≤ n
. (2.11)

This definition of a threshold secret sharing scheme ensures the correctness of the

scheme (the secret is known with more than t shares) and the information-theoretical

security (strictly less than t shares do not provide any information about the secret).

Threshold scheme with such a security are referred as perfect secret sharing scheme.

However it was proven in [12], that to achieve such a security, the size of each share

needs to be, at a minimum, equal to the size of the secret.

We note that our focus is on linear schemes [6] (constructed from a linear combina-

tion of finite field elements, that can be represented as matrix and vector operations),

as linear properties are necessary to enable share-based secure computations.

Shamir scheme is a popular linear threshold scheme in which the secret S and

shares E1, · · · , En are elements of a selected Galois field GF. For a chosen threshold

t, the dealer constructs a polynomial P (X) of degree t− 1:

P (X) = S +

t−1∑
i=1

riX
i ,

where the coefficients r1, ...rt−1 are chosen randomly from GF and S = P (0). Shares

E1, · · · , En are then constructed as values of P (x), for n chosen values, x1, ..., xn. The

secret can be reconstructed by any participant who is in possession of t or more shares.

This is accomplished by using the Lagrange interpolation polynomials, with

S = P (0) =

t∑
j=1

P (xij )
∏
l 6=j

−xil
xij − xil

.

We note that computationaly secure secret sharing schemes have been introduced
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to enable the reduction of share sizes, however also resulting in a lower security. Such

schemes are based on the assumption that the discrete logarithm problem on a prime

Galois field GF(p) with a large p has no efficient solution [32]. An example of such a

scheme is the Information Dispersal Algorithm (IDA) proposed by Rabin [88] in which

a large secret is first encrypted with a key. The cipher is then shared amongst n parti-

cipants using an erasure code while the key is distributed using Shamir’s scheme. MDS

erasure codes being optimal, the overhead introduced by the secret sharing scheme is

negligible if the file is large compared to the size of the key. However computational

security is not easily quantifiable. Ramp scheme were thus introduced to reduce the

size of the shares while maintaining an entropy definition of it’s security.

2.3.1.2 Ramp schemes

Blakley introduced the concept of ramp schemes [9], that enable more efficient secret

sharing in regards to the size of the shares. A (t, L, n) ramp scheme includes an

additional parameter L (with L ≤ t), that provides a differentiation between the

security guarantee and the number of shares required to reconstruct the secret, t. In

ramp schemes, having more than t−L (but less than t) available shares will leak some

information about the secret in a controlled way [84]. It was shown in [52] that the size

of a share is lower bounded by the size of the secret divided by L. When the share size

is equal to the lower bound, it the ramp scheme is optimal. Researcher also show, in

[52], that to have an optimal ramp scheme and to maximise the security of the scheme,

the ramp scheme needs to be linear. Thus in the remainder of this thesis, we will focus

our work on linear ramp schemes that are also proven to be optimal. Formally:

Definition 9 (Linear Ramp Secret Sharing Scheme). Let S be a secret and E1, · · · , En

shares. A (t, L, n) linear ramp secret sharing scheme satisfies the following properties,

for any set of indices i1, ..., ix, where x is the number of shares available to any parti-
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cipant:

H(S|Ei1 , ..., Eix) =


H(S), if x < t− L

t−x
L H(S), if t− L ≤ x < t

0, if t ≤ x ≤ n

First, we note the linearity defined in [52] is not related to the operations used to

generate the shares but to the linearity of the entropy when x shares are received with

t − L ≤ x < t. However as outlined in Section 2.3.1.1, we are focusing on schemes

that are based on linear operations. Then, we note that a ramp scheme with L = 1

becomes a threshold (t, n) secret sharing scheme.

To implement such schemes using linear operations, the secret is represented as a

vector and divided into L elements ~S = (S1, ..., SL). We assume that the elements Si

are (mutually) linearly independent and belong to a common Galois field GF.

We note that the definition of ramp schemes provides a bound on the level of

information leakage for the secret as a whole, rather than for each element of the

secret vector ~S.

Shamir scheme can be utilised in two different ways to construct a ramp scheme.

These construction methods are related to the means of defining the polynomial P .

Polynomial Defined by it’s Coefficients [29]: Let rL+1, · · · , rt be t−L random

values in GF. P (X) is defined as follows:

P (X) =
L−1∑
i=0

Si+1X
i +

t−1∑
i=L

ri+1X
i ,

where the L first coefficients being the element of the secret and the remaining ones

are chosen randomly.

For this construction, the shares are defined similarly to the Shamir scheme (i.e.

by points of the polynomial) and the secrets can be reconstructed from any t shares,

as the polynomial P is uniquely defined by t of its points. While the reconstruction

process is usually not described, we can represent the problem as a linear system with
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t equations (the t shares) with t unknowns (the polynomial’s coefficients). The system

is non-singular as it can be represented as the product of a Vandermonde matrix with

the unknown vector:



1 xi1 · · · xt−1i1

1 xi2 · · · xt−1i2
...

...
. . .

...

1 xit−1 · · · xt−1it−1


×



S1
...

SL

rL+1

...

rt


=



P (xi1)

P (xi2)

...

P (xit−1)


.

A Vandermonde matrix is non-singular in any Galois field as long as all the xi are

distinct, thus:



S1
...

SL

rL+1

...

rt


=



1 xi1 · · · xt−1i1

1 xi2 · · · xt−1i2
...

...
. . .

...

1 xit−1 · · · xt−1it−1



−1

×



P (xi1)

P (xi2)

...

P (xit−1)



This proves the correctness of the scheme. The two first conditions of a ramp

scheme results from consideration of the rank of a linear system, when strictly less

than t shares are received. This is equivalent to solving a system of linear equations

that has the number of equations lower than the number of unknown variables.

Polynomial Defined by t Points [9]: Let x1, · · · , xt+n be t + n values in GF

distinct from each other. Let rL+1, · · · , rt be t− L random values in the same Galois

field. We can define P of degree t as follows: for all i in 1, · · · , L, P (xi) = Si and for

all i in L + 1, · · · , t, P (xi) = ri. The shares can the be generated from these points
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using Lagrange polynomial interpolations: for all j in t+ 1, · · · , t+ n,

P (xj) =
t∑
i=1

P (xi)
∏
l 6=i

xj − xl
xi − xl

.

As described previously, to decode the secret, the polynomial P is interpolated

at the points x1, · · · , xL after the t shares are available. Franklin in [37] proposes a

different construction of the polynomial, by defining a random polynomial Q(X) of

degree t− L and building P such as

P (X) = Q(X)
L∏
i=1

(X − xi) +
L∑
i=1

Si
∏
l 6=i

X − xj
xi − xj

.

This ensures that P (xi) = Si for i = 1, · · · , L and that P is of degree t− 1. While this

construction of the polynomial is slightly different, we note that both constructions

are equivalent.

2.3.1.3 Strong Ramp Schemes

Although the definition of a ramp scheme also theoretically defines the level of protec-

tion for the secret, provided by the scheme, this secret is only protected as a whole.

We note that a part of the secret can be leaked by a scheme, while still satisfying

the ramp scheme definition. As a simple example, if we consider a (t, L = t, n) ramp

scheme, the dealer could share (directly) any single element of ~S and still satisfy the

condition qualifying this as a ramp scheme in which L = t. E.g. if S1 was shared, and

assuming equal entropy for all elements in ~S, H(~S|S1) = t−1
t H(~S).

To address this deficiency, Yamamoto [116] introduced strong ramp schemes, that

provide a stronger security guarantee:

Definition 10 (Strong Ramp Scheme). Let ~S = (S1, · · · , SL) be a vector secret and

E1, · · · , En shares. A (t, L, n) linear strong ramp scheme satisfies the following prop-

erties, for any set of indices i1, ..., ix, where x is the number of shares available to any
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participant:

H(~S|Ei1 , ..., Eix) =



H(~S), if x < t− L

H(Sj1 , · · · , Sjt−x |Ei1 , ..., Eix) = t−x
L H(~S),

if t− L ≤ x < t for any Sj1 , · · · , Sjt−x

0, if t ≤ x ≤ n

The definition of a strong ramp scheme ensures the entropy of any subset of secret

(vector) elements, rather than just the secret as a whole, is bounded to a specific value

of t−x
L H(~S), which maximizes the ambiguity provided by such a scheme.

The Lack of Practical Solutions for Strong Ramp Schemes The work

on strong ramp schemes has been predominantly of theoretical nature. In [116],

Yamamoto presents a theoretical construction and outlines the conditions that a matrix

needs to satisfy, to generate shares for a strong ramp scheme. [52] provides theoretical

bounds on the size of the shares generated for a strong ramp scheme based on an

entropy study. In [51], a theoretical construction of strong ramp scheme for a general

access structure from a subcategory of ramp scheme (referred as partially decryptable)

is explained. The first and only work with a practical construction of a strong ramp

scheme that we are aware of is [4]. Such a strong ramp scheme is built from matrix

projections operations but in this article, the proof of such a scheme being a strong

ramp scheme has been omitted, and the remaining security proofs are light.

With the exception of these limited number of works, strong ramp scheme has

not attracted the attention of the research community. In contrast to this, the use of

the ramp schemes is becoming more popular, mainly due to the potential benefits of

performing, in a private way, aggregated operations in cloud systems based on MPC

([23], [25]). The security weaknesses of ramp schemes could map to being the weak

points of future systems. This, however, could be solved by using strong ramp schemes

that have stronger security properties.
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2.3.1.4 On the Links Between Secret Sharing Schemes and MDS Codes

MDS erasure block codes and secret sharing schemes are based on the same theoretical

foundations and use the same Galois field based computations, to achieve their goals.

More specifically, an MDS code and a secret sharing scheme have a common objective,

which is to be able to decode the message (secret) when exactly k (or t, in the common

secret sharing notation) amongst n packets (shares) are received. However, secret

sharing adds a security constraint when a lower number of shares are received.

A number of prior research works have, in some way, addressed or used the sim-

ilarities between these schemes and more generally between erasure codes and secret

sharing mechanisms. In [76], the author noted the similarity between Shamir scheme

and a Reed-Solomon code based on the Vandermonde matrix. Massey in [74] and [75]

reduces the problem of constructing a perfect secret sharing scheme with a specific ac-

cess structure to the problem of constructing an MDS block code, with the codewords

defined by the access structure of the desired secret sharing scheme (we note that both

problems are difficult to solve). Further reserch results extending these works have

been reported in [18], [120] and [62], providing for example selected secret sharing

schemes with a specific access structures, based on MDS codes. Further to this, the

authors in [85] also construct a threshold secret sharing scheme from an MDS code,

but incorporate the detection of incorrect shares and the identification of the cheating

participants. However, all these works explore the links between MDS codes and per-

fect secret sharing schemes, that are not ramp schemes. As noted in Section 2.3.1.2,

such schemes do not reduce the size of the shares when compared to Shamir scheme.

Focusing on ramp schemes, these schemes have been linked to erasure codes in a

smaller number of research works, for example, [29] and [84]. However in [29], the

authors limit their their study to a (t, L = t, n) ramp scheme, and in [84], non-MDS

codes are linked to ramp schemes. Finally, in [22] and [25], erasure codes and ramp

schemes are considered for MPC applications.

To the best of our knowledge, there has been no prior published work on links
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between strong ramp schemes and MDS codes. Furthermore, we are not aware of

any practical study implementing ramp schemes (and a fortiori strong ramp schemes),

and comparing their efficiencies. In Chapter 5, we will address the links between the

strong ramp schemes and the systematic MDS codes. We first prove that a ramp

scheme, derived from Shamir scheme where the polynomial is defined by it’s points, is

a strong ramp scheme. We note that researchers in [51] have previously shown, using

an example, that the Shamir-based ramp scheme based on a polynomial defined by it’s

coefficients is not a strong ramp scheme. We then implement two variants of the strong

ramp scheme and present an experimental evaluation of the computation overhead and

communication cost of strong ramp schemes, when used in an MPC application.

2.3.2 Sharing Multiple Secrets

Using single secret sharing schemes may be restrictive for application designed to

deal with multiple secrets. The most obvious approach of using, multiple times, a

single secret sharing scheme may prove onerous both in terms of communications and

computational overhead as each participant needs, for each shared secret, to receive

and store a corresponding share [12].

The main goal of multi-secret sharing schemes is to reduce the number of private

shares participants need to store, while protecting the secrets. A second approach is

to use ramp schemes. These schemes can be applied either to a large secret (that

is sub-divided into smaller components), or to a number of smaller secrets (i.e. if

such secrets have values from GF). Using a ramp scheme enables sharing of L secrets

simultaneously, with a single share per user. The secrets are then considered as a

block: they can either all be decoded, or alternatively the decoding will fail for all

secrets in the block.

Another approach is to provide a way for the participants to construct the shares

relating to the new secrets from a share they keep as private. This class of schemes is

commonly referred to as dynamic schemes, as a single private share can be used for
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a multitude of secrets, which are not necessarily shared at the same time. This and

similar classes of schemes, however, rely on public shares. The first two such proposals

were reported in [47] and [46]. The proposals include a public shift technique, to

obtain the real shares from public shares and the successive use of a one-way hash

function on private shares, to compute the specific shift values, for every secret and

every participant. A drawback of this scheme is the limited number of secrets that

could be shared (which is the number of successive uses of the hash function). To

mitigate this issue, researchers in [48] proposed to use a two-variable one-way function

in palce of the hash function, using the private share as the first variable and a public

value identifying the secret to be decoded as the second variable. These works have

then been extended in [110], [113], [21] where different shift techniques have been used

and extended, so that the threshold per secret can be different. Their objective is to

reduce the number of necessary public shares and the encoding/decoding computation

time.

However all these schemes, while primarily relying on Shamir’s scheme to generate

shares, have two weak points: the presence of public shares and the use of hash-

functions for security (they are used to protect the private shares of the participants).

Further extensions of these schemes have been proposed in for example [117] [83],

in which they combine the ramp schemes and the use of two-variable hash functions to

enable the sharing of multiple blocks of secrets with a unique private share. However,

it must be noted that, in these schemes, the threshold value t is the same for all the

shared secrets.

Due to the necessity to use public shares, applications using such schemes could leak

some information about the secrets, e.g., their numbers, their sizes and the threshold

used for each of them. In Chapter 4, we address with these potential privacy leaks

in a OSN profile sharing application, by developing a Layered secret sharing scheme

designed for sharing multiple secrets with multiple thresholds, without using public

shares.
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2.4 Secure Multi-Party Computation

MPC is a mechanism that provides distributed privacy preserving computations in a

collaborative environment. Based on input data from multiple parties, and using a

set of cryptographic protocols, MPC enables computing of mathematical functions,

while providing formal guarantees of the data confidentiality and the correctness of

the computation result [24]. MPC were first introduced by Yao [118] to solve the

millionaires problem in which two millionaires want to know who is the richer without

revealing the size of their fortunes.

MPC can be achieved by a number of approaches, e.g. by using garbled circuits

[5] or secret sharing [41]. Garbled circuit are mainly for two parties computation,

i.e. when only two parties are present. However the most popular MPC method uses

secret sharing such as the Shamir scheme [7]. To perform a secure computation, the

input peers generate shares of their data, and distribute them to the privacy peers

(typically one share per peer). The privacy peers compute the required operation and

collaboratively reconstruct the final computation result, which is finally returned to

input peers, as described in Figure 2.5.

Figure 2.5: Secure multi-party computation (taken from SEPIA website http://

sepia.ee.ethz.ch/)

http://sepia.ee.ethz.ch/
http://sepia.ee.ethz.ch/
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The two most important operations required are the secure addition and multi-

plication. From both, a large number of additional operations can be computed such

as comparisons (e.g. less than, equal), set operations (e.g. unions, intersections) [72].

[23] proposes to use ramp scheme to compute more efficiently multiple operations in

parallel when each user has multiple secrets. However as far as we know, in all the

MPC protocols relying on ramp scheme, the ramp scheme are never defined as strong.

In [23] for example, Cramer proposes two different types of multiplication on mul-

tiple entries: the first being the atomic multiplication of two secret vectors, i.e. the

element-wise multiplication, the second being the multiplication of two large secrets

which need to be divided into smaller elements. We note that each operation is relying

on its specific secret sharing scheme. We have implemented and tested a strong ramp

scheme in an MPC use-case, to compare its practical efficiency compared to Shamir’s

scheme. We present these results in Chapter 5.

2.4.1 Security

There are two types of adversaries in MPC and the corresponding two types of attacks

[24]. Honest-but-curious MPC parties follow the MPC protocol and will only collude

to derive as much information as possible from the shares and to determine the compu-

tation result. Corrupt i.e. malicious parties may not follow the protocol and can also

alter the shares or the local result of computation, thereby compromising the integrity

of the computation result.

The authors in [7] prove the data confidentiality and result integrity guarantees of

Shamir secret sharing based MPC protocol under the two attack models. MPC is secure

against t < n/2 honest-but-curious participants who, while colluding, would not be

able to obtain any information about either the data or the intermediate computations

results. [7] also shows that MPC is secure against t < n/3 malicious participants: they

can neither disrupt the computation nor get additional information about the secrets.
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2.5 Real-Time Applications

One motivation of this thesis is to apply new schemes and new constructions to real-

time systems. However as a real-time system or application is a wide notion, here we

provide a definition of what we consider as real time in the context of this thesis.

Definition 11 (Real-time system [77]). Computer systems in which the computer is

required to perform its tasks within the time restraints of some process or simultaneously

with the system it is assisting.

Real-time systems or applications are defined by a time constraint, i.e. a threshold

time under which the process required to be finished. In this thesis, the online ap-

plications we are focusing on are related to web access and multimedia such as VoIP,

video streaming and accessing an online service i.e., a user profile in an OSN. These

applications could be referred to as soft real-time for which the usefulness of the result

degrades after it’s deadline without breaking the system if a deadline is not met.

In a VoIP application, the time constraint is defined by the time needed for a

receiver to get the information from the sender who generates real-time content. The

Mean-Opinion-Score (MOS) has been modelled to represent the quality of a VoIP

application from network measurement [50], in which the maximum acceptable delay

is set to 200 ms. For more general use cases, some rules of thumbs about the links

between a user experience and time needed to provide the service work across power of

101: under 0.1 s, users consider the system as instantaneous, under 1 s, users are still

interacting with the system. Up to 10 s, the users may loose their focus. In [55] (pp.

403), an upper limit of 4 seconds has been considered as an upper limit for having a

satisfactory interactive web browsing user experience over 3G.

In this thesis, our interest is to ensure the response time required to have a usable

service, from a user’s point of view. We will thus consider that delays of the order of

magnitude of several seconds (up to 4 seconds, in line with 3G limits for interactive

1http://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
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web browsing) as acceptable for OSN profile sharing application described in Chapter

4 and to perform specific MPC operations in Chapter 5.
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Chapter 3

On-the-Fly Coding Schemes for

Multimedia Multicast

Communications

3.1 Introduction

There exist two classes of reliability mechanisms based, respectively, on retransmission

and redundancy schemes. ARQ schemes recover all lost packets by utilizing retrans-

missions. As a consequence, the recovery of a lost packet incurs a delay of at least

one additional Round Trip Time (RTT). However, this might not be suitable for time

constrained applications, which define a threshold above which they consider a packet

outdated and no longer useful to the receiving application. As discussed in Section 2.2,

a well-known solution to prevent this additional delay is to add redundancy packets to

the data flow. This can be done by using erasure coding schemes.

As mentioned in Section 2.2.2.1, to overcome the limitation of block code in re-

gards to the limitation of losses occurring in a single block, other recent approaches

have proposed on-the-fly coding schemes [73][101][104], which belongs to a class of

convolutional codes. In [73], the authors use non-binary convolutional codes and show

41
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Table 3.1: Representation of the source encoding window and the sending pattern in
both scenario for a code (3, 4). Coefficients in the linear operations are not represented,
please note they are chosen to have a Maximum Distance Separable code.

