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“Un scientifique aguerri ne cherche pas à prouver que ce qu’il pense est vrai. Un 
scientifique aguerri cherche à prouver que ce qu’il pense est faux. Et c’est seulement en n’y 

arrivant pas suffisamment longtemps qu’il finit par se convaincre que ce qu’il pense est 
vrai.” 
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Abstract 

 

 

As presented latter on in Chapter 1, in structural components design, the choice of joining 
technology is essential. In this particular context, adhesive bonding may appear as an 
attractive joining process. Indeed, adhesive bonding offers the possibility of joining without 
damaging various combinations of materials, from plastics to metals including composite 
materials. However, the interest of adhesive bonding remains while the integrity of the joint is 
ensured. Accurate strength prediction are then required. 

In the frame of an internal research program called JoSAT (Joint Stress Analysis Tool), Sogeti 
High Tech has suggested developing since 2008 a simplified tool for the stress analysis of 
adhesively bonded joints. This tool allows for the distribution of both the internal forces and 
displacements in the adherends as well as the adhesive stresses along the overlap to be 
estimated from specified loads and boundary conditions, and has the advantage of being 
extremely time saving compared to conventional Finite Element (FE) analyses. 

In 2011, this tool was extended to support adhesive material nonlinearities in the form of 
specified adhesive stress-strain evolution laws. However the theory developed was 
demonstrated as valid for the Single-Lap Joint (SLJ) configuration only, and limited to small 
levels of adhesive material nonlinearities. 

In this context, the objective of the thesis is double. First, extend and validate the simplified 
tool for the analysis of adhesively bonded joints in the case of nonlinear adhesive as well as 
adherends stress-strain constitutive behaviors. Then, suggest and develop experimental 
protocols for the characterization of the cohesive properties of thin adhesive layers so that the 
simplified tool can be sustained with relevant experimental data in terms of adhesive stress-
stain constitutive relationships. 

The following dissertation then falls into two parts. First, Chapter 2 aims at presenting a 
method that extends the simplified tool to simultaneously account for various adhesive and 
adherend nonlinear constitutive behaviors with no restriction on the specimen geometry and 
(or) level of material nonlinearities. Secondly, Chapter 3 aims at presenting a new and 
original protocol for characterizing the cohesive properties of thin adhesive layers based on 
the monitoring of the adherend-to-adherend displacement field nearby the adhesive crack tip. 
Finally, the results of a first experimental test campaign are provided so that it validates the 
newly introduced experimental protocols. Good agreement is shown. 

–      
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Chapter 1. Structural adhesive bonding  

 

Chapter 1 aims at presenting structural adhesive bonding in industrial applications. 
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1.1. S
tructural adhesive bonding: An efficient joining process 

In the frame of the design of structural components, the choice of the joining method is 
essential. A large range of joining methods exists for bringing together similar (or dissimilar) 
materials from plastics to metals including composite materials. In a large amount of 
industrial applications, conventional mechanical joints (e.g. bolted, riveted, etc) are preferred 
due to their simplicity and disassembly ability. However, when loaded, mechanical joints are 
limited by the local damage introduced at fastener holes (see Fig.1). This generally leads to 
the overweight design of mechanical joints structures (i.e. safe tolerant damage, etc). 

 

Figure 1. Schematic representation of the concentration of stresses nearby the fasteners holes. 
Structural adhesive bonding. An efficient joining process. 

The demand for designing lightweight structures without any loss of strength and (or) 
stiffness has conducted many engineers (researchers) to seek for alternative joining methods. 
In this context, adhesively bonded joints may appear as an attractive joining method. 

According to (Adams & Wake 1997, Hart-Smith 2002 and Anyfantis 2012), adhesively 
bonded joints have the advantage of: (i) allowing for the joining of thin substrates, (ii) 
providing high strength to weight ratios with three times higher the shearing force of riveted 
joints due to a continuous load transfer, (iii) providing a superior fatigue resistance up to 
twenty times higher than equivalent riveted joints, (iv) being generally sufficiently flexible to 
allow for the variation in coefficients of thermal expansion when joining dissimilar materials, 
(v) generally being an excellent electrical and (or) thermal insulation, (vi) improving 
aerodynamic/hydrodynamic smoothness and visual appearance and (vii) being usable as a seal 
or corrosion preventer when joining incompatible materials (i.e. galvanic corrosion).  

However, adhesive bonding also involves: (i) a perfectly controlled joining process, (ii) clean 
and specifically prepared substrates to allow for optimal adhesion properties and (iii) adhesive 
potentially sensitive to harsh environmental conditions (e.g. temperature, ambient humidity, 
UV exposure, etc). 
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Another advantage of adhesive bonding is that since the amount of adhesive generally 
required for sustaining static as well as fatigue loads is very low it generally allows for 
significant weight benefits. Finally, another advantage of adhesive bonding is that, thanks to 
chemistry, adhesives can be specifically formulated to fit at best dedicated specifications (see 
Section 1.2). 

Adhesive bonding for secondary load bearing structures has been introduced several decades 
ago and finds its roots in the field of aeronautics (see Fig.2). However, although numerous 
successful structural applications have been identified (e.g. De Havilland Mosquito, British 
Aerospace RJ series, Airbus A300, A380, Boeing 787, etc) the technology has always 
suffered from a general lack of confidence compared to conventional joining methods, such as 
bolting or riveting (Higgins 2000). 

 

Figure 2. Blueprint of the DeHavilland Comet. Secondary load bearing structures bonded with 
Redux 775 in the DeHavilland Comet. Structural adhesive bonding. An efficient joining 
process. (Higgins 2000). 

1.2. Selection of the adhesive material 

In (Anyfantis 2012), the author suggests that most of today’s structural adhesives can be 
classified into six groups that are: (i) epoxies, (ii) urethanes, (iii) acrylics, (iii) anaerobics, (iv) 
cynaoacrylates and (v) UV curable adhesives. 

As a result, nowadays exists a large amount of different adhesive materials. Each one 
specified to fit at best dedicated specifications. In Fig.3 is presented a non-exhaustive survey 
of some of the main structural properties of a representative number of today’s industrial 
adhesives. Different characteristics were set out from numerous suppliers technical datasheets 
(i.e. 147) and compared from one to others. Different trends are set out. 
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Figure 3. Survey of structural properties of a representative number of today’s industrial 
adhesvies. Adhesion to fiber reinforced composites versus adhesion to metals (a). T-peel 
strength at 23°C versus overlap shear strength at 23°C (c). Overlap shear strength at 80°C 
versus overlap shear strength at 23°C (b). Elongation at break versus Young’s tensile modulus 
(d). 

As an example, it is seen from Fig.3-(c) that today’s adhesives are generally expected to 
sustain more efficiently shear loadings than peel loadings. As a result, investigations on 
adhesive peel strength have become an industrial concern of growing interest in terms of 
bonding efficiency. 

1.3. Adhesive joint manufacturing 

According to (Broughton 2001a), the reliability of an adhesive joint depends not only on the 
selected adhesive (adherend) material, but on the preparation of the adherends, the mixing of 
the adhesive, the joint assembly and the curing process. Indeed, always according to 
(Broughton 2001a), a significant percentage of adhesive joint failures can be attributed to 
poor manufacturing processes. The manufacturing process then appears as a key parameter 
involved in the overall performance (structural integrity) of adhesively bonded joints. 

Surface preparation is commonly recognized as one of the most critical step in adhesive 
bonding. Indeed, inadequate surface preparation of the adherends generally results in the bond 
to fail unpredictably at the adhesive-to-adherend interface (see Section 1.5). As a results, a 
considerable attention has been given in optimizing existing (or developing new) surface 
treatments for increasing adhesive-to-adherend adhesion properties in the open literature 
(Broughton 2001a, Broughton 2001b). 

According to (Broughton 2001b), the role of surface preparation is to remove all surface 
contaminants, favor mechanical micro-interlocking, and (or) modify the local chemistry of the 
bonding surface (see Fig.4). However it is important to ensure that the surface preparation 
does not affect significantly the constitutive relationships of the bonded adherends, so that 
those have to be characterized after the surface treatment. 

 

Figure 4. Schematic representation the mechanical interlocking, adsorption, covalent and (or) 
polar-covalent liaisons adhesive-to-adherend adhesion mechanisms. Adhesive-to-adherend 
adhesion properties. Adhesive joint manufacturing. 

Electrostatic or micro-molecular liaisons 

: Adhesive 
: Adherend 

Adsorption 

Micro-mechanical interlocking 
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Several authors such as (Adams and Wake 1997, Wegman and Van Twisk 2012) have then 
suggested making a distinction between three types of surfaces treatments: (i) surface 
preparation, (ii) surface pre-treatment and (iii) surface post-treatment. Surface preparation 
covers cleaning (degreasing) and preparation (deburring) of the substrate surface. Surface pre-
treatment refers to mechanical processes (e.g. grinding, jet-cleaning, etc), chemical processes 
(e.g. etching, gas phase fluorination, etc) and physical processes (e.g. low pressure plasma, 
etc) that alter the mechanical and (or) chemical composition of the surface to be bonded. 
Finally, surface post-treatment refers to all techniques that purposes to preserve the treated 
surface from later on contaminations (e.g. application of a primer, etc). 

1.4. Adhesive joint geometries 

In (Anyfantis 2012), the author suggests defining adhesive bonding as a joining process in 
which an adhesive material, sandwiched between two adherends, solidifies to produce a bond. 
This definition is interesting since it clearly links an adhesive layer to its surrounding 
structure, so that the mechanical response of an adhesive layer cannot be dissociated from its 
surrounding structure. 

As an example, a non-exhaustive list of existing adhesive joint geometries is provided in 
Fig.5. These geometries refer to in-plane loaded adhesive joint geometries, so that out-of-
plane deformations of the adhesive layer are not addressed. The Single-Lap Joint (SLJ) is 
certainly the most common adhesive joint that is found in practice (see Fig.6). Firstly 
discussed in (Volkersen 1938), the SLJ design allows for the joining of similar (or dissimilar) 
thin (or thick) adherends with a simple manufacturing process. Moreover, the SLJ design has 
the advantage of transferring loads from one adherend to another so that the adhesive layer 
experiences shear loadings essentially (i.e. which is known as being the strongest way of 
loading an adhesive bond). However the SLJ causes the adhesive layer to be stressed also in 
peel. The misalignment of the axial loading directions (i.e. also referred as the load path 
eccentricity) resulting in the rise of significant bending moments at the overlap edges so that 
peel stresses appear at each end of the adhesive layer (see Fig.6). 

To overcome this problem (i.e. load path eccentricity), (Lees 1987) suggested an alternative 
joint design. This alternative joint design is referred as the Double Joggle Joint (DJJ) and 
suggests bringing back the axial loading directions into alignment by stamping both of the 
surrounding adherends. The gain in terms of joint durability (i.e. due to the modified 
distributions of adhesive stresses along the overlap) is shown as significant (see Fig.7). 
However, although the DJJ is particularly well suited for bonding adherends that can endure 
stamping, this particular design remains difficult to manufacture.  
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Figure 5. Schematic representation of the Single-Lap Joint (SLJ), the Double Joggle Joint 
(DJJ) and the Double-Lap Joint (DLJ). Adhesive joint geometries. Structural adhesive 
bonding. 

 

Figure 6. Schematic representation of the Single-Lap Joint (SLJ). Idealized distributions of 
adhesive stresses. Adhesive joint geometries. Structural adhesive bonding. 

 

Figure 7. Schematic representation of the Double Joggle Joint (DJJ). Idealized distributions of 
adhesive stresses. Adhesive joint geometries. Structural adhesive bonding. 
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Similarly to the latter (Lees 1987), (Hart-Smith 1973b) proposed another joint design so that it 
limits bending effects due to the misalignment of the joint loading directions. This design is 
referred as the Double-Lap Joint (DLJ). The DLJ then suggests limiting the effect of the 
misalignment of the axial loading directions by offering two symmetrical paths for 
transferring the applied load. The main advantage of such design is then that, besides reducing 
by half the load transferred through both upper and lower adhesive layers, is to limit the 
bending effects by constraining the transverse displacements of the mid plan adherend. 

 

Figure 8. Schematic representation of the Double-Lap Joint (DLJ). Idealized distributions of 
adhesive stresses. Adhesive joint geometries. Structural adhesive bonding. 

However, although the DLJ is generally assumed as experiencing essentially adhesive shear 
loadings (Mittal 2002), peel loadings cannot be entirely neglected so that the applied load is 
still transferred through the adhesive to the adherends away for their neutral axes (see Fig.8). 
Then the internal bending moments that arise in the outer adherends cannot be entirely 
neglected and still affects the overall joint performances (structural integrity). Similarly, 
numbers of other joint geometries such as the Tapered Single-Lap Joint (TSLJ) and (or) the 
Tapered Double-Strap Joint (TDSJ) have been suggested for reducing the rise of peel stresses 
within the adhesive layer over the past decades.
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1.5. T
he fracture of adhesive joints 

Depending on the joint geometry and (or) loading conditions, adhesively bonded joints are 
expected to fail either in the adhesive layer or in the adherends. The fracture of the adhesive 
layer is governed by three main mechanisms (see Fig.9). The first one, the cohesive failure, 
happens when the adhesive fracture starts (and propagates) within the core the adhesive layer. 
It refers to the classical degradation process as described within most of the theoretical 
analyses of the fracture of adhesively bonded joints. The cohesive failure is governed by the 
constitutive properties of the adhesive layer only and is generally reproducible. The second 
one, the interfacial or adhesive failure, happens when the adhesive start to disbond at the 
adhesive-to-adherend upper (lower) interface. This mechanism generally happens for smaller 
loads than the cohesive failure and is typically due to poor surface preparation of the 
adherends before bonding. It then results in non-optimal adhesion properties between the 
adhesive and the upper (lower) adherend. The interfacial fracture is generally complicated to 
reproduce since the interfacial strength of the adhesive-to-adherend upper (lower) interface 
results from a complex interaction between both mechanical, process and environmental 
parameters. The last one, the mixed-mode failure, is a mix between cohesive and interfacial 
failures. It generally takes the form of a crack path that oscillates between one adhesive-to-
adherend interface to another or between one adhesive-to-adherend interface to the core of the 
adhesive layer. 

 

Figure 9. Schematic representation of fracture mechanisms of adhesive joints. Fracture of the 
adhesive layer. Cohesive failure. Interfacial failure. Mixed-mode failure.  

Similarly, the fracture of the surrounding adherends is governed by two main mechanisms 
(see Fig.10) that generally depend on the nature of the adherends themselves. The cohesive 
failure of the adherend refers to the failure of the adherend due to the rise of important axial 
stresses nearby the overlap edges. This mechanism generally applies to metallic adherends. 
On another side, the adherend delamination (i.e. also referred to as the adherend interlaminar 
failure) refers to the failure of the adherend at the interface between to plies, and is due to the 
rise of important peeling stresses between each ply of the laminate. This mechanism generally 
applies to fiber reinforced composite materials. 

Mixed-mode failure Interfacial failure Cohesive failure 

Crack path Crack path Crack path 
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Figure 10. Schematic representation of fracture mechanisms of adhesive joints. Fracture of the 
surrounding adherends. Idealized Von Mises stress distribution developed in the Single-Lap 
Joint (SLJ) subjected to in-plane loading (a). Cohesive failure. Metals (b). Interlaminar 
failure. Fiber reinforced composites (c). 

The present dissertation then takes interest in the cohesive failure of adhesive layers only (see 
Fig.11). The cohesive failure of the adhesive layers is ensured by using adequate surface 
preparations before bonding. 

 

 

Figure 11. Fracture facies of an adhesive Single-Lap Joint (SLJ). (1): Apparent adhesive 
residue on both sides of the fracture facies = Propagation of the crack within the core of the 
adhesive layer. Cohesive failure of the adhesive. (2): Apparent surface of the adherend on the 

(b) Metals (c) Fiber reinforced composites 

Delamination = Interlaminar failure 
Cohesive failure 
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lower fractured sample of the specimen. Mixed-mode failure of the adhesive. Due to the 
catastrophic (unstable) static load failure of the specimen. 

1.6. M
echanical analyses of adhesively bonded joints 

Historically, the lack of suitable mechanical models and (or) failure criteria for the modeling 
of the fracture process of adhesively bonded joints has resulted in a tendency to overdesign 
adhesive joints. To allow for the design of adhesively bonded joints, numbers of engineers 
and researchers have thus worked on the extensive modeling of the mechanical response of 
such structures. Different approaches exist. 

1.6.1. C
losed-form stress analyses of adhesively bonded joints 

A large number of closed-form stress analyses of adhesively bonded joints exist in the open 
literature (Volkersen 1938, Goland & Reissner 1944, Adams and Peppiatt 1973, Hart-Smith 
1973a, Hart-Smith 1973b, Williams 1975, Allman 1977, Bigwood & Crocombe 1991, 
Hogberg 2004, Weissgraeber 2014). Based on (van Ingen and Vlot 1993, Da Silva 2009), a 
non-exhaustive review of these simplified approaches is given in Appendix 1. In most of 
these approaches the joint kinematic is simplified so that the displacements field of each 
adherend is supposed relevant to the beam (or plate) theory while the adhesive displacement 
field is expressed in terms of that of adherends (i.e. then restricting the number of 
components of the adhesive stress tensor). A widespread modeling of the adhesive layer 
consists in a two dimensional elastic foundation, using a continuous distribution of peel and 
shear springs supporting both adherends interfaces (Volkersen 1938, Goland & Reissner 
1944, Hart-Smith 1973a, Hart-Smith 1973b, Weissgraeber 2014). In these particular 
analyses, the adhesive stresses are then expressed as functions of the relative displacements 
of the surrounding adherends. The governing system of equilibrium equations of the joint is 
then derived and solved in view of its boundary conditions, so that the distribution of 
adhesive stresses along the overlap is given in the form of ready-for-use formulae. 

A large amount of closed-form adhesive stress analyses consider solving the equilibrium 
equations of the joint along the overlap region only (see Fig.12), so that is allows for the 
analysis of various joint configurations (e.g. SLJ, L-Joint, T-Joint, etc). These analyses are 
classically separated in two distinct phases: (i) determining the loads acting onto the edges of 
the adhesive overlap and (ii) determining the distribution of joint stresses as functions of 
these applied loads. For convenience, these analyses will thereafter be referred as sandwich 
type analyses. 



Chapter 1. Structural adhesive bonding 

- 24 - 

 

 

Figure 12. Adhesively bonded joint sandwich type analysis. Closed-form stress analyses of 
adhesively bonded joints. Mechanical analyses of adhesively bonded joints.  

The accuracy of such approaches in predicting the distributions of stresses within the 
adhesive layer then lies on the validity of the simplifying hypotheses used to integrate the 
governing system of equilibrium equations only. However they are generally easy to 
implement and require few computational resources. 

Goland & Reissner’s sandwich type analysis. The Goland & Reissner’s sandwich type 
analysis has been firstly introduced in (Goland & Reissner 1944) and has formed the 
theoretical foundations of most later investigations on the strength analysis of adhesive 
joints. 

In (Goland & Reissner 1944), the authors suggest determining analytical expressions for the 
elastic shearing and peeling (normal) stresses in single-lap cemented joints (i.e. simply 
supported and in-plane loaded). The theory is then divided in two parts: (i) determining the 
loads acting onto the edges of the adhesive overlap and (ii) determining the joint stresses as 
functions of these applied loads. For simplification purpose, they suggest modeling the 
surrounding adherends as monolithic beams with symmetric geometry and material (i.e. 
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E1=E2=E, t1=t2=t and ν1=ν2=ν, with Ej, νj and tj respectively the Young’s modulus, the 
Poisson’s ratio and the thickness of adherend j (j=1,2)). 

First assuming the whole joint (i.e. the bonded overlap + the outer adherends) as behaving as 
a cylindrical bent plate of variable cross section and neutral axis, the authors derive a 
relationship between the bending moment applied at the overlap edge and the applied axial 
load. The given relationship accounts for the equilibrium of the deformed geometry instead 
of the initial (undeformed) geometry. Then, the authors suggest defining the bending moment 
factor kGR as the ratio between the resulting bending moment (i.e. applied at the overlap 
edge) and the axial load multiplied by the half thickness of the surrounding adherends, so 
that: 
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where P is the applied axial load, M0 the bending moment acting at the overlap edge, L the 
length of the bonded overlap and D the adherends constitutive bending stiffness defined as: 
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In a second time, the authors suggests solving in view of its boundary conditions the set of 
governing differential equations (i.e. derived from a linear elastic analysis of the bonded 
overlap) that account for the effect of both shearing and normal (peeling) adhesive stresses 
onto the equilibrium of the surrounding adherends. 

The authors finally suggest deriving two analytical expressions for the adhesive shear (T) and 
peel (S) distributions, so that: 
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and where G, E respectively refer to the shearing, peeling (normal) modulus of the adhesive 
layer and e to the thickness of the adhesive layer. 

Hart-Smith’s sandwich type analysis. In (Hart-Smith 1973a), the author suggests 
reworking the earlier Goland & Reissner’s theory so that: (i) the expression of the bending 
moment factor is re-established using different simplifying hypotheses and (ii) the set of joint 
equilibrium equations is re-derived so that it accounts for the thickness of the adhesive layer 
onto the load path eccentricity. 

Contrary to the Goland & Reissner’s approach for deriving the bending moment applied at 
the overlap edge from the applied axial load, the author does not assume the entire joint (i.e. 
the bonded overlap + the outer adherends) as a unique structure of variable cross-section and 
neutral axis. Then, the author analyses the joint using the same set of governing differential 
equations as used for the following stress analysis of the bonded overlap. 

By successive combinations and differentiations of the joint equilibrium equations, the author 
then derives a new expression of the bending moment factor as: 
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where P is the applied axial load (in N), M0 the bending moment acting at the overlap edge, L 
the length of the bonded overlap and D the adherends constitutive bending stiffness defined 
as: 
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and that account for possible laminated adherends through the parameter kB. 

The author finally derives new analytical expressions for the adhesive shear (T) and peel (S) 
distributions, so that: 
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and where G, E respectively refer to the shearing, peeling (normal) modulus of the adhesive 
layer and e to the thickness of the adhesive layer. 

1.6.2. F
inite Element (FE) analyses of adhesively bonded joints 

The Finite Element (FE) method is a computational method which allows for the 
approximate solution of various engineering problems to be obtained. The stress analysis of 
adhesively bonded joints is one of these problems. Although this general resolution 
procedure is computationally expensive and can lead to numerical convergence issues, so 
that the mesh of adhesive layers has generally to be intensively refined to capture the local 
stress gradients at bondline edges, the FE method allows for the study of various joint 
configurations. Then, various adhesive and adherends geometries as well as various loading 
and boundary conditions are addressable using FE methods (see Fig.13). 

Numbers of authors such as (Pickthall and Heller 1997, Lang and Mallick 1998, Broughton 
1999, Broughton 2001b, Hansson 2002, Tsai and Morton 2010, Anyfantis 2012), have thus 
worked on the intensive modeling of adhesively bonded structures using FE techniques. 
However, converged FE analyses generally imply highly refined meshes and so time 
consuming computations. 

 

Figure 13. Schematic representation of Finite Element (FE) models of a Single-Lap Joint 
(SLJ) and a Tapered Single-Lap Joint (TSLJ). Finite Element (FE) analyses of adhesively 
bonded joints. Mechanical analyses of adhesively bonded joints.  
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Similarly to closed-form stress analyses, the macro-element approach is based on the 
resolution of the system of governing differential equations of the joint. However, since the 
simplifying assumptions are here voluntarily restricted a closed-form solution is not 
explicitly expressible. Different approaches that use alternative mathematical resolution 
procedures can be found in the open literature, such as the multi-segment integration 
technique (Mortensen 1997) or the macro-element technique (Paroissien 2006, Da Veiga 
2009, Stapleton 2012, Paroissien et al. 2013). 

In (Paroissien 2006, Da Veiga 2009, Paroissien et al. 2013), an original solution procedure 
inspired by the Finite Element (FE) method is developed by the authors. The authors then 
formulate what will be thereafter referred as the Bonded-Beam macro-element – denoted 
BBe. The method then consists in meshing the structure. The overlap is meshed using a 
unique 4-node macro-element specifically formulated to allow for the resolution of the 
governing system of differential equations of the joint at low computational costs. The outer 
adherends are meshed using specifically formulated outer beam elements (see Section 2.3.2 
and Section 2.3.3 of Chapter 2). 

According to the classical Finite Element (FE) method, the stiffness matrix of the entire 
structure – termed K – is assembled from the both the BBe macro-element and the 
surrounding outer beam adherends. 

As for the classical Finite Element method, the minimization of the potential energy is 
ensured by solving equation F=KU, where F is the vector of nodal forces, U the vector of 
nodal displacements and K the specifically formulated stiffness matrix of the entire structure. 
The whole distribution of the adhesive stresses along the overlap is then related to the nodal 
displacements the BBe macro-element through a coupling parameter matrix denoted M (see 
Section 2.3.2 of Chapter 2). 

According to (Paroissien et al. 2013), the macro-element approach offers the advantage of: (i) 
providing predictions of the adhesive stress distributions in extremely good agreement with 
equivalent FE analyses, (ii) being highly computational time saving compared to equivalent 
FE analyses and (iii) allowing for the modeling of more complex structures involving single-
lap joints at low computational costs. 

Recently, an original solution procedure based on the Finite Element method has been 
adapted to the BBe formulation to allow for the modeling of various adhesive material 
nonlinear behaviors (Gaubert 2011, Schwartz 2013, Gavoille 2014). However, the authors 
show that the aforementioned procedure is theoretically limited to the analysis of SLJ 
configurations only and do apply to sufficiently small material nonlinearities of the adhesive 
layer only. 

1.7. E
xperimental characterization of adhesively bonded joints 

As presented in Section 1.1, in structural components design the choice of the joining 
technology is essential. In this context, adhesive bonding may appear as an attractive joining 
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process compared to conventional ones, such as bolting or riveting. Indeed, adhesive bonding 
offers the possibility of joining without damaging various combinations of materials, 
including plastics and metals. However, the interest of adhesive bonding remains while the 
integrity of the joint is ensured. To take advantage of adhesive bonding, accurate strength 
predictions are thus required. 

The strength prediction of bonded joints requires the determination of computed criteria and 
experimentally characterized allowable. Several approaches are proposed in the open 
literature. These approaches could besides be used in the experimental characterization 
process of allowable. 

The stress analysis approach, based on the Strength of Materials, is the classical approach. It 
aims at localizing the maximal values of stresses and strains (Igens 1993, Tsai 1994, Da Silva 
2009, Da Silva 2012). A second approach is based on the Fracture Mechanics. Assuming the 
presence of an initial crack judiciously localized and sized by the user, it allows for the 
computation of the strain energy release rate (or J-integral) at crack tip as a function of 
applied loads (or adhesive stresses) (Fraise 1993, Tong 1994, Fernlund 2007, Da Silva 2012). 
In the coupled stress and energy criterion approach, the crack length at initiation is not 
assumed but derived from the analysis itself (Leguillon 2002, Weissgraeber 2013). Then, the 
computed crack length at initiation is not a material characteristic and depends both on 
geometrical parameters as well as on material critical stress and energy release rate. Finally, 
the Cohesive Zone Modeling – denoted CZM – enables a diagnostic of the current state of 
damage and an update of the strength prediction. According to the recent literature (Li et al. 
2005, Crocombe 2009, De Moura 2009, Crocombe 2010, Crocombe 2011, Da Silva 2012, 
Gift et al. 2013), the CZM appears as one of the most suitable approach able to model both 
static strength as well as the fatigue degradation process of adhesive layers. In (Martin et al. 
2016), the authors show good agreement comparing the coupled stress and energy criterion 
and the CZM in predicting the debonding initiation of a bimaterial specimen subjected to 4-
points flexion loads. 

