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Abstract

In this thesis, we look at the possibility to deploy a Lower-than-Best-Effort (LBE) service
over long delay links such as satellite links. The objective is to provide a second priority
class dedicated to background or signaling traffic. In the context of long delay links, an
LBE service might also help to optimize the use of the link capacity. In addition, an
LBE service can enable a low-cost or even free Internet access to remote communities
via satellite communication. Two possible deployment levels of an LBE approach exists:
either at the MAC layer or at the transport layer. In this thesis, we are interested in an
end-to-end approach and thus specifically focus on transport layer solutions. We first
propose to study LEDBAT (Low Extra Delay Background Transport) because of its
potential. Indeed, LEDBAT has been standardized by the IETF and is widely deployed
within the official BitTorrent client. Unfortunately, the tuning of LEDBAT parameters
is revealed to highly depend on network conditions. In the worst case scenario, LED-
BAT flows can starve other traffic such as commercial traffic performing over a satellite
link. LEDBAT also suffers from an intra-unfairness issue, called the latecomer advan-
tage. These reasons often prevent operators from using LBE protocols over wireless and
long-delay links as a misconfiguration can overload link capacity. Therefore, we design
FLOWER, a new delay-based transport protocol, as an alternative to LEDBAT. By
using a fuzzy controller to modulate the sending rate, FLOWER aims to solve LEDBAT
issues while fulfilling the role of an LBE protocol. Our simulation results show that
FLOWER can carry LBE traffic not only in the long delay context, but in a wide range
of network conditions where LEDBAT usually fails.

Keywords Congestion control; Lower-than-Best-Effort; LEDBAT; Fuzzy logic;
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Résumé

Dans cette thèse, nous examinons la possibilité de déployer un service Lower-than-Best-
Effort (LBE) sur des liens à long délai tels que des liens satellites. L’objectif est de
fournir une deuxième classe de priorité dédiée à un trafic en tâche de fond ou un trafic
de signalisation. Dans le contexte des liens à long délai, un service LBE peut aider à
optimiser l’utilisation de la capacité du lien. En outre, un service de LBE peut permettre
un accès à Internet à faible coût ou même gratuit dans les collectivités éloignées via la
communication par satellite. Il existe deux niveaux de déploiement possible d’une ap-
proche de LBE: soit à la couche MAC ou soit à la couche de transport. Dans cette thèse,
nous nous intéressons à une approche de bout-en-bout et donc nous nous concentrons
spécifiquement sur les solutions de la couche transport. Nous proposons tout d’abord
d’étudier LEDBAT (Low Extra Delay Background Transport) en raison de son potentiel.
En effet, LEDBAT a été normalisé par l’IETF et est largement déployé dans le client
BitTorrent officiel. Malheureusement, le réglage des paramètres de LEDBAT dépend
fortement des conditions du réseau. Dans le pire des cas, les flux LEDBAT peuvent
prendre toute la bande passante d’autre trafic tels que le trafic commercial sur le lien
satellite. LEDBAT souffre également d’un problème intra-inéquité, appelé latecomer ad-
vantage. Toutes ces raisons empêchent souvent les opérateurs de permettre l’utilisation
de ce protocole sur le lien sans fil et à long délai puisqu’une mauvaise configuration
peut surcharger la capacité du lien. Pour répondre à l’ensemble de ces problèmes, nous
proposons FLOWER, un nouveau protocole de transport, qui se positionne comme al-
ternative à LEDBAT. En utilisant un contrôleur de logique floue pour réguler le débit
des données, FLOWER vise à résoudre les problèmes de LEDBAT tout en remplissant
le rôle d’un protocole de LBE. Dans cette thèse, nous montrons que FLOWER peut
transporter le trafic de LBE non seulement dans le contexte à long délai, mais dans
plusieurs conditions du réseau où LEDBAT se trouve en échec.
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Synthèse en Français

I. Introduction

L’utilisation du contrôle de congestion applicatif de faible priorité LEDBAT (Low Ex-
tra Delay Background Transport) au sein du client BitTorrent a suscité l’intérêt de la
communauté de recherche Internet au service Lower-than-Best-Effort (LBE). Dédié à
transporter du trafic non-critique, le service LBE cherche à utiliser, d’une manière non
intrusive, la capacité du réseau inutilisée par les flux best-effort. Dans cette thèse, nous
examinons la possibilité de déployer un service LBE sur des liens large bandwidth-delay
product (LBDP) tels que les liens satellites. Dans ce contexte, un service LBE peut op-
timiser l’utilisation de la capacité du lien et pourrait permettre d’offrir un accès Internet
aux régions concernées par la fracture numérique [1]. En effet, d’une part le satellite
dispose d’un large éventail de couverture et peut donc atteindre des zones lointaines à
un coût relativement faible. D’autre part, un protocole LBE comme LEDBAT pourrait
être utilisé pour exploiter la capacité restante ou inutilisée du lien satellite pour fournir
cet accès Internet, tout en restant transparent pour le trafic commercial.

Pour offrir un service LBE, il est nécessaire de laisser rapidement la place au trafic
best-effort en cas de congestion, afin de ne pas perturber ce dernier, d’où sa qualifica-
tion de less-than-best-effort. Alors qu’un service LBE pourrait être réalisé par d’autres
couches1 [2], dans cette thèse, nous nous focalisons sur son déploiement au niveau de la
couche de transport afin de bénéficier de l’approche de bout-en-bout. En outre, nous
nous concentrons principalement sur LEDBAT car il est le protocole LBE le plus déployé
à ce jour. Ce dernier est notamment utilisé pour la sauvegarde des données, le prefetch-
ing, la distribution de contenu Internet, le transfert de fichiers peer-to-peer [3].

1Par exemple, un ordonnanceur à priorité type priority-queuing peut offrir un service LBE localisé
entre deux nœuds d’un même lien.
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Malheureusement, en dépit d’être un protocole LBE prometteur, LEDBAT possède
un comportement plus agressif que TCP dans certaines configurations de réseaux [4, 5].
Néanmoins, bien que les auteurs de [5] suggèrent une solution possible, ces études ([4,5])
ne couvrent pas exhaustivement un large éventail de conditions réseaux.

Outre son agressivité, LEDBAT souffre également du problème d’inéquité intra-
protocolaire connu sous le nom de latecomer advantage ou latecomer unfairness — le
symptôme avec lequel un nouveau flux LEDBAT en concurrence avec d’autres flots du
même type peut prendre jusqu’à toute la bande passante disponible [5–9]. Contraire-
ment au problème d’agressivité, le problème du latecomer a reçu beaucoup d’attention
et de nombreuses solutions ont été proposées afin de le résoudre [5, 8, 9]. Pourtant, ce
problème de latecomer est considéré comme moins important que celui de l’agressivité.
La justification est que puisque LEDBAT a été initialement conçu pour être une classe
de trafic à très faible priorité [5], son intra-équité (i.e. entre flots LEDBAT) n’a pas été
considérée comme un objectif en soi. A noter que ce problème disparâıt en présence des
flux TCP [6]. Etant donné le potentiel de LEDBAT, nous croyons que le problème du
latecomer doit être abordé en même temps que le problème de l’agressivité. Bref, nous
ne considérons pas l’intra-équité de moindre importance que l’inter-équité.

Suivant cette discussion, le premier objectif de cette thèse est de réaliser une étude
approfondie sur le caractère agressif de LEDBAT. Le second est de fournir une so-
lution efficace afin de résoudre ces deux principaux problèmes que sont l’agressivité
et le latecomer advantage. Bien que notre objectif initial soit l’étude de la faisabilité
d’un déploiement de LEDBAT sur les réseaux LBDP, tout au long de cette thèse, nous
chercherons à obtenir une solution qui fonctionne sur un large éventail de configuration
de réseaux.

II. Analyse de LEDBAT

Dans cette section, nous étudions les facteurs qui détournent LEDBAT de son objectif
initial (i.e., se comporter comme un protocole LBE) et qui le rend plus agressif que TCP.
Ensuite, nous tenterons de déterminer un ensemble de paramètres optimaux permettant
au trafic LEDBAT de se comporter comme tel.

II.a. Le protocole LEDBAT

LEDBAT est conçu pour limiter le délai de la file d’attente autour d’une valeur fixe,
appelée target queuing delay τ (le délai de la file d’attente cible). Dans ce but, LEDBAT
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utilise un contrôleur PID de type P pour contrôler sa fenêtre de congestion en utilisant
le délai de la file d’attente de bout-en-bout comme l’indicateur de congestion. A chaque
l’instant k, le fonctionnement du contrôleur de congestion peut se résumer comme suit :

cwnd(k + 1) =


cwnd(k) + γe(k)

cwnd(k − 1) si pas de perte,
1
2cwnd(k) si perte

où e(k) = τ−q(k)
τ est la différence entre le target queuing delay et le délai de la file

d’attente actuel q(k) estimé par LEDBAT. La réactivité de LEDBAT aux variations du
délai de la file d’attente est en plus ajustée par le gain γ. Ce gain se découpe en increase
gain et decrease gain correspondant respectivement à la phase croissante et à la phase
décroissante de la fenêtre de congestion.

Fondamentalement, LEDBAT fonctionne comme suit : la différence e(k) est positive
lorsque le délai courant de la file d’attente est au dessous du target queuing delay. Dans
ce cas, le contrôleur doit augmenter la fenêtre de congestion, et donc le taux d’émission
jusqu’à ce que le délai de la file d’attente atteigne le target queuing delay. Lorsque la
différence est négative, ce qui signifie que le délai courant de la file d’attente est au-
dessus du target queuing delay, le contrôleur doit ralentir son taux d’émission. De plus,
la taille de la fenêtre de congestion est modifiée proportionnellement à la différence e(k)
pour éviter d’osciller. En conséquence, la fenêtre de congestion reste inchangée lorsque
la différence est égale à zéro.

II.b. Agressivité de LEDBAT

Selon la RFC de LEDBAT [10], si le target queuing delay est volontairement2 ou involon-
tairement fixé à l’infini, le comportement de LEDBAT se limite à être aussi agressif que
TCP dans le pire des cas. En fait, ceci correspond au cas où la taille du buffer est trop
petite par rapport au target queuing delay, comme montré par la figure 1. Sur cette
figure, la taille du buffer est de 9 paquets, ce qui signifie que le ratio entre la taille du
buffer et le target queuing delay est de 0,1. Ainsi, le délai de la file d’attente estimé par
LEDBAT n’atteint jamais le target queuing delay. Par conséquent, LEDBAT augmente
toujours son taux d’émission jusqu’à ce qu’une perte soit détectée.

Cependant, il existe des circonstances dans lesquelles LEDBAT devient hostile et
dégrade le service offert par TCP. La figure 2 illustre ce comportement agressif de LED-
BAT envers TCP. La taille du buffer dans cet exemple est de 92 paquets. Dans sa

2 Cas d’une configuration d’un utilisateur malintentionné.
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phase de slow start, TCP augmente de façon exponentielle sa fenêtre de congestion. En
conséquence, le buffer se remplit immédiatement et la fenêtre de congestion de LED-
BAT se retrouve bloquée à un paquet. Après la phase de slow start, de t = 3 s à
t = 5 s, puisque le délai de la file d’attente est petit par rapport au target queuing
delay, les fenêtres de congestion de LEDBAT et TCP augmentent en même temps et
à la même vitesse. Comme la file d’attente ne cesse d’augmenter, LEDBAT réduit la
vitesse d’augmentation de sa fenêtre de congestion alors qu’entre-temps, TCP continue
d’augmenter linéairement sa fenêtre de congestion. Après t = 11 s, quand le délai de
la file d’attente est supérieur au target queuing delay, LEDBAT diminue lentement sa
fenêtre de congestion. Bien que la taille du buffer est plus grande dans cet exemple,
elle reste relativement petite comparée au target queuing delay. En effet, le ratio entre
la taille du buffer et le target queuing delay est de 1,1. Par conséquent, LEDBAT n’a
pas assez de temps pour réagir face à l’augmentation du délai de la file d’attente avant
que TCP ne déborde du buffer à t = 15 s. Après cela, TCP divise par deux sa fenêtre
de congestion, ce qui entrâıne une réduction du délai de la file d’attente. Puisque le
délai de la file d’attente est maintenant en dessous du target queuing delay, LEDBAT
augmente à nouveau sa fenêtre de congestion conjointement avec TCP. En conséquence,
après plusieurs cycles, LEDBAT exploite plus de capacité que TCP.
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Figure 1: LEDBAT se comporte comme TCP standard dans le cas d’un target queuing
delay à l’infini.
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Figure 2: Agressivité de LEDBAT envers TCP.

II.c. Combinaison optimale de target queuing delay et decrease gain

Dans un premier temps, nous avons cherché l’existence d’une combinaison de target
queuing delay et decrease gain qui permettrait à LEDBAT de se comporter comme un
protocole de LBE quelle que soit la configuration réseau. Dans ce but, nous considérons
les différentes capacités C ∈ [1, 5, 10, 20, 50] Mb/s et les différents délais de propagation
unidirectionnels (one-way propagation delays) d ∈ [10, 50, 100, 150, 200, 250] ms du lien
de goulot d’étranglement. Pour chaque réglage C, D, et B du réseau, nous explorons
l’ensemble des target queuing delays τ ∈ [5, 25, 50, 75, 100] ms et l’ensemble des decrease
gains γdcr ∈ [1, 10]. Nous considérons un flot LEDBAT commençant à t = 0 s et un flot
TCP commençant plus tard à t = 200 s. Puis, nous calculons le taux d’utilisation du
lien η de chaque flot pour chaque réglage du réseau.

Nous utilisons une méthode de partitionnement de données (clustering method) pour
classer nos résultats. Pour chaque combinaison de target queuing delay et decrease gain,
lorsque B = BDP , si le taux d’utilisation du lien de TCP est ηTCP ≥ 0, 8, alors nous
choisissons le taux d’utilisation du lien de LEDBAT comme référence ηref = ηLEDBAT .
Ensuite, pour chaque autre valeur de B, nous calculons ∆ = |ηLEDBAT −ηref |. Si ∆ ≤ ε
et ηTCP ≥ 0, 8, alors nous classons B dans le cluster “Droite” (noté R), sinon, dans le
cluster “Wrong” (noté W). Dans notre étude, nous utilisons ε = 0, 15. Donc, pour les
tailles de buffer différentes, si ηTCP est toujours ≥ 0, 8 et la différence entre ηLEDBAT
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et ηref est dans une limite de 15%, nous considérons que la combinaison courante du
target queuing delay et decrease gain fonctionne bien pour ces tailles de buffer. Enfin,
nous effectuons une analyse statistique pour déterminer la combinaison de target queuing
delay et decrease gain fonctionnant dans la plupart des configurations du réseau.

Choix du target queuing delay

Nous commençons par la recherche de la valeur optimale du target queuing delay. Dans
la figure 3, utilisant un histogramme, nous regroupons les résultats de simulation dans les
différentes catégories de capacités du réseau, puis, dans les sous-classes de target queuing
delay. Pour chaque valeur du target queuing delay, la colonne empilée représente le
nombre de cas R et W. La hauteur de la colonne correspond à l’ensemble des simulations
de toutes les valeurs possibles du decrease gain en combinaison avec une valeur du target
queuing delay donnée en abscisse.

La figure 3 montre qu’une valeur de target queuing delay de 5 ms fonctionne dans la
plupart des cas. Ces résultats nous permettent donc de conclure que le réglage du target
queuing delay à 5 ms est optimal.

xx
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Choix du decrease gain et de la combinaison des paramètres optimaux de
LEDBAT

Après avoir obtenu cette valeur de target queuing delay optimale, nous utilisons encore
l’histogramme pour trouver le decrease gain optimal. Pour chaque paramètre de target
queuing delay, nous présentons le nombre de cas R pour chaque valeur de decrease gain
correspondante. Comme le montre la figure 4, régler le decrease gain à 10 est préférable
car cela augmente le nombre de cas R.

II.d. Discussion

La combinaison de target queuing delay et de decrease gain (5 ms; 10) est globale-
ment optimale, c’est-à-dire, optimale sur un large éventail de configurations de réseau.
Cependant, ce n’est pas nécessairement une combinaison localement optimale pour une
configuration de réseau spécifique. Par exemple, avec C = 10 Mb/s, d = 50 ms et
B = 84 paquets, passer de la combinaison globalement optimale (5 ms; 10) à la combi-
naison (65 ms; 1) diminue le taux d’utilisation du lien de TCP de 6.84% tandis que le
taux d’utilisation du lien de LEDBAT augmente de 778.37%. En outre, le problème du
latecomer advantage persiste même avec la combinaison de ces paramètres globalement
optimaux. En conclusion, bien que nous approchons d’une solution générique, il nous
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faut toujours trouver une solution qui résout les deux principaux problèmes de LEDBAT.

III. FLOWER, un protocole de transport Lower-than-Best-
Effort basé sur la logique floue

Dans cette section, nous présentons FLOWER, un nouveau protocole de transport visant
à fournir un service LBE tout en résolvant les deux principaux problèmes de LEDBAT —
l’agressivité envers TCP et le latecomer advantage.

III.a. Motivation et objectifs de FLOWER

Motivation

Les deux principaux paramètres de LEDBAT — target queuing delay et gain — sont fixes
et ne peuvent pas faire face à la diversité des configurations de réseau. Par conséquent,
LEDBAT devient plus agressif que TCP dans certaines circonstances. Une solution pos-
sible serait d’adapter le target queuing delay et/ou le gain au changement des conditions
réseaux [11, 12]. À cette fin, nous devons d’abord dériver un modèle mathématique du
réseau, puis construire un modèle mathématique du contrôleur. Cependant, le réseau est
un système complexe de part son hétérogénéité. Ainsi, il n’est pas trivial de dériver un
modèle de réseau suffisamment précis et générique considérant les réseaux mobiles, cel-
lulaires, filaires, pour être utilisé par un système de contrôle adaptatif. D’où notre choix
d’utiliser un contrôle à logique floue pour relever les difficultés dans le développement et
l’analyse de ce système complexe. Les avantages principaux du contrôle à logique floue
sont :

• un modèle mathématique n’est pas nécessaire pour développer un système de
contrôle. En effet, le contrôle à logique floue nous permet d’intégrer un heuris-
tique représentant le contrôleur. Cette approche est particulièrement intéressante
lorsque le modèle n’est pas trivial, difficile à dériver ou trop complexe à implémenter;

• comme ils sont non linéaires en général, les contrôleurs à logique floue peuvent
opérer dans un éventail de conditions d’opérations plus larges que les contrôleurs
PID;

• les contrôleurs à logique floue sont faciles à personnaliser car ils sont constitués de
règles linguistiques qui sont faciles à comprendre et à modifier;
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• les opérations du contrôleur à logique floue sont simples à manipuler et à mettre
en œuvre.