Packet number Encoding window Non systematic sending Systematic sending

P1 P1 P1 P1

P2 P1, P2
∑2

1 Pi P2

P3 P1, P2, P3 2×
∑3

1 Pi P3 and
∑3

1 Pi
P4 P1 to P4

∑4
1 Pi P4

P5 P1 to P5
∑5

1 Pi P5

P6 P1 to P6 2×
∑6

1 Pi P6 and
∑6

1 Pi

that the decoding delay can be reduced with the use of a sliding window, rather than

a block, to generate the repair packets. More recently in [101] and [104], the authors

propose an on-the-fly coding scheme that implements an elastic encoding window and

uses an unreliable reverse feedback path (when available), to decrease the encoding

complexity at the sender side, without impacting the communication data transfer.

Compared to [73], both proposals enable a fully reliable service under certain condi-

tions. However, the main difference between [101] and [104] is that the former proposes

a non-systematic scheme while the later uses a systematic variant (the difference being

illustrated in Table 3.1).

To the best of our knowledge, there is no existing study that quantifies the com-

plexity and analyses the buffer size requirements of convolutional codes with an infinite

encoding window. In a point to point scenario, the analysis is trivial as the systematic

codes would logically produce an improvement in terms of delay. However in a mul-

ticast context, it is much more complex to estimate the impact of the multicast group

size on each receiver within the group.

Thus in this chapter, our aim is to assess the benefit and implementation require-

ments of both variants of on-the-fly coding schemes, in terms of receiver buffer occu-

pancy and computation overhead. The objective is to evaluate the applicability of such

coding schemes in the context of multimedia communications over multicast services.
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In particular, the resulting analysis would enable us to determine whether such coding

schemes are practical in a multicast environment where the multicast group, compris-

ing of mobile devices (e.g. smartphones) which have lower processing capabilities and

limited resources, is receiving, e.g. video or any other multimedia content.

We refer to Section 2.2 for the characteristics of on-the-fly coding schemes compared

to block codes. Then, we analyse the buffer size requirements of such codes over a

uniform erasure channel in Section 3.3 while Section 3.4 addresses their computation

complexity. We also present a study of buffer sizes and computation complexity over a

bursty erasure channel in Section 3.5. Finally we conclude this chapter in Section 3.6.

3.2 Simulation Scenario and Parameters

We have implemented both version (systematic [101] and non-systematic [104]) elastic

window codes in Matlab. We use a satellite-like multicast scenario where the source

transmits to a number of independent receivers. We vary the number of receivers

between 2 to 30. Although the number of receivers in a multicast group consisting of

mobile devices may be significantly larger, we will show that the number of receivers

used is sufficient to illustrate the differences between the two codes in terms of memory

and complexity, as related to the group size.

Matlab is not a real-time simulator, so it was necessary to define a time scale i.e.

a unit of time. During this period, the source may receive an ACK (if any), reduce

its encoding window, or send a packet; the receivers may receive a packet, decode the

repair packets, reduce their buffer sizes, or send an ACK (if needed). The RTT and

the time elapsed between two acknowledgements, s, will consequently be expressed as

a multiple of this unit of time.

To simplify the simulation, the matrices used in the encoding and decoding pro-

cess are not created, therefore avoiding the need for complex operations like matrix

inversion. We also assume that the codes used are MDS. As the encoding is based on

MDS properties, we only consider that if a matrix is square, it can be inverted and the
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decoding is therefore possible.

For our simulations, we always use a code (3, 4) (which can correct up to 25% of

erased packets), a packet error rate PER = 20% and an RTT = 2. For simplicity,

we consider an identical delay on the uplink and downlink between the source and

the receiver, equal to one unit of time. We vary the number of receivers and s. The

choice of such code rate and PER is motivated by [103] in which they compare the

systematic on-the-fly code with block codes having a similar rate, more precisely, the

codes (3, 4), (6, 8), (9, 12) and (12, 16) which are reasonable block lengths for real-time

video applications not to have long decoding delays.

We evaluate two cases: a uniform erasure channel and a bursty erasure channel.

We consider that the links to the different receivers are independent, i.e. the losses

(either bursty or uniform, as appropriate to the channel) are independent on both the

uplink and the downlink. We note that for all the figures in this paper, each point in

any of the graphs represents the average value obtained by 10 simulations, with each

simulation consisting of the encoding and decoding process for 10.000 data packets.

3.3 Analysis of Buffer Size Requirements for a Uniform

Erasure Channel

In this section, we evaluate the buffer size requirements of both systematic and non-

systematic codes as a function of s and the number of multicast receivers. Of interest

is the required buffer size in the sender and, most importantly (due to resource limit-

ations) the receivers.

The simulation results obtained for both codes over a uniform erasure channel are

shown in Fig. 3.1. We show: the average and the maximum number of packets in the

source’s buffer; the average number of packets in the receivers’ buffer and the average

of the maximum number of packets in the worst receivers’ buffer.

It can be observed that the number of packets in the buffers increases with the
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Buffer sizes for non systematic and systematic solutions
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Figure 3.1: Number of packets in the nodes’ buffer with with s = 10 (on the left) or
s = 20 (on the right) for the non-systematic and systematic approach.

number of receivers. This is an expected result, as since all the receivers are inde-

pendent, they may not receive and acknowledge the same packets and there is also a

probability that an ACK packet will be lost (note that PER applies to both forward

and return channels). In this case, even if the source receives an ACK from other

receivers, the corresponding packet cannot be suppressed from the source’s buffer and

the receivers also cannot flush this packet from their buffers. Therefore, the loss of

a single ACK packet impacts all nodes. Furthermore, when we increase s from 10

to 20, we can observe that the results are homothetic in regards to the sender buffer

size. This result seems logical, as the source needs to store more packets between two

ACKs if the receiver ACKs are less frequent. For both s values of 10 and 20, we can

observe that there is a very limited difference between the two codes for the source

side. This can be explained by the fact that in 10 or 20 units of time, both codes have
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a high probability to obtain/decode every packet in the window, therefore they will

likely acknowledge the same packets.

Considering the receivers, when changing s from 10 to 20, the growth of the curves

representing the average and the worst number of packets remains constant for both

codes. Actually, the packets present in the receiver buffers include both the encoded

packets and the packets not yet acknowledged. These encoded packets remain in the

buffer as long as the receivers cannot decode, therefore this number does not depend

on s. The small increases with increased s are due to the packets which are decoded

or received and need to be acknowledged. This process requires more time when s is

larger.

The most significant result is observable when comparing both codes for the average

worst case criteria: for s = 20 and 30 receivers, the value observed for the non-

systematic code is close to 150, while for the systematic solution it is close to 75. I.e.

for the average of the worst case receiver buffer occupancy, the non-systematic solution

requires a receiver buffer two times larger than what is needed for the systematic code.

We note the considerable buffer size is also required in absolute terms for the non-

systematic code.

3.4 Evaluation of Code Complexity

In this section, we evaluate the computation complexity for the systematic and non-

systematic code receivers and present results for a uniform erasure channel. We will

use the same methodology for the bursty erasure channel, in Section 3.5. As previously

noted, we consider multicast receivers to be mobile devices with limited resources.

As the simulation does not include a full encoder and decoder implementation we

need to define a theoretical complexity. For this, we propose to estimate the following

parameters which are directly related to complexity: the average size of the matrices

which are inverted in the decoding process; the average number of non-null elements in

the matrices when inverted (denoted sparsity of the matrices in the resulting figures)
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and the average number of operations done per unit of time. To compute the latter

value, we count the number of times a received packet is subtracted from an encoded

packet and the number of operations needed to invert the matrices. The method used

is similar to [100]. Please note that one operation represents a linear combination of

two vectors, as this is the most complex component of an operation; we neglect the

multiplication of a vector by a scalar and the size of the vector as these are simple

operations. Fig. 3.2 shows the calculated complexity parameter values.
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Figure 3.2: For s = 10 (on the left) or s = 20 (on the right), and PER = 20%, all
figures show the complexity for the receivers as the number of non-null elements
in the matrix to invert, its size and the number of vector operations to invert it.

3.4.1 Average Matrix Size

We can observe from Fig. 3.2 that the average matrix size does not depend on s or the

number of receivers. Indeed, the matrix’s size only depends on the number of packets
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which are lost, rather than the acknowledgements or the number of nodes involved. We

can also observe that the size of the inverted matrices are very similar for both codes

(for 30 receivers, the average size is 2.519 for the non-systematic and 2.522 for the

systematic codes). We note that the non-systematic variant decodes more matrices,

however a number of those have a size of one. This means that only one packet can be

decoded after all the received packets have been subtracted from an encoded packet.

However when a packet is lost, the systematic code needs to keep less packets in its

buffer compared to the non-systematic code. For a (3, 4) code rate, this corresponds

to one in every four packets for the systematic code, while the non systematic code

stores all encoded (all received) packets in the matrix.

3.4.2 Sparsity of the Matrices

The sparsity of the matrix represents the average number of non-null elements in the

matrix when inverted. This parameter provides an insight into how the matrix may be

populated (is it empty or full). It is used to estimate the number of operations required

to invert the matrix (in Section 3.4.3) and it can also be used to better understand

the size of the matrix.

First, it seems logical that when the number of receivers or s increases, the number

of non-null elements in the matrix also increases. This is due to the increase of the

encoding window size in the source (see Fig. 3.1), as each redundancy packet received

is created from all the packets in the source buffer.

We can observe a lower bound of the variance of the size of the matrix by making

the difference between the average number of non-null elements and the matrix’ average

size squared. In fact, the variance v verifies as:

v = [E(n2)− E(n)2] ≥ [E(nnon null)− E(n)2]

where n is the matrix’ size when inverted and nnon null, the number of non-null elements
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in the matrix. Thus (note the values from Fig. 3.2) we can see that the lower bound

of the variance is greater for the non-systematic codes than for the systematic ones.

Furthermore, the variance is lower for the systematic case. Indeed, when any packet is

lost, the non-systematic code inverts matrices of size one after the different subtractions

when the systematic case does not have to decode the redundancy packets. Finally,

when a packet is lost, the non-systematic code stores more encoded packets in its

matrix than the systematic code, as they have to store every encoded packets after the

lost one. This means one packet on four when the code is systematic but all of them

in the other case.

3.4.3 The Average Number of Operations Per Unit of Time

As a criterion for the complexity, we choose the number of operations done per unit

of time, rather than per matrix inversion. As the non-systematic code has to invert

more matrices than the systematic code (e.g. it inverts matrices of size one even when

all packets are received), the number of operations done per unit of time provides a

better base for comparison of the two codes.

For both codes, it is logical that the average number of operations per unit of time

increases when s and the number of receivers increase. The reason is twofold: as seen

in Section 3.4.2, the matrix’s sparsity value increases which implies that it is harder to

invert the matrix. Furthermore, the source encoding window also increases, so when a

receiver obtains a new encoded packet, it has to subtract more already received packets

from it.

The main result of interest is a comparison of codes. We can observe that for

all values of s and any receiver number, the systematic code outperforms the non-

systematic one. As seen previously, two factors define the number of operations which

need to be performed by the codes: the matrix inversion and the number of subtractions

needed when an encoded packet is received. The systematic code has superior results

for both factors. We already noted that on average the matrix size for decoding packets
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is smaller for the systematic case, thus easier to invert, and the second point is that

for the non-systematic code, all packets are encoded. Thus, every time a packet is

received, the receiver has to perform a subtraction, as opposed to the systematic case,

where this operation has to be done only when a repair packet is received. To illustrate

the resulting impact, we can see that in the worst case (30 receivers and s = 20), the

average number of operations needed for the non-systematic code is five times higher

than for the systematic case.

3.5 Buffer Size and Complexity Analysis over a Bursty

Erasure Channel

We now investigate the impact of bursty losses. We use a Gilbert-Elliot loss model

[40, 34], defined by a two state Markov chain (consisting of a good and a bad state) as

illustrated in Fig. 3.3. The average PER corresponds to the probability of being in

the good state, while the erasure burst length correspond to the average time spent in

the bad state. We choose an erasure burst length of 3. The parameters of this Markov

chain are then calculated from the average PER chosen for the scenario. Knowing the

average erasure burst length L and the formulas proven in Section 2.1.3.2: PER =

p1/(1 + p1− p2) and L = 1/(1− p2), thus p2 = 1− 1/L and p1 = PER/[L(1−PER)].

Fig. 3.4 shows the buffer sizes and the complexity for s = 20 and PER = 20% for

both codes.

Bad Channel

State

Good Channel

State

1− p2

p1

1
−

p 1

p
2

Figure 3.3: The first-order two-state Markov chain representing the Gilbert-Elliott
channel model
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3.5.1 Buffer Sizes

As shown in Fig. 3.4, the bursty erasure channel results, not unexpectedly, in an

increased buffer size requirement for both codes. However we can observe that this

channel has a significant impact only on the receivers’ buffers. For the source, having

a bursty channel results in a similar buffer sizes as previously observed for the non-

systematic code, and the buffer slightly increases for the systematic case (the average

number of packets is multiplied by 2 for the systematic code, but the worst case does

not grow higher than 150 for both codes).

Concerning the receivers’ buffers, we can see that all the results are multiplied by

at least a factor of two. However having a bursty channel has more impact on the non-

systematic code than on the systematic one. We note that for 30 receivers, the average

worst case has increased by a factor of 4 for the non-systematic code when using the

Gilbert-Elliot model, which shows that on the average, there is always a receiver which

has 620 packets in its buffer. For the systematic code, this value is equal to 210 packets,

which is still three times higher than for the uniform erasure channel. Thus we can

note that the Gilbert-Elliot model further highlights the differences between the codes

already observed with the uniform loss model.

3.5.2 Complexity

As the erasures occur in bursts, on the average, more packets are lost before the

decoding process, so the average matrix size and the number of non-null elements in

the receiver matrices are higher than in the uniform erasure channel. The most relevant

result is that, compared to the resulting values on the uniform erasure channel, the

average number of operations per unit of time slightly increases for the non-systematic

code, while it increases by a factor of two to three for the systematic variant. Therefore,

although the Gilbert-Elliot model increases the complexity of the two codes, on the

average, the systematic code will again require two to three times less operations than

the non-systematic (e.g. it can be observed that for 30 receivers, the systematic code



Chapter 3. On-the-Fly Coding Schemes for Multimedia Multicast Communications52

needs 15 operations per unit of time, while the non systematic needs 35).
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Figure 3.4: For s = 20 and PER = 20% using a Gilbert-Elliot losses model with an
erasure burst length of 3, for both codes, on the left are the curves for the different
buffers’ sizes, on the right the complexities (number of non-null elements in the matrix
to invert, its size and the number of vector operations to invert it).

3.6 Conclusion

We have presented an analysis of the implementation aspects of two classes of on-the-

fly coding schemes for multimedia multicast communications. We have shown that the

systematic approach has lower requirements in regards to the memory footprint and

computation complexity of the receivers, thereby making it better suited for mobile

devices. These points are crucial in the context of deployment of such schemes for

Internet Protocol television (IPTV) or multimedia communications in mobile environ-

ments.



Chapter 4

Layered Secret Sharing Scheme

for Automated Profile Sharing

4.1 Introduction

Secret-sharing schemes have been extensively used in a number of cryptographic and

distributed computing applications [6], to enable secure storage, for MPC, generalized

oblivious transfer, etc. As discussed in Section 2.3, to have a perfect secret sharing

scheme (Section 2.3.1.1), the size of the shares needs to be at least the size of the

secret. Strong ramp scheme as discussed in Section 2.3.1.3 provide a trade-off between

security and communication cost in order to share large files.

In this chapter, we consider the use of secret-sharing to enable user-controlled and

privacy preserving sharing of an OSN user’s profile amongst groups of their direct

connections (friends). In most commercially available OSNs, an OSN user currently

stores their private data using the trusted OSN server. Access to their profile is

managed by a policy, regulating which attributes (their location, marital status, date

of birth, interests, etc.) may be obtained by their friends or other people. A number of

challenges related to privacy in OSNs have been identified by researchers [66], including

the reliance on the trusted third party (TTP) to manage the privacy control, the

53
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arguable complexity of how those controls are implemented in current OSNs and the

limited flexibility of access controls (we note Google+ circles and Facebook lists are a

step in the direction of improving the flexibility). This motivates our interest in using

secret-sharing to enable direct and fine grained user control of the accessibility of their

private data.

We specifically consider the OSN user’s requirements to share multiple profile at-

tributes (secrets) with differing levels of security and privacy (i.e. thresholds), within

groups of friends, without relying on a TTP. Additionally, an OSN user may not wish

to disclose his level of desired privacy protection, and/or the difference in the number

of attributes he is sharing with different friends (or groups of friends). It may also be

preferable not to share this information from a privacy protection point of view, as any

distinguishing information may be used to re-identify anonymous data [80]. Therefore,

although linkage attack using such information has not been demonstrated up to now,

avoiding the disclosure of this data is a desirable property when considering mechan-

isms for private sharing of information. As discussed in Section 2.3.2, the limitations of

the currently proposed secret-sharing schemes relate to both threshold flexibility and

disclosure of scheme’s parametersby either fixing the same threshold for all the secrets

and/or using public shares leaking information about the number of attributes a user

is sharing.

To overcome such limitations, we propose a novel Layered multi-secret-sharing

scheme, that recursively embeds shares related to individual secrets in layers with

increased protection, and encrypts each layer with a key based on an additionally

generated share. Each secret is then protected by a single secret-sharing scheme with

its own threshold, and the number of secrets is hidden within the Layered scheme,

which ensures that the thresholds remain unknown. The main contributions of this

chapter are as follows.

We propose a new Layered secret sharing scheme that enables flexible levels of se-

curity and privacy. We introduce privacy-preserving automated profile sharing in OSN
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groups as a possible use of our scheme. By generating Layered shares (comprising a

selected set of attributes, corresponding to each group’s privacy policy) and distrib-

uting a share to each member of the group, an OSN user automatically enforces the

deployment of group’s privacy policy and enables fine grained policy control within

group’s members, without relying on a TTP.

We analyse the security of the scheme for attacks that have a goal of illegitimately

acquiring knowledge about users OSN profiles. Consequently, we show that no new

Layered shares can be attained by any of the attacks that include a varying level of

background knowledge. We also provide an analysis of the number of Layered shares

that an attacker, who is at an arbitrary number of hops in the social graph from the

node sharing his profile, may acquire. This analysis can be used to enable the profile

owner to set the required level of protection offered to specific (privacy sensitive)

attributes of the profile. We demonstrate, using a Facebook example, that a user with

a varying number of friends (up to 100) can ensure their profile protection even when

there is a high probability of leakage i.e. 10% (that either friends or adversaries will

forward shares to other adversaries), without compromising the ability of their friends

to access the profile, based on acquiring the minimum number of required shares.

We evaluate the computational and communication overhead of the proposed

scheme, based on our implementation of the share-generation and decoder operations

for Layered shares. These use both Shamir and strong ramp schemes as building blocks.

Our scheme has a similar communications cost as a naive mechanism, where each of

the secrets is shared independently using a selected scheme. The Layered scheme in-

troduces a higher computational overhead, up to 160% for the decoding, however it

still results in a relatively small computation delay of around 1 second (using ramp

schemes) even when sharing profiles that include large secrets (e.g., images), that we

consider acceptable for real-time use.

