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Abstract

As presented latter on iGhapter 1, in structural components design, the choice mhgpi
technology is essential. In this particular context, adhesive bonding may appear as an
attractive joining process. Indeed, adhesive bonding offers the possibility of joining without
damaging various combinations of materials, from plastics to metals including composite
materials. However, the interest of adhesive bonding remains while the integrity of the joint is
ensured. Accurate strength prediction are then required.

In the frame of an internal research program called JOSAT (Joint Stress Analysis Tool), Sogeti
High Tech has suggested developing since 2008 a simplified tool for the stress analysis of
adhesively bonded joints. This tool allows for the distribution of both the internal forces and
displacements in the adherends as well as the adhesive stresses along the overlap to be
estimated from specified loads and boundary conditions, and has the advantage of being
extremely time saving compared to conventional Finite Element (FE) analyses.

In 2011, this tool was extended to support adhesive material nonlinearities in the form of
specified adhesive stress-strain evolution laws. However the theory developed was
demonstrated as valid for the Single-Lap Joint (SLJ) configuration only, and limited to small

levels of adhesive material nonlinearities.

In this context, the objective of the thesis is double. First, extend and validate the simplified
tool for the analysis of adhesively bonded joints in the case of nonlinear adhesive as well as
adherends stress-strain constitutive behaviors. Then, suggest and develop experimental
protocols for the characterization of the cohesive properties of thin adhesive layers so that the
simplified tool can be sustained with relevant experimental data in terms of adhesive stress-
stain constitutive relationships.

The following dissertation then falls into two parts. FilShapter 2 aims at presenting a
method that extends the simplified tool to simultaneously account for various adhesive and
adherend nonlinear constitutive behaviors with no restriction on the specimen geometry and
(or) level of material nonlinearities. Secondighapter 3 aims at presenting a new and
original protocol for characterizing the cohesive properties of thin adhesive layers based on
the monitoring of the adherend-to-adherend displacement field nearby the adhesive crack tip.
Finally, the results of a first experimental test campaign are provided so that it validates the
newly introduced experimental protocols. Good agreement is shown.
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Chapter 1. Structural adhesive bonding

Chapter laims at presenting structural adhesive bondingduastrial applications.

Table of contents
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1.1. S
tructural adhesive bonding: An efficient joiningopess

In the frame of the design of structural componetiie choice of the joining method is
essential. A large range of joining methods eXstdringing together similar (or dissimilar)
materials from plastics to metals including comfmanaterials. In a large amount of
industrial applications, conventional mechanicaht® (e.g. bolted, riveted, etc) are preferred
due to their simplicity and disassembly ability. wver, when loaded, mechanical joints are
limited by the local damage introduced at fastdr@es (sed-ig.1). This generally leads to
the overweight design of mechanical joints struedur.e. safe tolerant damage, etc).

t t

g Mi@m t £A4444444
% [ +]\» fastener

> > > >
<« <« <

— adhesive

v - v

Figure 1.Schematic representation of the concentratiorirefses nearby the fasteners holes.
Structural adhesive bonding. An efficient joininggess.

The demand for designing lightweight structureshaut any loss of strength and (or)
stiffness has conducted many engineers (reseajdbessek for alternative joining methods.
In this context, adhesively bonded joints may appsaan attractive joining method.

According to (Adams & Wake 1997, Hart-Smith 20G#hd Anyfantis 2012) adhesively
bonded joints have the advantage of: (i) allowing the joining of thin substrates, (i)
providing high strength to weight ratios with thrigmes higher the shearing force of riveted
joints due to a continuous load transfer, (iii) yding a superior fatigue resistance up to
twenty times higher than equivalent riveted joirfitg) being generally sufficiently flexible to
allow for the variation in coefficients of thermatpansion when joining dissimilar materials,
(v) generally being an excellent electrical and) (drermal insulation, (vi) improving
aerodynamic/hydrodynamic smoothness and visualappee and (vii) being usable as a seal
or corrosion preventer when joining incompatibletenals (i.e. galvanic corrosion).

However, adhesive bonding also involves: (i) agely controlled joining process, (ii) clean
and specifically prepared substrates to allow fiimoal adhesion properties and (iii) adhesive
potentially sensitive to harsh environmental candg (e.g. temperature, ambient humidity,
UV exposure, etc).

-14 -
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Another advantage of adhesive bonding is that sihee amount of adhesive generally
required for sustaining static as well as fatignadk is very low it generally allows for
significant weight benefits. Finally, another adizage of adhesive bonding is that, thanks to
chemistry, adhesives can be specifically formulatefit at best dedicated specifications (see
Section 1.2

Adhesive bonding for secondary load bearing strestinas been introduced several decades
ago and finds its roots in the field of aeronau{®seFig.2). However, although numerous
successful structural applications have been ifiedt(e.g. De Havilland Mosquito, British
Aerospace RJ series, Airbus A300, A380, Boeing 7&¢) the technology has always
suffered from a general lack of confidence compapezbnventional joining methods, such as
bolting or riveting(Higgins 2000)

SPANWISE STRINGERS
1N WINGS . TaE

ML LOMITUBINAL ST IHORRS.

OF FUSELAUE SHELL ALL LONCITUDINAL STUNGERS

Y OF FUSELAGE SHELL .

IN AILERON AND
FLAP STRUCTURE

T

WALL STIFFENERS IN
FIK AND FLEVATORS

SEAMS OF FRESSURE DOME

IN FLAP STRUCTURE.

ALL STIFFENERS IN PRESSURE FLOOR ,"‘_fr_‘"‘;‘:"i—.:‘&,i,ﬂh _. _,-\,\

"REDUK' BONDED TO FLDOR SHELL =i ot U B L ~ 1N AILERON STRUCTURE ™
.

*Redux’ Bonding in the Comet e
; VERTICAL STIFFENER FLANGES

THE very wids se of the “Redux’ bonding process i (b comsiraciion of AND BOUBLERS IN WINGS
the Comet is indicated in this cut-away drawing. reproduced by kind
permission el the do Hevillind Alreraft Co. Ltd, The wic of the ‘Redus”
process in the Comet is 50 "cxicrmive that it hos not been found poisible ¢
.t jpdicate sl the strastures for which it is being used.

Figure 2.Blueprint of the DeHavilland Comet. Secondary Ibadring structures bonded with
Redux 775 in the DeHavilland Comet. Structural adhee bonding. An efficient joining
process(Higgins 2000)

1.2. Selection of the adhesive material

In (Anyfantis 2012) the author suggests that most of today’s strattadhesives can be
classified into six groups that are: (i) epoxié@$,urethanes, (iii) acrylics, (iii) anaerobicsy)i
cynaoacrylates and (v) UV curable adhesives.

As a result, nowadays exists a large amount ofewfft adhesive materials. Each one
specified to fit at best dedicated specificatidnsrig.3 is presented a non-exhaustive survey
of some of the main structural properties of a espntative number of today’s industrial
adhesives. Different characteristics were set imuh fnumerous suppliers technical datasheets
(i.e. 147) and compared from one to others. Diffeteends are set out.

-15-
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Overlap shear strength at 23°C [N/mm?]

(a) (b)
e
o e
L] o
bt 3
° °
ee®
° 4_0.
10 20 30 40 50
25

20

=
4
©
15 g
-]
® °
S [ ]
o
10 = LJ o
©
1)
c

[
oo %o o:
0 ._o :
0 10 20 30 40 50

Overlap shear strength at 23°C [N/mm?] Young'’s tensile modulus [MPa]

(@ho ) (d)

10 A

0 1000 2000 3000 4000 5000 6000 7000

-16 -



Chapter 1. Structural adhesive bonding

Figure 3.Survey of structural properties of a represengatiumber of today’s industrial
adhesvies. Adhesion to fiber reinforced composiesus adhesion to metals). T-peel
strength at 23°C versus overlap shear strengtlB4at &). Overlap shear strength at 80°C
versus overlap shear strength at 283 Elongation at break versus Young’s tensile masiulu

(d).

As an example, it is seen frofig.3-(c) that today’'s adhesives are generally expected to
sustain more efficiently shear loadings than peeldings. As a result, investigations on
adhesive peel strength have become an industriadeco of growing interest in terms of
bonding efficiency.

1.3. Adhesive joint manufacturing

According to(Broughton 2001a)the reliability of an adhesive joint depends aoly on the
selected adhesive (adherend) material, but onréyeapation of the adherends, the mixing of
the adhesive, the joint assembly and the curingcgs® Indeed, always according to
(Broughton 2001a)a significant percentage of adhesive joint fatuican be attributed to
poor manufacturing processes. The manufacturinggssothen appears as a key parameter
involved in the overall performance (structurakigity) of adhesively bonded joints.

Surface preparation is commonly recognized as dn#hed most critical step in adhesive
bonding. Indeed, inadequate surface preparatidimecddherends generally results in the bond
to fail unpredictably at the adhesive-to-adheremédrface (se&ection 1.5 As a results, a
considerable attention has been given in optimiargsting (or developing new) surface
treatments for increasing adhesive-to-adherend saaieproperties in the open literature
(Broughton 2001a, Broughton 2001b)

According to (Broughton 2001h)the role of surface preparation is to removesaliface
contaminants, favor mechanical micro-interlockiagd (or) modify the local chemistry of the
bonding surface (selig.4). However it is important to ensure that the stefareparation
does not affect significantly the constitutive telaships of the bonded adherends, so that
those have to be characterized after the surfaatntent.

[ :Adherend "Q\M Micro-mechanical interlocking
[ :Adhesive -7

[ — - l__ - » \_—_/—-.__ Adsorption
=

Mo 0 Q &% A Electrostatic or micro-molecular liaisons
CYC)

)
o

Figure 4.Schematic representation the mechanical intenggladsorption, covalent and (or)
polar-covalent liaisons adhesive-to-adherend adhesiechanisms. Adhesive-to-adherend
adhesion properties. Adhesive joint manufacturing.

-17 -



Chapter 1. Structural adhesive bonding

Several authors such édams and Wake 1997, Wegman and Van Twisk 20d®e then
suggested making a distinction between three tygfesurfaces treatments: (i) surface
preparation, (ii) surface pre-treatment and (ilyface post-treatment. Surface preparation
covers cleaning (degreasing) and preparation (dielgyirof the substrate surface. Surface pre-
treatment refers to mechanical processes (e.gdiggnjet-cleaning, etc), chemical processes
(e.g. etching, gas phase fluorination, etc) andsilay processes (e.g. low pressure plasma,
etc) that alter the mechanical and (or) chemicahmmsition of the surface to be bonded.
Finally, surface post-treatment refers to all teghas that purposes to preserve the treated
surface from later on contaminations (e.g. appbecabf a primer, etc).

1.4. Adhesive joint geometries

In (Anyfantis 2012) the author suggests defining adhesive bonding géning process in
which an adhesive material, sandwiched betweerattherends, solidifies to produce a bond.
This definition is interesting since it clearly ki an adhesive layer to its surrounding
structure, so that the mechanical response of hasatk layer cannot be dissociated from its
surrounding structure.

As an example, a non-exhaustive list of existinpesive joint geometries is provided in
Fig.5. These geometries refer to in-plane loaded adagsimt geometries, so that out-of-
plane deformations of the adhesive layer are ndtemded. The Single-Lap Joint (SLJ) is
certainly the most common adhesive joint that ianfb in practice (sedig.6). Firstly
discussed irfVolkersen 1938)the SLJ design allows for the joining of simi{ar dissimilar)
thin (or thick) adherends with a simple manufactgnprocess. Moreover, the SLJ design has
the advantage of transferring loads from one aditete another so that the adhesive layer
experiences shear loadings essentially (i.e. wiscknown as being the strongest way of
loading an adhesive bond). However the SLJ calmeadhesive layer to be stressed also in
peel. The misalignment of the axial loading direcs (i.e. also referred as the load path
eccentricity) resulting in the rise of significamnding moments at the overlap edges so that
peel stresses appear at each end of the adhegivgdad-ig.6).

To overcome this problem (i.e. load path eccenyic{Lees 1987)suggested an alternative
joint design. This alternative joint design is reéel as the Double Joggle Joint (DJJ) and
suggests bringing back the axial loading directionte alignment by stamping both of the
surrounding adherends. The gain in terms of joiatadility (i.e. due to the modified
distributions of adhesive stresses along the opgris shown as significant (s€€g.7?).
However, although the DJJ is particularly well sdifor bonding adherends that can endure
stamping, this particular design remains diffi¢doltmanufacture.
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Single-Lap Joint

S —— I

------ - ————-} - Load path eccentricity

Double Joggle Joint

Figure 5.Schematic representation of the Single-Lap Jdsit]), the Double Joggle Joint
(DJJ) and the Double-Lap Joint (DLJ). Adhesive togeometries. Structural adhesive
bonding.

Single-Lap Joint

Physics model:

Idealized distributions of

. | 4—— Distribution of adhesive peel stresses
adhesive stresses:

Distribution of adhesive shear stresses

V4 \/:x

Figure 6.Schematic representation of the Single-Lap Jd&il). Idealized distributions of
adhesive stresses. Adhesive joint geometries. Btal@adhesive bonding.

Double Joggle Joint

Physics model: ¢ - pm—m——rr—n) -------

Idealized distributions of
adhesive stresses:

Figure 7.Schematic representation of the Double Joggle JDil). Idealized distributions of
adhesive stresses. Adhesive joint geometries. tBtal@adhesive bonding.
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Similarly to the latte(Lees 1987)(Hart-Smith 1973bjproposed another joint design so that it
limits bending effects due to the misalignmentha# joint loading directions. This design is
referred as the Double-Lap Joint (DLJ). The DLJntlseiggests limiting the effect of the
misalignment of the axial loading directions by esfitg two symmetrical paths for
transferring the applied load. The main advantdgich design is then that, besides reducing
by half the load transferred through both upper Ewder adhesive layers, is to limit the
bending effects by constraining the transversedalgments of the mid plan adherend.

Double-Lap Joint

Physics model:

Idealized distributions of

adhesive stresses: : Equivalent SLJ

Figure 8.Schematic representation of the Double-Lap Jdhil}. Idealized distributions of
adhesive stresses. Adhesive joint geometries. Btal@dhesive bonding.

However, although the DLJ is generally assumedxasrencing essentially adhesive shear
loadings(Mittal 2002), peel loadings cannot be entirely neglected sbttteaapplied load is
still transferred through the adhesive to the aeings away for their neutral axes ($eg.8).
Then the internal bending moments that arise indbter adherends cannot be entirely
neglected and still affects the overall joint pemriances (structural integrity). Similarly,
numbers of other joint geometries such as the Eap8ingle-Lap Joint (TSLJ) and (or) the
Tapered Double-Strap Joint (TDSJ) have been sugmyést reducing the rise of peel stresses
within the adhesive layer over the past decades.
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1.5. T
he fracture of adhesive joints

Depending on the joint geometry and (or) loadingditions, adhesively bonded joints are
expected to fail either in the adhesive layer othi adherends. The fracture of the adhesive
layer is governed by three main mechanisms k3g@®). The first one, the cohesive failure,
happens when the adhesive fracture starts (andgatgs) within the core the adhesive layer.
It refers to the classical degradation process excribed within most of the theoretical
analyses of the fracture of adhesively bonded goifihe cohesive failure is governed by the
constitutive properties of the adhesive layer aantyg is generally reproducible. The second
one, the interfacial or adhesive failure, happememwthe adhesive start to disbond at the
adhesive-to-adherend upper (lower) interface. Tieghanism generally happens for smaller
loads than the cohesive failure and is typicallye do poor surface preparation of the
adherends before bonding. It then results in ndm@b adhesion properties between the
adhesive and the upper (lower) adherend. The adeffracture is generally complicated to
reproduce since the interfacial strength of theeadle-to-adherend upper (lower) interface
results from a complex interaction between both hmaaal, process and environmental
parameters. The last one, the mixed-mode failgr@, mix between cohesive and interfacial
failures. It generally takes the form of a crackhptnat oscillates between one adhesive-to-
adherend interface to another or between one aghesiadherend interface to the core of the
adhesive layer.

Cohesive failure Interfacial failure Mixed-mode failure
T 1 | \ | F"'_:\"- |
Crack path Crack path Crack path

Figure 9.Schematic representation of fracture mechanisnaslbésive joints. Fracture of the
adhesive layer. Cohesive failure. Interfacial flaluMixed-mode failure.

Similarly, the fracture of the surrounding adheem& governed by two main mechanisms
(seeFig.10 that generally depend on the nature of the adidsréhemselves. The cohesive
failure of the adherend refers to the failure & #uherend due to the rise of important axial
stresses nearby the overlap edges. This mecham@serajly applies to metallic adherends.
On another side, the adherend delamination (ise. dferred to as the adherend interlaminar
failure) refers to the failure of the adherendnat interface between to plies, and is due to the
rise of important peeling stresses between eacbfglye laminate. This mechanism generally
applies to fiber reinforced composite materials.
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(b) Metals (c) Fiber reinforced composites

Figure 10.Schematic representation of fracture mechanisnaslioésive joints. Fracture of the
surrounding adherends. Idealized Von Mises strestsliition developed in the Single-Lap
Joint (SLJ) subjected to in-plane loadifg). Cohesive failure. Metalgb). Interlaminar
failure. Fiber reinforced composités).

The present dissertation then takes interest icdhesive failure of adhesive layers only (see
Fig.11). The cohesive failure of the adhesive layersrisueed by using adequate surface
preparations before bonding.

Figure 11.Fracture facies of an adhesive Single-Lap JoimtJY.S(1): Apparent adhesive
residue on both sides of the fracture facies = &gyapon of the crack within the core of the
adhesive layer. Cohesive failure of the adhes®e.Apparent surface of the adherend on the
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lower fractured sample of the specimen. Mixed-méakire of the adhesive. Due to the
catastrophic (unstable) static load failure ofgpecimen.

1.6. M
echanical analyses of adhesively bonded joints

Historically, the lack of suitable mechanical madahd (or) failure criteria for the modeling
of the fracture process of adhesively bonded jdmats resulted in a tendency to overdesign
adhesive joints. To allow for the design of adhelsibonded joints, numbers of engineers
and researchers have thus worked on the extensadelmg of the mechanical response of
such structures. Different approaches exist.

1.6.1. C
losed-form stress analyses of adhesively bondedsjoi

A large number of closed-form stress analyses bésigely bonded joints exist in the open
literature(Volkersen 1938, Goland & Reissner 1944, Adams Rappiatt 1973, Hart-Smith
1973a, Hart-Smith 1973b, Williams 1975, Allman 198igwood & Crocombe 1991,
Hogberg 2004, Weissgraeber 201Based or(van Ingen and Viot 1993, Da Silva 2008)
non-exhaustive review of these simplified approacisegiven inAppendix 1 In most of
these approaches the joint kinematic is simplisedthat the displacements field of each
adherend is supposed relevant to the beam (or) pkeery while the adhesive displacement
field is expressed in terms of that of adherends. (ihen restricting the number of
components of the adhesive stress tensor). A widadpmodeling of the adhesive layer
consists in a two dimensional elastic foundatising a continuous distribution of peel and
shear springs supporting both adherends interf@¢ekkersen 1938, Goland & Reissner
1944, Hart-Smith 1973a, Hart-Smith 1973b, Weisdggae2014) In these particular
analyses, the adhesive stresses are then expsd$edctions of the relative displacements
of the surrounding adherends. The governing systeeguilibrium equations of the joint is
then derived and solved in view of its boundary dibons, so that the distribution of
adhesive stresses along the overlap is given ifotine of ready-for-use formulae.

A large amount of closed-form adhesive stress amalyonsider solving the equilibrium
equations of the joint along the overlap regionyofsleeFig.12), so that is allows for the
analysis of various joint configurations (e.g. SLdJoint, T-Joint, etc). These analyses are
classically separated in two distinct phases:temining the loads acting onto the edges of
the adhesive overlap and (ii) determining the distion of joint stresses as functions of
these applied loads. For convenience, these asalyiflethereafter be referred as sandwich
type analyses.
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L-Joint:
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Lo C
T-Joint:
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Single-Lap Joint: |-
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Sandwich type Nio *GT _________________ ¢%> Nus
analysis:
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\ /

Analysis of the loads acting
onto the edges of the overlap

Figure 12.Adhesively bonded joint sandwich type analysiogét-form stress analyses of
adhesively bonded joints. Mechanical analyses bésidely bonded joints.

The accuracy of such approaches in predicting tis&rilsutions of stresses within the
adhesive layer then lies on the validity of the @ifging hypotheses used to integrate the
governing system of equilibrium equations only. Hoer they are generally easy to
implement and require few computational resources.

Goland & Reissner’s sandwich type analysisThe Goland & Reissner's sandwich type
analysis has been firstly introduced (Goland & Reissner 1944and has formed the
theoretical foundations of most later investigasioon the strength analysis of adhesive
joints.

In (Goland & Reissner 1944)he authors suggest determining analytical espras for the
elastic shearing and peeling (normal) stressesingleslap cemented joints (i.e. simply
supported and in-plane loaded). The theory is theided in two parts: (i) determining the
loads acting onto the edges of the adhesive ovarap(ii)) determining the joint stresses as
functions of these applied loads. For simplificatipurpose, they suggest modeling the
surrounding adherends as monolithic beams with sgtmengeometry and material (i.e.
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Ei=E,=E, ti=t,=t and vi=v,=v, with E, v; and t; respectively the Young’'s modulus, the
Poisson’s ratio and the thickness of adhejgjwll,2)).

First assuming the whole joint (i.e. the bondedriaye+ the outer adherends) as behaving as
a cylindrical bent plate of variable cross secteomd neutral axis, the authors derive a
relationship between the bending moment applietthe@atoverlap edge and the applied axial
load. The given relationship accounts for the élguilm of the deformed geometry instead
of the initial (undeformed) geometry. Then, thehaus suggest defining the bending moment
factor kgr as the ratio between the resulting bending mongest applied at the overlap
edge) and the axial load multiplied by the haltkimess of the surrounding adherends, so
that:

4 1 [P L
K. '==Pt/M_, =1+ 2+/2tanh| ,|— — 1
R 2 /Mo V2 [ 8D 2} (1)

whereP is the applied axial loadJly the bending moment acting at the overlap etgibe
length of the bonded overlap abdhe adherends constitutive bending stiffness ddfims:

Ebt®
= 2
15‘1—V25 @)

In a second time, the authors suggests solvingew of its boundary conditions the set of
governing differential equations (i.e. derived fr@amlinear elastic analysis of the bonded
overlap) that account for the effect of both shegmnd normal (peeling) adhesive stresses
onto the equilibrium of the surrounding adherends.

The authors finally suggest deriving two analytieapressions for the adhesive shdarapnd
peel © distributions, so that:

0= o L peestBB ) 8 ) ®
b0 v

( RA kGR+/lksmh(()I sm( jsml-( ij { ﬂ 4)

where
L |1

k=—.—k 5
5\ 4D R ©))
L L E

ﬁ = E and A =—4 6_ (6)
2 | Ete 2 \ Ete
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R, = cosh (4 )sin (1) + sinh (1 )cos (1) (7)
R, = sinh (1)cos ()~ cosh (1 )sin (1) (8)
A =1/2 (sinh (24) - sin (24)) 9)

and wheres, E respectively refer to the shearing, peeling (ndymmdulus of the adhesive
layer ance to the thickness of the adhesive layer.

Hart-Smith’s sandwich type analysis. In (Hart-Smith 19733) the author suggests
reworking the earlier Goland & Reissner’s theorytlsat: (i) the expression of the bending
moment factor is re-established using differentpdifying hypotheses and (ii) the set of joint
equilibrium equations is re-derived so that it acus for the thickness of the adhesive layer
onto the load path eccentricity.

Contrary to the Goland & Reissner’'s approach farvileg the bending moment applied at

the overlap edge from the applied axial load, tid@ does not assume the entire joint (i.e.
the bonded overlap + the outer adherends) as a@isiqucture of variable cross-section and
neutral axis. Then, the author analyses the jaitiguithe same set of governing differential
equations as used for the following stress anabfsise bonded overlap.

By successive combinations and differentiationthefjoint equilibrium equations, the author
then derives a new expression of the bending mofaetur as:

41 L/P L*P
kys ' ==Plt+e)/M, =1+—=, | — +—— 10
L L N (10)
whereP is the applied axial load (in NI, the bending moment acting at the overlap etge,

the length of the bonded overlap andhe adherends constitutive bending stiffness ddfin
as:

D__kBEbF
15‘1—V25

and that account for possible laminated adherdmdsigh the parametés.

(11)

The author finally derives new analytical expressitor the adhesive shedi @nd peel §
distributions, so that:

_ P |1+301+e/tk,s ,cosh(B(2x/L -1)) 1+ 31+ e/t)k,q
T()= E{ 1+ 301+ e/t) sinh(B) ' [1_ 1+ 31+ e/t) ﬂ (12)
(x)= %[(cos(/l) ~ sin(1))cosHA(2x/L 1)) codA (2x/L ~ 1))

+ (sin (1) + cos(A))sinh (A (2x/L - 1))sin (A (2x/L - 1))] (13)
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where:

L [2G e _L,E
=— = = d A=—14 14
o 2\/Ete\/1+{1+tj an 2\ 2De (14)

and wheres, E respectively refer to the shearing, peeling (ndymmdulus of the adhesive
layer ance to the thickness of the adhesive layer.

1.6.2. F
inite Element (FE) analyses of adhesively bondéedgo

The Finite Element (FE) method is a computationatthod which allows for the
approximate solution of various engineering prolddmbe obtained. The stress analysis of
adhesively bonded joints is one of these probleAthough this general resolution
procedure is computationally expensive and can teadumerical convergence issues, S0
that the mesh of adhesive layers has generallyetmtensively refined to capture the local
stress gradients at bondline edges, the FE methodsafor the study of various joint
configurations. Then, various adhesive and adhergedmetries as well as various loading
and boundary conditions are addressable using FEoohe (seé-ig.13.

Numbers of authors such &Bickthall and Heller 1997, Lang and Mallick 19#8pughton
1999, Broughton 2001b, Hansson 2002, Tsai and Maz@l0, Anyfantis 2012)have thus
worked on the intensive modeling of adhesively kmmhdtructures using FE techniques.
However, converged FE analyses generally imply lgigefined meshes and so time
consuming computations.

Single-Lap Joint

Tapered Single-Lap Joint

RS

Physics model: Finite Element (FE) model:

Figure 13.Schematic representation of Finite Element (FEde® of a Single-Lap Joint
(SLJ) and a Tapered Single-Lap Joint (TSLJ). Fikitement (FE) analyses of adhesively
bonded joints. Mechanical analyses of adhesivehdbd joints.

1.6.3. A
nalysis of adhesively bonded joints using macronelats
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Similarly to closed-form stress analyses, the matement approach is based on the
resolution of the system of governing differengguations of the joint. However, since the
simplifying assumptions are here voluntarily reséd a closed-form solution is not
explicitly expressible. Different approaches thake ualternative mathematical resolution
procedures can be found in the open literatureh sag the multi-segment integration
technique(Mortensen 1997pr the macro-element techniq@earoissien 2006, Da Veiga
2009, Stapleton 2012, Paroissedral. 2013)

In (Paroissien 2006, Da Veiga 2009, Paroissien €2(dl3) an original solution procedure
inspired by the Finite Element (FE) method is depell by the authors. The authors then
formulate what will be thereafter referred as then@ed-Beam macro-element — denoted
BBe. The method then consists in meshing the strectThe overlap is meshed using a
unique 4-node macro-element specifically formulatedallow for the resolution of the
governing system of differential equations of thmg at low computational costs. The outer
adherends are meshed using specifically formulatedr beam elements (s€ection 2.3.2
andSection 2.3.3f Chapter 2

According to the classical Finite Element (FE) noeththe stiffness matrix of the entire
structure — termedK — is assembled from the both the BBe macro-elensgmt the
surrounding outer beam adherends.

As for the classical Finite Element method, the imimation of the potential energy is
ensured by solving equatidi=KU, whereF is the vector of nodal forcek) the vector of
nodal displacements adthe specifically formulated stiffness matrix oéthntire structure.
The whole distribution of the adhesive stresseacatbe overlap is then related to the nodal
displacements the BBe macro-element through a oguplarameter matrix denotéd (see
Section 2.3.2f Chapter 2.

According to(Paroissieret al. 2013) the macro-element approach offers the advantadg o
providing predictions of the adhesive stress distions in extremely good agreement with
equivalent FE analyses, (ii) being highly compuatadl time saving compared to equivalent
FE analyses and (iii) allowing for the modelingneére complex structures involving single-
lap joints at low computational costs.

Recently, an original solution procedure based lom Einite Element method has been
adapted to the BBe formulation to allow for the miotg of various adhesive material
nonlinear behavior¢Gaubert 2011, Schwartz 2013, Gavoille 2014dwever, the authors

show that the aforementioned procedure is theaidbtidimited to the analysis of SLJ

configurations only and do apply to sufficiently allrmaterial nonlinearities of the adhesive
layer only.

1.7. E
xperimental characterization of adhesively bonadaat$

As presented irSection 1.1 in structural components design the choice of jtiring
technology is essential. In this context, adhebimeding may appear as an attractive joining
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process compared to conventional ones, such asgolt riveting. Indeed, adhesive bonding
offers the possibility of joining without damagingarious combinations of materials,
including plastics and metals. However, the intecfsadhesive bonding remains while the
integrity of the joint is ensured. To take advaetad adhesive bonding, accurate strength
predictions are thus required.

The strength prediction of bonded joints requites determination of computed criteria and
experimentally characterized allowable. Several regghes are proposed in the open
literature. These approaches could besides be umsdbe experimental characterization
process of allowable.

The stress analysis approach, based on the Strehithterials, is the classical approach. It
aims at localizing the maximal values of stressessrainglgens 1993, Tsai 1994, Da Silva
2009, Da Silva 2012)A second approach is based on the Fracture Mashakssuming the
presence of an initial crack judiciously localizadd sized by the user, it allows for the
computation of the strain energy release rate {mtegral) at crack tip as a function of
applied loads (or adhesive stresg€saise 1993, Tong 1994, Fernlund 2007, Da Silve220

In the coupled stress and energy criterion appro#@h crack length at initiation is not
assumed but derived from the analysis itfle#fguillon 2002, Weissgraeber 2013hen, the
computed crack length at initiation is not a mailegharacteristic and depends both on
geometrical parameters as well as on materiacalistress and energy release rate. Finally,
the Cohesive Zone Modeling — denoted CZM — enablégagnostic of the current state of
damage and an update of the strength predictiocoling to the recent literatufei et al.
2005, Crocombe 2009, De Moura 2009, Crocombe 20t6¢combe 2011, Da Silva 2012,
Gift et al. 2013) the CZM appears as one of the most suitable apprable to model both
static strength as well as the fatigue degradgirocess of adhesive layers.(Martin et al.
2016) the authors show good agreement comparing thpledstress and energy criterion
and the CZM in predicting the debonding initiatioha bimaterial specimen subjected to 4-
points flexion loads.

1.7.1. Cohesive Zone Modeling (CZM)

The CZM finds its root in the Continuum Damage Maubks and the Fracture Mechanics.
The basic idea of CZM is that structural damagenduloading can be found in the form of
micro-cracks forming and (or) voids coalescencer aaefinite distance from the initial
damaged arefDa Silva 2012) Resulting in a locally reduced load bearing cdpgpthe
degradation process of the material is modeled dsop of the transferred stresses after a
given value of deformation. An idealized CZM bilardraction separation law is presented in
Fig.14 However CZM is not limited to this particular gleaof traction separation law only
(seeChapter ZandChapter 3.
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Idealized bilinear interface
traction separation law: Initiation of the

cohesive process zone
P —— : k (loading)

Resulting traction 4
—--¢- : kis=(1-D)*k; (unloading)

0i(6io)=kibio T : Fracture energy

Propagation of the
cohesive process zone

Displacement
Sio 5ic 5 Jump (or deformation)

Figure 14.Representation of an idealized bilinear interfaaetion separation law. Cohesive
Zone Modeling (CZM). Experimental characterizatadradhesively bonded joints.