Compte tenu des inconvénients du système de contrôle adaptatif et des avantages du
contrôle à logique floue, nous proposons un nouveau protocole de congestion LBE basé
sur ce principe. Les travaux présentés dans la section II. nous informent sur la façon
dont il faudrait contrôler le délai de la file d’attente. C’est ensuite sous forme d’une
heuristique que ces mêmes travaux sont intégrés au sein du mécanisme de contrôle flou
de FLOWER. Nous soulignons aussi que, en utilisant un système de contrôle à logique
floue, nous cherchons une solution générique qui fonctionne dans diverses conditions
réseaux. Cela signifie que nous sommes maintenant à la recherche d’un cas d’utilisation
moyen.

Objectifs

Proposé comme une alternative à LEDBAT, FLOWER se doit bien évidemment de
résoudre les problèmes de LEDBAT tout en gardant les mêmes objectifs en termes de
service LBE comme indiqués dans [10] :

1. utiliser la bande passante de bout-en-bout disponible et maintenir un faible délai de
traversée de la file d’attente lorsque aucun trafic n’est présent dans cette dernière;

2. ne pas ajouter de délai de traversée de la file d’attente supplémentaire à celui induit
par les flux concurrents;

3. laisser rapidement la place aux flux TCP qui partagent le même goulot d’étranglement.

Pour atteindre ces objectifs, FLOWER implémente un contrôleur à logique floue pour
gérer le délai de la file d’attente à la place du contrôleur de type P proposé dans [10]. Le
target queuing delay non nul permet à FLOWER d’aller chercher la capacité disponible,
et donc de saturer le lien de goulot d’étranglement lorsqu’aucun autre trafic est présent.
En même temps, le délai de la file d’attente doit être maintenu aussi faible que possible
pour que FLOWER soit non intrusif au trafic TCP standard.

III.b. Contour du design de FLOWER

Nous pouvons représenter FLOWER comme un système de contrôle en boucle fermée
comme illustré par la figure 5. Les composantes essentielles de FLOWER sont :
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Figure 5: Schéma de FLOWER

1. en entrée :

• τ : target queuing delay, qui est le délai de la file d’attente maximum qu’un
flux de FLOWER est autorisé à introduire dans le réseau;

• e : queuing delay error, qui est la différence entre le target queuing delay et
le délai de la file d’attente estimé;

• ∆e : change on queuing delay error, qui est la tendance de l’erreur.

2. le queuing delay estimator, qui exploite les délais unidirectionnels mesurés pour
estimer le délai de la file d’attente courant q;

3. le peak-valley detector, qui garde la trace du délai de la file d’attente maximum qmax

observé dans le réseau. Ce délai de la file d’attente maximum est ensuite utilisé
pour normaliser la queuing delay error (l’erreur de délai de la file d’attente);

4. le fuzzy controller, qui est un décideur artificiel fonctionnant sur la base d’un
ensemble de règles “If–Then”. En utilisant la logique floue, le contrôleur détermine
la taille de la fenêtre de congestion cwnd telle que le futur délai de la file d’attente
estimé corresponde au target queuing delay. Le contrôleur à logique floue intègre
également un mécanisme de détection de perte dans sa base de règles pour améliorer
la détection de la congestion.

FLOWER utilise le slow-start pour obtenir une mesure préliminaire du délai de la
file d’attente. D’ailleurs, FLOWER pourrait souffrir du problème latecomer advantage
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Figure 6: Fenêtres de congestion des flux TCP et LBE et longueur de la file d’attente
du goulot d’étranglement en fonction du temps.

comme LEDBAT. Heureusement, dans cette situation, le mécanisme de détection de
perte du contrôleur à logique floue de FLOWER et le slow-start aide à resynchroniser
tous les flux en cours. Finalement, en cas de perte, FLOWER réinitialise sa fenêtre de
congestion au minimum.

IV. Evaluation de FLOWER

Dans cette section, nous étudions la performance de notre nouveau protocole par le biais
de simulations sous ns-2.

IV.a. Interaction avec TCP

Nous considérons deux flux TCP et LBE (LEDBAT, FLOWER) qui commencent à
l’instant t = 0. La taille du buffer dans ce cas est égale à la BDP. La figure 6 montre les
fenêtres de congestion (en haut) en fonction du temps, la longueur de la file d’attente
et le target queuing delay exprimés en paquets (en bas). L’interaction entre TCP et
FLOWER est représentée à la figure 6a et celle entre TCP et LEDBAT à la figure 6b.
Cette simulation illustre le bon comportement de FLOWER en tant que protocole LBE
en présence de TCP. De toute évidence, le contrôleur utilisant la logique floue avec le
mécanisme de détection de perte permet à FLOWER de se conformer au principe LBE.
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Figure 7: Fenêtres de congestion des flux LBE et longueur de la file d’attente du goulot
d’étranglement en fonction du temps.

Dans cette configuration standard (B = BDP ), LEDBAT ne se comporte pas comme un
protocole LBE et est trop agressif envers TCP. Le comportement défectueux de LEDBAT
s’explique par la réaction inexacte de son contrôleur de type P face à la congestion.

IV.b. Equité intra-protocole

Dans cette expérience, la taille du buffer B est fixée à deux fois la BDP. Cette config-
uration est favorable pour reproduire le phénomène latecomer advantage de LEDBAT.
Le premier flux LBE (LEDBAT, FLOWER) commence à t = 0 s et le second commence
à t = 20 s. Comme dans la section IV.a., nous traçons les fenêtres de congestion et la
longueur de la file d’attente du buffer. La figure 7b montre bien le problème de latecomer
de LEDBAT. Au contraire, FLOWER n’hérite pas de ce problème grâce au mécanisme de
détection de perte. La figure 7a montre que deux flux FLOWER partagent effectivement
équitablement la capacité du lien.

IV.c. Coexistence de FLOWER et AQM

LEDBAT a été conçu pour fonctionner principalement avec la politique de file d’attente
DropTail. En présence de mécanismes AQM plus évolués, LEDBAT perd sa caractéristique
LBE et se comporte alors comme un TCP standard [7, 13, 14]. La RFC de LEDBAT le
constate également [10]: “If Active Queue Management (AQM) is configured to drop or
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ECN-mark packets before the LEDBAT flow starts reacting to persistent queue buildup,
LEDBAT reverts to standard TCP behavior rather than yielding to other TCP flows”.
Par conséquent, lors de la conception et de la proposition d’un nouveau protocole LBE
(voire d’un protocole de transport de façon générale), il est essentiel d’étudier sa coex-
istence avec les mécanismes AQM existants.

Dans cette section, nous évaluons l’impact des AQMs comme RED [15], CoDel [16] et
PIE [17] sur la conformité au service LBE proposé par FLOWER en présence de TCP. À
cette fin et pour avoir une base de comparaison équitable, nous employons directement
les scripts utilisés par les auteurs de [14], disponibles sur [18]. Nous considérons 5 flux
TCP en concurrence avec 5 flux LBE. Tous les flux commencent à l’instant t = 0.
La taille du buffer B est égale à 3 fois la BDP afin de reproduire le bufferbloat — le
phénomène de faible débit et de délai élevé causé par un buffer de taille excessive. En
général, un mécanisme AQM est considéré comme la meilleure solution pour résoudre
ce phénomène [19]. Nous mesurons la répartition du débit des flux TCP (XTCP ), la
longueur moyenne de la file d’attente en termes de paquets (E[Q]) et l’intensité du
bufferbloat définie comme E[Q]/B.

Nous présentons les résultats de la simulation dans la figure 8. L’interaction de
chaque combinaison des mécanismes AQM et des protocoles LBE est représentée par
une ligne reliant les deux métriques E[Q]/B (l’axe y à gauche) et XTCP (l’axe y à
droite). L’interaction idéale est illustrée par la région oblique verte dans la figure 8, où
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le délai de la file d’attente est faible tandis que le trafic LBE reste en faible priorité.
Avec la politique de file d’attente DropTail, FLOWER et LEDBAT se conforment

tous au principe LBE. Dans ce cas, TCP maximise également l’intensité du bufferbloat.
Au contraire, la figure 8 montre clairement que l’utilisation d’un mécanisme AQM résout
le problème de bufferbloat. Cependant, un tel mécanisme AQM compromet également la
caractéristique de faible priorité des protocoles LBE et augmente leur agressivité envers
TCP. Dans tous les cas, FLOWER se conforme toujours plus au principe LBE que
LEDBAT et tend vers la région idéale. Il y a deux raisons qui expliquent ce résultat :
premièrement, FLOWER a une zone de détection de perte dans sa base de règles qui lui
permet de réagir mieux que LEDBAT face à la congestion; deuxièmement, FLOWER
réinitialise sa fenêtre de congestion au minimum en cas de perte afin d’atténuer son
impact sur les flux de priorité plus haute.

V. Conclusion

Dans cette thèse, nous examinons la possibilité de déployer un service LBE sur des liens
LBDP tels que des liens satellites. Nous nous intéressons à une approche de bout-en-bout
et donc nous nous concentrons spécifiquement sur les solutions de la couche transport.
Nous proposons tout d’abord d’étudier LEDBAT en raison de son potentiel. Cependant,
LEDBAT est connu pour avoir deux problèmes principaux : son agressivité envers TCP
et le latecomer advantage. En explorant l’ensemble des paramètres de LEDBAT, nous
constatons que (5 ms; 10) est la combinaison optimale de target queuing delay et decrease
gain permettant à LEDBAT d’être conforme au principe de LBE sur un large éventail
de conditions réseaux. Malheureusement, le problème du latecomer advantage de LED-
BAT persiste même avec cette combinaison optimale de paramètres. Par conséquent,
nous proposons FLOWER, un nouveau protocole de transport visant à fournir un ser-
vice LBE tout en résolvant deux principaux problèmes de LEDBAT. A notre meilleure
connaissance, FLOWER est la première solution qui résout à la fois l’agressivité et le
latecomer advantage de LEDBAT tout en conservant ses propriétés LBE en présence de
mécanismes AQM.
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1
Introduction

The switch of the official BitTorrent client to Low Extra Delay Background Transport
(LEDBAT) [10], a new low-priority congestion-control algorithm, has once again raised
the interest of the Internet research community in the Lower-than-Best-Effort (LBE)
service. Dedicated to carrying non-critical traffic, the LBE service seeks to use, in
a non-intrusive manner, the remaining network capacity unused by best-effort flows.
Hence, LBE service leads to many applications such as background or signaling traffic.
This thesis looks to deploy the LBE service over large bandwidth-delay product (LBDP)
networks, in particular satellite networks, since this service helps to optimize the full
use of the link capacity. Furthermore, the LBE service over satellite communications
can enable a low-cost or even free Internet access to remote communities, as discussed
below.

While an LBE service can be achieved at other layers, in this thesis, we solely study
its deployment at the transport layer [2] because of the scalability and simplicity of
such end-to-end approach. Moreover, we mainly focus on LEDBAT since it is the most
widely deployed LBE protocol. Developed by BitTorrent and later standardized by
IETF, LEDBAT rapidly gains notoriety and plays an important role in Internet traf-
fic. Therefore, the evaluation of its performance is an obvious concern for the Internet
research community.

Intuitively, one may question whether users are willing to use a service worse than
best effort. Therefore, in Section 1.1, we first illustrate the benefits of the LBE ser-
vice through an introductory example. Then we present the motivation of this thesis
in Section 1.2 and our contributions in Section 1.3. Finally, we outline the thesis in
Section 1.4.

1



1.1 LBE + Satellites = Internet Access for All

In 2012, the Internet Society conducted an online survey of more than 10000 Internet
users across 20 countries [20]. This study highlighted that 83 percent of the respondents
believe that access to the Internet should be considered as a basic human right. Indeed,
in today’s digital world, the Internet is a critical infrastructure enabling many services,
including communication, digital economy, education, employment, e-governance, re-
mote health care, social networks, and more. For many of us, sending and reading
emails or surfing the Internet is an integral part of our daily activities. In addition, the
rapid evolution of technology makes the Internet faster and cheaper. Thus, for millions
of people, Internet access is a trivial matter, so trivial that we may unconsciously ignore
that many others do not even have access to basic services, let alone the Internet. Giving
its crucial role, Internet access must be available for anyone from everywhere: a vision
that is shared among both major stakeholders and global governments [1]. In reality,
many projects have already launched to provide an affordable Internet access, for exam-
ple, Loon [21] by Google and Internet.org [22] by Facebook. The Internet Engineering
Task Force (IETF) also formed the Global Access to the Internet for All Research Group
(GAIA) [23] to address the problem.

While the objective sounds straightforward, the realization encounters many chal-
lenges. The most important challenge is that the population in remote communities
are usually scattered over wide areas. Therefore, the investment cost for Internet service
providers to deploy infrastructures is simply too high. However, in this case, the satellite
communication coupled with an LBE protocol such as LEDBAT offers a promising al-
ternative solution. On one hand, the satellite has a wide range of coverage and thus can
reach remote areas at relatively low cost. On the other hand, LEDBAT, also known as
µTP (Micro Transport Protocol) [24], is a popular LBE protocol that can be employed
to exploit the unused capacity of satellite links for free Internet access, while remaining
transparent to commercial traffic.

Sharing the same conviction as the authors of [25], we believe that Internet access
for all is not just an insane idealism, and the LBE service is one key solution to make it
happen.

1.2 Motivation

Delivering an affordable Internet access, as presented in the previous section, is just one
example of many potential applications offered by an LBE protocol such as LEDBAT.
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Other examples are data backup, prefetching, Internet content distribution, peer-to-
peer file transfer, and more [3]. Given its focus on carrying heavy low-priority traffic, a
misbehavior of an LBE protocol can seriously disturb best-effort traffic. Hence, before
deploying an LBE protocol on a large scale, we need to carefully study its impact, if
any, on best-effort traffic. Unfortunately, in this context, despite being a promising
LBE protocol, LEDBAT has been pointed out to be more aggressive than TCP in some
configurations [4, 5]. Nevertheless, these works do not cover a wide range of network
configurations. Moreover, although the authors of [5] hint a possible solution, there is
no in-depth study concerning the potential solutions to this problem.

Besides its aggressiveness, LEDBAT also suffers the latecomer advantage — the symp-
tom in which a newly arriving LEDBAT flow can starve ongoing LEDBAT flows [5–9].
Unlike the aggressiveness problem, the latecomer problem has received a lot of attention,
and many solutions have been proposed [5, 8, 9]. Yet, the latecomer problem is argued
to be less important than the aggressiveness problem since LEDBAT is designed for a
low-priority and delay-insensitive traffic class [5]. In addition, the latecomer advantage
is remedied in the presence of TCP flows [6]. However, given LEDBAT’s potential to
enable Internet access for all, we believe that the latecomer problem also needs to be
addressed.

From what has been discussed above, the first objective of this thesis is to realize a
thorough study to gain insight into the aggressiveness of LEDBAT. The second objective
is to provide an effective solution that solves both aggressiveness and latecomer problems
of LEDBAT. Furthermore, while our initial goal is to study the feasibility of a deployment
of LEDBAT over LBDP networks, throughout this thesis, we take a further step towards
a solution that works over a wide range of network configurations.

1.3 Contributions

The two main contributions of this thesis are:

Analysis of LEDBAT aggressiveness behavior: Using simulation, we deeply study
the impact of LEDBAT internal parameters on its performance in the presence of
TCP over a wide range of network configurations. The study shows that a mis-
configuration of LEDBAT parameters leads to a total starvation of TCP flows.
We further explain the nature of this problem and demonstrate that the setting of
LEDBAT parameters is highly depend on the network configurations. Therefore,
we propose an optimal combination of parameters that allows LEDBAT to behave
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as an LBE protocol in different network configurations. However, we observe that
the aggregated use of optimized LEDBAT sources in a highly loaded network still
disturbs the overall traffic performance. As a result, we underline the necessity for
additional strategies to limit the number of LEDBAT flows. Our study has been
published in [26].

Design of FLOWER — a new LBE protocol: While the optimal combination of
LEDBAT parameters mitigates the aggressiveness issue in some cases, it also limits
the LEDBAT performance in other cases. Moreover, the optimal combination does
not solve the latecomer problem. Therefore, we design the Fuzzy Lower-than-Best-
Effort (FLOWER) transport protocol to solve both aggressiveness and latecomer
problems of LEDBAT. Our simulation study over a wide range of network use-cases
shows that FLOWER performs better than LEDBAT in cases where LEDBAT usu-
ally fails. Furthermore, FLOWER exhibits a good interplay with AQM schemes.
To the best of our knowledge, FLOWER is the first solution that solves all three
LEDBAT issues: the aggressiveness, the intra-unfairness, and the bad interaction
with AQM schemes. The design of FLOWER and its performance evaluation,
except the results with AQMs, have been published in [27].

1.4 Organization

In Chapter 2, we briefly describe the background assumed in the rest of this thesis and
review previous work that is relevant to the problem being addressed. Especially, an
extensive review on the state of art of LEBDAT points out the lack of a solution for the
aggressiveness problem, one of two main LEDBAT problems. The other problem is the
latecomer advantage.

In Chapter 3, we explore the set of optimal parameters allowing LEDBAT to effec-
tively perform as an LBE protocol. We found that a target of 5 ms and a decrease gain
of 10 are globally optimal, that is, optimal over a wide range of network configurations.
However, the latecomer unfairness issue of LEDBAT still persists even with the global
optimal combination of parameters. Therefore, it is necessary to find a solution that
solves both the aggressiveness and latecomer unfairness of LEDBAT.

Based on the insight gained from the LEDBAT analysis in Chapter 3, we design in
Chapter 4 a new LBE transport protocol, named FLOWER, by employing the fuzzy
control concept.

Finally, in Chapter 5, we evaluate the performance of the new LBE protocol FLOWER
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by means of simulation. The results show that FLOWER behaves as an LBE protocol
in network scenarios where LEDBAT fails while solving the latecomer unfairness prob-
lem. We also demonstrated that FLOWER is more LBE-compliant than LEDBAT when
coexists with AQM schemes.
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2
Background and Related Work

In this chapter, we briefly describe the background assumed in the rest of this thesis
and review previous work that is relevant to the problem being addressed. First, we
present the Internet access via satellite in Section 2.1. Then, we review TCP and its
variants in Section 2.2. Next, Section 2.3 describes the principle of LBE and Section 2.4
introduces the feedback control and the PID control. Afterwards, we describe LEDBAT
in Section 2.5. Finally, an extensive review on the state of art of LEDBAT is given in
Section 2.6.

2.1 Internet Access via Satellite

As discussed in Chapter 1, an attractive application of LBE is to enable free Internet
access for rural communities via satellite communication. In the meantime, paying
satellite Internet access is already available for people in remote areas. In this section,
we provide an overview of satellite communication and describe how satellite Internet
works.