1.7.1. Cohesive Zone Modeling (CZM) 

The CZM finds its root in the Continuum Damage Mechanics and the Fracture Mechanics. 
The basic idea of CZM is that structural damage during loading can be found in the form of 
micro-cracks forming and (or) voids coalescence over a finite distance from the initial 
damaged area (Da Silva 2012). Resulting in a locally reduced load bearing capability, the 
degradation process of the material is modeled as a drop of the transferred stresses after a 
given value of deformation. An idealized CZM bilinear traction separation law is presented in 
Fig.14. However CZM is not limited to this particular shape of traction separation law only 
(see Chapter 2 and Chapter 3). 
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Figure 14. Representation of an idealized bilinear interface traction separation law. Cohesive 
Zone Modeling (CZM). Experimental characterization of adhesively bonded joints.  

According to (Crocombe 2009) CZM has the advantage of: (i) indicating both damage 
initiation and propagation as direct outputs of the model, (ii) allowing for the prediction of 
undamaged materials without the need to introduce a pre-existing crack and (iii) advancing 
the crack front when locally reaching the critical value of the energy release rate without the 
need of complex moving mesh techniques. 

1.7.2. Determination of cohesive zone model parameters 

To take full advantage of CZM, computed criteria as well as experimental allowable have to 
be determined from experimental testing. As a result, numbers of authors suggested 
developing experimental protocols for characterizing the traction separation laws of thin 
interfaces over the past few years (Anderson et al. 2003, Alfredsson  2003,  Alfredsson et al. 
2003, Alfredsson 2004, Leffler et al. 2006, Hogberg 2006, Hogberg et al. 2007, Cui et al. 
2014, Cui 2014, Da Silva 2012). 

For most, these protocols refer to the concept of the energetic balance associated to the 
computation of the path independent J-integral (Rice 1968) along a closed contour of 
specifically designed specimens. The main advantage of these protocols is that they offer the 
possibility of monitoring the evolution of the adhesive stresses (strains) at crack tip from the 
supervision of macroscopic quantities easily measurable from the experimental testing fixture, 
such as the applied load, the evolution of the adhesive strains at crack tip, etc. The lack of 
standardized testing for determining the cohesive zone model parameters of thin adhesive 
interfaces has then conducted numerous researchers and engineers to call for various test 
configurations. As a result, numbers of specimens has been explored for both pure mode I (II) 
and mixed-mode I/II characterization of adhesive layers. According to (Da Silva 2012), 
Double Cantilever Beam (DCB) and End-Notched Flexure (ENF) adhesive test specimens 
have respectively emerged as the specimens the most commonly used for quantifying the 
cohesive parameters of adhesive layers in pure mode I and pure mode II over the past few 
years. 
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On the contrary, (Reeder 1990, Kenane 1997, Hogberg 2006) established that most the 
proposed mixed-mode I/II test configurations present practical limitations: (i) complex 
loading fixtures, (ii) stable/unstable fracture process, (iii) complex manufacturing of the 
specimens, etc, although few of them present several advantages. The main advantage of the 
Mixed-mode Cantiveler Beam (MCB) and the Mixed-Mode Bending (MMB) testing fixtures 
(see Fig.15 and Fig.16) is the possibility of working over a wide range of adhesive mode 
mixities without the need of modifying the geometry of the specimen. Then allowing for 
adhesive specimens with fully controlled dimensions to be more easily manufactured. It is 
seen from Fig.15 and Fig.16 that the MCB testing fixture allows for the complete spectrum of 
adhesive mode mixities to be fully addressed by simply varying the inclination of the 
antisymmetric loading directions, although the MMB testing fixture is limited by the adhesive 
itself so that it can difficulty address pure mode I adhesive solicitations. However, a 
significant advantage of the MMB testing fixture (compared to the MCB testing fixture) is 
that it can be easily designed in advance of the experiment so that it allows for specific 
adhesive mixed-mode ratios to be addressed (Boussarie 2013) (see Fig.16). 

 

Figure 15. Evolution of the early stage mixed-mode ratio at crack tip (β=ν/ε) as a function of 
the inclination of the antisymmetric loading directions (α). ν: Adhesive shearing deformation 
at crack tip. ε: Adhesive peeling deformation at crack tip. Mixed-mode Cantilever Beam 
(MCB). Determination of cohesive zone model parameters. Experimental characterization of 
adhesively bonded joints.  
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Figure 16. Evolution of the early stage mixed-mode ratio at crack tip (β=ν/ε) as a function of 
the length of the lever arm (c). ν: Adhesive shearing deformation at crack tip. ε: Adhesive 
peeling deformation at crack tip. Mixed-Mode Bending (MMB). Determination of cohesive 
zone model parameters. Experimental characterization of adhesively bonded joints.  

1.8. O
bjectives of the thesis 

The following dissertation then falls into two parts. First, Chapter 2 aims at presenting a 
method that extends the macro-element approach as originally described in (see Section 1.6.3) 
to possibly account for various adhesive as well as adherends nonlinear constitutive 
behaviors. The method is inspired by the Finite Element (FE) method and allows for various 
adhesive and (or) adherends material nonlinear behaviors to be simultaneously accounted with 
no restriction on the specimen geometry and (or) level of material nonlinearities. The main 
originality of the solution procedure presented lies in the use of the adhesive and (or) 
adherends secant stiffness properties to iteratively approach the solution of the nonlinear 
problem. The vector of imbalanced loads resulting from the projection of the nonlinear 
adhesive and (or) adherends stresses is then computed through the knowledge of the adhesive 
and (or) adherends secant stiffness properties only. The proposed nonlinear adhesive material 
models are formulated under a two dimensional mixed-mode model that account for the 
possible interaction between both pure mode I and pure mode II adhesive stress-strain 
evolutions laws while the proposed adherends material models are formulated under a pure 
axial model that account for the axial deformation of the surrounding adherends due to 
coupled tension/bending loadings. 

Secondly, Chapter 3 aims to present three different existing protocols for the measurement of 
the adhesive cohesive properties of thin interfaces (Anderson et al. 2003, Alfredsson 2004, 
Hogberg et al. 2007), to set out and to discuss their inherent limitations. Then, a new 
experimental protocol to evaluate the effective stress-strain relationships of thin adhesive 
layers subjected to mode I, mode II and (or) mixed-mode I/II adhesive deformations is 
presented and developed in view of its implementation. The new protocol aims at monitoring 
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the evolution of the adhesive stresses (strains) at crack tip by supervising the evolution of the 
adherend-to-adherend displacement field nearby the adhesive crack tip. Finally, the results of 
an experimental test campaign as well as their comparison with semi-analytical predictions 
are provided so that the new experimental protocol is validated in the case of metal-to-metal 
adhesive bonding subjected to pure mode I, pure mode II and mixed-mode I/II. Good 
agreement is shown. 
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Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress 
analysis 

 

Chapter 2 aims at presenting the modeling of adhesively bonded joints facing in-plane 
adhesive loadings using macro-elements. First, the method originally described in (Paroissien 
2006, Da Veiga 2009, Paroissien et al. 2013) is presented. Then, the method is extended and 
validated in the case of adhesive (adherends) material nonlinearities. The results obtained 
from the semi-analytical analyses are finally compared to those of both existing sandwich 
type analyses and 2D Finite Element (FE) predictions involving cohesive interface elements. 
Good agreement is shown. 
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2.1. I
ntroduction 

A large number of simplified approaches for the stress analysis of bonded joints exist in the 
open literature (Volkersen 1938, Goland & Reissner 1944, Hart-Smith 1973a, Hart-Smith 
1973b, Williams 1975, Bigwood & Crocombe 1991, Hogberg 2004, Weissgraeber 2014). A 
non-exhaustive review of these simplified approaches is given in Appendix 1. In most of these 
simplified approaches the joint kinematic is simplified so that the displacement field of 
adherends is supposed relevant to the beam or plate theory while the adhesive displacement 
field is expressed in terms of that of adherends (then restricting the number of components of 
the adhesive stress tensor). A widespread modeling of the adhesive layer consists in an elastic 
foundation, supporting both adherends interfaces (Volkersen 1938, Goland & Reissner 1944, 
Weissgraeber 2014). The adhesive stresses are then expressed as functions of the relative 
displacements of the facing adherends. Depending on additional simplifying hypotheses, a 
closed-form solution is not always expressible so that mathematical procedures are necessary 
to integrate the system of governing differential equations in view of its boundary conditions, 
such as the macro-element technique (Stapleton 2012, Paroissien 2006) or that the multi-
segment integration scheme (Mortensen 1998). 

The mathematical solution presented in (Paroissien 2006, DaVeiga 2009, Paroissien et al. 
2013) applies to Single-Lap Joint (SLJ) configurations and considers the adherends as Euler-
Bernoulli laminated beams supported by an infinite number of elastic shear (peel) springs. 
Besides, an original procedure allowing for non-linear adhesive behaviors to be accounted for 
is presented. However, the authors show that the aforementioned procedure is theoretically 
limited to the analysis of SLJ configurations only and do apply to sufficiently small material 
nonlinearities of the adhesive layer only (Schwartz 2013, Gavoille 2014). 

In the present section, a reworked semi-analytical procedure enabling for various nonlinear 
adhesive (adherends) behaviors to be accounted for with no restriction on the specimen 
geometry is presented. The possible mixed mode I/II response of the adhesive layer is 
introduced through an extension of the classical CZM procedure (Valoroso 2004, De Moura 
2008, Anyfantis 2012, Campilho 2013). A particular emphasis is given to bilinear adhesive 
and (or) elastic perfectly plastic adherend stress-strain evolution laws. However, the suggested 
procedure is not limited to these particular adhesive (adherends) behaviors only. 

2.2. O
rganization of the chapter 

First, for lecturer comfort, a short description of the simplified 1D-beam adhesive stress 
analysis in the case of a linear elastic adhesive layer is provided. However a more 
comprehensive description of the simplified 1D-beam adhesive stress analysis can be found in 
(Paroissien et al. 2013). The solution procedure is presented in the case of linear elastic 
solicitations of both the adhesive layer and the surrounding adherends only. The results 
obtained from the simplified 1D-beam adhesive stress analysis and those from the most recent 
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Weissgraeber’s sandwich type analysis are then compared in terms of peel and shear adhesive 
stress distributions along the interface. The results obtained from the simplified 1D-beam 
adhesive stress analysis are also compared to those of 2D Finite Element (FE) predictions 
involving cohesive interface elements. Good agreement is shown with both sandwich type 
analysis and FE predictions. 

Secondly an iterative solution procedure based on a modified Newton-Raphson iterative 
solution procedure, and allowing for various nonlinear adhesive stress-strain evolution laws to 
be accounted for, is presented and developed in view of its implementation. The main 
originality of the presented solution procedure lies in the use of the adhesive secant stiffness 
properties to address the nonlinear solution of the problem. The vector of imbalanced loads 
resulting from the projection of the non-linear adhesive stresses is then computed through the 
knowledge of the adhesive secant stiffness properties only. The presented procedure allows 
for various nonlinear adhesive stress-strain evolution laws to be accounted for (ie. softening, 
plastic, coupled, etc.) with no restriction on the specimen geometry. The proposed adhesive 
material models are formulated under a two dimensional mixed-mode model that account for 
the possible interaction (interdependency) between both pure mode I and pure mode II 
adhesive stress-strain evolutions laws. The presented two dimensional mixed-mode model is 
inspired from the classical Cohesive Zone Modeling (CZM) theory. The results obtained from 
the suggested solution procedure are then compared to those of two sandwich type analyses 
involving nonlinear adhesive stress-strain evolution laws. Finally, the results obtained from 
the so modified simplified 1D-beam adhesive stress analysis are compared to those of 2D FE 
predictions involving cohesive interface elements. Good agreement is shown with both 
nonlinear sandwich type analyses and FE predictions. 

To conclude, the preceding iterative solution procedure is upgraded so that it can account for 
both adhesive and adherends material nonlinearities simultaneously. Then, an original way of 
accounting for the effect of the surrounding adherends plasticization based on an adaptation of 
the classical theory of beam plasticity (Oudin 2011) is presented and developed in view of its 
implementation. The results obtained from the so modified simplified 1D-beam adhesive 
stress analysis are compared to those of 2D FE predictions involving elastic perfectly plastic 
adherends stress-strain evolution laws. Good agreement is shown. 

2.3. S
emi-analytical stress analysis of adhesively bonded joints using macro-elements 

2.3.1. T
he simplified 1D-beam adhesive stress analysis: Overview 

The simplified 1D-beam adhesive stress analysis is inspired by the Finite Element (FE) 
resolution procedure and allows for the resolution of the system of governing differential 
equations of the bonded overlap at low computational costs. The displacements (forces) of 
both adherends as well as the adhesive stresses (strains) are then obtained from solving the 
local equilibrium of the adherends. The method consists in meshing the structure. A fully 
bonded overlap is meshed using a unique 4-nodes macro-element (see Fig.17). This macro-
element is specially formulated to allow for the resolution of the system of governing 
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differential equations of the bonded overlap at low computational costs. For convenience, the 
bonded overlap macro-element will be thereafter referred as the Bonded-Beam macro-
element, and denoted BBe. 

 

Figure 17. Assembly of the Single-Lap Joint (SLJ) configuration using both outer beam and 
BBe macro-elements. The simplified 1D-beam adhesive stress analysis. Overview. 

The outer adherends are in turn meshed using specifically formulated Euler-Bernoulli beam 
elements. For convenience, the two Euler-Bernoulli beam elements will be thereafter referred 
as the outer beam elements, and denoted Beam. According to classical assembly FE rules, the 
stiffness matrix of the entire structure – termed K – is assembled and the selected boundary 
conditions are applied. For convenience, the stiffness matrix of the entire structure (K) will 
thereafter be referred as the master stiffness matrix. The minimization of the total potential 
energy is then ensured by solving the equation F=KU, where F is the vector of nodal forces 
and U the vector of nodal displacements. The suggested approach takes the advantage of the 
flexibility of FE techniques and the robustness of theoretical approaches. Using BBe macro-
elements as elementary bricks of larger models then offers the possibility to simulate more 
complex structures involving single-lap bonded joints at low computational costs (see Fig.18). 
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Figure 18. BBe macro-elements as bricks of larger models for linear and nonlinear adhesive 
stress analysis. The simplified 1D-beam adhesive stress analysis. Overview. 

2.3.2. F
ormulation of the BBe macro-element 

Hypotheses. The linear elastic 1D-Beam model is based on the following hypotheses: (i) the 
thickness of the adhesive layer is constant along the overlap, (ii) both adherends are assumed 
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as behaving as linear elastic Euler-Bernoulli laminated beams in coupled tension/flexion, and 
(iii) the adhesive layer is simulated by an infinite number of elastic shear and peel springs 
supporting both upper (lower) adherends interfaces. 

Governing differential equations. The local equilibrium of each adherend is expressed in 
the form of the following system of six differential equations (see Fig.19): 
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where S is the adhesive peel stress, T the adhesive shear stress, N1 (N2) the normal force in 
adherend 1 (2), V1 (V2) the shearing force in adherend 1 (2) and M1 (M2) the bending moment 
in adherend 1 (2). Note that equation (17) refers to the local equilibrium derived and 
employed in (Hart-Smith 1973a, Hart-Smith 1973b). 

 

Figure 19. Schematic representation of the local equilibrium of the bonded adherends. The 
simplified 1D-beam adhesive stress analysis. Overview. Nj: Normal force of adherend (j) [N]. 
V j: Shear force of adherend (j) [N]. Mj: Bending moment of adherend (j) [Nm]. T: Adhesive 
shear stress [Mpa]. S: Adhesive peel stress [Mpa]. b: width [mm]. 

Considering the possible extensional, bending and coupling stiffnesses of each adherend gives 
the adherends constitutive relationships: 
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with Aj the extensional stiffness, Bj the coupling stiffness, and Dj the bending stiffness of 
adherend j (j=1,2). Further details on these adherends constitutive equations can be found in 
in Appendix 2 or in standard textbooks on composite mechanics (Jones 1998, Berthelot 1999). 
In the case of homogeneous isotropic adherends with rectangular cross sections the given 
relationships can be reduced to: 

2,1,
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         (19) 

where Ej refers to the Young’s modulus of adherend j (j=1,2), ej to the thickness of adherend j 
(j=1,2) and b to the width of the adhesive test specimen. The afore-described theory has been 
here voluntarily restricted to the Kirchhoff-Love assumptions. However the adherend shear 
stress can possibly be assumed as varying linearly with the adherend thickness (Tsai et al. 
1998, Da Veiga 2009, Paroissien et al. 2013). 

Finally, and considering the adhesive layer as a linear elastic interface simulated by an infinite 
number of elastic shear (peel) springs, the adhesive shear (peel) stresses are expressed as: 
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where E refers to the peel modulus of the adhesive (see Appendix 3), G the shear modulus of 
the adhesive, γ to the shearing deformation of the adhesive, ε to the peeling deformation of the 
adhesive, u1 (u2) the normal displacement of adherend 1 (2), w1 (w2) the transverse 
displacement of adherend 1 (2), θ1 (θ2) the bending angle of adherend 1 (2) and e the 
thickness of the adhesive layer (see Fig.20). 

For demonstration purpose it is assumed that ∆j=AjDj-Bj
2 (j=1,2) is not equal to zero. 

 

Figure 20. Schematic representation of the shearing and peeling adhesive deformations. The 
simplified 1D-beam adhesive stress analysis. Overview. uj: Normal displacement of adherend 
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(j) [N]. w j: Transverse displacement of adherend (j) [N]. θj: Bending angle of adherend (j) 
[Nm]. ej: Thickness of adherend (j) [mm]. e: Thickness of the adhesive layer [mm]. 

Stiffness matrix of the BBe macro-element. From equations (18) fall: 
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By combining equations (17) (18) (20) and (21), the following set of linear differential 
equations in terms of adhesive stresses is obtained: 
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where: 
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By successive differentiations and linear combinations, the system of linear differential 
equations (22) can be uncoupled so that: 
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So that equations (24) are solved with respect to the classical theory of homogeneous linear 
differential equations. The adhesive shear (peel) stresses are then expressed in the form of: 
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Where 61 KK − and 
71 KK −  refer to integration constants that have to be determined from 

specified boundary conditions. 

According to (Williams 1975), the given analytical expressions of the adhesive shear (peel) 
stress distribution(s) are unique and not depending on the material (geometrical) properties of 
the sandwich structure. However it appears that this statement is not entirely true, and can be 
completed by two additional expressions of the adhesive shear (peel) stress distribution(s) 
depending on the nature of the roots of the characteristic polynomial (25́) (see Appendix 4). 
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The determination of the stiffness matrix of BBe macro-element then requires the 
determination of both the nodal displacements and the nodal forces (see Fig.21). Following 
the resolution scheme introduced in (Hogberg 2004), the adherends displacements (forces) are 
finally expressed as functions of both the adhesive stresses and their respective derivatives. A 
comprehensive description of the adherends displacements (forces) computation is provided 
in (Paroissien et al. 2013). However it is shown that the entire problem is finally dependent on 
a total number of 12 integration constants only:  
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The nodal displacements (forces) are then derived from the values of each adherend 
displacement (force) at x=0 and x=∆ (see Fig.21). It is shown that the nodal displacement 
(force) are linearly dependent on the 12 integration constants, listed in C, through a coupling 
parameter matrix M (N) as: 
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where Qm, Rm and Sm (m=i,j,k,l) respectively refer to the normal forces, shearing forces and 
bending moments acting onto the edges of the bonded overlap (i.e. at nodes i,j,k,l), and where 
the coupling parameter matrix M (N) depends on both material and geometrical properties of 
the overlap. 
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Figure 21. Definition of the nodal displacement (forces) acting onto the BBe macro-element. 
At nodes i,j,k and l. The simplified 1D-beam adhesive stress analysis. Overview. uj: normal 
displacement of adherend (j) [mm]. wj: transverse displacement of adherend (j) [mm]. θj: 
bending angle of adherend (j) [rad]. Nj: Normal force of adherend (j) [N]. Vj: Shear force of 
adherend (j). Mj: Bending moment of adherend (j) [Nm]. 

In classical Finite Element (FE) theory, the coefficients of the stiffness matrix are then 
obtained by differentiating each component of the nodal forces by their corresponding nodal 
displacements: 
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so that: 

UKF BBe=            (29) 

But, considering the expression for the vector of nodal forces (F) as a function of the vector 
of integration constants (C) as well as the vector C as a function of the vector of nodal 
displacements (U), the stiffness matrix of the BBe macro-element can be computed as 
follows: 

-1NMKBBe =             (30) 
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Hypotheses. The simplified 1D-beam adhesive stress analysis is based on the following 
hypotheses: (i) both adherends are assumed as behaving as linear elastic Euler-Bernoulli 
laminated beams in coupled tension/flexion. 

Governing differential equations. Similarly to the bonded overlap, the local equilibrium of 
the outer adherends is expressed in the form of the following system of three differential 
equations (see Fig.22):   
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where N is the normal force in adherend, V the shearing force in adherend, M the bending 
moment in adherend and where the adherends constitutive equations are given as: 
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with A the extensional stiffness, B the coupling stiffness, and D the bending stiffness of the 
adherend (see Section 2.3.2). 

 

Figure 22. Schematic representation of the local equilibrium of the outer beam element. The 
simplified 1D-beam adhesive stress analysis. Overview. N: Normal force of adherend [N]. V: 
Shear force of adherend [N]. M: Bending moment of adherend [Nm]. 

Stiffness matrix of the outer beam adherends. Similarly to the solution procedure 
introduced in Section 2.3.2, the stiffness matrix of the outer beam adherends is derived from 
the resolution of the set of adherend governing differential equations (equations (31) and 
(31́ )). 

Then, and by successively differentiating and combining equations (31) and (31ʹ), it is shown 
that the problem is dependent on a number of 6 integration constants only:  
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So that the solution of the problem can be expressed in the form of: 
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As for the BBe macro-element, the outer beam displacements (forces) are expressed as 
functions of both solutions presented in equation (33). The nodal displacements (forces) 
acting onto the edges of the outer beam element are then computed from the values of the 
displacements (forces) at x=0 and x=∆ (see Fig.23). As for the BBe macro-element, it can be 
shown that the outer adherend nodal displacements (forces) are linearly dependent on the 6 
integration constants, through a new coupling parameter matrix M’  (N’ ): 
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where Qm, Rm and Sm (m=i,j) refer to the nodal normal forces, shearing forces and bending 
momenta acting onto the edges of the outer beam element (i.e. at nodes i,j). 

 

Figure 23. Definition of the nodal displacement (forces) acting onto the outer beam element. 
At nodes i,j. The simplified 1D-beam adhesive stress analysis. Overview. u: normal 
displacement of adherend [mm]. w: transverse displacement of adherend [mm]. θ: bending 
angle of adherend [rad]. N: Normal force of adherend [N]. V: Shear force of adherend. M: 
Bending moment of adherend [Nm]. 

Finally, and considering the expression for the vector of nodal forces (F) as a function of the 
vector of integration constants (C’) as well as the vector C’ as a function of the vector of 
nodal displacements (U), the stiffness matrix of the outer beam element can be expressed in 
the form of: 

-1
Beam MNK ''=           (35) 

so that: 
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UKF Beam=            (36) 
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and: 
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2.3.4. R
esolution procedures 

Load-based resolution procedure. To address the distribution of adhesive stresses along the 
overlap, the loads are applied to the master structure in the form of defining the vector Fpilot 
so that: 

KUF pilot =            (38) 

However it appears that both the stiffness matrices of the outer beam element and the BBe 
macro-elements are singular, so that the master stiffness matrix (i.e. assembled from both 
outer beam and BBe stiffness matrices) is singular too. 

To override this singularity problem it is required to reduce the dimension of the 
mathematical problem by removing the rows and columns of the master stiffness matrix 
corresponding to prescribed zero displacement conditions. Where Uʹ́́́ , Kʹ́́́  and F ʹ́́́

,pilot 
thereafter refer to the reduced form of the vector of nodal displacements, the master stiffness 
matrix and the vector of applied nodal forces. 

Then, the linear problem is solved in the form of inverting the reduced master stiffness matrix, 
and computing the reduced vector of nodal displacement Uʹ́́́  as: 

pilot1 FKU ,, ''' −=           (39) 

Finally, the complete vector of nodal displacements is reconstructed from the knowledge of 
the prescribed displacements so that we finally derive the vector of integration constants (C) 
from the reconstructed vector nodal displacement (U) as: 

UMC 1−=            (40) 

where M refers to the coupling parameter matrix defined in Section 2.3.2, and U to the vector 
resuming the 12 nodal displacements of the BBe element. 

Displacement-based resolution procedure. In constrained mathematical optimization 
problems, the Lagrange’s multipliers method is a technique to find the minimum (maximum) 
of a function whose variables are related by equality constraints. 
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Considering the constrained optimization problem: 
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ccyxgyxyxfP
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where both f and g have continuous first partial derivatives. The Lagrange multipliers method 
then suggests that if (x,y) is a minimum (maximum) of the constrained optimization problem 
(P), it exists a variable λ such that (x,y,λ) is a stationary point of the Lagrange’s function: 

( ) ( ) ( )( )cyxgyxfyxL −+= ,,,, λλ        (42) 

Classically, in structural mechanics, the function to minimize is the total potential energy, the 
variables the nodal Degrees of Freedom (DOFs) of the structure and the equality constraints 
expressed in the form of: 

pilotUBU =            (43) 

where U is the vector of nodal DOFs of the structure, B a nxp coupling parameter matrix and 
Upilot the set of p constrained displacements (i.e. not necessarily equal to zero). 

Due to its FE like formulation, the mathematical problem derived for the resolution of the 
joint equilibrium equations (see Section 2.3.2) take the form of finding the solution U so that: 

KUF =            (44) 

where F is the vector of applied nodal forces, U the vector of nodal displacements and K the 
specifically formulated stiffness matrix of the entire structure (i.e. the master stiffness matrix). 

Which appears to be the differential form of the minimization problem: 
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 (45) 

with n the number of nodal DOFs of the assembled structure, p the number of kinematic 
constraints and Q(U) the quadratic form associated to equation (44). Q(U) can remind the 
traditional expression associated to the total potential energy in structure mechanics. However 
it is important to keep in mind that the expression of the master stiffness matrix K (see Section 
2.3.2) does not fall from the minimization of the total potential energy, but from the direct 
resolution of the joint equilibrium equations. Indeed, the total potential energy associated to 
the structure is never defined or used within the formulation of both the BBe and the outer 
beam elements (see Section 2.3.2). The simplified 1D-beam adhesive stress analysis then 
simply takes advantage from its FE like formulation. 



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis 

 

- 49 - 

 

The basic idea of Lagrange’s multipliers method then consists in introducing p new 
undetermined parameters λi (i=1…p):  

( )pλλλ ⋯21=λT
         (46) 

so that (U,λ) the solution of the augmented minimization problem: 
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which can be rewritten as: 

0BλFKU
U
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  (48) 

Or: 
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So that the initial linear problem K=KU with BU=Upilot can be rewritten in the form of the 
augmented linear problem: 

LLL UKF =            (50) 

L1L,L FKU −=           (51) 

where: 
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T
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( )λUU TTLT =           (53) 

and: 

( )pilotTTLT UFF =          (54) 

Similarly to load-based resolution procedures, the vector of integration constants (C) is finally 
derived from the vector nodal displacement (U) as: 

UMC 1−=            (55) 

where M refers to the coupling parameter matrix defined in Section 2.3.2, and U to the vector 
resuming the nodal displacements of the BBe element. 

2.3.5. C
omparison with existing sandwich type analyses 
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As mentioned in Section 2.1, a large number of simplified approaches for the stress analysis 
of adhesively bonded joints can be found in the open literature (Volkersen 1938, Goland & 
Reissner 1944, Hart-Smith 1973, Williams 1975, Bigwood & Crocombe 1991, Hogberg 2004, 
Weissgraeber 2014). Those analyses are generally referred as sandwich-type analyses, and 
allow for the resolution of the set of governing differential equations from the knowledge of 
both the forces acting onto the edges of the bonded overlap and the material (geometrical) 
properties of the joint. Most of these analyses apply to linear elastic solicitations of both the 
adherends and the adhesive layer only. Here is presented a comparison between the presented 
simplified 1D-beam adhesive stress analysis and the most recent Weissgraeber’s sandwich 
type analysis. The comparison is performed on one of the most common adhesive joint 
configuration that can be found in practice, the SLJ. The SLJ has the advantage of involving 
both shear and peel of the adhesive layer in a simple geometrical configuration.  