The remainder of this Chapter is organized as follows: in Section 4.2 we present

related work in privacy in OSNs. We present our Layered multi-secret-sharing scheme
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and it’s application to profile sharing in Section 4.3. Details of the security analysis

are presented in Section 4.4 and in Section 4.5, we evaluate the performance of our

Layered scheme, including the computation and communication overhead. In Section

4.6, we discuss the trade-offs and possible use of other single secret sharing schemes

and we conclude in Section 4.7.

4.2 Background and Related Work on OSN Profile Shar-

ing

A possible approach to selective sharing of different information on popular OSNs, e.g.

Facebook or Google+ is to define groups of friends (friends lists or circles) and set up

different privacy policies for each group. Access control is granted by the OSN oper-

ator, that owns all user data and applies the different policies. Alternatively, in order

to prevent a central entity from accessing user data, [1] proposes an architecture where

user data can be encrypted and stored on an untrusted server. Other proposals such

as Safebook [26] aim at distributing the online social network itself. The data storage

and selective access control (i.e., attribute sharing) is provided via the “Matryoshkas”

composed of rings of trust around the user. Likewise, in PeerSon [16] asymmetric

encryption is used to provide decentralized access control to user data. In [44], au-

thors consider two different approaches to encrypt and manage private information of

user profiles. Specifically [44] provides a comparative analysis of profile management

schemes, when relying either on a combination of symmetric encryption with shared

keys, or involving broadcast encryption techniques.

Although decentralized privacy-preserving services offer many desirable proper-

ties including flexibility and security, in practice users may not be easily convinced

to change from the well-established centralized OSNs only due to privacy con-

cerns. [43], [69], [3] and [19] specifically address user’s privacy in the context of ex-

isting OSNs, by providing browser-based plugins in order to enable user’s control over
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their personal data. In NYOB [43] and FaceCloak [69] for instance, fake but plausible

attributes are stored on a user profile (to be compliant with Facebook’s usage terms)

while the way to access the actual attributes is shared privately with users’ friends via

an out of band channel (e.g., emails).

With a similar objective of mitigating the privacy risks of current OSNs, in [68]

authors propose flyByNight, a prototype Facebook application utilizing encryption and

decryption of user personal data through proxy cryptography. flyByNight maintains

servers that do not have access to data in the clear, and that enable proxy re-encryption

to share user profiles between friends.

[3] and [19] provide users with finer access control policies than those offered by

Facebook, which allows creating of groups of friends with whom to share attributes,

based on relationships with other users and an established trust level.

Although there is user support for manually configured group based access control

in OSNs, researchers have shown [20] that the majority of OSN users do not utilize

this feature. Consequently automated algorithms for grouping friends (e.g., based on

common interests, family relationship, etc.) have been studied e.g. in [119]. Once the

groups have been established, mechanisms like Attribute-Based Encryption (ABE ) can

be used to enforce access control rules [3]. However, although the access control can

be defined for groups (circles) of friends, all users in the same group share a common

access policy. Our proposed Layered secret-sharing scheme, as we will show, enables a

finer grained access control policy that is based on the number of common friends, and

automates the enforcement of this policy in each circle. This is implemented without

having to rely on a trusted third party (i.e., the OSN operator).

4.3 Layered Secret Sharing Scheme

In this section we describe a new Layered scheme for sharing multiple secrets. We

consider the proposed scheme in an OSN application context, therefore we concentrate

on the properties that can benefit this application. These include:
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1. An OSN user should share his profile, comprising multiple attributes, with a

specific group of his friends (contacts) via a single transaction.

2. Each attribute should have an individually selectable level of privacy per group.

3. Only the OSN friends of the profile owner (within the group) that can conform

to the appropriate security level should be able to access a specific attribute of

the profile.

4. The number of attributes shared by the profile owner, or their security levels

should not be known to his OSN friends, other groups, or any other OSN user.

The following properties of our Layered secret sharing scheme ensure conformance

to the above requirements:

• Each share created by the dealer contains information about all the secrets and

can be re-used to access any of the secrets (as per requirement 1).

• Each secret is protected by a selectable threshold (as per requirement 2).

• A user can access a secret if and only if he has acquired the number of shares

corresponding to the threshold of this secret (satisfying OSN requirement 3).

• The number of secrets and their thresholds are hidden from participants (as per

requirement 4).

A dealer in our scheme generates Layered shares, which consist of a number of

encrypted layers, each comprising (standard single secret sharing) shares related to a

specific secret. Figure 4.1 shows the components of a Layered share.

The notations used in this section are listed in Table 4.1. A dealer shares k secrets

with n participants Pj j = 1, ..., n. The secrets Si, i = 1, ..., k, have ti corresponding

thresholds. We assume these are ordered in terms of increasing magnitudes, with

(t1 ≤ t2 ≤ ... ≤ tk) and that the secret S1 is the system secret, chosen as any meaningful

non-private text string. For the specific use case of OSN profile sharing, S1 is a random



Chapter 4. Layered Secret Sharing Scheme for Automated Profile Sharing 59

Figure 4.1: Components in the Layered secret sharing scheme

variable used for verification of Layered shares and S2 is an OSN group’s (circle)

identifier.

Layered shares Lj = L1
j with j = 1, ..., n are generated according to steps outlined

in Function EncodeLayered. The secrets are included recursively within the Layered

shares, starting from the secret with the highest threshold (Sk). At the (k − i)th

step, the secret Si is to be included in Li+1
j for j = 1, ..., n. To accomplish this, the

dealer first computes n+bi standard (single secret sharing as described in Section 2.3.1)

shares (si1, ..., s
i
n+bi

) with a threshold ti using the Function EncodeSingle. EncodeSingle

utilizes either Shamir’s scheme [97] or the ramp scheme from [9], with the choice

depending on the size of Si and the required security level. Examples of such functions

are described in Section 2.3.1.

bi additional shares sin+1, · · · , sin+bi are generated, then concatenated and hashed,

using e.g. SHA-2 to obtain the key Ki (ensuring the size of concatenation is at least

the size of the encryption key, e.g. AES needs 128 or 256 bits keys).

For j = 1, ..., n, each share sij related to secret Si is concatenated with the cor-

responding encrypted layer [Li+1
j ]Ki : L

i
j = [ti||sij ||[L

i+1
j ]Ki ]. These steps are repeated

until all secrets are included in the layers.

The n Layered shares are distributed by the dealer, with a single unique share and

the share’s index (j,Lj) sent to each participant over a secure channel. As in other



Table 4.1: Notations used to describe the Layered secret sharing scheme

Notation Description

n Number of Layered shares and participants
Pj Participant j for j = 1, ..., n
k Number of secrets shared (including the system secret)
Si Secret i, for i = 1, ..., k
H(.) One-way hash function, publicly known
[.]K Symmetric encryption using the key K
[.]K Symmetric decryption using the key K
[A||B] Concatenation of content A and B
sij Share j related to the secret Si
Lij Layer i of the Layered share, containing the shares related to the secrets

Si to Sk
Lj Layered share send to the participant Pj , j = 1, ..., n (equivalent to L1

j )

Ki Key derived from the secret Si
ti Threshold for the secret Si
bi Number of additional shares needed to compute the key Ki

Function EncodeLayered(S1, ..., Sk, t1, ..., tk)

1 Initialization;
2 for j ← 1 to n do

3 Lk+1
j ← ∅;

4 end
5 Genarate n Layered shares by constructing k individual layers;
6 for i← k to 1 do
7 EncodeSingle produces n+ bi (single secret sharing) shares according to the

selected secret sharing mechanism
8 (si1, ..., s

i
n+bi

)← EncodeSingle(Si, ti, scheme);

9 Ki ← H([sin+1|| · · · ||sin+bi ]);
10 for j ← 1 to n do

11 Lij ← [ti||sij ||[L
i+1
j ]Ki ];

12 end

13 end

60
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secret sharing mechanisms, participants aggregate their shares to gain access to the

secret(s) Si, as per the threshold ti.

To describe the decoding process by which a participant recovers one or more

secrets, we assume that he has acquired x Layered shares, L1
z where z = 1, ..., x (to

simplify the notation, without loss of generality we assume that Layered shares are

received in the order of their indexes). We also assume that the participant has pre-

viously decoded i secrets S1, ..., Si with thresholds t1, ..., ti and their corresponding

keys K1, ...,Ki, where i is defined by ti ≤ x − 1 < ti+1, using the previously received

x − 1 Layered shares (i = 0 if no secrets have been decoded). Thus he has x − 1

layers Li+1
z , where z = 1, ..., x− 1 and a Layered share L1

x that is yet to be processed.

Function DecodeLayered describes the decoding process. In the first step, the “old”

layers related to the previously decoded secrets need to, recursively, be removed and

decrypted (using K1, ...,Ki) from L1
x. If x == ti+1, function DecodeSingle can then

be used to decode the secret Si+1 and also to compute as previously the key Ki+1.

Finally the layers related to the secret Si+1 are removed from the x Layered shares

and the following parts [Li+2
z ]Ki+1 are decrypted, using the key Ki+1.

4.3.1 Using Layered Shares for Profile Sharing in OSN Groups

To initialize the scheme, the dealer must first define circles of friends, Ci, and the at-

tributes (secrets) he intends to share amongst the friends in each circle. He should also

allocate friends to circles, either manually or using any of the proposed mechanisms,

e.g. [119]. Then, for each circle and each shared attribute, the dealer should choose a

privacy level for accessing the attribute (i.e. the threshold for each secret), that will,

in our scheme, be equivalent to the number of common friends that a user in this circle

needs to have with the profile owner. We acknowledge that this criteria may not be

universally applicable to all OSN groups. However, we believe, as per [119], that the

number of common friends represents a relevant and easy to understand metric for the

OSN users.



Function DecodeLayered(Lx = L1
x)

1 Remove the layers related to the previously decoded secrets;
2 for y ← 1 to i do

3 [syx||[Ly+1
x ]Ky ]← Lyx;

4 Ly+1
x ← [[Ly+1

x ]Ky ]]Ky ;

5 end
6 Decode the secret Si+1 if there is a sufficient number of shares;
7 if x == ti+1 then
8 for j ← 1 to x do

9 [si+1
j ||[L

i+2
j ]Ki+1 ]← Li+1

j ;

10 end
11 DecodeSingle decodes the standard shares, according to the selected single

secret sharing scheme; outputs the secret Si+1 and the standard shares
si+1
n+1, · · · , s

i+1
n+bi

;

12 (Si+1, s
i+1
n+1, · · · , s

i+1
n+bi

)←DecodeSingle(scheme, ti+1, s
i+1
1 , ..., si+1

x );

13 Generate the encryption key from the share si+1
n+1;

14 Ki+1 ← H([si+1
n+1|| · · · ||s

i+1
n+bi

]);

15 Remove the layer related to Si+1 for all (available) Layered shares;
16 for j ← 1 to x do

17 Li+2
j ← [[Li+2

j ]Ki+1 ]Ki+1 ;

18 end

19 end

62
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The dealer then generates Layered shares (using EncodeLayered) and distributes

them to friends in a specific circle over a secure channel. Subsequently, each friend

contacts their friends and collects the available Layered shares from the friends in

common with the dealer (that also belong to the same circle). Any friend can then

decode the accessible attributes according to the number of collected Layered shares,

using DecodeLayered.

We envisage the profile sharing application to be implemented as a browser plugin,

where all the operations related to the shares are automated and secure. We note that

for the scheme to be operational, all participating OSN users need to have the plugin

installed.

For new friend connection requests, the dealer first needs to select the appropriate

circle for this new friend. Then, he needs to generate a new Layered share and index

and send it over a secure channel to the new friend.

Finally, if a user wishes to remove a friend from a circle or change his circle, he has

to renew all Layered shares for this circle, to ensure that his Layered share will not be

usable in future exchanges. An alternative would be to use the proxy re-encryption

approach from [53], that does not require share renewal.

4.4 Security Analysis for the OSN Application

This section presents an analysis of the security of the proposed scheme and its ap-

plication to the automated OSN profile sharing. For the sake of simplicity, we only

consider the case where all user’s friends belong to a single circle.

4.4.1 Adversary Model

The threat scenario consists of adversaries that will attempt to access more information

than what they may obtain legitimately i.e. from the Layered shares acquired either

directly from the dealer or from the dealer’s friend connections. This includes an

honest but curious adversary who is an insider (a user) within the system and has
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access to a number of Layered shares, or a malicious user who obtains all information

by monitoring communications of other nodes, by compromising nodes, etc. We note

that the information any attacker may gain includes Layered shares and background

information, comprising one or more decoded secrets (attributes of a user’s profile),

their locations (in layers) and their level of protection (thresholds).

4.4.2 Properties of Shamir’s and Ramp Schemes

To assist with our analysis, we first remind relevant properties of the two (single) secret

sharing schemes used in constructing layers in our proposal:

Property S.1 Shamir’s scheme is information theoretically secure, that is, for a (t, n)

scheme, knowledge of less than t shares does not provide any information about the

remaining shares or the secret (corresponding to the first property of the Equation 2.11

in the Section 2.3.1.1).

Property S.2 In Shamir’s scheme, the secret is equivalent to a share, as it is a specific

point on the curve defined by the polynomial used to both generate and decode shares

(as mentioned in the Section 2.3.1.1, the secret is the point P (0) of the polynomial,

the shares other points of the same polynomial).

Property R.1 The ramp scheme is not perfect, however for a (t, L = t, n) scheme,

possession of x < t (less than t shares) does not provide any information about any

remaining (unknown) shares and any part of the secret, but the size of the entropy of

the solution set is reduced from H(S) to t−x
t H(S) (Definition 10 in Section 2.3.1.3).

Property R.2 Knowledge of the secret in the ramp scheme with L = t enables recon-

struction of all the related shares (as the coordinates used for the shares computation

are known).

4.4.3 Privacy of the Scheme

We assume the attacker has x Layered shares, x ∈ [0, n]. This will enable him access

to corresponding secrets S1 to Si, decoded from those shares, with i defined by the
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threshold ti ≤ x < ti+1. The attacker also may have background knowledge of nS ,

nS ∈ [0, k] secrets, their position in the layers and related thresholds. In the following,

we consider the different scenarios related to the position of known secrets and the

resulting gain by the attacker.

We consider the use of both Shamir’s and the ramp secret sharing scheme any layer

and utilize the properties of these schemes, defined in Section 4.4.2, in the security

analysis.

4.4.3.1 The Attacker has Access only to Layered Shares

The privacy protection our scheme provides is equivalent to that of the underlying

scheme, as defined by properties S.1 and R.1, respectively for Shamir’s and the ramp

scheme.

4.4.3.2 Attacker has Access to both Layered Shares and Background

Knowledge

We first consider the cases when one of the following secrets, Si+1 or Si+2 is known,

then generalise the analysis to the attacker having access to any number of secrets (not

acquired from the available Layered shares).

The adversary knows secret Si+1 in addition to Layered shares:

For Shamir’s scheme, knowledge of the secret is equivalent to having access to

an additional share related to Si+1 (see property S.2). If the new number of shares

is below ti+1, as per the property S.1, the attacker cannot progress further. If the

threshold was reached, the attacker can recompute all related shares; consequently

(from the additional shares), he can acquire the key Ki+1 required to decrypt the next

layer of shares within the available Layered shares.

For the ramp scheme, knowledge of the secret and the threshold ti+1, as per prop-

erty R.2, enables the attacker only to reconstruct the key Ki+1 and access the next

level of shares in the Layered scheme. Similarly to the case when Shamir’s scheme is
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used, the attacker can, as the maximum gain, succeed in having access to x shares in

the next layer of the Layered shares.

The adversary knows secret Si+2 together with Layered shares: Here, the

adversary aims to access the unknown secret Si+1 and potentially further information

about the remaining secrets.

For Shamir’s scheme (re. S.2), there is no additional gain.

For the ramp scheme, (as per R.2) the attacker can reconstruct all the shares

related to Si+2. This would enable him access to Ki+2 for decrypting the next level of

shares in the Layered scheme, related to the secret Si+3. But first the attacker needs

to reconstruct the key Ki+1 to be able to decode the Layered shares Li+1
j and then the

Layered shares Li+2
j using the key Ki+2.

A plaintext attack, in which the adversary partially knows the decrypted text

string, i.e. shares related to Si+2, could be used to gain Ki+1 (we note that, to the

best of our knowledge, there has been as yet no successful plaintext attack on AES ).

Assuming this is successful, the attacker would obtain Ki+1, i.e. a cryptographic hash

of bi+1 shares related to Si+1. Assuming the attacker has sufficient computational

resources to derive these shares from the one-way hash function, the resulting gain

would be bi+1 additional shares related to Si+1; if the threshold ti+1 is reached, the

attacker will gain the additional secret Si+1.

The adversary knows any number of subsequent secrets: For any case

where the next layer of shares (in the Layered scheme) is protected by Shamir’s scheme,

and assuming the secret is known to the attacker, the maximum possible gain can be

the availability of the key to decrypt the next layer. When the next layer is protected

by the ramp scheme, the certain gain is the same key. When the second-next layer is

based on Shamir’s secret sharing, assuming a known secret, there is no possible gain;

when it is based on the ramp scheme, again with a known secret, both the previous

layer and the following layer may be decrypted. We note that no new Layered shares

can be gained by the attacker with an arbitrary level of background information.
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Table 4.2: Variables used in our analysis

Variable Description

F j
u Set of j-degree friends for any user u (denoted as o for the profile owner

and a for the attacker)

Aj Intersection of F j
u and Fa where a ∈ F j+1

u

Aj Random variable describing the cardinality of Aj , having the value aj
N Random variable describing the cardinality of Fu, having the value n
X Random variable describing the number of Layered shares the attacker

may obtain, having the value x ∈ [0, n]

pj Probability that a node in F j
u sends his Layered shares to one of his

direct friends in F j+1
u

4.4.4 Analysis of Attacker’s Access to Layered Shares

We now provide an analysis of the number of Layered shares that an adversary poten-

tially may have access to, in the OSN scenario where a user is sharing his profile with

direct friends.

We assume that an adversary is a node belonging to the social graph of the user

sharing his profile and that he obtains information (shares) from his direct connections.

Second, we assume that the probability that an adversary will obtain shares decreases

with the distance from the node sharing his profile (increasing degree) and we only

consider the path with the shortest distance as relevant in obtaining information.

We first define the variables used in our analysis, summarized in Table 4.2. Let

F j
u be the set of j-degree friends of any user u (friends at a distance of j hops from

the user u) in the OSN for j ≥ 1, defined as: F 1
u being the set of direct friends of u

for j = 1 and F j
u = {w | w ∈ Fv, v ∈ F j−1

u , w /∈ ∪j−1i=1F i
u} for j > 1. This follows

the nomenclature from [108], however in this analysis we assume that a node of the

social graph does not have multiple degrees1. Let F j
o and F j

a , for j ≥ 1, be the sets

of j-degree friends of, respectively, the profile owner and the attacker.

Assume the attacker is at a distance j + 1, for j ≥ 1, from the owner in his social

graph; thus the attacker belongs to F j+1
o . We define Aj = F j

o ∩ F 1
a as the set

1This follows from our assumption that the probability for an attacker to obtain information on
any path is negligible compared to the probability of obtaining information on the shortest path.
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consisting of direct friends of the attacker, who are also j-degree friends of the owner.

Let the random variable Aj = |Aj | be the size of Aj , having the values aj . Let the

random variable N = |F 1
o | be the number of friends that the profile owner has, having

the value n. Let the attacker have X Layered shares, where X is a random variable

having a specific value x ∈ [0, n]. Finally, let pj be the probability that a node in F j
o

will forward his Layered shares to one of his direct friends in F j+1
o , for all j ≥ 1.

