

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Cotutelle internationale avec l'Université du Luxembourg

Guillaume BRAU

lundi 13 mars 2017

Intégration de l'analyse de propriétés non-fonctionnelles dans l'Ingénierie
Dirigée par les Modèles pour les systèmes embarqués

Integration of the analysis of non-functional properties in model-driven
 engineering for embedded systems

ED MITT : Réseaux, télécom, système et architecture

Équipe d'accueil ISAE-ONERA MOIS

M. Pierre DE SAQUI-SANNES, Professeur ISAE-SUPAERO
M. Emmanuel GROLLEAU, Professeur ENSMA - Rapporteur
M. Jérôme HUGUES, Professeur Associé ISAE-SUPAERO - Co-directeur de thèse

M. Pierre KELSEN, Professeur Université du Luxembourg - Président

M. Nicolas NAVET, Professeur Université du Luxembourg - Directeur de thèse
M. Frank SINGHOFF, Professeur Université de Bretagne Occidentale - Rapporteur

M. Nicolas NAVET (directeur de thèse)
M. Jérôme HUGUES (co-directeur de thèse)

ii

Guillaume Brau

Integration of the Analysis of Non-Functional Properties in
Model-Driven Engineering for Embedded Systems

General Concepts and Application to the Timing Analysis of Architectural
Models

Intégration de l’analyse de propriétés non-fonctionnelles dans
l’Ingénierie Dirigée par les Modèles pour les systèmes embarqués

Concepts généraux et application à l’analyse temporelle de modèles
architecturaux

Version 2.1

ii

Abstract

The development of embedded systems is a complex and critical task, especially be-
cause of the non-functional requirements. In fact, embedded systems have to fulfill
a set of non-functional properties dictated by their environment, expressed for ex-
ample in terms of timing, dependability, security, or other performance criteria. In
safety-critical applications for instance (e.g. an airplane), missing a non-functional
requirement can have severe consequences, e.g. loss of life, personal injury, equip-
ment damage, environmental disaster, etc.

Models and analyses are valuable assets to design complex embedded systems. Mod-
eling enables to describe the system, whereas analysis makes it possible to evaluate
the system properties. Yet, modeling and analysis techniques have been histori-
cally investigated separately in software/systems engineering. On the one hand,
Model-Driven Engineering uses domain-specific models as primary artifacts to de-
velop a system. On the other hand, mathematically-based analysis techniques such
as real-time scheduling analysis, model-checking, dependability analysis, etc. makes
it possible to analyze the diverse non-functional properties of computer systems.
Thus, a major contribution to improve the development of embedded systems, and
the main objective of this thesis, will be to integrate models, as defined by the basic
principles of the Model-Driven Engineering (i.e. the triad model, metamodel, model
transformation), with mathematically founded analysis approaches to analyze the
non-functional properties of embedded systems. This thesis aims at providing a gen-
eral and coherent view on this problem by investigating two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

This thesis advances several important concepts regarding the integration issue.

First of all, we revisit the way model transformations are done to accommodate
specific analysis engines. Arguing that an analysis is less based on a particular
model syntax than specific data, we promote query mechanisms called accessors to
analyze the non-functional properties of a system at design time. These accessors
enable to extract data from a model and then analyze them. Expected benefit is that
an analysis can be integrated to any kind of model as soon as an implementation of
accessors to model internals is provided.

Next, we aim at formalizing the analysis process. We show that an analysis is basi-
cally a program with preconditions and postconditions. The preconditions are the
properties to hold true on an input model to successfully execute the analysis. Post-
conditions are the properties guaranteed on the model after the analysis execution.
With preconditions and postconditions, an analysis is complete and sound.

iii

Lastly, we abstract away from the execution aspect through the notion of contract.
A contract completely defines the interfaces of an analysis in terms of processed data
and properties. Inputs/Outputs (I/O) describe input and output data. Assump-
tions/Guarantees (A/G) describe input and output properties. Specific methods can
then be used to automatically reason about these interfaces, and provide greater au-
tomation support: which analysis can be applied on a given model? Which are the
analyses that meet a given goal? Are there analyses to be combined? Are there
interferences between analyses? Etc.

We evaluate different implementations of these concepts using multiple languages
including general-purpose programming languages (Python), constraint languages
(REAL), and specification languages (Alloy).

We investigate and apply these concepts for the timing analysis of architectural
models. We illustrate the capabilities of our approach to deal with concrete systems
coming from the aerospace: a drone, an exploratory robot and a flight management
system. In particular, we demonstrate that accessors enable to apply real-time
scheduling analyses onto different kinds of architectural models, e.g. written with
the industry standard AADL (Architecture Analysis and Design Language) or the
new time-triggered language CPAL (Cyber-Physical Action Language). In addition,
contracts make it possible to automate complex analysis procedures and, to some
extent, to mechanize the design process itself.

Keywords: Embedded Systems, Model-Driven Engineering, Analysis, Real-Time
Scheduling, Contracts, Architecture Description Languages.

iv

Résumé

Le développement des systèmes embarqués est une tâche aussi complexe que cri-
tique, en particulier à cause des exigences non-fonctionnelles. En effet, les systèmes
embarqués doivent remplir un ensemble de propriétés non-fonctionnelles fixées par
leur environnement, par exemple exprimées en termes de comportement temporel,
de sûreté de fonctionnement, de sécurité, ou d’autres critères de performances. Dans
les applications critiques (un avion par exemple), le non respect des contraintes non-
fonctionnelles peut avoir des conséquences dramatiques, comme des morts ou des
blessés graves, des dégâts matériels importants, ou des répercussions néfastes sur
l’environnement.

La modélisation et l’analyse sont les activités élémentaires pour concevoir des sys-
tèmes embarqués critiques. Les modèles permettent de décrire le système, tandis que
les analyses permettent d’évaluer les propriétés du système. Cependant, les tech-
niques de modélisation et d’analyse les plus avancées ont été explorées de manière
disjointes dans l’ingénierie des systèmes embarqués. D’une part, l’Ingénierie Dirigée
par les Modèles utilise des modèles définis au travers de langages dédiés (Domain-
Specific Modeling Languages) pour supporter les activités d’ingénierie. D’autre
part, les techniques d’analyse basées sur les mathématiques telles que l’analyse
d’ordonnancement temps réel, le model-checking, l’analyse de sûreté de fonction-
nement, etc. permettent d’analyser les diverses propriétés non-fonctionnelles des
systèmes embarqués. Aussi, un défi actuellement est d’intégrer les modèles, tels que
définis dans l’Ingénierie Dirigée par les Modèles, avec les diverses méthodes ana-
lytiques précédemment énumérées. Cette thèse vise à fournir une vue générale et
cohérente sur ce problème en explorant deux questions élémentaires :

• Comment appliquer une analyse sur une modèle? (problème technique)

• Comment gérer le processus d’analyse? (problème méthodologique)

Cette thèse développe des concepts importants afin de répondre à ces questions.

Tout d’abord, nous révisons la manière dont les transformations de modèles sont
utilisées à des fins d’analyse. Nous observons qu’une analyse est moins basée sur la
syntaxe d’un modèle que sur un modèle de données qui lui est propre. Aussi, nous
proposons d’opérer l’analyse au travers de mécanismes d’interrogation des modèles
que nous appelons des accesseurs. Ces accesseurs permettent d’extraire des données
à partir d’un modèle puis de les analyser. Un des avantages de cette approche est
que les analyses peuvent être intégrées avec n’importe quel modèle, dès lors qu’une
implémentation des accesseurs vers les éléments du modèle est fournie.