In Fig.25 is presented a comparison between the simplified 1D-beam adhesive stress analysis 
and the most recent Weissgraeber’s sandwich-type analysis. The comparison is made in terms 
of both adhesive shear stress (a) and peel stress (b) distributions along the overlap. The 
comparison is performed in the case of linear elastic adhesive (adherends) loadings. The 
geometry of the specimen is balanced (i.e. symmetric upper/lower adherends). The effect of 
the adhesive thickness on the load path eccentricity is accounted. The overlap is meshed using 
a unique 4-nodes BBe element. The loads acting onto the edges of the bonded overlap are 
computed in advance of the analysis and directly applied to the sandwich structure. The 
overall geometry as well as the adhesive (adherends) material properties are given in Fig.24. 
To allow for the comparison of comparable results, the extensional and bending stiffnesses of 
the macro-element are computed from the plane-stress adherends Young’s moduli as follows:  

( )2* 1 jjj EE ν−=           (56) 

where Ej and νj respectively refer to the Young’s modulus and the Poisson’s ratio of 
adherends j (j=1,2) determined from bulk material properties. 
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Figure 24. Schematic representation of the Single-Lap Joint (SLJ) test configuration. Loads 
acting onto the sandwich edges. Comparison with existing sandwich-type analyses. Simplified 
1D-beam stress analysis versus Weissgraeber’s sandwich type analysis. e1: Thickness of the 
upper/lower adherend. P: applied load (=5000N/20mm). E1: Young’s modulus of the 
upper/lower adherend (=72400 MPa). ν1: Poisson’s ratio of the upper/lower adherend (=0.33). 
e: Thickness of the adhesive layer [mm]. E: Peel modulus of the adhesive layer (=185MPa). 
G: Shear modulus of the adhesive layer (=65MPa). 
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Figure 25. Comparison of the predicted adhesive shear (a) and peel (b) stress distributions 
along the overlap. Normalized deviation between FE and semi analytical results (c). Single-
Lap Joint (SLJ) configuration. Comparison with existing sandwich type analyses. Simplified 
1D-beam stress analysis versus Weissgraeber’s sandwich type analysis. 

It is shown from Fig.25 that even if in close agreement, the results obtained from the 
simplified 1D-beam adhesive stress analysis and those obtained from the Weissgraeber’s 
sandwich type theory are not exactly equivalent. These differences between the two models 
come from the less restrictive hypotheses of the Weissgraeber’s theory. Indeed, in his original 
theory, Weissgraeber did not limited the behavior of the bonded adherends to the classical 
Kirchhoff-Love assumptions and included the effect of the possible rotation between the 
cross-section and the bending line (i.e. leading to the addition of a second order derivative of 
the adhesive peel stress in (6a) and (6b)). 

However, due to its sandwich-type formulation, the Weissgraeber’s model is limited by the 
need to evaluate the forces acting onto the overlap edges in advance of the sandwich analysis. 
It then requires simplifying the overall joint behavior to allow for the a priori evaluation of the 
forces acting onto the edges of the sandwich structure. In the simplified 1D-Beam adhesive 
stress analysis, the outer adherends are presumed as behaving as classical Euler-Bernoulli 
beams (i.e. leading to the formulation of a specific outer beam element (see Section 2.3.3)). 

(b) 

(c) 
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The resolution of the governing differential equations is then ensured by solving equation 
F=KU, where F is the vector of nodal forces, U the vector of nodal displacements, and K the 
specifically formulated master stiffness matrix of the structure. The forces acting onto the 
edges of the overlap have then not to be evaluated in advance of the simplified 1D-beam 
adhesive stress analysis, but lie from the resolution procedure itself. It then allows for the 
modeling of various combinations of BBe and outer beam elements with great simplicity (see 
Fig.18). However, and since the less restrictive hypotheses of the Weissgraeber’s theory 
simply lead to the addition of a second order derivative of the adhesive peel stress in (6a) and 
(6b), a dedicated BBe macro-element could be easily developed on the basis of 
Weissgraeber’s equilibrium equations. However the guiding equations required for the 
development of this dedicated higher-order BBe macro-element are not provided within the 
present manuscript. 

2.3.6. C
omparison with Finite-Element (FE) analyses 

As presented in Chapter 1, the FE method is a computational method which allows for the 
approximate solution of various engineering problems to be assessed. The stress analysis of 
adhesively bonded joints is one of these problems. Although this general procedure is 
computationally expensive and can lead to numerical convergence issues (i.e. the mesh of 
adhesive layers has to be intensively refined to capture the local stress gradient at bondline 
edges), the FE method allows for the study of various joint configurations (e.g. various 
adherends geometries, various adhesive geometries, various loading conditions, etc.). 

In Fig.27 is presented a comparison in terms of adhesive peel stress (b) and shear stress (c) 
distributions between the results obtained from the simplified 1D-beam adhesive stress 
analysis and those of 2D Finite Element Analyses (FEA) involving cohesive interface 
elements. The comparison is performed in the case of linear elastic loadings of both the 
adhesive and the adherends and applies to SLJ configurations only. The adhesive bondline is 
modelled using cohesive interface elements and both adherends meshed using classical 2D 
plane-stress elements. The specimen geometry as well as the adhesive (adherends) material 
properties are given in Fig.26. Similarly to Section 2.3.5, and to account for the apparent 
stiffness of the 2D plane-stress elements, the extensional and bending stiffnesses of the 
macro-element are computed from the plane-stress adherends Young’s moduli as provided in 
equation (56).   
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Figure 26. Schematic representation of the Single-Lap Joint (SLJ) test configuration. 
Comparison with Finite Element (FE) analyses. Simplified 1D-beam stress analysis versus 
Finite Element (FE) analyses. e1: Thickness of the upper/lower adherend. P: applied load 
(=5000N/20mm). E1: Young’s modulus of the upper/lower adherend (=72400 MPa). ν1: 
Poisson’s ratio of the upper/lower adherend (=0.33). e: Thickness of the adhesive layer [mm]. 
E: Peel modulus of the adhesive layer (=185MPa). G: Shear modulus of the adhesive layer 
(=65MPa). 
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Figure 27. Comparison of the predicted adhesive shear and peel (a) stress distributions along 
the overlap. Adherends thickness =3mm. Normalized deviation between Finite Element (FE) 
and semi-analytical shear (b) and peel (c) stress distributions for various adherends 
thickness/length ratios. Single-Lap Joint (SLJ) configuration. Comparison with Finite 
Element (FE) analyses. Simplified 1D-beam stress analysis versus Finite Element (FE) 
analyses. 

It is seen from Fig.27 that the results of the simplified 1D-beam adhesive stress analysis are in 
close agreement with those of 2D FE analyses for various adherends thickness/length ratios 
(e.g. 1/60, 3/60, 6/60, 9/60, 12/60 and 15/60). However it is also seen that the normalized 
deviation between the simplified 1D-beam adhesive stress analysis and the 2D FE analyses 
increases for increasing adherends thickness/length ratios. This increasing deviation comes 
from two reasons. First, in the linear elastic 1D-beam analysis the adherends kinematics is 
simplified so that it is relevant to the classical Euler-Bernoulli beam theory. However, the 
classical Euler-Bernoulli beam theory applies to the mechanical response of beams that 
exhibit small enough thickness/length ratios (i.e. typically above 1/10). The increasing 
simulated adherends thickness/length ratios then progressively put into question the 
legitimacy of such simplified kinematics in the modelling of the overall joint response. A 
possible solution to overcome this limitation could be to consider higher-order beam theory.

(b) 

(c) 
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2.4. I
ntroduction of adhesive material nonlinearities 

The effective adhesive stress-strain relationship has been shown as a critical parameter 
involved in the ruin of adhesively bonded joints (Hart-Smith 1973a, Hart-Smith 1973b, 
Lachaud 2009, Crocombe et al. 2009, Paroissien et al. 2013). Since simple linear elastic 
adhesive stress analyses are not able to address the complete behavior of such structures, an 
effort has been made on the introduction of nonlinear adhesive material behaviors to the 
simplified 1D-beam adhesive stress analysis. 

This section is then dedicated to the development of a generic procedure that allow for various 
adhesive material nonlinearities to be introduced in the particular formulation of the 
simplified 1D-beam adhesive stress analysis. The suggested procedure is partly inspired by 
the CZM theory. A particular emphasis has been voluntarily given to the modeling of bilinear 
adhesive stress-strain evolution laws. However the given procedure is not limited to these 
particular behaviors only and has been successfully applied to various other shapes of 
adhesive stress-strain relationships (see Chapter 3). The proposed adhesive material models 
are formulated under a two dimensional mixed-mode model that account for the possible 
interaction (interdependency) between both pure mode I and pure mode II adhesive stress-
strain relationships. For convenience, the adhesive stress-strain relationships will be thereafter 
referred as the adhesive traction separation laws. However it does not limit the following 
procedure to damaging behavior only. 

2.4.1. D
escription of the interface models 

Description of the pure mode interface models. As presented in Chapter 1, in CZM the 
description of the damage along an interface results from the definition of the interface pure 
mode traction-separation laws. These pure mode traction-separation laws resume both the 
evolution of the interface traction load as a function of the corresponding interface 
displacement jump (or deformation) and the criterion met to propagate the cohesive process 
zone (see Fig.28). 
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Figure 28. Schematic representation of the cohesive traction separation laws. Description of 
the cohesive process zone. Description of the pure mode interface models. Introduction of 
adhesive material nonlinearities. 

In the case of pure mode solicitations, the local response of the interface results from the 
related pure mode traction-separation law only. However, in the case of mixed-mode loading 
(i.e. combining both shearing and through-thickness deformations of the adhesive layer) the 
local response of the interface results from the interaction (combination) of both the traction 
separation laws in pure mode I and pure mode II (see Fig.29). 
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Figure 29. Schematic representation of the interaction between the pure mode cohesive 
traction separation laws in the case of mixed mode adhesive solicitations. GIc the fracture 
energy in pure mode I. GIIc th fracture energy in pure mode II. Description of the mixed 
mode interface models. Introduction of adhesive material nonlinearities. 

Description of the mixed-mode I/II interface model. 

Description of the mixed-mode I/II guidance parameters. As presented in Chapter 1, the 
description of the damage along an interface relies upon the definition of the related pure 
mode traction-separation laws. These pure mode traction-separation laws resume both the 
evolution of the adhesive surface traction load and the corresponding interface displacement 
(or deformation) and the criterion met to propagate the cohesive process zone (see Fig.28). 

Because of the 1D-beam foundation of the linear elastic system of governing differential 
equations, it is necessary to account for the possible interaction of the two pure mode traction 
separation laws. To account for this possible interaction, two mixed-mode guidance 
parameters are defined: 
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where β, δI, δII, δm, respectively refer to the mixed-mode ratio, the pure mode I (peel) 
deformation, the pure mode II (shear) deformation and the mixed-mode equivalent 
deformation of the interface. A schematic representation of those parameters is given in 
Fig.30. 

 

Figure 30. Schematic representation of the mixed-mode guidance parameters. Description of 
the mixed mode interface models. Introduction of adhesive material nonlinearities. 

Combination of the pure mode interface models. The basic idea of mixed-mode modeling is 
then to combine the interface pure mode traction-separation laws through both initiation and 
propagation criteria (see Fig.29 and Fig.30). The effective properties of the adhesive layer 
(i.e. the projections of the mixed mode traction separation law) are then computed with 
respect to both the local mixed-mode ratio and the corresponding initiation (propagation) 
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criteria. Numbers of these initiation (propagation) criteria can be found in the open literature 
(see Tab.1). 

Tab 1. Examples of initiation (propagation) mixed-mode criteria. Description of the mixed-
mode interface model. Combination of the pure mode adhesive behaviors. Introduction of 
adhesive material nonlinearities. 

Power law criterion 
(Reeder 1992, Anyfantis 2012) 

Polynomial law criterion 
(Reeder 1992) 

  

Interaction criterion 
(Reeder 1992) 

Benzeggagh-Kenane criterion 
(Reeder 1992, Kenane 1997) 

  

Exponential KI/K II criterion 
(Reeder 1992) 

GT criterion 
(Reeder 1992) 

  

  

The list of criteria provided in Tab.1 is not exhaustive. The first remark that can be made is 
that most of these initiation (propagation) criteria reveal the need of defining both initiation 
and propagation energies associated to the transition of a phase to another. For simplification 
purpose, the power law criterion (k=n) will be thereafter considered only. However the 
following procedure is not limited to this particular criterion only. 

Analytical projection of the mixed-mode I/II interface model in the case of bilinear pure 
mode traction separation laws. To allow for the combination of these pure mode traction 
separation laws, both initiation and propagation fracture energies are then required. The 
initiation and propagation energies are then defined as: 

( ) IIIidG
i

iiii ,,
0,

00, == ∫
δ

δδσ         (58) 

( ) IIIidG
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iiiCi ,,
,

0, == ∫
δ

δδσ         (59) 

Where Gi,0 and Gi,C respectively refer to the pure mode i (i=I,II ) energies accumulated at 
initiation and propagation of the cohesive process zone, δi to the pure mode i (i=I,II ) interface 
deformation and σi(δi) to the interface traction load resulting from δi. 

It is seen from equations (58) and (59) that the estimation of the pure mode initiation and 
propagation fracture energies then requires a mathematical description of the pure mode 
traction separation laws. The bilinear traction separation law is a well-established interface 
behavior that assumes first a linearly increasing relationship between the interface 
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displacement jump (or deformation) and the resulting interface traction load. Then, the 
damage initiation is described by a linear traction softening behavior. Finally, the propagation 
of the damage is modeled by virtually setting the resulting traction to zero, hence modeling 
the creation of two traction-free surfaces (physical cracking) (see Fig.31). 

 

Figure 31. Representation of an idealized bilinear interface traction separation law. 
Description of the mixed-mode interface model. Analytical projection of the mixed-mode 
interface model in the case of bilinear pure mode traction separation laws. Introduction of 
adhesive material nonlinearities. 

In the case of bilinear pure mode traction separation laws, the evolution of the interface 
traction load can then be described mathematically as (see Fig.31): 

( ) iiii k δδσ =  for [ ] IIIiii ,,,0 0, =∈ δδ        (60) 

( ) ( )
0,,

,0,

iCi

iCiii
ii

k

δδ
δδδ

δσ
−

−
=  for [ ] IIIiCiii ,,, ,0, =∈ δδδ       (61) 

( ) 0=ii δσ  for [ [ IIIiCii ,,,, =+∞∈δδ         (62) 

With ki the initial stiffness of the interface in pure mode i (i=I/II ), and where the evolution of 
the damage of the interface is characterized by the damage variable (D) as follows (see 
Fig.31): 

( ) 0=iD δ  for [ ] IIIiii ,,,0 0, =∈ δδ         (63) 

( ) ( )
( )0,,

,,

iCii

Ciici
iD

δδδ
δδδ

δ
−
−

=  for [ ] IIIiCiii ,,, ,0, =∈ δδδ       (64) 

( ) 1=iD δ  for [ [ IIIiCii ,,,, =+∞∈δδ         (65) 
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Then, the total amount of energy consumed to initiate the damage in pure mode i (i=I/II ) can 
be expressed in the form of:  

( ) IIIikdkdG iiiiiiiii

ii

,,
2

1 2
0,000,

0,0, ==== ∫∫ δδδδδσ
δδ

     (66) 

And the total amount of energy consumed to physically crack the interface in pure mode i 
(i=I/II ) in the form of:  

( ) ( ) ( ) IIIikdddG CiiiiiiiiiiiiCi

Ci

i

iCi

,,
2

1
,0,00,

,

0,

0,, ==+== ∫∫∫ δδδδσδδσδδσ
δ

δ

δδ
  (67) 

Where δi,0 and δi,C respectively refer to the initiation and propagation thresholds of the 
interface when subjected to pure mode i (i=I/II ) interface solicitations. 

Assuming the shape of the projected traction separation laws as agreeing the initial pure mode 
traction separation laws, the expression of the mixed-mode I/II initiation and propagation 
fracture energies can be directly derived from equations (66) and (67) by adding the 
superscript m, so that: 

( ) IIIikdG m
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m
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1
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, === ∫ δδδδσ
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       (69) 

Where δi,0
m and δi,C

m respectively refer to the projected initiation and propagation thresholds 
of the interface when subjected to mixed-mode I/II interface solicitations. 

Then, assuming a damage initiation criterion taking the form of a power law criterion (k=n) 
gives: 
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Which can be expressed in terms of the interface initiation thresholds, as follows: 
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Finally, assuming a damage propagation criterion taking the form of a power law criterion 
(k=n) gives: 
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Which can be expressed in terms of both the interface initiation and propagation thresholds so 
that: 
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Projection of the mixed-mode I/II interface model using numerical procedures. As presented 
in the previous subsection, and considering the projected elastic an fracture energies (Gi,0, 
Gi,C) as functions of the effective pure mode traction separation thresholds (δi,0, δi,C), both 
initiation and propagation criteria can be expressed in the form of: 

( ) IIIiF Cii
m
Ci

m
i ,,0,,,, ,0,,0, ==βδδδδ        (84) 

where F(δi,0
m,δi,C

m,δi,0,δi,C,β) refers to a function of the effective initiation and propagation 
thresholds (δi,0

m, δi,C
m), the mixed-mode ratio (β), and the initial pure mode traction separation 

properties (δi,0, δi,C). 

However, since simple algebraic expressions of the effective initiation (propagation) 
thresholds cannot be always written (e.g. power law criterion with k≠n, initiation criterion 
κ≠0, Benzeggagh-Kenane critetion η≠0, etc.) an iterative resolution procedure based on the 
false position method is derived. It results in the pure mode projections of the mixed-mode 
traction separation law to be easily computable for various nonlinear adhesive stress-strain 
evolution laws and (or) initiation (propagation) criteria. Assuming two initial sets of 
physically acceptable test values (a, b), the solution of the problem Fk(δi,0

m,δi,C
m,δi,0,δi,C,β)=0 

is iteratively approached using the root of the secant line between (a, F(a)) and (b, F(b)) so 
that (a, b) will naturally converged (by construction) toward the root of equation (84) (see 
Fig.32). 
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Figure 32. Schematic representation of the false position method. Estimation of the effective 
initiation (propagation) thresholds for various initiation (propagation) criteria. Description of 
the mixed-mode interface model. Projection of the mixed-mode interface model using 
iterative numerical procedures. Introduction of adhesive material nonlinearities. 

The given procedure then allows for the effective properties (δi,0
m, δi,C

m) of the interface 
facing mixed-mode loadings to be computed from both the mixed-mode ratio (β) an the 
initial pure mode traction separation properties (δi,0, δi,C) for various nonlinear adhesive 
stress-strain evolution laws and (or) initiation (propagation) criteria (Gavoille 2014). 

2.4.2. O
verview of the Newton-Raphson iteration procedure 

As for the false position method the Newton-Raphson procedure is a numerical procedure 
which allows for the root of non-linear equations to be iteratively approached. However the 
Newton-Raphson procedure is particularly well-suited for approaches that use FE like 
formulations. The method then consists in building a vector series Xn converging towards the 
solution X of a non-linear problem F(X)=0. To allow for the next iteration Xn+1 to be 
computed from the knowledge of Xn, the function F(X) is approached by its first order Taylor 
expansion around Xn such that: 

( ) ( ) ( )( )nnnnn FFF XXXXX −+=≈ ++ 11 '0        (85) 

Assuming Xn+1 as satisfying F(Xn+1)≈0, the next iteration Xn+1 can be computed as follows: 

( )[ ] ( )nnnn FF XXXX
11 '

−+ −=         (86) 

Where F’(X) refers to the tangent linear application associated with the function F(X). Then, 
the exact value of F(Xn+1) is recomputed and the function F(X) re-linearized using its first 
order Taylor expansion around Xn+1. The given procedure is then repeated until the difference 
between two following iterations falls below a given convergence criterion. The re-
computation of F(Xn+1) is generally referred as the projection step. In the case of linear 
applications, the derivative F’(X) is referred as the Jacobian matrix of F(X) at point X. 

One of the greatest advantages of the Newton-Raphson procedure is that the convergence rate 
near to the solution X is quadratic. However, the use of this procedure requires the 
computation of the tangent linear application at each convergence step, implying time-
consuming calculations, possible divergence of the algorithm and (or) numerical issues. 

Since the computation of the Newton-Raphson iteration Xn+1 has not necessarily to be 
approached using the first order Taylor expansion of F(X), numbers of latter authors 
suggested the use of other linear applications (Raydan 2011). These modified procedures are 
referred as quasi Newton-Raphson procedures. The false position method can be seen as a 
modified Newton-Raphson procedure.
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2.4.3. Local equilibrium of the bonded overlap 

As presented in Section 2.3.4, and because of the FE like formulation of the simplified 1D-
beam adhesive stress analysis, the equilibrium of the adhesive joint specimen is ensured by: 

KUF pilot =            (87) 

Which is equivalent to the minimization problem of the quadratic form: 

( ) pilotT FUUKUU T−=Q          (88) 

where K refers to the master stiffness matrix (i.e. the stiffness matrix of the entire structure), 
U to the vector of nodal displacements and Fext to the vector of applied nodal loads as defined 
in Section 2.3.4.  

However, it is seen from Fig.31 that in the case of nonlinear adhesive stress-strain evolution 
laws the solution of F=KU is by construction equivalent to the solution of: 

UKF (S)pilot =  

Which is equivalent to the minimization problem of the quadratic form: 

( ) pilot(S)T FUUUKU T−=Q          (89) 

where K(s) refers here to the secant master stiffness matrix, stiffness matrix that depends on 
the secant stiffness properties of the adhesive layer, U to the vector of nodal displacements 
and Fpilot

 to the applied nodal forces. 

2.4.4. A
daptation of the Newton-Raphson iteration procedure to the particular formulation 
of the BBe element 

Adaptation of the general Newton-Raphson procedure. For simplification purpose, the 
following demonstration will now refer to the equilibrium of a unique BBe macro-element. 
However it can be easily extended to the entire structure using the classical FE assembly 
rules. As a result, the vector U as well as Fpilot will now refer to the vectors of nodal 
displacements and nodal forces applying/acting onto a unique BBe macro-element. 

Assuming δUT as kinematically acceptable, the aforementioned equilibrium can be expressed 
as: 

( ) ( )ULUL extint =           (90) 

where L int=K(s)U and Lext=Fpilot respectively refer to the internal reactions and the external 
forces acting on the BBe element. It is indicated that in the general case, both L int and Lext 
depend on the vector of nodal displacements U. Considering that no following forces, such as 
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load pressure or centrifugal forces, are applied to the joint, Lext does not depend on the vector 
of nodal displacements U. 
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The expression of the element equilibrium can then be simplified as: 

( ) extint LUL =            (91) 

Defining the linear application R as the difference between L int and Lext, the research of the 
solution of the element equilibrium can be reduced to the research of the root of R(U)=0. For 
convenience, the linear application R(U) will be thereafter referred as the vector of 
imbalanced loads. 

( ) ( ) extint LULU −==0R          (92) 

The research of the solution of the non-linear problem R(U)=0 can thus be seen as a direct 
application of the Newton-Raphson procedure. Considering Un as an increasingly better 
estimation of the equilibrium solution U, the next iteration Un+1 can be computed as follows: 

( )[ ] ( )nnnn RR UUUU
11 '

−+ −=         (93) 

Within the original Newton-Raphson procedure, the tangent linear application F’(X) has to be 
computed at each convergence iteration. In equation (93), Rʹ(U) refers to the tangent linear 
application associated with R(U). In the absence of following forces, the tangent linear 
application Rʹ(U) can be expressed as: 
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where the derivative of L int refers to the Jacobian matrix of the linear application L int=KSU 
(see equation (95)). It is indicated that if following forces are applied to the structure, the 
tangent linear application Rʹ(U) cannot be reduced to the single derivative of L int. 
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However, as the secant stiffness matrix K(s) depends by construction on the BBe element 
vector of nodal displacement U, the exact computation of the tangent linear application is 
extremely complicated and results in non-necessary extra computation time. It is then decided 
to focus on quasi Newton-Raphson procedures, so that the computation of the tangent linear 
application Rʹ(U) is no longer required. 
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Computation of the vector of imbalanced loads. Since the exact computation of the 
imbalance load vector highly determines the convergence of the series Un toward the 
equilibrium solution U, a particular attention has to be given to its correct estimation. As 
previously presented, the imbalance load vector is defined as the difference between the 
vectors of internal reactions L int and applied forces Lext acting on the BBe element (see 
equation (90)). 

The vector of internal reactions L int=K(s)U can then be computed from both the secant 
stiffness matrix K(s) of the BBe element and the vector of nodal displacements U. However, 
the secant stiffness matrix is defined on a set of constant adhesive peel and shear moduli (see 
Section 2.3.2). Since the projection of the adhesive stresses can lead to dissimilar left side and 
right side adhesive secant stiffnesses (see Fig.33), it is decided to update the secant stiffness 
matrix using the averaged peel and shear moduli along the element. 

 

Figure 33. Dissimilar left side and right side adhesive secant moduli. Computation of the 
secant stiffness matrix K(s). Adaptation of the Newton-Raphson iterative procedure. 
Computation of the vector of imbalanced loads. Introduction of adhesive material 
nonlinearities. 

The vector Lext=Fpilot can in turn be computed from the external forces applied to the BBe 
element. Using the definition of the secant stiffness matrix K(s), Lext can be expressed from the 
secant stiffness matrix at iteration Un-1 and the vector of the BBe element nodal displacements 
at iteration Un. 
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Finally, the vector of imbalanced loads R(U) can be expressed in the form of: 

( ) ( ) ( ) nnnnR UUKUUKU (S)(S) −= −1         (96) 

where n refers to the current iteration of the Newton-Raphson algorithm. 

Implementation of the modified Newton-Raphson procedure. Finally, by meshing the 
adhesive overlap with an adequate number of BBe macro-element (only one when facing 
linear elastic deformations), it is then possible to address the nonlinear response of the 
adhesive layer so that: 

1. Initialization of the first iteration of the vector of nodal displacements (U=0) 
2. Computation of the initial elastic stiffness matrix of each element (KBBe) 
3. Assembly of the initial master stiffness matrix (K) 
4. Assembly of the vector of applied loads (F) 
5. Initialization of the vector of imbalanced loads (R=-F) 
6. Computation of the first (next) iteration of vector U (Un+1=Un-K-1R) 
7. Computation of the mixed-mode traction-separation parameters 
8. Projection of the adhesive stresses (T, S) with respect to the computed effective 

traction-separation properties. 
9. Computation of the updated secant stiffness matrix of each element (KBBe) 
10. Assembly of the updated secant master stiffness matrix (K) 
11. Computation of the updated vector of imbalanced loads (R) 

(Repeat steps 6 to 11 until a specified convergence criterion is satisfied) 

2.4.5. C
omparison with existing sandwich type analyses 

A large amount of existing closed form stress analyses applies to linear elastic adhesive 
solicitations only. However realistic adhesive stress-strain evolution laws are generally not 
purely elastic so that simple linear elastic strength analyses are unable to address the complete 
behavior of such structures. In (Hart-Smith 1973a), the author developed a method for 
accounting for the plasticity of the adhesive layer in classical closed form stress analyses. 

In (Hart-Smith 1973a), the author suggests introducing a new parameter – termed d – to 
separate the adhesive layer in two distinct parts (see Fig.34). This new parameter being 
referred to as the size of the elastic process zone. In the first part, the adhesive layer is 
presumed as facing linear elastic deformations only. In the second part, the adhesive layer is 
presumed as facing perfectly plastic deformations only. This separation of the adhesive layer 
then results in writing a set of two governing linear differential equations. Each one valid in 
either the linear elastic part of the adhesive layer or the perfectly plastic part of the adhesive 
layer. Finally, by solving independently each linear differential equations plus ensuring the 
continuity of both solutions at the interface (x=±d/2), the author comes to derive an additional 
set of equations allowing for the computation of the new parameter d. 
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Figure 34. Comparison with existing sandwich type analyses. Hart-Smith’s nonlinear 
sandwich type analysis. Introduction of adhesive material nonlinearities. 