We assume that the direct friends of the owner follow the protocol and, although

they may be tricked by the attacker masquerading as another friend, they would release

to him only their own (single) share. Thus an attacker in F 2
o will receive one Layered

share from an element in F 1
o with a probability p1. All other nodes (on the social

graph of the profile owner) who have shares are adversaries and they would forward

all their available shares to the attacker. Therefore an attacker in F j+1
o will receive

all available Layered shares from the j-degree friends of the owner (j > 1) with a

probability pj .

In the following analysis, we derive the probability that an attacker in F j+1
o will

obtain x Layered shares, assuming the owner has n direct friends: Pj(X = x | N = n).

To this purpose, we consider three cases: we provide a detailed analysis for a close

attacker, with j = 1, 2 and we generalize the analysis for j ≥ 3. For the latter case

(j ≥ 3), we assume that all the elements in F j
o receive Layered shares independently.

4.4.4.1 The Adversary is Close to the Profile Owner

First, we consider an attacker who is at a distance two from the profile owner. The

attacker will successfully acquire x Layered shares from the friends he has in common

with the profile owner and he will receive one Layered share from each node in A1 with

a probability p1. It follows that the attacker will not receive shares from the a1 − x

elements of A1, therefore:

P1(X = x | N = n) =
n∑

a1=x

P (A1 = a1 | N = n)

(
a1
x

)
px1(1− p1)a1−x (4.1)
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(a) Attacker is in F 2
o (j = 1)
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(b) Attacker is in F 2
o (j = 1)

Figure 4.2: Attacker is in F 2
o (j = 1) or in F 3

o (j = 2).

The distribution P (A1 = a1 | N = n) can be computed for a1 ∈ [0, n] from the

social graph of the selected OSN.

4.4.4.2 The Adversary is a 3-Degree Friend of the Profile Owner

The probability that an attacker at a three hops distance receives x Layered shares

from nodes in A2, assuming the owner has n direct friends and the size of the set A2

is a2, can be computed as the probability that the attacker successfully receives these

x Layered shares from a subset of nodes B ⊂ A2.

P2(X = x | N = n) =

∞∑
a2=0

P (X = x ∧A2 = a2 | N = n)

=
∞∑
a2=0

P (X = x | N = n ∧A2 = a2)P (A2 = a2 | N = n)

(4.2)

where P (A2 = a2 | N = n) can be computed from the OSN’s social graph. We note

that the size A2 can vary from 0 to ∞ however in practice it is limited by the number

of nodes in the OSN. Let the size of B be represented by the random variable B = |B|,
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with the values b ∈ [0, a2]. We can then calculate:

P (B = b | A2 = a2 ∧N = n) =

(
a2
b

)
pb2(1− p2)a2−b (4.3)

The subset B provides the x Layered shares if and only if the nodes in this subset

obtain this data from exactly x direct friends of the profile owner (note each direct

friend only forwards a single Layered share). We define CB of size CB as the set

of common direct friends between the owner of the profile and the elements in B:

CB = {w ∈ Fo∩Fv | v ∈ B}. We also define CB
c as the subset of CB from which the

elements in B are actually receiving the information. Thus, CB
c = |CB

c| needs to be

equal to x. Consequently we can calculate:

P (X = x | N = n ∧A2 = a2) =

a2∑
b=0

P (B = b | A2 = a2 ∧N = n)

× P (CB
c = x | B = b ∧A2 = a2 ∧N = n)

(4.4)

Then

P (CB
c = x|B = b ∧A2 = a2 ∧N = n) =

n∑
l=x

P (CB = l|B = b ∧A2 = a2 ∧N = n)

× P (CB
c = x ∧ CB = l|B = b ∧N = n)

(4.5)

Let us denote the number of edges between a node in CB and the nodes in B by the

random variable ϕ, with a value z ∈ [1, b]. Note that P (ϕ = z | B = b ∧N = n) can
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be computed from the OSN’s social graph. Finally:

P (CB
c=x∧CB =l|B=b∧N= n) =

(
l

x

)( b∑
z=1

P (ϕ=z|B = b∧N=n)(1− p1)z
)l−x

(
b∑

z=1

P (ϕ = z|B = b∧N = n)(1− (1− p1)z)

)x
(4.6)

as each element in CB
c needs to be connected (with a probability p1) to at least one

element of B, while each element in CB\CB
c does not have any connection to elements

of B. Finally, P2(X = x | N = n) can be computed by combining equations (4.2)-(4.6).

4.4.4.3 The Adversary is Distant from the Profile Owner

For the generic case of a distant adversary, we assume that the nodes at a distance

j + 1 for j ≥ 2 receive independent sets of Layered shares (although any share can be

in multiple sets), in line with the assumption that the further two nodes are from the

profile’s owner, the less chance they have to have common friends in F j
o . We can then

calculate:

Pj(X = x | N = n) =

∞∑
aj=0

P (X = x ∧Aj = aj | N = n)

=

∞∑
aj=0

P (X = x | N = n ∧Aj = aj)P (Aj = aj | N = n)

(4.7)

where P (Aj = aj | N = n) can be computed from the OSN’s social graph.

The probability that the attacker receives the Layered shares from k nodes in Aj

is equal to
(aj
k

)
pkj (1 − pj)aj−k. Then the probability that one of the k nodes has xy

Layered shares for y ∈ [1, k] is equal to Pj−1(X = xy | N = n). Finally we need to

evaluate the probability that the size of the union of any k sets of size xy amongst n

of Layered shares is equal to x, denoted as P (|Uk1 | = x | xy). The derivation of this

probability is included in Appendix B.
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We finally derive the probability that the attacker receives x Layered shares:

P (X=x | N=n ∧Aj=aj) =

aj∑
k=1

(
aj
k

)
pkj (1− pj)aj−k

×
k∑
y=1

n∑
xy=0

P (|Uk1 |=x | xy)
k∏
z=1

Pj−1(X=xz | N=n)

(4.8)

4.4.5 Calibrating the Thresholds

Using the analysis from the previous sub-section, an OSN user could compute, for

known properties of the OSN’s social graph and for each distance j+1, the cumulative

distribution Pj(X ≥ x | N = n). This is the probability that an attacker in F j+1
o

can access at least x Layered shares. This probability is equivalent to the proportion

of attackers in F j+1
o that may acquire this number of shares. The profile owner can

therefore determine the minimum threshold tjmin for generating the Layered shares, to

ensure that less than a specific proportion c of attackers at distance j + 1 can access

the secrets,

tjmin = min{x/Pj(X ≥ x | N = n) ≤ c}. (4.9)

The required (overall) minimum threshold can be calculated for adversaries at any

distance as

tmin = max
j>1

(tjmin). (4.10)

To evaluate the practicality of our proposal, we need to ensure that the number

of Layered shares that friends of an OSN user can obtain, is always greater than the

minimum threshold required to protect against attacks. To obtain representative OSN

parameters, we use the Facebook New Orleans dataset [106], comprising around 60,000

nodes, to derive the distributions required for calculating Pj(X ≥ x | N = n), as per
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Section 4.4.4. We choose three levels of resilience: such that less than, respectively,

1%, 0.1%, and 0.01% of the adversaries at selected distances from the dealer are able to

access data if corresponding thresholds tjmin are chosen. We also choose two values for

the probabilities pj (5% and 10%) that a friend of the dealer will leak information to

an adversary and for an adversary to forward all Layered shares to another adversary.

Figure 4.3 shows the calculated minimum thresholds for selected parameters. This

figure also shows the average number of Layered shares that friends of a dealer will

be able to acquire (the number of friends is varied between one and 100, the average

number of Facebook friends [105]). We can observe that even with a high (10%) leakage

from dealer’s friends and other adversaries, the number of available shares that the

friends can acquire is greater than the minimum threshold required for the highest

level of protection (99.99%) against adversaries. We can also confirm the potential for

having flexible privacy protection for shared attributes: an OSN user with 40 friends

can have 5 different levels of protection, while the average Facebook user who has 100

friends may to have around 10 different levels of shared data protection.
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Figure 4.3: Thresholds required to ensure a chosen level of protection against attackers
at distance j = 2 from the dealer.
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4.5 Performance Evaluation

In this section, we evaluate the performance the of Layered scheme. We consider the

use of both Shamir and ramp schemes for constructing layered shares. As a baseline,

we also evaluate the naive approach, that shares each secret independently using the

corresponding secret sharing scheme.

We measure the computational overhead, represented by the duration of the share

generating and decoding operations and the communication overhead, as the volume

of traffic required to perform the operations for each scheme when using selected para-

meters. Other than the performance comparison between the schemes, we are also

interested in the absolute values of the time taken to perform the share generating and

decoding operations, determining the usability of the scheme.

The OSN application assumes real time use, i.e. (although e.g., a browser plugin

could be used as a means of integrating the implementation into a practical system) a

user needs to generate shares and distribute them in real or near-real time. Similarly,

user’s OSN connections need to, once they have aggregated a sufficient number of shares

through exchange with friends from the same OSN group, decode the shares and access

the profile attributes (secrets) in real time. In line with the 3G QoS requirements for

the interactive traffic class designed for web browsing, we consider a delay of the order

of magnitude of several seconds as acceptable (note [55], pp. 403, lists an upper limit

of 4 seconds).

We first describe our implementation and the experimental setup.

4.5.1 Implementation Details

We have developed both the Layered secret-sharing and the naive approach packages

in Java. The packages comprise two main classes: first, the share generator, that

constructs shares (Layered or single) from an input array of profile attributes and

their corresponding thresholds t (and L if using a ramp scheme). Second, the decoder

that inputs a series of (Layered or single) shares and outputs the decoded secrets i.e.
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the profile attributes.

Our implementation of Shamir secret sharing share generator/decoder uses a class

from the SEPIA [17] library. As SEPIA is originally designed for Secure Multi-Party

Computation, a number of modifications were needed for our profile sharing applic-

ation. These include the capability to generate and to decode an additional share

for creating the key required for Layered shares. Our implementation of the share

generator/decoder for the strong ramp scheme is based on Blakeley’s generalisation

of Shamir scheme [9]. It is more loosely based on the SEPIA code as more extensive

modifications were required. We note that our proof of the strong ramp properties for

this scheme and the description of the implementation have been reported in Chapter

5.

As both schemes are operating over the Galois field GF (1, 401, 085, 391) that is

based on a 31-bit prime number, input and output data handling needs to be adjusted

in line with the size of this number. In the following sub-section, we will detail the

scenarios we have used for evaluation, here we note that we consider profile attributes to

be either 140-character text strings or images. For both, we convert the input secrets

into a number of 4-Byte (4 readable ASCII character) arrays that are subsequently

individually shared as processed secrets, either using a Layered or a single sharing

scheme. This includes some overhead, as, depending on the specific ASCII character

values, the 4 Bytes may not be able to be accommodated within the 31-bit prime

number defining the Galois field (for these cases, we only use 3 Bytes and pad the

remaining values with 0s).

There is an additional step for handling images - these need first to be encoded into

a string of readable ASCII characters. We use a BASE64 encoding as implemented in

the standard Java library DatatypeConverter class. This increases the image size, as

we will further discuss in the following sub-section.

Finally, we have used the AES encryption and decryption and the SHA-256 hash

function implementations from the Cipher and MessageDigest classes of the Java lib-
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Table 4.3: Attribute types and thresholds for each of the example profiles (T for Text).

Attribute 1 2 3 4 5 6 7 8 9 10

Profile 1 T T T T T T T T T T
Profile 2 T Profile picture T T T T T T T T
Profile 3 T Profile picture T T T T T T T Picture

Threshold 5 10 15 20 25 30 35 40 45 50

rary.

4.5.2 Experimental Scenario and Setup

For the evaluation scenario, we consider the Facebook user profile comprising 40 at-

tributes [105]. We assume the user is sharing only k = 10 attributes within a group

of n = 100 friends [105], with secret-sharing thresholds varying between 5 and 50 (in

increments of 5). We consider three profile types (Table 4.3).

Profile 1 All 10 profile attributes are text strings of 140 readable ASCII characters.

We note that Facebook does not have an explicit limit on the length of the profile

attributes. We therefore adopt the Twitter message size as a baseline for defining

the size of text-based profile attributes2.

Profile 2 This profile comprises nine text string attributes and a profile photo, with a

size of 160×160 pixels3. We select the profile image as the second least protected

attribute in the Layered scheme. We note that the choose the user’s name as the

lest protected (text) attribute.

Profile 3 Similarly to Profile 2, this profile includes the profile photo in the same

position. The most protected attribute (last in the order of attributes when

using the Layered scheme) is a second image, with a size of 520× 520 pixels. All

remaining attributes are texts strings

2Tweets can be up to 140 characters in length, https://support.twitter.com/articles/

15367-posting-a-tweet.
3Facebook profile photo, http://havecamerawilltravel.com/photographer/

images-photos-facebook-sizes-dimensions-types

https://support.twitter.com/articles/15367-posting-a-tweet
https://support.twitter.com/articles/15367-posting-a-tweet
http://havecamerawilltravel.com/photographer/images-photos-facebook-sizes-dimensions-types
http://havecamerawilltravel.com/photographer/images-photos-facebook-sizes-dimensions-types


Chapter 4. Layered Secret Sharing Scheme for Automated Profile Sharing 77

We use a common reference image4 for both the profile photo and the additional

image. The respective file sizes for the images used in our experiments are 22.68 kB and

473.831 kB. We note that the encoding step required to convert the images to an array

of strings increases the file sizes by about 33 %. We note, however, that it is only a by-

product of our current implementation, and not a requirement of the underlying secret

sharing schemes. Improvements to the efficiency of our implementation are planed for

future work.

We run the share generating and decoding experiments on a cluster built from Dell

PowerEdge 1950 servers equipped with 2 × 2.00 GHz Intel Quad Core Xeon E5405

processors, each with a 6 MB of cache, and with 16 GB of RAM. We note that each

process runs on a single core and shares the accessible RAM with 7 other processes.

Therefore, in our the experiments, the share generating and decoding for each of the

example profiles was run on a single 2.00 GHz core CPU with at most 2 GB of RAM.

We note that the computing capabilities of this platform are similar to what is available

for the more advanced current mobile devices, such as the LG Nexus 55. We envisage

that the current trend of accessing OSN services using mobile devices, as is the case

for the largest OSN, Facebook6 will continue and that in the near future the majority

of users will access OSNs via such devices.

4.5.3 Computational Overhead

We first study the computation time required to complete the share generating and

decoding operations for the specific secret sharing scheme.

Figure 4.4 shows the average measured time for generating and decoding shares,

for each of the profile types and for the case when the full profile is both shared and

recovered. We note that this includes generating n = 100 shares for all schemes (the

naive scheme actually generates this number of shares for each of the 10 profile attrib-

4http://en.wikipedia.org/wiki/File:Lenna.png
5http://www.lg.com/au/mobile-phones/lg-D821
6Facebook statistics as of January 2014, from http://www.statisticbrain.com/

facebook-statistics/

http://en.wikipedia.org/wiki/File:Lenna.png
http://www.lg.com/au/mobile-phones/lg-D821
http://www.statisticbrain.com/facebook-statistics/
http://www.statisticbrain.com/facebook-statistics/
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utes, while the Layered scheme deals with all attributes simultaneously). Similarly,

with the selected maximum threshold t = 50, the same number of shares is combined

in the decoding process to recover all profile attributes. We note that only the average

values are shown in Figure 4.4 for clarity, and Tables 4.4 and 4.5 additionally list the

corresponding values of standard deviation. For all results, the share generating and

decoding measurement is an average of 2500 profile sharing or recovery experimental

rounds.

We consider three cases: (a) when the underlying single secret sharing mechanism

for Layered shares is Shamir secret sharing; (b) when each layer is based on a strong

ramp scheme with L = t (note the values of t vary); and (c) when the L = d t2e ramp

scheme is used in each layer, where d·e is the ceiling function. The use of L = t strong

ramp scheme minimises the size of shares at the expense of minimum offered security.

On the other hand, using the L = d t2e ramp scheme results in a trade-off between the

improved security and larger share size.

To aid the analysis, the share generating and decoding process for Layered shares

is divided into four basic components, shown in Figure 4.4. First, the corresponding

single secret sharing scheme based operations to generate or decode individual shares.

For Layered shares, this includes the time to process the additional shares used for

generating the key. Then, the time to construct the key, encryption (in the share

generating process) and decryption (part of the decoding process) and finally other re-

sidual operations related to our implementation (e.g., BASE64 transcoding operations

and data padding). We note that the first and the last components are also applicable

to the naive scheme.

We first consider the difference in computation times for the Layered and naive

schemes. We can observe that using the naive approach results in faster generating

and decoding of shares, for all parameter choices. Considering the contributing com-

ponents, the largest contributor are the additional cryptographic operations, that add,

on the average, 32–62 % (35 ms–5 s) for the share generating and 160–265 % (15 ms–6 s)
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(a) Encoding for Profile 1 (all text)
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(b) Decoding for Profile 1
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(c) Encoding for Profile 2 (text and profile pic-
ture)
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(d) Decoding for Profile 2
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(e) Encoding for Profile 3 (text, profile picture
and bigger image)
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(f) Decoding for Profile 3

Figure 4.4: Average times to generate 100 shares or to reconstruct secrets (from at
least 50 shares). Results are shown for the naive approach (Na) and Layered scheme
(LS) with selected secret-sharing schemes: Shamir’s scheme and strong ramp scheme
(RS) with L ∈ [dt/2e, t]. Note that y-axis scales are the same for the encoding and
decoding of the same profile, but not across different profiles.
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Table 4.4: Average time and standard deviation (in milliseconds) required to generate
shares and to decode the profile attributes using the naive approach, based on different
single secret sharing schemes.

Naive Shamir Ramp dL = t
2e Ramp L = t

Profile 1
Encoding

68.26 47.26 53.11
(7.07) (10.61) (9.91)

Decoding
7.55 16.39 27.39

(5.44) (6.35) (5.94)

Profile 2
Encoding

553.56 134.36 96.86
(16.25) (20.13) (17.42)

Decoding
79.28 58.58 67.13

(17.52) (13.38) (13.86)

Profile 3
Encoding

49, 966.38 1, 859.33 1, 040.2
(920.75) (38.43) (59.8)

Decoding
2, 394.90 936.89 946.89
(423.19) (14.52) (26.98)

for the share decoding process, for all three test profiles. There is also a difference in

the time required to perform the single share operations, resulting from the introduc-

tion of two additional secrets (to verify the legitimacy of the Layered share and for the

group ID) and from an additional share generated in every layer (for every secret).

Comparing the results for the different profiles, we can observe that the size of the

secrets greatly impacts the duration of secret sharing operations, particularly when

using Shamir scheme. This is the case for both Layered and naive schemes, where the

share generating time varies between around 0.1 second and the decoding time is no

larger than 0.04 seconds for the text-only Profile 1 shown in Figures 4.4(a) and (b), to

over 60 seconds for generating and 20 seconds for decoding for Profile 3 that includes

images, as shown in Figures 4.4(e) and (f).

When the size of secrets increases, the overhead introduced by the cryptographic

operations in the Layered scheme decreases for the process of generating shares (from

70% for Profile 1 to 31% for Profile 3 ), however it increases for the decoding process

(from an already considerable 310% for Profile 1 to a huge 594% for Profile 3 ).
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Table 4.5: Average time and standard deviation (in milliseconds) required to generate
shares and to decode the profile attributes using the Layered mechanism, based on
different single secret sharing schemes.