2.1.1 Characteristics and Applications of Satellite Communication

The satellite communication [28] is one variety of wireless communication systems.
In this system, two or more points earth stations communicate via a communication
satellite. A communication satellite is an artificial satellite orbiting around Earth. It
functions as a radio relay station that receives, amplifies and redirects analog and digital
signals from and to one or many places around the world.
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Characteristics

A main characteristic of the satellite communication is its expensive investment cost.
The first factors that contribute to the high cost of satellites are the equipment and ma-
terials employed to construct them. Another factor is the excessive expense for launching
satellites into orbit. Once a satellite is put into orbit, we need human operators to moni-
tor it from a ground facility. Therefore, we must also take into account the maintenance
cost of satellites. Satellite communication is further characterized by a relatively long
one-way delay. For instance, the one-way delay for a communication with Geostationary
Earth Orbit (GEO) is typically on the order of 250 ms. Furthermore, the throughput of
a satellite link is constrained mainly by both power and bandwidth resources available.

Nevertheless, despite these aforementioned limitations, satellite communication offers
many attractive advantages. Indeed, a satellite provides a wide geographical coverage
which largely surpasses that of a terrestrial system. Moreover, satellite networks can be
deployed faster than terrestrial infrastructures. Satellites are further not vulnerable to
natural disasters (earthquake, tsunami. . . ) or man-made disasters (nuclear explosion,
blackout. . . ). The availability and deployability make the role of satellite communica-
tion effective in disaster management primordial. Finally, satellite communication is
economical over long distances.

Applications

One popular application of satellite communication is satellite phones. Satellite phones
are seldom used when cellular phones are available because the satellite phones are
cumbersome and their service is more costly. However, satellite phones are still needed
in situations where wired or other means of connections are unavailable such as on planes,
ships or in remote areas. Today, satellite communication is well known for its application
in television and radio broadcasting. Moreover, it is used for providing Internet access
which is helpful for users in remote areas without a broadband connection. Satellite
communication also finds its applications in military, in search and rescue and much
more.

2.1.2 Satellite Internet

We now have a basic concept of the satellite communication. In what follows, we outline
how to access the Internet using satellite communication.

Figure 2.1 illustrates a typical satellite network providing Internet access. The two-
way (forward and return) communication satellite connects all user terminals, via a
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Figure 2.1: A satellite network

satellite router, to a central gateway or hub at an earth station called the Network
Operations Center (NOC). The NOC gateway, in its turn, connects to the wide Internet.

To offer Internet access, satellite links must support TCP/IP (Transmission Control
Protocol/Internet Protocol), the de facto standard for connecting hosts on the Internet.
The responsibility of IP is to deliver packets from a source host to a destination host,
using an address scheme to identify hosts. IP provides a best-effort delivery service.
This means that IP makes every effort to deliver packets to their destination, but does
not offer any guarantee. Packets may be lost, duplicated or corrupted.

In its turn, TCP provides an end-to-end, reliable, in-order data delivery service to
applications on top of the unreliable best-effort service of IP. TCP also employs a flow-
control mechanism to prevent the sender from overwhelming the receiver. Finally,
TCP implements a congestion-control mechanism, which will be described in the
next section, to keep all of the senders together from overloading the network.

2.2 Transmission Control Protocol (TCP)

In this thesis, we only focus on the congestion-control aspect of TCP. Therefore, in this
section, we describe the standard congestion-control mechanism named TCP NewReno
(hereafter denoted as standard TCP or TCP) and some of its most well-known vari-
ants. We also discuss the difficulties of providing an efficient end-to-end communication
between pairs of hosts over LBDP networks such as satellite networks.
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2.2.1 Standard TCP Congestion Control

A TCP sender maintains a state variable called congestion window (cwnd), which is its
estimation of the number of packets that it can send over the network without them be-
ing discarded by the intermediate routers. When a TCP receiver receives a packet, the
receiver replies with an acknowledgment (ACK) to indicate to the sender that the trans-
mission is successful. A TCP sender detects packet losses either through retransmission
timeout or three duplicate acknowledgments. The evolution of the congestion window
consists of two phases: slow start and congestion avoidance. TCP enters the slow-start
phase at the beginning of the connection or after a packet retransmission timeout. In
the slow-start phase, the sender increases cwnd by one packet whenever it receives an
ACK. As a consequence, cwnd is doubled every round-trip time (RTT). TCP exits the
slow-start phase when it notices a packet loss or when cwnd is greater than a slow-start
threshold (ssthresh). This threshold is set to half of the current cwnd when a packet
loss is detected by a retransmission timeout.

After leaving the slow-start phase, TCP enters the congestion-avoidance phase. In
this phase, TCP uses an Additive Increase/Multiplicative Decrease (AIMD) algorithm to
probe for available network bandwidth. For each RTT, a TCP sender increases cwnd by
one packet, that is, increases cwnd by 1

cwnd on each successful ACK, until it experiences
a packet loss. If this packet loss is detected by three duplicate ACKs, TCP reduces its
cwnd by half. If the packet loss is instead detected by a timeout, TCP sets its cwnd to
one packet and re-enters the slow-start phase.

2.2.2 High-Speed TCP Congestion Control Algorithms

Despite being one of the decisive factors behind the success of Internet, the AIMD
behavior of TCP does not scale well and thus results in the poor performance of TCP in
LBDP networks [29]. In addition, TCP cannot distinguish whether a packet is dropped
due to congestion or corruption. Therefore, TCP reduces its congestion window size in
the presence of any packet-drop signals. As a consequence, for wireless LBDP networks
such as satellite networks, packet corruptions due to transmission errors unnecessarily
degrade the TCP throughput [28].

In what follows, we will present CUBIC and Compound TCP, two currently used
TCP variants designed particularly to solve the problem of standard TCP over LBDP
networks.
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CUBIC TCP

CUBIC [30] uses a cubic function of time to modulate its congestion window. Conse-
quently, the growth rate of the CUBIC congestion window is independent of the RTT.
Indeed, it depends on the time since the last congestion event.

By employing the cubic function [30], the congestion window growth of CUBIC is
divided into two phases. In the first concave phase, CUBIC rapidly increases the conges-
tion window to the size achieved before the last congestion event. Then, in the second
convex phase, CUBIC probes for more bandwidth. Since it is the default congestion
control algorithm in the Linux kernel since the version 2.6.19, CUBIC is widely de-
ployed in Internet. However, CUBIC also suffers a number of issues, noticeably the slow
convergence time, as pointed out in [31].

Compound TCP

Compound TCP [32] is designed to improve link efficiency and RTT fairness. It
uses the delay as the congestion indicator. Compound TCP maintains in parallel two
congestion windows. The first one is a regular loss-based congestion window employing
the AIMD mechanism of standard TCP The second one is a delay-based congestion
window inspired from TCP Vegas [33]. The resulting congestion window is the sum of
these two windows.

If the estimated delay is small, the delay-based window quickly increases to exploit
the available bandwidth. When the queue starts to fill up, to keep the summed congestion
window constant, the delay-based window decreases to counterbalance the increase of the
loss-based window. Compound TCP falls back to standard TCP under heavy network
congestion. Despite being designed especially for LBDP networks, Compound TCP can
suffer poor scaling behavior similar to standard TCP as the BDP increases [34].

2.3 Principle of Lower-than-Best-Effort (LBE)

As the main subject of this thesis, we present in this section the Lower-than-Best-
Effort (LBE) service that aims at providing a second priority class inside the network
traffic.

While standard TCP and its variants endeavor to achieve a fair share of the network
bottleneck capacity between flows, the service provided by the network remains best-
effort. However, not all traffic have a same degree of priority. In fact, background traffic
such as data backup, software updates, or peer-to-peer file transfers are less critical than
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other traffic and may be willing to accept a lower quality of service than best-effort
service. Therefore, LBE service, also called scavenger service, is proposed to carry low-
priority traffic. This kind of traffic tolerates a higher latency and, most importantly,
they should not disturb the traffic needing best-effort service itself or other services
that would propose advanced QoS architecture for time-constrained applications such
as DiffServ [35]. Moreover, the LBE service should also not exacerbate the bufferbloat
issue [36], which is the phenomenon of low throughput and high latency caused by
excessive buffering.

To offer an LBE service, the main idea is to exploit any unused bandwidth not being
used by best-effort service while being transparent to the later, that is, LBE traffic must
yield to best-effort traffic under congestion. As a result, LBE traffic may undergo a
high packet loss rate or even starvation. An LBE service can be deployed at different
layers [2,3,37–39]. Yet, in this thesis, we only focus on the LBE service at the transport
layer [2] because of the scalability and the ease of deployment of such an end-to-end
approach.

However, introducing LBE traffic always disturbs TCP traffic, as shown by the au-
thors in [12] and by our study in Chapter 3. Therefore, a difficulty when dealing with
LBE service is to determine its degree of disturbance: how much disturbance would be
acceptable and considered as non-intrusive to TCP traffic? There is no common answer
for this question as each operator or user would subjectively define their own degree of
disturbance. In this thesis, since we mainly focus on LEDBAT, a widely deployed LBE
protocol developed by BitTorrent, we take its performance as reference for discussion.
More specifically, we consider as LBE-compliant if and only if an LBE transport protocol
satisfies both following criteria:

• first, the LBE protocol must limit the maximum “disturbing” queuing delay that
it is allowed to introduce into the network around a fixed target;

• second, at the latest, the LBE protocol must yield to TCP, that is, resets its
congestion window to minimum, immediately after the buffer overflow caused by
TCP.

2.4 Feedback Control and PID Control

In this thesis, we deeply study LEDBAT, an LBE protocol developed by employing
feedback control theory, more specifically, PID control theory. Therefore, we devote this
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Figure 2.2: Block diagram of a feedback control system.

section to outline general feedback control systems, before delving into the LEDBAT
design in the next section.

2.4.1 Overview of Feedback Control

Feedback control systems are everywhere in our daily life, from household applica-
tions such as the thermostat in a house to aeronautical applications such as the autopilot
in an aircraft. The goal of feedback control is to determine the input of the controlled
system so that its output matches a reference input in spite of disturbances. Fig-
ure 2.2 illustrates fundamental elements of a feedback control system [40]:

Controlled system The system to be controlled, that is, to be regulated its prop-
erties.

Control input u The controllable variable of the controlled system.

Control output y The measurable property of the controlled system.

Reference input r The desired output of the controlled system.

Disturbance input w The uncontrollable and undesirable input that affects the mea-
sured output of the controlled system in conjunction with the
control input.

Control error e The difference between the reference input and the measured
output.

Controller The controller calculates the control input required to reach the
reference input, that is, reduce the control error to zero.
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Congestion control mechanisms are indeed feedback control systems. For standard
TCP, the controller is the AIMD mechanism at the sender. The controlled system is the
network including the receiver. Outputs of the controlled system are ACK packets from
the receiver. The inter-arrival time of ACK packets is then converted into a binary signal
that indicates whether or not a packet-loss event happens. The output of the controller
is the congestion window. Notice that there is no reference input for the controller in this
case. As as result, the maximum throughput of a flow is proportional to the maximum
congestion window achieved before a loss is incurred due to congestion. Lastly, from the
standpoint of a flow, other flows are disturbance inputs.

2.4.2 PID Control

Having considered the feedback control, we now briefly describe the PID (Proportional-
Integral-Derivative) control [41], which is the most popular feedback control mech-
anism. Simple, reliable, and easy to understand are the reasons why it is widely used
in the industry. The equation of the output u(t) of a PID controller, which is also the
control input of the controlled system, is as follows:

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

d

dt
e(t) (2.1)

where

Kp: Proportional gain,

Ki: Integral gain,

Kd: Derivative gain,

e(t): Control error.

Roughly speaking, the P-term Kpe(t) represents the present error, the I-term Ki
∫
e(t)dt

represents the accumulation of past errors, and the D-term Kd
d
dte(t) represents the

prediction for future errors. The performance of the PID controller strongly depends on
the tuning of three gain parameters Kp, Kd, and Ki. Finally, we do not always need
to use all the three terms of PID controller. There exist other forms of PID controllers
such as the P-type controller and PI-type controller. As explained in the next section,
LEDBAT uses the P-type controller to control its congestion window.
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2.5 Low Extra Delay Background Transport (LEDBAT)

In this section, we present Low Extra Delay Background Transport (LEDBAT), a widely
deployed LBE protocol that has been standardized by the Internet Engineering Task
Force (IETF) [10]. As we will see, while being a pervasive LBE protocol, LEDBAT suffers
from a number of issues, making it ill suited for certain networks such as constrained
wireless networks. Consequently, we cannot carelessly use LEDBAT to deploy LBE
services over satellite networks, which is the aim of this thesis.

2.5.1 LEDBAT in a Nutshell

LEDBAT is a delay-based transport protocol that aims at offering an LBE service. As
stated in RFC 6817 [10], the design goals of LEDBAT are:

1. to utilize end-to-end available bandwidth and to maintain low queuing delay when
no other traffic is present,

2. to add limited queuing delay to that induced by concurrent flows, and

3. to yield quickly to standard TCP flows that share the same bottleneck link.

To achieve its goals, LEDBAT implements two mechanisms. The first mechanism is
a P-type controller that controls the congestion window using the end-to-end queuing
delay as the congestion indicator. The objective of the controller is to limit the queuing
delay around a fixed target. This non-zero target queuing delay allows LEDBAT to
fetch the available capacity, and thus to saturate the bottleneck link when no other
traffic is present. Meanwhile, the queuing delay needs to be kept as low as possible to
make LEDBAT non-intrusive to standard TCP traffic. The LEDBAT controller relies
on the second mechanism, the queuing delay estimator, to measure the delay that
will be used as its input. More specifically, the queuing delay estimator estimates only
the end-to-end queuing delay on the forward path.

In the following subsections, we will describe in detail the two main components of
LEDBAT. For a better comprehension, we represent the LEDBAT congestion control
algorithm as a feedback control system depicted in Figure 2.3.

2.5.2 P-type Controller

The heart of LEDBAT is the P-type congestion controller (see Section 2.4.2). On receipt
of every ACK, the controller adjusts the congestion window to match the current queuing
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Figure 2.3: Block diagram of LEDBAT as a feedback control system.

delay to the target queuing delay τ . This target embodies the maximum queuing delay
that a LEDBAT connection is allowed to introduce in the network.

For each ACK received at discrete time k, the controller uses as input the queuing
delay error:

e(k) = τ − q(k)
τ

(2.2)

where q(k) is the current queuing delay, estimated by the queuing delay estimator. The
queuing delay error is positive when the current queuing delay is below the target. In
this case, the controller needs to increase the congestion window, and thus the sending
rate until the queuing delay reaches the target. When the error is negative, meaning
that the current queuing delay is beyond the target, the controller must slow down its
sending rate. Moreover, the size of the congestion window is modified proportionally
to the queuing delay error to avoid oscillation. Consequently, the congestion window
remains unchanged when the queuing delay error equals to zero. Following what we
have discussed so far, the controller calculates as output the change of congestion window
∆cwnd(k)

∆cwnd(k) = γe(k)
cwnd(k − 1) (2.3)

where ∆cwnd(k) represents the pace at which the controller must increase or decrease
the congestion window to match the queuing delay to the target queuing delay. The
reactivity of LEDBAT to queuing delay variations is further adjusted by the gain γ.
The bigger γ is, the faster LEDBAT’s congestion controller increases or decreases its
congestion window. Notice the resemblance of (2.3) to the P-term of (2.1). The size of
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the congestion window cwnd(k) is finally calculated by

cwnd(k) = cwnd(k − 1) + ∆cwnd(k) (2.4)

Finally, to be TCP friendly, LEDBAT behaves like TCP in case of loss, that is, a
LEDBAT sender halves its congestion window. The operation of the congestion con-
troller can be summed up as follows:

cwnd(k + 1) =


cwnd(k) + γe(k)

cwnd(k − 1) if no loss,
1
2cwnd(k) if loss

Choosing Target and Gain

RFC 6817 [10] recommends the target queuing delay to be fixed at 100 ms to make
LEDBAT non-disturbing to delay-sensitive traffic such as voice. This recommendation
is controversial because a non-compliant implementation could introduce the unfairness
issue between LEDBAT flows, as studied in [4, 7].

To prevent LEDBAT from being too aggressive, the RFC states that γ must be
lower than 1. Furthermore, we can distinguish two types of gain: increase gain γicr

and decrease gain γdcr which are involved in the increase and decrease phases of the
congestion window. In the increase phase of the congestion window (that is, q(k) < τ),
γicr must be set to 1 so that LEDBAT does not increase its congestion window faster
than TCP. On the contrary, in the decrease phase of the congestion window (that is,
q(k) > τ), γdcr may not be limited to let LEDBAT raise the pace at which it decreases its
congestion window when the queuing delay increases. Increasing γdcr allows LEDBAT
to be more sensitive to the increase of queuing delay.

Finally, setting LEDBAT parameters is a tradeoff as a target too small could make
LEDBAT sensitive to network conditions and a decrease gain too high could reduce
significantly its performance. We will analyze this tradeoff in more detail in Chapter 3.

2.5.3 Queuing Delay Estimation

The one-way delay (OWD) or end-to-end delay is the time taken for a data packet
to travel from one end system to another. This delay is composed by (see Figure 2.4):

Processing delay The amount of time it takes for a node to inspect the packet header
and determine where to send the packet;
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Figure 2.4: Components of a link delay.

Transmission delay The time required to transmit an entire packet onto the link;

Propagation delay The time needed for a bit of the packet to propagate from one
node to the subsequent node;

Queuing delay The time in the queue for a packet waiting to be forwarded. If a packet
arrives at an idle link, it is transmitted immediately onto the link and therefore
suffers no queuing delay. On the contrary, if the link is busy transmitting data, the
packet is placed into the queue. As long as packets arrive faster than the rate at
which they are transmitted, the queue keeps filling up. Consequently, the queuing
delay experienced by a newly arriving packet increases. The maximum queuing
delay is proportional to the buffer size at a node.

While the other delays, except for some noise, are considered as constant, the queuing
delay can vary from packet to packet. In consequence, we can assume that the base
delay — the sum of the constant delay components — is the minimum observed on the
end-to-end path. The queuing delay is then the difference between the current OWD
and the estimated base delay.

Having discussed the underlying logic, we now detail the LEDBAT process of esti-
mating the queuing delay. The sender places a timestamp from its local clock in each
sending data packet. When a receiver receives the data packet, the receiver calculates
the OWD as the difference between the timestamp from the receiver’s local clock and
the timestamp in the data packet. The receiver then feedbacks the computed OWD
to the sender through an ACK. In addition, the sender maintains a sliding window of
history of base delays. The objective of the sliding window is to discard old base delay
values in order to cope with route changes.
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An experienced reader will probably question about the problem of clock synchro-
nization. However, LEDBAT bypasses this problem by using only the difference between
the estimated OWD and the observed base delay. Since the estimated OWD and the
observed base delay both suffer from the same clock bias, the queuing delay estimation
process cancels any clock offset between the sender and the receiver as illustrated by
Figure 2.5. Suppose that the sender and receiver clocks in Figure 2.5 are desynchronized
by a constant offset ∆. At the beginning, the base delay Dmin of the sender is set to
infinity. After receiving the first data packet from the sender, the receiver feedbacks to
the sender the OWD D1 that equals to the difference between its local timestamp y1 and
the sender timestamp x0 (see Figure 2.5). Upon receiving the ACK from the receiver,
the sender updates its base delay Dmin and calculates the current queuing delay q as
follows:

D1 = y1 − x0 = x1 − x0 + ∆

Dmin = min(Dmin, D1) = x1 − x0 + ∆

q = D1 −Dmin = 0

The same process is repeated for the second data packet from the sender. Suppose now
that the queue is build up and thus, D2 > D1. Then, we have:

D2 = y3 − x2 = x3 − x2 + ∆

Dmin = min(Dmin, D2) = x1 − x0 + ∆

q = D2 −Dmin = (x3 − x2 + ∆)− (x1 − x0 + ∆)

= (x3 − x2)− (x1 − x0)

We can observe that the clock bias ∆ is automatically removed when computing the
current queuing delay.