Hart-Smith’s sandwich type analysis in pure mode II. In (Alfredson 2004), the author 
suggests using the solution procedure introduced and described in (Hart-Smith 1973a) in the 
particular case of the End-Notched Flexure test specimen (see Fig.35). 

 

Figure 35. Comparison with existing sandwich type analyses. Hart-Smith’s sandwich type 
analysis in mode II. End-Notched Flexure test specimen. Introduction of adhesive material 
nonlinearities. 

By developing and simplifying the adhesive equilibrium equations in the case of an idealized 
perfectly plastic adhesive behavior (see Fig.36), the author derives a set of three linear 
differential equations, so that: 
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where κ2=8k/Et, T=3/8*P/bt, k the initial adhesive stiffness in pure mode II and ν the 
evolution of the adhesive mode II (shear) deformation along the overlap, and where N, V and 
M respectively refer to the normal force, shearing force and bending moment in both upper 
and lower adherends. 

Then, the respective solutions of equations (98) are given by: 
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Figure 36. Representation of an idealized elastic perfectly plastic interface traction separation 
law. Comparison with existing sandwich type analyses. Hart-Smith’s sandwich type analysis 
in pure mode II. End-Notched Flexure test specimen. Introduction of adhesive material 
nonlinearities. 
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By ensuring the continuity of the solutions (and their first derivatives) at point x=d and x=c, 
the author comes to derive a system of four additional equations so that: 
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And the boundary conditions: 
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To determine the six integration constants C1, C2, C3, C4, C5 and C6, the author finally 
suggests considering the length of the plastic process zone d as an independent variable (i.e. 
variable that can be determined independently from equations (100) and (101)). To determine 
this length of the plastic process zone d, the author then uses the equation provided by the 
knowledge of the level of deformation at point x=d (ν(d)=νb), so that: 
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By combining equation (100) with equations (101) and (102), the author then derives the 
guiding equation: 
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where the length of the plastic process zone d is obtained as the root of equation (103). No 
simple algebraic expression of d can be written so that it might be estimated using numerical 
iterative procedures (e.g. the false position method, etc). 
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Finally, considering d as fully determined by equation (103), it may be observed that the set 
of linear equations formed by equations (100) and (101) can be expressed in the form of a 
simple matrix system, so that: 

BAC =            (104) 
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The integration constants C1, C2, C3, C4, C5 and C6 being finally determined as: 

BAC 1−=            (108) 

Hart-Smith’s sandwich type analysis in pure mode I. The solution procedure presented in 
Section 2.4.5.1. applies to pure mode II solicitations of the adhesive layer only. However it 
can be easily extended to the case of pure mode I solicitations (see Fig.37). 

 

Figure 37. Comparison with existing sandwich type analyses. Hart-Smith’s sandwich type 
analysis in mode I. Double Cantilever Beam test specimen. Introduction of adhesive material 
nonlinearities. 
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Leading to the following set of two linear differential equations: 
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where κ4=24k/Et3, κ’= κ/√2 , k the new initial adhesive stiffness in pure mode I and ε the 
evolution of the adhesive mode I (peel) deformation along the overlap, and where N, V and M 
respectively refer to the normal force, shearing force and bending moment in both upper and 
lower adherends. 

Then, the respective solutions of equations (110) are given by: 

( ) [ ]

( ) ( ) ( ) ( ) ( ) [ ]








∈+++=

∈−+++=

−− LdxxeCxeCxeCxeCx

dxx
k

S
CxCx

C
x

C
x

xxxx

p

,forcossincossin

,0for
2426

8765

44
43

2231

κκκκε

κε

κκκκ
 (111) 

 

Figure 38. Representation of an idealized elastic perfectly plastic interface traction separation 
law. Comparison with existing sandwich type analyses. Hart-Smith’s sandwich type analysis 
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in pure mode I. Double Cantilever Beam test specimen. Introduction of adhesive material 
nonlinearities. 

Ensuring the continuity of the solutions (and their first derivatives) at point x=d gives: 
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And the boundary conditions: 
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where trig(x)=cos(x)+sin(x). 

To determine the eight integration constants C1, C2, C3, C4, C5, C6, C7 and C8, the length of 
the plastic process zone d is again considered as an independent variable (i.e. variable that can 
be determined independently from equations (112) and (113)). The last equation required is 
provided by the knowledge of the level of deformation at x=d (ε(d)=εb), so that: 
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The combination of equations (112) (113) and (114) finally providing the guiding equation 
that allows for the computation of the length of the plastic process zone (d). 

Finally, considering d as fully determined by the guiding equation resulting from the 
combination of equations (112) (113) and (114), it may be observed that the set of linear 
equations formed by equations (112) and (113) can be expressed in the form of a simple 
matrix system, so that: 

BAC =            (115) 
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The integration constants C1, C2, C3, C4, C5, C6, C7 and C8 being finally determined as: 

BAC 1−=            (118) 

Comparison with the simplified 1D-beam adhesive stress analysis. 

Description of the simplified 1D-beam adhesive stress analyses. Here is investigated the 
mechanical response of two adhesive joint specimens (e.g. ENF, DCB). Those specimens are 
characteristic of pure mode I and pure mode II adhesive solicitations and have been widely 
shown as consistent with the experimental characterization of adhesive joint interfaces 
(Kenane 1997, Reeder 1992). A schematic representation of each simplified 1D-beam 
adhesive stress analysis is presented in Fig.39. 
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Figure 39. Schematic representation of End-Notched Flexure (ENF), Double Cantilever 
Beam (DCB). Description of the simplified 1D-beam adhesive stress analyses. Comparison 
with the simplified 1D-beam adhesive stress analysis. 

The adhesive overlap is meshed using n uniformly distributed BBe elements. Each outer 
adherend is meshed using a unique outer beam element. Both adherends are modeled as 
monolithic beams. The adhesive layer is modeled using an elastic perfectly plastic traction-
separation law. Both the material and geometrical properties of the studied specimens are 
given in Tab.2. 

Tab 2. Comparison with existing sandwich type analyses.  Set of material and geometrical 
properties. End Notched Flexure + Double Cantilever Beam test specimens. Introduction of 
adhesive material nonlinearities. 
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H 4 k 250/e 
W 20 νb (εb) 0.00966 
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Convergence of the simplified 1D-beam adhesive stress analyses. As presented in Section 
2.3.2, when facing purely linear elastic deformations, the adhesive overlap can be modeled 
using a unique 4-nodes BBe element. However, when facing nonlinear adhesive 
deformations, the suggested solution procedure needs the adhesive overlap to be meshed with 
an adequate number of BBe elements to address the correct behavior of the adhesive layer. 
Since the adhesive overlap has to be meshed, the results obtained can depend on its 
refinement. To allow for the comparison of converged results, the mesh of the overlap using 
BBe macro-elements was optimized so that the solutions obtained were independent on its 
refinement (see Appendix 5). 

Comparison with Hart-Smith’s sandwich type analyses. In Fig.40 and Fig.41 is presented a 
direct comparison between the adhesive shear and peel stress distributions obtained from the 
reworked Hart-Smith’s sandwich type analyses and the simplified 1D-beam adhesive stress 
analysis in the case of perfectly plastic adhesive traction separation evolution laws for both 
ENF and DCB adhesive test samples. Both material and geometrical properties of the studied 
specimens are given in Tab.2.  

 
 

 

Figure 40. Comparison between semi analytical and sandwich type results in terms of 
adhesive shear stress distribution. Comparison with existing sandwich type analyses. Hart-

 

 

(b) 

Norm
alized 
deviat

ion 
betwe
en HS 
and 
semi 

analyt
ical 

result
s 



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis 

 

- 80 - 

 

Smith’s sandwich type analysis in pure mode II. End-Notched Flexure test specimen. 
Introduction of adhesive material nonlinearities. 
 

  
 

 

Figure 41. Comparison between semi analytical and sandwich type results in terms of 
adhesive peel stress distribution. Comparison with existing sandwich type analyses. Hart-
Smith’s sandwich type analysis in pure mode I. Double Cantilever Beam test specimen. 
Introduction of adhesive material nonlinearities. 

It is seen from Fig.40 and Fig.41 that the results obtain from the simplified 1D-beam adhesive 
stress analysis and the reworked Hart-Smith’s sandwich type analyses are in close agreement 
(in both pure mode I and pure mode II). However, peaks of normalized deviations can be 
observed where the adhesive layer experiences the highest values of shearing (peeling) 
adhesive stress gradients. These peaks of normalized deviation can be explained by the fact 
that the updated secant stiffness matrix (i.e. simplified 1D-beam adhesive stress analysis) is 
computed through the averaged adhesive secant moduli along each BBe element. Which leads 
to an increasing deviation with theoretical analyses at locations where the adhesive layer 
experiences the most important stress gradients. 
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It is also seen from Section 2.4.5 that the reworked Hart-Smith’s sandwich type analyses is 
highly dependent on the type of adhesive specimen and (or) loading/boundary conditions that 
are applied to the structure. Indeed, both equilibrium equations and boundary conditions have 
to be reworked for each new test configurations and can lead to increasingly complex 
algebraic expressions for the final solution. The advantage of the suggested simplified 1D-
beam adhesive stress analysis then lies in the adequate use of the FE methodologies. Thus 
taking advantage of the flexibility of FE techniques (e.g. wide application range, simple 
assembly procedure, etc.) and the simplicity (robustness) of closed form stress analyses (e.g. 
limited number of macro-elements, results independent on the mesh refinement when facing 
linear-elastic adhesive deformations, etc). 

2.4.6. C
omparison with Finite Element (FE) analyses 

Description of the Finite-Element (FE) models. Here is investigated the mechanical 
response of three adhesive joint specimens (i.e. ENF, DCB & MMB). Those specimens are 
characteristic of pure mode I, pure mode II and mixed-mode I/II adhesive solicitations, and 
have been widely shown as consistent with the experimental characterization of adhesive 
interfaces (Kenane 1997, Reeder 1992). A schematic representation of each specimen is 
presented in Fig.42. 
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Figure 42. Schematic representation of End-Notched Flexure (ENF), Double Cantilever 
Beam (DCB). Description of the Finite Element (FE) models. Comparison with Finite 
Element (FE) analyses. 

The geometry of each specimen is balanced. The simulations are performed using SAMCEF 
FE Code v14-1.02. Both adherends are modeled as facing purely linear elastic deformations 
only (see Tab.3). The adhesive layer is modeled using a bi-linear cohesive traction-separation 
law. Both linear energetic initiation and propagation criteria are assumed (see Tab.4). 

Tab 3. Comparison with existing Finite Element (FE) analyses. Adherends elastic properties. 
Introduction of adhesive material nonlinearities. 

Adherends elastic properties. 
E 74200   MPa ν 0.34 
G 27900   MPa  - 

 

Tab 4. Comparison with existing Finite Element (FE) analyses. Adhesive cohesive properties. 
Introduction of adhesive material nonlinearities. 

 

 

 

 

The adherends are meshed using 2D SAMCEF type T015 elements. SAMCEF type T015 
elements have linear interpolation functions and 4 internal modes (ie. 4 nodes and 12 degrees 
of freedom). The normal integration scheme is chosen. The adhesive interface is meshed 
using 2D cohesive interface SAMCEF type T146 elements. SAMCEF type T146 elements 
have linear interpolation functions and no internal modes (ie. 4 nodes and 8 degrees of 
freedom). Because of numerical convergence issues, the Gauss-Lobatto integration scheme is 
chosen (Samcef 2013). In purpose of comparing comparable analyses, loads and boundary 
conditions are applied to the mesh so that it fits at best the as conditions described in the 
simplified 1D-beam adhesive stress analysis (see Fig.43).  
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Figure 43. Schematic representation of the applied boundary conditions. Clamped boundary 
condition and simply supported boundary condition. Description of the Finite Element (FE) 
models. Comparison with Finite Element (FE) analyses. 

Finally, to address the complete nonlinear response of the adhesive specimen when subjected 
to steadily increasing loads, it is firstly decided to focus on what will be thereafter referred as 
the load/displacement instability point. This point refers to the instant t when the structure 
faces the maximum level of the applied load that can be transferred (i.e. very top of the 
applied load vs resulting displacement curve). This choice is made since the distributions of 
the adhesive shear and peel stresses at this particular moment are characteristic of the 
structure itself and refers to the maximum level of material nonlinearities that faces the 
adhesive layer during the initiation phase. To address this particular point during the 
specimen load history, a load based Newton-Raphson resolution procedure is employed in 
both FE and semi-analytical analyses (i.e. resolution procedure that stops as early as the 
maximum level of applicable load is reached). However the precision in reaching this 
particular point is directly determined by the arbitrary fixed convergence threshold. It then 
results in significant numerical differences due to the varying maximum load reached by the 
Newton-Raphson procedure. It is then decided to evaluate the adhesive peel stress and 
adhesive shear stress distribution at a slightly decreased maximum load (i.e. 95% of the 
specimen maximum load bearing capability). 
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Convergence of the Finite Element (FE) models. To allow for the comparison of 
converged results, the mesh of each FE models was optimized so that the solution obtained is 
independent on its refinement. The optimization of the mesh is based on the following 
hypotheses: (i) the mesh of the specimen is uniformly distributed over the length, the width 
and the thickness of the adherends, (ii) the mesh of the upper adherend, the adhesive 
interface, and the lower adherend are corresponding, (iii) the aspect ratio of each element of 
the structure is equal to 1. It is shown from hypotheses (i) to (iii) that the mesh of the entire 
specimen is then dependent on the number of elements within the length of the adhesively 
bonded overlap only (see Appendix 5). 

Comparison with the simplified 1D-Beam adhesive stress analysis. 

End Notched Flexure test specimen (ENF). Fig.44 presents the comparison between semi-
analytical results and Finite Element predictions in terms of Load versus Resulting 
Displacement curve (a), distribution of adhesive stresses (b) and distribution of the damage 
variable (c) along the overlap. Fig.44-(d) then presents the normalized deviation between 
semi-analytical and Finite Element predictions. Good agreement is shown. 
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Figure 44. Comparison with Finite-Element (FE) analyses in pure mode II. End Notched 
Flexure test specimen (ENF). Description of the Finite-Element (FE) models. Introduction of 
adhesive material nonlinearities. 

Double Cantilever Beam test specimen (DCB). Fig.45 presents the comparison between 
semi-analytical results and Finite Element predictions in terms of Load versus Resulting 
Displacement curve (a), distribution of adhesive stresses (b) and distribution of the damage 
variable (c) along the overlap. Fig.45-(d) then presents the normalized deviation between 
semi-analytical and Finite Element predictions. Good agreement is shown. 
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Figure 45. Comparison with Finite-Element (FE) analyses in pure mode I. Double-Cantilever 
Beam test specimen (DCB). Description of the Finite-Element (FE) models. Introduction of 
adhesive material nonlinearities. 

Mixed-Mode Bending test specimen (MMB). Fig.46 presents the comparison between semi-
analytical results and Finite Element predictions in terms of Load versus Resulting 
Displacement curve (a), distribution of adhesive stresses (b) and distribution of the damage 
variable (c) along the overlap. Fig.46-(d) then presents the normalized deviation between 
semi-analytical and Finite Element predictions. Good agreement is shown. 
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Figure 46. Comparison with Finite-Element (FE) analyses in mixed-mode I/II. Mixed-Mode 
Bending test specimen (MMB). Description of the Finite-Element (FE) models. Introduction 
of adhesive material nonlinearities. 

2.5. I
ntroduction of adherend material nonlinearities 

2.5.1. A
daptation of the classical theory of beam plasticization to the particular 
formulation of the BBe element 

Adaptation of the classical theory of beam plasticity. For simplification purpose each 
adherend is thereafter considered as an isotropic homogeneous material exhibiting elastic 
perfectly plastic stress-strain evolution law (see Fig.47). Additionally, the adhesive layer is 
considered as experiencing linear elastic deformations only. However the following 
procedure is not limited to these particular behaviors only, and can be easily be extended to 
more general anisotropic laminated materials by considering independently each ply of the 
material, and coupled to nonlinear adhesive stress-strain evolution laws. 

 

Figure 47. Representation of an idealized elastic perfectly plastic adherend stress-strain 
evolution law. Adaptation of the classical theory of beam plasticization to the particular 
formulation of the BBe element. Introduction of adherend material nonlinearities. 

As presented in Sections 2.3.2 and 2.3.3, and according to the form of the Euler-Bernoulli 
beam kinematic it is possible to express the displacement field of both adherends in the form 
of (see Fig.48): 
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where uj(x,y) and wj(x,y) respectively refer to the longitudinal and transverse displacement 
fields of adherend j (j=1,2), and uj(x,y=0), wj(x,y=0) and θj(x,y=0) to the longitudinal, 
transverse and rotational displacements of the neutral fiber of adherend j (j=1,2). 

ε  εc εb 

: Fracture energy 
  

: ki,s=ki (unloading) 

σ(εb)=Eεb= σ p 
: ki (loading) 

Idealized elastic perfectly plastic 

adherends stress-strain evolution law: Initiation of 

plasticization 
Failure of the 

adherend 
Resulting traction 
  

Adherend 

deformation 



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis 

 

- 90 - 

 

 

Figure 48. Schematic representation of the adherends displacement field. Adaptation of the 
classical theory of beam plasticization to the particular formulation of the BBe element. 
Introduction of adherend material nonlinearities. 

Thanks to equation (119) the cross-section axial deformation of adherend j (j=1,2) can be 
expressed in the form of: 

( ) ( ) ( ) ( )0,0,,, ,,, =−=== yxywyxuyxuyx xxjxj
j
x

j
xxε      (120) 

And the resulting axial stress as: 

( ) ( )yxEyx j
xxj

j
xx ,, εσ =           (121) 

Where Ej
 refers to the extensional modulus, also referred as Young’s modulus, of adherend j 

(j=1,2). 

As initially introduced for the adhesive layer in Section 2.4, the basic idea of introducing 
nonlinear adhesive (adherend) stress-strain evolution laws in the particular formulation of the 
simplified 1D-beam adhesive stress analysis is to transform the initial problem F=KU in 
finding the correct set of adherends secant properties that satisfies the original equilibrium 
equations and boundary conditions. 

As presented in Section 2.4.3, the solution of the initial problem: 

KUF pilot =            (122) 

Which in the case of nonlinear materials properties, is by construction equivalent to the 
solution of the secant equivalent problem: 

UKF (S)pilot =           (123) 

where K(s) refers to the secant master stiffness matrix that depends on both mode I and mode 
II secant adhesive moduli resulting from the projection of the adhesive stresses onto the 
specified adhesive stress-strain evolution laws (see Section 2.4), U to the vector of nodal 
displacements and Fpilot

 to the applied nodal forces. As in Section 2.4, equation (123) refers to 

Euler-Bernoulli’s beam 
kinematic (1st order): 
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the equilibrium of a unique BBe element. However it can be easily extended to the entire 
structure by applying classical FE assembly rules. 

Similarly to the adhesive layer, the projection of the adherend stresses then results in a 
modification of the through-thickness secant properties of both adherends (i.e. modification of 
the local adherend extentional secant moduli). This modification of the local secant properties 
results in a modification of the integrated adherend secant extensional, bending and coupling 
stiffnesses, so that:  
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where Aj
(s), Dj

(s) and Bj
(s) respectively refers to the secant extensional, bending and coupling 

stiffnesses of adherend j (j=1,2), and Ej
(s) to the through-thickness distribution of the adherend 

secant moduli resulting from the projection of the adherends stresses onto the specified stress-
strain evolution law (see Fig.49). 
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Figure 49. Computation of the through-thickness adherend secant properties. Adaptation of 
the classical theory of beam plasticization to the particular formulation of the BBe element. 
Introduction of adherend material nonlinearities. 

At this stage, since the general projection of the adherend stresses can results in complex 
through-thickness distributions of adherend secant properties (see Fig.49), the integration of 
the secant extensional, bending and coupling stiffnesses can be done either by analytical 
integration or numerical integration (e.g. Gauss, Newton-Cotes, etc). For the sake of clarity 
and robustness, here is chosen to integrate the adherend secant stiffnesses using the trapezoid 
Newton-Cotes integration scheme. 
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Computation of the vector of imbalanced loads. The basic idea of introducing adherend 
material nonlinearities within the particular formulation of the simplified 1D-beam adhesive 
stress analysis then lies in allowing for the computation of the updated secant stiffness matrix 
of the element due to the projection of the adherend stresses onto the specified stress-strain 
evolution law (see Fig.50). 

 

Figure 50. Computation of the through-thickness adherend secant properties. Adaptation of 
the classical theory of beam plasticization to the particular formulation of the BBe element. 
Introduction of adherend material nonlinearities. 
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Then, and similarly to the introduction of adhesive material nonlinearities, the vector of 
internal reactions L int=K(s)U can be computed from both the secant stiffness matrix K(s) at 
iteration n and the vector of nodal displacements U while Lext can be expressed from the 
secant stiffness matrix K(s) at iteration n-1 and the vector of nodal displacements U. 

The vector of imbalanced loads R(U) can then be expressed in the form of: 

( ) ( ) ( ) nnnnR UUKUUKU (s)(s) −= −1         (125) 

where R(U) refers here to the vector of imbalanced loads resulting from the projection of the 
adherends stresses onto the specified stress-strain evolution law. 

A great advantage of introducing adherend material nonlinearities using the same modified 
Newton-Raphson procedure as for the adhesive layer lies in the fact that both adhesive and 
adherend material nonlinearities are simultaneously addressable using the exact same iteration 
convergence procedure. Then not requiring for nested iterative convergence procedures to 
address first the effect of the adhesive stress-strain nonlinear evolution law and in a second 
time the effect of the adherend stress-strain nonlinear evolution law. 

2.5.2. C
omparison with Finite Element (FE) analyses 

Description of the Finite Element (FE) models. For simplification purpose, here is 
investigated the mechanical response of a cantilever beam in pure flexion only (see Fig.51). 
However the afore described procedure is not limited to the introduction of adherends 
material plasticity within the outer beam elements only, and is capable of addressing 
simultaneously the effect of adherends plasticization in both outer beam and BBe elements 
(see Chapter 3). The simulation is performed using SAMCEF FE Code v14-1.02. The 
specimen is considered as a monolithic beam facing elastic perfectly plastic axial stress-strain 
evolution law (see Fig.47). The specimen is meshed using 2D SAMCEF type T015 elements. 
SAMCEF type T015 elements have linear interpolation functions and 4 internal modes (ie. 4 
nodes and 12 degrees of freedom). The normal integration scheme is chosen. 
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Figure 51. Schematic representation of the cantilever beam in pure flexion. Description of the 
Finite Element (FE) models. Comparison with Finite Element (FE) analyses. 

Similarly to Section 2.4.6, the right end clamped boundary condition is modeled by 
constraining separately the neutral fiber and the surrounding cross-section so that it fits at 
best the boundary conditions as described in the simplified 1D-beam adhesive stress analysis. 
The projection of through-thickness axial stresses only is then ensured by modifying the 
implemented Hill’s yield criterion as: 
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where: 
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where X0, Y0, Z0, R0, S0 and T0 respectively refer to initial set of tensile and shear yield 
stresses of the material (Samcef 2013). 

Then assuming B=1 and A=C=L=M=N=0 falls: 
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So that the modified Hill’s yield criterion finally ends in (σzz=0 due to plane-stress): 

( ) pxxxxzzHill B σσσσσ ≥=−= 2         (129) 

Convergence of the Finite Element (FE) models. Similarly to Section 2.4.6, the mesh of 
each FE models is optimized so that the solution obtained is independent on its refinement. 
The optimization of the mesh is based on the following hypotheses: (i) the mesh of the 
specimen is uniformly distributed over the length, the width and the thickness of the 
adherends and (ii) the aspect ratio of each element of the structure is equal to 1. It is shown 
from hypotheses (i) to (ii) that the mesh of the entire specimen then depends on the number 
of elements within the length of the specimen only (see Appendix 5). 

Comparison with the simplified 1D-Beam adhesive stress analysis. 
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Description of the simplified 1D-beam adhesive stress analyses. Here is investigated the 
mechanical response of a cantilever beam in pure flexion. A schematic representation of the 
corresponding simplified 1D-Beam adhesive stress analysis is presented in Fig.52. 

 

Figure 52. Schematic representation of the cantilever beam in pure flexion. Description of the 
simplified 1D-beam adhesive stress analyses. Comparison with the simplified 1D-beam 
adhesive stress analysis. 

Convergence of the simplified 1D-beam adhesive stress analyses. As presented in Section 
2.4, the introduction of adhesive material nonlinearities in the particular formulation of the 
simplified 1D-beam adhesive stress analysis resulted in the need of meshing the adhesive 
overlap within an adequate number of BBe macro-elements to restitute the true behavior of 
the adhesive layer. Similarly, the introduction of material nonlinearities within the 
constitutive behavior of the adherends results in the need of meshing each adherend with an 
adequate number of outer beam elements. To allow for the comparison of converged results, 
the number of outer beam elements is then optimized so that the solution obtained is 
independent on its refinement (see Appendix 5). 

Comparison with Finite Element (FE) analyses. Fig.53 presents the comparison between 
semi-analytical results and FE predictions in terms of Load versus Resulting Displacement 
curve (a) and axial stress distribution along the specimen (b). Fig.53-(c) finally presents the 
normalized deviation between semi-analytical and FE adherend stress distributions due to 
bending loadings. Good agreement is shown. 
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Figure 53. Comparison with Finite Element (FE) analyses in pure flexion. Cantilever beam in 
pure flexion. Description of the Finite-Element (FE) models. Introduction of adherend 
material nonlinearities. 
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2.6. C
onclusion and discussion 

Within the present chapter, an original procedure derived from the classical FE method is 
adapted to the particular formulation of the BBe element. Since the original approach 
developed in (Paroissien 2066, Da Veiga 2009, Paroissien et al. 2013) does not use the 
concept of shape matrix, so that the nodal displacements are not approximated but lies from 
the exact resolution of the set of joint governing differential equations (see Sections 2.2 and 
2.3), specific calculations have to be performed to account for the possible non-linear 
behavior of the adhesive layer. Then an original procedure allowing for the nonlinear 
behavior of the adhesive layer to be accounted for (i.e. derived from the classical FE method) 
is adapted to the particular formulation of the BBe element. The main originality of the 
presented Newton-Raphson iteration procedure lies in the use of the secant stiffness 
properties to define the nonlinear problem. The vector of imbalanced loads (i.e. resulting 
from the projection of the non-linear adhesive stresses) is thus computed through the 
knowledge of the adhesive secant stiffness properties only. The suggested procedure then 
allows for various non-linear adhesive behaviors to be accounted for (ie. softening, plastic, 
coupled, etc) with no restriction on the specimen geometry. The proposed adhesive material 
models are formulated under a two dimensional mixed-mode model that account for the 
possible interaction (interdependency) between both pure mode I and pure mode II adhesive 
stress-strain evolutions laws. The two dimensional mixed-mode model is inspired from the 
classical Cohesive Zone Modeling (CZM) theory. The results obtained from the suggested 
solution procedure are then compared to those of two sandwich type analyses involving 
nonlinear adhesive stress-strain evolution laws. Finally, the results obtained from the so 
modified simplified 1D-beam adhesive stress analysis are compared to those of 2D FE 
predictions involving cohesive interface elements. Good agreement is shown with both 
nonlinear sandwich type analyses and FE predictions. 

To conclude, the preceding iterative solution procedure is upgraded so that it can account for 
both adhesive and adherends material nonlinearities simultaneously (i.e. with no need of 
nested iterative convergence schemes). Then, an original way of accounting for the effect of 
the surrounding adherends plasticization based on an adaptation of the classical theory of 
beam plasticity (Oudin 2011) is presented and developed in view of its implementation. The 
results obtained from the so modified simplified 1D-beam adhesive stress analysis are 
compared to those of 2D FE predictions involving elastic perfectly plastic adherends stress-
strain evolution laws. For simplification purpose, the comparison is made in terms of a 
cantilever beam in pure flexion only. Good agreement is shown. 