Ensuite, nous cherchons à formaliser l’exécution d’une analyse. Nous montrons
qu’une analyse est un programme avec des préconditions et des postconditions. Les

v

préconditions sont les propriétés qui doivent être vraies avant d’exécuter une analyse.
A l’opposée, les postconditions sont les propriétés garanties sur le modèle après
l’exécution de l’analyse. En tenant compte des préconditions et des postconditions,
l’exécution d’une analyse est donc complète et correcte.

Enfin, nous faisons abstraction des aspects d’exécution à travers la notion de con-
trat. Un contrat décrit les interfaces d’une analyse en termes de données et de
propriétés traitées. Les entrées/sorties (I/O pour inputs/outputs) définissent les
données en entrée et en sortie de l’analyse. Les hypothèses/guaranties (A/G pour
assumptions/guarantees) spécifient les propriétés en entrée et en sortie de l’analyse.
Des méthodes de résolution spécifiques peuvent ensuite être utilisées pour raison-
ner à propos de ces interfaces, et fournir un support d’automatisation du processus
d’analyse : quelle analyse peut être appliquée sur un modèle? Quelles analyses rem-
plissent les objectifs visés? Peut-on combiner des analyses? Y-a-t-il des interférences
entre les analyses? Et ainsi de suite.

Nous évaluons différentes mises œuvres de ces concepts au travers de plusieurs lan-
gages, notamment des langages de programmation (Python), des langages de de-
scription de contraintes (REAL) et des langages de spécification (Alloy).

Nous étudions ces concepts pour l’analyse temporelle de modèles architecturaux.
Nous illustrons les capacités de notre approche pour traiter des systèmes réels
provenant du domaine aérospatial : un drone, un robot explorateur et un sys-
tème de gestion de vol. Notamment, nous montrons que les accesseurs perme-
ttent d’appliquer diverses analyses de propriétés temporelles sur différents types
de modèles architecturaux, par exemples décrits avec le standard industriel AADL
(Architecture Analysis and Design Language) ou le nouveau langage dirigé par le
temps CPAL (Cyber-Physical Action Language). En outre, les contrats permettent
d’automatiser le processus d’analyse et, dans une certaine mesure, d’automatiser le
processus de conception lui-même.

Mots-clés : Systèmes embarqués, Ingénierie Dirigée par les Modèles, Analyse,
Ordonnancement temps réel, Contrats, Langages de description d’architectures.

vi

Acknowledgments

Through this page, I would like to express my thanks to all the people whose in-
valuable support contributed to make this thesis real.

This thesis would not have been possible without the guidance of my two research
supervisors: Nicolas Navet and Jérôme Hugues. My sincere thanks go to them for
sharing their many suggestions, advice, ideas, and for their continuous involvement
and support during these four years. I am also very grateful to them for dealing
with the process of the joint supervision between the University of Luxembourg and
the Institut Supérieur de l’Aéronautique et de l’Espace.

I would like to thank Prof. Emmanuel Grolleau, Prof. Frank Singhoff, Prof. Pierre
Kelsen and Prof. Pierre de Saqui-Sannes for accepting to be part of my thesis
defense committee. I am thankful to them for their time and thorough reading of
this manuscript. Furthermore, I thank them for their insightful and constructive
comments on my works.

My colleagues of the LASSY team at the University of Luxembourg, and the DISC
department at the Institut Supérieur de l’Aéronautique et de l’Espace have made
this journey both pleasant and enriching. I thank all of them for providing me
with friendly advice and help during the past four years. I am also grateful to the
University staff for dealing with all the administrative issues throughout this thesis
and providing me an enjoyable working environment.

At the time of achieving this thesis, I would like to express my thanks to all the
teachers who provided me with a small piece of this Science to which this thesis is
the humble contribution. I have a special thought for Claire Pagetti who supervised
my first research work at the master’s degree level.

Finally, I would like to thank my family and friends for their unconditional support
and encouragements during these years of researches and well beyond.

vii

viii

Remerciements

Enfin! Voici venu le temps d’écrire les derniers mots de ce manuscrit, ceux qui –
paradoxe! – arrivent à la toute fin de cette longue période de rédaction et qui,
pourtant, prennent place au début du manuscrit que vous vous apprêtez à lire. A
travers ces premiers (derniers) mots, je voudrais remercier toutes les personnes qui
m’ont accompagné durant ce voyage de quatre ans (et même plus au moment où
je me résous à écrire ces ultimes mots). Assurément, chacune de ces personnes a
contribué à ce que cette thèse voit le jour.

En premier lieu, je voudrais remercier les rapporteurs de cette thèse, Emmanuel
Grolleau et Frank Singhoff, pour avoir accepté de relire ce manuscrit et d’examiner
ce travail de manière critique, ainsi que tous les autres membres de ce jury, Pierre
Kelsen et Pierre de Saqui-Sannes, pour l’attention portée à cette thèse et pour leurs
remarques pertinentes et constructives. Que tous soient remerciés pour le temps
consacré à l’examen de mon travail.

Ce voyage ne serait arrivé à son terme sans de précieux guides pour m’indiquer
le chemin à suivre. Je tiens donc à remercier très sincèrement les co-directeurs
de cette thèse: Nicolas Navet et Jérôme Hugues. Tous les deux, vous m’avez fait
confiance au moment où nous nous embarquions dans cette aventure. Merci pour vos
nombreuses propositions, conseils, idées, et pour votre implication et votre soutien
indéfectible durant ces quatre années. Vous aurez su tout à la fois diriger cette thèse
et me laisser toute la liberté de mener les recherches que je souhaitais. Merci à vous
également d’avoir accepté de jouer le jeu de cette cotutelle de thèse entre l’Université
du Luxembourg et l’Institut Supérieur de l’Aéronautique et de l’Espace, à Toulouse,
aux péripéties parfois rocambolesques et kafkaïennes.

Un voyage ne serait rien sans compagnons de route. Aussi, je remercie l’ensemble
des personnes que j’ai pu côtoyer durant ces quatre années passées entre le LASSY, à
l’Université du Luxembourg, et le DISC, à l’Institut Supérieur de l’Aéronautique et
de l’Espace. Enseignants, chercheurs, camarades doctorants, étudiants, personnels
de l’Université au sens large, je ne peux citer nommément toutes les personnes qui ont
fait de ces années de travail une expérience tout à la fois plaisante et enrichissante,
autant scientifiquement que humainement. Je tiens également à remercier les divers
personnels universitaires, au Luxembourg et en France, qui ont permis que cette
thèse se déroule dans les meilleures conditions qui soient.