Another clock issue that can affect the OWD estimation is the clock skew, which
is the difference between the rates of two clocks. However, unlike the synchronization
problem, the clock skew is not eliminated in the computation of the queuing delay. To
solve this issue, the RFC 6817 suggests some clock skew correction mechanisms.

2.6 Related Work on LEDBAT

Since it has been developed by BitTorrent, Inc. and later standardized by IETF, LED-
BAT has attracted significant attention from the scientific research community. The
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Figure 2.5: Queuing delay estimation process.

related work on LEDBAT can be classified into many categories as shown in Table 2.1.
Moreover, each work can belong to various categories. However, to ease the discussion,
in what follows, we only review each work once in a subsection which is most relevant
to the work.

2.6.1 LBE Compliance and Issues of LEDBAT

Many studies on LEDBAT performance demonstrate that LEDBAT successfully achieves
its design goals to be an LBE-compliant protocol. However, at the same time, these
studies also reveal LEDBAT limitations.

Using their own LEDBAT implementation in ns-2, Rossi et al. [6] study the LEDBAT
performance in the presence of TCP. They conclude that LEDBAT ensures compliance
with the LBE principle. The authors indicate that in case of misconfiguration, LEDBAT
behaves as standard TCP. Their results also point out the unfairness issue between
LEDBAT flows. This intra-unfairness, called latecomer advantage, arises because
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Subsection Reference Categories

2.6.1

Rossi et al. [6] X X X
Rossi et al. [42] X X X
Andreica et al. [43] X X
Schneider et al. [7] X X X X
Ros and Welzl [44] X X
Carofiglio et al. [8] X X
Kühlewind and Fisches [5] X X X
Carofiglio et al. [9] X X
Komnios et al. [45] X X X

2.6.2
Carofiglio et al. [4] X X X X X
Abu and Gordon [11] X X
Kuhn et al. [12] X X X

2.6.3
Testa et Rossi. [46] X X
Testa et al. [47] X X
Testa et al. [48] X X
Sanhaji et al. [49] X X
Chirichella et al. [50] X X
Chirichella and Rossi [51] X X

2.6.4
TCP Nice [52] X X X
TCP-LP [53] X X X
NF-TCP [54] X X

Approaches Simulation
Experimental

LBE Compliance

Issues
Aggressiveness
Latecomer
Others

Parameter Tuning

Applications
BitTorrent
YouTube
Bufferbloat Measurement

Other LBE protocols

Table 2.1: Related work on LEDBAT
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latecomer LEDBAT flows may sense different minimum one-way delays and thus can
starve ongoing flows. However, this issue does not persist in the presence of TCP.
Finally, the authors suggest a potential solution for the latecomer-advantage problem
using the well-known slow-start algorithm.

In another work, Rossi et al. [42] investigate the evolution of the BitTorrent client,
from TCP version to LEDBAT-over-UDP version. Experiments are conducted in a
controlled testbed and over the Internet. Once again, they verify the promising LBE
aspect of LEDBAT. The authors further point out that TCP traffic on the reverse
(backward) path makes the queuing delay estimation of LEDBAT inexact. In this case,
LEDBAT greatly underutilizes the link capacity of the forward path.

Along the same lines, Andreica et al. [43] confirm the non-intrusive property of
LEDBAT in a real testbed using a user-level Python implementation. This study also
shows that there exists an underutilization of the available bandwidth. However, this
problem seems due to the computational overhead of their Python implementation.

Schneider et al. [7] implement their own version of the LEDBAT algorithm for testing
with a variety of home gateways. Their results show that while LEDBAT fulfills its
role as an LBE protocol, modern home gateways using sophisticated queuing schemes
provide a much more effective LBE service than LEDBAT. In their work, the authors also
analyze the latecomer-advantage issue of LEDBAT. They question and later condemn
the use of slow-start as a solution for this issue. Additionally, their study exposes
two other problems of LEDBAT: intra-unfairness of LEDBAT flows with different
target values or different RTT (RTT-unfairness). In fact, a LEDBAT flow having
a higher target queuing delay or a lower RTT can starve another LEDBAT flow with
a lower target or higher RTT, respectively. The authors finally point out that a home
gateway with a queuing discipline enabled degrades the LEDBAT performance. As a
consequence, LEDBAT is not LBE-compliant anymore.

Moreover, LEDBAT can greatly increase the network latency making its impact on
the network no longer transparent, as revealed by Ros and Welzl [44] via simulation.
Indeed, LEDBAT can suffer from the base delay growth problem. To cope with
route changes, LEDBAT employs a sliding window of history of base delay estimations.
According to the LEDBAT RFC, the size of this sliding window is 10 so that LEDBAT
discards old base delay values every 10 min. At the end of a 10-min period, if the buffer
never empties, the LEDBAT sender will take into account its own induced queuing delay
as part of the new base delay. As a consequence, after every 10 min, the base delay raises
by an amount that equals to the target queuing delay, which is 100 ms in the LEDBAT
RFC. Furthermore, the authors show that LEDBAT flows increase the transfer time of
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short-lived TCP flows.

Addressing the latecomer advantage

The LEDBAT latecomer unfairness is further studied by Carofiglio et al. in [8] by means
of simulation. They propose different schemes to fix this latecomer problem including
using slow start, random drops, probabilistic decrease, and in particular multiplicative
decrease. In conclusion, the authors lean towards the multiplicative decrease scheme
and argue that this scheme is the most appropriate solution.

Subsequently, Kühlewind and Fisches [5] review the multiplicative decrease scheme
proposed in [8] and its variants employing a simulative approach. The results point
out that multiplicative decrease schemes deteriorate the link utilization and may raise
the completion time. Consequently, the authors argue that the default linear decrease
scheme, which achieves a higher link utilization, is more suitable for LEDBAT as an
LBE protocol. They also exhibit the aggressiveness of LEDBAT towards TCP, yet
another severe LEDBAT issue. Finally, they advocate a higher decrease gain to solve
this issue.

Carofiglio et al. [9] design fLEDBAT, a LEDBAT variant that aims to solve the
latecomer unfairness issue. The algorithm of fLEDBAT is as follows:

cwnd(k + 1) =



cwnd(k) + γ

cwnd(k) if no loss and e(k) ≤ 0,

cwnd(k) + γ

cwnd(k) + ζ

τ
e(k) if no loss and e(k) > 0,

1
2cwnd(k) if loss

where γ still is the gain. The main difference with LEDBAT is that fLEDBAT uses a
multiplicative decrease scheme with the decrease factor ζ when the estimated queuing
delay is above the target queuing delay τ . The authors validate the efficiency and fairness
of the new LBE protocol using a fluid model. They further evaluate the performance
of fLEDBAT through ns-2 simulation. Although this protocol solves the latecomer ad-
vantage problem, fLEDBAT also adds another degree of freedom — the decrease factor
ζ — besides the target τ and the gain γ which complicates the parameter tuning as shown
by the sensitive analysis in [9].

Komnios et al. [45] evaluate the performance of LEDBAT and fLEDBAT in sub-
packet regimes, where the per-flow throughput is less than one packet per RTT. More
specifically, by means of simulation, the authors assess the feasibility of employing an
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LBE protocol, such as LEDBAT, to help users of wireless community networks in de-
veloping regions efficiently share low-bandwidth backhaul Internet links. The results
show that in the case where all flows use the same access method in sub-packet regimes,
LEDBAT and fLEDBAT attain a higher link efficiency and fairness than TCP. How-
ever, fLEDBAT flows become aggressive towards TCP flows when they compete at same
bottleneck link in sub-packet regimes. Although only the interaction between fLEBDAT
and TCP is shown, the authors expect the same aggressive behavior in case of LEDBAT.

2.6.2 LEDBAT Parameter Tuning

The sensitive analysis of Carofiglio et al. [4] reveals the difficulty in tuning two key LED-
BAT parameters — the target and gain. By means of simulation, the authors evaluate
the impact of various settings of target and gain on the LEDBAT performance in two
scenarios: inter-protocol (against TCP Reno) and intra-protocol (against LEDBAT it-
self). In the inter-protocol scenario, while LEBDAT is likely to provide an LBE service,
LEDBAT also shows its aggressiveness towards TCP Reno in case of misconfiguration of
the target. In the worst case, LEDBAT can even starve TCP Reno. On the other hand,
the intra-protocol scenario shows that LEDBAT flows with a higher target will have
advantage over other LEDBAT flows and can easily starve the latter. In both scenarios,
tuning the gain has little impact on LEDBAT performance. In their work, Carofiglio et
al. also give a comparison of LEDBAT with TCP-NICE [52] and TCP-LP [53], other
LBE congestion control mechanisms. The result indicates that while generally being
more LBE-compliant than the other two, LEDBAT suffers from RTT-unfairness, that
is, the symptom in which the queuing delay of a small-RTT LEDBAT flow reaches its
target first and thus starves another LEBDAT flow with higher RTT.

Along the same lines, Abu and Gordon [11] study the effect of different settings of
gain on the LEDBAT performance. Their result shows that increasing the gain decreases
the time taken for LEDBAT to reach the steady state. But a too high value of the gain
causes oscillations of the LEDBAT congestion window in the steady state. The impact
of the gain is obvious since this is an intrinsic property of the P-type controller, which
is already well studied in the control theory. They propose and implement in ns-2 an
algorithm for dynamically tuning the parameter gain of the LEDBAT controller.

In their work, Kuhn et al. [12] investigate the impact of different values of the target
queuing delay on LEDBAT’s performance over high bandwidth delay product (BDP)
networks, in particular, over satellite networks. Their experiments are driven using an
ns-2 extension named Cross-Layer InFormation Tool (CLIFT) [55]. This extension allows
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ns-2 to simulate with real physical layer traces for more realistic results. In their study,
the authors use satellite link traces provided by CNES1. They conclude that, in the
context of high BDP networks, the target value of 5 ms is an optimal trade-off between
the impact of the LBE traffic on the primary traffic and effectively exploiting the link
capacity. They also suggest dynamically adapting the target queuing delay to different
network conditions.

2.6.3 LEDBAT Applications

We now review in this section well-known applications of the LEDBAT protocol.

BitTorrent

BitTorrent is one of the most widespread peer-to-peer (P2P) file sharing protocol devel-
oped by BitTorrent, Inc. To send or receive files, a user requires a client program that
implements the BitTorrent protocol. Since December 2008, LEDBAT has been imple-
mented in µTorrent, a popular freeware and closed source BitTorrent client proprietary
to BitTorrent, Inc. Although LEDBAT has been widely deployed within µTorrent, few
studies have focused on the LEDBAT performance in P2P settings.

Testa et Rossi. [46] are the first that evaluate the impact of LEDBAT based on
download completion time, the main BitTorrent user-centric metric, by means of
ns-2 simulation. More specifically, they integrate the open-source BitTorrent module
for ns-2 [56] with their own ns-2 implementation of LEDBAT to investigate two types
of swarm population: homogeneous and heterogeneous swarms. In homogeneous
swarms, all peers use either TCP or LEDBAT as their transport protocol. Conversely, in
heterogeneous swarms, half of the population are TCP peers and the rest are LEDBAT
peers. The simulation results reveal that LEDBAT peers experience a smaller download
completion time in case of heterogeneous swarms. The authors explain that this time
gain is a benefit of faster signaling traffic owing to lower uplink queuing delays intro-
duced by LEDBAT peers. To the contrary, no performance difference between TCP and
LEDBAT peers is observed in homogeneous swarms.

In their later work [47, 48], Testa et al. confirm the results of [46] using an experi-
mental approach. The experiments in both studies are carried out over the Grid’5000
platform [57], a testbed for designing and evaluating large-scale distributed systems. In
particular, the study in [48] focuses on the trade-off between the data plane through-
put and the control plane delay on the BitTorrent download completion time. Besides

1Centre National d’Études Spatiales
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LEDBAT employed in µTorrent, the authors also evaluate the impact of different conges-
tion control algorithms (Cubic, New Reno, LP, Vegas and Nice) when used with either
µTorrent or mainline BitTorrent clients. The experimental results verify and extend
the simulation results in [46]. Indeed, a specific congestion control algorithm has little
impact on the performance of BitTorrent clients in homogeneous swarms, while peers
implementing LBE algorithms have smaller download completion time in heterogeneous
swarms.

YouTube

Even though their study centers on Congestion Exposure (ConEx), an IETF mechanism
by which senders inform the network about the congestion encountered, Sanhaji et al. [49]
also analyze the effect of long-lived LEDBAT flows on the Quality of Experience (QoE)
perceived by users of YouTube, a popular video-sharing website. By implementing the
YouTube server and player models in ns-2, the authors show that LEDBAT, as the
congestion control mechanism for long-lived flows, improves the QoE of YouTube users.

Bufferbloat Measurement

Chirichella et al. [50] develop an approach to infer the queuing delay experienced by
remote LEDBAT hosts. They then demonstrate the reliability of their technique in a
local testbed. Afterwards, Chirichella and Rossi [51] conducted an 8-month Internet
experiment using aforementioned technique to assess the current level of bufferbloat
encountered by BitTorrent users. Their results show that while LEDBAT mitigates the
bufferbloat, LEDBAT does not solve this problem completely. Actually, some BitTorrent
users still have a significant queuing delay more than 1 s.

2.6.4 Historical and Recent LBE Transport Protocols

TCP Nice

TCP Nice [52] upgrades the congestion control mechanism of TCP Vegas [33] to provide
an LBE service. Since TCP Vegas is not designed to be an LBE protocol, its linear
decrease scheme has great impact on standard TCP even though it can detect congestion
early. To be LBE-compliant, TCP Nice adds a multiplicative decrease scheme into TCP
Vegas and improves the congestion detector. Indeed, TCP Nice keeps a minimum RTT
(minRTT ) and a maximum RTT (maxRTT ). A congestion signal is fired if within a
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same RTT, the delay experienced by a fixed fraction of packets exceeds a threshold:

currentRTT > minRTT + (maxRTT −minRTT ) · threshold

TCP Nice reacts to early congestion signal by halving the congestion window. In case
of packet loss, TCP Nice reacts like TCP NewReno. Otherwise, TCP Nice acts like
TCP Vegas. Furthermore, TCP Nice has the ability to reduce the congestion window
below one by sending a packet after several RTTs. The ns-2 simulations and real-life
experiments [52] show that TCP Nice achieves its goal of being a low-priority protocol.

TCP-LP

Unlike LEDBAT and TCP Nice, TCP-LP [53] is a loss-based LBE protocol. To infer early
congestion, TCP-LP maintains a minimum OWD (minOWD) and a maximum OWD
(maxOWD). Then it computes an Exponentially Weighted Moving Average (EWMA)
of measured OWDs with smoothing parameter α. Early congestion is detected if the
EWMA of measured OWDs is greater than a threshold within the range of the minimum
and maximum OWD:

ewmaOWD(k) = (1− α) · ewmaOWD(k − 1) + α · ewmaOWD(k)

ewmaOWD(k) > minOWD + (maxOWD −minOWD) · threshold

In the presence of early congestion indication, TCP-LP halves its congestion window and
enters an inference phase by initializing an inference timeout timer. During the inference
phase, if there is no other early congestion indication, TCP-LP maintains its congestion
window until the timeout. Otherwise, TCP-LP decreases its congestion window to one
packet. After the inference phase, TCP-LP increases its congestion window by one per
RTT. In case of loss, TCP-LP reacts like TCP New Reno. The ns-2 simulations and
real-life experiments [53] show that TCP-LP can provide a potentially good LBE service.

NF-TCP

Network-Friendly TCP (NF-TCP) [54] uses a network-assisted approach to offer an
LBE service. It employs Explicit Congestion Notification (ECN) [58] to make delay-
insensitive flows yield to delay-sensitive flows under congestion. In order to operate,
NF-TCP requires that at least one router along the path deploys a modified version
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of RED [59] with ECN. In addition, NF-TCP integrates a novel bandwidth estimation
mechanism, called ProECN, to quickly exploit any spare link capacity. While simulation
results show that NF-TCP is a promising LBE protocol, its deployment is challenged by
the need for the extra support from routers.

2.7 Conclusion

An extensive review on the state of art demonstrates the appeal of LEDBAT in providing
the LBE service. However, the review also points out some troublesome flaws of LED-
BAT, especially the aggressiveness and latecomer unfairness issues. Most importantly,
we observe that while most proposed solutions concentrate on the latecomer unfairness
issue, there is only one hint for the aggressiveness issue. We stress the severity of this
research gap because, from our point of view, the aggressiveness of LEDBAT can seri-
ously harm other important traffic and thus is more serious than the latecomer issue.
Indeed, the latecomer issue only affects low-priority LEDBAT flows and is solved in the
presence of TCP flows.

In light of the gravity and the lack of a solution for the aggressiveness issue, we
propose an in-depth study of this issue in the next chapter. And then in Chapter 4,
based on the insight gained from our study, we design a new LBE protocol aiming to
solve both the aggressiveness and latecomer issues by employing fuzzy control theory.
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3
LEDBAT Analysis

A misconfiguration can make LEDBAT more aggressive than TCP. Therefore, this chap-
ter explores the set of optimal parameters allowing LEDBAT to effectively perform as
an LBE protocol. We first present the motivation of this study in Section 3.1. Then,
using ns-2, we evaluate in Section 3.2 the impact of different buffer sizes on the behavior
of LEDBAT, in the presence of TCP NewReno connections. In Section 3.3, we assess
whether there exists a combination of target and decrease gain values that let LED-
BAT have an LBE behavior in different network configurations. Next, in Section 3.4,
we evaluate the performance of the optimal combination. Section 3.5 tests the optimal
combination of target and decrease gain of LEDBAT in a highly loaded network. We
finally conclude this chapter in Section 3.6.