By the use of the presented simplified joint kinematic, it is shown that the mechanical 
response of a large range of bonded overlaps can be simulated using a restricted number of 
specifically formulated BBe elements (i.e. only one when facing linear elastic perturbations 
only). Those models  based on the use of BBe elements thus takes the advantage of the 
flexibility of FE methods: (i) wide application range, (ii) open assembly procedure, (iii) 



Chapter 2. Extension and validation of the simplified 1D-beam adhesive stress analysis 

 

- 99 - 

 

specified boundary conditions, etc, and the robustness of theoretical approaches: (i) 
analytical resolution of the set of governing differential equations, (ii) results independent on 
the mesh refinement when facing linear elastic adhesive deformations, (iii) results shown as 
rapidly converging toward an asymptote when facing non-linear adhesive deformations, etc. 

Since classical 2D FE analyses approximates the solutions in terms of both adhesive and 
adherends kinematics, converged FE results generally imply highly refined meshes and so 
time-consuming computations. The suggested simplified 1D-beam adhesive stress analysis 
thus finds it interest in many extensive parametric studies. It is shown from Fig.54 that the 
gain in terms of total number of degrees of freedom can vary from a factor 50 to 500 
depending on the specimen geometry (i.e. ENF, DCB and MMB) and can easily be increased 
by a factor 3 or 4 since non-linear effects are generally limited to the close vicinity of the 
overlap edges (see Fig.44, Fig.45 and Fig.46). Moreover the given procedure has been shown 
as 50 to 100 times quicker than equivalent 2D/3D FE predictions (Paroissien et al. 2013). 

 

Figure 54. Comparison between semi-analytical and Finite Element (FE) analyses. 
Converged results. Comparison of the total number of nodes. 

For convenience, all of the later numerical analyses will then be performed using the 
simplified 1D-beam adhesive stress analysis exclusively, so that it allows for extensive 
parametric studies to be performed at low computation costs. 
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Chapter 3. On the experimental characterization of thin adhesive layers  

 

Chapter 3 aims at presenting experimental protocols for the characterization of thin adhesive 
interfaces. First, three characterization protocols based on the energetic balance associated to 
the computation of the path independnent J-integral (Rice 1968) are presented. Several 
deviations/limitations are set out and discussed. Then, a new characterization technique 
based on the monitoring of the adherend-to-adherend displacement field is presented and 
developed in view of its implementation. The new characterization protocol is then compared 
to semi analytical predictions and experimental testing. Good agreement is shown with both 
semi analytical predictions and experimental testing in the case of metal-to-metal adhesive 
bonding. 
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3.1. I
ntroduction 

According to (Crocombe 2009), the CZM have the advantage of: (i) considering finite strains 
and stresses at the adhesive crack tip, (ii) indicating both damage initiation and propagation as 
direct outputs, (iii) advancing the crack tip as soon as the local energy release rate reaches its 
critical value with no need of complex moving mesh techniques. 

The Finite Element (FE) method is one of the first simulation techniques that have taken 
advantage of the CZM by developing specific elements allowing for the modeling of the 
fracture process of thin interfaces. However, accurate FE strength analyses of bonded 
assemblies are generally computationally expensive and can lead to the rise of numerical 
artifacts. 

In (Paroissien 2006, Da Veiga 2009, Paroissien et al. 2013) and in Chapter 1, a semi-
analytical procedure allowing for the modeling of various adhesive joint configurations facing 
in-plane adhesive loadings has been developed and validated in the case of both adhesive and 
adherends material nonlinearites. For convenience, the aforementioned procedure will be 
thereafter referred as the simplified 1D-beam adhesive stress analysis. The simplified 1D-
beam adhesive stress analysis allows for the resolution of the (Hart-Smith 1973a, Hart-Smith 
1973b) set of governing differential equations of the joint in the case of linear (non-linear) 
adhesive (adherend) stress-strain evolution laws. The method is inspired by the FE method. 
However it allows for the semi-analytical resolution of the simplified system of governing 
differential equations of the joint at low computational costs. Good agreement is shown with 
both sandwich type analyses and classical 2D FE analyses involving cohesive interface 
elements during both damage initiation and propagation phases (see Chapter 2). 

However, both FE and simplified 1D-beam adhesive stress analyses are based on the 
modeling of the adhesive interfacial strength through a set of adhesive cohesive properties 
(e.g. in pure mode I, pure mode II and mixed-mode I/II). Accurate experimental protocols for 
the measurement of the effective adhesive cohesive properties are then essential for the 
strength prediction of adhesively bonded joints. 

The present section then aims to present different existing experimental protocols for the 
experimental characterization of the mechanical properties of thin adhesive layers and to 
discuss their inherent limitations. Then, a brand new experimental protocol to evaluate the 
effective stress-strain relationship of thin adhesive layers in mode I, mode II and mixed-mode 
I/II is presented and developed in view of its implementation. For convenience, the adhesive 
stress-strain relationships will be thereafter referred as the adhesive traction separation laws. 

3.2. O
rganization of the chapter 

First, the response of classical adhesive (adherend) Tensile Test (TT) specimens under pure 
axial loading conditions is investigated. The results are presented in terms of axial stress 
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versus axial deformation and Poisson’s ratio versus axial deformation evolution laws. Then, 
the linear elastic properties of both the adherends and the adhesive materials are derived and 
compared to conventional values found in the open literature. Finally, the limitations of such 
classical approaches are set out and discussed. 

Secondly, three existing characterization protocols based on the energetic balance of three 
adhesive Fracture Mechanics test specimens are presented (e.g. ENF, DCB and MCB). For 
convenience, these experimental characterization protocols will be thereafter referred as the 
energetic methods. For lecturer comfort, a short description of the mathematical foundations 
of each experimental protocol is presented. However a more comprehensive description of 
each protocol can be found in (Anderson et al. 2003, Alfredsson 2004, Hogberg et al. 2007). 
The underlined simplifications as well as the direct limitations of those approaches are set out 
and discussed. The results obtained are finally compared to those of semi-analytical analyses. 
Significant deviations with semi-analytical predictions are pointed out and different 
explanations are presented. 

Thirdly, a new and original characterization protocol based on the experimental monitoring of 
the adherend-to-adherend displacement field nearby the adhesive crack tip is presented and 
developed in view of its implementation. For convenience, the suggested experimental 
characterization protocol will be thereafter referred as the direct method. The underlined 
simplifications and limitations are then set out and discussed and the results obtained 
compared to those of semi-analytical analyses. Good agreement is shown for various adhesive 
joint test configurations and adhesive (adherends) set of material properties. 

Finally, the results of an experimental test campaign are provided so that the new 
characterization protocol is validated in the case of metal-to-metal adhesive bonding in pure 
mode I, pure mode II and mixed-mode I/II solicitations. Good agreement is shown. 

3.3. B
ulk material properties 

3.3.1. A
dherends 

First, the mechanical response of 4 aluminum Tensile Test (TT) bulk specimens under pure 
axial loading conditions is here investigated. Each TT specimen is manufactured from a 
laminated aluminum-magnesium-silicon aluminum alloy (6060 series). The geometry of each 
specimen is controlled after fabrication. The controlled dimensions are listed in Fig.55. 
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Figure 55. Geometry of the aluminum Tensile Test (TT) bulk specimens. Aluminum= 6060 
series. Bulk material properties. 

All the tests are performed on an electro-mechanical test machine (Ref: Instron AI735-1325). 
Both the applied load, the resulting displacement and the specimen displacement field are 
measured during the tests. The evolution of both the applied load and the resulting 
displacement are measured using the build in machine load and displacement cells. The 
evolution of the specimen displacement field is measured using the Digital Image Correlation 
(DIC) technique (see Fig.56). The axial deformation as well as the Poisson’s ratio of the 
specimen are computed from the evolution of the specimen displacement field. The 
specimens are displacement loaded using the build in machine displacement command 
instruction. The loading speed is arbitrary fixed at 0.5mm/min. 

 

Figure 56. Geometry of the aluminum Tensile Test (TT) bulk specimens. Aluminum= 6060 
series. Bulk material properties. 

Fig.57 then presents the results obtained in terms of both the axial stress-strain evolution law 
(a) and the evolution of the measured Poisson’s ratio (b) along the experiment. It is seen from 
Fig.57-(a) that the aluminum bulk material exhibits two distinct phases. The first one, the 
linear elastic phase, appears as extremely limited compared to the whole deforming 
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capability of the aluminum alloy (e.g. ~3% of the whole deforming capability). The second 
phase, the plastic phase, appears on another side as extremely important (e.g. ~97% of the 
whole deforming capability). It then suggests that the plasticization of the surrounding 
adherends could possibly play a significant role in the degradation process of adhesive 
sandwich structures. This statement will be discussed later on in Sections 3.5 and 3.6. Both 
the linear elastic Young’s tensile modulus and the Poisson’s coefficient ratio (Nu) of the 
studied aluminum alloy are extracted from the obtained results (see Tab.6). 

 

 

 

Figure 57. Experimental characterization of aluminum Tensile Test (TT) bulk specimens in 
terms of axial stress-strain evolution law (a) and evolution of the measured Poisson’s ratio 
(b). Aluminum= 6060 series. Bulk material properties. 

Tab 6. Experimental characterization of aluminum Tensile Test (TT) bulk specimens. Elastic 
material properties. Young’s Tensile (YT) modulus. Poisson’s ratio (Nu). Aluminum= 6060 
series. Bulk material properties. 

Young’s Tensile modulus (YT) Poisson’s ratio (Nu) 

66000 MPa 0.35 
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3.3.2. A
dhesive 

Secondly, the mechanical response of 4 adhesive TT bulk specimens under pure axial loading 
conditions is here investigated. Each adhesive TT specimen is manufactured using the SAF-
30MIB adhesive paste from AEC-Polymers. The SAF-30MIB adhesive paste is a room-
temperature cured highly flexible methacrylate adhesive used in the outboard 
manufacturing/repairing industry. The geometry of each specimen is controlled after 
fabrication. The controlled dimensions are listed in Fig.58. 

 

Figure 58. Geometry of the adhesive Tensile Test (TT) bulk specimens. Adhesive= SAF-
30MIB. Bulk material properties. 

Similarly to Section 3.3.1, all the tests are performed on an electro-mechanical test machine 
(Ref: Instron AI735-1325). Both the applied load, the resulting displacement and the 
specimen displacement field are measured during the tests. The evolution of both the applied 
load and the resulting displacement are measured using the build in machine load and 
displacement cells. The evolution of the specimen displacement field is measured using the 
Digital Image Correlation (DIC) technique (see Fig.59). The axial deformation as well as the 
Poisson’s ratio of the specimen are computed from the evolution of the specimen 
displacement field. Similarly to Section 3.3.1, the adhesive specimens are displacement 
loaded using the build in machine displacement command instruction. However various 
loading speeds are applied to each specimen (e.g. TT_1= 0.25mm/min, TT_2= 0.5mm/min 
and TT_3= 0.75mm/min). 
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Figure 59. Geometry of the adhesive Tensile Test (TT) bulk specimens. Adhesive= SAF-
30MIB. Bulk material properties. 

Fig.60 then presents the results obtained in terms of both the axial stress-strain evolution law 
(a) and the evolution of the measured Poisson’s ratio (b) along the experiment. Similarly to 
the aluminum bulk material, it is seen from Fig.60-(a) that the adhesive bulk material exhibits 
two distinct phases. The linear elastic phase appears again as extremely limited compared to 
the entire deforming capability of the adhesive bulk material (e.g. ~5% of the whole 
deforming capability). On another side, the plastic phase appears as extremely important (e.g. 
~95% of the whole deforming capability). It is also seen from Fig.60-(a) that significant 
hysteresis effects appears during unloading phases. It then suggests that a significant amount 
of energy is probably dissipated during unloading phases. However it appears that this 
hysteresis effect does not clearly depend on the loading speed (i.e. TT_1= 0.25mm/min, 
TT_2= 0.5mm/min and TT_3= 0.75mm/min). Then making think that instead of being due to 
viscous dissipative effects, this hysteresis effect could possibly be the result of a nonlinear 
elastic behavior of the adhesive material (i.e. Mullins effect). Additionally, Fig.60-(b) shows 
the measured Poisson’s ratio as linearly depending on the axial deformation of the bulk 
specimen. This linear dependency of the measured Poisson’s ratio can be due to several 
reasons. First, it is extremely complicated to entirely control the manufacturing process of 
adhesive TT bulk specimens. Indeed, the manufacturing process of TT bulk specimen using 
adhesive pastes is highly dependent on various environmental factors such as the ambient 
temperature, the atmosphere, or factors related to the manufacturing process itself such as the 
open/curing cycle, the mixing or the holding pressure. However, the geometry of each 
specimen has been controlled after fabrication. Which would have theoretically limited the 
effects linked to possibly poor manufactured specimens. Secondly, expecting a Poisson’s 
ratio that does not depend on the deformation of the material itself is an idea that is taken 
from the classical mechanics of metallic materials. However, an adhesive can be at best 
considered as a semi-crystalline polymer material. Indeed, while the physical mechanisms 
hidden behind the plasticity of metallic materials is generally caused by two main modes of 
deformation in the crystal lattice, slip and twinning, the plastic deformation process of semi-
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crystalline polymers generally involves a complete molecular rearrangement of the chain-
folded lamellar morphology into a more or less chain-unfolded fibrillary microstructure 
(Bartczak 2010). In metallic plasticization, slip is a shear deformation which locally moves 
the atoms through several interatomic distances relative to their initial positions. Twinning is 
the plastic deformation which takes place along two planes due to a set of forces applied to a 
given metal piece. Then, it is not senseless to think that the molecular rearrangement of the 
adhesive material due to its plasticization can significantly modify the measured Poisson’s 
ratio along the experiment. Nevertheless, for simplification purpose, the effective adhesive 
Poisson’s ratio will be thereafter averaged along the experiment (see Fig.60 and Tab.7). 

 

 

Figure 60. Experimental characterization of adhesive Tensile Test (TT) bulk specimens in 
terms of axial stress-strain evolution law (a) and evolution of the measured Poisson’s ratio 
(b). Adhesive= SAF-30MIB. Bulk material properties. 

Tab 7. Experimental characterization of adhesive Tensile Test (TT) bulk specimens. Elastic 
material properties. Young’s Tensile (YT) modulus. Poisson’s ratio (Nu). Adhesive= SAF 
30MIB. Bulk material properties. 

Young’s Tensile modulus (YT) Poisson’s ratio (Nu) 

1100 MPa 0.42 
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3.4. On the experimental characterization of CZM: Energetic methods 
3.4.1. Overview 

All of the experimental protocols presented in this section reclaim the concept of the adhesive 
specimen energetic balance associated with the computation of the path independent J-integral 
(Rice 1968) onto specifically formulated integration paths: 

∫
Γ

−= ds
dx

ud
TWdyJ          (131) 

where W refers to the strain energy density, σnT =  to the traction vector, σ to the stress tensor, 
ū to the displacement vector, n to the normal unit vector directed outward to the counter-clock 
wise integration path Γ, and (x,y) to the specified two-dimensional coordinate system. 

However the aim of the following section is not to cover all of the existing protocols for the 
experimental characterization of CZM using energetic balance, but to highlight three of them 
which are according to the author of the present dissertation representative of the 
characterization of adhesive interfaces in both mode I, mode II and mixed-mode I/II. For 
convenience, these characterization protocols will be thereafter referred as the energetic 
methods. 

3.4.2. On the constitutive relationship of a thin adhesive layer loaded in pure shear 
(mode II)  

In this section is presented an experimental protocol to determine the constitutive stress-strain 
relationship of a thin adhesive layer loaded in pure shear (mode II). This experimental 
protocol has been firstly introduced in (Alfredsson et al. 2003) and taken up in (Alfredsson et 
al. 2003, Alfredsson 2004, Leffler et al. 2006, Biel et al. 2011). This protocol applies to End-
Notched Flexure (ENF) adhesive specimens. The ENF adhesive specimen consists in two 
adherends partially joined by a thin adhesive layer. The antisymmetric geometry and loading 
conditions of the specimen provide essentially pure mode II solicitations of the adhesive 
layer. However, significant mode I adhesive stresses appear nearby center of the specimen 
(see Fig.61). For convenience, the unbonded area of the specimen will be thereafter referred 
as the adhesive crack tip. 
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Figure 61. Schematic representation the End-Notched Flexure (ENF) adhesive joint 
specimen. Idealized adhesive stress (strain) distributions. On the constitutive relationship of a 
thin adhesive layer loaded in pure shear (mode II). On the experimental characterization of 
CZM. Energetic methods. 

In (Alfredsson et al. 2003) the authors then suggest determining the complete mode II 
adhesive traction-separation law by simultaneously monitoring both the adhesive 
instantaneous energy release rate and the adhesive shearing deformation at crack tip. By 
handling the computation of the path independent J-integral (Rice 1968) onto a specific 
contour of the adhesive test specimen (see Fig.62), the author then derives an approximate 
solution to the inverse problem “given the ENF joint specimen behavior, what is the 
constitutive relationship of the adhesive layer?”. 

 

Figure 62. Schematic representation the End-Notched Flexure (ENF) adhesive joint 
specimen. Computation of the path independent J-integral. Representation of the integration 
path. On the constitutive relationship of a thin adhesive layer loaded in mixed-mode I/II. On 
the experimental characterization of CZM. Energetic methods. 

Then leading to an expression of the instantaneous energy release rate at crack tip which 
requires no a priori knowledge on the constitutive stress-strain relationship of the adhesive 
layer τ(ν) (132). 
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where J(ν) here refers to the adhesive mode II instantaneous energy release rate at crack tip, ν 
to the adhesive shearing deformation at crack tip and P to the applied load. 

To legitimate the use of the different simplifying hypotheses leading to equation (132) the 
authors suggest using a specifically designed specimen geometry so that:  

( ) 522 ≥−aLSκ           (133) 

where EtkSS 8=κ , E the adherends Young’s tensile modulus, kS the initial shearing stiffness 

of the adhesive layer, L the total length of the bonded overlap and a the length of the adhesive 
crack tip. 

However, it is shown from equation (132) that the given relationship is also dependent on the 
initial shearing stiffness of the adhesive layer kS, and not known a priori. To override this 
initial adhesive stiffness dependence of the relationship, the authors suggest determining kS 
from the early stage data of the experiment. 
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To this end, the authors show (asymptotically) that: 
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By adjusting a polynomial series to the initial part of the P(ν) experimental curve its initial 
slope c is determined. Solving equation (134) with respect to kS, the authors then suggest 
determining the initial stiffness of the adhesive layer so that: 
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Although equation (135) is demonstrated as experimentally suitable in the case of specifically 
optimized specimen geometries, so that ( ) 522 ≥− aLSκ , an alternative resolution procedure 

can be used to evaluate the initial stiffness of the adhesive layer. This particular procedure has 
not been introduced in (Alfredsson et al. 2003). 

Assuming that the adhesive layer faces purely linear-elastic solicitations at early stage of the 
experiment, equation (132) can be written as follows: 
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Then solving equation (136) with respect to kS, the initial stiffness of the adhesive layer can be 
computed as: 
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Finally, the authors suggest deriving the mode II adhesive stress-strain constitutive 
relationship differentiating the so computed mode II instantaneous energy release rate with 
respect to the measured adhesive shearing deformation at crack tip, so that: 

( )
ν

ντ
∂
∂= J            (138) 

3.4.3. On the constitutive relationship of a thin adhesive layer loaded in pure peel 
(mode I)  

In this section is presented an experimental protocol to determine the constitutive stress-strain 
relationship of an adhesive layer loaded in pure peel (mode I). This experimental protocol, 
derived from the original protocol described in Section 3.4.2, has been firstly introduced in 
(Anderson et al. 2003) and applies to Double Cantilever Beam (DCB) adhesive specimens. 
The DCB adhesive specimen consists in two adherends partially joined by a thin adhesive 
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layer. The modified loading (boundary) conditions provide exclusively pure mode I 
solicitations of the adhesive layer (see Fig.63). For convenience, the unbonded area of the 
specimen will be thereafter referred as the adhesive crack tip. 

 

Figure 63. Schematic representation the Double Cantilever Beam (DCB) adhesive joint 
specimen. Idealized adhesive stress (strain) distributions. On the constitutive relationship of a 
thin adhesive layer loaded in pure peel (mode I). On the experimental characterization of 
CZM. Energetic methods. 

In (Anderson et al. 2003) the authors suggest determining the complete mode I adhesive 
traction-separation law by simultaneously monitoring both the adhesive instantaneous energy 
release rate and the adhesive peeling deformation at crack tip. By handling the computation of 
the path independent J-integral (Rice 1968) onto a different contour of adhesive test specimen 
(see Fig.64), the authors come to derive a new formula of the instantaneous energy release 
rate at crack tip which requires no a priori knowledge on the constitutive stress-strain 
relationship of the adhesive layer σ(ε) (139).  
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where J(ε) here refers to the adhesive mode I instantaneous energy release rate at crack tip, ε 
to the peeling deformation of the adhesive layer at crack tip, P to the applied load and θ(-a) to 
the rotation angle of the bending line of adherend 1 (2) at load application point. 
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Figure 64. Schematic representation the Double Cantilever Beam (DCB) adhesive joint 
specimen. Computation of the path independent J-integral. Representation of the integration 
path. On the constitutive relationship of a thin adhesive layer loaded in mixed-mode I/II. On 
the experimental characterization of CZM. Energetic methods. 

Finally, the authors suggest deriving the mode I adhesive stress-strain constitutive relationship 
differentiating the so computed mode I instantaneous energy release rate with respect to the 
measured adhesive peeling deformation at crack tip, so that: 

( )
ε

εσ
∂
∂= J            (140) 

Although not explicitly indicated in the original paper, the afore described theory lies on the 
assumption that no adhesive peel stresses rises at the free-loaded edge of the adhesive test 
specimen. As in Section 3.4.2, this condition may be formulated in the form of using a 
specifically designed specimen geometry, so that: 

5≥LPκ            (141) 

where 4 324 EtkPP =κ , E the adherends Young’s tensile modulus, kP the initial peeling 

stiffness of the adhesive layer and L the total length of the bonded overlap. 

3.4.4. On the constitutive relationship of a thin adhesive layer loaded in mixed-mode 
I/II  

Although the characterization of the adhesive pure modes is essential for adhesive strength 
predictions, in-service adhesive bonds are more often expected to serve under mixed-mode 
I/II than under pure mode I (II) loading conditions. It is then essential to develop techniques 
that allow for the effective mixed-mode I/II behavior of adhesive interfaces to be 
addressed/determined. 

Based on the approaches developed in Sections 3.4.2 and 3.4.3, this section aims to present an 
experimental protocol to determine the mixed-mode I/II cohesive properties of a thin adhesive 
interface. This procedure reclaims once again the concept of the specimen energetic balance 
associated with the computation of the path independent J-integral (Rice 1968). This 
experimental protocol has been firstly introduced in (Hogberg 2006) and applies to Mixed-
mode Cantilever Beam (MCB) adhesive specimens (see Fig.65). 
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Figure 65. Schematic representation the Mixed-mode Cantilever Beam (MCB) adhesive joint 
specimen. Idealized adhesive stress (strain) distributions. On the constitutive relationship of a 
thin adhesive layer loaded in mixed-mode I/II. On the experimental characterization of CZM. 
Energetic methods. 

As for the procedures described in Sections 3.4.2 and 3.4.3, the author suggests handling the 
computation of the path independent J-integral (Rice 1968) onto a specifically formulated 
contour of the adhesive test specimen (see Fig.66). From this analysis derives a new formula 
of the instantaneous energy release rate accounting for both the peel and shear adhesive 
stresses at crack tip (142). 
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where J(ν,ε) here refers to the mixed-mode I/II instantaneous energy release rate at crack tip, 

α to the angle between the antisymmetric loading directions and the neutral fiber of the upper 
(lower) adherends, w1’ (w2’) to the first order derivative of the upper (lower) adherend 
deflection at crack tip and P to the applied load. 

 

Figure 66. Schematic representation the Mixed-mode Cantilever Beam (MCB) adhesive joint 
specimen. Computation of the path independent J-integral. Representation of the integration 
path. On the constitutive relationship of a thin adhesive layer loaded in mixed-mode I/II. On 
the experimental characterization of CZM. Energetic methods. 
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To legitimate the use of the different simplifying hypotheses leading to equation (142) the 
author suggests using a specifically designed specimen geometry so that:  

( ) 3,min ≥LL SP κκ           (143) 

Where κP and κS refer to the two constants previously defined in Sections 3.4.2 and 3.4.3, and 
L to the total length of the bonded overlap. 

The author finally suggests deriving both the pure mode projections of the adhesive 
constitutive stress-strain relationship differentiating the so computed mixed-mode I/II 
instantaneous energy release rate with respect to the measured adhesive peeling and adhesive 
shearing deformations at crack tip, so that: 

( )
ε

νεσ
∂
∂= J

,  and ( )
ν

νετ
∂
∂= J

,         (144) 

3.4.5. Confrontation with semi-analytical predictions 

Description of the simplified 1D-beam adhesive stress analyses. To check for the 
workability/sustainability of the so described theories three semi-analytical models are 
constructed (e.g. ENF, DCB and MCB). A schematic representation of each semi-analytical 
model is presented in Fig.67. The adhesive overlap is meshed using n uniformly distributed 
BBe elements. Each outer adherend is meshed using a unique and specifically formulated 
beam element. Both adherends are modeled as linear elastic monolithic beams. The adhesive 
layer is modeled as a cohesive interface resuming two arbitrary trapezoidal traction separation 
laws. The set of mechanical properties of both the adhesive layer and the surrounding 
adherends are given in Tab.8. It is indicated that the adhesive and adherends properties as well 
as the specimen dimensions have been voluntarily suited to fit the early-design criterion given 
in equations (133) (141) and (143). 
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Figure 67. Schematic representation of End-Notched Flexure (ENF), the Double Cantilever 
Beam (DCB) and the Mixed-mode Cantilever Beam (MCB). Description of the simplified 
1D-beam adhesive stress analyses. Confrontation with semi-analytical predictions. On the 
experimental characterization of CZM. Energetic methods. 

Tab 8. Set of mechanical adhesive and adherends properties used in for the confrontation with 
semi-analytical predictions. Description of the simplified 1D-beam adhesive stress analyses. 
On the experimental characterization of CZM. Energetic methods. 
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Since the different parameters involved in the computation of the instantaneous energy release 
rates J(ν), J(ε) and J(ν,ε) can be set as direct outputs of the simplified 1D-beam adhesive 
stress analyses, those are directly taken as they were coming from experimental records. The 
evolution of each instantaneous energy release rate is then computed with respect to equations 
(132) (139) and (142) at each step of the simulated load versus displacement history. Finally, 
the adhesive constitutive relationships σ(ε) and τ(ν) are obtained differentiating the so 
computed instantaneous energy release rates J(ν), J(ε) and J(ν,ε) with respect to the associated 
adhesive crack tip deformations (see equations (138) (140) and (144)) using secant line 
approximations. 

Confrontation with semi-analytical predictions. First, a direct comparison between the so 
predicted stress-strain relationships (energetic method) and the stress-strain evolution laws 
effectively experienced by both ENF and DCB adhesive joint specimens at crack tip (semi-
analytical) is given in Fig.68 and Fig.69. 

 

 

Figure 68. Schematic representation the End-Notched Flexure (ENF) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (energetic 
methods) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in pure 

t 

P a 

ENF: 

e 

  L 

t 

b = width 

deviation 



Chapter 3. On the experimental characterization of thin adhesive layers 

 

- 118 - 

 

shear (mode II). Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. Energetic methods. 

 

 

Figure 69. Schematic representation the Double Cantilever Beam (DCB) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (energetic 
methods) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in pure 
peel (mode I). Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. Energetic methods. 

It is seen form Fig.68 and Fig.69 that the so predicted adhesive constitutive stress-strain 
relationships are in close agreement with the shear (peel) stress (strain) effectively 
experienced by the simulated ENF and DCB adhesive joint specimens at early stage of the 
experiment. However it is seen that the so predicted shear (peel) stress (strain) significantly 
deviate from the original adhesive constitutive stress-strain relationships for increasing levels 
of applied load. 