Layered Shamir Ramp dL = t
2e Ramp L = t

Profile 1

Encryption
47.89 29.13 28.16

(50.45) (51.13) (49.22)

Total encoding
115.78 76.33 81.72
(59.70) (61.35) (58.73)

Decryption
23.42 5.92 5.36

(10.25) (7.77) (7.22)

Total decoding
38.22 24.17 34.19

(21.74) (14.95) (13.59)

Profile 2

Encryption
285.36 72.15 54.04
(61.51) (50.02) (52.96)

Total encoding
830.46 206.10 153.29
(75.75) (68.89) (70.50)

Decryption
206.83 41.61 24.28
(19.45) (10.35) (11.05)

Total decoding
382.20 118.11 103.28
(57.13) (22.59) (23.81)

Profile 3

Encryption
15, 581.39 648.16 370.86

(745.44) (56.02) (78.67)

Total encoding
64, 267.80 2, 481.95 1, 368.77
(1, 306.81) (90.59) (125.08)

Decryption
14, 248.87 586.07 309.44

(443.64) (11.41) (25.23)

Total decoding
18, 800.11 1, 605.92 1, 301.30

(939.92) (24.13) (59.40)

Ramp schemes consistently require less time to complete the share construction and

decoding operations, consistent with the smaller share sizes when compared to Shamir

scheme. Focusing on the choice of ramp scheme parameters, we consider Profiles 2

and 3 (note the overall duration of the share generating and decoding processes is

very low for Profile 1 and, for decoding, dominated by the ”other” component). We

can observe that increasing L decreases both the time to generate and to encrypt the

Layered shares. For the decoding process, increasing L slightly increases the time

needed to decode the shares (by about 10 ms). The time to decrypt the shares is
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however halved.

4.5.3.1 Usability of the Layered Scheme for Different Profile Types

We now consider the potential for real time use, as per the QoS requirements of a

maximum acceptable delay of 4 seconds for the real-time OSN application, outlined in

the introductory part of Section 4.5.

Considering each profile independently, we can conclude that Profile 1 can prac-

tically be shared using any Layered scheme, as observed in Figures 4.4(a) and (b). As

all schemes are usable for a profile containing only text attributes, Shamir scheme may

therefore be the best solution amongst the three presented, maximizing the security

without introducing unacceptable delays.

As previously noted, increasing the size of the profile (e.g., by adding images)

makes the Shamir-based Layered scheme less practical for our purpose: it takes 50 s

to encode Profile 3 and 2.3 s to decode it, even without layering the shares, as shown

in Figures 4.4(e) and (f). Strong ramp scheme based solutions however deliver the

required efficiency: the duration of both the share generation and decoding processes

and of cryptographic operations is greatly reduced in comparison to Shamir based

scheme, and remains within acceptable limits for real-time use (well under 4 seconds).

There is, however, a resulting reduction in security, as the shares are not as well

protected compared to the use of Shamir scheme, and an attacker capturing more

than t−L shares may, theoretically, still be able to learn some information about the

secret. This motivates the use of heterogeneous single secret sharing schemes within

the Layered secret sharing solution.

4.5.3.2 Enabling the Trade-off between Computational Overhead, Secur-

ity and Versatility of the Supported Profiles

Considering the usability of the Layered scheme, it is evident that a ramp scheme

needs to be utilised for sharing large secrets. This, however, should not impact the use
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of the more secure Shamir scheme when the secret size can be practically supported.

The design of Layered shares, as described in Section 4.3, allows the flexibility of

using a different underlying single secret-sharing scheme. We therefore consider a

heterogeneous Layered scheme, where the ramp schemes with a specific choice of L are

utilised for large-size secrets and Shamir scheme is applied in layers that are generated

from smaller secrets.

We present additional experimental results for the heterogeneous Layered scheme.

Table 4.6 provides an example of the time required to generate shares and to decode

attributes of Profiles 2 and 3, where Shamir scheme is used for all attributes with the

exception of images, for which we select a strong ramp scheme with L = t. Similarly

to other experiments, the average time and standard deviation are calculated based

on 1500 experimental runs. We can observe that the measured computation times are

comparable to the ones obtained with experiments using the Layered scheme with the

underlying L = t ramp scheme for each layer (around 1 second). The security for the

text attributes is however maintained at the theoretical maximum offered by Shamir

scheme.

4.5.4 Communication overhead

We now evaluate the communication overhead of the various schemes. We consider a

cold-start scenario, where all users are yet to exchange their own Layered shares and

communicate with each other to acquire the shares required to decode the profiles of

other users.

We define the communication cost as the average volume of data that is downloaded

and uploaded by an OSN user. We consider a user with n friends, denoted F1, . . . , Fn,

who has ci friends in common with friend Fi, ∀i ∈ 1, . . . , n.

First, to share his own profile, the user has to send one Layered share to each of

his friends. In parallel with sending his share, a user also receives one share from each

of his friends. Then, the user endeavours to acquire shares related to the profiles of his



Chapter 4. Layered Secret Sharing Scheme for Automated Profile Sharing 84

Table 4.6: Encoding and decoding times (in milliseconds) for the heterogeneous
Layered scheme (using Shamir scheme for all text based secrets and a L = t ramp
scheme for images); we show average and standard deviation values (in brackets)

Encoding Naive Layered Decoding Naive Layered

Profile 2 (incl. 128×128 profile picture)

Share generation
125.28 126.66

Share decoding
39.90 45.32

(10.29) (9.53) (3.14) (1.93)

Encryption
— 67.72

Decryption
— 40.61

— (48.77) — (9.98)

Total encoding
130.56 198.31

Total decoding
47.39 100.66

(18.93) (65.48) (11.36) (19.15)

Profile 3 (incl. profile picture & larger 520×520 image)

Share generation
964.07 972.37

Share decoding
854.28 877.02

(15.11) (14.67) (1.55) (8.31)

Encryption
— 347.09

Decryption
— 309.15

— (56.55) — (11.00)

Total encoding
1, 014.37 1, 347.82

Total decoding
901.06 1, 258.75

(36.39) (90.55) (12.44) (22.56)

friends. Thus, for each friend Fi, the user exchanges Fi’s Layered shares with friends

that he has in common with Fi. This results in ci exchanges (again, including both

upload and download of shares). After contacting all mutual friends, a user transfers

and receives a total of

Ns = n+
n∑
i=1

ci (4.11)

Layered shares.

We assume, for simplicity, that all users have a uniform profile size and that the

profiles are shared in the same way (using identical underlying scheme parameters).

The Layered shares will therefore be of the same size, that we denote as |L |. Table 4.7

lists share size |L | measured in experiments, for the various combinations of paramet-

ers used in the previous sub-section. We can observe that the difference between the

share sizes for the naive and Layered scheme varies quite widely. The proportion of

additional bytes needed for the Layered schemes compared to the naive approach de-

creases with the size of the shares, starting from 180 % when the share size is less
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Table 4.7: Size of a single share (kB) for the different profiles and schemes considered.

Shamir RS L = d t2e RS L = t Heterogeneous

Profile 1
Naive 1.832 0.364 0.240 —
Layered 1.964 0.528 0.432 —

Profile 2
Naive 36.460 7.288 3.700 5.180
Layered 36.588 7.440 3.888 5.344

Profile 3
Naive 762.548 36.332 18.224 19.528
Layered 762.684 36.480 18.400 19.680

than 1 kB, and a L = 1 ramp scheme is used, to 0.01 % when the share size is equal

to 762 kB. However for the majority of cases, i.e., when the share size is greater than

1kB, the difference is in fact negligible.

To calculate a representative communications overhead, we use the Facebook ex-

ample from Section 4.4.5. There, a Facebook user has, on the average, n = 100 friends

and users have ci = 18 friends in common with any of their friends. Applying these

values to Equation (4.11), we calculate that a typical user will therefore have to trans-

fer Ns = 1900 Layered shares. In our simplified uniform share-size scenario, each user

will then have to download and upload (depending on the underlying secret sharing

scheme) between 821 kB and 3.7 MB, to share their profiles for Profile 1, 7.4–69.5 MB

for Profile 2, and 35.0 MB–1.5 GB for Profile 3.

As previously observed when evaluating the computational overhead, using Shamir

scheme is only practical when all shared secrets are strings of characters. When larger

secrets are shared, practical considerations necessitate a trade-off between the level

of offered security and the share size. The heterogeneous Layered approach is again

showing the best potential for real world use, as the communications cost is comparable

to what can be achieved with sole use of the ramp scheme, around 10 MB for Profile 2

and 37 MB for Profile 3.

We note that the relatively high communication cost in the presented example

relates to the cold-start scenario, that assumes no prior profile sharing. In practice,

following the cold start, Layered shares may be stored, and replaced only when a
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user modifies their profile. For each modification, the user would have to generate

and send only n = 100 Layered shares. This would be reflected in corresponding

communications cost of between 24 and 196 kB for Profile 1, 389 kB–3.7 MB for Profile

2, and 1.8–76.3 MB for Profile 3 ). Each friend would then need to download ci+1 = 19

new Layered shares and upload ci = 18 shares, resulting in a more acceptable overhead

of between 16 kB and 28.2 MB.

Although we use a simplified scenario for evaluating the communication cost of the

Layered scheme, we believe that the results are applicable to other more complex OSN

profile sharing cases, as the basis for calculating the cost i.e., the individual Layered

share size, will remain unchanged. Overall, our results show that the use of the Layered

scheme does not introduce a significant overhead in the size of the shares when larger

profiles, that include images, are shared within an OSN group. Moreover, the use

of ramp schemes in place of Shamir secret-sharing enables a significant reduction of

the size of each share (by 73–95 % using a reasonably secure L = d t2e ramp scheme

parameters). Finally, a good trade-off between security and communication cost can

be achieved by using a hybrid Layered scheme, that uses a secret-size based customised

combination of Shamir secret-sharing and ramp schemes.

4.6 Discussion

4.6.1 There is no Free Lunch

Providing meaningful and automated access policies, while keeping all the information

private and without relying on an OSN provider is a difficult problem. Our Layered

scheme proposes one way to address this, based on the number of common friends

that a dealer has with any user in a specific OSN circle. We acknowledge that this

criteria may not be universally applicable to all OSN groups. However, we believe,

as per [119], that the number of common friends represents a relevant and easy to

understand metric for the OSN users (note that this is a common component of the
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algorithms for automated clustering or the creation of communities).

The current proposal does not specifically address revocation (un-friending) and it

is assumed that the Layered shares would need to be re-generated and redistributed to

friends in a group when a user’s group membership is revoked. A similar problem was

identified in the Persona proposal [3], where upon revocation of the social link, the

dealer needs to renew the cryptographic keys for all other friends in the OSN group. A

possible way to address this is by using proxy re-encryption [53], although this solution

introduces a third party to enable the revocation mechanism, which is not fully in line

with our design goals.

In an alternative solution, the profile owner could provide all remaining participants

with a way to compute new Layered shares from a small quantity of new information

and their original Layered shares. An example would be for the profile owner to

distribute a newly generated alternative of the first two protocol layers, along with

the original and newly generated second-layer keys. Each remaining friend would

thus be able to generate their new Layered share by removing the first two layers

of their original Layered share, decoding the remainder using the original key, re-

encoding it with the newly generated key, and concatenating the two new layers.

The impact of this solution on system security needs to be studied in more depth.

One issue is that the revoked participants still own real Layered shares containing

information about the original profile, however this solution would ensure that this

old share cannot be combined with the new ones. Another issue is that during the

re-encoding, the remaining friends would directly acquire in the clear the first layer of

the information contained in the profile, without having to exchange Layered shares

to obtain the decoding key. An option would be for the profile owner to distribute

a combination of the old and new decoding keys, allowing the re-encoding of layers

without prior decoding. An additional encryption scheme may be needed to support

this functionality.

The second drawback of the current proposal also relates to dynamicity of the
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mechanism, i.e., handling of attribute changes (e.g., when a user moves to a new

location, or changes their relationship status). This again necessitates refreshing of

the Layered shares for all users. An extension of our scheme to handle this is a subject

for future study.

4.6.2 Use of Other Secret-Sharing Schemes

Other secret-sharing schemes have been proposed in this very active research field, that

may be suited for a specific purpose, e.g., [51] which presents a strong ramp scheme

with general access structures. The Layered secret-sharing may utilize any other secret-

sharing scheme to build a (selected) layer, assuming that the scheme satisfies the

following requirements. First, the chosen scheme should only rely on private shares,

as public shares would leak information, e.g., about the number of secrets. Second,

the user who has decoded a specific secret should be able to generate (at least one)

additional share, that is required to generate the encryption key and progress to the

next layer.

4.7 Conclusion

Multiple secret-sharing schemes enable concurrent sharing of a number of secrets, how-

ever they still expose information about the strength of protection that may be utilized

for re-identifying the dealer, and about the number of secrets shared. We have pro-

posed a new Layered multiple secret-sharing scheme that fully preserves privacy of

the data shared by the dealer, by protecting the number of secrets he is sharing and

their thresholds. We consider the use of this scheme for profile sharing in OSNs, that

would enable direct access to selected attributes of the profile by friends, with access

levels determined by the number of friends in common with the profile owner. We

evaluate the security of the proposed scheme and analyse the level of threat posed by

OSN users who are on the social graph of the user sharing his profile. Finally, we

evaluate the communication overhead and the complexity of critical components of
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the scheme, by experimental evaluation of the time required to generate and decode

Layered shares. Future work includes extensions to handle revocation of shares (un-

friending) and changes to the relationship status, without the need to re-distribute

new shares.
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Chapter 5

Systematic MDS Code and

Strong Ramp Schemes

5.1 Introduction

Data from both individuals and businesses is increasingly collected, aggregated and

analysed to provide new services.1 There is a corresponding research effort to enable

both storage and processing of such data in a secure and privacy-preserving way, in

line with the increasing public concerns and strict regulatory requirements for the pro-

tection of such data.2 MPC [24] is a mechanism by which a number of parties can

collaborate to compute an agreed function of their inputs, ensuring both confidential-

ity of the data and the integrity of the resulting output. Private computations over

distributed data are applicable in many scenarios, allowing multiple organizations to

jointly utilize their private or business confidential data to provide a service (e.g., Inter-

net Service Providers troubleshooting network outages [30]), and enabling processing

of personal data stored on individuals’ mobile devices [49].

MPC is typically based on secret sharing or garbled circuits. In this chapter we

1McKinsey report on big data, http://www.mckinsey.com/insights/business_technology/big_
data_the_next_frontier_for_innovation

2EU data protection rules reform, http://ec.europa.eu/justice/newsroom/data-protection/

news/120125_en.htm
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focus on MPC with secret sharing, which is better suited to scenarios with a number

of parties (garbled circuit being predominantly used for two-party computation [81]).

The confidentiality of the computation is guaranteed by the security of the underlying

secret sharing scheme.

The choice between a perfect secret sharing scheme such as Shamir is and a strong

ramp scheme is a trade-off between the information-theoretical security guarantee

offered by a perfect scheme against the efficiency and decrease of communication cost

provided by a strong ramp scheme. However a strong ramp scheme guarantees a

higher level of security compared to any generic ramp scheme, as discussed in the Sec-

tion 2.3.1. The security is measured using information theoretical metrics, relying on

entropy properties.

As discussed in 2.3.1.3, despite the promise of strong ramp schemes, there is lim-

ited prior work on construction methods for such schemes [4]. Prior works have also

studied links between generic ramp schemes and MDS codes [25] [22]. For example,

the authors of [85] proposed a construction method for threshold schemes, which is

based on MDS codes. However, such methods are not applicable to construction of

strong ramp schemes. Altogether, only a few constructions for strong ramp schemes

have been proposed and, to the best of our knowledge, there has been no evaluation

of the performance of such schemes in MPC. In this chapter we aim to address these

deficiencies. The summary of our contributions is as follows.

First, we present a novel method for constructing strong ramp schemes based on

any (systematic or non-systematic) MDS code. To this end, we demonstrate that

the encoded packets (the redundancy elements) from well-known systematic MDS er-

ror/erasure correcting codes [65] satisfy the definition of a strong ramp scheme. Util-

izing results from [59], we provide a method to build a strong ramp scheme from any

MDS code. For completeness, we also show how MDS codes may be constructed from

any ramp scheme.

We then present a second novel construction for strong ramp schemes, derived from



Chapter 5. Systematic MDS Code and Strong Ramp Schemes 93

the Shamir scheme. The method uses an alternative (but equivalent to the original

[97]) construction of shares from points of a polynomial, rather than the polynomial

coefficients.

Finally, we evaluate the practical benefits of strong ramp schemes in an MPC

application for network outage monitoring. Our evaluation relies on implementations

of (a) a strong ramp scheme based on the Reed-Solomon MDS code [90] and (b) a

strong ramp scheme based on the Shamir secret sharing scheme, both integrated into

the SEPIA MPC framework [17]. We consider a realistic setting with 20 input and 20

privacy peers processing Internet Service Provider (ISP) outage monitoring data, and

show that strong ramp schemes can reduce the computation overhead (measured by

CPU time) by around 44 times and the communication cost per MPC input peer by

20 times, compared to the performance of the baseline Shamir scheme.

5.2 Background and Related Work

In Section 2.3, we have presented the different notions of threshold secret sharing

scheme, ramp scheme and strong ramp scheme. In Section 2.2.1, we provided the

definitions of the MDS and systematic properties of block codes. In this section, we

will present equivalent definitions based on their generator matrices which are better

suited for the remainder of this chapter.

Error correction codes are used to recover information in lossy (error or erasure)

environments. Linear codes are constructed using a linear combination of information

elements. In a (t,N) code, a vector ~S of t information elements (packets) is encoded

into a vector (codeword) of N ≥ t packets using a generator matrix G of size N × t

(i.e., the codeword is obtained via ~C = G · ~S). An MDS code is a (t,N) linear code

that achieves the Singleton bound [88], with the pairwise difference d between vector

elements of any two codewords d = N− t+1. Therefore, it can correct up to (N− t)/2

errors and (N − t) erasures. An alternative definition is as follows.
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Definition 12 (MDS Code). A (t,N) code is MDS if any square sub-matrix of size t

derived from its generator matrix GN×t is non-singular.

We note that all coding operations are defined on a Galois field GF, based either

on a prime number q, i.e., GF (q), or a power of a prime GF (qp), with the latter being

most commonly used in traditional coding applications. Reed-Solomon (RS) codes

are the best known MDS codes, with a generator matrix that can be based on either

Vandermonde or Cauchy matrices [90], [86].

Definition 13 (Systematic MDS Code). A (t,N) MDS code is systematic if every

codeword of N elements includes the (non-transformed) t elements comprising the vec-

tor ~S. I.e., the identity matrix of size t, It, is a submatrix of the generator matrix

G.

Systematic MDS codes have found the largest number of practical uses in a number

of applications [86]. All MDS codes based on a Cauchy matrix are systematic. We note

that MDS codes based on a Vandermonde matrix are not always systematic, however,

using the algorithm proposed by Lacan and al. [59], non-systematic codes can be

transformed into a systematic variant.

Theorem 1 ( [59]). Let A be a t× t matrix of rank t and B a (N − t)× t matrix of

rank min(N − t, t) such that any square submatrix of size t from
(
A
B

)
has a rank equal

to t (i.e.,
(
A
B

)
generates a MDS code). Then the matrix

(
It

B·A−1

)
generates a (t,N)

systematic MDS code.

5.3 Links between Ramp Schemes and MDS Codes

Despite the promise of strong ramp schemes, we discussed in Section 2.3.1.4 that

only few constructions of these schemes were available, and usually only theoretically.