Au moment de clôturer mes études universitaires, j’ai une pensée pour tous ces en-
seignants qui m’auront permis d’acquérir un petit morceau de cette Science à laquelle
cette thèse se veut être la très humble contribution. J’ai une pensée particulière pour
Claire Pagetti qui a dirigé mon stage de recherche de master, et qui, finalement, se
trouve au commencement de cette thèse de doctorat.

ix

Mes derniers remerciements, sans doute les plus importants, vont à mes amis et ma
famille, pour leur soutien inconditionnel et leurs encouragements constants durant
ces années de recherches et bien au delà. Je remercie ceux qui sont présents depuis
le début de cette histoire, mes parents et mon frère pour qui je n’aurai jamais assez
de mots pour leur exprimer toute ma reconnaissance.

x

Contents

I Introduction 1
I.1 Context and motivations . 1

I.1.1 Non-functional requirements in embedded systems 1
I.1.2 Development process: combining models and analyses . . . 2
I.1.3 The need to couple models and analyses 3

I.2 Problem statement . 3
I.2.1 How to apply an analysis on a model? 3
I.2.2 How to manage the analysis process? 4

I.3 Lines of research and contributions 5
I.3.1 Technical integration through model query 5
I.3.2 Semantics of an analysis and contract-driven analysis . . . 5
I.3.3 Proof-of-concept analysis and orchestration tool 6

I.4 Work hypotheses . 6
I.5 Thesis organization . 7

Part 1 Concepts 9

II Background 11
II.1 Embedded systems . 11

II.1.1 Hardware and software architecture 12
II.1.2 Non-functional constraints 12
II.1.3 Development process . 14

II.2 Model-Driven Engineering . 15
II.2.1 What is a model? . 16
II.2.2 Notions of metamodeling 17
II.2.3 Notions of model transformation 19
II.2.4 Case study: Architecture Description Languages 21

II.2.4.A AADL: the Architecture Analysis and Design Lan-
guage . 22

II.2.4.B CPAL: the Cyber-Physical Action Language . . . 27
II.3 Model-based analysis . 32

II.3.1 Main analysis approaches 32
II.3.2 Case study: real-time task scheduling analysis 33

II.3.2.A Real-time task model 33
II.3.2.B Scheduling . 34
II.3.2.C Scheduling analysis 35

II.4 Discussion . 38
II.4.1 Model-Driven Engineering or Model-Based Engineering? . . 38
II.4.2 Link between ADLs and analysis 40

xi

Contents

II.4.3 Design process: Design vs. Modeling vs. Analysis 40
II.5 Summary and conclusion . 41

III Model query through accessors 43
III.1 Rationale behind model query . 43

III.1.1 Identifying the analysis elements 43
III.1.2 Accessors . 45
III.1.3 Implementation through an Application Programming inter-

face . 46
III.2 Data structures for the analysis of real-time systems 46

III.2.1 The basic periodic task model and its extensions 47
III.2.1.A The periodic task model 47
III.2.1.B Later developments 48

III.2.2 Graph-based task models 50
III.2.2.A Dependency graph 50
III.2.2.B Directed acyclic graphs 50

III.3 Implementation of the Data Access API in Python 52
III.3.1 Data Structure, Data Model and Accessors 53
III.3.2 Analysis . 55

III.4 Discussion . 55
III.4.1 Related works . 56
III.4.2 Data access vs. model transformation 57

III.5 Summary and conclusion . 59

IV Semantics of an analysis 61
IV.1 Introductory example: model-based real-time scheduling analysis . 61
IV.2 Semantics of an analysis . 64
IV.3 Implementation of the analysis . 66

IV.3.1 Proposed approach . 66
IV.3.2 A first implementation with constraint languages 66

IV.3.2.A REAL at a glance 68
IV.3.2.B Application to the Liu and Layland’s schedulabil-

ity test . 68
IV.3.2.C Lessons learned in using REAL 70

IV.3.3 Implementation through accessors and Python 72
IV.3.3.A Motivations for Python 72
IV.3.3.B Application to the Liu and Layland’s schedulabil-

ity test . 73
IV.3.4 Constraint Language vs. accessors+Python 75
IV.3.5 Other possible implementations 75

IV.4 Discussion: related works . 76
IV.5 Summary and conclusion . 78

V Contract-driven analysis 79
V.1 Motivating context: analysis in a design process supported by an

architectural language . 79
V.2 Contracts . 82

V.2.1 Preliminary definitions: models, analyses and goals 82
V.2.2 Contracts . 85
V.2.3 Properties of contracts: complementarity and precedence . 86

xii

Contents

V.3 Contract-driven analysis . 88
V.3.1 Proposed approach . 88
V.3.2 Proof-of-concept with Alloy 90

V.3.2.A Alloy at a glance 90
V.3.2.B Toolchain . 91
V.3.2.C Experimentation and lessons learned 93

V.4 Discussion . 98
V.4.1 Related works . 98
V.4.2 Improvements . 100

V.5 Summary and conclusion . 101

Part 2 Application 103

VI Tool prototype 105
VI.1 Tool architecture . 105

VI.1.1 General architecture and basic functions 105
VI.1.2 Object-oriented design . 107

VI.2 Key elements of implementation . 108
VI.2.1 Data model and data structure 108
VI.2.2 Accessors . 111
VI.2.3 Analysis . 114
VI.2.4 Orchestration . 114

VI.3 Working with the tool . 119
VI.4 Summary and conclusion . 122

VII Case studies 123
VII.1 Continuous validation of the Paparazzi UAV design 123

VII.1.1 System overview . 123
VII.1.2 Problem: timing validation throughout the design process . 124
VII.1.3 Application of our approach 126
VII.1.4 Conclusion . 132

VII.2 Correct design of the Mars pathfinder system 132
VII.2.1 System overview . 132
VII.2.2 Problem: dealing with the original design error 134
VII.2.3 Application of our approach 136
VII.2.4 Conclusion . 140

VII.3 Design space exploration of an avionic system 140
VII.3.1 System overview . 141

VII.3.1.A Avionic system . 141
VII.3.1.B Integrated Modular Avionics platform 141

VII.3.2 Co-modeling with AADL and CPAL 143
VII.3.3 Problem: exploration of the design space 144
VII.3.4 Application of our approach 148

VII.3.4.A Analysis repository 149
VII.3.4.B From the analysis of CPAL processes to the defi-

nition of ARINC 653 modules 149
VII.3.4.C Iterative definition of the Bandwidth Allocation

Gap (BAG) from the AADL model 155
VII.3.5 Conclusion . 161

xiii

Contents

VII.4 Summary and conclusion . 161

VIII Conclusion 165
VIII.1 Summary of the thesis . 165
VIII.2 Main results . 166

IX Perspectives 169
IX.1 Improvement and extension of the concepts 169

IX.1.1 Factorization of accessors 169
IX.1.2 Additional contract evaluations and strategies 170

IX.2 Analysis and orchestration language(s) 170
IX.3 Analysis and orchestration tool . 171
IX.4 Supporting design space exploration through analysis 172
IX.5 Relaxing the work hypotheses . 173

A Summary of publications 175

List of Figures 177

List of Tables 181

List of Listings 183

Bibliography 199

xiv

Chapter I

Introduction

Abstract

In this introduction chapter, we first present the context of the work and our research
motivations. Next, we state the problems that we aim to address in this context.
After that, we introduce the contributions which are provided in this thesis. We
also detail the work hypotheses that fix the limits of these contributions. Lastly, we
describe the organization of this manuscript.

I.1 Context and motivations

Software systems have become an integral part of our daily life, be it for work or
entertainment through Personal Computers or laptops, for transportation in auto-
mobiles, trains or airplanes, to communicate via mobile networks or the Internet, but
also for healthcare, energy management, economics and many other applications.