According to (Crocombe 2009)CZM has the advantage of: (i) indicating both daenag
initiation and propagation as direct outputs of thedel, (ii) allowing for the prediction of
undamaged materials without the need to introdupeeeexisting crack and (iii) advancing
the crack front when locally reaching the critivgalue of the energy release rate without the
need of complex moving mesh techniques.

1.7.2. Determination of cohesive zone model parameters

To take full advantage of CZM, computed criterianagl as experimental allowable have to
be determined from experimental testing. As a tesalimbers of authors suggested
developing experimental protocols for charactegzthe traction separation laws of thin
interfaces over the past few yeésrdersonet al. 2003, Alfredsson 2003, Alfredssenal.
2003, Alfredsson 2004, Lefflest al. 2006, Hogberg 2006, Hogbegg al. 2007, Cuiet al.
2014, Cui 2014, Da Silva 2012)

For most, these protocols refer to the concepthef énergetic balance associated to the
computation of the path independent J-intedfiice 1968)along a closed contour of
specifically designed specimens. The main advantégieese protocols is that they offer the
possibility of monitoring the evolution of the adinee stresses (strains) at crack tip from the
supervision of macroscopic quantities easily mesddarfrom the experimental testing fixture,
such as the applied load, the evolution of the sidbestrains at crack tip, etc. The lack of
standardized testing for determining the cohesimmeezmodel parameters of thin adhesive
interfaces has then conducted numerous researahdr&ngineers to call for various test
configurations. As a result, numbers of specimeassiieen explored for both pure mode I (II)
and mixed-mode I/ll characterization of adhesivgeta. According to(Da Silva 2012)
Double Cantilever Beam (DCB) and End-Notched Flex(ENF) adhesive test specimens
have respectively emerged as the specimens the e¢oashonly used for quantifying the
cohesive parameters of adhesive layers in pure rhade pure mode Il over the past few
years.
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On the contrary(Reeder 1990, Kenane 1997, Hogberg 208sfablished that most the
proposed mixed-mode I/ll test configurations préspractical limitations: (i) complex
loading fixtures, (ii) stable/unstable fracture g#ss, (iii) complex manufacturing of the
specimens, etc, although few of them present seadi@antages. The main advantage of the
Mixed-mode Cantiveler Beam (MCB) and the Mixed-Md#ending (MMB) testing fixtures
(seeFig.15 and Fig.19 is the possibility of working over a wide rangt amlhesive mode
mixities without the need of modifying the geometfythe specimen. Then allowing for
adhesive specimens with fully controlled dimensitmse more easily manufactured. It is
seen fronFig.15andFig.16that the MCB testing fixture allows for the contelepectrum of
adhesive mode mixities to be fully addressed bypbinvarying the inclination of the
antisymmetric loading directions, although the MX&Bting fixture is limited by the adhesive
itself so that it can difficulty address pure mobedhesive solicitations. However, a
significant advantage of the MMB testing fixtureoigpared to the MCB testing fixture) is
that it can be easily designed in advance of thgemment so that it allows for specific
adhesive mixed-mode ratios to be addre¢Bedssarie 2013(seeFig.16).
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Figure 15.Evolution of the early stage mixed-mode ratioraick tip §=v/e) as a function of
the inclination of the antisymmetric loading diiieas @). v: Adhesive shearing deformation
at crack tip €2 Adhesive peeling deformation at crack tip. Mixedde Cantilever Beam
(MCB). Determination of cohesive zone model pararsetExperimental characterization of
adhesively bonded joints.
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Figure 16.Evolution of the early stage mixed-mode ratioraick tip $=v/c) as a function of
the length of the lever arm (o): Adhesive shearing deformation at crack tipAdhesive

peeling deformation at crack tip. Mixed-Mode BemdifMMB). Determination of cohesive
zone model parameters. Experimental characterizafiadhesively bonded joints.

1.8. O
bjectives of the thesis

The following dissertation then falls into two parfFirst, Chapter 2aims at presenting a
method that extends the macro-element approachgasadly described in (seBection 1.6.3

to possibly account for various adhesive as well agderends nonlinear constitutive
behaviors. The method is inspired by the Finiteriget (FE) method and allows for various
adhesive and (or) adherends material nonlineant@isato be simultaneously accounted with
no restriction on the specimen geometry and (o@llef material nonlinearities. The main
originality of the solution procedure presenteds lie the use of the adhesive and (or)
adherends secant stiffness properties to itergtimpproach the solution of the nonlinear
problem. The vector of imbalanced loads resultirgmf the projection of the nonlinear
adhesive and (or) adherends stresses is then cethfpuough the knowledge of the adhesive
and (or) adherends secant stiffness properties ®hly proposed nonlinear adhesive material
models are formulated under a two dimensional mixede model that account for the
possible interaction between both pure mode | ance pnode Il adhesive stress-strain
evolutions laws while the proposed adherends n@terodels are formulated under a pure
axial model that account for the axial deformatminthe surrounding adherends due to
coupled tension/bending loadings.

Secondly Chapter 3aims to present three different existing proto¢ofsthe measurement of
the adhesive cohesive properties of thin interfdéeslersonet al. 2003, Alfredsson 2004,
Hogberget al. 2007) to set out and to discuss their inherent linoiagi Then, a new
experimental protocol to evaluate the effectiveessrstrain relationships of thin adhesive
layers subjected to mode I, mode Il and (or) mireatie I/ll adhesive deformations is
presented and developed in view of its implemenafi he new protocol aims at monitoring
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the evolution of the adhesive stresses (strainsyaak tip by supervising the evolution of the
adherend-to-adherend displacement field nearbwdhesive crack tip. Finally, the results of
an experimental test campaign as well as their emisgn with semi-analytical predictions
are provided so that the new experimental protecohlidated in the case of metal-to-metal
adhesive bonding subjected to pure mode |, pureemibdand mixed-mode I/ll. Good
agreement is shown.
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Chapter 2. Extension and validation of the simplifed 1D-beam adhesive stress
analysis

Chapter 2aims at presenting the modeling of adhesively bdnpbints facing in-plane
adhesive loadings using macro-elements. Firstyigsnod originally described ({fParoissien

2006, Da Veiga 2009, Paroissienal. 2013)is presented. Then, the method is extended and

validated in the case of adhesive (adherends) rahatenlinearities. The results obtained
from the semi-analytical analyses are finally coredato those of both existing sandwich
type analyses and 2D Finite Element (FE) predistionolving cohesive interface elements.
Good agreement is shown.
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

2.1.
ntroduction

A large number of simplified approaches for thesdranalysis of bonded joints exist in the
open literature(Volkersen 1938, Goland & Reissner 1944, Hart-Smi@iY3a, Hart-Smith
1973b, Williams 1975, Bigwood & Crocombe 1991, Hegh2004, Weissgraeber 2014)
non-exhaustive review of these simplified approadbeiven inAppendix 1 In most of these
simplified approaches the joint kinematic is sirfipl so that the displacement field of
adherends is supposed relevant to the beam or thiedey while the adhesive displacement
field is expressed in terms of that of adherenken(trestricting the number of components of
the adhesive stress tensor). A widespread modefitite adhesive layer consists in an elastic
foundation, supporting both adherends interfat&skersen 1938, Goland & Reissner 1944,
Weissgraeber 2014)The adhesive stresses are then expressed asofisnof the relative
displacements of the facing adherends. Dependingduaiitional simplifying hypotheses, a
closed-form solution is not always expressiblelsd thathematical procedurase necessary
to integrate the system of governing differentgi&ions in view of its boundary conditions,
such as the macro-element technid8¢éapleton 2012, Paroissien 200f) that the multi-
segment integration scherfidortensen 1998)

The mathematical solution presented(Haroissien 2006, DaVeiga 2009, Paroisseéral.
2013)applies to Single-Lap Joint (SLJ) configuratioms! @onsiders the adherends as Euler-
Bernoulli laminated beams supported by an infimtenber of elastic shear (peel) springs.
Besides, an original procedure allowing for noreéinadhesive behaviors to be accounted for
is presented. However, the authors show that tbeemfentioned procedure is theoretically
limited to the analysis of SLJ configurations oalyd do apply to sufficiently small material
nonlinearities of the adhesive layer of8chwartz 2013, Gavoille 2014)

In the present section, a reworked semi-analyficatedure enabling for various nonlinear
adhesive (adherends) behaviors to be accountedvitor no restriction on the specimen
geometry is presented. The possible mixed moderédpbonse of the adhesive layer is
introduced through an extension of the classicallG#ocedure(Valoroso 2004, De Moura
2008, Anyfantis 2012, Campilho 2013 particular emphasis is given to bilinear adwesi
and (or) elastic perfectly plastic adherend stetsmn evolution laws. However, the suggested
procedure is not limited to these particular adregadherends) behaviors only.

2.2. O
rganization of the chapter

First, for lecturer comfort, a short description tbk simplified 1D-beam adhesive stress
analysis in the case of a linear elastic adhesaxerl is provided. However a more
comprehensive description of the simplified 1D-besthesive stress analysis can be found in
(Paroissienet al. 2013) The solution procedure is presented in the cdsénear elastic
solicitations of both the adhesive layer and theosunding adherends only. The results
obtained from the simplified 1D-beam adhesive steewlysis and those from the most recent
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Weissgraeber’s sandwich type analysis are then agedpn terms of peel and shear adhesive
stress distributions along the interface. The tesabtained from the simplified 1D-beam
adhesive stress analysis are also compared to tfo3B Finite Element (FE) predictions
involving cohesive interface elements. Good agrewnee shown with both sandwich type
analysis and FE predictions.

Secondly an iterative solution procedure based anodified Newton-Raphson iterative
solution procedure, and allowing for various noaéinadhesive stress-strain evolution laws to
be accounted for, is presented and developed iw wk its implementation. The main
originality of the presented solution procedurs lie the use of the adhesive secant stiffness
properties to address the nonlinear solution ofpfwlem. The vector of imbalanced loads
resulting from the projection of the non-linear adlive stresses is then computed through the
knowledge of the adhesive secant stiffness praggednly. The presented procedure allows
for various nonlinear adhesive stress-strain eimiutaws to be accounted for (ie. softening,
plastic, coupled, etc.) with no restriction on #pecimen geometry. The proposed adhesive
material models are formulated under a two dimeraimnixed-mode model that account for
the possible interaction (interdependency) betwketih pure mode | and pure mode Il
adhesive stress-strain evolutions laws. The predemio dimensional mixed-mode model is
inspired from the classical Cohesive Zone Mode(i@gM) theory. The results obtained from
the suggested solution procedure are then compartéwse of two sandwich type analyses
involving nonlinear adhesive stress-strain evohutiaws. Finally, the results obtained from
the so modified simplified 1D-beam adhesive stersdysis are compared to those of 2D FE
predictions involving cohesive interface elemer@®od agreement is shown with both
nonlinear sandwich type analyses and FE predictions

To conclude, the preceding iterative solution pdatce is upgraded so that it can account for
both adhesive and adherends material nonlineastmgltaneously. Then, an original way of
accounting for the effect of the surrounding adhdseplasticization based on an adaptation of
the classical theory of beam plastici@udin 2011)is presented and developed in view of its
implementation. The results obtained from the sdlifrel simplified 1D-beam adhesive
stress analysis are compared to those of 2D FHqgtimts involving elastic perfectly plastic
adherends stress-strain evolution laws. Good agreeis shown.

2.3. S
emi-analytical stress analysis of adhesively bordexs using macro-elements
2.3.1. T

he simplified 1D-beam adhesive stress analysisriew

The simplified 1D-beam adhesive stress analysigigpired by the Finite Element (FE)
resolution procedure and allows for the resolutidrthe system of governing differential
equations of the bonded overlap at low computaticpats. The displacements (forces) of
both adherends as well as the adhesive stressamg¥tare then obtained from solving the
local equilibrium of the adherends. The method missn meshing the structure. A fully
bonded overlap is meshed using a unique 4-nodesoregEment (se€&ig.17). This macro-

element is specially formulated to allow for thesotition of the system of governing
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differential equations of the bonded overlap at tmmnputational costs. For convenience, the
bonded overlap macro-element will be thereafteerrel as the Bonded-Beam macro-
element, and denoted BBe.

Single-Lap Joint

Physics model: |- """""""""""""

L ° Py °
Simplified 1D'-Beam Beam - Beam
stress analysis:

— —r—

Outer beam Overlap Outer beam
[ L J
Nomenclature: *——0
(Paroissien et al. 2013) P PY
Specifically formulated Specifically formulated
BBe macro-element outer beam element

Figure 17.Assembly of the Single-Lap Joint (SLJ) configuratusing both outer beam and
BBe macro-elements. The simplified 1D-beam adhesiness analysis. Overview.

The outer adherends are in turn meshed using gg@lgifformulated Euler-Bernoulli beam
elements. For convenience, the two Euler-Berntwglim elements will be thereafter referred
as the outer beam elements, and denoted Beam.dkagdp classical assembly FE rules, the
stiffness matrix of the entire structure — ternmked is assembled and the selected boundary
conditions are applied. For convenience, the gtfffnmatrix of the entire structur€)(will
thereafter be referred as the master stiffnessibxndine minimization of the total potential
energy is then ensured by solving the equatieKU, whereF is the vector of nodal forces
andU the vector of nodal displacements. The suggegiptbach takes the advantage of the
flexibility of FE techniques and the robustnesshworetical approaches. Using BBe macro-
elements as elementary bricks of larger models dffms the possibility to simulate more
complex structures involving single-lap bonded fpiat low computational costs (Jeig.19.
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Single-Lap Joint Single-Strap Joint
[ L 4 L J [ 4 L @
[ 4 L 4 —e [ L L N L 4 L]
T-Stiffener V-Stiffener
|
]
|
t
[ I L ]
[ L 4 L 4 L L J [ L L 4 \ 4 @ o
ENF, DCB, MMB, ELS Patch Repair
I
[ L L ] [ 4 ]
[ L o [ L 4 L 2 L ]
[ L J
Nomenclature: *——
(Paroissien et al. 2013) o— P
Specifically formulated Specifically formulated
BBe macro-element outer beam element

Figure 18.BBe macro-elements as bricks of larger modeldim@ar and nonlinear adhesive
stress analysis. The simplified 1D-beam adhesiesstanalysis. Overview.

2.3.2.
ormulation of the BBe macro-element

Hypotheses.The linear elastic 1D-Beam model is based on tHewiong hypotheses: (i) the
thickness of the adhesive layer is constant albegotverlap, (i) both adherends are assumed
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as behaving as linear elastic Euler-Bernoulli laatexd beams in coupled tension/flexion, and
(i) the adhesive layer is simulated by an inenitumber of elastic shear and peel springs
supporting both upper (lower) adherends interfaces.

Governing differential equations. The local equilibrium of each adherend is expressed
the form of the following system of six differeritequations (se€ig.19):

dN;, ,
—L=(-1)'T
o
= —1j+lS ,': 2 (17)
o (1) =1
L+v, +£(ej +ebT =0
dx 2

whereS is the adhesive peel stre3sthe adhesive shear strebg, (N,) the normal force in

adherend 1 (2): (V) the shearing force in adherend 1 (2) %hdM,) the bending moment
in adherend 1 (2). Note that equation (17) refersthe local equilibrium derived and
employed in(Hart-Smith 1973a, Hart-Smith 1973b)

Vi(x+dx)
N3 (x) 4—%1 " : T%—» Ny (x+dx)
Mi(x) - : M1 (x+dx)
Vi(x) —g " Tbox
Sbdx
Tbax 4 v, (x+dx)
» 4% l . - T%_, N, (x+dx)
M, (x) - 2 M, (x+dx)

V7(><).

} } » Abscissa
(b=width)

X X+dx

Figure 19.Schematic representation of the local equilibriahthe bonded adherends. The
simplified 1D-beam adhesive stress analysis. OearvN: Normal force of adherend (j) [N].
Vj: Shear force of adherend (j) [N].;MBending moment of adherend (j) [Nm]. T: Adhesive
shear stress [Mpa]. S: Adhesive peel stress [Mpajidth [mm].

Considering the possible extensional, bending anghling stiffnesses of each adherend gives
the adherends constitutive relationships:

dy, do;
N A T TP
du, dg. . 18
M5 =8 g P g 17 1o
dw,
6’;:& <«—— Euler-Bernoulli
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with A the extensional stiffnes§; the coupling stiffness, and; the bending stiffness of
adherend (j=1,2). Further details on these adherends constit@etions can be found in
in Appendix 2or in standard textbooks on composite mechgdimses 1998, Berthelot 1999)
In the case of homogeneous isotropic adherends nedtangular cross sections the given
relationships can be reduced to:

A =DbEeg,
B, =0 =12 (19)
D, = bEe}/12

wherekE; refers to the Young's modulus of adhergrfe1,2), g to the thickness of adherepd
()=1,2) andb to the width of the adhesive test specimen. Tbhesadlescribed theory has been
here voluntarily restricted to the Kirchhoff-Lovesamptions. However the adherend shear
stress can possibly be assumed as varying lineattythe adherend thickneg$sai et al.
1998, Da Veiga 2009, Paroissienal. 2013)

Finally, and considering the adhesive layer aseali elastic interface simulated by an infinite
number of elastic shear (peel) springs, the adbediear (peel) stresses are expressed as:

G 1 1
T =GV=e(U2_U1_2e1€1_2ezezj (20)

S=Ee="(w-w)
e
whereE refers to thepeel modulunf the adhesive (se&ppendix 3, G the shear modulus of
the adhesive; to the shearing deformation of the adhesivte, the peeling deformation of the
adhesive,u; (u) the normal displacement of adherend 1 (&), (w;) the transverse
displacement of adherend 1 (2}, (62) the bending angle of adherend 1 (2) anthe
thickness of the adhesive layer ($eg.20).

For demonstration purpose it is assumedfvaA;D;-B; (j=1,2) is not equal to zero.

y: adhesive shearing deformation €: adhesive peeling deformation

0:
o

Wi-Wz+e
(e1+e)/2

y

Figure 20.Schematic representation of the shearing andngealihesive deformations. The
simplified 1D-beam adhesive stress analysis. Oeervy: Normal displacement of adherend
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() [N]. wj: Transverse displacement of adherend (j) @t].Bending angle of adherend (j)
[Nm]. g: Thickness of adherend (j) [mm]. e: Thicknesshef &dhesive layer [mm].
Stiffness matrix of the BBe macro-element-rom equations (18) fall:

du, _D,N, +B,M,

ax A

J =12 (1)
d’w, AM, +BN,
dx® A.

J

By combining equations (17) (18) (20) and (21), thowing set of linear differential
equations in terms of adhesive stresses is obtained

d’T dT
==k —+kS
d‘)l(S 1 dX + kZ
d*s dT
= -k S—k,—
dx* Sk, dx
(22)
where
. _Gb{D{l /Alel(eﬁe)}Dz(1+ Azez(e2+e)J (elBl+ eB _eB, eB H
1
el N, 4D, A, 4D, A, 20, A, 21,
kzng elAi_%.}. 54.&
el2n, 27, \A, A, (23)
) :Eb{(eﬁe)Al (%+e)A2+(Bl+BZH
3
e| 24, 21\, A, A,
kﬁEb{mﬂ
el A A,

By successive differentiations and linear comboradj the system of linear differential
equations (22) can be uncoupled so that:
d°s , d's d’s
-k +k + S(koks —kik,) =0
dX6 1 dX4 4 dXZ ( 213 1 4)
6 4 2
d (d T _ 4T, dT ] o

(24)

dx ax® L +Ky e +T(kyks — kiks)

So that equations (24) are solved with respechéoctassical theory of homogeneous linear
differential equations. The adhesive shear (peed¥sses are then expressed in the form of:

(%) = _Kesx sinx) + K,e* costx) + K,e™ sin(tx)_

:+ K,e ¥ cosfx) + K.e™ + Ke™ : (25)
T = K.e™sin(tx) + K,e™costx) + K,e**sin(tx)

|+ K,e ¥ costx) + Kee™ + Kee™ +K,
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Where K, - K, and K, - K, refer to integration constants that have to berdghed from
specified boundary conditions.

According to(Williams 1975) the given analytical expressions of the adheshear (peel)
stress distribution(s) are unique and not dependmthe material (geometrical) properties of
the sandwich structure. However it appears thatdtatement is not entirely true, and can be
completed by two additional expressions of the atMeeshear (peel) stress distribution(s)
depending on the nature of the roots of the charatt polynomial (25 (seeAppendix 4.

PR)=R° —kR* +k,R +(kk; —kk,) =0 (28)

The determination of the stiffness matrix of BBe cnmaelement then requires the
determination of both the nodal displacements &edntodal forces (sefeig.21). Following

the resolution scheme introduced logberg 2004)the adherends displacements (forces) are
finally expressed as functions of both the adhesixesses and their respective derivatives. A
comprehensive description of the adherends displants (forces) computation is provided
in (Paroissieret al.2013) However it is shown that the entire problem iafiy dependent on

a total number of 12 integration constants only:

TC:(K]. KZ K3 K4 K5 KG K7 ‘Jl JZ ‘J3 ‘J5 ‘J7) (26)

The nodal displacements (forces) are then derivedh fthe values of each adherend
displacement (force) at=0 and x=4 (seeFig.2]). It is shown that the nodal displacement
(force) are linearly dependent on the 12 integrationstants, listed i@, through a coupling
parameter matrid (N) as:

i ul(o) Qi _Nl(O)

j UZ(O) Qj _Nz 0)
u [ | w(a) Q| | Ni(2)
U, Uz(A) Q Nz(A)
A1t
W W, 0)|_ : Rj | =V,00) |

U= w |7 we(a) =MC and F= R 17| V() =NC (27)

w| | w(a) R| | (@)
6 | | () S| |-M0)
6, 6,(0) S, | |-M,(0
6. | | 6() S| | M)
6) &) s) (M)

whereQn,, Ry andS, (m=i,j,k,l) respectively refer to the normal forces, sheaforges and
bending moments acting onto the edges of the boadedap (i.e. at nodeg,k,l), and where
the coupling parameter mat (N) depends on both material and geometrical progsedf
the overlap.

-42 -



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

6i(x) MJ(X) Sk
T_',\ wi(x) L T_‘,\ Vi(x) R D
by | Uz(X_)“"i g o /vl(x_)""; o
I : " :
[ ] ' ] ¢ ' *
| | BBe | |
: . macro-element | |
. . . . . .
) i B(x ' 6 isj iMz(X) ES/
Wi AW wax) AN W AW Ry A Vax) t X ROAw
u ' Uz(x) u Q 1 Na(x) Q
} : —» Abscissa } : —»
0 X A 0 X A

Figure 21.Definition of the nodal displacement (forces) agtonto the BBe macro-element.
At nodes i,j,k and I. The simplified 1D-beam adkesstress analysis. Overview: normal
displacement of adherend (j) [mm],:wransverse displacement of adherend (j) [mén].
bending angle of adherend (j) [rad];: Nlormal force of adherend (j) [N].;VShear force of
adherend (j). M Bending moment of adherend (j) [Nm].

In classical Finite Element (FE) theory, the caméints of the stiffness matrix are then
obtained by differentiating each component of tbdat forces by their corresponding nodal
displacements:

09, | [00, ] [0Q, ]
_aup_ _awp_ _OHP_
or_ | [or. | [oR, | - - (28)
K = m m m JAm,p)=L, ik, 1)x,j,k,I
|30, | |ow, | |26, (m p)=0,i.k1)x(,ik.1)
fas, | [os, | [as, ]
_aup_ _awp_ _aep_
So that:
F=KgU (29)

But, considering the expression for the vector adal forces If) as a function of the vector
of integration constantsCj as well as the vectd€ as a function of the vector of nodal
displacements ), the stiffness matrix of the BBe macro-elemenn ¢ computed as
follows:

Kgge=NM™ (30)

2.3.3. F
ormulation of the outer beam element
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Hypotheses.The simplified 1D-beam adhesive stress analysibaised on the following
hypotheses: (i) both adherends are assumed asibghay linear elastic Euler-Bernoulli
laminated beams in coupled tension/flexion.

Governing differential equations. Similarly to the bonded overlap, the local equililon of
the outer adherends is expressed in the form offidlh@wing system of three differential
equations (sekig.22:

N
dx

dx

dﬂ+v =0

dx

whereN is the normal force in adherend,the shearing force in adhererM,the bending
moment in adherend and where the adherends cdin&igquations are given as:

N = A% - Bd_g
dx dx
M = -4, pd¢ (31
dx dx
Q:d_W <«—— Euler-Bernoulli
dx

with A the extensional stiffnesB, the coupling stiffness, and the bending stiffness of the
adherend (se$ection 2.3.p

V(x+dx)
N(x) 4—€l T%—» N(x+dx)
M(x) M(x+dx)
V(x)
} } » Abscissa
X x+dx (b=width)

Figure 22.Schematic representation of the local equilibrioitthe outer beam element. The
simplified 1D-beam adhesive stress analysis. OegrvN: Normal force of adherend [N]. V:
Shear force of adherend [N]. M: Bending momentdifexend [Nm].

Stiffness matrix of the outer beam adherendsSimilarly to the solution procedure
introduced inSection 2.3.2the stiffness matrix of the outer beam adheresderived from
the resolution of the set of adherend governinfedshtial equations (equations (31) and

(31)).

Then, and by successively differentiating and canmg equations (31) and (31lit is shown
that the problem is dependent on a number of @iaten constants only:

TC'= (Cl c, ¢, C, Ci C7) (32)
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So that the solution of the problem can be expcesséhe form of:

{u(x) =3BC,/Ax*+Cx+C, (33)

w(x) = Cx*+C,x* +C,x+C,

As for the BBe macro-element, the outer beam digpients (forces) are expressed as
functions of both solutions presented in equatiB8).( The nodal displacements (forces)
acting onto the edges of the outer beam elementhare computed from the values of the
displacements (forces) a0 andx=4 (seeFig.23. As for the BBe macro-element, it can be
shown that the outer adherend nodal displacemémtse6) are linearly dependent on the 6
integration constants, through a new coupling patanmatrixM’ (N’):

u) (u0) Q) (-N()
uj || ua) Q| | N(2)
U= \\//ij = va((z)) =M'C' and F= sj = _V\ES) =N'C' (34)
6 | |60) S | [-M(0)
6, ) \6(a) S, M(a)

whereQm, Ry and S, (m=i,j) refer to the nodal normal forces, shearing foraed bending
momenta acting onto the edges of the outer beamegle(i.e. at noddyg).

ax) 6 S M(x) S;
v\ w(x) t D Ri D V(x) LV: R; D
i u o Lo ! u | Qj_";"“iN()_()““—i Q
— : : outer beam — : '
¢ : ] element ¢ i ¢
| : —»  Abscissa | : >
0 X A 0 x A

Figure 23.Definition of the nodal displacement (forces) agtonto the outer beam element.
At nodes ij. The simplified 1D-beam adhesive &remalysis. Overview. u: normal
displacement of adherend [mm]. w: transverse digptent of adherend [mmf): bending
angle of adherend [rad]. N: Normal force of adhdrpv]. V: Shear force of adherend. M:
Bending moment of adherend [Nm].

Finally, and considering the expression for thetmeof nodal forcesK) as a function of the
vector of integration constant€’) as well as the vectdC’ as a function of the vector of
nodal displacementdJ], the stiffness matrix of the outer beam elememt lbe expressed in
the form of:

Kgear=N'M"* (35)

Beam

so that:
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=K BeamU (36)
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and:
A/A -AJA 0 0 -B/A B/A
-A/A A/A 0 0 B/A -B/A
| oo am/ar AR e/ar e/ar |

=m0 00 S /AR 1A /AR -6A /AN -6A /AN
-B/A B/A 6A/AN -6A /AN (3A/A+D)/A (30,/A-D,)/A
B/A -B/A 6A/AN -6A/AN (3A/A-D)/A (30,/A+D,)/A

2.3.4. R
esolution procedures

Load-based resolution procedureTo address the distribution of adhesive stressegahe
overlap, the loads are applied to the master stredh the form of defining the vect&'™
so that:

F pilot - KU (38)

However it appears that both the stiffness matrafethe outer beam element and the BBe
macro-elements are singular, so that the masténests matrix (i.e. assembled from both
outer beam and BBe stiffness matrices) is singolar

To override this singularity problem it is requirdd reduce the dimension of the
mathematical problem by removing the rows and colsiof the master stiffness matrix
corresponding to prescribed zero displacement tiondi WhereU' , K and F' it
thereafter refer to the reduced form of the vecofonodal displacements, the master stiffness
matrix and the vector of applied nodal forces.

Then, the linear problem is solved in the formrofarting the reduced master stiffness matrix,
and computing the reduced vector of nodal displacgi’ as:

U'=K -1 F-,pilot (39)

Finally, the complete vector of nodal displacemastseconstructed from the knowledge of
the prescribed displacements so that we finallyvdethe vector of integration constan@) (
from the reconstructed vector nodal displaceménias:

cC=M""1U (40)

whereM refers to the coupling parameter matrix define@éction 2.3.2andU to the vector
resuming the 12 nodal displacements of the BBe @&hem

Displacement-based resolution procedure.ln constrained mathematical optimization
problems, the Lagrange’s multipliers method ischméque to find the minimum (maximum)
of a function whose variables are related by etyabnstraints.
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Considering the constrained optimization problem:

. H — 2 —_
P.{ (X,JEL%RZ f(xy)V —{(x, y)OR?/g(x,y)=ccO R} } (41)
where bothf andg have continuous first partial derivatives. The itzagge multipliers method
then suggests that ik,f) is a minimum (maximum) of the constrained optiatian problem
(P), it exists a variable such thatXy,1) is a stationary point of the Lagrange’s function:

L{xy,A)=f(xy)+Alg(x y) ) (42)

Classically, in structural mechanics, the functiomminimize is the total potential energy, the
variables the nodal Degrees of Freedom (DOFs) efsthucture and the equality constraints
expressed in the form of:

BU = U™ (43)

whereU is the vector of nodal DOFs of the structuBea nxp coupling parameter matrix and
UP™ the set op constrained displacements (i.e. not necessarugleq zero).

Due to its FE like formulation, the mathematicablgem derived for the resolution of the
joint equilibrium equations (se&gection 2.3.2take the form of finding the solutids so that:

F=KU (44)

whereF is the vector of applied nodal forcés the vector of nodal displacements dathe
specifically formulated stiffness matrix of the ieatstructure (i.e. the master stiffness matrix).