These deviations owe to two reasons. First, the initial stiffnesses of the adhesive interface are 
not known a priori of the experiment. Indeed, since the design criteria provided in equations 
(133) and (141) are defined through these initial adhesive stiffnesses, it is essentially 
impossible to early-design the test specimens so that the validity of equations (132) and (139) 
is ensured a priori of the experiment. Secondly, even if fortuitously fulfilled, the design 
criteria provided in equations (133) and (141) simply derive from the integration of the 
bonded overlap equilibrium equations in the case of linear elastic solicitations of both the 
adhesive layer and the surrounding adherends. The validity of such design criteria then 
remains while the whole specimens experience linear elastic deformations only, or at least 
experiencing sufficiently small nonlinear deformations so that it affects negligibly the shear 
and peel stress distributions away from the crack tip. Then, depending on the nonlinear 
deforming capability of the adhesive layer itself, this hypothesis can rapidly become 
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insufficient to legitimate the use of the suggested theoretical relationships. Finally, an 
additional limitation of such approaches is that it is basically impossible to monitor the 
evolution of the adhesive stresses during unloading phases. This limitation is due to the 
mathematical description of the J-integral given in (Rice 1968) and cannot be a priori 
overridden. It then limits the use of energetic methods to monotonously increasing load 
histories only, so that the behavior of the adhesive layer during unloading phases cannot be 
addressed by such approaches. 

Then, a direct comparison between the so predicted stress-strain relationships (energetic 
method) and the stress-strain evolution laws effectively experienced by the MCB adhesive 
joint specimen (semi-analytical) is given in Fig.70. For simplification purpose, here was 
considered an interface cohesive model resuming both bilinear pure mode adhesive 
constitutive stress-strain relationships related by both linear energetic initiation and 
propagation mixed-mode criteria. 

 

 

Figure 70. Schematic representation the Mixed-mode Cantilever Beam (MCB) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (energetic 
methods) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in 
mixed-mode I/II. Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. Energetic methods. 

It is seen from Fig.70 that the so predicted adhesive constitutive stress-strain relationships (i.e. 
in the case of mixed-mode I/II adhesive solicitations) highly differ from the adhesive stresses 
(strains) effectively experienced by the simulated MCB adhesive joint specimen (with no 
distinction between the early or later stage of the experiment). 
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This deviation owe to two reasons. First, the afore described theory (i.e. mixed mode I/II 
adhesive loadings) lies on a mathematical inconsistency in the derivation of the mixed-mode 
I/II adhesive stresses at crack tip. Indeed, since τ(ν,ε) and σ(ν,ε) are both functions of the two 
variables ν and ε when subjected to mixed-mode I/II adhesive loads: 

∫∫ +=
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This assumption then applies to a simplistic vision of the joint equilibrium assuming that the 
mixed-mode ratio β=ν/ε=1 will not vary during loading. However this simplification appears 
to be false in most cases and will be discussed later on in Sections 3.7 and 3.8. Then, the 
adhesive mixed-mode I/II constitutive stress-strain relationships cannot be simply derived 
from the differentiation the mixed-mode I/II instantaneous energy release rate with respect to 
their associated shear and peel adhesive deformations. 

Secondly, the computation of the J-integral (Rice 1968) presented in (Hogberg 2006) lies on 
the assumption that the right edge of the MCB joint specimen in free of any load. However 
the misalignment of the antisymmetric loading directions results in the introduction of a left 

side bending moment of magnitude α2tan15.0 += PHM  so that the right side of the MCB 

joint specimen has to be clamped to avoid any rigid rotation of the joint specimen. This 
clamped condition then results in the introduction of complex load reactions that are not taken 
into account in the computation of the J-integral (Rice 1968) as presented in (Hogberg 2006). 

3.5. On the experimental characterization of CZM: The direct method 
3.5.1. Overview 

In response to Section 3.4, the following section aims to present a new and original method 
for the characterization the cohesive properties of thin adhesive interfaces. This approach is 
derived in the case of pure mode I, pure mode II and mixed-mode I/II adhesive solicitations so 
that three different characterization protocols are presented (e.g. ENF, DCB and MCB). Each 
of these protocols is based on the monitoring of the adherend-to-adherend displacement field 
nearby the adhesive crack tip of Classical Fracture Mechanics (CFM) adhesive joint 
specimens and does not require any spatial integration of the joint equilibrium equations. 
Then limiting the number of simplifying hypotheses required to derive a closed-form solution 
to the problem “given the adhesive joint specimen behavior, what is the constitutive 
relationship of the adhesive layer?”. 

For simplification purpose, the complete set of governing differential equations of the joint 
(i.e. described in Chapter 2) is voluntarily restricted to the equilibrium of the upper adherend 
only (see Fig.71). However the same relationships could be obtained, to the sign, using the 
equilibrium equations of the lower adherends.  
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Figure 71. Schematic representation of the equilibrium of the bonded adherends relative to 
the End-Notched Flexure (ENF) adhesive joint specimen. On the constitutive relationship of 
a thin adhesive layer loaded in pure shear (mode II). On the characterization of CZM. The 
direct method. 

3.5.2. On the constitutive relationship of a thin adhesive layer loaded in pure shear 
(mode II) 

This section aims at presenting an original experimental protocol to determine the complete 
stress-strain relationship of a thin adhesive layer loaded in shear (mode II). The presented 
demonstration applies to the ENF adhesive test specimen despite the following data reduction 
scheme is not limited to this particular specimen only.  

In the case of pure shear (mode II) adhesive solicitations, the local equilibrium of the upper 
adherend can be reduced in the form of the following set of differential equations (see 
Fig.71): 
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where T refers to the adhesive shear stress, N1 to the normal force in adherend 1, V1 to the 
shearing force in adherend 1 and M1 to the bending momentum in adherend 1, while the 
constitutive beam equations of the upper adherend are given by: 
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with A1 the extensional stiffness, D1 the bending stiffness and B1 the coupling stiffness of 
adherend 1, u1 the normal displacement of adherend 1, w1 the transverse deflection of 
adherend 1 and θ1 the cross-section rotation of adherend 1 derived from the Classical 
Laminates Theory (CLT) (Jones 1998, Berthelot 1999). For demonstration purpose, it is 
assumed that ∆1=A1D1-B1

2 is not equal to zero. 

Then, from equation (147) falls: 
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dx
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Then differentiating equation (148) with respect to x gives: 
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Finally inserting equation (146) into equation (149) it is possible to express the shear stress T 
as a function of both the upper shearing force acting at point x and the second order derivative 
of the upper adherends cross-section rotation, so that: 
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which can be reduced in the case of symmetric (or monolithic) adherends to: 
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Equation (151) then suggests it is possible to monitor the distribution of the adhesive shear 
stresses along the overlap by simultaneously monitoring both the distributions of the upper 
shearing force and the second order derivative of the upper adherends cross-section rotation. 
Nevertheless, the distribution of the shearing force along the overlap is a variable that is 
particularly difficult to measure experimentally. To overcome this problem, it is decided to 
focus on the close vicinity of the adhesive crack tip (x=0). 

From a simple linear equilibrium of the loads (reactions) acting onto the edges of the overlap 
(specimen), it is possible to demonstrate the shearing force acting onto the upper (lower) 
adherend at crack tip as equal to (see Fig.72): 

( ) 401 PxV −==           (152) 

Leading to the modified relationship: 
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Figure 72. Schematic representation of the reaction loads acting onto the edges of the bonded 
overlap of the End-Notched Flexure (ENF) adhesive joint specimen. On the constitutive 
relationship of a thin adhesive layer loaded in pure shear (mode II). On the characterization 
of CZM. The direct method. 

Finally, It appears from equation (153) that the evolution of the adhesive shear stress at crack 
tip (x=0) can be determined by simultaneously monitoring the applied load and the second 
order derivative of the upper adherends cross-section rotation at crack tip (x=0) making no 
more assumption than simply considering the joint equilibrium originally described in (Hart-
Smith 1973a, Hart-Smith 1973b) as valid nearby the adhesive crack tip (x=0). 

3.5.3. On the constitutive relationship of a thin adhesive layer loaded in pure peel 
(mode I) 

This section aims at presenting an original experimental protocol to determine the complete 
stress-strain relationship of an adhesive layer loaded in peel (mode I). The presented 
demonstration applies to the DCB adhesive test specimen despite the following data reduction 
scheme is not limited to this particular specimen only. 

In the case of pure peel (mode I) adhesive solicitations, the local equilibrium of the upper 
adherend can be reduced in the form of the following set of differential equations (see 
Fig.71): 
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where S refers to the adhesive peel stress, N1 to the normal force in adherend 1, V1 to the 
shearing force in adherend 1 and M1 to the bending momentum in adherend 1, while the 
constitutive beam equations of the upper adherend are unchanged from equation (147). 

Similarly to Section 3.5.2, from equation (147) falls: 
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Then differentiating two times equation (155) with respect to x gives: 
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Finally inserting equation (154) into equation (156) it is possible to express the peel stress S 
as a function of the third order derivative of the upper adherends cross-section rotation only, 
so that: 
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which can be reduced in the case of symmetric (or monolithic) adherends to: 
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Equation (158) then suggests it is possible to monitor the whole overlap distribution of the 
adhesive peel stress, and a fortiori at crack tip (x=0), by simply monitoring the third order 
derivative of the upper adherends cross-section rotation making no more assumption than 
simply considering the joint equilibrium originally described in (Hart-Smith 1973a, Hart-
Smith 1973b) as valid nearby the adhesive crack tip (x=0). It is indicated that in the case of 
pure peel adhesive solicitations the afore described theory requires no a priori evaluation of 
the reaction loads acting onto the edges of the bonded overlap. 

3.5.4. On the constitutive relationship of a thin adhesive layer loaded in mixed-mode 
I/II 

Based on the approaches developed in Sections 3.5.2 and 3.5.3, this section aims at presenting 
an original experimental protocol to determine the complete stress-strain relationships of a 
thin adhesive layer facing mixed-mode I/II adhesive solicitations. The presented 
demonstration applies to both MCB and MMB adhesive test specimens despite the following 
data reduction scheme is not limited to these particular specimens only. 

In the case of mixed-mode I/II adhesive solicitations, the local equilibrium of the upper 
adherend can be reduced in the form of the following set of differential equations (see 
Fig.71): 

( )













=+++

=

−=

0
2

1
11

1

1

1

bTeeV
dx

dM

S
bdx

dV

T
bdx

dN

         (159) 



Chapter 3. On the experimental characterization of thin adhesive layers 

 

- 125 - 

 

where S refers to the adhesive peel stress, T to the adhesive shear stress, N1 to the normal 
force in adherend 1, V1 to the shearing force in adherend 1 and M1 to the bending momentum 
in adherend 1, while the constitutive beam equations are given in equation (147). 

Finally inserting equation (147) in equation (159), it is finally possible to express both the 
shear stress T and the peel stress S as functions of the successive derivatives of the adherends 
cross-section rotation and longitudinal displacement, so that: 
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which can be reduced in the case of symmetric (or monolithic) adherends to: 
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Equation (161) then suggests it is possible to monitor the overlap distribution as well as the 
evolution of both the adhesive shear and peel stresses at crack tip (x=0) by monitoring the 
successive derivatives of both the cross-section rotation and longitudinal displacement of the 
upper adherend. 

3.5.5. Confrontation with semi-analytical predictions 

Description of the simplified 1D-beam adhesive stress analyses. As in Section 3.4.5, the 
workability/sustainability of the afore described theory (i.e. the direct method) was 
investigated. Three semi-analytical models are then constructed (e.g. ENF, DCB and MCB). 
Each model refers to one of those presented in Section 3.4.5, so that a schematic 
representation of each model is presented in Fig.67. Similarly, the mechanical properties of 
both the adhesive layer and the surrounding adherends are given in Tab.8. The adherend-to-
adherend displacement field nearby the adhesive crack tip is set as a direct output of the 
simplified 1D-beam adhesive stress analyses and taken as it was coming from experimental 
records. The successive derivatives of the adherend-to-adherend displacement field are then 
obtained directly from the resolution procedure presented and described in Chapter 1. The 
evolution of both pure modes and mixed-mode adhesive shear and peel stress-strain evolution 
laws are finally obtained thanks to equations (153) (158) and (161). 

Confrontation with semi-analytical predictions. A direct comparison between the so 
predicted stress-strain relationships (the direct method) and the stress-strain evolutions 
effectively experienced at crack tip by both ENF, DCB and MCB joint specimens (semi-
analytical) is given in Fig.73, Fig.74 and Fig.75. 
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Figure 73. Schematic representation the End-Notched Flexure (ENF) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (the direct 
method) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in pure 
shear (mode II). Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. The direct method. 

 

 

Figure 74. Schematic representation the Double Cantilever Beam (DCB) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (the direct 
method) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in pure 
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peel (mode I). Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. The direct method.  

 

 

Figure 75. Schematic representation the Mixed-mode Cantilever Beam (MCB) adhesive joint 
specimen. Comparison of the predicted adhesive stress-strain relationships (the direct 
method) and the stress-strain evolution laws effectively experienced (semi-analytical) by the 
specimen at crack tip. On the constitutive relationship of a thin adhesive layer loaded in 
mixed-mode I/II. Confrontation with semi-analytical predictions. On the experimental 
characterization of CZM. The direct method. 

It is seen form Fig.73, Fig.74 and Fig.75 that the so predicted adhesive constitutive stress-
strain relationships are here in close agreement with both shear and peel adhesive stress-strain 
evolution laws effectively experienced by the simulated ENF, DCB and MCB joint specimens 
with no distinction between early stage and later stage of the experiment. It is also seen from 
Fig.73, Fig.74 and Fig.75 that the so predicted adhesive constitutive stress-strain relationships 
are able to address the constitutive behavior of the adhesive layer during unloading phases, 
which was basically impossible using energetic methods due to the inability of the J-integral 
as described in (Rice 1968) to account for possibly non-monotonous load histories. Thus 
resulting in allowing for the monitoring of the true degradation process in the case of coupled 
yielding and pure damage degradation of the adhesive interface stiffnesses during loading.  

3.6. Experimental investigations on metal-to-metal adhesive joints 
3.6.1. Data processing 

Presentation of the data pre-processing algorithm. It is shown from Sections 3.5.2 to 3.5.4 
that the evolution of adhesive stresses at crack tip (x=0) can be theoretically monitored by 
supervising the successive derivatives of the adherend-to-adherend displacement field nearby 
the adhesive crack tip (x=0). However, since the numerical differentiation of raw (noised) 
experimental results can lead to the rise of important numerical artifacts/singularities, a 
particular attention has to be given to the correct evaluation of the successive derivatives of 
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the adherend-to-adherend displacement field nearby the adhesive crack tip (x=0). Data pre-
processing is then highly recommended to reduce experimental noises. 

The data pre-processing algorithm used to reduce experimental noises from the measured 
adherend-to-adherend displacement fields then lies on the optimal sub rank approximation 
based on the Singular Value Decomposition (SVD), and is related to signal processing 
techniques that are commonly referred to as SVD signal enhancement methods, reduced-rank 
signal processing methods or simply subspace methods (Andrews & Patterson 1973, 
Orfinandis 2007). According to (Sadek 2012), optimal sub rank approximation based on the 
SVD of digital images finds its roots in the field of digital image compression. The optimal 
sub rank approximation method then states that a digital image X of size M*N, with M≥N, can 
be represented by its SVD as: 
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=          (162) 

where U=[u(1),u(2),…,u(M)], a M*M  real or complex unitary matrix (i.e. whose columns are 
referred as the left singular vectors), S a M*N rectangular diagonal matrix with non-negative 
diagonal entries (i.e. referred to as the singular values and ranked in a strictly decreasing 
order), and VT the conjugate transpose of V=[v(1),v(2),…,v(N)] a N*N real or complex unitary 
matrix (i.e. whose columns are referred as the right singular vectors). Among other significant 
advantages, the SVD is commonly recognized as the optimal matrix decomposition in the 
sense of the least squares method that packs most of the signal energy (information) into as 
few coefficients as possible (Moonen et al. 1992). This property of the SVD is generally 
referred to as the maximum energy packing property.  

Then defining the rank-R approximation of X as: 

[ ] ( ) [ ][ ] [ ]
T

T(i),(i) VSUX vu
N

R

R

RR

M

R

i
iM

N

sR ==∑
=1

       (163) 

where U=[u(1),u(2),…,u(R)], the M*R matrix resuming the firsts R left singular vectors of X, S a 
R*R the rectangular diagonal matrix resuming the first R singular values of X, and VT the 
conjugate transpose of V=[v(1),v(2),…,v(R)] the N*R matrix resuming the first R right singular 
vectors of X. In Digital Image Processing (DIP), the singular value si is generally referred to 
as the energy (or luminance) of the i th image layer while the rank-1 matrix deriving from the 
outer product u(i)v(i),T is generally referred to as the i th image layer (or eigenimage) of X. 

The optimal sub rank approximation then suggests that the original image X can be 
legitimately approximated by its lower rank approximation X, so that R≤min(M,N) is chosen 
to minimize the difference between the energy (i.e. associated to the Frobenius-norm of the 
matrix X) of the initial image X and the reconstructed image X. Then, the storage of the rank-
R truncated SVD requires (N+M+1)*R numbers only versus M*N for the original image. 
Fig.76 presents an example of SVD truncation using the rank-R approximation technique. 
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Figure 76. Illustration of SVD truncation techniques for the storage reduction of digital 
images. Original image (a), rank-R=30 SVD approximation (b). N=225. M=514. 
N*M=115650. (N+M+1)*R=22200. Presentation of the data pre-processing algorithm. Data 
pre-processing. On the experimental characterization of CZM. Experimental test campaign. 

In (Konstantinides et al. 1997, Kamm 1998), the authors suggested using the optimal sub rank 
approximation for data (image) denoising purposes. The authors then stated that the SVD 
offers the possibility of splitting the image space into two distinct subspaces, the signal (i.e. 
referred as the dominant subspace) and the noise (i.e. referred as the subdominant subspace). 
So that the dominant and the subdominant subspaces are by construction orthogonal. Then, 
iteratively reconstructing the dominant subspace using an increasing number of singular 
values, starting from the most energetic, allows for the original signal (denoised) to be 
estimated from the SVD of the degraded (noised) signal (see Fig.77). 

The key parameter of digital image denoising using SVD techniques then lies in finding the 
correct truncation R that separates the dominant subspace (i.e. the signal) from the 
subdominant subspace (i.e. the noise). Numbers of truncation strategies have been suggested 
over the past few years so that it allows for finding the best compromise in terms of capturing 
most of the energy (information) of the original signal (image) while reducing experimental 
noises (Orfanidis 2007). 

 

(a) (b) 

(a) (b) 

(c) (d) 

Rank-R=45; 

Rank-R=30; 
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Figure 77. Illustration of the SVD truncation technique for data (image) denoising 
processing. Original image (a), noised image (b), unoised image (dominant subspace) (c), 
reconstructed noise (subdominant subspace) (d). Presentation of the data pre-processing 
algorithm. Data pre-processing. On the experimental characterization of CZM. Experimental 
test campaign. 

The data pre-processing algorithm used to reduce experimental noises from the measured 
adherend-to-adherend displacement fields then lies on the digital mapping of the adherend-to-
adherend axial (transverse) displacement fields as a set of  2D matrices (see Fig.78). First, the 
evolution of the axial (transverse) displacement field of each adherend is mapped as 3D 
tensors resuming both the distributions of the adherend axial (transverse) displacements 
nearby the adhesive crack tip as well as their respective evolutions. Then, the so constructed 
3D tensors of dimensions x, y and t are rearranged in the form of simpler 2D matrices so that 
their new dimensions are respectively y and x*t (see Fig.78). 

 

Figure 78. Data pre-processing algorithm. Digital mapping of the adherend-to-adherend axial 
and transverse displacement fields. Presentation of the data pre-processing algorithm. Data 
pre-processing. On the experimental characterization of CZM. Experimental test campaign. 

The so constructed 2D matrices are then filtered using the rank-R reduction approximation 
based on the Singular Value Decomposition (SVD) of the raw experimental results, so that R 
is chosen to capture 95% of the original data energy in the sense of the Frobenius-norm (see 
Fig.79). 
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Figure 79. Data pre-processing algorithm. Filtering of the experimental results using the 
rank-R reduction approximation based on Singular Value Decomposition (SVD). 
Presentation of the data pre-processing algorithm. Data pre-processing. On the experimental 
characterization of CZM. Experimental test campaign. 

Then, the evolution of each adherend axial and transverse displacement fields are 
reconstructed from their respective decompositions and rearranged in the form of 3D tensors, 
so that the displacements of the upper (lower) neutral fiber are finally extracted from the 
reconstructed axial and transverse displacement fields and formatted into the relevant beam or 
plate theory (see Fig.80) 
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Figure 80. Data pre-processing. Extraction of the displacements of each adherend neutral 
fiber. Presentation of the data pre-processing algorithm. Data pre-processing. On the 
experimental characterization of CZM. Experimental test campaign. 

Finally, the differentiation of the adherends cross-section rotation is ensured by fitting a 
polynomial series so that the vertical deviation with experimental data is minimized in the 
sense of the least squares method by using the Moore-Penrose pseudo inverse technique (see 
Appendix 6). Two models are used (see Fig.81). The first model takes interest in fitting w(x) 
only. The second model takes interest in fitting simultaneously w(x) and θ(x)=dw(x)/dx. So 
that model 1 is by construction concatenated in model 2. The successive derivatives of the 
adherend-to-adherend displacement field are finally computed directly from differentiating 
the fitted polynomial series. 
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Figure 81. Data pre-processing. Fitting of the polynomial series using the Moore-Penrose 
pseudo inverse technique. Presentation of the data pre-processing algorithm. Data pre-
processing. On the experimental characterization of CZM. Experimental test campaign. 

Presentation of the supervised experiment. To characterize the ability of the suggested data 
pre-processing and differentiation algorithm to determine the successive derivatives of the 
adherend-to-adherend displacement field with sufficient accuracy, here is presented a 
supervised experiment. 

This supervised experiment refers to the data pre-processing and data differentiation of a 
displacement field that is virtually generated so that the evolution of its successive derivatives 
is known in advance of the experiment. For simplification purpose, the comparison between 
the supervised data and those obtained from the data processing will be made in terms of the 
3rd and 4th order derivatives of the transverse displacement of the adherend neutral fiber only. 
However the results are similar with other derivatives. 

The virtual displacement field is generated using Matlab® R2012b and resumes the kinematic 
of a classical Euler-Bernoulli’s beam in coupled in-plane tension/flexion, so that: 
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where the evolutions of u(x,y=0,t) and w(x,y=0,t) are arbitrary fixed as: 
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So that the simulated kinematics u(x,y) and w(x,y) at t=1s are finally presented in Fig.82. 
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Figure 82. Representation of the virtual displacement fields u(x,y) and w(x,y) at t=1s. Data 
pre-processing. Presentation of the supervised data. On the experimental characterization of 
CZM. Experimental test campaign. 

To model the effect of experimental noises, the virtual displacement field described in 
equations (164) and (165) is then degraded by adding a normal (Gaussian) noise using the 
normrnd(0,σ) Matlab® function. Where 0 refers to the prescribed zero mean value and σ to 
the configurable standard deviation of the normal (Gaussian) noise distribution (Matlab 
2014). So that the simulated kinematics u_n(x,y) and w_n(x,y) are finally presented in Fig.83. 

 

Figure 83. Representation of the degraded displacement fields u_n(x,y) and w_n(x,y) at t=1s. 
Data pre-processing. Presentation of the supervised data. On the experimental 
characterization of CZM. Experimental test campaign. 

Finally, and to test for the linear dependency between the successive derivatives of the 
supervised data and those obtained from the fitted polynomial series, both the Pearson 
product-moment correlation coefficient, that is: 
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And the Nash-Sutcliffe efficiency coefficient, that is: 
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where x refers to the set of supervised data, y to the set of simulated data, n to the total 
number of data pairs and x to the mean value of x are respectively estimated. 

So that the correlation between the measured 3rd and 4th order derivatives of the transverse 
displacement of each adherend and its supervised evolution is presented in Fig.84 and Fig.85. 

 

 Raw vs. Supervised Pre-processed vs. Supervised 
r2 0.9160 0.9893 

nsc 0.9121 0.9826 
1-sqrt(1-r2) 0.7102 0.8966 

 

Figure 84. Comparison of the 3rd order derivative of the transverse displacement of the 
adherend neutral fiber obtained by fitting a 6th order polynomial series on both raw and pre-
processed results. Comparison with the supervised data. 

 

 Raw vs. Supervised Pre-processed vs. Supervised 
r2 0.4110 0.9107 

nsc 0.3758 0.7525 
1-sqrt(1-r2) 0.2325 0.7012 
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Figure 85. Comparison of the 4rd order derivative of the transverse displacement of the 
adherend neutral fiber obtained by fitting a 6th order polynomial series on both raw and pre-
processed results. Comparison with the supervised data. 

For convenience the results presented will now refers to the measurement of the 3rd order 
derivative of the transverse displacement of the upper adherend neutral fiber only. 
Additionally, the squared Pearson product-moment correlation coefficient r2 will be now 
considered only. However the following conclusions are not limited to this particular 
derivative and (or) to the squared Pearson product-moment correlation coefficient only. 

Influence of the experimental (algorithmic) parameters on the accuracy of the 
experimental measures: DoE. A full factorial Design of Experiments (DoE) consists in the 
following: (i) vary one factor at a time, (ii) perform experiments for all levels and 
combination of levels for all factors, (iii) hence perform a large number of experiments (N), 
(iv) so that all effects and interactions are captured. Let k be the number of factor, ni the 
number of levels of the i th factor and p the number of replications to determine the impact of 
the measurement dispersion. The total number of experiments N of a full factorial DoE is 
then: 
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           (168) 

Here is considered a full factorial DoE of five factors with respectively 3x3x3x3x2 levels, so 
that the linear Taguchi’s graph of effects and interactions can be represented in the form of 
Fig.86. 

 

Figure 86. Linear Taguchi’s graph of main effects and interactions. Full factorial Design of 
Experiments (DoE). Data pre-processing. On the experimental characterization of CZM. 
Experimental test campaign. 

So that in Fig.86 are represented the main effects and interactions – respectively denoted E(i) 
and I(ij)  – of factors i,j=A, B, C, D and E onto the objective function that is r2. 

Each experiment is replicated 15 times to capture the impact of the measurement dispersion, 
so that the total number of experiments is (3x3x3x3x2)x15=2430. The different factor levels 
are given in Tab.9. 

: Effect of factor i (i=A,B,C,D,E) 

: First order interaction between i-j 

A 

B 

C D 

E Y = 

Y = M+E(A)+E(B)+E(C)+E(D)+E(E) 
+I(AB)+I(AC)+I(AD)+I(AE)+I(BC)+I(BD)+I(BE)+I(CD)+I(CE)+I(DE) 
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Tab 9. Factor versus levels matrix. Full factorial Design of Experiments (DoE). Data pre-
processing. On the experimental characterization of CZM. Experimental test campaign. 

 SNR-1 (A) x=y (B) t (C) Degree (D) Model (E) 
Low (-1) 0.00175 201 51 4 1 

Medium (0) 0.00350 401 101 6 N.A 
High (+1) 0.00700 801 201 8 2 

 

where SNR refers to the simulated Signal-to-Noise ratio, x=y to the spatial resolution of each 
displacement field instantaneous image, t to the number of instantaneous images taken during 
the experiment (i.e. thereafter referred as the temporal resolution), Degree to the degree of the 
polynomial series used to fit/differentiate the neutral fiber transverse displacement and Model 
to the model used for minimizing the vertical deviation with experimental data in the sense of 
the least squares method (see Appendix 6). 

The results obtained from the full factorial DoE are then presented from Fig.87 to Fig.89. 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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Figure 87. Effect of factor i (i=A,B,C,D,E) on the correlation coefficient r2. Influence of the 
experimental (algorithmic) parameters on the accuracy of the experimental measures. DoE. 
M=0.9307. Red= Significant effects. Black= Negligible effects. Validation of the data pre-
processing algorithm. On the experimental characterization of CZM. Experimental test 
campaign. 
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Figure 88. First order interaction between factors i-j (i,j=A,B,C,D,E) on the correlation 
coefficient r2. Influence of the experimental (algorithmic) parameters on the accuracy of the 
experimental measures. DoE. Red= Significant interactions. Black= Negligible interactions. 
M=0.9307. Validation of the data pre-processing algorithm. On the experimental 
characterization of CZM. Experimental test campaign. 