I.1.1 Non-functional requirements in embedded systems

An embedded system is a particular kind of computer system. Embedded systems
consist of hardware, software, and an environment to interact with. In particular,
embedded systems have to fulfill the non-functional requirements dictated by the
environment, expressed for example in terms of timing, dependability, security, or
other performance criteria. Embedded systems can be found in many application
areas, especially in safety-critical applications such as aeronautics, space or automo-
tive. In safety-critical applications, missing a non-functional requirement can have
severe consequences, e.g. loss of life, personal injury, equipment damage, environ-
mental harm, etc.

With ever increasing functionalities and growing complexity, embedded systems
oblige not only to innovate in terms of technologies (e.g. IMA or TTA architectures,
real-time computer networks, multi/many core systems, mixed criticality systems,
etc.) but also to provide techniques and tools to develop them. In this thesis, we
study state-of-the-art methods and tools to develop embedded systems.

1

I.1. Context and motivations

I.1.2 Development process: combining models and analyses

A system life-cycle is typically broken down in five main stages which are require-
ments engineering, design, implementation, Verification & Validation and, finally,
operation. Several studies notice that the distance between design and V&V activ-
ities in current development processes results in costly regressions and reworks (see
Figure I.1 for an example with the V-model).

Figure I.1: Introduction and discovery of faults in a development process sup-
ported by the V-model (taken from [1]). A majority of faults is introduced the early
stages while these faults are discovered late in the development process. According
to Feiler et al., 70% of faults have their origins at design time while 80% of them
are discovered after the implementation phase.

Novel development approaches, such as Model-Driven Engineering [2] or Virtual
Integration [1], shift from a system/test to a model/analysis paradigm. The watch-
word for these approaches could be “model, validate, then build”1. The core idea is
to describe the system through many different models, possibly integrate the view-
points, and verify/validate the system at design time. Then, the system can be
manually built or (semi-)automatically generated from models. With this approach,
the design process consists of a set of modeling and analysis steps: models are used
to define the system from high-level models to low-level models and code, whereas
analyses are applied on such models to gradually validate or invalidate the design
choices. Consequently, the system is “correct-by-design”.

In this thesis, we study Model-Driven Engineering approaches that systematically
combine models and analyses to develop embedded systems, especially the design
phase.

1originally “integrate then build” in [1]

2

Chapter I. Introduction

I.1.3 The need to couple models and analyses

Modeling and analysis are dual activities to comprehend any system, be it to explain
the Solar System, understand a social system, architect a house, or design a computer
system in our case. Modeling enables to represent a system, whereas analysis makes
it possible to dissect this system.

In embedded systems engineering, modeling and analysis techniques have been inves-
tigated separately. On the one hand, Model-Driven Engineering is an engineering
approach that focuses on domain-specific models so as to develop a system. On
the other hand, mathematically founded analysis approaches such as the real-time
scheduling analysis, the model-checking, the dependability analysis, etc. make it
possible to analyze the diverse non-functional properties of embedded systems.

A major contribution to improve the development of embedded systems, and the
main objective of this thesis, will be to integrate models, as defined by the basic
principles of Model-Driven Engineering (i.e. the triad model, metamodel, model
transformation), with mathematically founded analysis approaches to analyze the
non-functional properties of embedded systems. In this thesis, we concentrate on
architectural modeling through Architecture Description Languages, and real-time
scheduling analyses. We explain the problem in greater detail and subsequent re-
search lines in the next sections.

I.2 Problem statement

The integration of models and analyses raises two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

I.2.1 How to apply an analysis on a model?

Modeling and analysis features are usually provided as part of distinct tools:

1. languages such as AADL [3], EAST-ADL (combined with AUTOSAR) [4, 5],
or SysML and MARTE UML profiles [6, 7] provide standardized notations for
modeling system architectures;

2. analytical frameworks for Verification & Validation activities targeting real-
time scheduling tools [8, 9], model-checkers [10, 11], etc.

An approach commonly used to connect the toolsets, known as model transfor-
mation, is to translate a model used for design into a model used for analysis, as
represented in Figure III.13. For example, see [12] for a survey on model transfor-
mations to analyze the non-functional properties of AADL models (i.e. in terms of
behavior, schedulability, timing and dependability).

In that context, one can either implement a comprehensive model transformation
(e.g. metamodeling under the MOF standard [13], in the Eclipse Modeling Frame-
work [14], transformation with a dedicated language such as ATL [15]); or more

3

I.2. Problem statement

probably relies on an ad hoc transformation chain to deal with the design and anal-
ysis models under different technical spaces. Yet, we note two main drawbacks with
this approach:

(1) one must define a multiplicity of transformations attached to specific tools,

(2) in the current state of the art, ensuring the correctness of model transforma-
tions is yet an unsolved problem (see works by Amrani [16] on this topic).

We also note that the analysis can be operated directly from the modeling tool using
constraint languages (e.g. OCL). Thus, a first research direction in this thesis will
be to further explore and compare means to analyze the non-function properties of
a system from architectural models.

Design
Model

Analysis
Model

Analysis
transfor-
mation

inputs result?

applicability?

Figure I.2: Analysis supported via model transformation process. Design and
analysis features are part of distinct tools: (1) a model used for design in a first tool
is translated into a model used for analysis in a third-party tool; (2) the analysis in
the third-party tool is then applied on its own model. This approach does not address
the validity of the transformation: is the analysis applicable on the model which is
considered? Furthermore, the analysis result is not handled: what is the meaning of
the analysis result?

I.2.2 How to manage the analysis process?

From technical analysis solutions, engineers must be able to manage the analysis
process. These are some questions faced by an engineer when applying an analysis:

When to apply the analysis? On the one hand, an analysis is carried out according
to a precise analytical model, e.g. a task model. On the other hand, an analysis
fulfills a particular objective, e.g. it provides a result about the schedulability of
the system. The correct application of an analysis is thus a consistent association
between a model, an analysis and an objective: the model in input must comply with
the analysis expectations (data required by the analysis, respect of the assumptions
made by the analysis, etc.), and the analysis must meet the objectives of the engineer
in output.

What to do with the analysis result? Carrying out an analysis is not a dead-end.
Firstly, an analysis may report on an engineering goal: performances, timing, safety,
etc. Secondly, elementary analysis results may be combined to build wider results;
or must be computed in a precise order to be sound.

To answer these questions, we must investigate a more systematic approach that
will enable to manage analysis activities at design time. This approach must be
supported by MDE tools alongside modeling languages and analysis engines.

4

Chapter I. Introduction

In the next section, we explain the research lines explored in this thesis, and in-
troduce our contributions to tackle the aforementioned issues. We also explain the
hypotheses that delimit our works.

I.3 Lines of research and contributions

From the problem statement, we explore three complementary lines of research:

R1: exploration of means to analyze the non-functional properties of a system from
its models,

R2: investigation of the semantics of an analysis and reasoning on the analysis
process,

R3: practical application of these concepts and experimentation through case stud-
ies.

R1 and R2 target conceptual and practical solutions for the problems stated above.
R3 is more application-oriented and seeks to evaluate the benefits of combining
models and analyses for engineering real embedded systems. The remainder of the
section sums up the four contributions of this thesis with respect to these lines of
research.