Which appears to be the differential form of theammization problem:

P:{ min Q(U)=2TUKU-TUF,v ={UDR"/BU = UP* UP* ORP} }
UOVOR" 2
(45)

with n the number of nodal DOFs of the assembled strecpithe number of kinematic
constraints an®(U) the quadratic form associated to equation (®{J) can remind the
traditional expression associated to the totalmaEenergy in structure mechanics. However
it is important to keep in mind that the expressbthe master stiffness matik (seeSection
2.3.2 does not fall from the minimization of the togadtential energy, but from the direct
resolution of the joint equilibrium equations. Iede the total potential energy associated to
the structure is never defined or used within threnfulation of both the BBe and the outer
beam elements (seeection 2.3.2 The simplified 1D-beam adhesive stress analisen
simply takes advantage from its FE like formulation
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The basic idea of Lagrange’s multipliers methodnthsonsists in introducingp new
undetermined parametetg(i=1...p):

"= 4, - A) (46)

so that U,4) the solution of thaugmenteaninimization problem:
. T .
. - + __ 1 pilot
P.{ ,min_L(U,2)=Q(u) (BU-U )x} (47)

which can be rewritten as:

oL oL

TR -F+'BL=0 a:Bu—up”"t =0 (48)
Or:
KU+'Bxr = F (49)
BU+0 = U™

So that the initial linear problerd=KU with BU=U"" can be rewritten in the form of the
augmentedinear problem:

ELkiyt (50)
Ut =K""F" (51)
where:

‘L {E TOBJ (52)
U :(TU Tx) (53)
and:

TEL :(TF TUpilot) (54)

Similarly to load-based resolution procedures vbetor of integration constant€)(is finally
derived from the vector nodal displacemeuh} &s:

cC=M""1U (55)

whereM refers to the coupling parameter matrix define@éction 2.3.2andU to the vector
resuming the nodal displacements of the BBe element

2.3.5. C
omparison with existing sandwich type analyses
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As mentioned irSection 2.1a large number of simplified approaches for ttess analysis
of adhesively bonded joints can be found in thenoljerature(Volkersen 1938, Goland &
Reissner 1944, Hart-Smith 1973, Williams 1975, Bige & Crocombe 1991, Hogberg 2004,
Weissgraeber 2014)Those analyses are generally referred as sandypehanalyses, and
allow for the resolution of the set of governindfetiential equations from the knowledge of
both the forces acting onto the edges of the bormedlap and the material (geometrical)
properties of the joint. Most of these analyseshapplinear elastic solicitations of both the
adherends and the adhesive layer only. Here i®pred a comparison between the presented
simplified 1D-beam adhesive stress analysis andnthst recent Weissgraeber’'s sandwich
type analysis. The comparison is performed on oh¢he most common adhesive joint
configuration that can be found in practice, the).SThe SLJ has the advantage of involving
both shear and peel of the adhesive layer in alsiggpmetrical configuration.

In Fig.25is presented a comparison between the simplifizddam adhesive stress analysis
and the most recent Weissgraeber’s sandwich-typlysia. The comparison is made in terms
of both adhesive shear stre@ and peel streséb) distributions along the overlap. The
comparison is performed in the case of linear elastihesive (adherends) loadings. The
geometry of the specimen is balanced (i.e. symmegper/lower adherends). The effect of
the adhesive thickness on the load path eccentrgcaccounted. The overlap is meshed using
a unique 4-nodes BBe element. The loads acting theaeedges of the bonded overlap are
computed in advance of the analysis and directigliepp to the sandwich structure. The
overall geometry as well as the adhesive (adhejandserial properties are given ig.24

To allow for the comparison of comparable restilis, extensional and bending stiffnesses of
the macro-element are computed from the planessa@iserends Young’s moduli as follows:

E/ = EJ/(l_ij) (56)

where E; and v; respectively refer to the Young’s modulus and thes$on’s ratio of
adherends (j=1,2) determined from bulk material properties.
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e=0.2mm
width = 1mm l (E1, v1)

t 2mm

(E1, vl) 200N/mm

5

200N/mm

A
v

25mm

: Weissgraeber
(sandwich-type
analysis)

200N/mm 4—€-T ® ® : Macro-element

220N 220N (as sandwich-type
° .¢%_> 200N/mm analysis)
2.2N/mm

Figure 24.Schematic representation of the Single-Lap Jd&htlf test configuration. Loads
acting onto the sandwich edges. Comparison withtiexg sandwich-type analyses. Simplified
1D-beam stress analysis versus Weissgraeber’s sandype analysis. e Thickness of the
upper/lower adherend. P: applied load (=5000N/20mB) Young’s modulus of the
upper/lower adherend (=72400 MPwj). Poisson’s ratio of the upper/lower adherend (3D.3
e: Thickness of the adhesive layer [mm]. E: Peelluhgs of the adhesive layer (=185MPa).
G: Shear modulus of the adhesive layer (=65MPa).
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------- [BBe] Peel stress distribution
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Figure 25.Comparison of the predicted adhesive si{aaand peelb) stress distributions
along the overlap. Normalized deviation betweenaRH semi analytical resul{s). Single-
Lap Joint (SLJ) configuration. Comparison with éxig sandwich type analyses. Simplified
1D-beam stress analysis versus Weissgraeber’s santype analysis.

It is shown fromFig.25 that even if in close agreement, the results obthifrom the
simplified 1D-beam adhesive stress analysis andethabtained from the Weissgraeber’'s
sandwich type theory are not exactly equivaleniesenhdifferences between the two models
come from the less restrictive hypotheses of thesggeaeber’s theory. Indeed, in his original
theory, Weissgraeber did not limited the behavibthe bonded adherends to the classical
Kirchhoff-Love assumptions and included the effe€tthe possible rotation between the
cross-section and the bending line (i.e. leadinthéoaddition of a second order derivative of
the adhesive peel stress in (6a) and (6b)).

However, due to its sandwich-type formulation, Weissgraeber’'s model is limited by the
need to evaluate the forces acting onto the ovetiges in advance of the sandwich analysis.
It then requires simplifying the overall joint betar to allow for the a priori evaluation of the
forces acting onto the edges of the sandwich stractin the simplified 1D-Beam adhesive
stress analysis, the outer adherends are presuméeéhaving as classical Euler-Bernoulli
beams (i.e. leading to the formulation of a speaduter beam element (s&ection 2.3.3.
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The resolution of the governing differential eqoas is then ensured by solving equation
F=KU, whereF is the vector of nodal force¥, the vector of nodal displacements, ahthe
specifically formulated master stiffness matrixtbé structure. The forces acting onto the
edges of the overlap have then not to be evaluatetivance of the simplified 1D-beam
adhesive stress analysis, but lie from the resmiufirocedure itself. It then allows for the
modeling of various combinations of BBe and outearh elements with great simplicity (see
Fig.18. However, and since the less restrictive hypabesf the Weissgraeber's theory
simply lead to the addition of a second order dgiwe of the adhesive peel stress in (6a) and
(6b), a dedicated BBe macro-element could be eadidyeloped on the basis of
Weissgraeber’s equilibrium equations. However thedigg equations required for the
development of this dedicated higher-order BBe matement are not provided within the
present manuscript.

2.3.6. C
omparison with Finite-Element (FE) analyses

As presented irChapter 1the FE method is a computational method whicbwad| for the
approximate solution of various engineering proldeim be assessed. The stress analysis of
adhesively bonded joints is one of these probleAlthough this general procedure is
computationally expensive and can lead to numekoalvergence issues (i.e. the mesh of
adhesive layers has to be intensively refined fatura the local stress gradient at bondline
edges), the FE method allows for the study of werigoint configurations (e.g. various
adherends geometries, various adhesive geometagsys loading conditions, etc.).

In Fig.27is presented a comparison in terms of adhesive giggds(b) and shear stregs)
distributions between the results obtained from #imaplified 1D-beam adhesive stress
analysis and those of 2D Finite Element AnalyseBAJF involving cohesive interface
elements. The comparison is performed in the cdsinear elastic loadings of both the
adhesive and the adherends and applies to SLJgooafions only. The adhesive bondline is
modelled using cohesive interface elements and adtterends meshed using classical 2D
plane-stress elements. The specimen geometry dsasvéhe adhesive (adherends) material
properties are given ifig.26 Similarly to Section 2.3.5and to account for the apparent
stiffness of the 2D plane-stress elements, theneidaal and bending stiffnesses of the
macro-element are computed from the plane-stredssradds Young's moduli as provided in
equation (56).
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Figure 26. Schematic representation of the Single-Lap JoBitJ] test configuration.
Comparison with Finite Element (FE) analyses. Sifigal 1D-beam stress analysis versus
Finite Element (FE) analyses;: elhickness of the upper/lower adherend. P: apploedi
(=5000N/20mm). E Young’'s modulus of the upper/lower adherend (ERMPa).v;:
Poisson’s ratio of the upper/lower adherend (=0.83Yhickness of the adhesive layer [mm].
E: Peel modulus of the adhesive layer (=185MPa)Skear modulus of the adhesive layer
(=65MPa).
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Figure 27.Comparison of the predicted adhesive shear and(@estress distributions along

the overlap. Adherends thickness =3mm. Normalizadation between Finite Element (FE)
and semi-analytical shedib) and peel(c) stress distributions for various adherends
thickness/length ratios. Single-Lap Joint (SLJ) fouration. Comparison with Finite

Element (FE) analyses. Simplified 1D-beam stresslyais versus Finite Element (FE)

analyses.

It is seen fronfig.27that the results of the simplified 1D-beam adhesivess analysis are in
close agreement with those of 2D FE analyses faows adherends thickness/length ratios
(e.g. 1/60, 3/60, 6/60, 9/60, 12/60 and 15/60). Elav it is also seen that the normalized
deviation between the simplified 1D-beam adhesivess analysis and the 2D FE analyses
increases for increasing adherends thickness/leragibs. This increasing deviation comes
from two reasons. First, in the linear elastic 1&aim analysis the adherends kinematics is
simplified so that it is relevant to the classi&ller-Bernoulli beam theory. However, the
classical Euler-Bernoulli beam theory applies te thechanical response of beams that
exhibit small enough thickness/length ratios (itgoically above 1/10). The increasing
simulated adherends thickness/length ratios themgrpssively put into question the
legitimacy of such simplified kinematics in the netithg of the overall joint response. A
possible solution to overcome this limitation coblel to consider higher-order beam theory.
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2.4.
ntroduction of adhesive material nonlinearities

The effective adhesive stress-strain relationstag been shown as a critical parameter
involved in the ruin of adhesively bonded jointdart-Smith 1973a, Hart-Smith 1973b,
Lachaud 2009, Crocombet al. 2009, Paroissiert al. 2013) Since simple linear elastic
adhesive stress analyses are not able to addresotiplete behavior of such structures, an
effort has been made on the introduction of nomlinedhesive material behaviors to the
simplified 1D-beam adhesive stress analysis.

This section is then dedicated to the developmeatgeneric procedure that allow for various
adhesive material nonlinearities to be introducedthe particular formulation of the
simplified 1D-beam adhesive stress analysis. Thygested procedure is partly inspired by
the CZM theory. A particular emphasis has beenntalily given to the modeling of bilinear
adhesive stress-strain evolution laws. Howeverdiven procedure is not limited to these
particular behaviors only and has been successtybiplied to various other shapes of
adhesive stress-strain relationships (€&apter 3. The proposed adhesive material models
are formulated under a two dimensional mixed-modeleh that account for the possible
interaction (interdependency) between both pureamiodnd pure mode Il adhesive stress-
strain relationships. For convenience, the adhestness-strain relationships will be thereafter
referred as the adhesive traction separation l&esvever it does not limit the following
procedure to damaging behavior only.

2.4.1. D
escription of the interface models

Description of the pure mode interface modelsAs presented irChapter 1in CZM the
description of the damage along an interface regtdm the definition of the interface pure
mode traction-separation laws. These pure modéidraseparation laws resume both the
evolution of the interface traction load as a fimttof the corresponding interface
displacement jump (or deformation) and the critenmoet to propagate the cohesive process
zone (seé&ig.29.
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Propagation of the traction-free area once the local traction
reaches the zero prescribed value (physical cracking)
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Figure 28.Schematic representation of the cohesive traceparation laws. Description of
the cohesive process zone. Description of the puvde interface models. Introduction of
adhesive material nonlinearities.

In the case of pure mode solicitations, the loesponse of the interface results from the
related pure mode traction-separation law only. E\av, in the case of mixed-mode loading
(i.e. combining both shearing and through-thicknésformations of the adhesive layer) the
local response of the interface results from theraction (combination) of both the traction
separation laws in pure mode | and pure mode d kg 29).
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Description of the interface pure mode TS laws:

Resulting traction Resulting traction
A A

Gllc Displacement Glc Displacement
\ jump \ jump

| -
\ - \
Pure mode Il traction Pure mode | traction
separation law separation law

Combination of the interface pure mode TS laws:

Projections of the mixed mode I/
traction separation law

Pure mode traction Mode Il

separation laws

Combined mixed mode I/11
traction separation law

Mode |
Figure 29.Schematic representation of the interaction betwi#® pure mode cohesive
traction separation laws in the case of mixed madleesive solicitations. Glc the fracture
energy in pure mode I. Glic th fracture energy urgpmode II. Description of the mixed
mode interface models. Introduction of adhesiveemaltnonlinearities.

Description of the mixed-mode I/Il interface model.

Description of the mixed-mode I/ll guidance paraengtAs presented irChapter 1 the
description of the damage along an interface raligsn the definition of the related pure
mode traction-separation laws. These pure modéidraseparation laws resume both the
evolution of the adhesive surface traction load gnedcorresponding interface displacement
(or deformation) and the criterion met to propagheecohesive process zone (5&g29.

Because of the 1D-beam foundation of the lineastiglasystem of governing differential
equations, it is necessary to account for the ptessiteraction of the two pure mode traction
separation laws. To account for this possible adgon, two mixed-mode guidance
parameters are defined:
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where 5, 6, di, om, respectively refer to the mixed-mode ratio, theepmode | (peel)
deformation, the pure mode Il (shear) deformatiomd &he mixed-mode equivalent
deformation of the interface. A schematic represton of those parameters is given in
Fig.30

Combination of the interface pure mode TS laws:

Projections of the mixed mode I/l
traction separation law

Pure mode traction <~ 7" [] / S ,
separation laws d

Combined mixed mode I/
/ traction separation law

Propagation criterion

Initiation criterion
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guidance parameters: Evolution of the mode mixity during loading
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Figure 30.Schematic representation of the mixed-mode gulgrarameters. Description of
the mixed mode interface models. Introduction dfesive material nonlinearities.

Combination of the pure mode interface modélse basic idea of mixed-mode modeling is
then to combine the interface pure mode tractigrasstion laws through both initiation and
propagation criteria (selig.29 and Fig.30. The effective properties of the adhesive layer
(i.e. the projections of the mixed mode tractiopagation law) are then computed with
respect to both the local mixed-mode ratio and dbeesponding initiation (propagation)
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criteria. Numbers of these initiation (propagatienjeria can be found in the open literature
(seeTab.]).

Tab 1.Examples of initiation (propagation) mixed-modé&esra. Description of the mixed-
mode interface model. Combination of the pure madkesive behaviors. Introduction of
adhesive material nonlinearities.

Power law criterion Polynomial law criterion
(Reeder 1992, Anyfantis 2012) (Reeder 1992)
3 + .. = G — (G +G)+ﬂ(q )-I—T(GW)—U
Interaction criterion Benzeggagh-Kenane criterion
(Reeder 1992) (Reeder 1992, Kenane 1997)
6" G 6™ (G 1
(G2)G-2)-~F)E) o | e -alaie) -
Exponential K/K); criterion Gr criterion
(Reeder 1992) (Reeder 1992)
o e (e '-{:;:]E?r’“':I:'T.“":.E'T;-'1 + G G" + G =6 =6y =Gy

The list of criteria provided ifTab.1lis not exhaustive. The first remark that can be emiad
that most of these initiation (propagation) crisereveal the need of defining both initiation
and propagation energies associated to the trangfia phase to another. For simplification
purpose, the power law criterion (k=n) will be thefter considered only. However the
following procedure is not limited to this partianlcriterion only.

Analytical projection of the mixed-mode I/ll intace model in the case of bilinear pure
mode traction separation law3.o allow for the combination of these pure modettom
separation laws, both initiation and propagatioacture energies are then required. The
initiation and propagation energies are then défime

_j o, (6)dds, i=1,1 (58)

dic

Ge =] “o()ds, i=1,u (59)
Where Gjp and G¢ respectively refer to the pure modd€i=I,Il ) energies accumulated at
initiation and propagation of the cohesive procasse,d; to the pure mode(i=l,ll ) interface
deformation and(d;) to the interface traction load resulting fram

It is seen from equations (58) and (59) that thtenedion of the pure mode initiation and
propagation fracture energies then requires a mmdtieal description of the pure mode
traction separation laws. The bilinear tractionasapon law is a well-established interface
behavior that assumes first a linearly increasimjationship between the interface
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displacement jump (or deformation) and the resgltinterface traction load. Then, the
damage initiation is described by a linear tracgoftening behavior. Finally, the propagation
of the damage is modeled by virtually setting tesutting traction to zero, hence modeling
the creation of two traction-free surfaces (physicacking) (sed-ig.31).

Idealized bilinear interface

traction separation law: Initiation of the
damage
—— : k; (loadi
Resulting traction 4 (loading)
—-¢- : ki s=(1-D)*k; (unloading)
0i(6io)=kibio T : Fracture energy

Propagation of the
damage

} Displacement
Sio 5.c 5, Jump (or deformation)

Figure 31. Representation of an idealized bilinear interfacaction separation law.

Description of the mixed-mode interface model. Atiahl projection of the mixed-mode
interface model in the case of bilinear pure madetion separation laws. Introduction of
adhesive material nonlinearities.

In the case of bilinear pure mode traction sepamataws, the evolution of the interface
traction load can then be described mathematieall{sed-ig.31):

0,(5,)=k,9, foré,D[O,é,Yo],iﬂ,ll (60)

G(dﬁw for 4 0ld . )i =1 II (61)
Ji,C _5i,0

0,(6.)=0 for GO c ted,i =11 (62)

With k; the initial stiffness of the interface in pure readi=I/Il ), and where the evolution of
the damage of the interface is characterized byddmmage variableD)) as follows (see

Fig.31):

b(5)=o0 for 3 0]Qd )i =11 (63)
.8 -3.) _

D(d)—m for 9 Dlé.,o,éi,cj,l Il (64)

p(s,)=1 for 4 D[dyc,w{,i =I, 1 (65)
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Then, the total amount of energy consumed to teitihe damage in pure modé=I/Il ) can
be expressed in the form of:

j 0,(3,)dd, = J"°k5d5, 2k,5,02, i=1,1l (66)
And the total amount of energy consumed to phylsicalack the interface in pure mode

@i=1/11') in the form of:

Gic :jo" (5,)do;, = j (5, )do, +j “o,(0,)dg, :%kidi,odi,c, =1, (67)

6i‘0 I I

Where dip and d;c respectively refer to the initiation and propagatithresholds of the
interface when subjected to pure modesl/Il ) interface solicitations.

Assuming the shape of the projected traction séijparaws as agreeing the initial pure mode
traction separation laws, the expression of theedwmode I/l initiation and propagation

fracture energies can be directly derived from &qua (66) and (67) by adding the

superscriptn, so that:

°a.(5i)d5i:%k.5i’},2, =10 (68)

_j” 5__Koj“;5|mc, i=1, 1 (69)

Wheres; o™ and§; " respectively refer to the projected initiation gmdpagation thresholds
of the interface when subjected to mixed-modeittiérface solicitations.

Then, assuming a damage initiation criterion takimg form of a power law criterion (k=n)
gives:

Gio n+ Gilo n—1 70
Go) G, " (70)

Which can be expressed in terms of the interfatiion thresholds, as follows:

) (3] -
) (o)

2n
LB o= (73)
5| ,0 5” 0 ‘
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where:
oM = 5| ,oén 0 (74)
1,0 n n n
23, 7" + 7,
m m £, ,0
oo =B0"y = R (75)

25, "+ B,

O, .0, o1+ B2
5m,0 = 5|n,102 +5|r|n,02 = —— 'O\/ A (76)

23, o+ B, )

Finally, assuming a damage propagation criteridkimtpthe form of a power law criterion
(k=n) gives:

[Q,o] +£Gn,c] -1 (77)

C;I,C C;II,C

Which can be expressed in terms of both the interfaitiation and propagation thresholds so
that:

(ﬂﬂ (Lﬂ} o -
a_l,o 5I,C Ju 0 Ju,c
(iﬂ (5_ﬁ J . o
5I,O a_|,<: Ju 0 Jn,c
5':0 nt b nC)_II ° n Jln,]cn =1 (80)
5I,0 5|,c 5|| 0 5II,C
where:
0, 0,0, O
5|"""C = - nI,O In,C I} (:1 II,Cn - . (81)
VO3, 00, &+ B3T3, '3,
0, 1O, ~ Oy 1O
5::1’6 :,8 er1C — :B 1,0% c % o%ic (82)

Jan8, 16, + BET 5

2
Jm,c — IJTCZ +5|r|n,c2 _ Jl,oo_l ,co_n ,odu,c 1+ (83)

Jons, 5, "+ B8, 5,
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Projection of the mixed-mode I/1l interface modsing numerical procedureés presented

in the previous subsection, and considering thgepted elastic an fracture energies G
Gic) as functions of the effective pure mode tracts@paration thresholds;(, 6ic), both
initiation and propagation criteria can be exprdssehe form of:

F(a%. 0%, 90 8,c,8)=0 =1, (84)
where F(6i0™,0i.c™di0.0ic,f) refers to a function of the effective initiatiomch propagation
thresholds & o™, di.c™), the mixed-mode ratigg}, and the initial pure mode traction separation
properties §j o, dic).

However, since simple algebraic expressions of d#fiective initiation (propagation)
thresholds cannot be always writtéag. power law criterion with#n, initiation criterion
k#0, Benzeggagh-Kenane critetiogfO, etc.) an iterative resolution procedure basedhen
false position method is derived. It results in theee mode projections of the mixed-mode
traction separation law to be easily computablevimious nonlinear adhesive stress-strain
evolution laws and (or) initiation (propagation)iteria. Assuming two initial sets of
physically acceptable test values k), the solution of the problemi(dio™0i.c™di0.0.c,0)=0

is iteratively approached using the root of theasédine betweerfa, F(a)) and(b, F(b)) so
that @, b) will naturally converged (by construction) towafte root of equation (84) (see

Fig.32.

Root of F(X)

Root of F(X)
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Figure 32.Schematic representation of the false positiorhogktEstimation of the effective
initiation (propagation) thresholds for variousti@iion (propagation) criteria. Description of
the mixed-mode interface model. Projection of th&xem-mode interface model using
iterative numerical procedures. Introduction of @sltle material nonlinearities.

The given procedure then allows for the effectiveperties §io", dic") of the interface
facing mixed-mode loadings to be computed from hibgh mixed-mode ratioff an the
initial pure mode traction separation propertiés, (dic) for various nonlinear adhesive
stress-strain evolution laws and (or) initiationafpagation) criteri#Gavoille 2014)

2.4.2. O
verview of the Newton-Raphson iteration procedure

As for the false position method the Newton-Raphparcedure is a numerical procedure
which allows for the root of non-linear equationsbie iteratively approached. However the
Newton-Raphson procedure is particularly well-sdiitor approaches that use FE like
formulations. The method then consists in buildingector serieX" converging towards the
solution X of a non-linear problenF(X)=0. To allow for the next iteratiorX™** to be
computed from the knowledge Hf, the functionF(X) is approached by its first order Taylor
expansion around" such that:

0=F(x™)=F(x")+F(x"x™ -x") (85)
AssumingX™* as satisfyind=(X""')~0, the next iteratiotX"** can be computed as follows:
x™ =x" =[x F(x") (86)

WhereF’(X) refers to the tangent linear application assodiatgh the functionF(X). Then,
the exact value oF(X"*') is recomputed and the functidt(X) re-linearized using its first
order Taylor expansion aroudd**. The given procedure is then repeated until tfferdince
between two following iterations falls below a giveconvergence criterion. The re-
computation ofF(X™?) is generally referred as the projection step.He tase of linear
applications, the derivatiie' (X) is referred as the Jacobian matrix~¢X) at pointX.

One of the greatest advantages of the Newton-Raptsxedure is that the convergence rate
near to the solutionX is quadratic. However, the use of this procedwrquires the
computation of the tangent linear application athe@onvergence step, implying time-
consuming calculations, possible divergence ofalgerithm and (or) numerical issues.

Since the computation of the Newton-Raphson itenaX"™* has not necessarily to be
approached using the first order Taylor expansidnFEX), numbers of latter authors
suggested the use of other linear applicatiéteydan 2011)These modified procedures are
referred as quasi Newton-Raphson procedures. Tke position method can be seen as a
modified Newton-Raphson procedure.
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2.4.3. Local equilibrium of the bonded overlap

As presented irSection 2.3.4and because of the FE like formulation of thepdified 1D-
beam adhesive stress analysis, the equilibriurhe&tihesive joint specimen is ensured by:

FPet = KU (87)
Which is equivalent to the minimization problemtioé quadratic form:
Q (U ): TUKU - U T Pt (88)

whereK refers to the master stiffness matrix (i.e. th#rstss matrix of the entire structure),
U to the vector of nodal displacements &g to the vector of applied nodal loads as defined
in Section 2.3.4.

However, it is seen frorfirig.31that in the case of nonlinear adhesive stressasgaolution
laws the solution oF =KU is by construction equivalent to the solution of:

F pilot - K (S) U
Which is equivalent to the minimization problemtioé quadratic form:
Q (U ): T UK (S) Uu-u T F pilot (89)

whereK® refers here to the secant master stiffness matifness matrix that depends on
the secant stiffness properties of the adhesiver)&y to the vector of nodal displacements
andFP™'to the applied nodal forces.

2.4.4. A
daptation of the Newton-Raphson iteration procedaithe particular formulation
of the BBe element

Adaptation of the general Newton-Raphson procedureFor simplification purpose, the
following demonstration will now refer to the eghiium of a unique BBe macro-element.
However it can be easily extended to the entirectiire using the classical FE assembly
rules. As a result, the vectdt as well asFP™ will now refer to the vectors of nodal
displacements and nodal forces applying/acting ariaique BBe macro-element.

AssumingsU" as kinematically acceptable, the aforementionedlibgum can be expressed
as:

L"(U)=L"(u) (90)

where L"™=K®U and L*=F""" respectively refer to the internal reactions amel external
forces acting on the BBe element. It is indicateat tin the general case, bdth' and L®
depend on the vector of nodal displacemé&ht€onsidering that ntollowing forces such as

-66 -



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

load pressure or centrifugal forces, are appliethégjoint,L**' does not depend on the vector
of nodal displacements.

-67-



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

The expression of the element equilibrium can thesimplified as:
Lint(u) :Lext (91)

Defining the linear applicatioR as the difference betweér™ andL®® the research of the
solution of the element equilibrium can be redutethe research of the root B{U)=0. For
convenience, the linear applicatidR(U) will be thereafter referred as the vector of
imbalanced loads.

RU)=0=L"(u)-L™ 92)

The research of the solution of the non-linear [mwbR(U)=0 can thus be seen as a direct
application of the Newton-Raphson procedure. Camsig U" as an increasingly better
estimation of the equilibrium solutidg, the next iteratiot™* can be computed as follows:

u =un -[r(U")"R(U") (93)

Within the original Newton-Raphson procedure, @negent linear applicatio’(X) has to be
computed at each convergence iteration. In equdf8h R'(U) refers to the tangent linear
application associated witRU). In the absence ofollowing forces the tangent linear
applicationR'(U) can be expressed as:

aLim | aLeXt

aL int |
= 94
oU |, 0U |, au |, o

R(u")=

where the derivative of ™ refers to the Jacobian matrix of the linear aFbicn L"M=KsU
(see equation (95)). It is indicated thatfaflowing forcesare applied to the structure, the
tangent linear applicatioR’(U) cannot be reduced to the single derivative'df

oL L

au, |, U, |,
oL"™ 9 woyl = (95)
U |, ~au o

oLy oLy

o, |, U, |, |

However, as the secant stiffness maki® depends by construction on the BBe element
vector of nodal displacemeht, the exact computation of the tangent linear apgpbn is
extremely complicated and results in non-necessana computation time. It is then decided
to focus on quasi Newton-Raphson procedures, daltbacomputation of the tangent linear
applicationR’(U) is no longer required.
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

Computation of the vector of imbalanced loads.Since the exact computation of the
imbalance load vector highly determines the cormecg of the seriet)” toward the
equilibrium solutionU, a particular attention has to be given to itsredr estimation. As
previously presented, the imbalance load vectodened as the difference between the
vectors of internal reactions™ and applied forces®" acting on the BBe element (see
equation (90)).

The vector of internal reactions™=K®U can then be computed from both the secant
stiffness matrixk® of the BBe element and the vector of nodal disptaentsU. However,

the secant stiffness matrix is defined on a seofktant adhesive peel and shear moduli (see
Section 2.3.p Since the projection of the adhesive stressedezal to dissimilar left side and
right side adhesive secant stiffnesses @Ege33, it is decided to update the secant stiffness
matrix using the averaged peel and shear moduigalioe element.

BBe T
element

n
Al

g
? :

Left side Right side

Linear elastic

computation . .
P Linear elastic

Resulting traction Resulting traction  computation
A Projection of A Projection of
adhesive stresses adhesive stresses

Interface Interface
\ deformation \ deformation
Left secant adhesive Right secant adhesive
moduli moduli

Figure 33.Dissimilar left side and right side adhesive séganduli. Computation of the
secant stiffness matrixK®. Adaptation of the Newton-Raphson iterative praced
Computation of the vector of imbalanced loads. odtrction of adhesive material
nonlinearities.

The vectorL®<FP"® can in turn be computed from the external forgesliad to the BBe
element. Using the definition of the secant stiémenatrixk®, L can be expressed from the
secant stiffness matrix at iteratiafi™* and the vector of the BBe element nodal displacgsne
at iterationU".
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

Finally, the vector of imbalanced loaB4dJ) can be expressed in the form of:
RU)=K O U Ju"-k® U (96)
wheren refers to the current iteration of the Newton-Raghalgorithm.

Implementation of the modified Newton-Raphson proceure. Finally, by meshing the
adhesive overlap with an adequate number of BBerarelement (only one when facing
linear elastic deformations), it is then possibdeaiddress the nonlinear response of the
adhesive layer so that:

Initialization of the first iteration of the vectof nodal displacement&J€0)
Computation of the initial elastic stiffness matoikeach elemenkgge)
Assembly of the initial master stiffness matri) (

Assembly of the vector of applied loads) (

Initialization of the vector of imbalanced load&F)

Computation of the first (next) iteration of vectd(U"'=U"-K'R)
Computation of the mixed-mode traction-separatiarameters
Projection of the adhesive stresses (T, S) witlpeeisto the computed effective
traction-separation properties.

9. Computation of the updated secant stiffness mafreach elemenKgge)
10.Assembly of the updated secant master stiffnesaxu(&t)
11.Computation of the updated vector of imbalancedsoR)

©ONOoO Ok WNE

(Repeat steps 6 to 11 until a specified convergentarion is satisfied)

2.4.5. C
omparison with existing sandwich type analyses

A large amount of existing closed form stress asedyapplies to linear elastic adhesive
solicitations only. However realistic adhesive s$rstrain evolution laws are generally not
purely elastic so that simple linear elastic stthrapalyses are unable to address the complete
behavior of such structures. fiHart-Smith 19733) the author developed a method for
accounting for the plasticity of the adhesive layetlassical closed form stress analyses.

In (Hart-Smith 19733)the author suggests introducing a new paramet@armedd — to
separate the adhesive layer in two distinct pasee Fig.34). This new parameter being
referred to as the size of the elastic process.zbméhe first part, the adhesive layer is
presumed as facing linear elastic deformations.dnlyhe second part, the adhesive layer is
presumed as facing perfectly plastic deformatioms.orhis separation of the adhesive layer
then results in writing a set of two governing Anelifferential equations. Each one valid in
either the linear elastic part of the adhesive Hayethe perfectly plastic part of the adhesive
layer. Finally, by solving independently each lineig&ferential equations plus ensuring the
continuity of both solutions at the interface=£d/2), the author comes to derive an additional
set of equations allowing for the computation @& tiew parametet.
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

: Plastic process zone : Elastic adhesive layer
— e
P/2
D el e i Rkt ¢ S
I I
A
P
DL: 2e, I ------------------------------------------- —»
A 4
P/2 : 2
D el it ¢ €
f f t } —»  Overlap abscissa
-L/2 -d/2 0 d/2 L/2

Figure 34. Comparison with existing sandwich type analysesrt#$mith’s nonlinear
sandwich type analysis. Introduction of adhesiveéemia nonlinearities.