3.1 Motivation

As previously described in Chapter 2, LEDBAT is mainly defined by two parameters,
namely target queuing delay and gain, that strongly impact LEDBAT behavior in terms
of fairness with other protocols. Furthermore, there are two types of gain: increase gain
and decrease gain which are used in the increase and decrease phases of controlling the
congestion window. RFC 6817 [10] provides guidelines to configure both parameters.
Specifically, it recommends a default target of 100 ms, while the default settings for
both types of gain are 1. However, these guidelines are questioned by several studies
as they may lead to the generation of non-LBE traffic. Indeed, the tuning of LEDBAT
is difficult and highly depends on network conditions. As an illustration, the authors
of [12] conclude that the parameter target of LEDBAT should not be higher than 5 ms
in a high BDP network. In addition, the authors of [44] show that LEDBAT can greatly
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increase the network latency, making its impact on the network no longer transparent.
Consider:

1. LEDBAT is currently deployed over BitTorrent network;

2. The misconfiguration of LEDBAT can make other TCP flows back off and signifi-
cantly increase the network latency;

3. LEDBAT may exacerbate the bufferbloat issue [36];

4. Several projects attempt to reduce the Internet latency, such as RITE [60] or the
Workshop on Reducing Internet Latency [61].

We believe that a deep study on the impact of LEDBAT internal parameters would allow
to assess a right set of parameter settings to reduce its potential negative effect on the
network. In particular, we question the optimal setting of two LEDBAT key parameters,
the target and the gain, considering various buffer sizes. We also study the impact of
LEDBAT on TCP in a highly loaded network. The main objective of such study is to
close the discussion about the feasibility of integrating LEDBAT on a large scale,
before diving into possible improvements of its algorithm such as proposed in [5].

3.2 LEDBAT Behavior

In this section, we evaluate by means of simulation the impact of different buffer sizes
on the behavior of LEDBAT in the presence of a TCP NewReno connection (hereinafter
simply denoted TCP).

3.2.1 Simulation Setup

Simulations have been performed using the network simulator ns-2. We use the LEDBAT
module developed by Valenti et al. [6] based on RFC 6817.

As the reference network topology, we use a dumbbell topology where a TCP flow
and a LEDBAT flow share a single bottleneck link. Both LEDBAT and TCP sources
send packets size of P = 1500 B. The bottleneck link has a capacity set to C = 10 Mb/s
and a one-way propagation delay d = 50 ms. The bottleneck router uses a FIFO drop-tail
queue with a size of B packets. For convenience, we explore the set of bottleneck buffers
B being a ratio to the bandwidth-delay product (BDP) in terms of packets. Hence, we
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have:

B = dn ·BDP e

=
⌈
n · C · 2d

8P

⌉
(3.1)

where the ratio n ∈ [0.1, 0.2, . . . , 1.9, 2.0] and dxe is the ceiling function. Since B must
be an integer, we use the ceiling function to get the smallest integer not less than B.
We explore the set of target queuing delays τ ∈ [25, 50, 100] ms and the set of decrease
gains γdcr ∈ [1, 10]. We also express B as a ratio to the target τ in terms of packets as
with the BDP:

B : τ = B · 8P
τ · C

(3.2)

To analyze the behavior of LEDBAT with respect to different buffer sizes, we consider
the LEDBAT congestion window, the queue length of the bottleneck buffer, and the link
utilization η of LEDBAT and TCP flows.

We consider only long-lived TCP and LEDBAT flows. Every simulation lasts 200
seconds, and the link utilization is computed over the last 150 seconds of the simulation.
We denote by tX the time at which the flow using protocol X starts to transmit data.
The following scenarios are simulated:

• Scenario A: tLEDBAT = tTCP = 0 s;

• Scenario B: tLEDBAT = 0 s, tTCP = 20 s;

• Scenario C: tLEDBAT = 20 s, tTCP = 0 s.

In the following, we present only the scenario A as similar results are observed for the
scenarios B and C.

3.2.2 Endangered TCP — LEDBAT Misconfiguration

This subsection presents a misconfiguration leading to a full utilization of the link ca-
pacity by LEDBAT flows whatever the TCP load. Similar situations are also reported
by other authors [4, 5]. In this work, we take a closer look at this problem and its re-
lationship with buffer sizing. Figure 3.1 and 3.2 show the time evolution of LEDBAT
and TCP congestion windows as well as the queue length, in cases where LEDBAT does
not fulfill its primary objectives. The target is τ = 100 ms (' 83.3 packets), and the
decrease gain is γdcr = 1.
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Figure 3.1: Loss-based behavior of LEDBAT.

RFC 6817 [10] states that, if a compromised target is set to infinity, “the algorithm is
fundamentally limited in the worst case to be as aggressive as standard TCP”. Actually,
it corresponds to the case where the buffer size is too small in comparison to the target,
as shown in Figure 3.1. In this case, the buffer size is 9 packets, so the ratio of the buffer
size to the target is 0.1. Thus, the queuing delay sensed by LEDBAT never reaches
the target. Therefore, LEDBAT always increases its sending rate until a loss event is
reported.

However, there are circumstances “worse than RFC 6817 worst case” in which hostile
LEDBAT makes TCP back off. Figure 3.2a illustrates three hostile scenarios with a
same network configuration but with a buffer size of 92 packets. Even in an unfavorable
situation for LEDBAT, when it starts after TCP, LEDBAT succeeds to increase its
congestion window more than TCP. Whatever the scenario presented in this subsection,
TCP cannot compete against LEDBAT.

To understand this hostile behavior of LEDBAT, we inspect the scenario where
two flows TCP and LEDBAT start at the same time (middle plot in Figure 3.2a). In
Figure 3.2b, we magnify the results of the first 50 seconds of the simulation. In the
slow-start phase, TCP exponentially increases its congestion window. As a consequence,
the buffer fills up immediately and then limits the LEDBAT congestion window to one
packet. After the slow-start phase, from t = 3 s to t = 5 s, as the queuing delay is small
compared to the target, LEDBAT and TCP congestion windows conjointly grow at the
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Figure 3.2: Aggressive behavior of LEDBAT towards TCP

same speed. As the queue continues to increase, LEDBAT reduces the increasing speed
of its congestion window. Meanwhile, TCP continues to linearly increase its congestion
window. After t = 11 s, when the queuing delay is higher than the target, LEDBAT
decreases slowly and slightly its congestion window. Although the buffer size is bigger,
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it remains relatively small to the target. The ratio of the target to the buffer size is 1.1
in this case. Thus, LEDBAT does not have enough time to react to queuing delay before
TCP causes a buffer overflow at t = 15 s. After that, TCP halves its congestion window,
resulting in a reduction of the queuing delay. Since the queuing delay is now below the
target, LEDBAT raises again its congestion window conjointly with TCP. Consequently,
after several cycles, LEDBAT exploits more capacity than TCP.

3.2.3 LEDBAT Working Regions

The previous subsection illustrates cases where LEDBAT is too aggressive. In this
subsection, we identify different working regions of LEDBAT. We denote as “working
regions” areas where LEDBAT behaves correctly as an LBE protocol. For each combi-
nation of target and decrease gain, we plot the link utilization of TCP flow and the total
link utilization of two flows against the buffer size.

Figure 3.3 presents only the simulation results from the scenario where two TCP and
LEDBAT flows start at the same time (Scenario A). We do not present the results of
Scenario B and C as similar behavior is observed. Each plot corresponds to a combination
of target and decrease gain. From top to bottom, the target slides from 100 ms to 25 ms.
The decrease gain is set to 1 in the first column and 10 in the second column. The
first (bottom) x-axis is the ratio of the buffer size to the BDP. The second (top) x-axis
represents the same buffer size but as the ratio to the target. The y-axis is the link
utilization.

Impact of the Target

Fixing the decrease gain to 1, we study the impact of the target setting on the behavior
of LEDBAT. As shown in Figure 3.3, we distinguish three operating regions of LEDBAT.
First, in the leftmost region, LEDBAT behaves like TCP. In other words, as previously
explained in Subsection 3.2.2, LEDBAT always increases its sending rate until a loss
event is reported. In this case, the buffer size is small in comparison to the target.
Hence, TCP and LEDBAT fairly share the link capacity (ηTCP ' ηLEDBAT). Then, in
the middle region, LEDBAT becomes hostile to TCP. In consequence, the link utilization
of TCP reduces progressively to a certain point (ηTCP � ηLEDBAT). As the buffer size
still increases, the aggressiveness of LEDBAT decreases. Finally, in the rightmost region,
LEDBAT works correctly as a LBE protocol (ηTCP � ηLEDBAT). To have enough time
to react to queuing delay variations, we measure that LEDBAT needs a large buffer size
in comparison to its target (more than 1.5 times).
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Figure 3.3: Link utilization in terms of buffer size
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Considering now the buffer size in terms of the ratio to the BDP, we see that a
target of 100 ms requires a buffer size as large as 1.6 times the BDP in order to perform
in low-priority mode. This excess need of buffer introduces an excessive queuing
delay known as the bufferbloat phenomenon [36]. A smaller target mitigates this
issue. As seen in Figure 3.3, the smaller the target, the smaller is the size of the buffer.

Impact of the Decrease Gain

We now study the impact of the decrease gain setting on LEDBAT behavior. Figure 3.3
shows that, for each target, increasing the decrease gain shrinks the hostile region from
both sides. As a consequence, the LBE region expands to the left, meaning a reduction
in the need for buffer size of LEDBAT for low-priority mode. However, a higher decrease
gain also amplifies the loss-based region.

As a conclusion, to increase the LBE working region of LEDBAT, we can reduce the
target or raise the decrease gain separately or at the same time. We also highlight that
setting LEDBAT parameters is a tradeoff as a target too small could make LEDBAT
sensible to network conditions and a decrease gain too high could reduce significantly
its performance.

3.3 Optimal Combination of Target and Decrease Gain

In this section, we assess if there exists a combination of target and decrease gain allowing
LEDBAT to behave as an LBE protocol regardless of the network configuration.

3.3.1 Network Configuration

We use the same dumbbell topology as in Section 3.2. We consider different capacities
C ∈ [1, 5, 10, 20, 50] Mb/s and different one-way propagation delays d ∈ [10, 50, 100, 150,
200, 250] ms of the bottleneck link. As in Section 3.2, we express the bottleneck buffer
B as the ratio to the BDP. For each network setting C, d, and B, we explore the set of
target queuing delays τ ∈ [5, 25, 50, 75, 100] ms and the set of decrease gains γdcr ∈ [1, 10].
We run about 60 simulations for each setting of target and decrease gain. We drove fewer
simulations for small BDP networks as we exclude all cases with duplicate values of B
caused by the ceiling function and where B is equal to 1.

In each simulation, a LEDBAT flow starts at t = 0 s and then a TCP flow starts
later at t = 200 s. The simulation lasts 1000 seconds. We calculate the link utilization η
of each flow over the last 500 seconds.
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Figure 3.4: Number of R and W cases for each target setting

We use the following clustering method to classify our data and represent the set
of working combinations. For each combination of target and decrease gain, when B =
BDP , if the link utilization of TCP flow ηTCP ≥ 0.8, then we choose the link utilization
of LEDBAT flow as reference ηref = ηLEDBAT. Then, for every other value of B, we
calculate ∆ = |ηLEDBAT − ηref|. If ∆ ≤ ε and ηTCP ≥ 0.8, then we classify B in the
cluster “Right” (denoted R), otherwise, in the cluster “Wrong” (denoted W ). In our
study, we use ε = 0.15. So, for different buffer sizes, if ηTCP is always ≥ 0.8 and the
difference between ηLEDBAT and ηref is within a limit of 15%, then we say that the
combination of target and decrease gain works well for these buffer sizes.

Finally, we use statistical analysis to find which combination of target and decrease
gain works well in most network configurations.

3.3.2 Choosing the Target

We begin our analysis by finding the optimal target value. In Figure 3.4, using histogram,
we group the simulation results into different categories of network capacities and then,
into subclasses of target values. For every target value, the stacked column represents
the number of R and W cases. The column height corresponds to the total simulations
including all decrease gain settings for a target value. For each setting of target, we
have 120 simulations for high capacity networks and fewer simulations in case of small
capacity networks.
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Figure 3.5: Number of R cases when γdcr = 1 and γdcr = 10 for each target setting

In Figure 3.4, we observe that the number of R cases of a target decreases as the
network capacity decreases. Actually, the buffer size, expressed in ratio to the BDP,
reduces when the network capacity is smaller. Therefore, the ratio of the buffer size
to the target also becomes smaller. In consequence, LEDBAT behavior falls back into
either hostile region or loss-based region.

As expected, Figure 3.4 shows that a target value of 5 ms works in most cases. These
experiments allow us to conclude that setting the target to 5 ms is optimal.

3.3.3 Choosing the Decrease Gain and the Optimal Combination of
LEDBAT Parameters

Having the optimal target value, we still use the histogram representation to find the
optimal decrease gain. For each target setting, we present the number of R cases for
each corresponding decrease gain value. As shown in Figure 3.5, setting the decrease
gain to 10 is better as it increases the number of R cases.
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3.4 Testing the Optimal Combination

3.4.1 Impact on TCP NewReno

In this subsection, we now evaluate the impact of the optimal combination of target
and decrease gain on TCP using the network configuration in Section 3.2. For reference
purpose, we also simulate the scenario where TCP is the only protocol in the network. In
Table 3.1, we report results of two cases where B = BDP = 84 packets and B = BDP

2 =
42 packets. Table 3.1 also shows the gain (in green) or loss (in red) of the link utilization
of TCP and of the whole. For comparison, we are only interested in combinations of
parameters that work in low-priority mode with either buffer sizes, that is, (25 ms; 1)
and (25 ms; 10) (see Figure 3.3 in Section 3.2).

Buffer Combination ηNewReno ηLEDBAT ηTotal
(pkts) (τ ; γdcr) (%C) (%C) (%C)

84 (= BDP)

Only NewReno 99.99 – 99.99
(25 ms; 1) 98.04 (−1.95%) 1.95 99.99 (+0%)
(25 ms; 10) 98.02 (−1.97%) 1.97 99.99 (+0%)
(5 ms; 10) 99.13 (−0.86%) 0.86 99.99 (+0%)

42 (= BDP
2 )

Only NewReno 96.04 – 96.04
(25 ms; 1) 88.77 (−7.57%) 8.82 97.59 (+1.61%)
(25 ms; 10) 89.87 (−6.42%) 8.02 97.89 (+1.93%)
(5 ms; 10) 94.21 (−1.91%) 3.53 97.74 (+1.77%)

Table 3.1: Optimal LEDBAT sharing bandwidth with TCP NewReno

At first glance, Table 3.1 shows that introducing a LEDBAT flow always takes a
portion of network capacity achieved by TCP when TCP is the only transport protocol
on the network. When the buffer size equals to BDP, TCP alone exploits almost full
capacity of the network (99.99%). LEDBAT employing the optimal combination of
parameters introduces least impact on the TCP performance (−0.86%) while keeping
the total throughput same as in the case of TCP alone. However, in this case, LEBDAT
also obtains the lowest throughput (0.86%).

On the other hand, when the buffer size equals to BDP
2 , TCP alone obtains less

network capacity (96.04%). But in this case, introducing LEDBAT using the optimal
combination of parameters increases the total network capacity exploited (+1.77%) while
causing least impact on TCP performance (−1.91%). The combination (25 ms; 10) allows
to obtain a better network capacity (+1.93%), but also makes more impact on TCP in
the same time (−6.42%).
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Figure 3.6: Aggressive behavior of LEDBAT towards CUBIC TCP

The results from the two showcases above indicate that LEDBAT traffic always has
some impact on TCP traffic. The same observation are given by the authors of [12]. Fi-
nally, we conclude that the optimal combination of target and decrease gain is (5ms; 10).
This result is consistent with our discussion in Section 3.2.

3.4.2 LEDBAT Behavior in the Presence of CUBIC

To deal with the aggressiveness of LEDBAT, one may attempt to use a more aggressive
TCP variant such as CUBIC, hoping that it will behave better than standard TCP in
the hostile region. Unfortunately, in this case, it takes longer for LEDBAT to get a larger
share of link capacity, but CUBIC will totally yield to LEDBAT in the end. Figure 3.6
exhibits the aggressiveness of LEDBAT towards CUBIC TCP. In this example, we use
the same network configuration in Section 3.2 with a buffer size of 92 packets.

3.4.3 Global Optimal Combination Is Not Local Optimal Combination

The combination of target and decrease gain (5ms; 10) is globally optimal, that is,
optimal over a wide range of network configurations. However, it is not necessarily
a local optimal combination for a specific network configuration. Moreover, the local
optimal combination depends on the variant of TCP used. To demonstrate it, in this
section, we heuristically find the local optimal combinations for the network configuration
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Figure 3.7: Throughputs of TCP variants and LEDBAT with different local optimal
combinations of parameters.

in Section 3.2 with a buffer size of 84 packets, which equals to the BDP. We roughly
define a local optimal as a combination of parameters in which the gain is fixed to one
and the target is the maximum target queuing delay that still keeps LEDBAT in its
working region. The optimal combinations are (65ms; 1) for LEDBAT in the presence
of standard TCP and (80ms; 1) for LEDBAT in the presence of CUBIC.

Figure 3.7 shows the difficulty of tuning LEDBAT parameters. Indeed, the local
optimal combination of LEDBAT parameters in the presence of CUBIC (80ms; 1) is
clearly not the local optimal one in the presence of standard TCP because CUBIC is
more aggressive than standard TCP. And the local optimal combination of LEDBAT
parameters in the presence of standard TCP (65ms; 1) degrades LEDBAT performance
in the presence of CUBIC.

In Table 3.2, we compute the gain and loss of throughputs when passing from the
global optimal combination (5ms; 10) to the local optimal combinations. We can easily
observe that LEDBAT greatly increases its throughputs while making little more impact
on TCP throughputs.

The results in this section demonstrate that the tuning of LEDBAT is very difficult
and depends on different conditions. Moreover, even with the global optimal combination
of parameters (5 ms; 10), the latecomer unfairness problem of LEDBAT still persists, as
illustrated in Figure 3.8.
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Combination ηTCP ηLEDBAT
(τ ; γdcr) (%C) (%C)

NewReno
(5 ms; 10) 99.13 0.86
(65 ms; 1) 92.35 7.64
Gain/Loss −6.84% +778.37%

CUBIC
(5 ms; 10) 99.34 0.65
(80 ms; 1) 98.89 1.10
Gain/Loss −0.45% +69.23%

Table 3.2: Optimal combinations for a specific network configuration.
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Figure 3.8: Latecomer unfairness of LEDBAT arises even with the global optimal com-
bination of parameters (5 ms; 10).

3.5 LEDBAT in Highly Loaded Networks

In this section, we test the optimal combination of target and gain of LEDBAT found
in Section 3.3 in a highly loaded network. We also take this opportunity to evaluate
other LBE protocols such as TCP Nice [52] and TCP-LP [53]. TCP-LP implementation
is available in ns-2 TCP-Linux. For TCP Nice, we use the module proposed in [4].

As in Section 3.2, we use a dumbbell topology with a bottleneck capacity C =
10 Mb/s and a one-way propagation delay d = 50 ms. The buffer size is set to 84 packets
and equals to the BDP, according to the classical “rule-of-thumb”. In each simulation,
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we consider N LBE sources and N TCP sources, where N ∈ [1, 10, 20, 40, 60, 80, 100].
The starting time of a TCP flow is uniformly distributed between 0 and 200 seconds.
To assess the impact of LBE protocols on TCP, LBE flows begin to transfer data in
an unfavorable situation, that is, only after all TCP flows have started. Therefore, the
starting times of the LBE flows are uniformly distributed between 300 and 500 seconds.
It should be noticed that the latecomers problem of LEDBAT is negligible when there is
interaction between LEDBAT and TCP [6]. Thus, in our study, we introduce LEDBAT
at random time neglecting any effects on our results. We also simulate only N TCP
flows without other competing LBE flows as a baseline.