I.3.1 Technical integration through model query

C1: model query focuses on the technical issue behind the analysis of a model.
We tackle the problem from a different standpoint compared to related works that
emphasize on model transformations. Arguing that an analysis is less based on a
particular model syntax than specific data, we promote query mechanisms called
accessors to analyze the non-functional properties of a system at design time. These
accessors enable to extract data from a model and then analyze them. An expected
benefit is that an analysis can be integrated to any kind of model as soon as an im-
plementation of accessors to model internals is provided. Another advantage is that
an analysis could be easily implemented by using a general-purpose programming
language (e.g. Python) instead of relying on specific analysis engines.

I.3.2 Semantics of an analysis and contract-driven analysis

C2: semantics of an analysis. In a second time, we aim at formalizing the anal-
ysis process. We show that an analysis is basically a program with preconditions and
postconditions (i.e. like a Floyd-Hoare triple). The preconditions are the properties
to hold true on an input model to successfully execute the analysis. Postconditions
are the properties guaranteed on the model after the analysis execution. We show
that a full analysis, including preconditions and postconditions, can be then imple-
mented through a combination of above-mentioned accessors and a general-purpose
programming language such as Python.

5

I.4. Work hypotheses

C3: contract-driven analysis. We extend the previous contribution through
the notion of contract, semantically equivalent to a Floyd-Hoare triple. A contract
completely defines the interfaces of an analysis in terms of processed data and prop-
erties. Inputs/Outputs (I/O) describe input and output data. Assumptions/Guar-
antees (A/G) describe input and output properties. Specific methods can then be
used to automatically reason about these interfaces, and answer complex questions
about the analysis process: which analysis can be applied on a given model? Which
are the analyses that meet a given goal? Are there analyses to be combined? Are
there interferences between analyses? Etc. In practice, contracts can be defined with
the help of a specification language such as Alloy, and evaluated through associated
SAT solvers.

I.3.3 Proof-of-concept analysis and orchestration tool

C4: proof-of-concept tool. As an example of application, we propose a proof-
of-concept tool that enables not only to analyze architectural models but also to
orchestrate the analysis process. This tool implements several functions, each one
implementing a part of the concepts introduced earlier. In particular, our tool
provides accessors towards AADL and CPAL models, various real-time scheduling
analyses programmed in Python, and an orchestration module based on Alloy. We
illustrate the capabilities of such a tool on various case studies coming from the
aerospace. Through these case studies, we show that our tool enables not only to
automate the analysis process at design time but also to enhance the design process
by systematically combining models and analyses.

I.4 Work hypotheses

The three following hypotheses fix the limits of our contributions. These hypotheses
may be relaxed in future works.

H1: embedded systems. We concentrate on embedded systems [17]. Embedded
systems are computer systems that present two special features: (1) they consist
of hardware, software and an environment; (2) they have to meet non-functional
properties dictated by the environment.

H2: design through architectural description languages. We focus on early
design phases, especially the architectural design stage. For this purpose, we study
two particular Architecture Description Languages: the Architecture Analysis and
Design Language (AADL) [18], an industry standardized language to describe the ar-
chitecture of real-time embedded systems, and the Cyber-Physical Action Language
(CPAL), a new language for the model-driven development and real-time execution
of Cyber-Physical Systems (CPS) [19].

H3: real-time properties. We concentrate on real-time properties. A real-time
system is a system for which the “the correctness depends not only on the logical
result of the computation but also on the time at which the results are produced”

6

Chapter I. Introduction

[20]. Worst-Case Execution Times (WCET), Worst-Case Response Times (WCRT)
and Worst-Case Traversal Times (WCTT) are some examples of real-time properties
to be analyzed. We emphasize on a particular kind of analytical methods called real-
time scheduling analyses [21].

I.5 Thesis organization

This thesis is organized into nine chapters. The core chapters are split into two
subsequent parts: concepts and application of these concepts.

Part 1 (Concepts) presents both the concepts preceding our works and the con-
cepts contributed in this thesis.

Chapter II (Background) introduces the necessary background concepts re-
lated to embedded systems, model-driven engineering and model-based analysis.
In particular, we present two Architecture Description Languages (ADL) used
in this thesis, namely the Architecture Description Language (AADL) and the
Cyber-Physical Action Language (CPAL). We also introduce the important con-
cepts of the real-time scheduling analysis.

Chapter III (Model query through accessors) deals with model query. It
presents query mechanisms, called accessors, to analyze the non-functional prop-
erties of a system from architectural models. This chapter explains the rationale
behind model query and presents an implementation of accessors through a ded-
icated Application Programming Interface.

Chapter IV (Semantics of an analysis) focuses on the analysis, especially its
semantics. This chapter firstly shows that a full analysis consists of preconditions,
the analysis itself, and postconditions. Then, we evaluate several implementa-
tion means, including both specialized constraint languages and more generic
accessors.

Chapter V (Contract-driven analysis) explores the notion of contract. Con-
tracts specify the interface of an analysis in terms of processed data and prop-
erties, and allow for automatic reasoning on analysis interfaces. In a proof-of-
concept, we show that contracts can be defined with the help of a specification
language such as Alloy, and evaluated through associated SAT solvers. In this
way, we are able to systematize the analysis activities at design time.

Part 2 (Application) presents an implementation of these concepts through a
tool prototype and experiments these concepts on various case studies.

Chapter VI (Tool prototype) describes a tool prototype that implements the
various concepts introduced in the first part of the thesis. This proof-of-concept
tool implements several functions so as to automate analysis activities at design
time. In particular, our tool implements accessors towards AADL and CPAL

7

I.5. Thesis organization

models, analyses programmed in Python, and an orchestration module based on
Alloy.

Chapter VII (Case studies) applies the important concepts contributed in
this thesis to resolve practical engineering problems. We use the prototype tool
presented in the previous chapter to experiment a design workflow that combines
architectural models and analyses. We describe three cases studies: an open-
source drone named Paparazzi, the Mars Pathfinder exploratory robot, and a
Flight Management System.

This dissertation finishes with a general conclusion and some perspectives.

Chapter VIII (Conclusion) recaps the content of this thesis and summarizes
the main results.

Chapter IX (Perspectives) sketches potential improvements, extensions and
research directions to continue the work initiated in this thesis.

8

Part 1

Concepts

9

Chapter II

Background

Abstract

This chapter presents the general concepts that are necessary to comprehend the is-
sue tackled in this thesis and proposed contributions regarding methods and tools to
develop real-time embedded systems. We firstly present the special features of em-
bedded systems in Section II.1. In particular, a major problem related to embedded
systems is to cope with non-functional properties, e.g. real-time, safety or security
properties. We consider two complementary approaches to that end. On the one
hand (Section II.2), Model-Driven Engineering (MDE) is a generative engineering
approach that is based on the triad model, metamodel and model transformation.
At the core of MDE, Domain-Specific Modeling Languages enable to form models,
especially through Architecture Description Languages (ADL) during the early de-
sign stage. We present two particular ADLs: the Architecture Analysis and Design
Language (AADL) and the Cyber-Physical Action Language (CPAL). On the other
hand (Section II.3), we focus on model-based analyses, i.e. approaches that use
mathematical reasoning to check some non-functional properties from an analytical
representation of the system. We concentrate on real-time scheduling analyses. A
real-time scheduling analysis determines whether a task system meets some timing
constraints or not (e.g. deadlines). In Section II.4, we discuss the link between
MDE and analysis that founded the motivation of our work. We finally conclude
this chapter in Section II.5.