  

Figure 89. Evolution of the standard deviation (dispersion) of the 15 replications as a 
function of the averaged correlation coefficient r2. Influence of the experimental 
(algorithmic) parameters on the accuracy of the experimental measures. DoE. M=0.9307. 
Validation of the data pre-processing algorithm. On the experimental characterization of 
CZM. Experimental test campaign. 

 

Figure 90. Reduced linear Taguchi’s graph of main effects and interactions. Full factorial 
Design of Experiments (DoE). Black= Significant effects, interactions. Red= Negligible 
effects, interactions. Data pre-processing. On the experimental characterization of CZM. 
Experimental test campaign. 

: Effect of factor i (i=A,B,C,D,E) 

: First order interaction between i-j 

A 

B 

D 

E Y = 

Y = M+E(A)+E(B)+0+E(D)+E(E) 
+0+0+I(AD)+I(AE)+0+I(BD)+I(BE)+0+0+I(DE) 

(i) (j) 

Averaged correlation coefficient r2 Averaged correlation coefficient r2 



Chapter 3. On the experimental characterization of thin adhesive layers 

 

- 140 - 

 

The results presented from Fig.87 to Fig.89 then suggest: 

(i) The initial SNR appears as a key parameter in increasing the accuracy of measuring the 
successive derivatives of the upper adherend displacement field (see Fig.87-(a)), then 
suggesting that a significant attention has to be given into reducing the noise of the measured 
signal before any pre-processing of the data. This can be achieved in various ways so that it 
results in improving the overall quality of the displacement measures (DIC). 

(ii) The spatial resolution of the instantaneous images of the upper adherend displacement 
field also appears as a key parameter in increasing the accuracy of the estimation of the 
successive derivatives of the upper adherend displacements (see Fig.87-(b), Fig.88-(e) and 
Fig.88-(h)). A particular attention has then to be given to measuring the displacements of the 
upper adherend with an sufficient enough spatial resolution. 

(iii) On another side, the time resolution (i.e. number of images of the upper adherend 
displacement field taken during the experiment) appears as negligibly influencing the 
accuracy of the estimation of the successive derivatives of the upper adherend displacements 
(see Fig.87-(c), Fig.88-(b), Fig.88-(d), Fig.88-(f) and Fig.88-(i)). So that its own effect as 
well as its respective interactions with other factors can be legitimately neglected at first sight 
(see Fig.38). 

(iv) Similarly to the initial SNR or the spatial resolution of the displacement images, the 
degree of the polynomial series used for fitting/differentiating the pre-processed 
displacements also appears as a parameter that has to be chosen with extreme caution. 
Indeed, although increasing the degree of the polynomial series from 4 to 6 appears as 
negligibly influencing the overall accuracy of the measure, increasing it from 6 to 8 results in 
a serious degradation of the accuracy of the measure (see Fig.87-(d)). This degradation of the 
accuracy of the measurement using high order polynomials is a well-known issue, and is due 
to the oscillation of the polynomial series around the experimental set of data points for 
increasing degrees (i.e. Runge’s phenomenon). A particular attention has then to be given in 
chosiing the best compromise between fitting the experimental data points using high order 
polynomials functions and preserving the overall accuracy of the measurement of its 
successive derivatives. 

(v) Finally, the choice of the Moore-Penrose pseudo inverse model for minimizing in the 
sense of the least squares method the vertical deviation between the polynomial function (i.e. 
used for fitting/differentiating the set of experimental data points) and the experimental data 
points themselves appears as a worthwhile way of influencing the accuracy of the measured 
displacement derivatives (see Fig.87-(e)). It is then suggested that simultaneously accounting 
for both w(x) and θ(x)=dw(x)/dx when fitting/differentiating the experimental set of data 
points significantly increases the accuracy of the measurement. 

3.6.2. Experimental setup, preparation of the specimens and instrumentations 

To check for the experimental workability/sustainability of the newly suggested 
characterization method (i.e. the direct method) the mechanical response of four adhesive 
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joint specimens is here investigated (e.g. ENF, DCB, MMB and SLJ). The ENF, DCB, MMB 
and SLJ adhesive test specimens are representative of either pure mode I, pure mode I and 
(or) mixed-mode I/II adhesive solicitations. The test specimens are bonded using the SAF-
30MIB adhesive paste from AEC-Polymers. The SAF-30MIB adhesive paste is a room-
temperature cured highly flexible methacrylate adhesive used in the outboard 
manufacturing/repairing industry. The adherends are made of a laminated aluminum-
magnesium-silicon aluminum alloy (6060 series). The bulk material properties of the 
aluminum alloy are characterized from dumb tensile test specimens in advance of the present 
experimental test campaign (see Section 3.3.1). The adherends elastic properties are reminded 
in Tab.10. To enhance the adhesion properties of the adhesive layer before bonding, each 
adherend is cleaned using the AEC-Polymers T700 dry cleaning spray. To ensure a constant 
adhesive thickness along the overlap, two calibrated anti-adhesive tapes are stuck at each side 
of the bonded overlap (see Fig.91). The small cracks induced by the use of calibrated anti-
adhesive tapes will be accounted in each of the latter on analyses. The dimensions of each 
specimen are controlled after bonding. The averaged dimensions are given in Tab.11. 

 

Figure 91. Schematic representation the manufacturing process of the ENF, DCB, MMB and 
SLJ adhesive joint specimens. Experimental setup, preparation of the specimens and semi-
analytical analyses. On the experimental characterization of CZM. Experimental test 
campaign. 

Tab 10. Experimental characterization of aluminum Tensile Test (TT) bulk specimens. Elastic 
material properties. Young’s Tensile (YT) modulus. Poisson’s ratio (Nu). Aluminum= 6060 
series. Bulk material properties. 

Young’s Tensile modulus (YT) Poisson’s ratio (Nu) 

66000 MPa 0.35 
 

Tab 11. Controlled geometries of the ENF, DBC, MMB and SLJ adhesive joint specimens. 
Aluminum= 6060 series. Adhesive= SAF-30MIB. Experimental setup, preparation of the 
specimens and semi-analytical analyses. On the experimental characterization of CZM. 
Experimental test campaign. 
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 a L l t e b 
ENF 29.82mm 71.43mm N.A. 3.96mm 0.230mm 22.0mm 
DCB 30.69mm 70.0mm N.A. 3.96mm 0.180mm 22.0mm 
MMB 30.21mm 70.89mm N.A. 3.96mm 0.180mm 22.0mm 
SLJ N.A. 51.4mm 29.35mm 3.96mm 0.120mm 22.0mm 

 

Similarly to Sections 3.3.1 and 3.3.2, the entire test campaign is performed on an electro-
mechanical test machine (Ref: Instron AI735-1325). Except for the mixed-mode I/II 
characterization experiments that are performed on an electro-mechanical test machine (Ref: 
Kilo-Newton AI264-FT). Both the applied load, the resulting displacement and the adherend-
to-adherend displacement field at crack tip are measured during the tests. The evolution of 
both the applied load and the resulting displacement are measured using the build in machine 
load and displacement cells. The evolution of the adherend-to-adherend displacement field is 
measured using the Digital Image Correlation (DIC) technique (see Fig.92 and Fig.93). The 
pure mode deformations of the adhesive layer are computed from the relative displacement of 
the adherends neutral fibers (see Fig.94). Both DIC and build in machine measures are 
synchronized using an analogical-to-numerical National Instrument (NI) acquisition card so 
that it facilitates the processing of the adhesive constitutive CZM relationships. The 
mechanical stiffness of the Tensile Test Machine (TTM) is characterized so that the resulting 
displacement measured by the build in machine displacement cell is corrected to fit the true 
displacement of the adhesive test specimens. Four specimens of each configuration are tested 
(e.g. ENF, DCB, MMB and SLJ). The SLJ specimens are tested for validation purposes only. 
Correlations between experimental and numerical Force versus Resulting Displacement 
curves are used to evaluate the ability of the newly suggested approaches (i.e. the direct 
method) to characterize and restitute the mechanical response of the tested adhesive 
specimens. A particular emphasis is given to the ability of the suggested approaches to 
restitute both the experimental stiffness and the maximum load bearing capability of each 
adhesive specimen. The numerical analyses are performed using the procedure presented and 
described in (Paroissien et al. 2013) and in Chapter 1. Both adhesive and adherends nonlinear 
stress-strain evolution laws are accounted for. 
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Tensile Test Machine 

Speckle Pattern 

(a) ENF 
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Figure 92. Experimental monitoring the of the adherend-to-adherend displacement field 
using Digital Image Correlation (DIC) techniques. Experimental setup, preparation of the 
specimens and semi-analytical analyses. On the experimental characterization of CZM. 
Experimental test campaign. 
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Figure 93. Experimental monitoring the of the adherend-to-adherend displacement field 
using Digital Image Correlation (DIC) techniques. Experimental setup, preparation of the 
specimens and semi-analytical analyses. On the experimental characterization of CZM. 
Experimental test campaign. 

 

Figure 94. Schematic representation of the shearing and peeling adhesive deformations. 
Experimental setup, preparation of the specimens and semi-analytical analyses. On the 
experimental characterization of CZM. Experimental test campaign. 

3.6.3. Material description 

As presented in Section 3.6.2, the bulk material properties of each adherend are characterized 
from tensile test specimens in advance of the adhesive test campaign (see Section 3.3.1). The 
adherends constitutive stress-strain relationship is approximated using a trilinear elastic-
plastic material behavior. The model is optimized so that it fits at best the measured stress-
strain relationship in pure traction (see Fig.95). 
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Figure 95. Experimental characterization of aluminum Tensile Test (TT) bulk specimens 
elastic-plastic properties. Aluminum= 6060 series. σ= True stress. ε= True deformation. Bulk 
material properties. 

3.6.4. Quasi-static experiments 

Mode I: DCB. Fig.96-(a) presents the obtained adhesive traction-separation laws in the case 
of pure mode I adhesive solicitations. Fig.96-(b) presents the comparison between 
experimental measures and semi-analytical predictions in terms of Applied Load versus 
Resulting Displacement evolution law. Three models are used for the comparison (see Section 
3.7). The irregularities observed in the measured traction-separation law are due to residual 
noises when measuring the successive derivative of the adherend-to-adherend displacement 
field.  However good agreement is shown in terms of both predicted stiffness and maximum 
load bearing capability of the DCB joint specimen. 
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Figure 96. (a) Experimental adhesive traction separation law in pure mode I. (b) Comparison 
between experimental results and semi analytical predictions in terms of Applied versus 
Resulting Displacement evolution laws. Experimental investigation on metal-to-metal 
adhesive joints. Quasi-static experiment. Mode I. DCB. 

Mode II: ENF. Fig.97-(a) presents the obtained adhesive traction-separation laws in the case 
of pure mode II adhesive solicitations. Fig.97-(b) presents the comparison between 
experimental measures and semi-analytical predictions in terms of Applied Load versus 
Resulting Displacement evolution law. Three models are used for the comparison (see Section 
3.7). The irregularities observed in the measured traction-separation law are due to residual 
noises when measuring the successive derivative of the adherend-to-adherend displacement 

(a) 

(b) 
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field.  However good agreement is shown in terms of both predicted stiffness and maximum 
load bearing capability of the ENF joint specimen. 
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Figure 97. (a) Experimental adhesive traction separation law in pure mode II. (b) Comparison 
between experimental results and semi analytical predictions in terms of Applied versus 
Resulting Displacement evolution laws. Experimental investigation on metal-to-metal 
adhesive joints. Quasi-static experiment. Mode II. ENF. 

Mixed-mode I/II: MMB. 

The direct method. Similarly to the pervious subsections, the constitutive behavior of the 
adhesive layer facing mixed-mode I/II solicitations was investigated using the afore described 
direct method. However the results obtained were shown as practically unexploitable due to 
the extremely small levels of longitudinal displacements measured by the camera, compared 
to the transversal ones. It then resulted in extremely baldy conditioned measures (i.e. high 
SNRs) in the axial direction, so that the longitudinal displacement of the upper neutral fiber 
was not differentiated with sufficient accuracy for the direct method to allow for the 
restitution of the adhesive constitutive relationships. An alternative characterization method 
was then developed for characterizing the effective mixed-mode I/II properties of the 
adhesive layer. 

Alternative characterization method: The inverse method. Since the direct method is shown as 
unable to address with sufficient accuracy the effective evolution of the adhesive stresses 
(strains) at crack tip when facing mixed-mode I/II solicitations (see Section 3.6.4), an 
alternative characterization method has to be developed for characterizing the effective 
mixed-mode I/II properties of the adhesive layer. Here is suggested to use an inverse 
characterization method. Then, a complete semi-analytical model of the Mixed-Mode 
Bending (MMB) joint specimen is constructed. The model account for both the pure mode I 
and pure mode II adhesive traction separation laws characterized from Fig.96-(a) and Fig.97-
(a). Since both adherends material nonlinearities are likely to appear, both adherend are 
modeled as monolithic beams exhibiting nonlinear axial stress-strain evolution law (see 
Fig.95). For simplification purpose, both initiation and propagation mixed-mode criteria are 
presumed as following a power law energetic relationship with the additional condition n=m 
(see Fig.98). 
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Figure 98. (a) Representation of the power law energetic relationship for n=m= 0.5, 1, 2, and 
3. (b) Influence of the mixed-mode criterion on the evolution of the adhesive mode mixity at 
crack tip. Experimental investigation on metal-to-metal adhesive joints. Quasi-static 
experiment. Mixed-mode I/II. MMB. Alternative characterization method. The inverse 
method. 

Fig.99-(a) then presents the comparison between the measured and the predicted adhesive 
mixed-mode load path at crack tip for the best fit n=m=1. Fig.99-(b) presents the comparison 
between experimental measures and semi-analytical predictions in terms of Applied Load 
versus Resulting Displacement evolution law. Three models are used for the comparison (see 
Section 3.7). Good agreement is shown in terms of both stiffness and maximum load bearing 
capability of the MMB joint specimen (i.e. for both c=85.25mm and c=152.25mm). 
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 a L t e b 
Dimensions 30.21mm 70.89mm 3.96mm 0.180mm 22.0mm 

 

 

 

Figure 99. (a) Comparison between experimental and semi-analytical predictions of the 
adhesive mixed-mode load path at crack tip. Characterization of the effective adhesive 
mixed-mode properties using inverse method. (b) Comparison between experimental results 
and semi analytical predictions in terms of Applied versus Resulting Displacement evolution 
laws. Experimental investigation on metal-to-metal adhesive joints. Quasi-static experiment. 
Mixed-mode I/II. MMB. 

Validation: SLJ. Fig.100 presents the comparison between experimental measures and semi-
analytical predictions in terms of Applied Load versus Resulting Displacement evolution law. 
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Three models are used for the comparison (see Section 3.7). Good agreement is shown in 
terms of both stiffness and maximum load bearing capability of the SLJ joint specimen. 

 

 L l t e b 
Dimensions 51.4mm 29.35mm 3.96mm 0.120mm 22.0mm 

 

 

Figure 100. Comparison between experimental results and semi analytical predictions in 
terms of Applied versus Resulting Displacement evolution laws. Experimental investigation 
on metal-to-metal adhesive joints. Quasi-static experiment. Validation. SLJ. 

3.7. Conclusion and discussion 

Numbers of experimental protocols for the characterization of the cohesive properties of thin 
adhesive layers based on classical Fracture Mechanics tests have been suggested over the past 
few years (Anderson et al. 2003, Alfredsson  2003,  Alfredsson et al. 2003, Alfredsson 2004, 
Leffler et al. 2006, Hogberg 2006, Hogberg et al. 2007, Cui et al. 2014, Cui 2014, Da Silva 
2012). A large amount of them are based on the concept of the specimen energetic balance 
associated to the computation of the path independent J-integral. Three of them are presented 
in Sections 3.4.2 to 3.4.4. However the aim of the present thesis is not to cover all the existing 
protocols for the characterization of thin adhesive interfaces. The underlined simplifications 
as well as the direct limitations of those approaches are set out and discussed. It is seen from 
Sections 3.4.2 to 3.4.4 that most of those characterization procedures lie on assumptions that 
can appear as limiting for the true characterization of the cohesive properties of thin adhesive 
interfaces (i.e. validity of the early-design criteria, impossibility of early-designing the 
adhesive joint specimen without knowing in advance the adhesive peel (shear) modulus, 
inability of monitoring the evolution of adhesive stresses during unloading phases, etc). 
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Due to the necessity of developing techniques that allow for the characterization of cohesive 
interface properties, three new and original protocols for the characterization of the effective 
cohesive properties of thin adhesive interfaces are then presented and developed in view of 
their implementation. Those protocols are based on the monitoring of the successive 
derivatives of the adherend-to-adherend displacement field nearby the adhesive crack tip and 
have the advantage of not requiring any path integration of the joint equilibrium equations. It 
is seen from Fig.73 to Fig.75 that the obtained adhesive stress-strain evolution laws are in 
close agreement with those predicted by semi-analytical analyses (i.e. during both loading and 
unloading phases). 

Finally, the first results of an experimental test campaign are provided so that it validates the 
new protocols in the case of metal-to-metal adhesive bonding. The mechanical response of 
three adhesive test specimens is investigated (e.g. ENF, DCB and SLJ). Those test specimens 
are representative of either pure mode I, pure mode II and/or mixed-mode I/II. The adhesive 
traction-separation laws are computed from both the measured adhesive stress and 
deformations at crack tip (see Sections 3.2 to 3.4). In pure mode II, it is shown that the 
adhesive layer experiences three distinct phases (see Fig.97). The first one, the linear-elastic 
phase, appears as extremely limited compared to the entire deforming capability of the 
adhesive layer (i.e. the plastic + softening phases representing up to 85% of the entire 
deforming capability of the adhesive layer). As a result, it then legitimately questions the 
legitimacy of using simplistic linear-elastic adhesive stress analyses, even for early-design 
purposes (see Sections 3.4.2 to 3.4.4). It is also seen from Fig.97 that the adhesive unloading 
behavior reveals a significant coupling between pure yielding and pure adhesive stiffness 
degradation. It then questions the ability of classical CZM approaches, that generally assume 
a pure degradation of the adhesive stiffness, to model the behavior of adhesive specimens 
subjected to varying loading amplitudes (e.g. static, fatigue, etc). The conclusions are similar 
in pure mode I. 

To demonstrate the ability of such approaches to restitute the mechanical behavior of the 
studied adhesive specimens, three numerical models of each specimen are constructed. In the 
first one, the adhesive layer is presumed as acting as a linear-elastic interface resuming both 
the initial stiffnesses of the measured adhesive pure modes traction-separation laws (e.g. 
E=250MPa and G=110MPa). Both adherends are modeled as linear-elastic monolithic beams 
(e.g. E=66GPa and ν=0.36). Good agreement is shown in terms of initial stiffness of the 
specimen. However significant deviations are observed after the adhesive layer enters its non-
linear domain (i.e. depending on the adhesive test specimen). In the second model, the 
adhesive layer is presumed as acting as a cohesive interface resuming the complete adhesive 
pure modes traction-separation laws characterized from Fig.96 and Fig.97. Both adherends 
are modeled as linear-elastic monolithic beams (e.g. E=66GPa and ν=0.36). Fulfilling 
agreement is shown for both DCB and SLJ adhesive specimens in terms of both stiffness and 
maximum load bearing capability. It then suggests that the adhesive degradation process (i.e. 
characterized by both pure mode I and pure mode II traction separation laws) is the main 
mechanism involved in the ruin of the studied DCB and SLJ specimens. However significant 
deviations are still observed in the case of both ENF and MMB adhesive specimens. In the 
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third semi-analytical model, the adhesive layer is presumed as acting as a cohesive interface 
resuming the complete adhesive pure modes traction-separation laws characterized from 
Fig.96 and Fig.97. However both adherends are this time modeled as nonlinear monolithic 
beams resuming the true traction-compression stress-strain relationship of the 6060 series 
aluminum alloy (see Section 3.3.1). Fulfilling agreement is shown for both ENF and MMB 
adhesive specimens in terms of both stiffness and maximum load bearing capability. It then 
suggests that the ENF (MMB) adhesive specimen experiences significant levels of adherends 
plasticity (i.e. sufficient to impact non-negligibly the predicted Applied Load versus Resulting 
Displacement evolution law). 
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The field of computational mechanics and particularly Finite Elements (FE) methods have 
provided numerous techniques for modeling the mechanical behavior of adhesively bonded 
joints over the past few years. However these techniques generally involves high 
computational requirements and can lead to instability due to numerical convergence issues. 

As a result, numbers of engineers and researchers have suggested working on simplified 
analyses of the mechanical equilibrium of the joint. The simplified 1D-beam adhesive stress 
analysis is inspired by the FE method and allows for the resolution of the system of governing 
differential equations of the bonded overlap at low computational costs. The displacements 
(forces) of both adherends as well as the adhesive stresses (strains) are then obtained from 
solving the local equilibrium of the adherends. The method then consists in meshing the 
structure. A fully bonded overlap is meshed using a unique 4-nodes macro-element. This 
macro-element, referred to as the BBe element, is specially formulated to allow for the 
resolution of the system of governing differential equations of the bonded overlap at low 
computational costs. The outer adherends, referred to as Beam elements, are in turn meshed 
using specifically formulated Euler-Bernoulli beam elements. The simplified 1D-beam 
adhesive stress analysis thus takes the advantage of the flexibility of FE methods and the 
robustness of theoretical approaches. 

In this thesis: 

(i) An original way of accounting for the effective behavior of adhesive layers within the 
formulation of a dedicated macro-element analysis, referred to as the simplified 1D-beam 
adhesive stress analysis, is presented and developed in view of its implementation. The 
suggested analysis is inspired by the FE method, and allows for the nonlinear behavior of the 
adhesive layer to be accounted for with no restriction on the specimen geometry (see Sections 
2.3 and 2.4 of Chapter 2). The proposed adhesive material models are formulated under a two 
dimensional mixed-mode model that account for the possible interaction (interdependency) 
between both pure mode I and pure mode II adhesive stress-strain evolutions laws. 

(ii) Then, the preceding iterative resolution procedure is adapted (upgraded) so that it allows 
for both adhesive and adherends material nonlinearities to be simultaneously accounted for. 
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Then, an original way of accounting for the effect of the surrounding adherends plasticization 
based on an adaptation of the classical theory of beam plasticity (see Sections 2.5 and 2.6 of 
Chapter 2) is presented and developed in view of its implementation. 

(iii) The results obtained from the suggested solution procedure are then compared to those of 
both sandwich type analyses and Finite Element (FE) predictions involving cohesive interface 
elements. Good agreement is shown. 

By the use of the presented simplified joint analysis, it is shown that the mechanical response 
of a large range of adhesively bonded joints can be investigated using a restricted number of 
specifically formulated elements. It has then conducted to the development of a simplified 
stress analysis tool allowing for the simulation of a large range of bonded assemblies at low 
computational costs (see Appendix 7). 

The use (development) of such analyses (tool) has also highlighted the need of proper 
experimental protocols for measuring the true nonlinear behavior of adhesive layers 
sandwiched between two rigid or semi-rigid adherends.  

Indeed, it is seen from Chapter 2 that both FE and simplified 1D-beam adhesive stress 
analyses are based on the modeling of the adhesive interfacial strength through a set of 
adhesive cohesive properties (i.e. traction separation laws) in pure mode I, mode II and 
mixed-mode I/II. Accurate experimental protocols for the measurement of the effective 
adhesive cohesive properties are then essential for the strength prediction of adhesively 
bonded joints. As a result, numerous authors have worked on providing experimental 
protocols for characterizing the cohesive properties of thin adhesive layers. 

In this thesis: 

(i) The results obtained from three existing experimental protocols for the characterization of 
the constitutive relationships of thin adhesive layers are presented (see Section 3.4 of Chapter 
3) and compared to numerical predictions (i.e. in terms of simplified 1D-beam adhesive stress 
analyses). Significant deviations as well as limitations are demonstrated. 

(ii) Then, and due to the need for developing proper techniques that allow for the 
characterization of adhesive cohesive properties, three new protocols for the characterization 
of the effective cohesive relationships of thin adhesive layers are presented and developed in 
view of their implementation (see Section 3.5 of Chapter 3). Each of these techniques is based 
on the real time monitoring of the adherend-to-adherend displacement field nearby the 
adhesive crack tip of specifically designed specimens (i.e. DCB, ENF & MMB). The results 
obtained are then compared to numerical predictions (i.e. in terms of simplified 1D-beam 
adhesive stress analyses). Good agreement is shown. 

(iii) Finally, the first results of an experimental test campaign on metal-to-metal adhesive 
bonding are provided so that the new characterization protocols are validated in the case of 
metal-to-metal adhesive joints. 
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Appendix 1. Non-exhaustive review of simplified closed-form adhesive stress 
analyses of adhesively bonded joints (Da Silva 2009)  
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Appendix 2. Supplementary material on the adherends constitutive equations  

 

Thanks to the form of the classical Euler-Bernoulli beam kinematic it is possible to express 
the displacement field of both adherends in the form of (see Section 2.5.1): 
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where uj(x,y) and wj(x,y) respectively refer to the longitudinal and transverse displacement 
fields of adherend j (j=1,2), uj(x,y=0) and wj(x,y=0) to the longitudinal and transverse and 
displacements of the neutral fiber of adherend j (j=1,2), and wj,x(x,y=0) to the first derivative 
of wj(x,y=0) with respect to x. 

It is then possible to express the axial deformation in adherend j (j=1,2) as: 
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And the axial stress in each ply of adherend j (j=1,2) as: 
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Where Q k
j refers to the reduced stiffness matrix of the kth ply of adherend j (j=1,2). 

According to the Classical Laminates Theory (CLT), the normal force and the bending 
moment in adherend j (j=1,2) are expressed as: 
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By combining (A3.2) (A3.3) and (A3.4) it is then possible to express the normal force and the 
bending moment in adherend j (j=1,2) as:  
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Then leading to the adherend j (j=1,2) constitutive equations: 
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Appendix 3. On the effective peel modulus of sandwiched adhesive layers 

 

In numbers of recent closed-form stress analyses of adhesively bonded joints (Clarke et al. 
2003, Stapelton 2011, Stapelton 2012, Weissgraeber 2014) the adhesive layer has been 
assumed to act as a plane-strain deformable material when subjected to through thickness 
deformations. Then leading to the definition of the effective tensile adhesive modulus: 

( )
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211
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−+
−=          (A3.1) 

Where νa refer to the adhesive Poisson’s ratio and Ea to the adhesive tensile modulus 
determined from the bulk material properties. 

This modeling of the adhesive elastic behavior when subjected to through thickness 
deformations lies on the assumption that when sandwiched the adhesive transverse 
deformations are constrained by the surrounded rigid (or semi-rigid) adherends (see Fig.A3-
1). However adherends are in facts not infinitely rigid. This is particularly true when bonding 
thin adherends. It is then legitimate to think that real adherends will allow for small adhesive 
transverse deformations to occur (i.e. depending on the ability of both adherends to constrain 
the adhesive transverse deformations). This ability of the adherends to constrain the adhesive 
transverse deformations can be modulated by different parameters: the thickness (stiffness) of 
the surrounding adherends, the thickness (stiffness) of the adhesive layer itself, etc. 

In (Hart-Smith 1973b) the author suggested that the effective tensile modulus of the adhesive 
layer was resulting from a complex interaction between the adhesive layer itself and the 
surrounding adherends. The author then suggested using an effective adhesive tensile 
modulus given by (see Fig.A3-2): 
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where E1 and E2 are the transverse tensile moduli of the inner (upper) and the outer (lower) 
adherends, k1 and k2 the number (or fraction) of adhesive layer thicknesses for which the 
adherends are affected by the applied peel stresses, and Ea the adhesive tensile modulus 
determined from the bulk material properties. The author finally suggested that this effective 
tensile modulus of the adhesive layer (equation (A3.2)) should be determined by transverse 
loading of an adhesive film bonded to blocks rather than from bulk material properties 
specimen. 