However, it is proven that ramp schemes and MDS codes are closely related. Noticing

that strong ramp schemes are a sub-category of ramp schemes, we wonder to which
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Table 5.1: Notations used to describe the ramp schemes and MDS codes

Notation Description

n Number of shares generated by a secret sharing scheme, equi-
valent to the number of privacy peers

t Security threshold for secret sharing schemes, equivalent to
the minimum number of packets required to decode an eras-
ure code

L t− L being the second security threshold for ramp schemes
N Codeword size (number of packets) for an erasure code
GN×t Generator matrix of a (t,N) MDS code.
~S = (S1, . . . , SL)ᵀ Secret, a vector of L elements (packets)
~E = (E1, . . . , En)ᵀ Vector of n encoded elements (packets), or a vector of n

shares generated by a secret sharing scheme
~V = (S1, . . . , SL, Vector secret padded with random elements (used in the

process of generating the shares)r1, . . . , rt−L)ᵀ

M{i1,...,ij} The submatrix of any matrix M built from its rows i1, . . . , ij
It Identity matrix of size t
0i,j Zero matrix of size i× j

sub-category of MDS codes they were related. It follows that in this section, we provide

proofs for the links between ramp schemes and MDS codes. Our main goal is to to

enable the practical use of strong ramp schemes in MPC, by providing construction

methods that will utilize the systematic MDS codes and their (available) efficient

implementations. We also derive a method to construct a strong ramp scheme from

Shamir scheme. Table 5.1 lists the notations used throughout this section.

5.3.1 Deriving a Strong Ramp Scheme from a Systematic MDS Code

In this section, we will prove that strong ramp schemes can be derived from systematic

MDS codes. To do so, we will first describe how a generator matrix GN×t of a sys-

tematic (t,N) MDS code can be used to generate n = N − L shares out of L secrets.

According to Definition 13, we can assume without loss of generality that the matrix

G is of the form G =
(
It
A

)
, where It is the t × t identity matrix. We will then prove

that this construction defines a strong ramp scheme. In what follows we will use 0m,n

to denote a m× n zero matrix, and M{i} to denote the i’th row of a matrix M .
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Algorithm 1 describes how a generator matrix GN×t of a (t,N) systematic MDS

code can be used to generate shares from a secret vector (S1, . . . , SL), where L ≤

min(t,N − t). To this end, a submatrix R(N−L)×t is obtained by taking the last

N − L rows of G. Then, the secret vector ~S is extended to a vector ~V of length t

by appending to it t − L random values. Finally, the result of R · ~V is a vector that

constitutes the N − L shares, where each share is associated with the respective row

of R that generated it (i.e., Ei = R{i} · ~V ). The matrix R and the assignment of rows

R{i} to participants and their shares are assumed to be public knowledge.

Any subset ~E′ = {Ei1 , . . . , Eit} of t shares, associated with a subset of the rows ofR,

is sufficient to reconstruct the vector ~V : The rows R{i1}, . . . , R{it} form a square matrix

R′, which is guaranteed to be non-singular since it is a submatrix of G, a generator

matrix of MDS code. Therefore, there is only a single solution to R′ · ~X = ~E′, and

since ~V is a valid solution, necessarily ~X = ~V , and the first L elements of this vector

are the recovered shared secrets.

Algorithm 1: Share generation from a systematic MDS code

1: procedure SRS(G, (S1, . . . , SL)ᵀ) B Generation of n = N − L shares
2: R← G{L+1,...,N} B R submatrix from G without the L first rows
3: Let r1, . . . , rt−L be t− L random iid values.
4: ~V ← (S1, . . . , SL, r1, . . . , rt−L)ᵀ

5: ~E ← R · ~V
6: return n=N−L shares where share i is Ei and is associated with the row
R{i}.

7: end procedure

Theorem 2. Let G be a generator matrix of a (t,N) systematic MDS code. Then, for

any L ≤ min(t,N − t), the share generation algorithm SRS(G, ·) (Algorithm 1) is a

(t, L,N − L) strong ramp scheme.

We note that the addition of t − L random values to the vector ~V matches the

lower bound for the randomness that is required to obtain a ramp scheme [13].

Proof. Let ~S = (S1, . . . , SL)ᵀ be a vector consisting of L secrets to share. Algorithm 1
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extracts from the matrix G the submatrix R =
(
0t−L,L | It−L

A

)
. Recall that ~V =

(S1, . . . , SL, r1, . . . , rt−L)ᵀ. Therefore, the computation ~E = R · ~V in line 5 results

in N − L shares of the form ~E = (E1, . . . , Et−L, ε1, . . . , εN−t)
ᵀ, where Ei = ri and

εj = A{j} · ~V . We will next show that the described scheme maintains the three

conditions of Definition 10.

1. For any x < t − L, H(~S|Ei1 , . . . , Eix) = H(~S) : According to entropy prop-

erties, H(~S|Ei1 , . . . , Eix) ≤ H(~S) always holds. We will show that for x = t − L,

H(~S|Ei1 , . . . , Eit−L) = H(~S). Since for any x < t − L, H(~S|Ei1 , . . . , Eix) ≥

H(~S|Ei1 , . . . , Eit−L) (adding known information can only reduce entropy), this will

also prove H(~S|Ei1 , . . . , Eix) ≥ H(~S).

To prove H(~S|Ei1 , . . . , Eit−L) = H(~S), we will show that any possible set of secrets

~S′ is consistent with the t−L shares, i.e., we will find a vector ~V ′ that extends ~S′ such

that Ei = R{i} · ~V ′ holds for all the provided shares. To find this vector, we construct

a square matrix B as a submatrix of G, in the following way: the first L rows of B will

be the first rows of G, which are of the form (IL|0t−L,L). The remaining t−L rows of

B will be the rows of R corresponding to the given shares, i.e., R{i1}, . . . , R{it−L}. To

summarize, the matrix B is of the form:

B =

 IL|0t−L,L

R{i1,...,it−L}

 . (5.1)

Next, consider the following problem:

B · ~X = (S′1, . . . , S
′
L, Ei1 , . . . , Eit−L)ᵀ . (5.2)

Since matrix B is a square submatrix of size t of G, it is non-singular, and therefore

there exists one and only one solution for ~X, which we will denote ~V ′. The selection of

the first rows of B ensures that the first elements in ~V ′ are S′1, . . . , S
′
L, so ~V ′ extends

~S′. The selection of the remaining rows of B ensures that ~V ′ is also consistent with
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the shares: for example, for the share Ei1 (and any of the other given shares), there

is a row j in B such that B{j} = R{i1}, and therefore R{i1} · ~V ′ = B{j} · ~V ′ = Ei1

as required. To summarize, we showed that any vector of secrets is consistent with a

subset of x = t−L shares, so the entropy of the secret vector is not reduced given the

shares. This extends also to any smaller subset of shares.

2. For any t − L ≤ x < t, H(~S|Ei1 , . . . , Eix) = H(Sj1 , . . . , Sjt−x |Ei1 , . . . , Eix) =

t−x
L H(~S) for any set of indices j1, . . . , jt−x : Since all the elements of the vector

~S are independent,

H(~S) =

L∑
i=1

H(Si) = L ·H(Sj) for any j ∈ [1, L]. (5.3)

Therefore, H(Sj1 , . . . , Sjt−x) = t−x
L H(~S). In addition, because of arguments similar to

those used to show H(~S|Ei1 , . . . , Eit−L) = H(~S) in the first part of the proof, it follows

that

H(Sj1 , . . . , Sjt−x |Ei1 , . . . , Eix) = H(Sj1 , . . . , Sjt−x) ,

and therefore H(Sj1 , . . . , Sjt−x |Ei1 , . . . , Eix) = t−x
L H(~S).

It remains to show that H(~S|Ei1 , . . . , Eix) = t−x
L H(~S). Based on the properties of

conditional entropy:

H(~S|Ei1 , . . . , Eix) =H(S1, . . . , St−x|Ei1 , . . . , Eix)

+H(St−x+1, . . . , SL|Ei1 , . . . , Eix , S1, . . . , St−x) .

(5.4)

We have shown that H(S1, . . . , St−x|Ei1 , . . . , Eix) = t−x
L H(~S). Consider the matrix

B =
( It−x|0t−x,t

R{i1,...,ix}

)
. It is a square submatrix of G of size t, and therefore non-singular.

Consequently, the linear system

B · ~X = (S1, . . . , St−x, Ei1 , . . . , Eix)ᵀ
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has the unique solution ~X = ~V , i.e., the set St−x+1, . . . , SL can be reconstructed with

a probability of 1 given S1, . . . , St−x, Ei1 , . . . , Eix , so

H(St−x+1, . . . , SL|Ei1 , . . . , Eix , S1, . . . , St−x) = 0 .

We can finally conclude that H(~S|Ei1 , . . . , Eix) = t−x
L H(~S).

3. For any x ≥ t, H(~S|Ei1 , . . . , Eix) = 0 : This follows immediately from the

property that any subset ~E′ = {Ei1 , . . . , Eit} of t shares is sufficient to reconstruct the

vector ~V with probability 1.

Corollary 2. More generally, from any (t,N) systematic MDS code, a (t, L, n) strong

ramp scheme can be derived with n = N − L and L ≤ min(t,N − t).

5.3.2 Additional Links between Ramp Schemes and MDS Codes

Any MDS code can be used to derive a systematic MDS Code: according to Theorem 1

[59], if G is a generator matrix of a (t,N) MDS code, and G{1,...,t} is the submatrix built

from the first t rows of G, then the matrix G′ = G ·G{1,...,t}−1 is a generator matrix of

a (t,N) systematic MDS code. Combining this with the construction described in the

previous section leads to the following corollary:

Corollary 3. A (t, L, n) strong ramp scheme with n = N − L and L ≤ min(t,N − t)

can be constructed from any (t,N) MDS code.

Any strong ramp scheme is, by definition, a ramp scheme. In addition, setting

L = t for a (t, L, n) linear ramp scheme results in a (t,N) MDS code, as any t or more

non-corrupted encoded elements (shares) allow recovery of the information elements

(secrets). These observations, together with the former results, allow the construction

of any of the schemes starting from any other reference point. For example, based on

the previous results, it is easy to show that:
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Corollary 4. A (t,N) systematic MDS code with N = n can be derived from a (t, L, n)

strong ramp scheme with L = t.

Corollary 5. A (t, L′, n′) strong ramp scheme with n′ = n−L′ and L′ ≤ min(t, n− t)

can be derived from a (t, L, n) ramp scheme with L = t.

Figure 5.1 summarizes the links between the different schemes using the construc-

tion methods.

MDS codes 

Systematic 
MDS codes 

Ramp schemes 

Strong ramp 
schemes 

Figure 5.1: Links between ramp schemes and MDS codes

5.3.3 Deriving a Strong Ramp Scheme from Shamir Scheme

We present an additional method to construct a strong ramp scheme, starting from

Shamir secret sharing. As we will show in the next section, this scheme enables addi-

tional computation capabilities, in line with Shamir scheme (i.e., not limited by Galois

Field GF (2q) operations that are most commonly used for Reed Solomon codes).

We start by observing a different construction method for Shamir secret sharing,

which is equivalent to the one presented in Section 2.3.1.2. A polynomial of degree

t− 1 can be uniquely defined by its t coefficients (as described in Section 2.3.1.2), but

it can also be uniquely defined by t of its points. In Shamir’s scheme, only one secret is

shared, thus only the constant coefficient, which is also the point of polynomial at the

abscissa 0, is fixed. The other coefficients are then chosen randomly. But as mentioned

in [51], a ramp scheme based on a polynomial defined by its coefficients is not a strong

ramp scheme. Thus in the following we will explain the steps to construct a strong

ramp scheme using a polynomial defined by its points (rather than its coefficients),

and we will prove that it is a strong ramp scheme.
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Let ~S = (S1, . . . , SL)ᵀ be the secret vector to share and let r1, . . . , rt−L be t − L

random values. The polynomial Q of degree t − 1 is defined uniquely by the t points

(x0, Q(x0) = S1), . . . , (xL−1, Q(xL−1) = SL), (xL, Q(xL) = r1), . . . , (xt−1, Q(xt−1) =

rt−L), where x0, . . . , xt−1 are all distinct. From these t points, the value of the poly-

nomial Q can be interpolated for any x: Q(x) =
∑t−1

i=0Q(xi)
∏
j 6=i

x−xj
xi−xj . Then, as in

Shamir’s scheme, shares are derived from the polynomial by computing new points.

Algorithm 2 summarizes the process in which n shares are created. Given any subset

of t of these shares, the polynomial Q can be reconstructed and the secret vector is

given by Q(x0), . . . , Q(xL−1).

Algorithm 2: Strong ramp scheme from Shamir scheme

1: procedure SSRS((S1, . . . , SL)ᵀ) B Generation of n shares
2: Let r1, . . . , rt−L be t− L random iid values.
3: Choose n+ L distinct values x0, . . . , xn+L−1.
4: Let Q(xi−1) = Si for i ∈ [1, L], and Q(xL+i−1) = ri for i ∈ [1, t− L].
5: Interpolate Q(x) for xt, . . . , xn+L−1 with Q(x) =

∑t−1
i=0Q(xi)

∏
j 6=i

x−xj
xi−xj .

6: return the shares (xL, Q(xL)), . . . , (xn+L−1, Q(xn+L−1).
7: end procedure

The property that the scheme described in Algorithm 2 is a strong ramp scheme

follows from Theorem 2: the linear scheme defined by the points (x0,Q(x0) =

S1), . . . , (xL−1, Q(xL−1) = SL), (xL, Q(xL)), . . . , (xn+L−1, Q(xn+L−1)) is a (t,N) sys-

tematic MDS code with N = n+L, since the polynomial can be interpolated from any

t points, and the original information packets are the first points Q(x0), . . . , Q(xt−1).

Thus, puncturing (i.e. removing) the L elements related to the secrets generates a

strong ramp scheme.

5.4 MPC with Strong Ramp Schemes

Linear secret sharing schemes can be used for secure evaluation of both arithmetic

operations (e.g., addition, multiplication, etc.) and logical operations like comparison.

A number of practical MPC implementations based on Shamir secret sharing have
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been developed in recent years, including [17] and [27]. We presented in Section 2.4 a

background on MPC.

Strong ramp schemes theoretically have the same computational capabilities as the

Shamir scheme, as both belong to the large family of linear schemes. However, in

practice, and specifically for secret sharing based on MDS erasure codes, the type of

Galois field that the codes are based on will determine the operations that may be

applicable using a specific scheme. The schemes based on GF (q), with q being a large

prime number, will allow integer based arithmetic and logical operations, which, with

an equivalent and sufficiently large value of q, will provide the same functionality as

the Shamir scheme that is based on the same q. GF (2p), on the other hand, limits

the applicable operations to bit-wise XOR. We note that the choice of GF does not

impact the secret sharing capabilities of a scheme, as any secret can be represented

as a bit string and secret sharing only provides the mechanism to recover this string

by combining shares, rather than the ability to manipulate the shares derived from

multiple secrets.

A large research effort in recent years has resulted in efficient implementations of

not only traditional GF (2p) based error and erasure codes (mostly implemented in

bespoke hardware), but also of more generic cryptographic mechanisms that are based

on GF (q) (with large q values), like elliptic curve signatures [94]. This provides a

strong foundation for practical implementations of efficient strong ramp schemes.

5.5 Implementation in SEPIA

We implemented and evaluated some selected schemes using SEPIA [17], an efficient

MPC library written in Java. SEPIA assumes a semi-honest adversary model, and uses

a fully distributed architecture: it is optimized for parallel execution and specifically

designed to aggregate network events and statistics from multiple domains.

Within SEPIA, the mpc library package contains an implementation of the Shamir

secret sharing scheme and the corresponding operations. We extended SEPIA by
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implementing two strong ramp schemes within the mpc package: the first based on

the Shamir scheme and the second based on MDS codes. Furthermore, we added the

implementation of the valid operations using the respective new secret sharing schemes.

Finally, we also added new Primitives classes, each corresponding to the additional

secret sharing scheme, and the abstract classes defining the MPC peer and protocol.

Our implementation of the ramp scheme that relies on MDS codes is based on the

Reed-Solomon (RS) code implementation from Google ZXing 3, an open source 1D/2D

barcode image processing software written in Java. We modified ZXing to include an

erasure RS decoder (the original decoder could only handle errors), as an RS erasure

correction code is required for constructing the strong ramp secret sharing scheme.

The ramp scheme based on Shamir secret sharing was a bespoke implementation.

We note that the RS code implementation is based on GF (28), thereby limiting the

available MPC operations to those based on bit-wise XOR. However, we still consider

this as a good basis for performance evaluation of an MDS code based strong ramp

scheme, since the choice of GF does not impact the encoding and decoding mechanisms

used in the implementation of secret sharing. Extension of the current implementation

to include operations on GF (q) is planned for future work.

5.6 Performance Evaluation

We evaluated the performance of the different secret sharing schemes in MPC, as

implemented in SEPIA. As performance metrics, we use (a) the computation overhead

of the different schemes, represented by the time needed to do a set of specific tasks

(perform a computation) by a peer, and (b) the communication overhead, represented

by the number of bytes received and/or sent by the MPC participants.

We simulate a network outage detection scenario from [30], where Internet service

providers (ISPs) perform traffic data aggregation in a privacy-preserving way, to obtain

additional information that can help determine the root cause of outages [31]. In MPC,

3ZXing (Zebra Crossing). https://github.com/zxing

https://github.com/zxing
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such aggregation can be done using the multiset union operation, based on a Counting

Bloom Filter (CBF) [30]. The process involves m ISPs (input peers) and n privacy

peers, and proceeds as follows:

1. The input of each ISP (an input MPC peer) consists of a number of unreachable

IP addresses.

2. The ISP creates a CBF based on the unreachable destinations, which will be the

input for the multi-party computation.

3. The ISP generates n shares of the CBF and distributes them to the privacy peers.

4. Each privacy peer performs the multiset union by adding the corresponding array

elements of the CBF in the shares it received and sends the combined share to

all the other peers.

5. Each privacy peer reconstructs the aggregated CBF from the combined shares,

and sends it to the input peers.

6. Each input peer can check the CBF locations corresponding to its inputs, and

deduce whether the respective outage is local or global.

All our experiments were executed on an OpenStack cloud that includes six workers,

with each worker being allocated 12 CPU cores of Intel Xeon X5650 2.67GHz processor

and a Gigabit LAN connection. Due to system limitations, we only used ten virtual

machines (VMs), where each machine has 2GB memory and one virtual CPU based

on KVM virtualization. Each machine runs Ubuntu 12.10 clouding amd64. The input

peers and privacy peers are installed on these virtual machines and their operation is

distributed uniformly across the ten machines.

We evaluated the performance of three secret sharing schemes: Shamir secret shar-

ing (the original scheme implemented in SEPIA), a strong ramp scheme based on

Shamir scheme (Ramp−Sh) and a strong ramp scheme based on RS code (Ramp−RS),

for a range of parameter values: the number of privacy peers n, number of input peers
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m, the secret sharing threshold t and the second security parameter L for ramp schemes

(which directly impacts the share size reduction compared to Shamir scheme). We note

that the maximum value of n used in our experiments is 20, to ensure a manageable

computation time. We also note that Ramp-Sh with L = 1 amounts to (more efficient)

implementation of the standard Shamir scheme, which directly uses random numbers

as shares (rather than polynomial coefficients), as detailed in Section 3.4.

For the experiments, we utilized the input data parameters from [30], where each

input peer shares 2, 114 unreachable IP addresses; this corresponds to the highest num-

ber of unreachable IP addresses collected in the SWITCH network4 during Hurricane

Sandy. This input data is then converted to a CBF of size 131,072 (around 1.05MB of

data) and split into manageable secret sizes (4B for Shamir and Ramp− Sh schemes

and 1B for Ramp − RS). Furthermore, each experiment consists of 10 computation

rounds using different (randomly generated) input data, to remove any data related

variation in the processing requirements.

5.6.1 Computation Overhead

To evaluate the computation overhead, we measured the CPU time for the specific

components of the overall computation: the input peers’ share generation time (step

3), the privacy peers’ multiset union computation time (step 4), and the privacy peers’

secret reconstruction time (step 5). Table 5.2 presents the average CPU time per peer,

for the three operation components, using different secret sharing schemes and for m,

n and t value of 20. The share generation time is averaged over all input peers, while

the secure computation time and the time to reconstruct the result are averaged over

all privacy peers.