As performance metrics, apart from the aggregate average throughput, we also define
the TCP bandwidth released (TCPreleased) as the link utilization of TCP when it shares
the bottleneck link with the tested LBE protocol over the link utilization of TCP when
it is the only protocol on the same link:

TCPreleased =
η(TCP+LEDBAT)

ηTCP
(3.3)

Every simulation lasts 1200 seconds, and all metrics are measured over the last 600
seconds.

3.5.1 Results and Discussions

Figure 3.9a presents the aggregate average throughput of N TCP flows and N LBE flows
sharing the bottleneck link. To stress the impact of LBE flows, we plot in Figure 3.9b the
TCPreleased depending on the network load, that is, the direct impact of the introduction
of LBE flows on TCP performance. As seen in Figure 3.9, when the number of TCP and
LBE flows is small, LBE protocols fulfill their role. However, increasing the number of
LBE flows also increases their impact on TCP traffic, even though an equivalent number
of TCP flows are also introduced into the network. The more we introduce LBE flows,
the less capacity is left for TCP traffic. For instance, 100 LEDBAT flows compete as
aggressive as 100 TCP flows for the full capacity. In this case, TCP flows must yield to
LEDBAT flows 47 % of the bandwidth obtained when they are alone in the network.

When the number of flows is above 100 (Figure 3.9a), LEDBAT is even more aggres-
sive. This is explained by the misestimation of the OWD. Indeed, LEDBAT keeps track
of the minimum One-Way Delay Dmin to estimate the queuing delay variation. Thus, if
LEDBAT runs long enough and the queue is never empty, Dmin is always nearly equal to
Dack and to the maximum queuing delay allowed by the bottleneck buffer. As a result,
the queuing delay sensed by LEDBAT always approximates to zero (Dack −Dmin ' 0).
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Figure 3.9: Impact of N LBE flows on N TCP flows

In consequence, LEDBAT tends to raise its congestion window to reach the target queu-
ing delay. This limitation of LEDBAT algorithm is studied in detail in [44]. As shown
in Figure 3.9, if we do not limit the number of LBE flows, an aggregate of LBE flows do
not behave as a LBE traffic anymore.
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To better understand this problem, we measure the average congestion window of
a LEDBAT flow, in the case where the number of flows of each protocol TCP and
LEDBAT is 100. As a result, the average congestion window of a LEDBAT flow is 1.3
packet. Thus, a LEDBAT flow sends data at an average rate of 1.3 packet per RTT.
For 100 LEDBAT flows, the router always receives on average a burst of 130 packets.
An exponential backoff mechanism, as proposed in RFC 6817 [10], could help to reduce
the burst size at a given time. Note that this mechanism is already implemented in the
LEDBAT module used in our simulations. Unfortunately, exponential backoff does not
resolve this issue in the long term as we must impose a maximum backoff time. Although
the RFC 6817 states that a maximum value MAY be placed on backoff time, we argue
that this maximum value MUST be always set. Supposing that a LEDBAT flow can
backoff in unlimited time, the impact of LEDBAT flows on long-lived TCP traffic will
then reduce significantly. But this could lead to a case where long-lived TCP flows
cut off LEDBAT traffic in long periods of time and make LEDBAT useless. Moreover,
unlimited backoff time could raise a potential intra-unfairness of LEDBAT flows as a
side effect.

Our results in this section indicate that when LEDBAT is deployed at large scales,
we must use additional strategies to limit the number of LEDBAT flows.

3.6 Conclusion

Recent studies point out cases that question the ability of LEDBAT to carry out Less-
than-Best-Effort service. Misconfiguration of this protocol may result in a significant
delay in the network. This motivated us to perform a deeper analysis of the impact of
LEDBAT’s internal parameters on its performance.

In this chapter, we propose a global optimal parametrization for the internal param-
eters of LEDBAT. We found that a target of 5 ms and a decrease gain of 10 are globally
optimal. The optimal target is far from the guideline in the RFC, which says that the
target must be lower than 100 ms. However, it is worth pointing out that in all simula-
tion cases, LEDBAT is not fully LBE and borrows some capacity of the primary flows.
We also measure the alarming impact of the increasing number of LEDBAT flows. We
further demonstrate that the global optimal combination is not a local optimal combi-
nation. Moreover, the latecomer unfairness issue of LEDBAT still persists even with the
global optimal combination of parameters. Therefore, we conclude that it is necessary
to find a solution solving both the aggressiveness and latecomer unfairness of LEDBAT.
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4
FLOWER

The Design

In this chapter, we present the design of FLOWER (Fuzzy LOWer-than-Best-EffoRt)
transport protocol employing the fuzzy control concept. This new delay-based transport
protocol aims at providing an LBE service while solving two main LEDBAT problems —
the aggressiveness towards TCP and the latecomer unfairness.

4.1 FLOWER Motivation and Goals

4.1.1 Why Fuzzy Control Matters?

As studied in Chapter 3, both LEDBAT key parameters — target and gain — are fixed
and do not cope with the diversity of network configurations. Consequently, LEDBAT
becomes more aggressive than TCP under some circumstances. One possible solution
is to adapt the target or gain to the change of network conditions [11, 12]. To this
end, we first need to derive a mathematical model of the network and then construct a
mathematical model of the controller. However, the network is an increasingly complex
system because of its heterogeneity. Thus, it is not trivial to derive a fine-grained network
model required by the adaptive control scheme. The fuzzy control here comes into play
to relieve difficulties in developing and analyzing complex systems. Main advantages of
the fuzzy control are:

• A mathematical model is not required to develop a fuzzy control system. Indeed,
the fuzzy control allows us to incorporate our heuristic knowledge about how to
control the system directly into the fuzzy controller. Such an approach is particu-
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larly interesting when the model is not trivial, difficult to derive or too complex to
be implemented. Moreover, the fuzziness characteristic of this approach enables
the development of a reasonable, yet tractable, model that approximates a complex
real-world system;

• Since they are usually nonlinear, fuzzy controllers can operate in a much wider
range of operating conditions than PID controllers;

• Fuzzy controllers are highly customizable as they consist of linguistic rules that
are easy to understand and modify;

• Fuzzy controller operations are straightforward to understand, therefore we can
easily design one for a concrete application.

Considering the drawbacks of the adaptive control scheme and the advantages of
fuzzy control as discussed above, we design a new LBE congestion protocol based on
fuzzy logic. In this fuzzy approach, we can use our previous findings [26] as an entry for
the fuzzy controller. Indeed, an in-depth analysis [26] gives us an insight to overcome
the LEDBAT problems, or more specifically, to control the queuing delay. Hence, by
means of fuzzy logic, we integrate our understanding gathered into the fuzzy controller
of FLOWER. We also highlight that, by using a fuzzy control system, we seek a generic
solution that works in several and various network conditions. It means that we are
seeking an average use-case and not the “optimal” one.

4.1.2 The Goals

As a potential LEDBAT alternative, FLOWER must tackle its issues while keeping the
same goals in terms of LBE service as listed in [10]:

1. to utilize end-to-end available bandwidth and to maintain low queuing delay when
no other traffic is present;

2. to add limited queuing delay to that induced by concurrent flows, and;

3. to yield quickly to standard TCP flows that share the same bottleneck link.

To achieve these goals, FLOWER implements a fuzzy controller to manage the target
queuing delay algorithm instead of the P-type controller as proposed in [10]. This non-
zero target queuing delay allows FLOWER to use the available capacity, and thus to
saturate the bottleneck link, when no other traffic is present. Meanwhile, the queuing
delay needs to be kept as low as possible to make FLOWER non-intrusive to standard
TCP traffic.
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(a)

(b)

Figure 4.1: Block diagram of FLOWER and LEDBAT as feedback control systems.

4.2 FLOWER Design Outline

We can represent FLOWER congestion control as a feedback control system depicted in
Figure 4.1a. The essential components of FLOWER are:

1. Inputs

• Target queuing delay τ , which is the maximum queuing delay that a FLOWER
flow is allowed to introduce into the network;
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• Queuing delay error e, which is the difference between the target queuing
delay and the estimated queuing delay;

• Change of queuing delay error ∆e, which is the error trend;

2. Queuing delay estimator, which exploits measured one-way delays to estimate the
current queuing delay q;

3. Peak-valley detector, which keeps track of the maximum queuing delay qmax ob-
served in the network. This maximum queuing delay is then used to normalize the
queuing delay error;

4. Fuzzy controller, which is an artificial decision maker that operates based on a
set of “If–Then” rules. By using the fuzzy logic, the fuzzy controller determines
the congestion window size cwnd such that the future estimated queuing delay
eventually matches the target queuing delay. The fuzzy controller also incorporates
a loss detection scheme to improve congestion detection.

Basically, FLOWER operates as follows: after each RTT, FLOWER filters out the
minimum queuing delay observed during the RTT as the current queuing delay. Queuing
delays in an RTT are obtained using the queuing delay estimator. Then, the fuzzy
controller compares the target queuing delay with the current queuing delay. The error
is positive when the current queuing delay is below the target. In this case, the fuzzy
controller increases the congestion window, and thus the sending rate until the queuing
delay reaches the target. When the error is negative, meaning that the current queuing
delay is beyond the target, the fuzzy controller slows down its sending rate.

In the rest of this section, we give a brief comparison of LEDBAT and FLOWER,
then describe the peak-valley detector component. Finally, we discuss about the slow-
start mechanism which is part of FLOWER. The main FLOWER component, that is,
the fuzzy controller, is further described in detail below.

4.2.1 Differences between FLOWER and LEDBAT

Figure 4.1 shows in blue the differences between FLOWER and LEDBAT. Notably in
FLOWER, we replace the P-type controller with the fuzzy controller that, besides the
queuing delay error e, also utilizes the error trend ∆e. We highlight the fact that while
being more robust, the implementation of a fuzzy controller is simple and adds a little
complexity to computation compared to the P-type controller of LEDBAT.

Another feature added to FLOWER is the peak-valley detector. This detector de-
termines the maximum queuing delay, which is important for the operation of the fuzzy
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On initialization:
findingPeak ← true
n← 5; α← 1

8

After the RTT k:
if we have enough (n+ 1) samples then

slidingWnd = {qk−n, qk−n+1, qk−n+2, . . . , qk−1, qk}
currentV alue← qk−n
rightMax← max(qk−n+1, qk−n+2, . . . , qk−1, qk)
rightMin← min(qk−n+1, qk−n+2, . . . , qk−1, qk)
if findingPeak then

if currentV alue > rightMax then
A peak is found: findingPeak ← false
Calculate the new threshold S:
S ← (1− α)× S + α× currentV alue
if currentV alue > S then

A new qmax is found
else

if currentV alue < rightMin then
A valley is found: findingPeak ← true

Figure 4.2: Peak-valley detection algorithm.

controller. Note that FLOWER uses the same LEDBAT queuing delay estimator, which
is fully described in RFC 6817 [10].

4.2.2 Peak-valley detection algorithm

To effectively react to congestion events, FLOWER needs to determine the maximum
queuing delay qmax. For this purpose, we must identify the peaks of queuing delays
(local maximum) and filter out the maximum queuing delay (global maximum) using
a threshold S, which is computed following an exponentially weighted moving average
(EWMA) of peaks. For the sake of remaining as simple as possible and not complicating
our implementation, we develop a simple online peak-valley detection algorithm as shown
in Figure 4.2.

To understand this algorithm, let us consider a time series of estimated queuing
delays q = {qk} where k represents the discrete time in RTT. Basically, an element
qk is a peak/valley if it is greater/smaller than its neighbors, respectively. As our al-
gorithm works in an online manner, at the current time k, we only need to consider
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a sliding window of size (n + 1) consisting of qk−n and its n right neighbors, that is,
{qk−n, qk−n+1, qk−n+2, . . . , qk−1, qk}. The bigger n is, the more robust is the algorithm.
We stress that there is a delay of (n+ 1) RTTs in the detection process of qmax because
the algorithm needs to collect enough queuing delay samples.

The algorithm alternatively identifies the peaks and valleys of queuing delays. Indeed,
we have a peak/valley if qk−n is greater/smaller than the maximum/minimum of its n
right neighbors, respectively. Each time a peak is detected, it is then used to calculate a
new threshold to filter out qmax. Finally, when a new qmax is found, FLOWER discards
the old value.

In our implementation, we let n = 5 to keep a small delay while still having a robust
maximum queuing delay detection. The EWMA parameter α is set to 1

8 , which is the
value typically used for computing the smoothed RTT for TCP.

4.2.3 On the slow-start phase

Similarly to LEDBAT, FLOWER might suffer from the latecomer unfairness problem.
During our experiments, we notice that the use of the slow-start helps to mitigate (with-
out solving it for LEDBAT) the latecomer issue. Using slow-start has also been reported
by [8]. FLOWER uses slow-start as a synchronization signal and to get a preliminary
measurement of the queuing delay. The purpose of slow-start is to create a spike in
the queuing delay since in the slow-start phase, the congestion window rises exponen-
tially until causing a loss event. If other FLOWER connections also experience a loss,
they restart their congestion window. As a consequence, the queuing delay is reduced,
thus allowing all flows to be able to sense the same base delay. All flows will then rise
again at the same time and share the capacity equally. We highlight that slow-start
does not necessarily cause loss to other flows. Fortunately, in this situation, the loss
detection functionality of the FLOWER fuzzy controller helps ongoing flows to detect
the slow-start signal of the latecomer flow, and hence to resynchronize all flows.

4.3 How to Design The Fuzzy Controller for FLOWER?

A typical fuzzy control system is shown in Figure 4.3. The fuzzy controller is constituted
by the following modules [62]:

A rule base contains a set of “If–Then” rules that describes how to
control the system;

52



Figure 4.3: A typical fuzzy control system.

An inference mechanism emulates the human expert’s decision making about how
best to control the system based on the information stored
in the rule base;

A fuzzification interface converts controller inputs, e and ∆e, into fuzzy values
that the inference mechanism can use for its fuzzy rea-
soning process;

A defuzzification interface converts the conclusions of the inference mechanism into
numerical output ∆cwnd.

The best way to have a good grasp of the fuzzy control system is through a use-case
example. In the rest of this chapter, we introduce the fuzzy controller and its operations
by designing one for FLOWER.

4.3.1 How to Control The Queuing Delay?

In this subsection, we use the analogy of a leaky bucket to explain the logic behind the
control of the queuing delay around a target.

Let us consider a bucket with a small hole at the bottom as shown in Figure 4.4.
This leaky bucket is defined by several parameters: the inflow rate, the outflow rate, the
height of the bucket, and the water level in the bucket. The inflow and outflow rates are
the rates at which water is poured into and leaks out of the bucket, respectively. The
outflow rate is bounded by the maximum output capacity of the hole and we suppose
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Figure 4.4: A leaky bucket.

that there is no constraint on the inflow rate. When the inflow rate is smaller than the
maximum output capacity, the bucket is empty. In this case, the inflow rate equals to
the outflow rate. Otherwise, the outflow rate is at its maximum capacity and remains
constant regardless the inflow rate until there is no more water in the bucket. When the
water level in the bucket exceeds the bucket height, water spills out.

Now suppose that we want to manually fill the leaky bucket to an indicated level
lower than the bucket height. As a human-in-the-loop, we must adjust the inflow rate
using the faucet to regulate the water level. Rationally, we need to alter the inflow rate
based on whether the water level is above or below the indicated level, the distance
between them, and the pace at which the water level is rising or falling. For example,
when the leaky bucket is empty, we have to increase the inflow rate as fast as we can to
quickly reach the indicated level. But when the water level is close to the indicated level,
either above or below it, we must adjust the inflow rate slowly to minimize overshoot
or undershoot. And if the bucket is full, we need to completely close the faucet, that is,
reduce the inflow rate to zero.

The analogy of the control of the water level in the leaky bucket to the control of
the queuing delay in the network is as follows: the leaky bucket models a queue at a
router. The water is the fluid modeling of packets arriving and leaving the queue. The
water outflow rate is the packet departure rate or the throughput, limited by the router’s
outgoing link capacity. Similarly, the inflow rate is the packet arrival rate at the router
queue. The bucket height corresponds to the maximum queuing delay, which is in turn
proportional to the maximum queue size of the router. The water level is similar to the
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measured queuing delay. Lastly, spilled water corresponds to dropped packets when the
router queue is full.

Assume that there is only one router on the path between two hosts. Imagine this
time that our responsibility is to manually adjust the congestion window of a source
flow and thus the packet arrival rate at the queue to keep the queuing delay around
a fixed target. Based on the analogy between the two control problems, we can apply
directly the control logic for the water level to the queuing delay problem as shown in
what follows. Finally, we highlight that the queuing delays across multiple routers on
the path between two hosts can be aggregated as the queuing delay at only one router.

4.3.2 Choosing the controller inputs and output

To make a decision at the sampling instance k, the controller uses as inputs the queuing
delay error:

e(k) = τ − q(k)

and the change of queuing delay error:

∆e(k) = e(k)− e(k − 1)

The queuing delay error is the difference between the target queuing delay and the
estimated queuing delay. If the error is big, the control action must be large to quickly
drive the error to zero. In contrast, if the error is small, the control action must be small
to prevent oscillation. Therefore, the controller modulates its actions with the queuing
delay error.

The change of queuing delay error is the error trend. For a same degree of error,
the control actions should differ depending on whether the error trend is increasing or
decreasing. If the error trend is increasing, the controller needs to take stronger action
to correct the error, but when the error trend is decreasing, the controller must reduce
the control action to avoid over-reaction. Thus, the error trend is used to amplify or
dampen the actions of the controller.

The controller output is the change of congestion window ∆cwnd(k), that is, the
pace at which the controller must increase/decrease the congestion window to match the
queuing delay to the target queuing delay. The congestion window size cwnd(k) is then
calculated by:

cwnd(k) = cwnd(k − 1) + ∆cwnd(k)
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4.4 Building the Rule Base

4.4.1 Linguistic Variables and Values

After having discussed the logic behind controlling the queuing delay, we need to load
it into the fuzzy controller. To this end, we have to provide a linguistic description of
the system dynamics by using linguistic variables and their linguistic values.

The linguistic variables describe each of the fuzzy controller inputs and outputs, so
they usually are the names of inputs and outputs. For FLOWER, the linguistic variables
are:

• “queuing delay error” or “e(k)”,

• “change of queuing delay error” or “∆e(k)”,

• “change of congestion window” or “∆cwnd(k)”.

Each linguistic variable assumes different linguistic values that give informative
descriptions about the numeric (real) values. The linguistic variables of FLOWER
inputs and output take on the following linguistic values:

NVVL, NVL, NL, NM, NS, NVS, Z, PVS, PS, PM, PL, PVL.

where the meaning is:

• S: small, M: medium, L: large,

• N: negative, P: positive,

• Z: zero, V: very.