II.1 Embedded systems

This thesis deals with the modeling and analysis of embedded systems at large. An
embedded system is a specific kind of computer system.

Definition 1 (Embedded system). An embedded system is an engineering artifact
involving computation that is subject to physical constraints. Embedded systems
consist of hardware, software, and an environment. [22]

In particular, an embedded system possesses the following core features as stated in
[22, 23, 17, 24, 25, 26]:

• it is made up of a combination of hardware and software components,

11

II.1. Embedded systems

• it is designed to perform a fixed function, specific to an application,

• it is embedded in a physical system,

• it interacts with the external physical world and has to meet the constraints
dictated by the environment.

The next subsections introduce the basic architecture of embedded systems, some
common non-functional properties of embedded systems and embedded systems de-
velopment processes.

II.1.1 Hardware and software architecture

An embedded system combines hardware and software components in order to carry
out a fixed function, specific to the application. At the highest level, we can represent
the major elements of an embedded system with the layered model in Figure II.1.

Application Software

System Software

Hardware

Figure II.1: Embedded systems model (according to [23]).

The hardware layer contains the physical components provided by an embedded
board. Hardware typically consists of processors, memories, data storage, input/out-
put devices, communication networks, etc. The system software and application
software layers contain the software being executed by the embedded system. The
system software layer provides abstraction mechanisms between the hardware and
application software such as device drivers, operating systems or middlewares. The
application software layer finally contains the application-specific software that runs
on top of the system software layer. With that architecture, the application can
be programmed through the various services provided by the system software layer,
without interfacing directly with the physical components.

II.1.2 Non-functional constraints

Embedded systems have to meet specific non-functional constraints as explained
for example in [24, 27]. We briefly present some of these constraints in the next
paragraphs.

Small size, low weight. Embedded systems are physically located in larger sys-
tems. Therefore, they may have to fit into a restricted place between electrical
or mechanical components, for instance Electronic Control Units (ECU) in cars.
Weight may also be critical, for example for fuel economy or when it impacts the
dynamics of the embedding vehicle (aircraft, spacecrafts, small-sized vehicles such
as drones), or simply for ergonomics (portable equipment such as laptops).

12

Chapter II. Background

Real-time operation. Embedded systems continuously interact with the external
physical world. Real-time, which is the physical time in the environment of the
system, is an integral part of embedded systems [25, 17].

External

environment
Reactive

system

Input real-time

environmentsystem

Output

Figure II.2: Interaction between an embedded system and the external physical
world.

Definition 2 (Real-time system). A real-time system is a system for which the
correctness depends not only on the logical result of the computation but also on the
time at which the results are produced [20].

More precisely, the computer system must react in constrained time to external
events, in order to keep control of the external process [28]. Typically, tasks exe-
cuted by the computer have deadlines, which is the time by which the task must
be completed. More generally, embedded systems can have to fulfill many different
kinds of temporal constraints, not just deadlines: a task must be executed no earlier
than a precise time; a task must be executed strictly periodically, or can accept a
jitter; a task may be required to be executed after another task; etc.

Control/command systems or process control systems are typical examples of reac-
tive and real-time systems. We can further classify real-time systems according to
their criticality [29]. For example, we distinguish between hard [30, 31], soft [32]
and mixed-criticality [33, 34] real-time systems. Violating a temporal constraint in
a hard real-time system can have catastrophic consequences. Systems to pilot an
aircraft, to control a critical chemical process, or to monitor the health of a patient
are some examples of hard real-time systems.

Safe and reliable. Embedded systems can be used in applications where deliv-
ering the correct service is vital to achieve the mission or ensure the safety of the
public or the environment. Those systems are referred to as mission- or safety-
critical systems [35]. A failure of the system (caused for instance by a real-time
fault or a hardware fault) can have catastrophic consequences: loss of life, personal
injury, equipment damage, environmental damage, etc. A life-support system in
an intensive care unit is an example of safety-critical system. We can mention an
aircraft flight control system or a nuclear power power plant control system as other
examples.

13

II.1. Embedded systems

Safety-critical embedded systems must be dependable. Dependability is “the ability
to deliver a service that can justifiably be trusted” (Avizienis et al. [36]). Depend-
ability is an integrating concept that encompasses numerous attributes such as safety
(i.e. the absence of catastrophic consequences on the user(s) and the environment
when a system fails), reliability (i.e. the continuity of correct service delivered by
the system), availability (i.e. readiness for correct service), and so on.

Other performance constraints. Embedded systems may have to cope with a
wide range of performance constraints (i.e. performance measures) [23, 26]: power
consumption, processor throughput, various memory usage, network bandwidth, etc.

II.1.3 Development process

The development of embedded systems is a complex and critical task. It is hence
based on systematic activities as part of a development process. Each activity pro-
duces a different result (requirement documents, models, programs, etc.) with the
goal to produce the right system at the end of the process.

There exist plenty of development processes that lead to the production of a system.
There are fundamental activities which are common to all processes: requirements,
design, implementation, Verification & Validation and the final operation [37].

Requirements fully express the functionalities that the system must provide, and
constraints on its operation. We distinguish the functional requirements which are
the basic functions that the system must provide (“what the system must do”) from
the non-functional requirements which are the constraints that the system must
fulfill to correctly behave in its operational environment (“how the system performs
a specific function”). Real-time operation, low power consumption, dependability or
security are examples of non-functional requirements. The requirements engineering
results in various requirement documents.

Design defines all the aspects of the system which are necessary to meet the
requirements, including software and hardware concerns. A system design describes
for example the subsystems, the components of the (sub)systems, the interfaces
between components, the data used in the system, the algorithms, the protocols,
etc. The design process may involve the production of several models of the system
at different levels of abstraction.

Implementation realizes the system design with all the required material: hard-
ware, programs, configuration files, etc. The implementation phase results in a
product system.

Verification & Validation ensure that the system meets the functional and non-
functional requirements. We distinguish two main approaches:

• analyses that are carried out on system models such as the requirement doc-
uments, the models and the program source code,

14

Chapter II. Background

• tests which are conducted on the product system.

Analyses can be performed at all stages of the process as they operate on a repre-
sentation of the system. Conversely, testing is only applicable at late design stages,
when the product system is available.

Operation represents the last phase of the development process. At this stage,
the system has been delivered and is operating in its environment. The operation
phase may requires extra activities such as correcting undetected errors, improving
the product system, integrating new requirements, etc.

Process models represent system processes. For instance, Figure II.3 depicts the
aforementioned activities as separate process phases in the classic waterfall model
[38]. The activities in this process are realized subsequently. In theory, a phase can
only start if the previous one has finished. In practice, the process progress is rarely
linear and may involve several iterations over adjacent steps. Other process models
such as the V-model, the spiral model or the iterative model organize these tasks in
different ways [39, 37].

Requirements

Design

Implementation

Verification &

Validation

Operations

Figure II.3: Waterfall development process model (according to [38]).