Hart-Smith’s sandwich type analysis in pure mode 1l In (Alfredson 2004) the author
suggests using the solution procedure introducelddascribed ir{Hart-Smith 1973ajn the
particular case of the End-Notched Flexure testiapen (sed-ig.35).

: Plastic process zone : Elastic adhesive layer
P l — e
F(EyVvy) =mmmmmm e ‘ ---------- t e
ENF: I I
A A
F (Eyvy) —mmmmmm e €

Interface between the elastic

and the plastic process zone

t t } } +—» Overlap abscissa

-a 0 d c=(L+a)/2 L

Figure 35.Comparison with existing sandwich type analyseartt3mith’s sandwich type
analysis in mode Il. End-Notched Flexure test gpeai. Introduction of adhesive material

nonlinearities.

By developing and simplifying the adhesive equilibm equations in the case of an idealized
perfectly plastic adhesive behavior (sEig.36), the author derives a set of three linear
differential equations, so that:

dN
ax T du N(O)=0  N(L)=0
dav N = Ebt— - -
=0 dx M(0)=Pa/4 M(L)=0
o m=-Eordw v(0)=P/4 V(L)=-P/4
V:O('j_'v'%th 12 dx = =

X
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

T(V): kv for XD[d,L] V:ZJ"'td_\N (97)
T(V): kl/b :Tp for XD[O,d] dX
Leading to:

d?v =

™ :;(Z/k(Tp —T) forxD[O,d]

d_zv—/(zv——'_l'/(z/k for xO[d, ]

i _ , (98)
dZV 2 _ =4 2

v v=Tk?/k forxO[c, L]

where x*=8k/Et, T=3/8*P/bt, k the initial adhesive stiffness in pure mode Il andhe
evolution of the adhesive mode Il (shear) defororatilong the overlap, and whexeV and
M respectively refer to the normal force, sheariogcdé and bending moment in both upper

and lower adherends.

Then, the respective solutions of equations (98)garen by:

[r,-7)
V(x)==2x+C, +~2—"kx? for xJ[0,d]
L 2K
- T
v(x)=C,e™ +C,e™ e for xO[d, ] (99)
KX KX T
v(x)=C.e* +Cqe e for xO[c, L]
Idealized perfectly plastic interface
traction separation law: Initiation of Failure of the
plasticization adhesive
Resulting traction 4 / /
T(Vb)=ka=Tp T 7

—»— : k; (loading)
==&~ : k;;=k; (unloading)

: Fracture energy

Displacement
jump

Vp Ve

Figure 36.Representation of an idealized elastic perfedtgtr interface traction separation
law. Comparison with existing sandwich type anadys¢art-Smith’s sandwich type analysis
in pure mode Il. End-Notched Flexure test specimeatroduction of adhesive material

nonlinearities.
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

By ensuring the continuity of the solutions (anditHirst derivatives) at poimt=d andx=c,
the author comes to derive a system of four addaliequations so that:

C19+C2 AE k’d*=C,e” +C,e™ i1
L 2 2 k k
T -T
CGoh™l k*d = Cke® - C k™
L k _ (100)

Ce€+Ce™ =Ce“+Cee™ - ZTT

C,ke* —C ke = C ke —Che™
And the boundary conditions:

C__8Ta_, ()

L EH (101)
Cihe™ —-Ceke™ =0=v'(L)

To determine the six integration constafg C,, Cs, C4 Cs and Cg, the author finally

suggests considering the length of the plasticgg®zonal as an independent variable (i.e.

variable that can be determined independently fegumations (100) and (101)). To determine

this length of the plastic process zahethe author then uses the equation provided by the

knowledge of the level of deformation at paxsd (v(d)=wp), SO that:

c, d +C,+ 1 T,-T
L 2

k’d*=y,=Cg* +C,e™ +£ (102)

By combining equation (100) with equations (101§ g&02), the author then derives the
guiding equation:

L[_@(m}j% _[%ukzdz _@d}n—T(,m;szzj_I} T

224 EHl « K EH K 2 k| ke

26| EH K k EH

:e‘z’d- _1 —@ d+& +y, - }_Tb_szdz—@d +Tb_-T-
b 12 k k| ke™

(kd +%K2d2j—i} +i] (103)

where the length of the plastic process zdrie obtained as the root of equation (103). No
simple algebraic expression @fcan be written so that it might be estimated usingerical
iterative procedures (e.g. the false position meitietc).
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

Finally, consideringl as fully determined by equation (103), it may lbserved that the set
of linear equations formed by equations (100) at@l) can be expressed in the form of a
simple matrix system, so that:

AC =B (104)
where:
L 0 O 0 0 0
d/L 1 -e¢° - 0 0
YL 0 -k x™ 0 0
A = KT —KC KT —KC (105)
0O 0 ¢ e - € -e
0 0 #«e° -—-ke° —K&C K
0 0 O 0 s -k
T —
c=sccccGa) (106)
rpof-8Ta T_1(L-T) e [-T)oy _2T (107)
EH k 2 k k k
The integration constants; G2, Cs, Cs, Cs and G being finally determined as:
C=A"B (108)

Hart-Smith’s sandwich type analysis in pure mode IThe solution procedure presented in
Section 2.4.5.1applies to pure mode Il solicitations of the advedayer only. However it
can be easily extended to the case of pure moaolcitations (sed-ig.37).

: Plastic process zone : Elastic adhesive layer
y — €
P
F(Epvy) —mmmmm e ‘ """""" t =
DCB: I I
A A
F(Epvy) ===mmmmmm e e
P .
v Interface between the elastic
and the plastic process zone
} } } +—»  Overlap abscissa
-a 0 d L

Figure 37.Comparison with existing sandwich type analysestt{3mith’'s sandwich type
analysis in mode |. Double Cantilever Beam testspen. Introduction of adhesive material
nonlinearities.

Modifying the equilibrium and constitutive equatsogives:
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

o d _ _
dv N = Ebt Y N(O)=0 N(L)=0
o PS ot g M(0)=Pa M(L)=0
X w
M= - _
d_M = 12 dx2 V(O) P V(L) O
dx
S(e)=ke for e0[0, £, ] i
{S(s) =ke, =S, for eO[e,, €] {e=2w (109)
Leading to the following set of two linear diffeteal equations:
4
de =-k"/ks, forx0[0,d]
(110)

x4
4

£ ik'e=0 for xO[d, L]

4

dx

where k*=24k/EFf, ¥'=x/\2 , k the new initial adhesive stiffness in pure modantl ¢ the
evolution of the adhesive mode | (peel) deformattong the overlap, and whekgV andM
respectively refer to the normal force, shearingdécand bending moment in both upper and

lower adherends.

Then, the respective solutions of equations (1i®paven by:

S
‘s(x):&x3+&x2+C3x+C4——”/(“x4 for x[0,d]
6 2 24K (111)

£(x) = C,e sin(kx) + C,e codkx) + C,e™ sin(kx) + C.e™ cogkx) for xO[d, L]

Idealized perfectly plastic interface

traction separation law: Initiation of Failure of the
plasticization adhesive
Resulting traction 4 / /
S(ep)=ke,=S, =+
bITTEeTe —— : k (loading)

==&~ : k;;=k; (unloading)

: Fracture energy

Displacement
jump

»
»

€p € €

Figure 38 Representation of an idealized elastic perfeddgtr interface traction separation
law. Comparison with existing sandwich type anadys¢art-Smith’s sandwich type analysis
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in pure mode |. Double Cantilever Beam test spegintietroduction of adhesive material
nonlinearities.

Ensuring the continuity of the solutions (and tHest derivatives) at point=d gives:

qd;+fad22+Qd+C4-;ka“ d* = Ge” sirfud) + Ge* cogud) + Ge™ sirfad)+ Ge™ cotud)

qdzz +Gd+G, —;i KA =y triglhd) + Cupe® trig—acl) + C 4 trigl—Acl) ~Coe™ triglad)
Cd+C, —i K'd? = 2C°%e sirfud) - 2G,%e cobid) —2C %™ sirfud) + 2Cx%e™ cobud)
q—ip K'd = 2C,°e trid —d) —2C K% tridud) +2C °e ™ trigdad) + 2G . 6™ trig - ad)

(112)

And the boundary conditions:

_ 24Pa _ ,,(0)

= =£"(0
& EWH © (113)

2C.k%e* codul) - 2C ke sin(kl) - 2C,k%e™ codul) + 2Ck%e ™ sin(xL) =0=£"(L)

2C,k°e" trig(~ AL) - 2C%e™ trig() + 2C k%™ trig(KL) + 2Cxe™ trig(- L) = 0=£"(L)

where trig(x)=cos(x)+sin(x).

To determine the eight integration constatifsC,, Cs, C4, Cs, Cs, C; andCg, the length of
the plastic process zouds again considered as an independent variaklev@riable that can
be determined independently from equations (118) (@43)). The last equation required is
provided by the knowledge of the level of deformatatx=d (¢(d)=¢p), So that:

C:l 3 C2 2 Sp 494
AP +2d?°+Cd+C,——Lk'd* =¢
6 2 Cd+C, 24 b

=G sinlxd) + C.e” codud) +C.e™ sir{xd) + Ce ™ cofud) (114)

The combination of equations (112) (113) and (Ifiglly providing the guiding equation
that allows for the computation of the length o filastic process zond)(

Finally, consideringd as fully determined by the guiding equation resgltfrom the
combination of equations (112) (113) and (114yndy be observed that the set of linear
equations formed by equations (112) and (113) aarmexpressed in the form of a simple
matrix system, so that:

AC =B (115)
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where:
0O 1 0O 0 0 0 0
1 0 06O 0 0 0 0
/6 d/2 d 1 -e’sifxd)  -e9cobd) -e”sifud)  —e™cobd)
/2 d 10 -wtridud) -wetrid-ad) —retrid-xd) ke trigud)
A= _ » o (115)

d 1 00 -2¢“cofid) 2%sifud) 2«%™cobd) —2x%e™ sir{ud)

1 0 00 -2 trig-rd) 2% tridud) -2 tridud) —2x°e™ trig-4d)

0 0 00 2¢%cofd) -2« siru) -2« cofd) 2k%e™ sinn)

0 0 00 2% trid-a) -2 triu) 2 e tridu) 2c%e™ trigd—AL)
c=(c, c,C C C C C G (116)
R :( 24|:’613 24|3’3 Sp PEAE ik‘lds iK‘ldz ik‘ld 0 Oj (117)

EWH EWH"® 24k 6k 2k k
The integration constants; G2, Cs, Gy, Gs, Gs, C; and G being finally determined as:
C=A"'B (118)

Comparison with the simplified 1D-beam adhesive s&ss analysis.

Description of the simplified 1D-beam adhesive sstranalysesHere is investigated the
mechanical response of two adhesive joint specin®gsENF, DCB). Those specimens are

characteristic of pure mode | and pure mode |l atMeesolicitations and have been widely

shown as consistent with the experimental charaetgsn of adhesive joint interfaces
(Kenane 1997, Reeder 1992} schematic representation of each simplified ddaum
adhesive stress analysis is presentdegri39
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Geometry: I
y A ¢ 4mm

<l
<l

n macro-elements

> -
Nomenclature: *——e
(Paroissien et al. 2013) ° PY
Specifically formulated Specifically formulated
BBe macro-element beam macro-element

Figure 39.Schematic representation of End-Notched FlexudH)E Double Cantilever
Beam (DCB). Description of the simplified 1D-beaxthasive stress analyses. Comparison
with the simplified 1D-beam adhesive stress ansalysi

The adhesive overlap is meshed usmgniformly distributed BBe elements. Each outer
adherend is meshed using a unique outer beam eleBetn adherends are modeled as
monolithic beams. The adhesive layer is modeledguan elastic perfectly plastic traction-
separation law. Both the material and geometricap@rties of the studied specimens are
given inTab.2

Tab 2.Comparison with existing sandwich type analys&et of material and geometrical
properties. End Notched Flexure + Double CantileBeam test specimens. Introduction of
adhesive material nonlinearities.

Geometry Material properties
L 90 E 74200
H 4 k 250/e
w 20 vb (eb) 0.00966
a 30 VC (gC) 0.167
e 0.2

: Adhesive : Adherends
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Convergence of the simplified 1D-beam adhesivesstemalysesAs presented irSection
2.3.2 when facing purely linear elastic deformatiorise adhesive overlap can be modeled
using a unique 4-nodes BBe element. However, whacing nonlinear adhesive
deformations, the suggested solution proceduresntiedadhesive overlap to be meshed with
an adequate number of BBe elements to addressothect behavior of the adhesive layer.
Since the adhesive overlap has to be meshed, thédtseobtained can depend on its
refinement. To allow for the comparison of convergesults, the mesh of the overlap using
BBe macro-elements was optimized so that the swistobbtained were independent on its
refinement (seédppendix 5.

Comparison with Hart-Smith’s sandwich type analysed-ig.40andFig.41is presented a
direct comparison between the adhesive shear agldspess distributions obtained from the
reworked Hart-Smith’s sandwich type analyses amdsimplified 1D-beam adhesive stress
analysis in the case of perfectly plastic adhesigetion separation evolution laws for both
ENF and DCB adhesive test samples. Both materchg@ometrical properties of the studied
specimens are given irab.2

14

[HS] Shear stress distribution
% [Bbe] Shear stress distribution

Adhesive shear stress distribution

-1
0 20 40 60 80 100 120 \

Abscissa along the overlap [mm] 2
50 55 60 65 70

Norm
alized 0,025 - .

N | < [Shear stress] Normalized deviation between HS and BBe |
deviat

ion

betwe 0,015

en HS

and
semi oo |
analyt
ical R . (b)
result
s 0,005

0,015 &(
X

0 20 an 60 0 100 120
Abscissa along the overlap [mm]

Figure 40.Comparison between semi analytical and sandwige tyesults in terms of
adhesive shear stress distribution. Comparison exikting sandwich type analyses. Hart-
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Smith’s sandwich type analysis in pure mode Il. aiched Flexure test specimen.
Introduction of adhesive material nonlinearities.

Adhesive peel stress distribution

[HS] Peel stress distribution
x [Bbe] Peel stress distribution

wa - -
o 4
E, 5 X 25 30 35 40
0 1
2 >
_4 .
3
_5 .
2 5
20 40 80 100 120
Abscissa along the overlap [mm] -7
30 40 50 60
Norm
alized 0,025 K L
. | * [Peel stress] Normalized deviation between HS and BBe
deviat
ion
betweo’ols A
en HS
and
seml ;005 -
analyt
ical (b)
result
0,005
s
0,015
X
0,025
0 20 40 60 80 100 120

Abscissa along the overlap [mm]

Figure 41.Comparison between semi analytical and sandwige tyesults in terms of
adhesive peel stress distribution. Comparison wilsting sandwich type analyses. Hart-
Smith’s sandwich type analysis in pure mode |. DeuBantilever Beam test specimen.
Introduction of adhesive material nonlinearities.

It is seen fronfFig.40andFig.41that the results obtain from the simplified 1D4lmeadhesive
stress analysis and the reworked Hart-Smith’s saidtype analyses are in close agreement
(in both pure mode | and pure mode Il). Howeverakseof normalized deviations can be
observed where the adhesive layer experiences itfteest values of shearing (peeling)
adhesive stress gradients. These peaks of nordalie@ation can be explained by the fact
that the updated secant stiffness matrix (i.e. bifrap 1D-beam adhesive stress analysis) is
computed through the averaged adhesive secant naddong each BBe element. Which leads
to an increasing deviation with theoretical anatys¢ locations where the adhesive layer
experiences the most important stress gradients.
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It is also seen fronsection 2.4.8hat the reworked Hart-Smith’s sandwich type aregdys
highly dependent on the type of adhesive specimen(ar) loading/boundary conditions that
are applied to the structure. Indeed, both equuifbrequations and boundary conditions have
to be reworked for each new test configurations aad lead to increasingly complex
algebraic expressions for the final solution. Tllwaamtage of the suggested simplified 1D-
beam adhesive stress analysis then lies in theuatleqise of the FE methodologies. Thus
taking advantage of the flexibility of FE techniguée.g. wide application range, simple
assembly procedure, etc.) and the simplicity (rtomess) of closed form stress analyses (e.g.
limited number of macro-elements, results indepahde the mesh refinement when facing
linear-elastic adhesive deformations, etc).

2.4.6. C
omparison with Finite Element (FE) analyses

Description of the Finite-Element (FE) models.Here is investigated the mechanical
response of three adhesive joint specimens (i.¢=,EMNCB & MMB). Those specimens are
characteristic of pure mode I, pure mode Il andedimode I/l adhesive solicitations, and
have been widely shown as consistent with the éxyetal characterization of adhesive
interfaces(Kenane 1997, Reeder 1992 schematic representation of each specimen is
presented ifrig.42

20mm Plane stress 2D elements

Geometry:

100mm
Cohesive interface elements

ENF:

DCB:

MMB:
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Figure 42.Schematic representation of End-Notched FlexurdH)E Double Cantilever
Beam (DCB). Description of the Finite Element (FEBpdels. Comparison with Finite
Element (FE) analyses.

The geometry of each specimen is balanced. Thelaiimos are performed using SAMCEF
FE Code v14-1.02. Both adherends are modeled agyfacrely linear elastic deformations
only (seeTab.3. The adhesive layer is modeled using a bi-lirednesive traction-separation
law. Both linear energetic initiation and propagatcriteria are assumed (SE&b.4).

Tab 3.Comparison with existing Finite Element (FE) asaly. Adherends elastic properties.
Introduction of adhesive material nonlinearities.

Adherends elastic properties.
E 74200 MPa \ 0.34
G 27900 MPa -

Tab 4.Comparison with existing Finite Element (FE) asaly. Adhesive cohesive properties.
Introduction of adhesive material nonlinearities.

Adhesive properties.
Ki 185 MPa k 65 MPa
Gio 2  J/mm Guo 2 J/mm
Gic 4  Jmm Gic 5 J/mm
Initiation Linear Propagation | Linear
criteria energetic criteria energetic

The adherends are meshed using 2D SAMCEF type ®hents. SAMCEF type T015
elements have linear interpolation functions andtdrnal modes (ie. 4 nodes and 12 degrees
of freedom). The normal integration scheme is cho3éde adhesive interface is meshed
using 2D cohesive interface SAMCEF type T146 elasieBAMCEF type T146 elements
have linear interpolation functions and no internaddes (ie. 4 nodes and 8 degrees of
freedom). Because of numerical convergence isshe<;auss-Lobatto integration scheme is
chosen(Samcef 2013)In purpose of comparing comparable analyses,sl@al boundary
conditions are applied to the mesh so that it ditdhest the as conditions described in the
simplified 1D-beam adhesive stress analysis Esg& 3.
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Clamped condition:

§ {u=0 v
\ [ § T—’
§ {u=0 é T—» u

Simply supported condition:

L
X
w=0 >
A i w
T—b u
Loading:
A
L
Neutral i X
fiber: W
T—P u

Figure 43.Schematic representation of the applied boundanglitions. Clamped boundary
condition and simply supported boundary conditiDescription of the Finite Element (FE)
models. Comparison with Finite Element (FE) anayse

Finally, to address the complete nonlinear respofiske adhesive specimen when subjected
to steadily increasing loads, it is firstly decidedocus on what will be thereafter referred as
the load/displacement instability point. This poieters to the instarttwhen the structure
faces the maximum level of the applied load that ba transferred (i.e. very top of the
applied load vs resulting displacement curve). Thgice is made since the distributions of
the adhesive shear and peel stresses at this yartimoment are characteristic of the
structure itself and refers to the maximum levelnmditerial nonlinearities that faces the
adhesive layer during the initiation phase. To edslrthis particular point during the
specimen load history, a load based Newton-Raphssolution procedure is employed in
both FE and semi-analytical analyses (i.e. resmhuprocedure that stops as early as the
maximum level of applicable load is reached). Hoarethe precision in reaching this
particular point is directly determined by the &ndny fixed convergence threshold. It then
results in significant numerical differences dudhe varying maximum load reached by the
Newton-Raphson procedure. It is then decided tdueta the adhesive peel stress and
adhesive shear stress distribution at a slightigrelessed maximum load (i.e. 95% of the
specimen maximum load bearing capability).
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Convergence of the Finite Element (FE) modelsTo allow for the comparison of
converged results, the mesh of each FE models ptamined so that the solution obtained is
independent on its refinement. The optimizationtiled mesh is based on the following
hypotheses: (i) the mesh of the specimen is unifpdistributed over the length, the width
and the thickness of the adherends, (ii) the mdsith® upper adherend, the adhesive
interface, and the lower adherend are correspondinghe aspect ratio of each element of
the structure is equal to 1. It is shown from hyyases (i) to (iii) that the mesh of the entire
specimen is then dependent on the number of elsnvatiin the length of the adhesively
bonded overlap only (séppendix 5.

Comparison with the simplified 1D-Beam adhesive s&ss analysis.

End Notched Flexure test specimen (ENFHY.44 presents the comparison between semi-
analytical results and Finite Element predictioms terms of Load versus Resulting
Displacement curvéa), distribution of adhesive stressgy and distribution of the damage
variable (c) along the overlapFig.44-(d) then presents theormalized deviatiorbetween
semi-analytical and Finite Element predictions. Gagreement is shown.
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Figure 44.Comparison with Finite-Element (FE) analyses imepmode Il. End Notched
Flexure test specimen (ENF). Description of thatBiklement (FE) models. Introduction of
adhesive material nonlinearities.

Double Cantilever Beam test specimen (DCBY.45 presents the comparison between
semi-analytical results and Finite Element preditdi in terms of Load versus Resulting
Displacement curvéa), distribution of adhesive stress@gg and distribution of the damage
variable (c) along the overlapFig.45-(d) then presents theormalized deviatiorbetween
semi-analytical and Finite Element predictions. Gagreement is shown.
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Figure 45.Comparison with Finite-Element (FE) analyses irepmode |. Double-Cantilever
Beam test specimen (DCB). Description of the Fialement (FE) models. Introduction of
adhesive material nonlinearities.

Mixed-Mode Bending test specimen (MMBIg.46 presents the comparison between semi-
analytical results and Finite Element predictioms terms of Load versus Resulting
Displacement curvéa), distribution of adhesive stressi@gg and distribution of the damage
variable (c) along the overlapFig.46-(d) then presents theormalized deviatiorbetween
semi-analytical and Finite Element predictions. Gagreement is shown.
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

Figure 46.Comparison with Finite-Element (FE) analyses ixedimode I/ll. Mixed-Mode
Bending test specimen (MMB). Description of theitéirElement (FE) models. Introduction
of adhesive material nonlinearities.

2.5. I
ntroduction of adherend material nonlinearities

2.5.1. A
daptation of the classical theory of beam plastibon to the particular
formulation of the BBe element

Adaptation of the classical theory of beam plastity. For simplification purpose each
adherend is thereafter considered as an isotrapicogeneous material exhibiting elastic
perfectly plastic stress-strain evolution law ($eg.47). Additionally, the adhesive layer is
considered as experiencing linear elastic defoonati only. However the following
procedure is not limited to these particular bebes/only, and can be easily be extended to
more general anisotropic laminated materials byswtating independently each ply of the
material, and coupled to nonlinear adhesive sts&gssa evolution laws.

Idealized elastic perfectly plastic
adherends stress-strain evolution law: Initiation of Failure of the

plasticization adherend

Resulting traction 4 / /

o(ey)=Eep=0, =+

—»— : k; (loading)
-~ : ki ;=k; (unloading)

: Fracture energy

Adherend
deformation

»

L »
€ & 3

Figure 47.Representation of an idealized elastic perfecthstc adherend stress-strain
evolution law. Adaptation of the classical theoryb@am plasticization to the particular
formulation of the BBe element. Introduction of adénd material nonlinearities.

As presented irsections 2.3.2 and 2.3.and according to the form of the Euler-Bernoulli
beam kinematic it is possible to express the degpreent field of both adherends in the form
of (seeFig.49:

{uj(x,y):uj(x,yzo)—ij,X(X,y=0) =12 (119)

w! (% y)=w, (x,y=0)
where u‘(x,y) and V\/j(x,y) respectively refer to the longitudinal and transeedisplacement

fields of adherend (j=1,2), and u(x,y=0), wij(x,y=0) and 6,(x,y=0) to the longitudinal,
transverse and rotational displacements of theraldilter of adherengd(j=1,2).
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Figure 48.Schematic representation of the adherends digpkatefield. Adaptation of the
classical theory of beam plasticization to the ipatar formulation of the BBe element.
Introduction of adherend material nonlinearities.

Thanks to equation (119) the cross-section axiébrdeation of adhereng (j=1,2) can be
expressed in the form of:

eh(xy)=ul(x y)=u;,(x y=0)-yw,(xy=0) (120)
And the resulting axial stress as:
a(XY)=E;gh{xY) (121)

WheregE; refers to the extensional modulus, also referredasg’s modulus, of adherend
(4=1,2).

As initially introduced for the adhesive layer $ection 2.4 the basic idea of introducing
nonlinear adhesive (adherend) stress-strain ewoldéws in the particular formulation of the
simplified 1D-beam adhesive stress analysis israasform the initial problentF=KU in
finding the correct set of adherends secant prigsethat satisfies the original equilibrium
equations and boundary conditions.

As presented isection 2.4.3the solution of the initial problem:
F pilot  _ KU (122)

Which in the case of nonlinear materials propertissby construction equivalent to the
solution of the secant equivalent problem:

ERiot = i Oy (123)

whereK® refers to the secant master stiffness matrix teaedds on both mode | and mode
Il secant adhesive moduli resulting from the proget of the adhesive stresses onto the
specified adhesive stress-strain evolution lawg &ection 2.4, U to the vector of nodal
displacements an@”"to the applied nodal forces. As $ection 2.4equation (123) refers to
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis

the equilibrium of a unique BBe element. Howevecan be easily extended to the entire
structure by applying classical FE assembly rules.

Similarly to the adhesive layer, the projectiontbé adherend stresses then results in a
modification of the through-thickness secant prapsrof both adherends (i.e. modification of
the local adherend extentional secant moduli). Tuslification of the local secant properties
results in a modification of the integrated adhdreacant extensional, bending and coupling
stiffnesses, so that:

e /2 s
A = b.[_ej/ P E®(y)dy

B = bf//zz EC(y)ydy ,j=12 (124)

D =b["" Ef (y)y*dy

where A®, D;® and B, respectively refers to the secant extensionaldingnand coupling
stiffnesses of adherendj=1,2), andE,-(S) to the through-thickness distribution of the aeimer
secant moduli resulting from the projection of Htherends stresses onto the specified stress-
strain evolution law (seEig.49).
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y y
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Plasticization of
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Left secant adherend Right secant adherend
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Figure 49.Computation of the through-thickness adherendrgeg@perties. Adaptation of
the classical theory of beam plasticization to plaeticular formulation of the BBe element.
Introduction of adherend material nonlinearities.

At this stage, since the general projection of @ldderend stresses can results in complex
through-thickness distributions of adherend sepaoperties (se€ig.49, the integration of
the secant extensional, bending and coupling ssBes can be done either by analytical
integration or numerical integration (e.g. Gausewhbn-Cotes, etc). For the sake of clarity
and robustness, here is chosen to integrate therexdlth secant stiffnesses using the trapezoid
Newton-Cotes integration scheme.
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Computation of the vector of imbalanced loadsThe basic idea of introducing adherend
material nonlinearities within the particular forfation of the simplified 1D-beam adhesive
stress analysis then lies in allowing for the cotapan of the updated secant stiffness matrix
of the element due to the projection of the adhdrgnesses onto the specified stress-strain
evolution law (se&ig.50).

Linear elastic
computation Linear elastic
computation

Resulting stress

¢ Projection of A Projection of
adherend stresses v adherend stresses

Resulting stress

A

Adherend Adherend
deformation deformation
\ - \ -
Left upper distribution of Right upper distribution of
secant adherend moduli secant adherend moduli
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BBe T
f N element
—> o o —>
% :
—> ¢ Cb —>
Left lower side Right lower side

Linear elastic
Linear elastic computation

computation

Resulting stress Resulting stress

N Projection of \ ¢ Projection of
v adherend stresses 1 adherend stresses
Adherend Adherend
deformation deformation
\ » \ L
Right lower distribution of Left lower distribution of
secant adherend moduli secant adherend moduli

Figure 50.Computation of the through-thickness adherendrgeg@perties. Adaptation of
the classical theory of beam plasticization to plaeticular formulation of the BBe element.
Introduction of adherend material nonlinearities.
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Then, and similarly to the introduction of adhesivaterial nonlinearities, the vector of
internal reactiond.™=K®U can be computed from both the secant stiffnessixmit® at
iteration n and the vector of nodal displacemehtswhile L*' can be expressed from the
secant stiffness matrix® at iterationn-1 and the vector of nodal displacemelts

The vector of imbalanced loa@U) can then be expressed in the form of:
RU)=K®U"ur-ke(u"ur (125)

whereR() refers here to the vector of imbalanced loadsltiagufrom the projection of the
adherends stresses onto the specified stress-stralution law.

A great advantage of introducing adherend matewallinearities using the same modified
Newton-Raphson procedure as for the adhesive ls®in the fact that both adhesive and
adherend material nonlinearities are simultaneocagdtiressable using the exact same iteration
convergence procedure. Then not requiring for wegerative convergence procedures to
address first the effect of the adhesive stressrstionlinear evolution law and in a second
time the effect of the adherend stress-strain neali evolution law.

2.5.2. C
omparison with Finite Element (FE) analyses

Description of the Finite Element (FE) models.For simplification purpose, here is
investigated the mechanical response of a cantileeam in pure flexion only (sdég.51).
However the afore described procedure is not linite the introduction of adherends
material plasticity within the outer beam elemepotdy, and is capable of addressing
simultaneously the effect of adherends plasticiratn both outer beam and BBe elements
(see Chapter 3. The simulation is performed using SAMCEF FE Codel-1.02. The
specimen is considered as a monolithic beam fasdmgtic perfectly plastic axial stress-strain
evolution law (seé&ig.47). The specimen is meshed using 2D SAMCEF type T@éents.
SAMCEF type T015 elements have linear interpolafigrctions and 4 internal modes (ie. 4
nodes and 12 degrees of freedom). The normal atiegrscheme is chosen.

Plane stress 2D elements

Geometry:

120mm

Cantilever beam
under pure flexion:
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Figure 51.Schematic representation of the cantilever beapure flexion. Description of the
Finite Element (FE) models. Comparison with Fiitement (FE) analyses.

Similarly to Section 2.4.6 the right end clamped boundary condition is medeby
constraining separately the neutral fiber and threosinding cross-section so that it fits at
best the boundary conditions as described in thelgied 1D-beam adhesive stress analysis.
The projection of through-thickness axial stressely is then ensured by modifying the
implemented Hill’s yield criterion as:

UHiII = \/1 (A(UW - Uzz)z + B(azz - Uxx)z + C(Uxx - Uw)z + 6(L Tfy + M sz + N Tzzx)) 2 Up (126)

B+C
where:

A -2 Y2 Y2 0 0 0\ 1/x2

B ¥y2 -12 1Y2 0 0 0 |1/Y}

cC| |Y2 y2 -12 0 0 0 |1/z (227)

L| | o 0 0O ¥6 0 0 | 1/R?

M 0 0 0 0 16 0 ||1/S?