Hence, the linguistic value PVS stands for “positive very small” and so forth. Now we
can linguistically describe different states of the queuing delay, such as follows:

• The clause “e(k) is Z” indicates that the queuing delay is very close to the target.
Note that in this case, the value of e(k) does not need to be exactly zero because
of the fuzzy nature of linguistic description;

• The clause “e(k) is PVL and ∆e(k) is NVS” represents the situation where the
queuing delay is very close to zero (that is, the queue is nearly empty) and is
increasing very slowly.
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4.4.2 Rules

Up to this point, we are ready to translate our heuristic control knowledge into linguistic
rules that specify how to control the system. A linguistic rule relates the inputs to the
outputs of the fuzzy controller. In general, it has the following form:

If premise Then consequent

The premise is where we linguistically describe the inputs to inform the fuzzy controller
of the system states. On the other hand, the consequent represents the fuzzy controller
outputs, that is, the corresponding actions of the fuzzy controller in response to its
inputs.

To illustrate how the fuzzy controller of FLOWER operates, let us take for example
the following linguistic rules:

If e(k) is PVL and ∆e(k) is Z Then ∆cwnd(k) is PVL

This rule describes the situation where the queuing delay is very small and does not
increase. In consequence, we must increase the congestion window by a very large value.

If e(k) is NVS and ∆e(k) is NVS Then ∆cwnd(k) is NS

This rule describes the situation where the queuing delay is slightly beyond the target
delay and is increasing very slowly. In consequence, we must decrease the congestion
window by a small value to counteract the movement.

4.4.3 Rule Base

Once we establish all rules, we also finish constructing the rule base for the fuzzy con-
troller. The rule base models the relationship between inputs and outputs of the system.
It serves as a repository to store the available knowledge about how to solve the prob-
lem. For a fuzzy controller with two inputs and one output such as the one for FLOWER,
we can list all rules in the rule base using the tabular representation as shown in Ta-
ble 4.1. Note that in Table 4.1, we use linguistic-numeric values [62] to shorten the
description of linguistic values, for example:

• -5 represents NVS or “negative very small”,

• 0 represents Z or “zero”,

• 3 represents PM or “positive medium”, and so on.
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The advantage of this notation is that it quantifies the sign of linguistic variables, which
is convenient for us as e(k) and ∆e(k) can take on negative or positive values.

For better understanding of the fuzzy controller dynamics, we divide the rule table
into six zones as follows:

Table 4.1: The rule base of the FLOWER fuzzy controller.

Zone 1: Rules of this zone maintains the steady-state queuing delay around the target.
Both e(k) and ∆e(k) are either negative or positive but they are very close to
zero. In consequence, the fuzzy controller must slightly increase or decrease the
congestion window to rectify small deviations from the target.

Zone 2: In this zone, e(k) is either negative or zero, which means that the queuing
delay is either below or equal to the target. In addition, since ∆e(k) is negative
most of the time, the queuing delay has the tendency to raise and thus moves in
the direction of the target. Therefore, based on the magnitude of the increase
trend of the queuing delay, the fuzzy controller must either increase or decrease the
congestion window to accelerate or decelerate the queuing delay motion to match
the target, respectively.
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Zone 3: In this zone, since e(k) is positive, the queuing delay is above the target.
On the other hand, the ∆e(k) is negative most of the time like in Zone 2, which
means that the queuing delay has the tendency to raise and hence, in this case,
moves away from the target. Consequently, the fuzzy controller must decrease
the congestion window to compensate the increase of the queuing delay.

Zone 4: For this zone of rules, both e(k) and ∆e(k) are positive, which corresponds to
the situation where the queuing delay is above and reducing towards the target.
As a result, to drive the queuing delay to the target, the fuzzy controller needs to
accelerate or decelerate the queuing delay motion based on the magnitude of its
decrease trend.

Zone 5: Rules of this zone represents the situation where the queuing delay is either
below or equal to the target. Moreover, the queuing delay is decreasing away
from the target. Thus, e(k) is either negative or zero and ∆e(k) is negative in
this case. The fuzzy controller must therefore increase the congestion window to
reverse the decrease trend of the queuing delay.

Zone 6 — Loss Detection Zone: An important feature of FLOWER is its capability
to react quickly to congestion events caused by TCP. This feature is integrated in
the rule base and implemented by rules of this special zone, called Loss Detection
Zone. Concretely, when ∆e(k) is 5 or PVL, the fuzzy controller implies that
there is a very large fall in the queuing delay because of loss. In consequence,
the fuzzy controller must immediately reduce the congestion window to minimum,
for example, set to one packet. This case corresponds to the following output:
∆cwnd(k) is -6 or NVVL.

4.5 Choosing Membership Functions

In this section, we look to quantify the significance of linguistic value using the fuzzy
logic. For this purpose, we employ membership functions to define the semantic of
linguistic values. Let A denote a linguistic value and X be a universe of discourse for an
input or output of a fuzzy system, that is, the range of numerical values that the input
and output can take as values. Each linguistic value A is associated with a membership
function. This membership function quantifies the certainty or membership degree
that a numerical value x ∈ X can be classified linguistically as A. The set of numerical
values of X that a membership function describes as being a linguistic value A is called
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Figure 4.5: The triangular membership function.

a fuzzy set. When dealing with fuzzy logic, people usually confuse certainty with
probability. However, we stress that they are distinct concepts because the membership
function is not a probability density function. Indeed, certainty represents the accuracy
of linguistic descriptions, not the probability of some random event.

In this thesis, we use the most common triangular membership function, as shown
in Figure 4.5, defined by the three parameters {a, b, c} as follows:

µA(x) : X 7→ [0, 1]

µA(x) =



0 if x ≤ a,
x− a
b− a

if a < x ≤ b,
c− x
c− b

if b < x < c,

0 if x ≥ c

where a < b < c and b is the center of the triangle membership function, that is, where
it reaches its peak.

Consider, for instance, the membership function µPV S that quantifies the meaning
of the linguistic value “positive very small” for any numerical value x ∈ X:

• if µPV S(x) = 0 then we are certain that x is not PVS;

• if µPV S(x) = 0.5 then we are only half certain that x is PVS. It could also be Z
with some degree of certainty;

• if µPV S(x) = 1 then we are absolutely certain that x is PVS.

Figure 4.6 shows all membership functions for the inputs and output of the FLOWER
fuzzy controller.
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Figure 4.6: The membership function of the FLOWER fuzzy controller.

4.5.1 Membership Functions of e(k)

Since the queue size varies continuously as a function of the network traffic, we need to
make the input error e(k) independent of the network state. For this purpose, before
introducing e(k) into the fuzzy controller, we express it as follows:

e(k) =


e(k)
τ
× 100 if q(k) ≤ τ,

e(k)
τ − qmax

× 100 if q(k) > τ

where qmax is the maximum queuing delay observed on the network. Consequently,
the membership functions of e(k) are linearly distributed on the universe of discourse
[−100, 100] %.
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4.5.2 Membership Functions of ∆e(k)

The queuing delay ranges from 0 to the maximum value qmax. Thus, we have

∆e(k) = e(k)− e(k − 1) = q(k − 1)− q(k)

where
q(k) ∈ [0, qmax]

Then, the universe of discourse for ∆e(k) is [−qmax, qmax] ms.
The variation of the queuing delay, and thus ∆e(k), highly depends on the network

state. Hence, we need to dynamically adapt the distribution for the membership func-
tions of ∆e(k). In addition, as seen in the rule base in Table 4.1, the loss detection zone
of FLOWER relies only on ∆e(k). Therefore, we must determine a threshold to define
this zone. To this end, we use the exponentially weighted moving average (EWMA) of
values of ∆e(k). As EWMA has higher weights on recent data than on older data, sudden
network condition changes are further taken into account in this average. Consequently,
the distribution for the membership functions of ∆e(k) is as follows:

−qmax, sde−,−3,−2,−1, 0, 1, 2, 3, sde+, qmax

where sde− and sde+ are the EWMA of the negative and positive values of ∆e(k),
respectively. {−qmax, sde−, sde+, qmax} are respectively initialized with {−5,−4, 4, 5}.
These values are updated only when the absolute value of a new value is greater than
the absolute value of the initial value.

Finally, we emphasize that, as an effect of the loss detection zone, when ∆e(k) >
sde+, even if the certainty µPV L(∆e(k)) is small, FLOWER reduces the congestion
window to its initial value.

4.5.3 Membership Functions of ∆cwnd(k)

Outside the loss detection zone, the distribution of ∆cwnd(k) is linear on the universe of
discourse [−1, 1] packet. As a consequence, the maximum ramp-up speed of FLOWER
is the same as TCP, that is, one packet per RTT. When operating in the loss detection
zone, ∆cwnd(k) is set to negative infinity to signal FLOWER to reduce to minimum its
sending rate. Otherwise, FLOWER will ramp-down at maximum one packet per RTT.
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4.6 Fuzzy Controller Operations

4.6.1 Fuzzification

Fuzzification is the process of making a numerical value fuzzy so that it can be used by
the fuzzy system. Whenever the fuzzification module receives a numerical value x, it
converts this value into a corresponding linguistic value by associating a certainty µA(x).

4.6.2 Inference Mechanism

The inference mechanism derives the fuzzy outputs from the fuzzy inputs obtained by
fuzzification, according to the relation defined through fuzzy rules. The main matter
is how to interpret the meaning of each rule, that is, how to determine the influence
produced by the premise on the consequent of the fuzzy rule. To assess this influence,
the inference process generally involves in two steps:

1. The certainty of the premise is determined using the fuzzy conjunctive operator
(AND);

2. The certainty of the consequent, influenced by the premise, is determined using
the fuzzy implication operator.

Consider the i-th rule of the rule base:

Ri: If ui1 is Ai1 and . . . and uin is Ain Then v is Bi

where Ai1, . . . ,Ain, and Bi are the linguistic values of the linguistic variable ui1, . . . ,uin,
and v in the universes of discourse X1, . . . ,Xn, and Y , respectively. We use the minimum
to represent both fuzzy operators. Therefore, the fuzzy conjunctive operator is defined
as follows:

µAi(x0) = µ(Ai1 AND ...ANDAin)(x1, . . . , xn)

= min(µAi1(x1), . . . , µAin(xn))

where x0 = (x1, . . . , xn). Finally, we have the following definition for the fuzzy implica-
tion operator:

µRi(y) = min(µAi(x0), µBi(y))
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Figure 4.7: Example of fuzzy controller operation.

4.6.3 Defuzzification

Defuzzification is the process of combining results of the inference mechanism to obtain
a numerical output value y. We use the “center-average” defuzzication method which
calculates the weighted average of the center values of the output membership function
centers:

y =
∑
i biµRi(y)∑
i µRi(y)

4.6.4 Example of Fuzzy Controller Operation

Consider the example in Figure 4.7. Suppose that e(k) = 35 after being converted to the
percentage form and ∆e(k) = 1. The fuzzification process gives µPV S(e(k)) = 0.25 and
µPS(e(k)) = 0.75, whereas µPV S(∆e(k)) = 1. Figure 4.7 shows the certainties of the
membership functions for the inputs and indicates with black vertical lines the numerical
values of e(k) and ∆e(k). In this case, by consulting the rule table in Figure 4.7, we
have the following corresponding rules:

R1: if e(k) is PVS and ∆e(k) is PVS Then ∆cwnd(k) is PS

R2: if e(k) is PS and ∆e(k) is PVS Then ∆cwnd(k) is PM

64



Now, consider the first rule, shown as the blue cell in the rule table of Figure 4.7.
Let x0 = (e(k),∆e(k)), and thus, according to the inference mechanism, we have:

µA1(x0) = min(µPV S(e(k)), µPV S(∆e(k))) = 0.25

and then:
µR1(∆cwnd(k)) = min(µA1(x0), µPS(∆cwnd(k))) = 0.25

The certainty of the membership function for the output µR1(∆cwnd(k)), which is the
conclusion reached by rule R1, is shown in Figure 4.7 as the blue region of the output
membership function defining the linguistic value PS.

In the same way, for the second rule (red cell in the rule table), we obtain µR2(∆cwnd(k)) =
0.75 as shown by the red region of the output membership function defining the linguistic
value PM in Figure 4.7.

Lastly, since the output membership function centers of the two rules are b1 = 0.4
and b2 = 0.6, the numerical output given by the defuzzication process is:

∆cwnd(k) = 0.4× 0.25 + 0.6× 0.75
0.25 + 0.75 = 0.55

4.7 Conclusion

In this chapter, we discussed the motivation, the goals and the design of the FLOWER
congestion control using the fuzzy control. We also study in detail the fuzzy controller,
which is the core of FLOWER mechanism. It is worth noting that there exist many other
choices for the shape of membership functions (for example, trapezoidal or Gaussian
shapes) and as well as for defuzzication methods (for example, mean of maximum or
center of gravity). For FLOWER, we use the triangular membership functions and the
center-average defuzzication method to facilitate the computation in real time. In the
next chapter, we will evaluate the performance of our new LBE protocol using ns-2
simulator.
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5
Performance Evaluation of FLOWER

In this chapter, we use the network simulator ns-2.35 to validate our new protocol. We
specifically focus on the FLOWER performance and assess whether FLOWER solves
the aggressiveness and latecomer unfairness issues which are the two major drawbacks
of LEDBAT. We also study the coexistence between FLOWER and AQM schemes.

5.1 Simulation Setup

5.1.1 Ns-2 Implementation of FLOWER

To assess its performance, we have implemented an ns-2 prototype of FLOWER based
on a LEDBAT module developed by Valenti et al. [6]. The prototype is implemented as
a Linux congestion control module on top of the TCP-Linux framework [63]. Therefore,
simulation results are much closer to a real implementation in the Linux kernel and
would allow easily porting our implementation to the Linux kernel (this also been the
case for the LEDBAT module [6]).

5.1.2 Reference Network Configuration

We use a dumbbell topology where a TCP flow shares a single bottleneck link with a
LBE flow (either FLOWER or LEDBAT). Note that to test our protocol, we follow the
scenario used in [14] for the sake of comparison. All sources send packets with a size
of P = 1500 B. The bottleneck link has a capacity set to C = 10 Mb/s and a one-way
propagation delay owd ∈ [10, 50, 100, 150, 200, 250] ms. The bottleneck router is a FIFO
drop-tail queue with a size of B packets. For convenience, we express the bottleneck
buffer B as a ratio to the bandwidth-delay product BDP in terms of packets. Hence, we
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have B = dn ·BDP e = dn ·C · 2 · owd/(8 · P )e, where the ratio n ∈ [0.2, 0.4, 06, 0.8, 1.0]
and dxe is the ceiling function. Since B must be an integer, we use the ceiling function to
get the smallest integer not less than B. We also convert the target τ from milliseconds
to packets as follows: τ (packets) = τ (ms) ·C/(8 ·P ). Therefore, a target queuing delay
τ = 100 ms corresponds to 83.3 packets and is rounded to 84 packets.

5.2 Simulation Results

5.2.1 Interaction with TCP

In this section, we study the behavior of FLOWER in the presence of TCP and more
specifically, the interaction between the FLOWER fuzzy controller and the TCP AIMD
algorithm.

Scenario and metrics

Two TCP and LBE flows start at t = 0 s and stop at t = 75 s. In this scenario, owd =
50 ms and B = BDP . To investigate the behavior of one LBE flow in coexistence
with one TCP flow, we consider their congestion windows and the queue length of the
bottleneck buffer.

Results

Fig. 5.1 shows both congestion windows (top) as a function of time conjointly with the
queue length and the target queuing delay expressed in packets (bottom). The interac-
tion between TCP and FLOWER is shown in Fig. 5.1a. In the slow-start phase, TCP
and FLOWER exponentially increase their congestion window. Thus, the bottleneck
queue fills up quickly until loss. Unlike TCP, FLOWER reduces its congestion window
to its initial value which equals to one packet in our implementation. After the slow-
start phase, approximatively before t = 3 s, as the bottleneck queue is half-filled but the
resulting queuing delay is small compared to the target, FLOWER and TCP conges-
tion windows conjointly grow. As the queue still increases because TCP keeps sending
packets, FLOWER reduces its sending rate (the target is almost reached) and finally
stabilizes its congestion window. After exactly t = 7.5 s, (we obtained this exact value
from the simulation traces) when the queuing delay is close to the target, FLOWER
reacts by decreasing its sending rate. Finally, FLOWER reaches the minimum sending
rate of one packet per RTT at t = 9.3 s. Slightly afterwards, TCP gets losses and en-
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Figure 5.1: TCP and LBE congestion windows and bottleneck queue length as a function
of time.

ters its recovery phase. As a consequence, TCP halves its congestion window and the
bottleneck queue is drained.

TCP re-enters the congestion avoidance phase at t = 10 s while FLOWER grows at
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its maximum speed as the queue is not full. FLOWER prevents bottleneck overflow
by reducing its sending rate before the knee phase [64] (i.e., when the rate increases
gradually but slower than the delay). When TCP halves its congestion window at
t = 21.8 s, we observe an abrupt fall of the queuing delay. Shortly afterwards, FLOWER
detects this fall with the help of the loss detection scheme, hence FLOWER drops to
the minimum congestion window. Therefore, the queue is drained and FLOWER enters
a new cycle. Henceforth, both FLOWER and TCP are in steady state.

This first experiment illustrates the good LBE behavior of FLOWER in the presence
of TCP. Clearly, the fuzzy controller with the loss detection scheme allows FLOWER to
be LBE compliant. In this standard configuration (we recall that B = BDP ), LEDBAT
does not behave as a LBE protocol and is too aggressive as shown in Fig. 5.1b. This
figure also illustrates that the LEDBAT P-type controller does not react correctly to
congestion events. We refer the reader to previous studies [8, 26] for further details on
the LEDBAT defective behavior.

In the next section, we extend these measurements to several general networking
use-cases in order to illustrate the good performance of our fuzzy controller scheme.

5.2.2 FLOWER versus LEDBAT performance in coexistence with TCP
NewReno and CUBIC

In this section, we evaluate the impact of FLOWER flows on TCP flows (either NewReno
or CUBIC) in different network conditions.

Scenario and metric

We consider 5 long-lived TCP flows with 5 LBE flows. The simulation lasts 1200 s where
TCP flows start consecutively every 10 s from t = 0 s and keep sending data until the
end of simulation. LBE flows start randomly between t = 350 s and t = 450 s to allow
the TCP flows to reach their full capacity.