Since the second definition of the adhesive tensile modulus makes more sense to the authors 
of the present thesis, it is decided to refer to this particular modulus as the effective peel 
modulus of the adhesive layer. This peel modulus has then to be determined experimentally 
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from bonded overlap specimens, and do apply to the effective tensile modulus of the adhesive 
layer measured when subjected to through thickness deformations. 

 

Figure A3-1. Schematic representation of the relative equilibrium between the adhesive layer 
transverse deformations (i.e. due to Poisson’s effects) and the reactions/oppositions of the 
surrounding adherends. Through thickness adhesive loadings. Adhesive layer as a plane-strain 
deformation material. On the effective peel modulus of sandwiched adhesive layers. 

 

Figure A3-2. Schematic representation of the through thickness mechanical analogy of an 
adhesive layer sandwiched between two semi-rigid adherends. The peel modulus of 
sandwiched adhesive layers as a complex interaction between the adhesive layer itself and the 
surrounding adherends. On the effective peel modulus of sandwiched adhesive layers. 
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Appendix 4. Expression of the adhesive shear (peel) stress distribution(s) depending 
on the nature of the roots of the characteristic polynomial 

 

1. Expression of the adhesive shear (peel) stress distribution(s) depending on the nature 
of the roots of the characteristic polynomial  

As presented in Chapter 2, the classical theory of homogeneous linear differential equations 
suggests that the analytical form of the adhesive shear (peel) stress distribution(s) as derived 
in (Paroissien 2006, Da Veiga 2009, Paroissien et al. 2013) can be completed by three 
additional expressions depending on the nature of the roots of the characteristic polynomial 
(A4.1): 
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and whose roots will be thereafter denoted R1, R2, R3, R4, R5 and R6. 

In (Da Veiga 2009), the author suggests relating the roots of equation (A4.1) to the roots of 
the 3rd order equivalent polynomial (A4.3): 
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Which can be re-written in the form of the simpler canonical form: 
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Then depending on the sign of the Cardano’s discriminant ∆=27q2+4p3, three specific cases 
can be distinguished: (i) ∆>0, (ii) ∆=0 and (iii) ∆<0. 

For (i) ∆>0, the polynomial Pʹʹ is shown to have one real and two conjugate complex 
solutions, so that: 
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and where i refers to the imaginary unit so that i2=-1. 

Then depending on the sign of the roots Ŕ ʹ1, Ŕ ʹ2 and Ŕ ʹ3, the six roots R1, R2, R3, R4, R5 and 
R6 of the characteristic polynomial (A4.1) can be derived with respect to the variable 
substitutions introduced in equations (A4.4) and (A4.3), so that: 

( ) ( ) ( ) ( )itsRitsRitsRitsRrRrR −−=−=+−=+=−=+= 654321  (A4.8) 

or: 

( ) ( ) ( ) ( )itsRitsRitsRitsRirRirR −−=−=+−=+=−=+= 654321  (A4.9) 

depending on the sign of Ŕ1. 

Similarly, for (ii) ∆=0, the polynomial Pʹʹ is shown to have two real solutions, one simple and 
one double, so that: 
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Then depending on the sign of the roots Ŕ ʹ1 and Ŕ ʹ2=Ŕ ʹ3, the six roots R1, R2, R3, R4, R5 and 
R6 of the characteristic polynomial (A4.1) can be derived with respect to the variable 
substitutions introduced in equations (A4.4) and (A4.3), so that: 

262524231211 rRrRrRrRirRirR −=+=−=+=−=+=    (A4.11) 

or: 
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262524231211 irRirRirRirRrRrR −=+=−=+=−=+=    (A4.12) 

depending on the sign of the roots Ŕ ʹ1 and Ŕ ʹ2=Ŕ ʹ3. It is worth noticing form equation 
(A4.10) that Ŕ ʹ1 and Ŕ ʹ2=Ŕ ʹ3 cannot be of the same sign, so that the roots R1, R2, R3, R4, R5 
and R6 cannot be all real or all complex. 

Finally, for (iii) ∆<0, the polynomial Pʹʹ is shown to have three real solutions, so that: 
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where: 

( )






+−==

∆−+−=

2321

227
2

3

ijj

iqu
        (A4.14) 

So that Ŕ ʹ1, Ŕ ʹ2 and Ŕ ʹ3 can be expressed in their trigonometric form as: 
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   where   k=1,2,3   (A4.15) 

Then depending on the sign of the roots Ŕ ʹ1, Ŕ ʹ2 and Ŕ ʹ3, the six roots R1, R2, R3, R4, R5 and 
R6 of the characteristic polynomial (A4.1) can be derived with respect to the variable 
substitutions introduced in equations (A4.4) and (A4.3), so that: 
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or: 
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depending on the sign of the roots Ŕ ʹ1, Ŕ ʹ2 and Ŕ ʹ3. Similarly to (ii) ∆=0, it is worth noticing 
form equation (A4.15) that Ŕ ʹ1, Ŕ ʹ2 and Ŕ ʹ3 cannot be all of the same sign, so that the roots 
R1, R2, R3, R4, R5 and R6 cannot be all real or all complex. 

Finally, it is possible to show that a total of four analytical expressions for the adhesive shear 
(peel) stress distribution(s) are derivable depending on the nature of the roots of the 
characteristic polynomial (A4.1), so that: 
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or: 
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2. Study of the sign of the Cardano’s discriminant ∆=27q2+4p3 in the case of balanced 
monolithic (or symmetric) adherends 

For simplification purpose, here is considered monolithic (or symmetric) adherends only, so 
that the upper and lower adherends coupling stiffnesses B1 and B2 are equal to zero. 
Additionally, the geometry as well as the extensional, coupling and bending stiffnesses of the 
upper and lower adherends are assumed as equals (i.e. e1=e2, A1=A2=A, D1=D2=D  and 
B1=B2=B=0). 

Then, from equations (A4.2) fall: 
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So that the Cardano’s discriminant ∆=27q2+4p3 can be re-written in the form of: 

( )
3

4

2
1

2

414
2
1

132

3
492

27
27427 










+−+







 −−−=+=∆ k
k

kkkk
k

pq  

  6
1

2
4

2
14

4
1

6
1

3
4

2
4

2
14

4
1 27

4
27

9

12

27

4
419

3

8
kkkkkkkkkkk +++−+−=  

  
3

4
2

4
2

14
4

1 484 kkkkk ++=  



Appendix 4 

 

- 178 - 

 

  ( )22
1444 kkk +=        (A4.23) 

So that the Cardano’s discriminant ∆=27q2+4p3 can be finally reduced to the following 
expression: 
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Equation (A4.24) then suggests that for all physically acceptable choices of the parameters E, 
G, b, e1, e, A and D (i.e. strictly positive), the Cardano’s discriminant ∆=27q2+4p3 will 
remains strictly positive (i.e. ∆>0). 

Then studying the sign of Ŕ ʹ1 provides: 
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Then studying the sign of –q provides: 
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So that equation (A4.27) finally suggests that for all physically acceptable choices of the 
parameters E, G, b, e1, e, A and D (i.e. strictly positive), –q will remain strictly positive (i.e. –
q>0). 

Thanks to equations (A4.24) and (A4.27), it is finally shown that the analytical solutions of 
the adhesive shear (peel) stress distribution(s) derived in (Paroissien 2006, Da Veiga 2009, 
Paroissien et al. 2013) are fully legitimates in the case of balanced monolithic (or symmetric) 
adherends. However, in the case of unbalanced adherends and (or) if considering the possible 
coupling stiffnesses Bj of the upper (lower) adherend j (j=1,2), the following demonstration is 
not straightforward so that counterexamples are easily identifiable. 

 

Satisfied if ∆>0 
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Appendix 5. Convergence of the numerical analyses 

 

1. D
ouble Cantilever Beam adhesive joint specimen (DCB) 
1.1. Convergence of the linear elastic Finite Element (FE) models 

The DCB adhesive joint specimen consists in two adherends partially joined by a thin 
adhesive layer. The symmetric boundary and loading conditions of the specimen provide 
exclusively pure mode I solicitations of the adhesive layer. Since the DCB joint specimen is 
commonly recognized as the critical configuration in terms of convergence of the numerical 
analyses, its results are provided first. Both the adhesive layer and the surrounding adherends 
are considered as experiencing linear elastic deformations only. Here is presented the 
evolution of the resulting displacement (i.e. displacement that results from the applied load in 
N) as a function of the number of elements within the length of the adhesive bondline (see 
Fig.A5-1). Similarly, Fig.A5-2 presents the evolution of the adhesive peel (shear) stress at 
crack tip as a function of the number of elements within the length of the adhesive bondline. It 
is seen from Fig.A5-1 and Fig.A5-2 that the results of the linear elastic FE analyses are 
clearly depending on the mesh refinement. However the results are shown as rapidly 
converging towards an asymptote in terms of both resulting displacement and adhesive peel 
(shear) stress at crack tip. 

 

 

Figure A5-1. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic Finite Element 
(FE) models. Double Cantilever Beam adhesive specimen (DCB). 
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Figure A5-2. Evolution of adhesive peel and shear stresses at crack tip as a function of the 
number of elements within the length of the adhesive bondline. Convergence of the linear 
elastic Finite Element (FE) models. Double Cantilever Beam adhesive specimen (DCB). 

1.2. Convergence of the nonlinear Finite Element (FE) models 

Similarly to Section 1.1 of Appendix 5, Fig.A5-3 shows the evolution of the resulting 
displacement (i.e. displacement that results from the applied load in N) as a function of the 
number of elements within the length of the adhesive bondline in the case of nonlinear 
adhesive stress-strain evolution. Then, the adhesive is here loaded so that it experiences 
nonlinear adhesive deformations although the surrounding adherends are again considered as 
facing linear elastic deformations only. Similarly, Fig.A5-4 shows the evolution of the 
adhesive peel (shear) stress at crack tip as a function of the number of elements within the 
length of the adhesive bondline. The results are also shown as converging toward an 
asymptote in terms of both Resulting Displacement and adhesive peel (shear) stress at crack 
tip. 
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Figure A5-3. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear Finite Element (FE) 
models. Double Cantilever Beam adhesive specimen (DCB). 

 

 

Figure A5-4. Evolution of adhesive peel and shear stresses at crack tip as a function of the 
number of elements within the length of the adhesive bondline. Convergence of the nonlinear 
Finite Element (FE) models. Double Cantilever Beam adhesive specimen (DCB). 

1.3. Convergence of the linear elastic simplified 1D-beam adhesive stress analyses 

Similarly to Sections 1.1 and 1.2 of Appendix 5, here is presented the evolution of the 
resulting displacement as a function of the number of elements within the length of the 
adhesive bondline in the case of the simplified 1D-beam adhesive stress analyses (see Fig.A5-
5). Both the adhesive layer and the surrounding adherends are here considered as 
experiencing linear elastic deformations only. Similarly, Fig.A5-6 presents the evolution of 
the adhesive peel (shear) stress at crack tip as a function of the number of elements within the 
length of the adhesive bondline. Unlike Fig.A5-1 and Fig.A5-2, Fig.A5-5 and Fig.A5-6 show 
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the results obtained from the simplified 1D-beam adhesive stress analyses as independent on 
the mesh refinement (i.e. in the case of linear elastic adhesive stress-strain evolution). This 
property of the simplified 1D-beam adhesive stress analysis being due to the specific 
formulation of the BBe element, and allows for linear elastic bonded overlaps to be modeled 
using a unique 4-nodes BBe element only. 

 

 

Figure A5-5. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic simplified 1D-
beam adhesive stress analyses. Double Cantilever Beam adhesive specimen (DCB). 
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Figure A5-6. Evolution of adhesive peel and shear stresses at crack tip as a function of the 
number of elements within the length of the adhesive bondline. Convergence of the linear 
elastic simplified 1D-beam adhesive stress analyses. Double Cantilever Beam adhesive 
specimen (DCB). 

1.4. Convergence of the nonlinear simplified 1D-beam adhesive stress analyses 

Similarly to Section 1.3 of Appendix 5, Fig.A5-7 shows the evolution of the resulting 
displacement as a function of the number of elements within the length of the adhesive 
bondline. The adhesive is here loaded so that it experiences nonlinear adhesive deformations 
while both adherends are considered as facing linear elastic deformations only. Similarly, 
Fig.A5-8 shows the evolution of the adhesive peel (shear) stress at crack tip as a function of 
the number of elements within the length of the adhesive bondline. The obtained results are 
here shown as depending on the mesh refinement, so that an adequate number of BBe 
elements has to be used to capture the local stress gradients within the adhesive bondline 
when facing nonlinear adhesive stress-strain evolution. This mesh dependency of the 
simplified 1D-beam adhesive stress analysis in the case of nonlinear adhesive stress-strain 
evolutions is due to the necessity of defining an integration strategy for integrating the right 
side and left side secant adhesive moduli into the computation of the secant stiffness matrix 
resulting from the projection of the adhesive shear (peel) stress onto the specified stress-strain 
evolution law (see Section 2.4 of Chapter 2). However it is shown that the results are rapidly 
converging towards an asymptote. 

 

 

Figure A5-7. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear simplified 1D-beam 
adhesive stress analyses. Double Cantilever Beam adhesive specimen (DCB). 
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Figure A5-8. Evolution of adhesive peel and shear stresses at crack tip as a function of the 
number of elements within the length of the adhesive bondline. Convergence of the nonlinear 
simplified 1D-beam adhesive stress analyses. Double Cantilever Beam adhesive specimen 
(DCB). 

2. E
nd Notched Flexure adhesive specimen (ENF) 
2.1. Convergence of the linear elastic Finite Element (FE) models 

Similarly to the DCB adhesive joint specimen, the ENF joint specimen consists in two 
adherends partially joined by a thin adhesive layer. The modified antisymmetric geometry and 
loading conditions then provide essentially pure mode II solicitations of the adhesive layer. 
However, significant mode I adhesive stresses appear nearby center of the specimen. Both the 
adhesive layer and the surrounding adherends are here considered as experiencing linear 
elastic deformations only. Here is presented the evolution of the resulting displacement (i.e. 
displacement that results from the applied load in N) as a function of the number of elements 
within the length of the adhesive bondline (see Fig.A5-9) in the case of linear elastic adhesive 
stress-strain evolution. Similarly, Fig.A5-10 shows the evolution of the adhesive peel (shear) 
stress at crack tip as a function of the number of elements within the length of the adhesive 
bondline in the case of linear elastic adhesive stress-strain evolution. The results are shown as 
depending on the mesh refinement. However the results are shown as rapidly converging 
towards an asymptote in terms of both resulting displacement and adhesive peel (shear) stress 
at crack tip. 
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Figure A5-9. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic Finite Element 
(FE) models. End Notched Flexure adhesive specimen (ENF). 

 

 

Figure A5-10. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic Finite Element 
(FE) models. End Notched Flexure adhesive specimen (ENF). 

2.2. Convergence of the nonlinear Finite Element (FE) models 
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Similarly to Section 2.1 of Appendix 5, Fig.A5-11 shows the evolution of the resulting 
displacement as a function of the number of elements within the length of the adhesive 
bondline. The adhesive is here loaded so that it experiences nonlinear adhesive deformations 
while both adherends are considered as facing linear elastic deformations only. Similarly, 
Fig.A5-12 shows the evolution of the adhesive peel (shear) stress at crack tip as a function of 
the number of elements within the length of the adhesive bondline. 

 

 

Figure A5-11. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear Finite Element (FE) 
models. End Notched Flexure adhesive specimen (ENF). 
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Figure A5-12. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear Finite Element (FE) 
models. End Notched Flexure adhesive specimen (ENF). 

2.3. Convergence of the linear elastic simplified 1D-beam adhesive stress analyses 

Similarly to Sections 2.1 and 2.2 of Appendix 5, here is presented the evolution of the 
resulting displacement as a function of the number of elements within the length of the 
adhesive bondline in the case of the simplified 1D-beam adhesive stress analyses (see Fig.A5-
13). Both the adhesive layer and the surrounding adherends are here considered as 
experiencing linear elastic deformations only. Similarly, Fig.A5-14 presents the evolution of 
the adhesive peel (shear) stress at crack tip as a function of the number of elements within the 
length of the adhesive bondline. 

 

 

Figure A5-13. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic simplified 1D-
beam adhesive stress analyses. End Notched Flexure adhesive specimen (ENF). 
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Figure A5-14. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the linear elastic simplified 1D-
beam adhesive stress analyses. End Notched Flexure adhesive specimen (ENF). 

2.4. Convergence of the nonlinear simplified 1D-beam adhesive stress analyses 

Similarly to Section 2.3 of Appendix 5, Fig.A5-15 shows the evolution of the resulting 
displacement as a function of the number of elements within the length of the adhesive 
bondline. The adhesive is here loaded so that it experiences nonlinear adhesive deformations 
while both adherends are considered as facing linear elastic deformations only. Similarly, 
Fig.A5-16 shows the evolution of the adhesive peel (shear) stress at crack tip as a function of 
the number of elements within the length of the adhesive bondline. 
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Figure A5-15. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear simplified 1D-beam 
adhesive stress analyses. End Notched Flexure adhesive specimen (ENF). 

 

 

Figure A5-16. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the adhesive bondline. Convergence of the nonlinear simplified 1D-beam 
adhesive stress analyses. End Notched Flexure adhesive specimen (ENF). 

3. C
antilever beam in pure bending 
3.1. C

onvergence of the linear elastic Finite Element (FE) models 
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Figure A5-17. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the cantilever beam. Convergence of the linear elastic Finite Element 
(FE) models. Cantilever beam in pure bending. 

3.2. C
onvergence of the nonlinear Finite Element (FE) models 

 

 

Figure A5-18. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the cantilever beam. Convergence of the nonlinear Finite Element (FE) 
models. Cantilever beam in pure bending. 
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Figure A5-19. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the cantilever beam. Convergence of the linear elastic simplified 1D-
beam adhesive stress analyses. Cantilever beam in pure bending. 

3.4. Convergence of the nonlinear simplified 1D-beam adhesive stress analyses 

 

 

Figure A5-20. Evolution of Resulting Displacement as a function of the number of elements 
within the length of the cantilever beam. Convergence of the nonlinear simplified 1D-beam 
adhesive stress analyses. Cantilever beam in pure bending. 
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Appendix 6. Moore-Penrose pseudo inverse technique for solving linear least 
squares optimization problems 

 

1. L
inear least squares optimization problems 

Linear least squares optimization problems refer to a particular type of statistical analyses, 
referred as linear regression analyses, which arises from a particular class of regression 
analyses. These problems then suggest approximately solving an overdetermined system of 
linear equations so that it minimizes the sum of the squared residuals between a set of 
experimental data points and their corresponding modeled values (see Fig. A6-1). Various 
techniques for optimizing the model parameters have been suggested over the past few years 
(Gonzalez et al. 2016). For simplification purpose, here is presented the linear regression 
analyses only. However it can be easily extended to more complex fitting models as long as 
these are linearly dependent on the fitting parameters. 

Assuming a set of experimental data points (x1,y1), (x2,y2), …, (xn,yn) and the linear model 
equation y=ax+b provides (see Fig. A6-1): 

 

Figure A6-1. Definition of the i th residual r i. Least squares line fitting (y=ax+b). (a) Least 
Squares (LS), (b) Inverse Least Squares (ILS) and (c) Total Least Squares (TLS). Moore-
Penrose pseudo inverse technique for solving linear least squares optimization problems. 

Then defining the i th vertical residual r i as (see Fig. A6-1): 
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baxyr iii −−=          (A6.1) 

The least squares minimization problem can be written the form of finding the correct set of 
parameters (a, b) that minimizes the objective function defined as:  
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which can be written in the form of the simpler matrix system as: 
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2

 (A6.3) 

where YT=[y1, … yn] refers to the vector resuming the set of experimental data points, CT=[a, 
b] to the vector resuming the model fitting parameters and X to the specifically formulated 
design matrix, so that: 
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Minimizing finally gives: 

   0YXXCX
C

TT =−=
∂
∂

22
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 (A6.5) 

So that the problem of optimizing the fitting parameters (a, b) in the sense of the least squares 
method can be finally written in the form of finding C so that: 

YXXCX TT =          (A6.6) 

( ) YXXXC T1T −=          (A6.7) 

and where (XTX)-1XT refers to the Moore-Penrose pseudo inverse of the specifically 
formulated design matrix X. It is indicated that providing that the total number of data points 
N is equal or exceeds the number of fitting parameters (i.e. overdetermined system of linear 
equations), the solution C here appears as unique and fully determined by equation (A6.7). 

2. C
oncatenation of linear least squares optimization problems 

As discussed in Section 2.3.4 of Chapter 2, here is investigated the concatenation property of 
linear least squares optimization problems. Assuming two sets of uncorrelated experimental 
data points (x’1,y’1), (x’2,y’2), …, (x’n,y’n) and (x” 1,y”1), (x”2,y”2), …, (x”n,y”n) and two linear 
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model equations y’=a’x’+b’  and y”=a”x”+b” then provides the two guiding matrix systems, 
that are: 

''''' YXCXX TT =  and """"" YXCXX TT =      (A6.8) 

and where Yʹ́́́
T=[yʹ́́́ 1, … ý́́́ n] and Yʹ ʹʹ ʹʹ ʹʹ ʹ

T=[yʹ ʹʹ ʹʹ ʹʹ ʹ 1, … ý ʹʹ ʹʹ ʹʹ ʹ n] respectively refer to the vectors 
resuming the two sets of experimental data points, Cʹ́́́

T=[aʹ́́́ , b́́́́ ] and Cʹ ʹʹ ʹʹ ʹʹ ʹ
T=[aʹ ʹʹ ʹʹ ʹʹ ʹ , b́ ʹʹ ʹʹ ʹʹ ʹ ] 

to the vectors resuming the two models fitting parameters and Xʹ́́́  and Xʹ ʹʹ ʹʹ ʹʹ ʹ  to the two 
specifically formulated design matrices, so that: 
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Then, the whole optimization problem can be concatenated in the form of the single matrix 
system, that is: 
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So that (C’ ,C”) can finally be computed as: 
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For simplification purpose, the design matrix obtained by the concatenation of Xʹ́́́
TXʹ́́́  and 

Xʹ ʹʹ ʹʹ ʹʹ ʹ
TXʹ ʹʹ ʹʹ ʹʹ ʹ  will be now referred to as XTX. Similarly, the vector obtained by the 

concatenation of Xʹ́́́
TYʹ́́́  and Xʹ ʹʹ ʹʹ ʹʹ ʹ

TYʹ ʹʹ ʹʹ ʹʹ ʹ  and the vector obtained by the concatenation of Cʹ́́́  
and Cʹ ʹʹ ʹʹ ʹʹ ʹ  will be now referred to as respectively XTY and C. 

3. C
onstrained linear least squares optimization problems 

As presented in Section A7.1, the Moore-Penrose pseudo inverse technique arises from the 
minimization of the unconstrained optimization problem P, that is: 

( ) ( ) ( ) ( )






 +−=

∈

TTTT

C

XCXCYXCYYC 2Emin:
2R

P     (A6.19) 

As presented in Section 2.3.4 of Chapter 2, introducing equality constraints between the 
model fitting parameters in the form of: 

pilotCBC=           (A6.20) 

where C is the vector resuming the model fitting parameters, B a 2xp coupling parameter 
matrix and Cpilot the set of p equality constraints (i.e. not necessarily equal to zero). 

result in (C,λ) being the optimum of the equivalent minimization problem (see Section 2.3.4 
of Chapter 2): 

( ) ( ) ( )








−+=
∈∈

λCBCCλC Tpilot

λU
E,Lmin:'

R,R pn
P     (A6.21) 

So that minimizing Pʹ́́́  gives: 

0λBXCXYX
C

TTT =++−=
∂
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22
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 0CBC
λ

pilot =−=
∂
∂L

 (A6.22) 

which can be re-written in the form of the augmented linear problem: 


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=
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+
+
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YX

0BC

λBXCX         (A6.23) 

Where CT=[a,b] refers to the vector resuming the model fitting parameters, B a 2xp coupling 
parameter matrix and λ to the p undetermined Lagrange’s multipliers. 

Finally, (C,λ) can be computed as: 
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4. I
llustration: Fitting simultaneously w(x) and θ(x)=dw(x)/dx 

Assuming two sets of correlated experimental data points (x1,w1), (x2,w2), …, (xn,wn) and 
(x1,θ1), (x2,θ2), …, (xn,θn) and two linear model equations w=a’x+b’  and θ=a”x+b” then 
provides the two guiding matrix equations, as: 

WXXCX TT ='  and θXXCX TT ="       (A6.25) 

where: 

















=
1

11

nx

x

⋮⋮X           (A6.26) 









=

'

'
'

b

a
C           (A6.27) 









=

"

"
"

b

a
C           (A6.28) 

and: 
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Then, concatenating the two linear least squares optimization problems provides the main 
guiding linear equation, that is: 
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Finally, ensuring the models fitting parameters to satisfy the additional condition 
θ(x)=dw(x)/dx is achieved by introducing the two equality constraints, that are: 
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So that: 

pilotCBC=           (A6.34) 

where: 
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and: 
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So that the problem of optimizing the fitting parameters (Cʹ́́́ ,Cʹ ʹʹ ʹʹ ʹʹ ʹ ) in the sense of the least 
squares method can be finally written in the form of finding (Cʹ́́́ ,Cʹ ʹʹ ʹʹ ʹʹ ʹ ,λ) so that: 
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Appendix 7. Joint Stress Analysis Tool (JoSAT) 
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Abstract: 

In the frame of an internal research program called JoSAT (Joint Stress Analysis Tool), Sogeti 

High Tech has suggested developing since 2008 a simplified tool for the stress analysis of 

adhesively bonded joints. This tool allows for the distribution of both the internal forces and 

displacements in the adherends as well as the adhesive stresses along the overlap to be 

estimated from specified loads and boundary conditions, and has the advantage of being 

extremely time saving compared to conventional Finite Element (FE) analyses. 

In 2011, this tool was extended to support adhesive material nonlinearities in the form of 

specified adhesive stress-strain evolution laws. However the theory developed was 

demonstrated as valid for the Single-Lap Joint (SLJ) configuration only, and limited to small 

levels of adhesive material nonlinearities. 

In this context, the objective of the thesis is double. First, extend and validate the simplified 

tool for the analysis of adhesively bonded joints in the case of nonlinear adhesive as well as 

adherends stress-strain constitutive behaviors. Then, develop new experimental protocols 

for the characterization of the cohesive properties of thin adhesive layers. 

Keywords: Adhesive, Bonding, Modeling, Simplified analysis, Finite-Element, Experimental 

Characterization  

Résumé: 

Dans le cadre d’un projet de recherche interne nommé JoSAT (Joint Stress Analysis Tool), 

Sogeti High Tech a développé depuis 2008 un outil de simulation simplifié d’analyse de joints 

collés. Cet outil permet d’obtenir à la fois la répartition des efforts internes dans chacun des 

substrats mais également la répartition des contraintes adhésives le long du recouvrement, 

tout en ayant l’avantage d’être beaucoup moins chronophage que la méthode des Eléments-

Finis (EF). 

En 2011, cet outil a été étendu de sorte à supporter différents comportements adhésifs non-

linéaires sous la forme de relations contrainte-déformation spécifiée par l’utilisateur. 

Cependant, le champ d’application de cette nouvelle théorie fut démontré comme limitée 

aux jonctions en simple recouvrement, et dans le cas de faible non-linéarité uniquement. 

Dans ce contexte, l’objectif de la thèse est double. Premièrement, étendre et valider l’outil 

d’analyse simplifiée aux cas de comportement non-linéaire adhésif mais également des 

substrats. Deuxièmement, proposer et développer de nouvelles méthodes visant à 

caractériser le comportement non-linéaire d’un film adhésif.   

Mots clés: Adhésif, Collage, Simulation, Analyse Simplifiée, Eléments-Finis, Caractérisation 

Expérimentale 