N 0 0 0 0 0 16117

where Xo, Yo, Zo, Ry, S and Ty respectively refer to initial set of tensile anuear yield
stresses of the materi@amcef 2013)

Then assuming=1 andA=C=L=M=N=0 falls:

1/ X 2 -1/2 12 12 0 0 O 0 1
1/Y7 12 -12 12 0 0 O 1 0
1/z2| | Y2 12 -2 0 0 O o |1 (128)
1/RZ| | © 0 o 16 0o o] |0o| |o
1/8¢ 0 0 0 0 Y6 0 0 0
/T2 0 0 0 0 0 ¥6) |0 0

So that the modified Hill’'s yield criterion finallgnds in ¢,=0 due to plane-stress):

JHiII = V B(O-ZZ - Jxx )2 = Jxx 2 Jp (129)

Convergence of the Finite Element (FE) modelsSimilarly to Section 2.4.6the mesh of
each FE models is optimized so that the solutic@iobd is independent on its refinement.
The optimization of the mesh is based on the falhgwhypotheses: (i) the mesh of the
specimen is uniformly distributed over the lengthe width and the thickness of the
adherends and (ii) the aspect ratio of each elewfethte structure is equal to 1. It is shown
from hypotheses (i) to (ii) that the mesh of thérenspecimen then depends on the number
of elements within the length of the specimen deBeAppendix 3.

Comparison with the simplified 1D-Beam adhesive s&ss analysis.
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Description of the simplified 1D-beam adhesive sstranalysesHere is investigated the
mechanical response of a cantilever beam in pesacih. A schematic representation of the
corresponding simplified 1D-Beam adhesive stresdyais is presented iig.52

Geometry: - memmmmmmmmmmmmmmmmmmooo oo ¢ 10mm

120mm

y
Cantilever beam | |
under pure flexion: p i A X

n outer beam elements

A
v

[ L]
Nomenclature: *——e
(Paroissien et al. 2013) P PY
Specifically formulated Specifically formulated
BBe macro-element outer beam element

Figure 52.Schematic representation of the cantilever beapure flexion. Description of the
simplified 1D-beam adhesive stress analyses. Casgmaiwith the simplified 1D-beam
adhesive stress analysis.

Convergence of the simplified 1D-beam adhesivesstemalysesAs presented irSection
2.4, the introduction of adhesive material nonlineesitin the particular formulation of the
simplified 1D-beam adhesive stress analysis regutiethe need of meshing the adhesive
overlap within an adequate number of BBe macro-el@mto restitute the true behavior of
the adhesive layer. Similarly, the introduction ofaterial nonlinearities within the
constitutive behavior of the adherends resulthérteed of meshing each adherend with an
adequate number of outer beam elements. To allosh&comparison of converged results,
the number of outer beam elements is then optimgedhat the solution obtained is
independent on its refinement (I&gependix 5.

Comparison with Finite Element (FE) analys€3g.53 presents the comparison between
semi-analytical results and FE predictions in teohdoad versus Resulting Displacement
curve (a) and axial stress distribution along the specirfignFig.53-(c)finally presents the
normalized deviatiorbetween semi-analytical and FE adherend stressbdisons due to
bending loadings. Good agreement is shown.

-96 -



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis
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Figure 53.Comparison with Finite Element (FE) analyses irediexion. Cantilever beam in
pure flexion. Description of the Finite-Element {FEhodels. Introduction of adherend
material nonlinearities.
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2.6. C
onclusion and discussion

Within the present chapter, an original proceduseved from the classical FE method is
adapted to the particular formulation of the BBensdnt. Since the original approach
developed in(Paroissien 2066, Da Veiga 2009, Paroisseéral. 2013) does not use the
concept of shape matrix, so that the nodal disph&ces are not approximated but lies from
the exact resolution of the set of joint governdifferential equations (se®ections 2.zand
2.3), specific calculations have to be performed tecoaat for the possible non-linear
behavior of the adhesive layer. Then an originalcpdure allowing for the nonlinear
behavior of the adhesive layer to be accountedi.farderived from the classical FE method)
is adapted to the particular formulation of the B&8lement. The main originality of the
presented Newton-Raphson iteration procedure lieshe use of the secant stiffness
properties to define the nonlinear problem. Thetaeof imbalanced loads (i.e. resulting
from the projection of the non-linear adhesive ses) is thus computed through the
knowledge of the adhesive secant stiffness praggexinly. The suggested procedure then
allows for various non-linear adhesive behaviorbdoaccounted for (ie. softening, plastic,
coupled, etc) with no restriction on the specimenrgetry. The proposed adhesive material
models are formulated under a two dimensional mixedle model that account for the
possible interaction (interdependency) between patle mode | and pure mode Il adhesive
stress-strain evolutions laws. The two dimensionaded-mode model is inspired from the
classical Cohesive Zone Modeling (CZM) theory. Thsults obtained from the suggested
solution procedure are then compared to those of gandwich type analyses involving
nonlinear adhesive stress-strain evolution lawsalRy, the results obtained from the so
modified simplified 1D-beam adhesive stress analymie compared to those of 2D FE
predictions involving cohesive interface elemer@®ood agreement is shown with both
nonlinear sandwich type analyses and FE predictions

To conclude, the preceding iterative solution pdure is upgraded so that it can account for
both adhesive and adherends material nonlinearsiisiltaneously (i.e. with no need of
nested iterative convergence schemes). Then, gmalriway of accounting for the effect of
the surrounding adherends plasticization basedrnoadaptation of the classical theory of
beam plasticityfOudin 2011)is presented and developed in view of its impletagon. The
results obtained from the so modified simplified -bBam adhesive stress analysis are
compared to those of 2D FE predictions involvingsét perfectly plastic adherends stress-
strain evolution laws. For simplification purpodbe comparison is made in terms of a
cantilever beam in pure flexion only. Good agreenmeshown.

By the use of the presented simplified joint kindéimait is shown that the mechanical
response of a large range of bonded overlaps cainbdated using a restricted number of
specifically formulated BBe elements (i.e. only omleen facing linear elastic perturbations
only). Those models based on the use of BBe elentbus takes the advantage of the
flexibility of FE methods: (i) wide application rga, (ii) open assembly procedure, (iii)
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specified boundary conditions, etc, and the rolmssnof theoretical approaches: (i)
analytical resolution of the set of governing diffietial equations, (ii) results independent on
the mesh refinement when facing linear elastic aidleedeformations, (iii) results shown as
rapidly converging toward an asymptote when faciog-linear adhesive deformations, etc.

Since classical 2D FE analyses approximates thgtisos in terms of both adhesive and
adherends kinematics, converged FE results gepanafily highly refined meshes and so
time-consuming computations. The suggested simeglifiD-beam adhesive stress analysis
thus finds it interest in many extensive paramedtidies. It is shown frorfig.54 that the
gain in terms of total number of degrees of freedcen vary from a factor 50 to 500
depending on the specimen geometry (i.e. ENF, D@BMMB) and can easily be increased
by a factor 3 or 4 since non-linear effects areegally limited to the close vicinity of the
overlap edges (sd€g.44 Fig.45andFig.46). Moreover the given procedure has been shown
as 50 to 100 times quicker than equivalent 2D/30pFdtlictiongParoissieret al. 2013)
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1.CE400
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ENF DCe MMB

OSAMCEF 3D OSAMCEF 2D WHBBe
Figure 54. Comparison between semi-analytical and Finite El@m(FE) analyses.
Converged results. Comparison of the total numbeodes.

For convenience, all of the later numerical anaysell then be performed using the
simplified 1D-beam adhesive stress analysis exadlgi so that it allows for extensive
parametric studies to be performed at low computatDsts.
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Chapter 3. On the experimental characterization othin adhesive layers

Chapter 3aims at presenting experimental protocols fordaracterization of thin adhesive
interfaces. First, three characterization protobtalsed on the energetic balance associated to
the computation of the path independnent J-integRate 1968)are presentedSeveral
deviations/limitations are set out and discussdagen] a new characterization technique
based on the monitoring of the adherend-to-adhetisilacement field is presented and
developed in view of its implementation. The newareltterization protocol is then compared
to semi analytical predictions and experimentaings Good agreement is shown with both
semi analytical predictions and experimental tgstmthe case of metal-to-metal adhesive
bonding.
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3.1.
ntroduction

According to(Crocombe 2009)the CZM have the advantage of: (i) considerimgtdi strains

and stresses at the adhesive crack tip, (ii) ingigdoth damage initiation and propagation as
direct outputs, (iii) advancing the crack tip ass@s the local energy release rate reaches its
critical value with no need of complex moving mésthniques.

The Finite Element (FE) method is one of the fgshulation techniques that have taken
advantage of the CZM by developing specific elemeaxtowing for the modeling of the
fracture process of thin interfaces. However, amtgurFE strength analyses of bonded
assemblies are generally computationally expenaine can lead to the rise of numerical
artifacts.

In (Paroissien 2006, Da Veiga 2009, Paroiss¢ral. 2013) and in Chapter 1 a semi-
analytical procedure allowing for the modeling afious adhesive joint configurations facing
in-plane adhesive loadings has been developed @idhted in the case of both adhesive and
adherends material nonlinearites. For convenietite,aforementioned procedure will be
thereafter referred as the simplified 1D-beam aigkestress analysis. The simplified 1D-
beam adhesive stress analysis allows for the reésolof the(Hart-Smith 1973a, Hart-Smith
1973b)set of governing differential equations of the joim the case of linear (non-linear)
adhesive (adherend) stress-strain evolution laws. Method is inspired by the FE method.
However it allows for the semi-analytical resolatiof the simplified system of governing
differential equations of the joint at low compudagl costs. Good agreement is shown with
both sandwich type analyses and classical 2D FHyse® involving cohesive interface
elements during both damage initiation and propagathases (se€hapter 2.

However, both FE and simplified 1D-beam adhesivesst analyses are based on the
modeling of the adhesive interfacial strength tigtowa set of adhesive cohesive properties
(e.g. in pure mode I, pure mode Il and mixed-mddg Accurate experimental protocols for
the measurement of the effective adhesive cohgsigperties are then essential for the
strength prediction of adhesively bonded joints.

The present section then aims to present diffeesidting experimental protocols for the
experimental characterization of the mechanicaperes of thin adhesive layers and to
discuss their inherent limitations. Then, a bramavrexperimental protocol to evaluate the
effective stress-strain relationship of thin adiiesayers in mode I, mode Il and mixed-mode
I/ll is presented and developed in view of its iempkntation. For convenience, the adhesive
stress-strain relationships will be thereaftermef@é as the adhesive traction separation laws.

3.2. O
rganization of the chapter

First, the response of classical adhesive (adhgréedsile Test (TT) specimens under pure
axial loading conditions is investigated. The reswdre presented in terms of axial stress
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versus axial deformation and Poisson’s ratio veesual deformation evolution laws. Then,
the linear elastic properties of both the adheremkthe adhesive materials are derived and
compared to conventional values found in the ogenature. Finally, the limitations of such
classical approaches are set out and discussed.

Secondly, three existing characterization protodmsed on the energetic balance of three
adhesive Fracture Mechanics test specimens arerpees(e.g. ENF, DCB and MCB). For
convenience, these experimental characterizatiotopols will be thereafter referred as the
energetic methods. For lecturer comfort, a shostdption of the mathematical foundations
of each experimental protocol is presented. Howevenore comprehensive description of
each protocol can be found (Andersonet al. 2003, Alfredsson 2004, Hogbeeg al. 2007)
The underlined simplifications as well as the dilenitations of those approaches are set out
and discussed. The results obtained are finallypared to those of semi-analytical analyses.
Significant deviations with semi-analytical predicts are pointed out and different
explanations are presented.

Thirdly, a new and original characterization pratioscased on the experimental monitoring of
the adherend-to-adherend displacement field netrdyadhesive crack tip is presented and
developed in view of its implementation. For coneace, the suggested experimental
characterization protocol will be thereafter reéefras the direct method. The underlined
simplifications and limitations are then set outd adiscussed and the results obtained
compared to those of semi-analytical analyses. Ggodement is shown for various adhesive
joint test configurations and adhesive (adheresdspf material properties.

Finally, the results of an experimental test campanre provided so that the new
characterization protocol is validated in the cabenetal-to-metal adhesive bonding in pure
mode |, pure mode Il and mixed-mode I/1l solicitaus. Good agreement is shown.

3.3. B
ulk material properties
3.3.1. A
dherends

First, the mechanical response of 4 aluminum TenBdst (TT) bulk specimens under pure
axial loading conditions is here investigated. E&dh specimen is manufactured from a
laminated aluminum-magnesiume-silicon aluminum all6960 series). The geometry of each
specimen is controlled after fabrication. The coltéd dimensions are listed Fig.55
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TT_1 | 3.95mm | 9.96mm | 60mm
TT_2 | 3.95mm | 9.95mm | 60mm
TT_3 | 3.94mm | 9.95mm | 60mm
TT_4 | 3.96mm | 9.96mm | 60mm

Figure 55.Geometry of the aluminum Tensile Test (TT) bullk@mens. Aluminum= 6060
series. Bulk material properties.

All the tests are performed on an electro-mechameésa machine (Ref: Instron Al735-1325).
Both the applied load, the resulting displacemert the specimen displacement field are
measured during the tests. The evolution of both #pplied load and the resulting
displacement are measured using the build in macload and displacement cells. The
evolution of the specimen displacement field is soead using the Digital Image Correlation
(DIC) technique (se&ig.56). The axial deformation as well as the Poissoatorof the
specimen are computed from the evolution of thecispen displacement field. The
specimens are displacement loaded using the buoildhachine displacement command
instruction. The loading speed is arbitrary fixe® &mm/min.

Displacement field
u(xy)

Speckle pattern Digital Image
Correlation

Axial load

Axial load

Axial load

Figure 56.Geometry of the aluminum Tensile Test (TT) bullke@mens. Aluminum= 6060
series. Bulk material properties.

Fig.57then presents the results obtained in terms df thegt axial stress-strain evolution law
(a) and the evolution of the measured Poisson’s fajialong the experiment. It is seen from
Fig.57-(a)that the aluminum bulk material exhibits two disti phases. The first one, the
linear elastic phase, appears as extremely limt@ethpared to the whole deforming
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capability of the aluminum alloy (e.g. ~3% of théale deforming capability). The second
phase, the plastic phase, appears on another sidet@mely important (e.g. ~97% of the
whole deforming capability). It then suggests thia¢ plasticization of the surrounding
adherends could possibly play a significant rolethe degradation process of adhesive
sandwich structures. This statement will be diseddater on inSections 3.5and 3.6. Both
the linear elastic Young’s tensile modulus and Boesson’s coefficient ratio (Nu) of the
studied aluminum alloy are extracted from the ofgdiresults (s€€ab.9.
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Figure 57.Experimental characterization of aluminum Ten3ibst (TT) bulk specimens in
terms of axial stress-strain evolution Ig®) and evolution of the measured Poisson’s ratio
(b). Aluminum= 6060 series. Bulk material properties.

Tab 6.Experimental characterization of aluminum TenSiést (TT) bulk specimens. Elastic
material properties. Young's Tensile (YT) modul@nisson’s ratio (Nu). Aluminum= 6060
series. Bulk material properties.

Young's Tensile modulus (YT)| Poisson’s ratio (Nu)
66000 MPa 0.35
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3.3.2. A
dhesive

Secondly, the mechanical response of 4 adhesivieulkispecimens under pure axial loading
conditions is here investigated. Each adhesive gékisnen is manufactured using the SAF-
30MIB adhesive paste from AEC-Polymers. The SAF-B®Mdhesive paste is a room-

temperature cured highly flexible methacrylate a&ilee used in the outboard

manufacturing/repairing industry. The geometry aicle specimen is controlled after
fabrication. The controlled dimensions are liste&ig.58

b = width
b I L

TT_1 | 4.6mm 9.98mm 70mm

L TT 2 | 4.52mm | 9.98mm | 70mm
TT_3 | 4.54mm | 9.68mm 70mm
T1. 4 | 4e2mm  10.02mm | 70mm

Exploratory test
<—> 20mm

Figure 58.Geometry of the adhesive Tensile Test (TT) bulkcgpens. Adhesive= SAF-
30MIB. Bulk material properties.

Similarly to Section 3.3.1all the tests are performed on an electro-mechhtest machine
(Ref: Instron AI735-1325). Both the applied loathe tresulting displacement and the
specimen displacement field are measured duringetite. The evolution of both the applied
load and the resulting displacement are measuredj ube build in machine load and
displacement cells. The evolution of the specimispldcement field is measured using the
Digital Image Correlation (DIC) technique (ser.59. The axial deformation as well as the
Poisson’s ratio of the specimen are computed frdva évolution of the specimen
displacement field. Similarly t&section 3.3.1 the adhesive specimens are displacement
loaded using the build in machine displacement camuninstruction. However various
loading speeds are applied to each specimen (&.gLlF 0.25mm/min, TT_2= 0.5mm/min
and TT_3= 0.75mm/min).
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Displacement field i, o
ulx,y)

Speckle pattern Digital Image
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Axial load

Figure 59.Geometry of the adhesive Tensile Test (TT) bulkcgpens. Adhesive= SAF-
30MIB. Bulk material properties.

Fig.60then presents the results obtained in terms df that axial stress-strain evolution law
(a) and the evolution of the measured Poisson’s (&li@along the experiment. Similarly to
the aluminum bulk material, it is seen fréfy.60-(a)that the adhesive bulk material exhibits
two distinct phases. The linear elastic phase appEgain as extremely limited compared to
the entire deforming capability of the adhesivekbutaterial (e.g. ~5% of the whole
deforming capability). On another side, the plaphase appears as extremely important (e.qg.
~95% of the whole deforming capability). It is alseen fromFig.60-(a)that significant
hysteresis effects appears during unloading phétst®n suggests that a significant amount
of energy is probably dissipated during unloadiftages. However it appears that this
hysteresis effect does not clearly depend on tadihg speed (i.e. TT_1= 0.25mm/min,
TT_2=0.5mm/min and TT_3= 0.75mm/min). Then makimgk that instead of being due to
viscous dissipative effects, this hysteresis eftextld possibly be the result of a nonlinear
elastic behavior of the adhesive material (i.e. IMsleffect). Additionally,Fig.60-(b)shows
the measured Poisson’s ratio as linearly dependmghe axial deformation of the bulk
specimen. This linear dependency of the measureéss®t0s ratio can be due to several
reasons. First, it is extremely complicated to rehti control the manufacturing process of
adhesive TT bulk specimens. Indeed, the manufagyrocess of TT bulk specimen using
adhesive pastes is highly dependent on various@mental factors such as the ambient
temperature, the atmosphere, or factors relatéoetonanufacturing process itself such as the
open/curing cycle, the mixing or the holding pressuHowever, the geometry of each
specimen has been controlled after fabrication.dWhvould have theoretically limited the
effects linked to possibly poor manufactured specisa Secondly, expecting a Poisson’s
ratio that does not depend on the deformation efrtfaterial itself is an idea that is taken
from the classical mechanics of metallic materidlewever, an adhesive can be at best
considered as a semi-crystalline polymer matehaleed, while the physical mechanisms
hidden behind the plasticity of metallic materiEggenerally caused by two main modes of
deformation in the crystal lattice, slip and twingj the plastic deformation process of semi-
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crystalline polymers generally involves a completelecular rearrangement of the chain-
folded lamellar morphology into a more or less ohamfolded fibrillary microstructure
(Bartczak 201Q)In metallic plasticization, slip is a shear defiation which locally moves
the atoms through several interatomic distancegivel to their initial positions. Twinning is
the plastic deformation which takes place along plemes due to a set of forces applied to a
given metal piece. Then, it is not senseless taktthat the molecular rearrangement of the
adhesive material due to its plasticization camifcantly modify the measured Poisson’s
ratio along the experiment. Nevertheless, for sificption purpose, the effective adhesive
Poisson’s ratio will be thereafter averaged aldreggeaxperiment (se€ig.60andTab.7).
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Figure 60.Experimental characterization of adhesive Ten§ést (TT) bulk specimens in

terms of axial stress-strain evolution 1d®) and evolution of the measured Poisson’s ratio
(b). Adhesive= SAF-30MIB. Bulk material properties.

Tab 7.Experimental characterization of adhesive TenBdst (TT) bulk specimens. Elastic

material properties. Young's Tensile (YT) modult®isson’s ratio (Nu). Adhesive= SAF
30MIB. Bulk material properties.

Young’s Tensile modulus (YT), Poisson’s ratio (NU)
1100 MPa 0.42
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3.4. On the experimental characterization of CZM: Engcgmethods
3.4.1. Overview

All of the experimental protocols presented in gestion reclaim the concept of the adhesive
specimen energetic balance associated with the wtatipn of the path independent J-integral
(Rice 1968)nto specifically formulated integration paths:

_ ou
J= j wdy-T &ds (131)
r

whereW refers to the strain energy densitysno to the traction vectog to the stress tensor,
i to the displacement vectarto the normal unit vector directed outward to ¢benter-clock
wise integration path, and(x,y) to the specified two-dimensional coordinate system

However the aim of the following section is notcaover all of the existing protocols for the
experimental characterization of CZM using energbktdlance, but to highlight three of them
which are according to the author of the presergsatiation representative of the
characterization of adhesive interfaces in both engdmode Il and mixed-mode I/ll. For
convenience, these characterization protocols ball thereafter referred as the energetic
methods.

3.4.2. On the constitutive relationship of a thin adhedeswer loaded in pure shear
(mode II)

In this section is presented an experimental paticdetermine the constitutive stress-strain
relationship of a thin adhesive layer loaded inepshear (mode Il). This experimental
protocol has been firstly introduced (Alfredssonet al. 2003)and taken up ifAlfredssonet

al. 2003, Alfredsson 2004, Leffleat al. 2006, Bielet al. 2011) This protocol applies to End-
Notched Flexure (ENF) adhesive specimens. The Edfesive specimen consists in two
adherends partially joined by a thin adhesive layée antisymmetric geometry and loading
conditions of the specimen provide essentially pon@de Il solicitations of the adhesive
layer. However, significant mode | adhesive stressgpear nearby center of the specimen
(seeFig.61). For convenience, the unbonded area of the sgecimll be thereafter referred
as the adhesive crack tip.
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ENF:
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t
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b = width
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= : Shear stress (strain)
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(strain) distributions

+—>
crack tip

Figure 61. Schematic representation the End-Notched Flex#NF] adhesive joint
specimen. Idealized adhesive stress (strain) digtans. On the constitutive relationship of a
thin adhesive layer loaded in pure shear (modedi.the experimental characterization of
CZM. Energetic methods.

In (Alfredssonet al. 2003) the authors then suggest determining the comptetde Il
adhesive traction-separation law by simultaneousipnitoring both the adhesive
instantaneous energy release rate and the adhsisesging deformation at crack tip. By
handling the computation of the path independemtelyral (Rice 1968)onto a specific
contour of the adhesive test specimen ([Bige62), the author then derives an approximate
solution to the inverse problem “given the ENF jospecimen behavior, what is the
constitutive relationship of the adhesive layer?”.

integration path

a g" e
«—> , v
ENF: . Y.:#**‘A t
AQ 2 b= width

Figure 62. Schematic representation the End-Notched Flex#NF] adhesive joint
specimen. Computation of the path independentetyiat. Representation of the integration
path. On the constitutive relationship of a thimesive layer loaded in mixed-mode I/ll. On
the experimental characterization of CZM. Energetethods.

Then leading to an expression of the instantanemesgy release rate at crack tip which
requires no a priori knowledge on the constitutstiess-strain relationship of the adhesive
layerz(v) (132).

9P 3Pv_9 P*
16 Eb*® 8 bt 128 kob?t?

(132)

)= jr(v)dv
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whereJ(v) here refers to the adhesive mode Il instantanenasyy release rate at crack tip,
to the adhesive shearing deformation at crackrgrato the applied load.

To legitimate the use of the different simplifyilnypotheses leading to equation (132) the
authors suggest using a specifically designed spgtgeometry so that:

k(L/2-8/2)=5 (133)

where kg =,/8;/Et, E the adherends Young's tensile moduksgthe initial shearing stiffness

of the adhesive layek, the total length of the bonded overlap arthe length of the adhesive
crack tip.

However, it is shown from equation (132) that tineeg relationship is also dependent on the
initial shearing stiffness of the adhesive lakgrand not known a priori. To override this
initial adhesive stiffness dependence of the retesthip, the authors suggest determinkag
from the early stage data of the experiment.
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To this end, the authors show (asymptotically):that

kbt dP

Ka+l dv

=c whenv - 0 (134)

0

By adjusting a polynomial series to the initial fpaf the P(v) experimental curve its initial
slopec is determined. Solving equation (134) with respecks, the authors then suggest
determining the initial stiffness of the adhesiagdr so that:

2
9 a? (c)’ 4 Et® c
Ke=———| 2| |1+ 1+ = = 135

S 32Et3(bj( 3 a? bJ (139)

Although equation (135) is demonstrated as expenriatly suitable in the case of specifically
optimized specimen geometries, so tkafL/2 - a/2)= 5, an alternative resolution procedure

can be used to evaluate the initial stiffness efathesive layer. This particular procedure has
not been introduced ifAlfredssonet al.2003)

Assuming that the adhesive layer faces purely theé@stic solicitations at early stage of the
experiment, equation (132) can be written as fadlow

._ 9P 3Pv_9 P’

- __ __ whenv - 0 (136)
16 Eb%® 8 bt 128k b’

)= jr(v)dv = %ksv

Then solving equation (136) with respeckgpthe initial stiffness of the adhesive layer can b
computed as:

1{(9 , a* 3¢ 9, a> 3c), 9 ¢
k.e==|]|2¢? += 2+ || =c? +—— |+ — 137
N 2[(8 Eb’t? 8bt] \/(8 Eb%t? 8btj 16b2t2] (137

Finally, the authors suggest deriving the mode dhesive stress-strain constitutive
relationship differentiating the so computed mobes$tantaneous energy release rate with
respect to the measured adhesive shearing defomretticrack tip, so that:

0J

= 138

r)=2 (139)

3.4.3. On the constitutive relationship of a thin adhedager loaded in pure peel
(mode I)

In this section is presented an experimental podttmcdetermine the constitutive stress-strain
relationship of an adhesive layer loaded in purel g@ode 1). This experimental protocol,
derived from the original protocol describedSection 3.4.2has been firstly introduced in
(Andersonet al. 2003) and applies to Double Cantilever Beam (DCB) adleespecimens.
The DCB adhesive specimen consists in two adherpadslly joined by a thin adhesive
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layer. The modified loading (boundary) conditionsoyde exclusively pure mode |
solicitations of the adhesive layer (S€ig.63. For convenience, the unbonded area of the
specimen will be thereafter referred as the adleesiack tip.
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Figure 63.Schematic representation the Double CantilevernB€BCB) adhesive joint
specimen. Idealized adhesive stress (strain) kigtans. On the constitutive relationship of a
thin adhesive layer loaded in pure peel (mode h).tle experimental characterization of
CZM. Energetic methods.

In (Andersonet al. 2003) the authors suggest determining the complete maaghesive
traction-separation law by simultaneously monitgrboth the adhesive instantaneous energy
release rate and the adhesive peeling deformatioraek tip. By handling the computation of
the path independent J-integ(Rlice 1968)onto a different contour of adhesive test specimen
(seeFig.64), the authors come to derive a new formula ofitfeéantaneous energy release
rate at crack tip which requires no a priori knadge on the constitutive stress-strain
relationship of the adhesive laygr) (139).

PO(-a)

: (139)

3(e)= [ ole)e =2

wherelJ(e) here refers to the adhesive mode | instantanenerg)e release rate at crack tip,
to the peeling deformation of the adhesive layaratk tip,P to the applied load ané(-a) to
the rotation angle of the bending line of adhergrid) at load application point.
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Figure 64.Schematic representation the Double CantilevernB€BCB) adhesive joint
specimen. Computation of the path independentetyiat. Representation of the integration
path. On the constitutive relationship of a thimesive layer loaded in mixed-mode I/ll. On
the experimental characterization of CZM. Energetethods.

Finally, the authors suggest deriving the modehleasd/e stress-strain constitutive relationship
differentiating the so computed mode | instantaseenergy release rate with respect to the
measured adhesive peeling deformation at crackaiphat:

aJ
ole)=— 140
(£)=3; (140)
Although not explicitly indicated in the originahper, the afore described theory lies on the
assumption that no adhesive peel stresses risie diee-loaded edge of the adhesive test
specimen. As inSection 3.4.2this condition may be formulated in the form dfing a
specifically designed specimen geometry, so that:

K,L=5 (141)

where k, =424, /Et®, E the adherends Young's tensile modulls,the initial peeling
stiffness of the adhesive layer dnthe total length of the bonded overlap.

3.4.4. On the constitutive relationship of a thin adhedaser loaded in mixed-mode
I/11

Although the characterization of the adhesive pumales is essential for adhesive strength
predictions, in-service adhesive bonds are morenofixpected to serve under mixed-mode
I/ll than under pure mode | (ll) loading conditionsis then essential to develop techniques
that allow for the effective mixed-mode I/ll behawi of adhesive interfaces to be
addressed/determined.

Based on the approaches develope8dntions 3.4.2and3.4.3 this section aims to present an
experimental protocol to determine the mixed-mdtecbhesive properties of a thin adhesive
interface. This procedure reclaims once again treept of the specimen energetic balance
associated with the computation of the path inddpeh J-integral(Rice 1968) This
experimental protocol has been firstly introducedHogberg 2006)and applies to Mixed-
mode Cantilever Beam (MCB) adhesive specimensHgg85).
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Figure 65.Schematic representation the Mixed-mode Cantil@eam (MCB) adhesive joint
specimen. Idealized adhesive stress (strain) kligtans. On the constitutive relationship of a
thin adhesive layer loaded in mixed-mode I/ll. @a experimental characterization of CZM.
Energetic methods.

As for the procedures describedSections 3.4.2nd 3.4.3 the author suggests handling the
computation of the path independent J-integRite 1968)onto a specifically formulated
contour of the adhesive test specimen @ge6). From this analysis derives a new formula
of the instantaneous energy release rate accoufiim@oth the peel and shear adhesive
stresses at crack tip (142).

v

Iv,&)= j r(v,e)dv + ja(v, £)de= é( Pcc;ia))z + PS:(a) (w,"~w,’) (142)

whereJ(v,e) here refers to the mixed-mode I/ll instantanemergy release rate at crack tip,
a to the angle between the antisymmetric loadingations and the neutral fiber of the upper
(lower) adherendsw,’ (w.') to the first order derivative of the upper (loweadherend
deflection at crack tip anid to the applied load.

integration path

_ > A\ 4
= M
M"

2] e b = width

Figure 66.Schematic representation the Mixed-mode Cantil@eam (MCB) adhesive joint
specimen. Computation of the path independentetyiat. Representation of the integration
path. On the constitutive relationship of a thimesive layer loaded in mixed-mode I/ll. On
the experimental characterization of CZM. Energetéthods.
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To legitimate the use of the different simplifyilgpotheses leading to equation (142) the
author suggests using a specifically designed spetgeometry so that:

mirlx,L, ksL) =3 (143)

Wherekp andxs refer to the two constants previously define&ettions 3.4.2and3.4.3 and
L to the total length of the bonded overlap.

The author finally suggests deriving both the pumede projections of the adhesive
constitutive stress-strain relationship differetitig the so computed mixed-mode /1l
instantaneous energy release rate with respebetmeasured adhesive peeling and adhesive
shearing deformations at crack tip, so that:

0J

a(g,v):g—‘i andr(g,v):a—v (144)

3.4.5. Confrontation with semi-analytical predictions

Description of the simplified 1D-beam adhesive stes analyses.To check for the
workability/sustainability of the so described thee three semi-analytical models are
constructed (e.g. ENF, DCB and MCB). A schematmresentation of each semi-analytical
model is presented iRig.67. The adhesive overlap is meshed usingniformly distributed
BBe elements. Each outer adherend is meshed usinggae and specifically formulated
beam element. Both adherends are modeled as kesiic monolithic beams. The adhesive
layer is modeled as a cohesive interface resumvgatbitrary trapezoidal traction separation
laws. The set of mechanical properties of both #@déesive layer and the surrounding
adherends are given Trab.8 It is indicated that the adhesive and adherenalsepties as well
as the specimen dimensions have been voluntaiitigdsto fit the early-design criterion given
in equations (133) (141) and (143).
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Figure 67.Schematic representation of End-Notched Flexui¢H)Ethe Double Cantilever

Beam (DCB) and the Mixed-mode Cantilever Beam (MCBgscription of the simplified

1D-beam adhesive stress analyses. Confrontatiom seimi-analytical predictions. On the
experimental characterization of CZM. Energetichmoés.