II.2 Model-Driven Engineering

Model-Driven Engineering (MDE) is a paradigm which considers models as primary
artifacts to develop software and embedded systems.

Definition 3 (Model-Driven Development). Model-Driven Engineering describes
software development approaches in which abstract models of software systems are
created and systematically transformed to concrete implementations [2]

15

II.2. Model-Driven Engineering

II.2.1 What is a model?

The watchword of Model-Driven Engineering is “everything is a model” [40]. The lit-
erature proposes plenty of definitions of the notion of model. We retain the following
definition in the context of this thesis.

Definition 4 (Model). A model is a simplification of a system built with an intended
goal in mind. The model should be able to answer questions in place of the actual
system [41].

Therefore, a model is an abstraction of a subject system. We can possibly represent
a system with various models related with each other, e.g. as many different points
of view, e.g. see [42, 43].

The next definition emphasizes that a model must be written with a language. This
language might be plain English, a programming language, or a dedicated modeling
language called a Domain-Specific Modeling Language [44, 45].

Definition 5 (Model (language)). A model is a description of (part of) a system
written in a well-defined language. [46].

A well-defined language is a language with well-defined form (syntax), and meaning
(semantics), which is suitable for automated interpretation by a computer [46].

Figure II.4 depicts the relationships between a model, the system it represents, and
the language in which it is written.

Language

is

written

in

Model System
represents

in

Figure II.4: Relationships between a model, a subject system and a language
(according to [46]).

General-Purpose Modeling vs. Domain-Specific Modeling. We usually
distinguish between general-purpose modeling languages (GPML) and domain-specific
modeling languages (DSML). Contrary to general-purpose modeling languages which
provide universal concepts (e.g. the UML [47]), domain-specific modeling languages
are specialized languages which focus on a particular domain [44, 45]. Domain-
specific modeling languages directly capture the high-level concepts of a subject
domain. Thereby DSMLs improve the efficiency of models as they are easier to
understand and learn for a domain expert, but also more easily transformable, ana-
lyzable, etc. Of course, the use of a DSML is restricted to a specific domain, meaning
that many DSMLs are necessary to cover all the aspects of a system. We discuss
the definition of DSMLs through metamodels in the MDE hereinafter.

16

Chapter II. Background

II.2.2 Notions of metamodeling

The mechanism to define a language in Model-Driven Engineering is called meta-
modeling.

What is a language? Any language, be it considered in linguistic or in computer
sciences, consists of a syntax and a semantics. The syntax refers to the representation
of a language, i.e. the elements that form the language (words, sentences, boxes,
diagrams, etc.), while the semantics deals with the meaning of this language [48].

Definition 6 (Language). A language is a tuple {S, Sem} with S is the syntax of
the language and Sem is the semantics [46, 49].

In the context of modeling languages in particular [48, 49]:

• the abstract syntax, manipulated by a computer, defines the structure of the
language, that is to say the concepts of the language and the relationships
between them,

• the concrete syntax, manipulated by the end-user, describes a specific human-
readable representation of these concepts with a textual or graphical formalism,

• the semantics of a modeling language is defined by (1) a semantic domain
and (2) a mapping of the syntactic elements to the semantic domain. There
are several ways to describe the semantics of a language, e.g. the operational
semantics or the denotational semantics to define the behavioral semantics of
a domain-specific modeling language.

Figure II.5 represents the relationship between the concepts of abstract syntax,
concrete syntax and semantic domain.

Abstract

Semantic

Domain

mapping

Concrete

Syntax

Abstract

Syntax
mapping

Figure II.5: Components of a language (according to [49])

Metamodel. Naturally, in MDE, modeling languages are themselves defined by
specific models, called metamodels.

17

II.2. Model-Driven Engineering

Metamodels enable to structure models by defining the abstract syntax of the mod-
eling language. A metamodel precisely defines the elements that can be used in a
language together with their relationships, and completes the structural description
with the well-formedness rules that must be respected by the conforming models [50].

Yet, Kleppe notices that a metamodel is any model that is part of a language
specification, not only defining the abstract syntax of the language but also the
concrete syntax or the semantic domain [51].

Definition 7 (Metamodel). A metamodel is a model that defines the language for
expressing a model.[13]

A metamodel itself must be written in a well-defined language. We call metalan-
guage this specific language used to describe modeling languages. Figure II.6 shows
the metamodeling approach. Because a metalanguage is itself a language, it should
be defined by a metamodel, called meta-metamodel, written in another metalan-
guage. To limit the number of abstractions, the meta-metamodel must be able
to describe itself. This phenomenon is known as the meta-circularity property of
meta-metamodels.

Examples of metalanguages include MOF and EMOF standards by the OMG [13],
Eclipse Ecore implementation of EMOF [14] or Kermeta [52].

Metalanguage

is

written

in

Metamodel

is

Model Language

is

written

in

is

defined

by

Figure II.6: Metamodeling approach (according to [46]) A modeling language must
be defined by a metamodel written in a metalanguage.

The four modeling layers. Therefore, the models can be represented in four
layers [46, 40] as shown in Figure II.7. A model at a level conforms to the model at
the upper level.

The M0 layer, the instances in the real world, corresponds to the running system.
The M1 layer contains models. A model represents the system with a language.
Metamodels at the M2 level defines the modeling language used by M1 (syntax
and semantics). The M3 layer finally defines the meta-metamodel that describe the
metalanguage. The meta-metamodel is defined in terms of itself (meta-circularity).

Every different metamodeling pyramid defines a technical space [53, 54]. The left
part of Figure II.7 shows two examples of metamodeling pyramids used in this thesis.
The first architecture contains elements of the AADL language in a modelware,
defined from the MOF meta-metamodel in Ecore. The second pyramid comprises

18

Chapter II. Background

elements of the CPAL language in a grammarware, based on the Extended Backus-
Naur Form (EBNF). Examples of model instances in the real world are an execution
of a C or ARINC653 program generated from an AADL model, or an interpretation
of a CPAL model on a Raspberry Pi platform.

Definition 8 (Technical space). A technical space is a set of tools and techniques
attached to a pyramid of metamodels which is defined by a family of similar (meta-
)metamodels [55].

Metamodel

Meta-metamodel

conforms to

conforms to

M3

M2

the MOF meta-

metamodel

the metamodel

of AADL in

UML

EBNF

the CPAL

grammar

conforms to
modelware grammarware

System

Model

conforms to

represented by

M1

M0

a AADL model

M

an execution X

of runnables R

generated from

M

a CPAL model X

an interpretation

Y of model X

on platform P

Two technical spaces

Figure II.7: Metamodeling pyramid. A particular metamodeling pyramid defines a
specific technical space, for example the AADL technical space or the CPAL technical
space.

II.2.3 Notions of model transformation

Model transformation is the third pillar of Model-Driven Engineering. It automates
various manipulations of models. Model refinement (vs. abstraction), synthesis/-
code generation (vs. reverse engineering), translation or analysis are some intents
behind a model transformation [56, 16, 57].

Definition 9 (Model transformation). A model transformation is the automatic
generation of a target model from a source model, according to a transformation
definition [46].

Figure II.8 represents the elements that participate in a model transformation [46,
16]:

19

II.2. Model-Driven Engineering

• an input model, written in a source language, is transformed into an output
model, written in a target language, by executing a transformation definition,

• a transformation definition, written in a transformation language, describes
how a model in a source language can be transformed into a model in a target
language,

• source, target and transformation languages are defined in terms of a meta-
language.