To assess the impact of LBE on TCP, we define the metric rate distribution (X) as
the total throughput achieved by all flows Fk where k ∈ {TCP,LBE} over the total
throughput of all flows on the link:

Xk = Fk
FTCP + FLBE

(5.1)

For each combination of network configuration {owd,B}, we run the simulation 10
times. After each run, we calculate the rate distribution over the last 600 seconds. Then,

70



 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)
TC

P 
vs

. F
LO

W
ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e 
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P 

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(a) LBE vs. TCP NewReno

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P 

vs
. F

LO
W

ER

FLOWER CUBIC

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e 
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P 

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(b) LBE vs. CUBIC

Figure 5.2: Rate distribution of TCP and LBE flows.

the mean of the 10 metric values is taken as the measured value.
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Results

In Fig. 5.2, using histograms, we group the simulation results into different categories
of one-way delay (denoted owd in Fig. 5.2), and then into subclasses of buffer size given
as a ratio to the BDP. For information purpose, note that at the top of the histogram,
the equivalent ratio to the BDP is converted as the ratio to the target value given in
packets as explained in Section 5.1.2. This means we express B as the ratio to the target
τ in the same way as with the BDP . For instance, looking at Fig. 5.2, a buffer sized
0.4 of the BDP at owd = 100 ms corresponds to 0.7 of target value in packets. For each
buffer size, each stacked column gives the sum of the normalized rates obtained by both
TCP and LBE flows. Then, each slice inside a column, represents the part obtained by
5 TCP and 5 LBE flows given by (5.1).

Fig. 5.2a shows the performance of LEDBAT and FLOWER in the presence of TCP
NewReno. We have selected a set of network configurations following our previous
study on the LEDBAT performance issues [26]. These network configurations illustrate
a large number of use-cases where LEDBAT performs (in Fig. 5.2a when the ratio of
the bottleneck buffer size to the target τ is largely greater than 1) or does not perform
correctly (resp. the reverse). As shown in Fig. 5.2a, LEDBAT obtains sometimes more
than TCP NewReno and crosses the fair-share line represented by a dotted line. We then
compare the results obtained by FLOWER in these configuration. Fig. 5.2a allows to
easily compare the performance of both protocols in identical situation. The results are
unequivocal and illustrate that FLOWER behaves as a LBE protocol where LEDBAT
fails in average cases.

Using the same network configurations as above, we now study the performance
of LEDBAT and FLOWER in coexistence with CUBIC in Fig. 5.2b. CUBIC is more
aggressive than TCP NewReno but in those cases, the performance of FLOWER is far
better than LEDBAT in respect of the LBE principle.

5.2.3 Intra-protocol fairness

We finally study the interaction between two FLOWER flows to assess their intra-fairness
and determine whether or not FLOWER is impacted by the latecomer issue.

Scenario and metric

In this scenario, the buffer size B is set to twice the BDP . This configuration is favorable
to observe the LEDBAT latecomer unfairness phenomenon. The bottleneck link has a
one-way delay owd = 50 ms. The first LBE flow starts at t = 0 s and the second starts
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Figure 5.3: LBE congestion windows and bottleneck queue length as a function of time.

at t = 20s. Both flows last 150 s. As in 5.2.1, we draw their congestion windows and the
queue length of the bottleneck buffer.
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Results

Fig. 5.3b shows the LEDBAT latecomer issue [6]. The first LEDBAT flow starts when
the bottleneck queue is empty, and as a result, senses a base delay. When the second
LEDBAT flow starts at t = 20 s, the queue is filled with ≈ 50 packets. Consequently, the
second flow estimates a higher base delay including the queuing delay of the first one.
Since its estimated queuing delays are below the target delay, the second flow raises its
sending rate. As a result, the first one senses an increasing queuing delay and begins
to decelerate. Finally, the first LEDBAT flow reaches its minimum rate at t = 131 s as
shown in Fig. 5.3b. On the contrary, FLOWER does not inherit this latecomer issue
thanks to the loss detection scheme described in Chapter 4 as shown in Fig. 5.3a. This
experiment demonstrates that two FLOWER flows can now share fairly the link capacity.

5.3 Coexistence of FLOWER and AQM

While Active Queue Management (AQM) has been a research field for over two decades
with many proposals, its adoption remains very limited. However, recent concern about
the excessive end-to-end delay on the Internet due to bufferbloat returns AQM as an
up to date and hot topic at the IETF. Indeed, AQM is usually considered as the best
solution to solve the bufferbloat problem [19]. On its part, LEDBAT is an LBE transport
protocol designed to work mainly under a DropTail queuing discipline. In the existence
of AQM schemes, LEDBAT loses its LBE characteristic and behaves like standard TCP
as shown by the authors of [7,13,14]. LEDBAT RFC also admits this fact [10]: “If Active
Queue Management is configured to drop or ECN-mark packets before the LEDBAT flow
starts reacting to persistent queue buildup, LEDBAT reverts to standard TCP behavior
rather than yielding to other TCP flows”. Therefore, when designing a new LBE protocol
(or any kind of novel transport protocol), it is important to study its coexistence with
AQM schemes.

In this section, we evaluate the impact of AQM such as RED [15], CoDel [16] and
PIE [17] on the LBE-compliance of FLOWER in the presence of standard TCP connec-
tions. To this end, we directly employ the scripts used by the authors of [14], which are
available at [18].
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5.3.1 Active Queue Management Schemes

Random Early Detection (RED)

RED randomly dropped packets with a probability p, calculated based on the Expo-
nential Weighted Moving Average (EWMA) qavg of the instantaneous queue length as
follows:

p(qavg) =


0 0 ≤ qavg ≤ minth,
qavg −minth
maxth −minth

pmax minth < qavg ≤ maxth,

1 qavg > maxth

where

minth: the minimum threshold,

maxth: the maximum threshold,

pmax: the maximum probability for packet dropping at the maximum threshold.

In this study, we use the default version of RED in ns-2. In this version, the gentle
mode is activated to make RED more robust; the minth and maxth are automatically
configured in function of the target average delay targetdelay , which has a default value
of 5 ms.

Controlled Delay (CoDel)

The goal of CoDel is to keep the minimum queuing delay (or sojourn delay) experienced
by packets in a fixed interval (100 ms by default) below a target delay (5 ms by default).
Therefore, CoDel starts to drop selected packets when the minimum queuing delay is
higher than the target delay. Each time CoDel drops a packet, CoDel sets the next
dropping time based on the number of drops since the beginning of the dropping state,
as follows:

nextDropT ime = lastDropT ime+ interval√
numOfDrops

For this study, we use the CoDel implementation in ns-2 in the scripts provided by
the authors of [14].

Proportional Integral Controller Enhanced (PIE)

Similar to CoDel, PIE keeps the queuing delay around a target delay, which has a default
value of 20 ms. However, instead of monitoring the real delay for each packet like CoDel,
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PIE estimates the current queuing delay based on the queue draining rate using Little’s
law. To determine the dropping probability every tupdate time units, PIE employs a
PI-type controller that takes into account both the current queuing delay and its trend:

p = p+ α · (queuingDelay − targetDelay) + β · (queuingDelay − lastQueuingDelay)

where the factors α and β are respectively set to 0.125 and 1.25 by default. The ns-2
implementation of PIE used in this study can be found at [65].

5.3.2 Scenario and Metrics

We consider 5 long-lived standard TCP flows with 5 LBE flows. All flows start at time
t = 0. In this scenario, owd = 50 ms and B = 250 pkts = 3 × BDP to reproduce the
bufferbloat.

To evaluate the interaction between LBE protocols (LEDBAT, FLOWER) and AQM
schemes (RED, CoDel, PIE), we measure the rate distribution of TCP XTCP , the average
queue length E[Q] in terms of packet, and the bufferbloat intensity defined as E[Q]/B.
Note that in [14], the authors denote XTCP as TCP%.

For each combination of LBE protocols and AQM schemes, we run the simulation
10 times and each run lasts for 60 s. The mean of the metric values is then taken as the
measured values.

5.3.3 Impact of AQM Schemes on LBE Protocols

We present the simulation results of this section in Figure 5.4 using a parallel coordinate
plot. The left and right y-axes correspond to the bufferbloat intensity E[Q]/B and the
rate distribution of TCP, respectively. In the parallel coordinate plot, a line connect-
ing these two metrics represents the interaction of each combination of AQM schemes
and LBE protocols. The ideal interaction is illustrated by the green oblique region in
Figure 5.4, in which the queuing delay is low while the LBE traffic remains low-priority.

Under DropTail, TCP continuously fills up the buffer until loss and therefore maxi-
mizes the bufferbloat intensity, as shown in Figure 5.4. As for LEDBAT and FLOWER,
in this case, they are both LBE-compliant, which are represented by TCP shares ap-
proaching one. We recall that the goal of LEDBAT and FLOWER is to keep the queuing
delay around a fixed target. Nevertheless, this design choice only limits the exacerbation
of bufferbloat but does not solve it.

Figure 5.4 clearly shows that employing an AQM scheme solves the bufferbloat issue.
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Figure 5.4: Impact of AQM on LBE protocols.

However, such an AQM scheme also compromises the low-priority characteristic of LBE
protocols and raises their aggressiveness towards TCP. In this case, LEDBAT competes
quite fairly with TCP. The results for LEDBAT are indeed in accordance with the
study in [14]. Regarding the new protocol, in all cases, FLOWER is always more LBE-
compliant than LEDBAT and tends towards the ideal region. There are two reasons
behind this outcome. First, FLOWER has a loss detection zone in its fuzzy rule base
that allows it to react better than LEDBAT in times of congestion. Second, FLOWER
resets its congestion window to minimum in case of loss to minimize its impact on higher
priority flows.

5.4 Conclusion

In this chapter, we evaluated the performance of the new LBE protocol FLOWER by
means of simulation. The results show that FLOWER behaves as an LBE protocol in
network scenarios where LEDBAT fails while solving the latecomer unfairness problem.
We also demonstrated the good interaction between FLOWER and AQM schemes. Ac-
tually, in all testing cases, FLOWER is always more LBE-compliant than LEDBAT and
tends towards the ideal interaction with AQMs, where the queuing delay is low while
the LBE traffic remains low-priority. Also note that the loss detection zone in the fuzzy
rule base plays an important role in the outperformance of FLOWER.
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All of these simulations above demonstrate the potential of FLOWER as an alter-
native to LEDBAT and also highlight the power of the fuzzy control. To the best of
our knowledge, FLOWER is the first solution that solves both the aggressiveness and
latecomer issues of LEDBAT while still having a good interaction with AQM schemes.
Finally, with the fuzzy control, it is easy to extend the rule base to upgrade FLOWER
to a hybrid loss and delay-based protocol for a better reaction to congestion.
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6
Conclusion

This thesis investigated the possibility to deploy the Lower-than-Best-Effort service over
large bandwidth-delay product networks, in particular over long-delay link such as satel-
lite networks. LBE service is a low-priority service class that uses only the residual
network resources while minimizing the impact on other traffic classes. The motivation
to use such a service is usually under question. However, LBE service gives rise to many
applications (e.g. such as automatic backup, software updates, or peer-to-peer file trans-
fers, ...) that are advantageous to both users and a network providers. Furthermore, the
LBE service over satellite communications might enable a low-cost or even free Internet
access in remote communities.

In this thesis, we only focused in the deployment of LBE service at the transport
layer. Initially, we chose to study LEDBAT since it is the most widely deployed LBE
transport protocol. However, our analysis exhibits the difficulty in tuning LEDBAT
parameters and thus prompts us to design a new LBE protocol employing fuzzy control
theory. All of these contributions are summarized below.

LEDBAT Analysis

In the beginning of this thesis, by means of simulation, we study the impact of LEDBAT
internal parameters on its performance in the presence of TCP over a wide range of
network configurations. LEDBAT employs a P-type controller to modify the congestion
window with respect to the queuing delay. This queuing delay is derived by the variation
of the estimated end-to-end one-way delay. Two key parameters of LEDBAT are the
target queuing delay and gain (increase and decrease gain). Both parameters strongly
impact on the LEDBAT behavior in terms of fairness with other protocols. Consequently,
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a misconfiguration leads to the aggressiveness of LEDBAT towards TCP. LEBDAT also
suffers from the intra-unfairness problem, named latecomer advantage.

We first study the impact of the target queuing delay and decrease gain settings
on the working regions of LEDBAT — the areas where LEDBAT behaves correctly as
an LBE protocol. Then, by exploring the set of LEDBAT parameters, we find that
(5 ms; 10) is the global optimal combination of target queuing delay and decrease gain
allowing LEDBAT to be LBE-compliant over a wide range of network configurations. We
note that this optimal target is far from the guideline in the RFC, which recommends
a target of 100 ms. Besides, in all simulation cases, LEDBAT is not fully LBE and
borrows some capacity of the primary flows. As a result, the impact of the increasing
number of LEDBAT flows remains an issue. Furthermore, the latecomer unfairness issue
of LEDBAT still persists even with the global optimal combination of parameters. Our
in-depth LEDBAT analysis highlights the necessary to find a solution to solve both the
aggressiveness and latecomer unfairness of LEDBAT.

Design of FLOWER

In light of the LEDBAT analysis, we propose FLOWER, a new delay-based congestion
control protocol designed to provide an LBE service using results from the fuzzy logic
area. The main goal of FLOWER is to overcome both major LEDBAT drawbacks: ag-
gressiveness and latecomer unfairness, while being LBE-compliant. The main difference
between both protocols is that FLOWER replaces the P-type controller with the fuzzy
controller that, besides the queuing delay error, also utilizes the error trend to modu-
late the congestion window. While being more robust than the P-type controller, we
highlight the fact that the fuzzy controller is simple to implement.

To test our protocol, we have implemented a prototype of FLOWER in the ns-2
simulator. First, we assess the impact of FLOWER flows on TCP flows in different
network conditions. The results demonstrate that, when coexisting with standard TCP,
FLOWER always behaves as an LBE protocol where LEDBAT fails in average use cases.
On the other hand, in the presence of CUBIC, the performance of FLOWER is far better
than LEDBAT in respect of the LBE principle, although CUBIC is more aggressive than
standard TCP. Then, we study the interaction between two FLOWER flows to assess
their intra-fairness and determine whether FLOWER is not impacted by the latecomer
issue. This time, the simulation shows that FLOWER does not inherit the latecomer
issue of LEDBAT thanks to the loss detection scheme. In consequence, FLOWER flows
can fairly share the link capacity. Finally, we evaluate the interaction between AQM
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schemes and FLOWER in the presence of standard TCP connections. In all testing cases,
FLOWER is always more LBE-compliant than LEDBAT and tends towards the ideal
interaction with AQMs, where the queuing delay is low while the LBE traffic remains
low-priority. There are two reasons behind this outcome. First, FLOWER has a loss
detection zone in its fuzzy rule base that allows it to react better than LEDBAT when
congestion occurs. Second, FLOWER resets its congestion window to minimum in case
of loss to alleviate its impact on higher priority flows.

All of these simulation results above demonstrate the potential of FLOWER as an
alternative to LEDBAT. To the best of our knowledge, FLOWER is the first solution
that solves both the aggressiveness and latecomer issues of LEDBAT while still having
a good interaction with AQM schemes.

Perspectives

There still are points that this thesis do not cover and that could be explored. In the
following, we present these remaining open issues:

Fixed target queuing delay Similarly to LEDBAT, FLOWER uses a fixed target
queuing delay set to 100 ms by default. Therefore, a non-compliant implementation could
introduce the intra-unfairness issue between FLOWER or LEDBAT flows, as discussed in
Chapter 2. One possible solution is to employ an adaptive scheme to cope with different
network configurations. However, how to adapt this target queuing delay remains unclear
until now. Consequently, using either a fixed or adaptive target queuing delay requires
a special research attention.

Loss-based reaction While it has a loss detection zone in its fuzzy rule base, FLOWER
mainly uses the queuing delay as a main congestion indication. With fuzzy control, we
could easily expand the rule base to upgrade FLOWER to an hybrid loss and delay-
based protocol. Loss-based reaction improves the interaction between FLOWER and
AQM schemes. Moreover, it also improves the FLOWER performance in sub-packet
regimes, which encourages the deployment FLOWER to help wireless community net-
work users in developing regions to efficiently share low-bandwidth backhaul Internet
links.

FLOWER implementation and testing We are currently porting the ns-2 imple-
mentation of FLOWER to the Linux kernel for testing. At an initial stage, we plan
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to test FLOWER performance and its interplay with AMQs on our local testbed at
ISAE lab, and then over the satellite link using CESARS platform provided by CNES.
Afterwards, we expect to further push this idea at IETF.
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List of Acronyms

ACK ACKnowledgment

AIMD Additive Increase/Multiplicative Decrease

AQM Active Queue Management

BDP Bandwidth Delay Product

CoDel Controlled Delay

ECN Explicit Congestion Notification

EWMA Exponential Weighted Moving Average

FLOWER Fuzzy LOWer than best-EffoRt

IETF Internet Engineering Task Force

IP Internet Protocol

LBDP Large Bandwidth Delay Product

LBE Lower-than-Best-Effort

LEDBAT Low Extra Delay BAckground Transport

OWD One-Way Delay

PID Proportional-Integral-Derivative

PIE Proportional Integral controller Enhanced
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RED Random Early Detection

RFC Request for Comments

RTT Round-Trip Time

TCP Transmission Control Protocol
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Analysis (A. Pescapè, L. Salgarelli, and X. Dimitropoulos, eds.), vol. 7189 of Lecture
Notes in Computer Science, pp. 52–65, Springer Berlin Heidelberg, 2012.

[48] C. Testa, D. Rossi, A. Rao, and A. Legout, “Data plane throughput vs control
plane delay: Experimental study of BitTorrent performance,” in IEEE Thirteenth
International Conference on Peer-to-Peer Computing (P2P), pp. 1–5, September
2013.

[49] A. Sanhaji, P. Niger, P. Cadro, and A.-L. Beylot, “DropTail Based ConEx Applied
to Video Streaming,” in The Eleventh International Conference on Networking and
Services (ICNS), May 2015.

[50] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and A. Pescape, “Passive
bufferbloat measurement exploiting transport layer information,” in IEEE Global
Communications Conference (GLOBECOM), pp. 2963–2968, December 2013.

[51] C. Chirichella and D. Rossi, “To the Moon and back: Are Internet bufferbloat delays
really that large?,” in IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 417–422, April 2013.

[52] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A Mechanism for Back-
ground Transfers,” SIGOPS Operating Systems Review, vol. 36, pp. 329–343, De-
cember 2002.

91



[53] A. Kuzmanovic and E. W. Knightly, “TCP-LP: low-priority service via end-point
congestion control,” IEEE/ACM Transactions on Networking, vol. 14, pp. 739–752,
August 2006.

[54] M. Arumaithurai, X. Fu, and K. Ramakrishnan, “NF-TCP: A Network Friendly
TCP Variant for Background Delay-Insensitive Applications,” in NETWORKING
2011 (J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio, eds.),
vol. 6641 of Lecture Notes in Computer Science, pp. 342–355, Springer Berlin Hei-
delberg, 2011.

[55] N. Kuhn, E. Lochin, J. Lacan, O. Mehani, and R. Boreli, “CLIFT: A Cross-Layer
InFormation Tool for latency analysis based on real satellite physical traces,” in 7th
Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing
for Space Communications Workshop (ASMS/SPSC), pp. 182–189, September 2014.
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