Tab 8.Set of mechanical adhesive and adherends propeded in for the confrontation with
semi-analytical predictions. Description of the gliired 1D-beam adhesive stress analyses.
On the experimental characterization of CZM. Engcgaethods.

Elastic Plastic Softening

Model _ _r Va7V
Tly)=k Tly)=T, +k, (y-y Tly)=T

(CZM) (y) 04 ( ) 1 T,l( 1) ( ) 2 Vo~ 1,

kr, =4MPa T, = 1125MPa
Parameters k; =145MPa T, = 95MPa y, =05
¥, = 0065 y, =07

Validity Osysy, Vi<V<V, VSV <SVs
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Elastic Plastic Softening
E,-¢
('\(/ljoziﬂe)l S(e) = kee S(e)=s, +ks,(e-¢,) S(e)=s, 5:—52
ks, = 98MPa S, =17MPa
Parameters ks =310MPe S, =14MPa £, =035
& = 0045 & =05
Validity O<ses<g £, <e<¢, E,S€<¢&,

Since the different parameters involved in the cotation of the instantaneous energy release
ratesJ(v), J(e) andJ(v,e) can be set as direct outputs of the simplifieddHam adhesive
stress analyses, those are directly taken as tleey @oming from experimental records. The
evolution of each instantaneous energy releasasdten computed with respect to equations
(132) (139) and (142) at each step of the simulbtad versus displacement history. Finally,
the adhesive constitutive relationship&) and z(v) are obtained differentiating the so
computed instantaneous energy release #tgs)(e) andJ(v,e) with respect to the associated
adhesive crack tip deformations (see equations)(1B&0) and (144)) using secant line
approximations.

Confrontation with semi-analytical predictions. First, a direct comparison between the so
predicted stress-strain relationships (energetitha) and the stress-strain evolution laws
effectively experienced by both ENF and DCB adhegomnt specimens at crack tip (semi-
analytical) is given irFig.68andFig.69

ENF:
a i P e
—> | v
t
vk . X
t 7y A
A o
r L7 b = width
L >
deviation
135 + — Numerical
13 % Energetic method
3,5 * x
7.5 »

Adhesive shear stress [VIPa]

032 04 X 0,3

Adhesive shearing deformation [mm/mm)]

Figure 68. Schematic representation the End-Notched Flex@aNF] adhesive joint

specimen. Comparison of the predicted adhesivesssgs®ain relationships (energetic
methods) and the stress-strain evolution laws tfiely experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relatiop of a thin adhesive layer loaded in pure
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shear (mode Il). Confrontation with semi-analytigadedictions. On the experimental
characterization of CZM. Energetic methods.
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Figure 69.Schematic representation the Double CantilevernB€BCB) adhesive joint
specimen. Comparison of the predicted adhesivesssBiain relationships (energetic
methods) and the stress-strain evolution laws tfiely experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relatiop of a thin adhesive layer loaded in pure
peel (mode ). Confrontation with semi-analyticategictions. On the experimental
characterization of CZM. Energetic methods.

It is seen formFig.68 and Fig.69 that the so predicted adhesive constitutive stsgsdn
relationships are in close agreement with the shigael) stress (strain) effectively
experienced by the simulated ENF and DCB adhesive gpecimens at early stage of the
experiment. However it is seen that the so predisteear (peel) stress (strain) significantly
deviate from the original adhesive constitutiveessrstrain relationships for increasing levels
of applied load.

These deviations owe to two reasons. First, the@lrstiffnesses of the adhesive interface are
not known a priori of the experiment. Indeed, sittee design criteria provided in equations
(133) and (141) are defined through these initidhesive stiffnesses, it is essentially
impossible to early-design the test specimens &ttt validity of equations (132) and (139)
is ensured a priori of the experiment. Secondleneif fortuitously fulfilled, the design
criteria provided in equations (133) and (141) dimgerive from the integration of the
bonded overlap equilibrium equations in the casdingfar elastic solicitations of both the
adhesive layer and the surrounding adherends. Hhdity of such design criteria then
remains while the whole specimens experience lieéastic deformations only, or at least
experiencing sufficiently small nonlinear defornoats so that it affects negligibly the shear
and peel stress distributions away from the cragk Then, depending on the nonlinear
deforming capability of the adhesive layer itsdflfjs hypothesis can rapidly become
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insufficient to legitimate the use of the suggesthdoretical relationships. Finally, an
additional limitation of such approaches is thaisitbasically impossible to monitor the
evolution of the adhesive stresses during unloagihgses. This limitation is due to the
mathematical description of the J-integral given(lRice 1968)and cannot be a priori
overridden. It then limits the use of energetic moels to monotonously increasing load
histories only, so that the behavior of the adre$ayer during unloading phases cannot be
addressed by such approaches.

Then, a direct comparison between the so predistegks-strain relationships (energetic
method) and the stress-strain evolution laws effelst experienced by the MCB adhesive
joint specimen (semi-analytical) is given kg.7Q For simplification purpose, here was
considered an interface cohesive model resumind) dmlinear pure mode adhesive
constitutive stress-strain relationships related lbgth linear energetic initiation and
propagation mixed-mode criteria.

MCB
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Figure 70.Schematic representation the Mixed-mode Cantil®eam (MCB) adhesive joint
specimen. Comparison of the predicted adhesivesssBiain relationships (energetic
methods) and the stress-strain evolution laws tfiely experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relagiop of a thin adhesive layer loaded in
mixed-mode I/ll. Confrontation with semi-analyticgiredictions. On the experimental
characterization of CZM. Energetic methods.

It is seen fronfig.70that the so predicted adhesive constitutive sts&ssn relationships (i.e.
in the case of mixed-mode I/Il adhesive solicitasiphighly differ from the adhesive stresses
(strains) effectively experienced by the simulaM@B adhesive joint specimen (with no
distinction between the early or later stage ofakperiment).

-119-



Chapter 3. On the experimental characterization of thin adhesive layers

This deviation owe to two reasons. First, the afdescribed theory (i.e. mixed mode I/l
adhesive loadings) lies on a mathematical incogriscst in the derivation of the mixed-mode
I/ll adhesive stresses at crack tip. Indeed, ste) anda(v,e) are both functions of the two
variablesy ande when subjected to mixed-mode /1l adhesive loads:

r(e,v)=03/ov

ole,v)=03/0¢ (145)

% &
J =_[O v +I0 ade does not imply tha

This assumption then applies to a simplistic vissrthe joint equilibrium assuming that the
mixed-mode ratigg=v/ie=1 will not vary during loading. However this simpdiation appears

to be false in most cases and will be discusseat @t inSections 3.7and 3.8. Then, the
adhesive mixed-mode I/ll constitutive stress-strahationships cannot be simply derived
from the differentiation the mixed-mode I/Il instaneous energy release rate with respect to
their associated shear and peel adhesive defomsatio

Secondly, the computation of the J-intediRice 1968)presented ifHogberg 2006)ies on
the assumption that the right edge of the MCB jeimcimen in free of any load. However
the misalignment of the antisymmetric loading diats results in the introduction of a left

side bending moment of magnitudié = 0.5PH/\/1+tan2 a so that the right side of the MCB

joint specimen has to be clamped to avoid any rigidtion of the joint specimen. This
clamped condition then results in the introductidtomplex load reactions that are not taken
into account in the computation of the J-integRite 1968)as presented ifHogberg 2006)

3.5. On the experimental characterization of CZM: Thecti method
3.5.1. Overview

In response t&ection 3.4the following section aims to present a new andimal method
for the characterization the cohesive propertiethof adhesive interfaces. This approach is
derived in the case of pure mode I, pure modedlraixed-mode I/ll adhesive solicitations so
that three different characterization protocols @mesented (e.g. ENF, DCB and MCB). Each
of these protocols is based on the monitoring efatiherend-to-adherend displacement field
nearby the adhesive crack tip of Classical FractMrechanics (CFM) adhesive joint
specimens and does not require any spatial infegraf the joint equilibrium equations.
Then limiting the number of simplifying hypothesesjuired to derive a closed-form solution
to the problem “given the adhesive joint specimezhdvior, what is the constitutive
relationship of the adhesive layer?”.

For simplification purpose, the complete set of ggoing differential equations of the joint
(i.e. described ifChapter 2 is voluntarily restricted to the equilibrium dfe upper adherend
only (seeFig.71). However the same relationships could be obtaitedhe sign, using the
equilibrium equations of the lower adherends.
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Figure 71.Schematic representation of the equilibrium of bomded adherends relative to
the End-Notched Flexure (ENF) adhesive joint spean®©n the constitutive relationship of
a thin adhesive layer loaded in pure shear (modeOih the characterization of CZM. The
direct method.

3.5.2. On the constitutive relationship of a thin adhedeayer loaded in pure shear
(mode 1)

This section aims at presenting an original expenital protocol to determine the complete
stress-strain relationship of a thin adhesive ldgaded in shear (mode Il). The presented
demonstration applies to the ENF adhesive testmmgecdespite the following data reduction
scheme is not limited to this particular specimatyo

In the case of pure shear (mode IlI) adhesive safions, the local equilibrium of the upper
adherend can be reduced in the form of the follgnset of differential equations (see

Fig.71):

dN, _

bdx
dv; _ (146)

bdx

M 1
M, vy, + Lo+ 9T =0

whereT refers to the adhesive shear stréésto the normal force in adherend\4, to the
shearing force in adherend 1 aWj to the bending momentum in adherend 1, while the
constitutive beam equations of the upper adheremdigen by:

du dé
N - l_B 1
(=, 90 (147)
du da
M, =-B, 2 +p, 14
! Pdx ' odx
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with A; the extensional stiffnesf; the bending stiffness arigh the coupling stiffness of

adherend 1u; the normal displacement of adherendwi, the transverse deflection of
adherend 1 and); the cross-section rotation of adherend 1 deriveanfthe Classical

Laminates Theory (CLT)YJones 1998, Berthelot 1999%0r demonstration purpose, it is
assumed that;=A;D;-B,? is not equal to zero.

Then, from equation (147) falls:

6, _ AM,+BN, (148)
dx A,

Then differentiating equation (148) with respeck wives:

d’6, _ A dM, B, dN, (149)

dx* A, dx A, dx

Finally inserting equation (146) into equation (L49s possible to express the shear stiiess
as a function of both the upper shearing forcengcit pointx and the second order derivative
of the upper adherends cross-section rotatiorhao t

-2

1o d26,
He, +e)A +28B;

(Avl +A1WJ (150)

which can be reduced in the case of symmetric @matithic) adherends to:

-2 d2g,
T _m(\/ﬁqﬁj (151)

Equation (151) then suggests it is possible to toorthe distribution of the adhesive shear
stresses along the overlap by simultaneously moangdoth the distributions of the upper
shearing force and the second order derivativdhefupper adherends cross-section rotation.
Nevertheless, the distribution of the shearing doatong the overlap is a variable that is
particularly difficult to measure experimentallyo Dvercome this problem, it is decided to
focus on the close vicinity of the adhesive cragkx=0).

From a simple linear equilibrium of the loads (it&@ts) acting onto the edges of the overlap
(specimen), it is possible to demonstrate the sigdorce acting onto the upper (lower)
adherend at crack tip as equal to (Bep72):

V,(x=0)=-P/4 (152)
Leading to the modified relationship:

2 d?6,
—)[P/4— D, WJ (153)

T(x=0)= e +e
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P/4 Pa/a \ & 4] /4
NI I

|
2

ENF:

P
P/4 ? Pa/4 4 P/4 é A P/

7

g

L |
a L
|-
>

1
x=0 X

Figure 72.Schematic representation of the reaction loadeag@onto the edges of the bonded
overlap of the End-Notched Flexure (ENF) adhesiiatjspecimen. On the constitutive

relationship of a thin adhesive layer loaded inepsinear (mode 1l). On the characterization
of CZM. The direct method.

Finally, It appears from equation (153) that thelation of the adhesive shear stress at crack
tip (x=0) can be determined by simultaneously monitoring dpplied load and the second
order derivative of the upper adherends crossaecetitation at crack tipxE0) making no
more assumption than simply considering the joquildorium originally described ifHart-
Smith 1973a, Hart-Smith 1973k} valid nearby the adhesive crack xp(Q).

3.5.3. On the constitutive relationship of a thin adhedayer loaded in pure peel
(mode I)

This section aims at presenting an original expenital protocol to determine the complete
stress-strain relationship of an adhesive layedddain peel (mode 1). The presented
demonstration applies to the DCB adhesive testisecdespite the following data reduction
scheme is not limited to this particular specimatyo

In the case of pure peel (mode I) adhesive sdiicita, the local equilibrium of the upper
adherend can be reduced in the form of the follgnset of differential equations (see

Fig.71):

X
v _g (154)
bdx

M, +V,+0=0
X

where S refers to the adhesive peel strddg,to the normal force in adherend \4, to the
shearing force in adherend 1 aWj to the bending momentum in adherend 1, while the
constitutive beam equations of the upper adheremdrachanged from equation (147).

Similarly to Section 3.5.2from equation (147) falls:

d6, _ AM, + BN, (155)
dx A,
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Then differentiating two times equation (155) wiispect tx gives:

d’6, _ A d’M, B, d*N, (156)

dx* A, dx* A, dx?

Finally inserting equation (154) into equation (LH6s possible to express the peel str§ss
as a function of the third order derivative of tngper adherends cross-section rotation only,
so that:

3
= _id_a;l (157)
bA dx
which can be reduced in the case of symmetric @matithic) adherends to:
g-_D:d%, (158)

b dx3

Equation (158) then suggests it is possible to tmorthe whole overlap distribution of the
adhesive peel stress, and a fortiori at crackxg0), by simply monitoring the third order
derivative of the upper adherends cross-sectioatioot making no more assumption than
simply considering the joint equilibrium originallgescribed in(Hart-Smith 1973a, Hart-
Smith 1973b)as valid nearby the adhesive crack #pQ). It is indicated that in the case of
pure peel adhesive solicitations the afore desdrtheory requires no a priori evaluation of
the reaction loads acting onto the edges of thelédoverlap.

3.5.4. On the constitutive relationship of a thin adhedayeer loaded in mixed-mode
1711

Based on the approaches develope8dntions 3.5.2nd3.5.3 this section aims at presenting
an original experimental protocol to determine tuenplete stress-strain relationships of a
thin adhesive layer facing mixed-mode /Il adhesigelicitations. The presented
demonstration applies to both MCB and MMB adhesast specimens despite the following
data reduction scheme is not limited to these @agr specimens only.

In the case of mixed-mode I/l adhesive solicitasipthe local equilibrium of the upper
adherend can be reduced in the form of the follgnset of differential equations (see

Fig.71):

dN, _

bdx

dv, _ ¢ (159)
bdx
dM,

dx

+V, +%(el +ebT =0
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where S refers to the adhesive peel streBgp the adhesive shear strebls, to the normal
force in adherend A/ to the shearing force in adherend 1 &hdo the bending momentum
in adherend 1, while the constitutive beam equatere given in equation (147).

Finally inserting equation (147) in equation (15@)is finally possible to express both the
shear stres$ and the peel stressas functions of the successive derivatives ofaiffieerends
cross-section rotation and longitudinal displacetnsmthat:

T:_l{Al d’u, o d@l}

bl ' dx?  dx? (160)
seiln ot a0t
which can be reduced in the case of symmetric @matithic) adherends to:
T :ﬁﬂ
b dx? (161)

S=&d‘°’6?l+el+eﬁd2u1
b dx? 2 b dx?

Equation (161) then suggests it is possible to toorthe overlap distribution as well as the
evolution of both the adhesive shear and peelsdseat crack tipxE0) by monitoring the
successive derivatives of both the cross-sectitatiom and longitudinal displacement of the
upper adherend.

3.5.5. Confrontation with semi-analytical predictions

Description of the simplified 1D-beam adhesive stes analysesAs in Section 3.4.5the
workability/sustainability of the afore describetiedry (i.e. the direct method) was
investigated Three semi-analytical models are then construategl ENF, DCB and MCB).
Each model refers to one of those presentedSattion 3.4.5 so that a schematic
representation of each model is presenteHign67. Similarly, the mechanical properties of
both the adhesive layer and the surrounding addsrare given imab.8 The adherend-to-
adherend displacement field nearby the adhesivekdip is set as a direct output of the
simplified 1D-beam adhesive stress analyses arghtak it was coming from experimental
records. The successive derivatives of the adheieadherend displacement field are then
obtained directly from the resolution procedurespreed and described @hapter 1 The
evolution of both pure modes and mixed-mode adkesiear and peel stress-strain evolution
laws are finally obtained thanks to equations (1&38) and (161).

Confrontation with semi-analytical predictions. A direct comparison between the so
predicted stress-strain relationships (the direethmd) and the stress-strain evolutions
effectively experienced at crack tip by both ENFCEB) and MCB joint specimens (semi-
analytical) is given irFig.73 Fig.74andFig.75
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Figure 73. Schematic representation the End-Notched Flex@NF] adhesive joint
specimen. Comparison of the predicted adhesivesssggain relationships (the direct
method) and the stress-strain evolution laws dffelst experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relatiop of a thin adhesive layer loaded in pure
shear (mode IlI). Confrontation with semi-analytigadedictions. On the experimental
characterization of CZM. The direct method.
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Figure 74.Schematic representation the Double CantilevernB€BCB) adhesive joint

specimen. Comparison of the predicted adhesivesssg®ain relationships (the direct
method) and the stress-strain evolution laws dffelst experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relatiop of a thin adhesive layer loaded in pure
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peel (mode ). Confrontation with semi-analyticategictions. On the experimental
characterization of CZM. The direct method.
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Figure 75.Schematic representation the Mixed-mode Cantil@eam (MCB) adhesive joint

specimen. Comparison of the predicted adhesivesssg®ain relationships (the direct
method) and the stress-strain evolution laws dffelst experienced (semi-analytical) by the
specimen at crack tip. On the constitutive relaiop of a thin adhesive layer loaded in
mixed-mode I/ll. Confrontation with semi-analyticg@iredictions. On the experimental
characterization of CZM. The direct method.

It is seen formFig.73 Fig.74 and Fig.75 that the so predicted adhesive constitutive stress
strain relationships are here in close agreemetht lvath shear and peel adhesive stress-strain
evolution laws effectively experienced by the siatetl ENF, DCB and MCB joint specimens
with no distinction between early stage and latages of the experiment. It is also seen from
Fig.73 Fig.74andFig.75that the so predicted adhesive constitutive s&ssn relationships
are able to address the constitutive behavior efatthesive layer during unloading phases,
which was basically impossible using energetic mé@shdue to the inability of the J-integral
as described irfRice 1968)to account for possibly non-monotonous load hisgorThus
resulting in allowing for the monitoring of the &wegradation process in the case of coupled
yielding and pure damage degradation of the adbesterface stiffnesses during loading.

3.6. Experimental investigations on metal-to-metal adreints
3.6.1. Data processing

Presentation of the data pre-processing algorithmit is shown fromSections 3.5.20 3.5.4
that the evolution of adhesive stresses at crgckxt0) can be theoretically monitored by
supervising the successive derivatives of the adtieto-adherend displacement field nearby
the adhesive crack tipx£0). However, since the numerical differentiationrafv (noised)
experimental results can lead to the rise of ingdrtnumerical artifacts/singularities, a
particular attention has to be given to the core@luation of the successive derivatives of
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the adherend-to-adherend displacement field netmdyadhesive crack tix£0). Data pre-
processing is then highly recommended to reducerarpental noises.

The data pre-processing algorithm used to redupererental noises from the measured
adherend-to-adherend displacement fields thendieshe optimal sub rank approximation
based on the Singular Value Decomposition (SVD) @& related to signal processing
techniques that are commonly referred t&&P signal enhancement methagsluced-rank
signal processing methodsr simply subspace methodéAndrews & Patterson 1973,
Orfinandis 2007)According to(Sadek 2012)optimal sub rank approximation based on the
SVD of digital images finds its roots in the fiedd digital image compression. The optimal
sub rank approximation method then states thagitatlimageX of sizeM*N, with M>N, can

be represented by its SVD as:

[, =[] V], (162)

whereU=[u® u®,....uU™], aM*M real or complex unitary matrix (i.e. whose colunars
referred as the left singular vectorS)a M*N rectangular diagonal matrix with non-negative
diagonal entries (i.e. referred to as the singukues and ranked in a strictly decreasing
order), andV" the conjugate transpose ¥E[VY V2, ... V™M a N*N real or complex unitary
matrix (i.e. whose columns are referred as thet sgigular vectors). Among other significant
advantages, the SVD is commonly recognized as phienal matrix decomposition in the
sense of the least squares method that packs rhidst gignal energy (information) into as
few coefficients as possibli@loonenet al. 1992) This property of the SVD is generally
referred to as themaximum energy packing property

Then defining the ranR approximation oK as:

. =S [0SV, ae3)

whereU=[u® u®,....u®], theM*R matrix resuming the firs® left singular vectors oX, Sa
R*R the rectangular diagonal matrix resuming the fRssingular values oK, andV' the
conjugate transpose d=[v® ... V®] the N*R matrix resuming the firsR right singular
vectors ofX. In Digital Image Processing (DIP), the singulatues is generally referred to
as the energy (or luminance) of tffeimage layer while the rank-1 matrix deriving frahe
outer producti™ T is generally referred to as tHeimage layer (or eigenimage) Xf

The optimal sub rank approximation then suggestt the original imageX can be
legitimately approximated by its lower rank approation X, so thatR<min(M,N)is chosen

to minimize the difference between theergy(i.e. associated to the Frobenius-norm of the
matrix X) of the initial imageX and the reconstructed imaje Then, the storage of the rank-
R truncated SVD requiredN¢M+1)*R numbers only versuM*N for the original image.
Fig.76 presents an example of SVD truncation using thk-Raapproximation technique.

-128 -



Chapter 3. On the experimental characterization of thin adhesive layers

Figure 76.lllustration of SVD truncation techniques for thorage reduction of digital
images. Original image(a), rankR=30 SVD approximation (b). N=225. M=514.

N*M=115650. N+M+1)*R=22200. Presentation of the data pre-processingridign. Data
pre-processing. On the experimental characterizaticCZM. Experimental test campaign.

In (Konstantinidest al. 1997, Kamm 1998)Yhe authors suggested using the optimal sub rank
approximation for data (image) denoising purpoSd®e authors then stated that the SVD
offers the possibility of splitting the image spant two distinct subspaces, the signal (i.e.
referred as the dominant subspace) and the noesedferred as the subdominant subspace).
So that the dominant and the subdominant subspaeeby construction orthogonal. Then,
iteratively reconstructing the dominant subspacegu&n increasing number of singular
values, starting from the most energetic, allows tlee original signal (denoised) to be
estimated from the SVD of the degraded (noised)adi(sed-ig.77).

The key parameter of digital image denoising ussMP techniques then lies in finding the
correct truncationR that separates the dominant subspace (i.e. thealsigrom the
subdominant subspace (i.e. the noise). Numbemun€ation strategies have been suggested
over the past few years so that it allows for firgdthe best compromise in terms of capturing
most of the energy (information) of the originayrsal (image) while reducing experimental
noiseg(Orfanidis 2007)

(c) (d)
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Figure 77. lllustration of the SVD truncation technique for taa(image) denoising
processing. Original imag@), noised imagdb), unoised image (dominant subspa(®)
reconstructed noise (subdominant subspddg) Presentation of the data pre-processing
algorithm. Data pre-processing. On the experimesttatacterization of CZM. Experimental
test campaign.

The data pre-processing algorithm used to redupererental noises from the measured
adherend-to-adherend displacement fields therohethe digital mapping of the adherend-to-
adherend axial (transverse) displacement fields st of 2D matrices (s€&g.79. First, the
evolution of the axial (transverse) displacemestdfiof each adherend is mapped as 3D
tensors resuming both the distributions of the esled axial (transverse) displacements
nearby the adhesive crack tip as well as theire&sge evolutions. Then, the so constructed
3D tensors of dimensions y andt are rearranged in the form of simpler 2D matreeshat
their new dimensions are respectivelgndx*t (seeFig.79.

'1

—>
EEEEE
AENEEEEEE
e
'IINNEEEEEEEEEE
Axial displacement (mapping)
field
y J
X
x*t
|
[
. t=5
B —— =5s
: t=4s
t=3s > N
t£18° oY [x]
y t=C_)s (rearrangement) "
X
3D tensor Rearranged 2D matrix (raw signal)

Figure 78.Data pre-processing algorithm. Digital mappindhef adherend-to-adherend axial
and transverse displacement fields. Presentatigdheoflata pre-processing algorithm. Data
pre-processing. On the experimental characterizaticCZM. Experimental test campaign.

The so constructed 2D matrices are then filteradguthe rankR reduction approximation
based on the Singular Value Decomposition (SVDhefraw experimental resuls) thatR
is chosen to capture 95% of the original data gnerghe sense of the Frobenius-norm (see

Fig.79.
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X*t

Idealized

<«

Forbenius norm of Rank-R
reduction approximation

» R
0 * min(M;N)

Best
compromise

Figure 79.Data pre-processing algorithm. Filtering of thep@mmental results using the
rankR reduction approximation based on Singular Valuecddeposition (SVD).
Presentation of the data pre-processing algoribata pre-processing. On the experimental
characterization of CZM. Experimental test campaign

Then, the evolution of each adherend axial and stanmse displacement fields are
reconstructed from their respective decompositanms rearranged in the form of 3D tensors,
so that the displacements of the upper (lower) ragdiber are finally extracted from the
reconstructed axial and transverse displacemddsfand formatted into the relevant beam or
plate theory (sekig.80)
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X*t

upper neutral fiber lower neutral fiber
(rearrangement)

u(x)

w(x)
(extraction of the
displacements of each
neutral fiber)
X
8(x)

f
T
T/

3D tensor

A/B(X)\

w(x)

—— Pre-processed results

—— Pre-processed results
X X

Figure 80.Data pre-processing. Extraction of the displacgmenfh each adherend neutral
fiber. Presentation of the data pre-processing rithgn. Data pre-processing. On the
experimental characterization of CZM. Experimemt¢st campaign.

Finally, the differentiation of the adherends cresestion rotation is ensured by fitting a
polynomial series so that the vertical deviatiothwexperimental data is minimized in the
sense of the least squares method by using thedvidemrose pseudo inverse technique (see
Appendix §. Two models are used (sE&.81). The first model takes interest in fittirg(x)
only. The second model takes interest in fittingnidianeouslyw(x) and 6(x)=dw(x)/dx So
that model 1 is by construction concatenated in @h@d The successive derivatives of the
adherend-to-adherend displacement field are finedisgnputed directly from differentiating
the fitted polynomial series.
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w(x) 8(x)

—— Pre-processed results
—— Model 1
—— Model 2

—— Pre-processed results
—— Model 2

Figure 81.Data pre-processing. Fitting of the polynomialie®musing the Moore-Penrose
pseudo inverse technique. Presentation of the pedgprocessing algorithm. Data pre-
processing. On the experimental characterizaticdbZi¥. Experimental test campaign.

Presentation of the supervised experimenilo characterize the ability of the suggested data
pre-processing and differentiation algorithm toedetine the successive derivatives of the
adherend-to-adherend displacement field with gieffic accuracy, here is presented a
supervised experiment.

This supervised experiment refers to the data pvegssing and data differentiation of a
displacement field that is virtually generated Isat tthe evolution of its successive derivatives
is known in advance of the experiment. For simgdifion purpose, the comparison between
the supervised data and those obtained from treeptatessing will be made in terms of the
3 and 4" order derivatives of the transverse displaceméttie@adherend neutral fiber only.
However the results are similar with other derivesi.

The virtual displacement field is generated usingfi®b® R2012b and resumes the kinematic
of a classical Euler-Bernoulli’'s beam in couplegplane tension/flexion, so that:

{u(x, y,t)=u(x,y=0t)-yw,(x y=0t) (164)
w(x,y,t)=w(x y=0)
where the evolutions af(x,y=0,t) andw(x,y=0,t)are arbitrary fixed as:
L(X, y= O,t) = g 000X (165)
V\(X, y= 0,t) — e—0.15tx

So that the simulated kinematics u(x,y) and w(afy=1s are finally presented king.82
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J—
y
.,
L.
L
Figure 82.Representation of the virtual displacement fialfsy) and w(x,y) at t=1s. Data

pre-processing. Presentation of the supervised @atahe experimental characterization of
CZM. Experimental test campaign.

U(X,y,t)ze—O.OOStx_Ol 15*t*y*e—0.15tx

Virtual signal

To model the effect of experimental noises, theugir displacement field described in
equations (164) and (165) is then degraded by gdainormal (Gaussian) noise using the
normrnd(Og) Matlab® function. Wher® refers to the prescribed zero mean value ata
the configurable standard deviation of the nornfahyssian) noise distributiofMatlab
2014) So that the simulated kinematics u_n(x,y) and @,y are finally presented iRig.83

u_n(x,y,t)=u(x,y,t)+normrand(0,0)

Degraded signal

w_n(x,y,t)=w(x,y,t)+normrand(0,o)

Figure 83.Representation of the degraded displacement field¢x,y) and w_n(x,y) at t=1s.
Data pre-processing. Presentation of the superviseda. On the experimental
characterization of CZM. Experimental test campaign

Finally, and to test for the linear dependency leetwthe successive derivatives of the
supervised data and those obtained from the fitelgnomial series, both the Pearson
product-moment correlation coefficient, that is:

f= > xy)- (XX ) (166)
Fze - bz y - yf
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And the Nash-Sutcliffe efficiency coefficient, that

nsc=1- Z(y— X
2

(167)

wherex refers to the set of supervised datap the set of simulated data,to the total
number of data pairs ando the mean value ofare respectively estimated.

So that the correlation between the measufdrgl 4" order derivatives of the transverse
displacement of each adherend and its supervisgldten is presented iRig.84andFig.85

1,0E-03

5,0E-04

en | et
3
; 6,0E-04
m
o
? 4,0E-04
E 2,08-04 —— S pervised
g ooooooo Pre-processed
-ZJGE-O; j | OE-04 4,0E-04 5,0E-04 8,0E-04 1,0E-03
Supervised d3w/dx3
Raw vs. Supervised Pre-processed vs. Supervised
r’ 0.9160 0.9893
nsc 0.9121 0.9826
1-sqrt(1-f) 0.7102 0.8966

Figure 84.Comparison of the '3 order derivative of the transverse displacementhef

adherend neutral fiber obtained by fitting & d&der polynomial series on both raw and pre-
processed results. Comparison with the superviat d
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Raw vs. Supervised Pre-processed vs. Supervjsed
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nsc 0.3758 0.7525
1-sqrt(1-f) 0.2325 0.7012
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Figure 85.Comparison of the "% order derivative of the transverse displacementhef
adherend neutral fiber obtained by fitting " &der polynomial series on both raw and pre-
processed results. Comparison with the superviatl d

For convenience the results presented will nowrsefe the measurement of th& 8rder
derivative of the transverse displacement of theeupadherend neutral fiber only.
Additionally, the squared Pearson product-momemtetation coefficient 7 will be now
considered only. However the following conclusioae not limited to this particular
derivative and (or) to the squared Pearson prochactient correlation coefficient only.