Considering the overall computation time (both for input and privacy peers), we

observe that the original Shamir scheme is outperformed by all other schemes, including

our improved implementation (Ramp-Sh, L = 1 scheme) that ensures identical security

4http://www.switch.ch

http://www.switch.ch
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Table 5.2: The average CPU time per peer (in millisecond) to complete all the steps
in the multiset union operation, with m = 20 input peers, n = 20 privacy peers and
secret sharing threshold t = 20.

Scheme Share Gen. Computation Reconstruction Total

Shamir 15,649.29 96.24 1,093.19 16,838.72

Ramp-Sh, L=1 5,397.41 98.51 1,083.88 6,579.80
Ramp-Sh, L=5 1,352.92 18.06 1,003.75 2,374.73
Ramp-Sh, L=10 745.81 10.23 939.35 1,695.39
Ramp-Sh, L=15 433.16 6.47 940.22 1,379.85
Ramp-Sh, L=20 222.78 5.48 943.37 971.63

Ramp-RS, L=1 1,127.53 66.24 5,626.39 6,820.16
Ramp-RS, L=5 179.85 6.38 1,253.85 1,440.08
Ramp-RS, L=10 73.45 5.09 657.39 735.93
Ramp-RS, L=15 39.30 3.18 452.29 494.77
Ramp-RS, L=20 25.26 2.86 356.22 384.34

guarantees. For L = 20, the overall computation time using Ramp-RS scheme is

nearly 40 times lower than the CPU time in the original Shamir scheme, reducing it

from around 17s to less than 0.4s. The Ramp-Sh scheme also provides a significant

reduction in CPU time, with around 1s total computation time.

Increasing L results in a lower computation overhead for share generation in both

ramp schemes, as this is equivalent to having a lower number of share generation rounds

(as multiple secrets are used to generate shares). The secret reconstruction time is quite

stable for different L values for the Ramp-Sh scheme, while it is significantly higher

for lower L values for the Ramp-RS scheme. This is due to the overhead introduced in

the Ramp-RS reconstruction (decoding) step, where both the useful data and padding

(as described in the construction method in Section 3.2) need to be decoded. For the

Ramp-Sh scheme, only the useful data needs to be reconstructed.

For all schemes, the duration of the secure computation component is significantly

lower than the time required to generate the shares or to reconstruct the result. We

therefore concentrate on the two latter metrics and further explore the impact of

various parameters. We also note our observation, from extensive experiments, that

varying the number of input peers has limited impact on the measured CPU time per
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peer. Therefore, in the remainder of this section, the presented results are averaged

over a varying number of input peers (for m between 5 and 20).

We now investigate how increasing the number of privacy peers n (and respectively

the number of shares to generate and reconstruct) affects the computation time for

different secret sharing schemes. Figures 5.2(a) and 5.2(b) show the average CPU

time for an input peer to generate shares, while Figures 5.3(a) and 5.3(b) show the

average CPU time that a privacy peer needs to reconstruct the result. The results are

measured over n between 5 and 20, with t = 5 and t = 15, and for different values of

L. As expected, the CPU time increases as the number of privacy peers increases, as

a larger number of privacy peers corresponds to a higher number of shares to generate

and reconstruct. There is a performance benefit from using ramp schemes, similar to

that observed in Table 5.2, for both share generation and reconstruction time, which

increases with the value of L.

Finally, we show how increasing the threshold t affects the computation time for

share generation and reconstruction, respectively, in Figures 5.4(a) and 5.4(b), with

n = 20 privacy peers. The share generation CPU time in Figure 5.4(a) linearly in-

creases with the threshold for the original Shamir scheme, while the optimized imple-

mentation of Ramp-Sh, L = 1 scheme varies slightly between t = 10 and t = 20.

The reconstruction CPU time shown in Figure 5.4(b) indicates a low impact of

increased t, for both Shamir and the Ramp-Sh scheme. The impact of increased L

is also not significant for the Ramp-Sh scheme, as there is a balance between the

CPU time reduction resulting from handling multiple secrets simultaneously and the

increased overhead required for generating the shares. We observed a negative effect of

using lower L values (compared to the value of t) for the Ramp-RS scheme, similarly

to that observed in Figure 5.3(b). However, we note the increased security that such

a configuration would provide with respect to higher L values.
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Figure 5.2: Average CPU time an input peer requires to generate n secrets, for t = 5
and t = 15.
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Figure 5.3: Average CPU time a privacy peer requires to reconstruct the result, for
t = 5 and t = 15.

5.6.2 Communication Overhead

We now address the communication overhead of the various schemes. We define this

cost as the average volume of data downloaded and uploaded by each peer.

Let Ciu denote the average volume of data uploaded (sent) from all input privacy

peers and Cid denote the average volume of data received by the same peers. Similarly,

we denote the average volume of data uploaded and downloaded by privacy peers,



Chapter 5. Systematic MDS Code and Strong Ramp Schemes 109

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5  10  15  20

T
im

e
 (

s
)

Threshold

Shamir
Ramp-Sh, L=1
Ramp-Sh, L=5
Ramp-RS, L=1
Ramp-RS, L=5

(a) Input peer share generation time

 0

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20

T
im

e
 (

s
)

Threshold

Shamir
Ramp-Sh, L=1
Ramp-Sh, L=5
Ramp-RS, L=1
Ramp-RS, L=5

(b) Privacy peer secret reconstruction time

Figure 5.4: Average CPU time per peer to (a) generate shares and (b) reconstruct
shares, averaged over m = 20 privacy peers and n = 20 input peers.

respectively, as Cpu and Cpd .

For each of the m input peers, theoretically, Ciu = |S|
L · n, where |S| is the size of

the input secret (all participants share secrets of the same size). The download data

volume is given by Cid = |S| · n, assuming (as is the case in SEPIA) that each of the n

privacy peers communicates the result back to all input peers. Each privacy peer sends

Cpu = |S|
L (n−1) + |S| ·m, as they communicate both with the input peers and all other

privacy peers. They receive Cpd = |S|
L ·m+ |S|L · (n−1), comprising the computed shares

they need to aggregate (from other privacy peers) and data from the input peers.

We conducted experiments to verify the validity of the simple theoretical estimates

and to evaluate the communication overhead introduced by the SEPIA protocol. Fig-

ures 5.5(a) and 5.5(b) show example average upload volumes Ciu and Cpu as a function

of L, with m = 20 input peers, n = 20 privacy peers and t = 20 (the threshold does not

impact the communication costs, and we selected a high value to enable a wide range

of L values). As estimated, the decrease in communication cost is proportional to 1
L ,

with a small practical difference of 7kB on average (the input data being 1.05MB in

our scenario), which may be due to peer synchronization. The privacy peer upload

volume is lower bounded by 21MB, as each peer needs to forward the result back to
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input peers; this is obviously not impacted by L. We note that the download volumes

Cid and Cpd are similarly close to the theoretical estimates.
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Figure 5.5: Upload in MB from each input and privacy peer for m = 20 input peers,
n = 20 privacy peers and t = 20.

5.7 Discussion

In our experimental evaluation, we investigated a wide range of parameter choices for

strong ramp schemes. However, these choices were still limited by the experimental

platform, particularly the RAM size of our virtual machines (2GB, shared by four

peers). In a setting where individual devices would take the role of input and pri-

vacy peers, RAM of 1GB and a 1GHz CPU is quite common, even in mobile devices.

Therefore, in accordance with reported SEPIA capabilities ([17] estimates that SEPIA

could support up to 140 input peers), we envisage that having over a hundred input

and privacy peers would be easily achievable. In general, increasing the value of the

parameter L (up to the maximum possible size of t), for a fixed number of privacy

peers n (that has to be greater than t), is beneficial for reducing both the computation

and communication overhead. On the other hand, as per Definition 3, strong ramp

schemes provide reduced security compared to Shamir scheme. The sensitivity of data

used for specific secure computations will ultimately be the deciding factor in choosing

the appropriate secret sharing scheme.
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5.8 Conclusion

Overall, strong ramp schemes have a potential to provide significant benefits in re-

gards to both communication costs and complexity and could be well suited to MPC

applications in the emerging mobile network services that rely on private data. We

proposed two construction methods for such schemes and experimentally evaluated

their performance in a practical setting, using our implementation of ramp schemes

within the MPC framework.
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Chapter 6

Conclusion

6.1 Conclusion

This thesis addressed the challenge of sharing private information in real-time, on

mobile devices that have resource constraints (memory, computation and bandwidth).

Specifically, we address three research questions and provide related contributions.

The first research question related to the complexity and memory requirement of two

variants of on-the-fly coding scheme with an elastic encoding window designed for real-

time applications. The second question addresses the problem of sharing, privately,

a user profile in an OSN service, without leaking any information about this profile

and without having to rely on a trusted third party. Finally we addressed the problem

of the practicality of sharing, securely, a large volume of private data and performing

secure computations on such data. We detail the three contributions below.

Practicality of the On-the-Fly Coding Scheme on Mobile Devices

On-the-fly coding scheme with an elastic encoding window, proposed and evaluated in

prior studies, improves the performance of real-time applications in regards to lower-

ing the delays [103]. In Chapter 3, we have investigated the difference between the

systematic and non-systematic variants of this scheme in regards to in the required

113
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memory size and computational constraints, in a wireless multicast scenario where the

receivers are mobile devices.

We used simulations and we considered two types of the erasure channel: uni-

formly distributed losses and the Gilbert-Elliot model. Our results have shown that

the systematic approach outperforms the non-systematic approach in regards to both

the buffer sizes needed at the transmitting and the receiving side, and the computation

complexity.

Layered Secret Sharing Scheme for Profile Sharing in OSN Services

Chapter 4 studied the usability of secrets sharing schemes for an OSN profile sharing

application, where users wish to prevent leakage of any profile related information to

either third parties (including the OSN service provider) or to malicious participants.

The existing multi-secret sharing schemes do not satisfy the application requirements,

as e.g., they do not protect the number of profile attributes ie. secrets shared by a

user.

We proposed a novel Layered secret sharing scheme that has the desired properties.

We then analysed the security of this scheme against honest-but-curious attackers who,

after receiving a set of Layered shares, attempt to recover a larger number of secrets

than what they should be able to legitimately access. Then, we analysed the level

of protection proided by the Layered secret sharing scheme in an OSN; using the

results of this analysis, based on a real OSN graph, we provided guide-lines on how

to parametrise the security level of our scheme. Finally we implemented our scheme

and compared it with a naive secret sharing scheme in regards to computation time

and communication costs. We have shown that the increased security of our scheme

comes at a cost of additional computation time. However we have also shown that by

carefully selecting the parameters of the Layered scheme (ie. by using a ramp scheme

as a primitive when sharing large secrets), our scheme is practical for a profile sharing

application, as the time to generate and decode the Layered shares is of the order of
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magnitude of one second.

Strong Ramp Schemes and Systematic MDS Codes

In Chapter 5, we studied the links between ramp schemes, strong ramp schemes, MDS

erasure codes and systematic MDS erasure codes. The main theoretical outcome of

this work was proving that that the redundancy components, generated by a system-

atic MDS code, satisfy the conditions for a strong ramp scheme. We implemented and

integrated two strong ramp schemes in the SEPIA MPC framework, first scheme de-

rived from Shamir scheme and the second scheme using Reed-Solomon erasure codes.

We have experimentally evaluate the different implementations of the strong ramp

schemes and compared them with Shamir scheme (originally implemented in SEPIA)

in a network outage detection application. The results have shown, first, that such

strong ramp schemes deliver a practical trade-off between the information theoretic

security offered by Shamir scheme and the computation time required to compute the

selected MPC operation (multiset union). We have also shown that the communication

cost of the MPC protocol is reduced by using strong ramp schemes.

6.2 Future Work

The research presented in this thesis may be extended in a number of directions:

• We have shown in Chapter 5 that a strong ramp scheme can be derived from

any systematic MDS code. In our experimental evaluation, we used the Reed-

Solomon code based on Vandermonde matrices over a binary Galois field. The

implementation of these codes assumes a scenario where the erasures are not

predictable. However, in a MPC scenario outlined in Chapter 5, the number of

participants and connectivity between them is static. This may allow participants

to pre-compute some elements required to generate and/or decode the shares.

Therefore, investigating the optimised implementations of MDS codes in this
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scenario could provide additional performance benefits.

• We have focused our secret sharing work on OSN and networking scenarios.

A promising additional application area for future study could be distributed

storage. In this field, there are a number of prior works combining cryptography

and erasure codes e.g., [88], [91] [63]. In Chapter 5, we have shown that the

redundancy components of a systematic MDS code can be utilised as a strong

ramp scheme. Therefore the next logical step could be to explore the potential

to remove the cryptographic component used in related works, and only use the

strong ramp scheme to provide secure distributed storage. Future work could

examine the use of secret sharing in this field and the efficiency bounds that may

be achieved.

• In Chapter 3, we address the efficiency of novel convolutional codes. Consider-

ing the results showing the close links between block codes and secret sharing

schemes, an interesting diretcion for future study could be the potential exten-

sion of secret sharing schemes based on the concepts of elastic memory, used in

on-the-fly codes.
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Appendix A

Fountain Multiple Description

Coding

A.1 Introduction

Video content has become hugely popular on Internet [58] and the resulting video

traffic adds new constraints to the network in terms of capacity while some video

applications, e.g. streaming, have strong delay constraints. Furthermore, the network

is composed of heterogeneous types of devices ranging from a smartphone with low

computational capacity and small screen, to a powerful computer with a HD screen,

therefore having different video quality requirements while sharing the same network.

The large number of end-user devices accessing video content can also overload the

video server capacity. To address this problem, a proposed solution is to take benefit

of a Peer-To-Peer (P2P) network to decrease the load on the server by sharing the data

(referred to as content pieces) between all the nodes as in [96]. P2P networks are known

to provide high throughput and ability to cope with failure, churn and heterogeneous

node’s capacity. In the particular context of video streaming, P2P solutions must

also provide sequentiality to ensure that chunks which are due for playout are not

incomplete or missing. Providing sequentiality limits re-buffering, or the potential to
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abandon expired frames. In file sharing P2P such as BitTorrent, the high throughput

and robustness are mainly due to the diversity of the chunks available on peers which is

a consequence of the rarest-first chunk selection algorithm. The sequentiality prevents

the use of rarest-first and reduce the diversity. As it was proven in [36], there is no

system satisfying those three constraints and users must be able to cope with varying

throughput and incomplete chunks.

To respond to the different quality of the receivers, a solution is to use Multiple

Description Coding (MDC) codes [42] which split a video into n descriptions. Each

description brings out information about the video, thus the more descriptions a user

receives, the better the quality of the video is. A receiver is able to download the

full quality video if the n descriptions are available, but high churn rate, congestion

in the underlying network or link layer losses may prevent the receiver to complete

the download of chunks in time. If a P2P streaming solution integrates an MDC

code, partial chunks translate to less than n descriptions allowing a graceful quality

degradation (i.e. lower quality of video without stopping or skipping frames [42]). If

the use of MDC code allows a trade-off between video quality and buffering time, it

remains that the low chunk diversity impacts on the throughput and robustness.

If MDC codes are able to produce an infinite amount of descriptions while allowing

to reconstruct high quality video with n of those, seeders could increase the chunk di-

versity by generating different descriptions for each peer. Towards this goal, this paper

studies the feasibility of such a Fountain MDC codes. We propose a practical scheme

and assess the quality of reconstructed video compared to standard MDC. Finally we

discuss the limitations of such a scheme, its implication in terms of complexity and its

integration in a video codec.

Our contributions include the novel concept of combined MDC and Fountain codes

for P2P video streaming, a proposal for a specific code and the evaluation of the

performance of this code on a selected set of pictures.

This appendix is organised in the following way. In Section 2, we provide a back-
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ground on P2P video streaming, Fountain codes and MDC codes. In Section 3, foun-

tain MDC code are presented and then simulated in Section 4. Finally, we discuss and

conclude this paper in Section 5.

While the topic of this work is closely related to the rest of this thesis, we preferred

to have it in appendix because of the linear operations we are using to built the fountain

MDC code which are not in a Galois field as the previous works.

A.2 Background on P2P Streaming

During the past few years, the adaptation of P2P networks to the context of streaming

applications have received a significant interest from the research community. This

section review the key design concept and the use of erasure coding and the adapted

video codec.

A.2.1 Network Structure and Chunk Selection

In live P2P streaming, randomly connected mesh networks have been promoted [71] as

they allow path diversity, churn resilience and a simple construction and maintenance

of the topology. As in file-sharing P2P, the random mesh structure implies that chunks

diversity impacts directly on the capacity of peers to help each other and achieve high

throughput. The downside is that contrary to tree-structured networks, the limited

availability of future content in live streaming applications as well as the need for

sequentiality to achieve smooth playback affects the chunks diversity. This issue has

been partially addressed by the use of playout buffers and by pushing missing chunks

randomly with a probability proportional to the playback time of the chunk [14].
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A.2.2 Rateless Erasure Code

Usage of source or peer-based rateless erasure codes1 have been proposed to increase

chunk diversity without increasing the delay [54, 112]. For instance, the authors of [109]

propose a source-based encoding with Fountain codes. One or more sources creates

and pushes encoded chunks built from k source chunks. These encoded chunks have

the same size than the source ones. The characteristic of rateless codes is that they

can generate an infinite amount of distinct encoded chunks [70]. A given block can

be decoded when slightly more than k coded chunks are received. In this case, the

diversity is increased as source chunks have multiple representations in the network

and a peer can accept coded chunks describing the same block pushed by multiple

source.

Random linear coding is used to perform peer-based coding (i.e. network coding)

such as [112] where peers re-encode the various coded chunks available. This allows

to increase a bit further the diversity and reduce the overhead and control messages.

The downside of erasure codes is that chunks cannot be played until the full block has

been decoded2.

A.2.3 MDC Codes

As previously described, Multiple Description Coding is made to split a single video

stream in multiple streams, called descriptions. Different kind of MDC codes exist:

Scalable Video Coding (SVC) requires the first i descriptions to decode the i + 1th

description and increase the quality of the video [95]. MDC codes that produce in-

dependent descriptions are furthermore interesting3 as they tolerate the loss of any

description [42]. This is an ideal solution for multiple-tree based P2P networks with

1The encoding part can use different types of operations as the XOR, linear combinations or oper-
ations on Galois fields.

2Obviously, encoding should be media aware e.g. if a block is as a function of the GOP (Group Of
Pictures) size, it is sufficient to decode a block to ensure that the GOP will be played without errors
(as in [109]).

3Until now, SVC codecs provide a better ratio between fidelity and compression than independent
MDC codes.
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the transmission of one description per tree. In random mesh networks, they cope well

with churn [79] and the heterogeneity of peers connectivity [67].

A.2.4 Combinations of Techniques

Both rateless erasure codes and MDC video codecs improve the overall Quality of

Experience (QoE) of a video streaming on a P2P network and many proposals use

both schemes conjointly [109, 39, 82]. In these works, the video is encoded in multiple

descriptions using an MDC codec. Then, on each description a rateless code is used.

However in these papers, the techniques are used one after the other and not combined.

In other words, a user first needs to decode the rateless code and then, use the MDC

code to display the video.

The remaining of this paper investigates the design of a Fountain MDC code which

inherits from the properties of both techniques, i.e.: to be able to create an infinite

number of encoded packets (Fountain property) which are all useful on their own and

improve each other (MDC property).