Influence of the experimental (algorithmic) parameers on the accuracy of the
experimental measures: DoEA full factorial Design of Experiments (DoE) cortsisn the
following: (i) vary one factor at a time, (i) perin experiments for all levels and
combination of levels for all factors, (iii) henperform a large number of experiments (N),
(iv) so that all effects and interactions are cegdu Letk be the number of facton; the
number of levels of thé" factor andp the number of replications to determine the impdct
the measurement dispersion. The total number oéraxentsN of a full factorial DoE is
then:

N= ,{ﬁnij (168)

Here is considered a full factorial DoE of five tias with respectively 3x3x3x3x2 levels, so
that the linear Taguchi’'s graph of effects andraxtéons can be represented in the form of
Fig.86

Q : Effect of factor i (i=A,B,C,D,E)

= : First order interaction between i-j

C D

Y = M+E(A)+E(B)+E(C)+E(D)+E(E)
+I(AB)+I(AC)+I(AD)+I(AE)+I(BC)+I(BD)+I(BE)+I(CD)+I(CE)+I(DE)

Figure 86.Linear Taguchi’'s graph of main effects and intaéoaxs. Full factorial Design of
Experiments (DoE). Data pre-processing. On the mx@atal characterization of CZM.
Experimental test campaign.

So that inFig.86 are represented the main effects and interactiaespectively denoted(i)
andI(ij) — of factors,j=A, B, C, D andE onto the objective function that i5 r

Each experiment is replicated 15 times to captiaeeimpact of the measurement dispersion,
so that the total number of experiments is (3x3x2y815=2430. The different factor levels
are given infab.9
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Tab 9. Factor versus levels matrix. Full factorial DesighExperiments (DoE). Data pre-
processing. On the experimental characterizaticdbZi¥. Experimental test campaign.

SNR* (A) | x=y (B) | t (C) | Degree (D)| Model (E)
Low (-1) 0.00175 201 51 4 1
Medium (0)| 0.00350 401 101 6 N.A
High (+1) | 0.00700| 801 | 201 8 2

whereSNRrefers to the simulated Signal-to-Noise rakoy to the spatial resolution of each
displacement field instantaneous imaige, the number of instantaneous images taken during
the experiment (i.e. thereafter referred as thetal resolution)Pegreeto the degree of the
polynomial series used to fit/differentiate the tnalfiber transverse displacement aviddel

to the model used for minimizing the vertical déda with experimental data in the sense of
the least squares method (#g®endix §.

The results obtained from the full factorial Dole #nen presented frofig.87to Fig.89

—E(A) = E(B)
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Figure 87.Effect of factor i (i=A,B,C,D,E) on the correlaticcoefficient f. Influence of the
experimental (algorithmic) parameters on the aayuie the experimental measures. DoE.
M=0.9307. Red= Significant effects. Black= Negligileffects. Validation of the data pre-
processing algorithm. On the experimental chareaion of CZM. Experimental test

campaign.

e | (A, A=-1)
e | (AB, A=11)
1(AB,A=+1)

o= | (a)

—

[+]
Level of factor B

e |(AD,A=-1)
s | (AD, A=0)
I(AD )

e | (C)

[+]
Level of factor D

e |(BD,B=-1)
e | (B0, B=10)
1(BD,B=+1)

L ——1

o | ()

[+]
Level of factor D

ooz \

e | (AE,E=-1)
I(AE,E=+1)

« | (g)

[+]
Level of factor A

— | (AC,A=-1)
s | AC, A=10)
I(AC,A=+1)

(b)

e

]

[+]
Level of factor C

(d)

[— IR

— |(BC,B=-1)
e | (BC,B=10)
I(BC,B=+1)

[+]
Level of factor C

— |(CD,C=-1)
e | (D, C=10)
1(CD,C=+1)

—

(f)

Q

[+]
Level of factor D

——

e | (BE, E=-1)

I(BE,E=+1)

(h)

[+]
Level of factor B

-138 -



Chapter 3. On the experimental characterization of thin adhesive layers
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Figure 88.First order interaction between factors i-j (i,jBAC,D,E) on the correlation
coefficient £. Influence of the experimental (algorithmic) pasiers on the accuracy of the
experimental measures. DoE. Red= Significant icteyas. Black= Negligible interactions.
M=0.9307. Validation of the data pre-processing odatgm. On the experimental
characterization of CZM. Experimental test campaign
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Figure 89.Evolution of the standard deviation (dispersiofi)tloe 15 replications as a
function of the averaged correlation coefficiert fnfluence of the experimental
(algorithmic) parameters on the accuracy of theeerpental measures. DoE. M=0.9307.
Validation of the data pre-processing algorithm. the experimental characterization of
CZM. Experimental test campaign.

O : Effect of factor i (i=A,B,C,D,E)

— : First order interaction between i-j

Y = M+E(A)+E(B)+0+E(D)+E(E)
+0+0+I(AD)+I(AE)+0+I(BD)+I(BE)+0+0+I(DE)

Figure 90.Reduced linear Taguchi’'s graph of main effects ameractions. Full factorial
Design of Experiments (DoE). Black= Significant esfs, interactions. Red= Negligible
effects, interactions. Data pre-processing. On d@kperimental characterization of CZM.
Experimental test campaign.
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The results presented frong.87to Fig.89then suggest:

() The initial SNR appears as a key parametenangasing the accuracy of measuring the
successive derivatives of the upper adherend displant field (seeig.87-(a), then
suggesting that a significant attention has toitserginto reducing the noise of the measured
signal before any pre-processing of the data. Tarsbe achieved in various ways so that it
results in improving the overall quality of the plscement measures (DIC).

(i) The spatial resolution of the instantaneous@®s of the upper adherend displacement
field also appears as a key parameter in increasiagaccuracy of the estimation of the
successive derivatives of the upper adherend dispiants (se€ig.87-(b) Fig.88-(e)and
Fig.88-(h). A particular attention has then to be given ®asuring the displacements of the
upper adherend with an sufficient enough spat=dicgion.

(i) On another side, the time resolution (i.e.mer of images of the upper adherend
displacement field taken during the experiment) eapp as negligibly influencing the
accuracy of the estimation of the successive devies of the upper adherend displacements
(seeFig.87-(c) Fig.88-(b) Fig.88-(d) Fig.88-(f) and Fig.88-(i)). So that its own effect as
well as its respective interactions with other dastcan be legitimately neglected at first sight
(seeFig.39.

(iv) Similarly to the initial SNR or the spatial s@lution of the displacement images, the
degree of the polynomial series used for (fittinfjédentiating the pre-processed
displacements also appears as a parameter thatohlas chosen with extreme caution.
Indeed, although increasing the degree of the polyal series from 4 to 6 appears as
negligibly influencing the overall accuracy of theasure, increasing it from 6 to 8 results in
a serious degradation of the accuracy of the megseg=ig.87-(d). This degradation of the
accuracy of the measurement using high order potyais is a well-known issue, and is due
to the oscillation of the polynomial series arouhd experimental set of data points for
increasing degrees (i.e. Runge’s phenomenon). ficpkar attention has then to be given in
chosiing the best compromise between fitting theeeimental data points using high order
polynomials functions and preserving the overaltuaacy of the measurement of its
successive derivatives.

(v) Finally, the choice of the Moore-Penrose pseuderse model for minimizing in the
sense of the least squares method the verticahti@vibetween the polynomial function (i.e.
used for fitting/differentiating the set of expegntal data points) and the experimental data
points themselves appears as a worthwhile wayfbfencing the accuracy of the measured
displacement derivatives (sE&.87-(e). It is then suggested that simultaneously acéognt
for both w(x) and 6(x)=dw(x)/dx when fitting/differentiating the experimental seft data
points significantly increases the accuracy ofrtteasurement.

3.6.2. Experimental setup, preparation of the specimedsrastrumentations

To check for the experimental workability/sustaitiah of the newly suggested
characterization method (i.e. the direct method itechanical response of four adhesive
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joint specimens is here investigated (e.g. ENF, DEBIB and SLJ). The ENF, DCB, MMB
and SLJ adhesive test specimens are representditeiégher pure mode |, pure mode | and
(or) mixed-mode I/l adhesive solicitations. Thesttepecimens are bonded using the SAF-
30MIB adhesive paste from AEC-Polymers. The SAF-B®Mdhesive paste is a room-
temperature cured highly flexible methacrylate @&ilee used in the outboard
manufacturing/repairing industry. The adherends arade of a laminated aluminum-
magnesium-silicon aluminum alloy (6060 series). T@k material properties of the
aluminum alloy are characterized from dumb tents# specimens in advance of the present
experimental test campaign (seection 3.3.1. The adherends elastic properties are reminded
in Tab.10 To enhance the adhesion properties of the adhdapjer before bonding, each
adherend is cleaned using the AEC-Polymers T70Qkdaning spray. To ensure a constant
adhesive thickness along the overlap, two calidratgi-adhesive tapes are stuck at each side
of the bonded overlap (sé¢eg.91). The small cracks induced by the use of calilorateti-
adhesive tapes will be accounted in each of therlan analyses. The dimensions of each
specimen are controlled after bonding. The averagadnsions are given ifab.11

Adhesive layer

< >, | | \ 4
t
ENF, DCB & MMB: vl - X 2 -
t 1 Pl i
A «— >
% L
Calibrated anti-adhesive tapes b = width

€ I
Adhesive layer

Figure 91.Schematic representation the manufacturing prooetse ENF, DCB, MMB and
SLJ adhesive joint specimens. Experimental settgpagpation of the specimens and semi-
analytical analyses. On the experimental charaeion of CZM. Experimental test
campaign.

Tab 10.Experimental characterization of aluminum Ten$igst (TT) bulk specimens. Elastic
material properties. Young’s Tensile (YT) modul@aisson’s ratio (Nu). Aluminum= 6060
series. Bulk material properties.

Young's Tensile modulus (YT)| Poisson’s ratio (Ny)
66000 MPa 0.35

Tab 11.Controlled geometries of the ENF, DBC, MMB and Sidhesive joint specimens.
Aluminum= 6060 series. Adhesive= SAF-30MIB. Expesimtal setup, preparation of the
specimens and semi-analytical analyses. On theriexgetal characterization of CZM.
Experimental test campaign.
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a L | t e b
ENF | 29.82mm 71.43mm| N.A. 3.96mm| 0.230mm| 22.0mm
DCB | 30.69mm| 70.0mm N.A. 3.96mm 0.180mm| 22.0mm
MMB | 30.21mm| 70.89mm| N.A. 3.96mm| 0.180mm| 22.0mm
SLJ N.A. 51.4mm| 29.35mm3.96mm| 0.120mm| 22.0mm

Similarly to Sections 3.3.1 and 3.3.the entire test campaign is performed on an relect
mechanical test machine (Ref: Instron AI735-132Bxcept for the mixed-mode /Il
characterization experiments that are performedroelectro-mechanical test machine (Ref:
Kilo-Newton Al264-FT). Both the applied load, thesulting displacement and the adherend-
to-adherend displacement field at crack tip aresumesl during the tests. The evolution of
both the applied load and the resulting displaceraes measured using the build in machine
load and displacement cells. The evolution of ttileeaend-to-adherend displacement field is
measured using the Digital Image Correlation (Di€hnique (se€&ig.92and Fig.93. The
pure mode deformations of the adhesive layer amgpoted from the relative displacement of
the adherends neutral fibers (s€g.94). Both DIC and build in machine measures are
synchronized using an analogical-to-numerical Netidnstrument (NI) acquisition card so
that it facilitates the processing of the adhesosnstitutive CZM relationships. The
mechanical stiffness of the Tensile Test MachinEBMY is characterized so that the resulting
displacement measured by the build in machine atgphent cell is corrected to fit the true
displacement of the adhesive test specimens. fmairaens of each configuration are tested
(e.g. ENF, DCB, MMB and SLJ). The SLJ specimenstested for validation purposes only.
Correlations between experimental and numericalcé-orersus Resulting Displacement
curves are used to evaluate the ability of the pesuiggested approaches (i.e. the direct
method) to characterize and restitute the mechlnesponse of the tested adhesive
specimens. A particular emphasis is given to thditylof the suggested approaches to
restitute both the experimental stiffness and tleximum load bearing capability of each
adhesive specimen. The numerical analyses arerpertbusing the procedure presented and
described inParoissieret al. 2013)and inChapter 1 Both adhesive and adherends nonlinear
stress-strain evolution laws are accounted for.

Camera

Tensile Test Machine
-
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Figure 92.Experimental monitoring the of the adherend-toeadhd displacement field
using Digital Image Correlation (DIC) techniquespErimental setup, preparation of the
specimens and semi-analytical analyses. On theriex@etal characterization of CZM.
Experimental test campaign.
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Figure 93.Experimental monitoring the of the adherend-toeadhd displacement field
using Digital Image Correlation (DIC) techniquespErimental setup, preparation of the
specimens and semi-analytical analyses. On theriexg@etal characterization of CZM.
Experimental test campaign.

€: adhesive peeling deforamtion

y: adhesive shearing deformation

W, -W,+e+(e, +e,)/2

Figure 94.Schematic representation of the shearing and meeldhesive deformations.
Experimental setup, preparation of the specimersgs sami-analytical analyses. On the
experimental characterization of CZM. Experimem¢st campaign.

3.6.3. Material description

As presented iBection 3.6.2the bulk material properties of each adherendhagacterized
from tensile test specimens in advance of the adhésst campaign (segection 3.3.L The
adherends constitutive stress-strain relationshipproximated using a trilinear elastic-
plastic material behavior. The model is optimizedtisat it fits at best the measured stress-
strain relationship in pure traction (deig.95).
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Figure 95.Experimental characterization of aluminum Tendikst (TT) bulk specimens
elastic-plastic properties. Aluminum= 6060 serwes.True stress= True deformation. Bulk
material properties.

3.6.4. Quasi-static experiments

Mode I: DCB. Fig.96-(a)presents the obtained adhesive traction-separktves in the case
of pure mode | adhesive solicitation§ig.96-(b) presents the comparison between
experimental measures and semi-analytical predistim terms of Applied Load versus
Resulting Displacement evolution law. Three moa@detsused for the comparison ($&ection
3.7). The irregularities observed in the measuredtitracseparation law are due to residual
noises when measuring the successive derivativbeofidherend-to-adherend displacement
field. However good agreement is shown in termbaih predicted stiffness and maximum
load bearing capability of the DCB joint specimen.

A e
P | A 4
7 t
pce: Y ~ A
A b=width
vP ’
D L
a L t e b

Dimensions| 30.69mm| 70.0mm| 3.96mm| 0.180mm| 22.0mm
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Figure 96.(a) Experimental adhesive traction separation lawurepnode I(b) Comparison

between experimental results and semi analyticatliptions in terms of Applied versus
Resulting Displacement evolution laws. Experimenitavestigation on metal-to-metal
adhesive joints. Quasi-static experiment. ModeQBD

Mode II: ENF. Fig.97-(a)presents the obtained adhesive traction-separktves in the case
of pure mode Il adhesive solicitation§ig.97-(b) presents the comparison between
experimental measures and semi-analytical predistim terms of Applied Load versus
Resulting Displacement evolution law. Three mo@deésused for the comparison ($&ection
3.7). The irregularities observed in the measuredtitracseparation law are due to residual
noises when measuring the successive derivativbeofidherend-to-adherend displacement
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field. However good agreement is shown in termbaih predicted stiffness and maximum

load bearing capability of the ENF joint specimen.
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Figure 97 (a) Experimental adhesive traction separation lawurepnode Il(b) Comparison
between experimental results and semi analyticatliptions in terms of Applied versus
Resulting Displacement evolution laws. Experimentavestigation on metal-to-metal
adhesive joints. Quasi-static experiment. Mod&NF.

Mixed-mode I/Il: MMB.

The direct methodSimilarly to the pervious subsections, the constiéubehavior of the
adhesive layer facing mixed-mode I/Il solicitatiomas investigated using the afore described
direct method. However the results obtained wemvshas practically unexploitable due to
the extremely small levels of longitudinal displammnts measured by the camera, compared
to the transversal ones. It then resulted in extlgrbaldy conditioned measures (i.e. high
SNRs) in the axial direction, so that the longihalidisplacement of the upper neutral fiber
was not differentiated with sufficient accuracy ftire direct method to allow for the
restitution of the adhesive constitutive relatiapsh An alternative characterization method
was then developed for characterizing the effectivixed-mode I/l properties of the
adhesive layer.

Alternative characterization method: The inverseahmud. Since the direct method is shown as
unable to address with sufficient accuracy thectiffe evolution of the adhesive stresses
(strains) at crack tip when facing mixed-mode KBlicitations (seeSection 3.6.% an
alternative characterization method has to be dgeel for characterizing the effective
mixed-mode I/l properties of the adhesive layererddis suggested to use an inverse
characterization method. Then, a complete semiydoal model of the Mixed-Mode
Bending (MMB) joint specimen is constructed. Thedmloaccount for both the pure mode |
and pure mode Il adhesive traction separation kEvesacterized fronkig.96-(a)and Fig.97-
(a). Since both adherends material nonlinearities liedy to appear, both adherend are
modeled as monolithic beams exhibiting nonlinearalastress-strain evolution law (see
Fig.95. For simplification purpose, both initiation apdopagation mixed-mode criteria are
presumed as following a power law energetic refetigp with the additional conditiom=m
(seeFig.99.
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Figure 98.(a) Representation of the power law energetic relatignfor n=m= 0.5, 1, 2, and
3. (b) Influence of the mixed-mode criterion on the evidntof the adhesive mode mixity at
crack tip. Experimental investigation on metal-tetal adhesive joints. Quasi-static
experiment. Mixed-mode I/ll. MMB. Alternative chatarization method. The inverse
method.

Fig.99-(a)then presents the comparison between the measuacedha predicted adhesive
mixed-mode load path at crack tip for the beshfim=1.Fig.99-(b)presents the comparison
between experimental measures and semi-analytrealigtions in terms of Applied Load
versus Resulting Displacement evolution law. Thremlels are used for the comparison (see
Section 3.}. Good agreement is shown in terms of both st#n@nd maximum load bearing
capability of the MMB joint specimen (i.e. for batk85.25mm and ¢=152.25mm).
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Figure 99.(a) Comparison between experimental and semi-analyfioadictions of the
adhesive mixed-mode load path at crack tip. Charizettion of the effective adhesive
mixed-mode properties using inverse methi@j.Comparison between experimental results
and semi analytical predictions in terms of Apphaxisus Resulting Displacement evolution
laws. Experimental investigation on metal-to-metdhesive joints. Quasi-static experiment.
Mixed-mode I/ll. MMB.

Validation: SLJ. Fig.100presents the comparison between experimental mesaand semi-
analytical predictions in terms of Applied Load stes Resulting Displacement evolution law.
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Three models are used for the comparison &esion 3.J. Good agreement is shown in
terms of both stiffness and maximum load bearirgabdity of the SLJ joint specimen.
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Figure 100.Comparison between experimental results and semlytical predictions in
terms of Applied versus Resulting Displacement etroh laws. Experimental investigation
on metal-to-metal adhesive joints. Quasi-staticeexpent. Validation. SLJ.

3.7. Conclusion and discussion

Numbers of experimental protocols for the chardation of the cohesive properties of thin
adhesive layers based on classical Fracture Mech#sts have been suggested over the past
few years(Andersonet al. 2003, Alfredsson 2003, Alfredssehal. 2003, Alfredsson 2004,
Leffler et al. 2006, Hogberg 2006, Hogbeeg al. 2007, Cuiet al. 2014, Cui 2014, Da Silva
2012) A large amount of them are based on the concefiteospecimen energetic balance
associated to the computation of the path indepgnttentegral. Three of them are presented
in Sections 3.4.20 3.4.4 However the aim of the present thesis is nobieecall the existing
protocols for the characterization of thin adhesiterfaces. The underlined simplifications
as well as the direct limitations of those appre@acare set out and discussed. It is seen from
Sections 3.4.20 3.4.4that most of those characterization proceduresri@ssumptions that
can appear as limiting for the true characterizatibthe cohesive properties of thin adhesive
interfaces (i.e. validity of the early-design crigée impossibility of early-designing the
adhesive joint specimen without knowing in advatice adhesive peel (shear) modulus,
inability of monitoring the evolution of adhesivigesses during unloading phases, etc).
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Due to the necessity of developing techniques dhatv for the characterization of cohesive
interface properties, three new and original prokdor the characterization of the effective
cohesive properties of thin adhesive interfacestlaea presented and developed in view of
their implementation. Those protocols are basedtlm monitoring of the successive
derivatives of the adherend-to-adherend displacefield nearby the adhesive crack tip and
have the advantage of not requiring any path iatémgn of the joint equilibrium equations. It
is seen fromFig.73 to Fig.75 that the obtained adhesive stress-strain evoludws are in
close agreement with those predicted by semi-analy@nalyses (i.e. during both loading and
unloading phases).

Finally, the first results of an experimental teampaign are provided so that it validates the
new protocols in the case of metal-to-metal adlebionding. The mechanical response of
three adhesive test specimens is investigated E&lf, DCB and SLJ). Those test specimens
are representative of either pure mode I, pure mbded/or mixed-mode I/ll. The adhesive
traction-separation laws are computed from both theasured adhesive stress and
deformations at crack tip (segections 3.20 3.4). In pure mode Il, it is shown that the
adhesive layer experiences three distinct phases-(g.97). The first one, the linear-elastic
phase, appears as extremely limited compared toefttiee deforming capability of the
adhesive layer (i.e. the plastic + softening phasgsesenting up to 85% of the entire
deforming capability of the adhesive layer). Aseault, it then legitimately questions the
legitimacy of using simplistic linear-elastic adivesstress analyses, even for early-design
purposes (seBections 3.4.20 3.4.4. It is also seen frorkig.97that the adhesive unloading
behavior reveals a significant coupling betweenepyielding and pure adhesive stiffness
degradation. It then questions the ability of aleelsCZM approaches, that generally assume
a pure degradation of the adhesive stiffness, tdaithe behavior of adhesive specimens
subjected to varying loading amplitudes (e.qg. std#itigue, etc). The conclusions are similar
in pure mode |.

To demonstrate the ability of such approaches stituée the mechanical behavior of the
studied adhesive specimens, three numerical mod&ach specimen are constructed. In the
first one, the adhesive layer is presumed as aeting linear-elastic interface resuming both
the initial stiffnesses of the measured adhesiviee puodes traction-separation laws (e.g.
E=250MPa and G=110MPa). Both adherends are modsldidear-elastic monolithic beams
(e.g. E=66GPa and=0.36). Good agreement is shown in terms of ins@ifness of the
specimen. However significant deviations are obsg@after the adhesive layer enters its non-
linear domain (i.e. depending on the adhesive $escimen). In the second model, the
adhesive layer is presumed as acting as a cohiegeréace resuming the complete adhesive
pure modes traction-separation laws characterizeah Fig.96 and Fig.97. Both adherends
are modeled as linear-elastic monolithic beams. (Eg66GPa andv=0.36). Fulfilling
agreement is shown for both DCB and SLJ adhesigeisgns in terms of both stiffness and
maximum load bearing capability. It then suggelstd the adhesive degradation process (i.e.
characterized by both pure mode | and pure modeattion separation laws) is the main
mechanism involved in the ruin of the studied DCGBI &LJ specimens. However significant
deviations are still observed in the case of bdiFEnd MMB adhesive specimens. In the
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third semi-analytical model, the adhesive layeprissumed as acting as a cohesive interface
resuming the complete adhesive pure modes tras@paration laws characterized from
Fig.96 and Fig.97. However both adherends are this time modeledoatinear monolithic
beams resuming the true traction-compression sstesis relationship of the 6060 series
aluminum alloy (se&ection 3.3.L Fulfilling agreement is shown for both ENF andVid
adhesive specimens in terms of both stiffness aaximum load bearing capability. It then
suggests that the ENF (MMB) adhesive specimen expegs significant levels of adherends
plasticity (i.e. sufficient to impact non-negligythe predicted Applied Load versus Resulting
Displacement evolution law).
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Chapter 4. Conclusion

The field of computational mechanics and partidul&inite Elements (FE) methods have
provided numerous techniques for modeling the machhbehavior of adhesively bonded
joints over the past few years. However these feci®s generally involves high
computational requirements and can lead to instabilie to numerical convergence issues.

As a result, numbers of engineers and researclars suggested working on simplified
analyses of the mechanical equilibrium of the joirtie simplified 1D-beam adhesive stress
analysis is inspired by the FE method and allowgHe resolution of the system of governing
differential equations of the bonded overlap at lmemputational costs. The displacements
(forces) of both adherends as well as the adhesresses (strains) are then obtained from
solving the local equilibrium of the adherends. Thethod then consists in meshing the
structure. A fully bonded overlap is meshed usingn&gue 4-nodes macro-element. This
macro-element, referred to as the BBe elementpexially formulated to allow for the
resolution of the system of governing differentegjuations of the bonded overlap at low
computational costs. The outer adherends, reféoed Beam elements, are in turn meshed
using specifically formulated Euler-Bernoulli beaatements. The simplified 1D-beam
adhesive stress analysis thus takes the advantathe dlexibility of FE methods and the
robustness of theoretical approaches.

In this thesis:

(i) An original way of accounting for the effectiveehavior of adhesive layers within the
formulation of a dedicated macro-element analyserred to as the simplified 1D-beam
adhesive stress analysis, is presented and dedeliopgiew of its implementation. The
suggested analysis is inspired by the FE methadi alaws for the nonlinear behavior of the
adhesive layer to be accounted for with no resbicon the specimen geometry (s&ections
2.3and2.4 of Chapter 2. The proposed adhesive material models are fatadlunder a two
dimensional mixed-mode model that account for thesgble interaction (interdependency)
between both pure mode | and pure mode Il adhesiess-strain evolutions laws.

(i) Then, the preceding iterative resolution pribgee is adapted (upgraded) so that it allows
for both adhesive and adherends material nonlinesrio be simultaneously accounted for.
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Then, an original way of accounting for the effetthe surrounding adherends plasticization
based on an adaptation of the classical theoryeafrbplasticity (se&ections 2.%and 2.6 of
Chapter 2is presented and developed in view of its impletagon.

(iif) The results obtained from the suggested sotuprocedure are then compared to those of
both sandwich type analyses and Finite Element fffé&dictions involving cohesive interface
elements. Good agreement is shown.

By the use of the presented simplified joint aniglys is shown that the mechanical response
of a large range of adhesively bonded joints cambestigated using a restricted number of
specifically formulated elements. It has then cated to the development of a simplified
stress analysis tool allowing for the simulationaofarge range of bonded assemblies at low
computational costs (ségpendix 7.

The use (development) of such analyses (tool) hss laighlighted the need of proper
experimental protocols for measuring the true meedr behavior of adhesive layers
sandwiched between two rigid or semi-rigid adhesend

Indeed, it is seen fronChapter 2that both FE and simplified 1D-beam adhesive stres
analyses are based on the modeling of the adha&sigdacial strength through a set of
adhesive cohesive properties (i.e. traction sejpardaws) in pure mode |, mode Il and

mixed-mode I/l1l. Accurate experimental protocolg fhe measurement of the effective
adhesive cohesive properties are then essentiathforstrength prediction of adhesively
bonded joints. As a result, numerous authors hawveked on providing experimental

protocols for characterizing the cohesive properiethin adhesive layers.

In this thesis:

(i) The results obtained from three existing expemtal protocols for the characterization of
the constitutive relationships of thin adhesiveelsyare presented (sBection 3.40f Chapter

3) and compared to numerical predictions (i.e. rmteof simplified 1D-beam adhesive stress
analyses). Significant deviations as well as litiotas are demonstrated.

(i) Then, and due to the need for developing propechniques that allow for the
characterization of adhesive cohesive propertiegetnew protocols for the characterization
of the effective cohesive relationships of thin esllie layers are presented and developed in
view of their implementation (segection 3.5f Chapter 3. Each of these techniques is based
on the real time monitoring of the adherend-to-aehé displacement field nearby the
adhesive crack tip of specifically designed specisng.e. DCB, ENF & MMB). The results
obtained are then compared to numerical predict{aes in terms of simplified 1D-beam
adhesive stress analyses). Good agreement is shown.

(i) Finally, the first results of an experiment@st campaign on metal-to-metal adhesive
bonding are provided so that the new characteozgtrotocols are validated in the case of
metal-to-metal adhesive joints.
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Appendix 1

Appendix 1. Non-exhaustive review of simplified cleed-form adhesive stress

analyses of adhesively bonded jointda Silva 2009)
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Appendix 2

Appendix 2. Supplementary material on the adherendsonstitutive equations

Thanks to the form of the classical Euler-Bernob#iam kinematic it is possible to express
the displacement field of both adherends in thenfof (seeSection 2.5.%

{uj(x,y):uj(x,y:o)—ywj,x(x,y:o) =12 (A2.1)

w! (x y)=w, (x,y=0)

where U(x,y) and w(x,y) respectively refer to the longitudinal and transeedisplacement
fields of adherend (j=1,2), uj(x,y=0) and w;(x,y=0) to the longitudinal and transverse and
displacements of the neutral fiber of adherget1,2), andwx(x,y=0) to the first derivative
of w;(x,y=0) with respect tcx.

It is then possible to express the axial defornmaiticadherengl (j=1,2) as:
e'(xy)=u,’ (x y)=u;(x y=0)-yw,,(x y=0) (A2.2)

And the axial stress in each ply of adherg(d1,2) as:

o' (xy)=Q €' (xy) (A2.3)
Whereq { refers to the reduced stiffness matrix of kfieply of adherengl (j=1,2).

According to the Classical Laminates Theory (CLi)e normal force and the bending
moment in adherend(j=1,2) are expressed as:

&2 n Yk
N;(x) = jajdydz=z jak’dydz

-, ="

. (A2.4)
M, (x) = ja‘ ydydz >’ jak ydydz
€2 k=1 Yk

By combining (A3.2) (A3.3) and (A3.4) it is thengsable to express the normal force and the
bending moment in adherep=1,2) as:

k=l y, k=11 wi Y

n Yk+1 n ( Yka Yk+1
N,()=> [a dydrbZ(ij [xy=0)dy- [Q./yw,.(xy= O)dy}
(A2.5)

n Yk+1 n { Yka Yi+1
M, (x)——Zjak ydydz-—bZ[ [Qd yuy (% y=0)dy~ ij j,xx(xy:O)dy]

k=1 Yk k=1 Y

Then leading to the adheren(=1,2) constitutive equations:
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Nj(x): Ajuj,x(x'yzo)_ Bjo,xx(va:O)
Mj(x):_Bjuj,x(va=O)+ Djo,xx(va:o)

Where:
A= ZGKJ (yk _yk—l)
=)
18—
B; :EZQk](ykz yk—lz)
k=
18—,
D, :§ QkJ(YK3 yk—13)
k=

Appendix 2

(A2.6)

(A2.7)
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Appendix 3

Appendix 3. On the effective peel modulus of sandehed adhesive layers

In numbers of recent closed-form stress analysesmdbésively bonded jointlarke et al.
2003, Stapelton 2011, Stapelton 2012, Weissgra2béd) the adhesive layer has been
assumed to act as a plane-strain deformable mlatelien subjected to through thickness
deformations. Then leading to the definition of &fiective tensile adhesive modulus:

* Ea(l_va)
Sy A3.1

= )i (A3

Where v, refer to the adhesive Poisson’'s ratio dadto the adhesive tensile modulus
determined from the bulk material properties.

This modeling of the adhesive elastic behavior wisemjected to through thickness
deformations lies on the assumption that when sadd the adhesive transverse
deformations are constrained by the surrounded (@i semi-rigid) adherends (sEey.A3-

1). However adherends are in facts not infinitegydi This is particularly true when bonding
thin adherends. It is then legitimate to think tresl adherends will allow for small adhesive
transverse deformations to occur (i.e. dependintherability of both adherends to constrain
the adhesive transverse deformations). This alofitthe adherends to constrain the adhesive
transverse deformations can be modulated by diftggarameters: the thickness (stiffness) of
the surrounding adherends, the thickness (stifjrifsthie adhesive layer itself, etc.