A.3 Our Proposal: the Fountain MDC Code

Figure A.1: The whole process when for example three ED are received.
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The Fountain MDC code would enable the creation of an infinite number of de-

scriptions of a video, creating these descriptions when needed, i.e. on-the-fly. From

the receiver point of view, each received description would increase the quality of the

video (as a classical MDC code would) and when a given number of them is received,

the resulting video would have a sufficient quality (as a Fountain code, a file can be

decoded when the receiver receives a little more information than the size of the file).

In a P2P network, this code would allow a seeder to send new descriptions to each

node which is in contact with this seeder. This new description is then useful to any

other nodes in the network, which thus may increase the chunk diversity on the P2P

network. Furthermore, a peer which does not have a sufficient amount of descriptions

to decode the full quality may be able to make linear combination of the ones re-

ceived creating another description (similarly to Network Coding [61]), also improving

the chunk diversity. Finally as a standard MDC code, it would allow heterogeneous

devices to play the same content with different quality. This would allow to adapt the

content as a function of the screen resolution of the device or the network capacity, by

downloading more or less descriptions.

To create one of this Fountain MDC codes, we focus our effort on creating a Foun-

tain code which would have the MDC property to increase the video quality for each

new received description. Thus, we have specifically worked on pictures, which would

represent the different I frames created by a video codec as with h.264 coding scheme

[92].

Usually, Fountain codes are introduced at the network layer, so in this context, it

would be after the codec at the source side. However in this case, a receiver would have

to decode the Fountain code to use the information. As our purpose is to be able to use

information not totally decoded, we create the Fountain code at the application layer

to be able to use this encoded information, and more precisely before the compression

which is not a linear process.

The whole process from the recorded picture to the displayed one at the receiver
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side follows four steps as illustrated in Figure A.1. At the source side, the first step is to

split the picture in a number of non-encoded descriptions (NEDs), then the creation

of the encoded descriptions (EDs) which can be made on-the-fly by making linear

combinations of the previous NEDs. The different streams are then sent to the users.

At the receiver side, first a certain amount of streams are received. From the received

EDs, the next step is to approximate the NEDs from the linear combination obtained

to finally rebuild the whole picture. We precisely describe each step of the process in

the following.

A.3.1 Creation of Four Non Encoded Descriptions

From the picture, four descriptions are created from a spatial subdivision by taking

one pixel on four per description from all the 2 ∗ 2 blocks of pixels as in Figure A.2.

These four descriptions will be referred to as non-encoded descriptions (NEDs). As

explained in [107], this spatial subdivision allows to create four descriptions with a low

computational power and without creating a whole new video codec.

Figure A.2: Creating the four non-encoded descriptions from the picture

A.3.2 Creation of the Infinite Number of Descriptions

A.3.2.1 In Theory

The four NEDs are used to create the infinite number of encoded descriptions (EDs)

by performing the Fountain process as in Figure A.1. The constraint at this stage is to

have a useful description on its own after the encoding. For this purpose, we are doing
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random linear combinations of the four NEDs with coefficients which sum is equal to

1:

EDi = αi ∗NED1 + βi ∗NED2 + γi ∗NED3 + φi ∗NED4

with αi + βi + γi + φi = 1. With this process, all the pixels after the encoding still

have a value between 0 and 255 and are a barycentre of the pixels from the NEDs.

The choices of the coefficients will be explained in Section A.3.2.2.

When the EDs are created, the different pixels do not have integer values, but are

float numbers (due to the coefficients which are not integers). To be sent on a network

or to be used by a standard codec (as JPEG for pictures or h.264 for video), the

different pixels values are rounded to the closest integer. This is the first stage where

errors appear in the process as the numbers are approximated.

A.3.2.2 Choice of the Coefficients

We choose two types of random coefficients to create the EDs from the NEDs. The first

choice is to create the four random coefficients close to each other. This choice allows

to have a good description of the full image when one ED is received, but because of

the rounding to obtain integer, the different EDs created with this process can be close

to each other. As the difference between them can be small, it is more complicated

to obtain new information when a new ED is received. In practice, we choose to take

randomly the coefficients between 1 and 4 and then normalise them so that the sum

is one. In the following, this configuration is denoted small coefficients configuration.

Then we choose a second type of random coefficients: one coefficient is dominant

and the others are small in comparison. This choice describes well one NED in an ED,

while little information about the other NEDs is present. We denote in this case that

an EDi describes an NEDj if the coefficient used for the NEDj is the dominant one.

In practice, the dominant coefficient is around 20 times higher than the small ones.

Then, they are also normalized so that the sum totals one. For the case a peer receives

four EDs describing the four original NEDs, we obtained nearly the same results as
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receiving directly the four NEDs. Thus in the following, we only study the worst case

for the receiver: each received ED describes the same NEDj . This corresponds to the

worst case as every time, the same NED is well characterized while the receiver does

not have precise information about the others. In the remainder of the paper, this

configuration is denoted large coefficient configuration. In a P2P system, to increase

the availability of chunks, a user should not be forced to differentiate between two

descriptions built from the same frame. In the large coefficient case, this worst case

scenario is quite likely, i.e. it is likely that two or more EDs will describe the same

NED, as the receiver does not choose a description based on the way to encode it, but

only on the frame it was built from.

Finally, we also introduce a threshold condition on the ED when it is created.

When the coefficients are chosen, the average error due to the rounding is computed

for each pixel and each color. If this value of the error is higher than:

• 3∑
coefficients for the small coefficients configuration and

• 10∑
coefficients for the large coefficients;

the ED created is replaced with a newly created one. Applying this threshold condition

reduces the amount of errors introduced by the rounding when EDs are created.

A.3.3 Decoding the Streams

A.3.3.1 Overview

If a codec is used, the first step at the receiver side is to decompress the stream in a

picture where all pixels are described by three bytes. Then, depending on the number

of received EDs, the process to decode them can differ but after the decoding process,

four NEDs are approximated to finally reconstruct the whole picture.
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A.3.3.2 Operations Done to Decode the Fountain Code

In this section, we explain the operations done to approximate the full image as a

function of the number of ED received:

1. If only one ED is received, we just use the value obtained for the four pixels;

2. If two EDs are received, the operation used for the approximation is the bary-

centre. Using the same notations as in Section A.3.2.1, we approximate the pixels

in each NED as follows:

NED1 =
α1 ∗ ED1 + α2 ∗ ED2

α1 + α2
;

NED2 =
β1 ∗ ED1 + β2 ∗ ED2

β1 + β2
;

NED3 =
γ1 ∗ ED1 + γ2 ∗ ED2

γ1 + γ2
;

NED4 =
φ1 ∗ ED1 + φ2 ∗ ED2

φ1 + φ2
;

3. If three EDs are received, we are also doing the barycentre method as previously

but with three coefficients instead of two. This solution is compared with a more

complex one: knowing that the solutions are integers, we solve the Diophantine

system with three equations and four unknowns by choosing the last value which

gives the lowest difference with the received ED. Then, we use these solutions

to determine directions. We do not use them directly as the rounding process

creates to much inaccuracy to have a good solution. Finally, we add or subtract

(depending on the direction obtained) the value 1
max(α1,α2,α3)

to the barycentre

of NED1 for example. We add or subtract this fraction value as the pixel can

be equal to both these values and still have the same rounding in the linear

operation. This fraction corresponds to the imprecision of the rounding for this

specific NED;
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4. To finish, if four EDs are received, we are doing the barycentre process and as

an alternative, we are also solving the linear system made by four equations with

four unknowns by inverting the matrix built from the random coefficients.

A.4 Results

Simulations are done with the well-known Lena picture which is a 512*512 pixels size

in color (RGB) (see Figure A.3). In Table A.1, the receiver receives the NEDs from the

JPEG codec with a quality of 100% which still creates errors due to compression, as

we can observe, if we compare them with the not compressed pictures (without codec).

The results in both tables are close, the main difference is when the receiver gets four

NEDs, the PSNR (Peak Signal-to-Noise Ratio) grows from 50dB to ∞. Note that for

a video application, a PSNR equals to 50dB is already an excellent quality. These two

tables are presented as references.

In Table A.2, we compute the average PSNR on 50 simulations, when the receiver

gets one to four EDs which are not compressed by a codec, in order to analyse only

the effect of the errors due to the rounding in the encoded process. The EDs are built

with small or large coefficients, and with or without the threshold condition on the

coefficients as explained in Section A.3.2.2. As explained in the part A.3.3.2, depending

on the number of EDs received, different decoding algorithms are used.

First, we can see in Table A.2 that the large coefficients configurations (with or

without the threshold condition on the coefficients) do not bring any improvements

when new EDs are received. The configurations with large coefficients are worst cases,

i.e. when all the EDs are describing the same NED. This result shows that the large

coefficients is equivalent to receive directly the NED. Actually, receiving two or more

EDs describing the same NED do not improve the PSNR, which implies that in this

configuration, the receiver cannot download any ED built from the frame. It has to

choose one which brings new information, exactly as without the Fountain process.

Then, with the small coefficients configuration, we can first observe that using the
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(b)

Figure A.3: Pictures used for the simulations

threshold condition on the coefficients improves the average quality of the picture.

Then the MDC property is verified: the more EDs are received, the better is the

quality. But the improvement is quite low: from 31dB with one ED to 37.5dB with

four EDs in the best case, furthermore the improvement is only equal to 0.5dB when

three EDs are received compared to one.

Finally, when compared to the standard MDC (when the NEDs are directly re-

ceived), the best configuration of the Fountain process brings out an improvement

when only one ED is received (difference of 3dB). However, receiving a new NED

improves more the PSNR than receiving a new ED. Thus with three NEDs received,

the PSNR obtained is equal to 35.5dB when the one obtained with the ED is equal

to 31.5dB. Finally if the four NEDs are received, the PSNR is infinite while with the

EDs, it is only equal to 37.5dB on average.

On average, we observed that the small coefficients configuration with threshold

condition brings out the best results compared to the other case. Thus, to have a better

understanding of the results obtained, Figure A.4 shows the quartiles obtained with this

configuration as a function of the method used and the number of received descriptions.

The PSNR obtained for the NEDs are also plotted as a reference. Therefore we can see

that the barycentre method has a very low variance, and in 100% of the case, it brings
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Figure A.4: Quartiles obtained when the small coefficients with the threshold condition
configuration are used. When three EDs are received, the box on the left is obtained
with the barycentre techniques, the one on the right with the Diophantine. When four
EDs are received, the box on the left represent the matrix inversion, the one the right
the barycentre. When four EDs are received, the value for the NEDs is infinite.

out better results when one or two EDs are received compared to NEDs receptions.

But in all case it has a worse PSNR when three or four descriptions are received. Then

when four EDs are obtained, to inverse the matrix shows a better PSNR than the

barycentre method in more than 75% of cases, but in few cases, the decoded picture

can be unusable (the minimum PSNR is equal to 5.1dB).

As a final test, we use another picture of a table soccer which is composed by

3264*2448 pixels in color (see Figure A.3). We made only five simulations with one

configuration which is the small coefficients without threshold condition and without

using a codec. The algorithms used to recompose the full picture at the receiver side

is the barycentre one when one to three EDs are received, or the matrix inversion



Table A.1: PSNR (dB) for the NEDs

1 NED 2 NEDs 3 NEDs 4 NEDs

With Codec 27.88 29.56 35.37 50.30
Without Codec 27.91 29.62 35.50 ∞

Table A.2: PSNR (dB) for Lena picture without codec, summary, barycentre except
if noticed (the coefficients of variation are in parenthesis)

Number of EDs
Average without threshold
condition

Average with threshold
condition

1 ED large coeff 29.36 (0.011) 29.10 (0.008)

1 ED small coeff 30.92 (0.007) 30.80 (0.008)

2 EDs large coeff 29.47 (0.008) 29.18 (0.005)

2 EDs small coeff 31.26 (0.009) 31.30 (0.009)

3 EDs large coeff 29.45 (0.006) 29.16 (0.005)

3 EDs Diophantine
chooses the direction
large coeff

27.34 (0.095) 25.21 (0.155)

3 EDs small coeff 31.39 (0.007) 31.47 (0.010)

3 EDs Diophantine
chooses the direction
small coeff

31.76 (0.014) 31.54 (0.022)

4 EDs inversion large
coeff

26.84 (0.268) 26.46 (0.239)

4 EDs large coeff 29.49 (0.005) 29.16 (0.004)

4 EDs inversion small
coeff

34.97 (0.224) 37.52 (0.227)

4 ED small coeff 31.42 (0.006) 31.53 (0.007)

132
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Table A.3: PSNR (dB) for Table Soccer picture without codec, the configuration tested
is the small coefficients without threshold condition.

Number of EDs Average Worst case Best case

1 ED 33.45 33.23 33.56
2 EDs 33.79 33.48 34.25
3 EDs 33.85 33.55 34.21
4 EDs (inversion) 35.73 26.31 43.83

when four EDs are received. The results presented in the Table A.3 are the average

PSNR, the worst and the best case obtained on the different simulations. The results

are similar to the one obtained from Lena’s picture, which tends to prove that the

simulated results are not linked to the picture used.

A.5 Conclusion, Discussion and Future Work

Streaming a video over a P2P network composed of heterogeneous devices with different

calculation, bandwidth and display characteristics, is a complex problem that has been

tackled in several studies. MDC codes and rateless codes are two possible solutions

and are sometimes used conjointly in some studies. However, MDC codes are not

flexible and when combined with a rateless code, this code still has to be decoded

to be useful. The Fountain MDC code introduced in this article combined both the

property of the MDC code to improve quality for each received descriptions, and the

rateless property in order to create an infinite number of descriptions on-the-fly. This

kind of code would allow to increase the chunk diversity over a P2P network, i.e., its

global throughput and robustness. In this appendix, we assess the practical feasibility

of the Fountain MDC code by proposing a low-computation one to estimate the gain

in PSNR as a function of the number of received descriptions when used on pictures.

Although the MDC and Fountain properties are achieved and the idea seems promising

for the chunk diversity on a P2P network, we observe that the gain in PSNR obtained

per new description is limited (denoising filtering recommended by MPEG-4 [89] is not

used in this study to observe the capacity of the Fountain MDC code without artefact),
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which tends to limit its deployment.

Then, as our main goal is to study the feasibility of the Fountain MDC code, we

did not investigate details of a potential video implementation. However we can raise

many questions for future works if improvement on the obtained PSNR are gained,

as to understand how to create the motion vectors for this type of codec. Actually,

random ED are created, but they are finally closed to the original NED. Thus, the

study of the effect of the linear combination used to create the ED on the motion

vector is still an open question, and more precisely how to assess whether we need to

send the motion vector created from the NED or from the ED. Otherwise, as we are

rebuilding the whole pictures, it could be relevant to use directly the motion vectors

created from the whole video before the splitting process.

Finally concerning the improvement on a P2P network, we think that the Fountain

MDC code could increase the availability of the different chunks on the network, but

we did not push further the study to measure this improvement. Furthermore, with

this type of codes, a node in the network could also utilize network coding on the

different descriptions it receives, knowing that network coding can usually improve the

global performance of a P2P network as in [111]. A peer in the P2P network (which

also watches the video) can first obtained different ED, and then make a random nor-

malized linear combination of them which becomes a new MDC encoded description.

However it may imply new rounding, and consequently additional errors which have

to corrected.



Appendix B

Calculating P (|Uk
1 | = x | xy)

To assist with the analysis of P (|Uk1 | = x | xy), the probability that the size of the

union of any k sets of size xy amongst n Layered shares is equal to x, we introduce some

additional notations. Let Sy be a set of size xy for y ∈ [1, k]. Denote Uy1 = ∪yi=1Sy and

let xy1 be the size of Uy1 . We will calculate the number Rk(x) of k sets Sy, verifying

|Uk1 | = x, knowing the size xy of each set. We prove by induction on k ≥ 1 that for all

x = xk1 ∈ [0, n]:

Rk(x
k
1) =

min(
∑k−1

l=1 xl,x
k
1)∑

xk−1
1 =maxk−1

l=1 (xl)

. . .

min(
∑y

l=1 xl,x
y+1
1 )∑

xy1=maxyl=1(xl)

. . .

min(x1+x2,x31)∑
x21=max(x1,x2)

k∏
z=1

(
n− xz−11

xz1 − x
z−1
1

)(
xz−11

xz − (xz1 − x
z−1
1 )

)

(B.1)

Initialization: k = 1

The number of sets verifying |U1
1 | = |S1| = x11 with |S1| = x1 is equal to

(
n
x11

)
, and

x11 = x1. For k = 1, the previous formula is equal to
( n−x01
x11−x01

)( x01
x1−(x11−x01)

)
=
(
n
x11

)
having

x01 = 0 and
(
0
0

)
= 1. Thus the formula is true for k = 1.

Iteration: k ≥ 1

We assume that the formula is true for k and for all xk1 ∈ [0, n]. We will show that it

is also true for k + 1, for all xk+1
1 ∈ [1, n].

We calculate Rk+1(x
k+1
1 ) for all xk+1

1 ∈ [1, n]. We consider all the possible unions

135



Chapter B. Calculating P (|Uk1 | = x | xy) 136

of size xk1 made with k sets of respective sizes x1, ..., xk. Then, for each of these unions,

Sk+1 of size xk+1 needs xk+1
1 −xk1 elements in the remaining n−xk1 elements to complete

the union, and the xk+1− (xk+1
1 −xk1) other elements in the xk1 already chosen, should

not add new elements in the union. Thus

Rk+1(x
k+1
1 )=

min(
∑k

l=1 xl,x
k+1
1 )∑

xk1=maxkl=1(xl)

Rk(x
k
1)

(
n−xk1

xk+1
1 − xk1

)(
xk1

xk+1 −(xk+1
1 −xk1)

)
(B.2)

By the recursion hypothesis, we obtain:

Rk+1(x
k+1
1 )=

min(
∑k

l=1 xl,x
k+1
1 )∑

xk1=maxkl=1(xl)

(
n− xk1
xk+1
1 − xk1

)(
xk1

xk+1−(xk+1
1 − xk1)

)
×

[ min(∑k
l=1 xl,x

k
1)∑

xk−1
1 =maxk−1

l=1 (xl)

. . .

min(
∑y

l=1 xl,x
y+1
1 )∑

xy1=maxyl=1(xl)

. . .

min(x1+x2,x31)∑
x21=max(x1,x2)

k∏
z=1

(
n− xz−11

xz1 − x
z−1
1

)

×
(

xz−11

xz − (xz1 − x
z−1
1 )

)]

=

min(
∑k

l=1 xl,x
k+1
1 )∑

xk1=maxkl=1(xl)

. . .

min(
∑y

l=1 xl,x
y+1
1 )∑

xy1=maxyl=1(xl)

. . .

min(x1+x2,x31)∑
x21=max(x1,x2)

k+1∏
z=1

(
n− xz−11

xz1 − x
z−1
1

)

×
(

xz−11

xz − (xz1 − x
z−1
1 )

)
(B.3)

which is the expected result for k + 1.

Conclusion

The result is true for k = 1 and we have shown that if true for k ≥ 1, then it is true

for k + 1. By recursion the result is then true for any value of k ≥ 1.

We can conclude that for all k ≥ 1 and for all x = xk1 ∈ [0, n], the probability that

for k sets, with respective sizes of x1, ..., xk, their union has a size of xk1, that is equal
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to:

P (|Uk|=xk1 | xy) = Rk+1(x
k+1
1 )

=

min(
∑k−1

l=1 xl,x
k
1)∑

xk−1
1 =maxk−1

l=1 (xl)

. . .

min(
∑y

l=1 xl,x
y+1
1 )∑

xy1=maxyl=1(xl)

. . .

min(x1+x2,x31)∑
x21=max(x1,x2)

k∏
z=1

( n−xz−1
1

xz1−x
z−1
1

)( xz−1
1

xz−(xz1−x
z−1
1 )

)(
n
xz

)
(B.4)
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