In (Hart-Smith 1973bjhe author suggested that the effective tensildutus of the adhesive
layer was resulting from a complex interaction kew the adhesive layer itself and the
surrounding adherends. The author then suggested) @ effective adhesive tensile
modulus given by (sefeéig.A3-2):

i*:i +ﬁ+ﬁ (A32)

whereE; andE; are the transverse tensile moduli of the innepéupand the outer (lower)
adherendsk; andk, the number (or fraction) of adhesive layer thidses for which the
adherends are affected by the applied peel streaseE, the adhesive tensile modulus
determined from the bulk material properties. Ththar finally suggested that this effective
tensile modulus of the adhesive layer (equation.Z83should be determined by transverse
loading of an adhesive film bonded to blocks ratttean from bulk material properties
specimen.

Since the second definition of the adhesive temaibelulus makes more sense to the authors
of the present thesis, it is decided to refer tg frarticular modulus as the effectipeel
modulusof the adhesive layer. Thmeel moduludas then to be determined experimentally
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from bonded overlap specimens, and do apply tetteetive tensile modulus of the adhesive
layer measured when subjected to through thickdegssmations.

Th
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A

A

Opposition of the upper adherend to the
transverse deformation of the adhesive layer

Contraction of the adhesive layer due to Poisson’s effects

Opposition of the lower adherend to the
transverse deformation of the adhesive layer

Figure A3-1.Schematic representation of the relative equiirbetween the adhesive layer
transverse deformations (i.e. due to Poisson’scesffeand the reactions/oppositions of the
surrounding adherends. Through thickness adhesadirigs. Adhesive layer as a plane-strain
deformation material. On the effective peel modulfisandwiched adhesive layers.
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Figure A3-2.Schematic representation of the through thickmeseshanical analogy of an
adhesive layer sandwiched between two semi-rigitesmhds. The peel modulus of
sandwiched adhesive layers as a complex interabgbmeen the adhesive layer itself and the
surrounding adherends. On the effective peel madofisandwiched adhesive layers.
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Appendix 4

Appendix 4. Expression of the adhesive shear (pesiress distribution(s) depending
on the nature of the roots of the characteristic plgnomial

1. Expression of the adhesive shear (peel) stresshdison(s) depending on the nature
of the roots of the characteristic polynomial

As presented itChapter 2 the classical theory of homogeneous linear difigal equations
suggests that the analytical form of the adhednais(peel) stress distribution(s) as derived
in (Paroissien 2006, Da Veiga 2009, Paroiss¢ral. 2013) can be completed by three
additional expressions depending on the naturdefrdots of the characteristic polynomial
(A4.1):

PR =R —kR +K,R +(kk, ~kk,)=0 (A4.1)

where:

4D, A, 4D, A, 20, A, 2A,

(e
20, 20, \A, A4, (Ad.2)

= Gb{Dl[“ Ae(e, +€)J+DZ(“ A& (e, +€)J*(el81 ,€B _eB, eB ﬂ

and whose roots will be thereafter dend®gdR,, Rz, R4, Rs andR.

In (Da Veiga 2009)the author suggests relating the roots of equd#atl.1) to the roots of
the 3% order equivalent polynomial (A4.3):

P(R)=R®—k R?+k,RHk,k, —kk,)=0 sothatR'=R? (A4.3)

Which can be re-written in the form of the simptanonical form:

P'(R)=R°*+pR+q=0 sothatr"= Rk, /3 (A4.4)
where:
k2
p=-—+Kk,
3 (A4.5)

q =_l2(_17(2k12 _9k4)+ (kzks - k1k4)
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Then depending on the sign of the Cardano’s disoem 4=27¢*+4p>, three specific cases
can be distinguished: (>0, (ii) 4=0 and (iii) 4<0.

For (i) 4>0, the polynomialP” is shown to have one real and two conjugate cample
solutions, so that:

R' =u+v
R, =ju+ jv (A4.6)
Rn3: j2u+ JZV

where
u=3/[-q+n/27)/2
v=3l-a-/a/27)/2 (A4.7)
j =% =-y2+iy3/2
i?=]=-¥2-iV3/2

and whera refers to the imaginary unit so that-1.

Then depending on the sign of the roRts, R", andR’3, the six rootdRy, Ry, Rs, R4, Rs and
Rs of the characteristic polynomial (A4.1) can be ded with respect to the variable
substitutions introduced in equations (A4.4) and.®), so that:

R=# R=- R=(s+it] R=s+it) R=(s-it)] R=-s-it)(a4.)

or:

R=+r R=-ir R=(s+it) R=-s+it) R=(s-it) R=s-it) (A4.9)
depending on the sign &;.

Similarly, for (ii) 4=0, the polynomiaP" is shown to have two real solutions, one simpk an
one double, so that:

R, =23/-q/2=3q/p A4.10
{R"2=R"3=—3{/T/2=—3Q/2p A

Then depending on the sign of the ro@ts andR",=R"3, the six rootRy, Ry, Rs, R4, Rs and
Rs of the characteristic polynomial (A4.1) can be ded with respect to the variable
substitutions introduced in equations (A4.4) and.®), so that:

R=+4r, R=-n R=+#, R=+, R=H, R=, (A4.11)

or:
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R=#, R=- R=tr, R=-r, R=+r, R=-r, (A4.12)

depending on the sign of the rod®; and R",=R"3. It is worth noticing form equation
(A4.10) thatR"; andR",=R"3 cannot be of the same sign, so that the rBgt&,, Rs, Ry, Rs
andRs cannot be all real or all complex.

Finally, for (iii) 4<0, the polynomiaP"” is shown to have three real solutions, so that:
R, =u+U

R", = ju +j_u_ (A4.13)
R',=j%u+j°u

where:

Y =ﬂ-q+i,/—A/27) 2 (A4.14)
j=j2=-12+i/3/2

So thatR"1, R", andR"3 can be expressed in their trigopnometric form as:

R"k =2 icos{larcos{j ij + 2k_7TJ Where k=1,2,3 (A415)
U 3 2 \-p° 3

Then depending on the sign of the roRts, R", andR’3, the six rootRRy, Ry, Rs, R4, Rs and
Rs of the characteristic polynomial (A4.1) can be ded with respect to the variable
substitutions introduced in equations (A4.4) and.®), so that:

R=#, R== R=#, R=-, R=tr, R=-r (A4.16)
or:
R=#, R=- R=tr, R=dr, R=+Hr, R=-r, (A4.17)

depending on the sign of the ro&%, R, andR"s. Similarly to (ii) 4=0, it is worth noticing
form equation (A4.15) thaR"’;, R'; andR"’; cannot be all of the same sign, so that the roots
R1, R, Rs, R4, Rs andRs cannot be all real or all complex.

Finally, it is possible to show that a total of f@analytical expressions for the adhesive shear
(peel) stress distribution(s) are derivable depmmdon the nature of the roots of the
characteristic polynomial (A4.1), so that:

(%) = _Eesx sintx) + K, costx) + K sin(tx)_

:+ K,e*cosfx) + Ke™ +K.e | (A4.18)
T = Ke™sin(tx) + K,e¥ costx) + K.e > sin(tx)

|+ K, e costx) + Ke™ +Ke™ +K, |
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(%) = _Kesx sin(tx) + Kesx cosfx) + Ee‘sx sin(tx)}

:+ K& costx) + K, sin(rx) + K, cogrx) (A4.20)
T(%) = K.e™sinx) + K,e™ cos(x) + K,e **sin(tx)

|+ K, costx) + K, sin(rx) + K, codrx) + K,
S(x) = K, sin(r,x) + K, cos(r,x) + K sin(r,x) |

+ K_CO r.X)+ |‘<_er3>< + K_e—fsx

Kool +Ks i - (A4.20)
T(X) = Ky Sin(r1X)+ K, COS(r1X)+ K, Sin(rzx)

KO K K

or:
S(x) = K, sin(rx) + K, cos(rx) + Koe™ |
+K, e + K™ + K e ™

r - (A4.21)
T(x) = K, sin(r,x)+ K, cog(r,x) + K e

_+ K4e—r2X + Kser:;X + KGe—I‘3X + K7_

2. Study of the sign of the Cardano’s discriminar27g°+4p> in the case of balanced
monolithic (or symmetric) adherends

For simplification purpose, here is considered nlitlmo (or symmetric) adherends only, so
that the upper and lower adherends coupling stffesB; and B, are equal to zero.
Additionally, the geometry as well as the extenalpnoupling and bending stiffnesses of the
upper and lower adherends are assumed as equalsfie,, A=A,=A, D;=D,=D and
B]_:Bz:BZO).

Then, from equations (A4.2) fall:

= Zfb(“ Ae e +e)j
e 4D

k, =k, =0 (A4.22)

_ 2Eb
De

4

So that the Cardano’s discriminatt27g’+4p°® can be re-written in the form of:

k 2 k2 3
A=279° + 4p° :27[—217(2k12 —9k4)— k1k4j +4[—§+ k4J

= g k ‘k, —19%,’k,” + 4k,° - % kS + 1—92 k 'k, + 27k, + % k.’

=4k "k, +8°K,” +4k,°
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= ak, [k, +k2f (A4.23)

So that the Cardano’s discriminant27g’+4p® can be finally reduced to the following
expression:

272
A~ 8Eb[2Eb +(ZGb(1+ Aeile + G)D } (A4.24)
De | De Ae 4D

Equation (A4.24) then suggests that for all phykiccceptable choices of the parametgrs
G, b, e, e A andD (i.e. strictly positive), the Cardano’s discrimmal=27¢*+4p> will
remains strictly positive (i.e1>0).

Then studying the sign &', provides:

R, =3/l-a+8/27)/2 +3/[- g - Jn/27)/2 (A4.25)
with R;>0 if and only if {‘ q>0 (A4.26)
VB/27 >0 __» Satisfied if4>0

Then studying the sign efq provides:

2. 3,18
—q=—=(2k’ 9K, |+ kk, ==k~ +=—kk
q 27(k1 4) kK, 27k1 27k14

3
_2(26b(,, Ae(e +e))) , 18 2Eb 2Gb 1 Ae, (e, +e) (A4.27)
27 Ae 4D 27 De Ae 4D

So that equation (A4.27) finally suggests that dtirphysically acceptable choices of the
parameterg, G, b, e, e, A andD (i.e. strictly positive)~q will remain strictly positive (i.e~
g>0).

Thanks to equations (A4.24) and (A4.27), it is liwahown that the analytical solutions of
the adhesive shear (peel) stress distribution(syetk in (Paroissien 2006, Da Veiga 2009,
Paroissieret al. 2013)are fully legitimates in the case of balanced nfitimo (or symmetric)
adherends. However, in the case of unbalanced extteand (or) if considering the possible
coupling stiffnesseB; of the upper (lower) adherend=1,2), the following demonstration is
not straightforward so that counterexamples argyadsntifiable.
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Appendix 5. Convergence of the numerical analyses

ouble Cantilever Beam adhesive joint specimen (DCB)
1.1. Convergence of the linear elastic Finite Eleme#l)(frodels

The DCB adhesive joint specimen consists in twoesglds partially joined by a thin
adhesive layer. The symmetric boundary and loadmgditions of the specimen provide
exclusively pure mode | solicitations of the adliedayer. Since the DCB joint specimen is
commonly recognized as the critical configuratianterms of convergence of the numerical
analyses, its results are provided first. Bothatikesive layer and the surrounding adherends
are considered as experiencing linear elastic deftons only. Here is presented the
evolution of the resulting displacement (i.e. ds@ment that results from the applied load in
N) as a function of the number of elements witlia tength of the adhesive bondline (see
Fig.A5-1). Similarly, Fig.A5-2 presentghe evolution of the adhesive peel (shear) stréss a
crack tip as a function of the number of elementhiwthe length of the adhesive bondline. It
is seen fromFig.A5-1 and Fig.A5-2 that the results of the linear elastic FE analyeses
clearly depending on the mesh refinement. Howewer tesults are shown as rapidly
converging towards an asymptote in terms of bosulting displacement and adhesive peel
(shear) stress at crack tip.
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Figure A5-1.Evolution of Resulting Displacement as a functairthe number of elements
within the length of the adhesive bondline. Coneare of the linear elastic Finite Element
(FE) models. Double Cantilever Beam adhesive spatifDCB).
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Figure A5-2.Evolution of adhesive peel and shear stressesaek ¢ip as a function of the
number of elements within the length of the adhedwendline. Convergence of the linear
elastic Finite Element (FE) models. Double CangleBeam adhesive specimen (DCB).

1.2. Convergence of the nonlinear Finite Element (FEJel®

Similarly to Section 1.1of Appendix 5 Fig.A5-3 showsthe evolution of the resulting
displacement (i.e. displacement that results froemdpplied load in N) as a function of the
number of elements within the length of the adhedondline in the case of nonlinear
adhesive stress-strain evolution. Then, the adbesivhere loaded so that it experiences
nonlinear adhesive deformations although the sadimg adherends are again considered as
facing linear elastic deformations only. Similarliyjg.A5-4 shows the evolution of the
adhesive peel (shear) stress at crack tip as didanof the number of elements within the
length of the adhesive bondline. The results as® ahown as converging toward an
asymptote in terms of both Resulting Displacemet adhesive peel (shear) stress at crack
tip.
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Figure A5-3.Evolution of Resulting Displacement as a functairthe number of elements
within the length of the adhesive bondline. Coneaie of the nonlinear Finite Element (FE)
models. Double Cantilever Beam adhesive specim@B{D
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Figure A5-4.Evolution of adhesive peel and shear stressesaek ¢ip as a function of the
number of elements within the length of the adresiondline. Convergence of the nonlinear
Finite Element (FE) models. Double Cantilever Beaithesive specimen (DCB).

1.3. Convergence of the linear elastic simplified 1D+bhemdhesive stress analyses

Similarly to Sections 1.1and 1.2 of Appendix 5 here is presented the evolution of the
resulting displacement as a function of the numifeelements within the length of the
adhesive bondline in the case of the simplifiediddam adhesive stress analyses Bg&\5-

5). Both the adhesive layer and the surrounding r@itds are here considered as
experiencing linear elastic deformations only. $anhy, Fig.A5-6 presentghe evolution of
the adhesive peel (shear) stress at crack tipiascion of the number of elements within the
length of the adhesive bondline. Unlikey.A5-1 andFig.A5-2, Fig.A5-5 andFig.A5-6 show
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the results obtained from the simplified 1D-bearhemive stress analyses as independent on
the mesh refinement (i.e. in the case of lineastElaadhesive stress-strain evolution). This
property of the simplified 1D-beam adhesive strasslysis being due to the specific
formulation of the BBe element, and allows for dnelastic bonded overlaps to be modeled
using a unique 4-nodes BBe element only.
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Figure A5-5.Evolution of Resulting Displacement as a functairthe number of elements
within the length of the adhesive bondline. Coneage of the linear elastic simplified 1D-
beam adhesive stress analyses. Double Cantilexaan Behesive specimen (DCB).
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Figure A5-6.Evolution of adhesive peel and shear stressesaek ¢ip as a function of the
number of elements within the length of the adhedwendline. Convergence of the linear
elastic simplified 1D-beam adhesive stress analyBemible Cantilever Beam adhesive
specimen (DCB).

1.4. Convergence of the nonlinear simplified 1D-beamesdre stress analyses

Similarly to Section 1.3of Appendix 5 Fig.A5-7 showsthe evolution of the resulting
displacement as a function of the number of elemevithin the length of the adhesive
bondline. The adhesive is here loaded so thatpemences nonlinear adhesive deformations
while both adherends are considered as facingrlieksstic deformations only. Similarly,
Fig.A5-8 showsthe evolution of the adhesive peel (shear) stressagk tip as a function of
the number of elements within the length of theesille bondline. The obtained results are
here shown as depending on the mesh refinementhatoan adequate number of BBe
elements has to be used to capture the local sfreskents within the adhesive bondline
when facing nonlinear adhesive stress-strain enmwutThis mesh dependency of the
simplified 1D-beam adhesive stress analysis incee of nonlinear adhesive stress-strain
evolutions is due to the necessity of defining riedration strategy for integrating the right
side and left side secant adhesive moduli intocthraputation of the secant stiffness matrix
resulting from the projection of the adhesive shl{pael) stress onto the specified stress-strain
evolution law (seé&ection 2.40f Chapter 2. However it is shown that the results are rapidly
converging towards an asymptote.
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Figure A5-7.Evolution of Resulting Displacement as a functairthe number of elements

within the length of the adhesive bondline. Coneaige of the nonlinear simplified 1D-beam
adhesive stress analyses. Double Cantilever Beaesaa specimen (DCB).
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Figure A5-8.Evolution of adhesive peel and shear stressesaek ¢ip as a function of the
number of elements within the length of the adresiondline. Convergence of the nonlinear
simplified 1D-beam adhesive stress analyses. DoGlletilever Beam adhesive specimen
(DCB).

2. E
nd Notched Flexure adhesive specimen (ENF)
2.1. Convergence of the linear elastic Finite Eleme)(fRodels

Similarly to the DCB adhesive joint specimen, thBFEjoint specimen consists in two
adherends partially joined by a thin adhesive laybe modified antisymmetric geometry and
loading conditions then provide essentially puredendl solicitations of the adhesive layer.
However, significant mode | adhesive stresses appsby center of the specimen. Both the
adhesive layer and the surrounding adherends aee dumsidered as experiencing linear
elastic deformations only. Here is presented th@ution of the resulting displacement (i.e.
displacement that results from the applied loal)ras a function of the number of elements
within the length of the adhesive bondline (B&pA5-9) in the case of linear elastic adhesive
stress-strain evolution. Similarl¥ig.A5-10showsthe evolution of the adhesive peel (shear)
stress at crack tip as a function of the numbezl@ents within the length of the adhesive
bondline in the case of linear elastic adhesivesststrain evolution. The results are shown as
depending on the mesh refinement. However the teesuie shown as rapidly converging
towards an asymptote in terms of both resultingldsement and adhesive peel (shear) stress
at crack tip.
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Figure A5-9.Evolution of Resulting Displacement as a functairthe number of elements
within the length of the adhesive bondline. Coneare of the linear elastic Finite Element
(FE) models. End Notched Flexure adhesive spec{iEHNif).
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Figure A5-10.Evolution of Resulting Displacement as a functadrthe number of elements
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(FE) models. End Notched Flexure adhesive spec{BHIk).

2.2. Convergence of the nonlinear Finite Element (FE)Jel®
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Similarly to Section 2.1of Appendix 5 Fig.A5-11 showsthe evolution of the resulting
displacement as a function of the number of elemevithin the length of the adhesive
bondline. The adhesive is here loaded so thatpemences nonlinear adhesive deformations
while both adherends are considered as facingrliesstic deformations only. Similarly,
Fig.A5-12showsthe evolution of the adhesive peel (shear) stressaak tip as a function of
the number of elements within the length of theesilre bondline.
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Figure A5-11.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneage of the nonlinear Finite Element (FE)
models. End Notched Flexure adhesive specimen (ENF)
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Figure A5-12.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneaige of the nonlinear Finite Element (FE)
models. End Notched Flexure adhesive specimen (ENF)

2.3. Convergence of the linear elastic simplified 1D+hesdhesive stress analyses

Similarly to Sections 2.1and 2.2 of Appendix 5 here is presented the evolution of the
resulting displacement as a function of the numiifeelements within the length of the
adhesive bondline in the case of the simplifiediddam adhesive stress analyses Bgé\5-
13). Both the adhesive layer and the surrounding @&iis are here considered as
experiencing linear elastic deformations only. $anty, Fig.A5-14 presentdhe evolution of
the adhesive peel (shear) stress at crack tipfascéion of the number of elements within the
length of the adhesive bondline.
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Figure A5-13.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneae of the linear elastic simplified 1D-
beam adhesive stress analyses. End Notched Fladhesive specimen (ENF).
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Figure A5-14.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneaige of the linear elastic simplified 1D-
beam adhesive stress analyses. End Notched Fladhesive specimen (ENF).

2.4. Convergence of the nonlinear simplified 1D-beameadle stress analyses

Similarly to Section 2.3of Appendix 5 Fig.A5-15 showsthe evolution of the resulting
displacement as a function of the number of elemevithin the length of the adhesive
bondline. The adhesive is here loaded so thatpemences nonlinear adhesive deformations
while both adherends are considered as facingrlissstic deformations only. Similarly,
Fig.A5-16showsthe evolution of the adhesive peel (shear) stressaak tip as a function of
the number of elements within the length of theesilre bondline.
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Figure A5-15.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneer of the nonlinear simplified 1D-beam
adhesive stress analyses. End Notched Flexureiadisgecimen (ENF).
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Figure A5-16.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the adhesive bondline. Coneaige of the nonlinear simplified 1D-beam
adhesive stress analyses. End Notched Flexureiadtsgpecimen (ENF).
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Figure A5-17.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the cantilever beam. Convergenf the linear elastic Finite Element
(FE) models. Cantilever beam in pure bending.

3.2.

onvergence of the nonlinear Finite Element (FE) et®d
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Figure A5-18.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the cantilever beam. Convengenf the nonlinear Finite Element (FE)
models. Cantilever beam in pure bending.

3.3. Convergence of the linear elastic simplified 1D+hesdhesive stress analyses
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Figure A5-19.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the cantilever beam. Convengewnf the linear elastic simplified 1D-
beam adhesive stress analyses. Cantilever beaurarbpnding.

3.4. Convergence of the nonlinear simplified 1D-beameadle stress analyses
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Figure A5-20.Evolution of Resulting Displacement as a functadrthe number of elements
within the length of the cantilever beam. Convergenf the nonlinear simplified 1D-beam
adhesive stress analyses. Cantilever beam in guneiry.
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Appendix 6. Moore-Penrose pseudo inverse technigdier solving linear least
squares optimization problems

inear least squares optimization problems

Linear least squares optimization problems refea fmarticular type of statistical analyses,
referred as linear regression analyses, which sarisen a particular class of regression
analyses. These problems then suggest approximsabiyng an overdetermined system of
linear equations so that it minimizes the sum & #fguared residuals between a set of
experimental data points and their correspondingletenl values (seEig. A6-1). Various
techniques for optimizing the model parameters Hmean suggested over the past few years
(Gonzalezet al. 2016) For simplification purpose, here is presented lthear regression
analyses only. However it can be easily extendaddoe complex fitting models as long as
these are linearly dependent on the fitting pararmset

Assuming a set of experimental data poinsy(), (X2,¥2), ..., n.Yn) and the linear model
equationy=ax+b provides (se€ig. A6-1):

AY model: y=ax+b AY model: y=ax+b

b
(a) (b)
(xifyi) (%y))

> X L » X

Least Squares: Inverse Least Sauares:

AY model: y=ax+b

(c)
(xi{yi)

Total Least Squares:

Figure A6-1.Definition of thei™ residualr;. Least squares line fitting (y=ax+k{p) Least
Squares (LS)(b) Inverse Least Squares (ILS) afa) Total Least Squares (TLS). Moore-
Penrose pseudo inverse technique for solving lilesest squares optimization problems.

Then defining thé™ vertical residuat; as (seéig. A6-1):
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r=y —ax-b (A6.1)

The least squares minimization problem can be ewrithe form of finding the correct set of
parametersg b) that minimizes the objective function defined as:

2
a
E@b)=>"r2=3" (y, -ax -b)’ :ZL[ y, =[x 1]M] (A6.2)
which can be written in the form of the simpler masystem as:
E(C)=|Y - X" =(Y -=XC)" (Y -XC)=YTY -2(XC)"Y +(XC)"(XC)" (A6.3)

whereY'=[yi, ... yi] refers to the vector resuming the set of expertaiatata pointsC'=[a,
b] to the vector resuming the model fitting paranse@ndX to the specifically formulated
design matrix, so that:

x 1
X=l: (A6.4)
X 1

Minimizing finally gives:

9E _ 2XTXC-2X"Y =0
aC

(A6.5)

So that the problem of optimizing the fitting pakters &, b) in the sense of the least squares
method can be finally written in the form of findi€ so that:

X™XC=X"Y (A6.6)
c=(x"x)*x"y (A6.7)

and where(X'™X)*X" refers to the Moore-Penrose pseudo inverse of sihecifically
formulated design matriX. It is indicated that providing that the total ruen of data points
N is equal or exceeds the number of fitting paramsdiee. overdetermined system of linear
equations), the solutio@ here appears as unique and fully determined batexqu(A6.7).

2. C
oncatenation of linear least squares optimizatmblems

As discussed isection 2.3.4f Chapter 2here is investigated the concatenation propdrty o
linear least squares optimization problems. Assgntivo sets of uncorrelated experimental

data pointsX 1,y'1), X2Y' 2, ..., Xn,Y'n) and €1,y 1), X"2,¥"2), ..., X'nY’n) and two linear
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model equationy’=a’x’ +b’ andy’=a”"x"+b” then provides the two guiding matrix systems,
that are:

XTXC=XTY and X" X'C'=XTY" (A6.8)

and whereY’ "=y’ 1, ... Y o andY’ ' T=[y’ ' 1, ... Y ' ] respectively refer to the vectors
resuming the two sets of experimental data poldts'=[a’ , b’ ] andC’ * "=[a" * , b ']

to the vectors resuming the two models fitting pseters andX’ and X" ' to the two
specifically formulated design matrices, so that:

Y1

Y'=| (A6.11)
Ya
Y

Y'=| i (A6.12)
Y
3

C-:( j (A6.13)
b
aII

C..:( J (A6.14)
b

and
X; 1

X'=| @ (A6.15)
X, 1
X', 1

X'=| (A6.16)
X' 1

Then, the whole optimization problem can be conwed in the form of the single matrix
system, that is:

XX 0 c XTy!
( RO XJ[CJ :[x” YJ (A6.17)

So that C',C”) can finally be computed as:
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CY (XTX 0 ) (xTy A6.15)

Cll O XuT xn qu Yu *
For simplification purpose, the design matrix obéai by the concatenation Xf ™' and
X' " TX" " will be now referred to asXx'X. Similarly, the vector obtained by the

concatenation ak’ 'Y’ andX’' ' 'Y’ ' and the vector obtained by the concatenatiod’ of
andC’ ' will be now referred to as respectivédyY andC.

3. C
onstrained linear least squares optimization prable

As presented irsection A7.1 the Moore-Penrose pseudo inverse technique drisesthe
minimization of the unconstrained optimization desb P, that is:
P:{min E(C)=YTY -2(XC)"Y +(XC)' (xc)T} (A6.19)

COR?

As presented irSection 2.3.4of Chapter 2 introducing equality constraints between the
model fitting parameters in the form of:

BC=C" (A6.20)

whereC is the vector resuming the model fitting paranetgra 2xp coupling parameter
matrix andC”™" the set op equality constraints (i.e. not necessarily eqoaero).

result in C,2) being the optimum of the equivalent minimizatjpmoblem (seeection 2.3.4

of Chapter 2

P':{ min L(C,1)=E(C)+(BC - CP™ )Tx} (A6.21)

UOR" AORP
So that minimizind®’ gives:

Z—CL::—ZXTY+2XTXC+ B"A=0 :;—)IZZBC—C'”"Ot =0 (A6.22)

which can be re-written in the form of taagmentedinear problem:

XY

o (A6.23)

XTXC +BTA
BC +0

WhereC'=[a,b] refers to the vector resuming the model fittingamaetersp a 2xp coupling
parameter matrix antlto thep undetermined Lagrange’s multipliers.

Finally, (C,A) can be computed as:
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G
B ilot (A624)
A B 0 c”

4.
llustration: Fitting simultaneously w(x) agx)=dw(x)/dx
Assuming two sets of correlated experimental datatp (i,wi), (X2,W-), ..., (%,Wn) and
(x1,601), (%2,02), ..., (%n,0n) and two linear model equationg=a’'x+b’ and #=a”x+b” then

provides the two guiding matrix equations, as:

X"™XC=X"W ang X' XC'=X"0 (A6.25)
where:
x 1
X=|: (A6.26)
X, 1
"
c-:(b'j (A6.27)
"
C'= (UJ (A6.28)
and
W
WEIRE (A6.30)
Wn
01
0= : (A6.31)
6

Then, concatenating the two linear least squaréisniation problems provides the main
guiding linear equation, that is:

T ' T

XTX 0 reh) _[XTW (A6.32)

0 XTX )\C" X0
Finally, ensuring the models fitting parameters gatisfy the additional condition
6(x)=dw(x)/dxis achieved by introducing the two equality coaisiis, that are:

- 196 -



Appendix 6

a'=a'
{b" I (A6.33)
So that:
BC=C"" (A6.34)
where:
10 -10
B:(o - J (A6.35)
o
C= (cj (A6.36)
and:
ilot 0
Co :(oj (A6.37)

So that the problem of optimizing the fitting paeters C' ,C" ' ) in the sense of the least
squares method can be finally written in the fofrfirading (C" ,C" ' ,4) so that:

XX o _,YC) (X'W

0 X'X C'|=| X'0 (A6.38)
B 0 0
C) (XX 0 ; HXTW
C'l=| 0 XX X' (A6.39)
A B 0 0
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Appendix 7. Joint Stress Analysis Tool (JOSAT)
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Abstract:

In the frame of an internal research program called JOSAT (Joint Stress Analysis Tool), Sogeti
High Tech has suggested developing since 2008 a simplified tool for the stress analysis of
adhesively bonded joints. This tool allows for the distribution of both the internal forces and
displacements in the adherends as well as the adhesive stresses along the overlap to be
estimated from specified loads and boundary conditions, and has the advantage of being
extremely time saving compared to conventional Finite Element (FE) analyses.

In 2011, this tool was extended to support adhesive material nonlinearities in the form of
specified adhesive stress-strain evolution laws. However the theory developed was
demonstrated as valid for the Single-Lap Joint (SLJ) configuration only, and limited to small
levels of adhesive material nonlinearities.

In this context, the objective of the thesis is double. First, extend and validate the simplified
tool for the analysis of adhesively bonded joints in the case of nonlinear adhesive as well as
adherends stress-strain constitutive behaviors. Then, develop new experimental protocols
for the characterization of the cohesive properties of thin adhesive layers.

Keywords: Adhesive, Bonding, Modeling, Simplified analysis, Finite-Element, Experimental
Characterization

Résumé:

Dans le cadre d’un projet de recherche interne nommé JoSAT (Joint Stress Analysis Tool),
Sogeti High Tech a développé depuis 2008 un outil de simulation simplifié d’analyse de joints
collés. Cet outil permet d’obtenir a la fois la répartition des efforts internes dans chacun des
substrats mais également la répartition des contraintes adhésives le long du recouvrement,
tout en ayant I'avantage d’étre beaucoup moins chronophage que la méthode des Eléments-
Finis (EF).

En 2011, cet outil a été étendu de sorte a supporter différents comportements adhésifs non-
linéaires sous la forme de relations contrainte-déformation spécifiée par ['utilisateur.
Cependant, le champ d’application de cette nouvelle théorie fut démontré comme limitée
aux jonctions en simple recouvrement, et dans le cas de faible non-linéarité uniqguement.

Dans ce contexte, I'objectif de la thése est double. Premieérement, étendre et valider I'outil
d’analyse simplifiée aux cas de comportement non-linéaire adhésif mais également des
substrats. Deuxiemement, proposer et développer de nouvelles méthodes visant a
caractériser le comportement non-linéaire d’un film adhésif.

Mots clés: Adhésif, Collage, Simulation, Analyse Simplifiée, Eléments-Finis, Caractérisation
Expérimentale