Notice that a model transformation is a function between abstract syntaxes and/or
concrete syntaxes [51, 50]. Guaranteeing the semantics of model transformations is
the subject of dedicated researches, e.g. see [16].

Transformation

Language

is

written

in

Metalanguage

is

written

in

is

written

in

is

written

in

Source Model
Transformation

Execution

Target

Language

refers toTransformation

Definition

Source

Language

is

written

in

Target Model

executes

is

written

in

refers to

outputsinputs

in

Figure II.8: Components involved in a model transformation (according to [16]).

Model transformations can be classified following many different criteria, e.g. see
[58, 59, 56]. A common classification of model transformations considers the source
and target languages [58]. Endogenous transformations refer to models expressed
in the same language. At the opposite, exogenous transformations involve models
written in different languages. Model transformations can be further classified by
considering the abstraction level of the source and target models [58]. A horizontal
transformation is a transformation that considers source and target models at the
same level of abstraction. A vertical transformation considers source and target
models at different abstraction levels. Czarnecki and Helsen [59] propose another
classification to distinguish between model-to-text and model-to-code transformation
approaches. Kleppe [60] proposes a taxonomy of model transformations based on
the elements of a language, e.g. Kleppe refers to an in-place transformation, a
view transformation or a structure transformation depending on whether the model

20

Chapter II. Background

transformation is defined between abstract syntaxes and/or concrete syntaxes. More
recently, Amrani et al. [56] proposed a classification of model transformations based
on an intent catalog.

There exist many transformation languages, based on different approaches [59]. We
can mention programming-based approaches that associate an internal model rep-
resentation to an API in order to directly manipulate the models (e.g. based on
JMI or EMF [50]), or approaches based on dedicated model transformation lan-
guages such as ATL (Atlas Transformation Language) [15], Kermeta [52] or QVT
(Query/View/Transform) [61, 62], the OMG standard language to specify model
transformations.

II.2.4 Case study: Architecture Description Languages

In this thesis, we concentrate on particular domain-specific languages called Archi-
tecture Description Languages (ADLs) [63, 64].

Architecture Description Languages capture both the static structure of a system
and its behavior. ADLs are especially useful during the preliminary design stage.
For example, Figure II.9 shows the positioning of ADLs in the waterfall model.

Definition 10 (Architecture Description Language). An architecture description
language is a formal language that can be used to represent the architecture of a
software-intensive system. By architecture, we mean the components that comprise
a system, the behavioral specifications for those components, and the patterns and
mechanisms for interactions among them. [63]

Requirements

Design

Implementation

Preliminary

Verification &

Validation

Operations

Detailed

Design

Preliminary

Design

Architecture

Description

Languages

Figure II.9: Positioning of Architecture Description Languages in the waterfall
development process.

Numerous Architecture Description Languages exist. In this thesis, we study two
particular ADLs: the Architecture Analysis and Design Language (AADL), an SAE
international standard [3], and the Cyber-Physical Action Language (CPAL), a
new language inspired by the synchronous programming approach [19]. We briefly
present these languages thereafter.

21

II.2. Model-Driven Engineering

II.2.4.A AADL: the Architecture Analysis and Design Language

AADL at a glance. The Architecture Analysis and Design Language (AADL) is
an ADL dedicated to “the specification, analysis, automated integration and code
generation of real-time performance-critical (timing, safety, schedulability, fault tol-
erant, security, etc.) distributed computer systems”1. AADL is an SAE Interna-
tional standard [3]. AADL originates from the former MetaH language [65, 66] and
has been improved and revised several times2.

AADL is a textual language first, but also has a graphical representation [18]. It
represents both the static and dynamic architecture of a system:

• the static architecture consists in a hierarchy of interacting software and hard-
ware components,

• the dynamic architecture describes operational modes, connection configura-
tions, fault tolerant configurations, behaviors of individual components, etc.

AADL focuses on the definition of components with their interfaces and implemen-
tations. Then, one can build an assembly of components that represents the system.
AADL defines different patterns to represent the multiple interactions between com-
ponents: subcomponents, connections and bindings. In addition, an AADL model
can incorporate non-architectural elements: non-functional properties (execution
time, memory footprint, . . .), behavioral or fault descriptions. Thus, it is possible
to describe all the aspects of a system architecture with AADL.

Figure II.10 depicts the main concepts of AADL. Let us review these elements in
more detail.

Components. An AADL description is made of components. Each component
category describes well-identified elements of the actual architecture, using the same
vocabulary of system or software engineering. The AADL standard defines three
categories of components:

• application software components: data, thread, thread group, subprogram
and process,

• execution platform components: memory, bus, processor, device, virtual
processor, virtual bus,

• composite components (system) or imprecise (abstract).

Figure II.11 shows the graphical concrete syntax of the different kinds of components.

A component is to be declared in two parts: the component type and the component
implementation. The component type describes the interface of a component. It
firstly defines the external interface in terms of features. Features can be ports,
subprograms or data accesses depending on the communication scheme. In addition,
a component type defines properties. Properties are typed attributes that specify

1http://www.aadl.info/ accessed September 2016
2AADLv2.1 is the latest version to date, from September 2012. AADLv2.2 and AADLv3 are in

the planning stage.

22

Chapter II. Background

Property sets
. Units
. Property type
. Property definition
. Constants

Component type
. Identifier
. Extends
. Features
. Flows
. Properties
. Annex

Component implementation
. Identifier
. Extends
. Refines type
. Subcomponents
. Connections
. Call sequences
. Modes
. Flows
. Properties
. Annex

Package
. Public decl..
. Private decl.

“references”!

. Ports

. Access

. Subprogram

. Parameter

. Feature

. Ports

. Access

. Parameter

. Modes

. transitions

Category
. Data
. Subprogram
. Thread (group)
. Process
. Memory
. Device
. (virtual) processor
. (virtual) bus
. System
. Abstract

Figure II.10: Simplified metamodel of AADL (taken from [67])

18 CHAPITRE 2. MÉTHODES DE MODÉLISATION ET DE VÉRIFICATION

2.1 Modélisation d’architecture
De nombreux langages de modélisation ont été proposés dans le but d’aider à la conception des

systèmes embarqués et d’automatiser une partie des étapes de développement (par exemple en intégrant
de la génération automatique de code [32]). Parmi les langages les plus matures pour les applications
temps réel, nous pouvons citer MARTE (Modeling and Analysis of Real-time and Embedded systems) [53],
SysML (System Modeling Language) [54] et AADL (Architecture and Analysis Design Language) [46].
Chaque langage est focalisé sur différents niveaux d’abstraction des systèmes : par exemple SysML et
MARTE sont utilisés pour représenter une vision globale du système, alors qu’AADL est plus adapté pour
la description des détails d’implémentation des systèmes et de leur architecture physique. Des travaux
récents proposent de combiner les avantages des différents langages. Dans [19] les auteurs définissent
une extension de SysML permettant d’intégrer l’ensemble des détails d’implémentation définissables avec
AADL, et dans [45] les auteurs décrivent comment modéliser les principes d’AADL dans MARTE. Dans
la suite, nous nous intéressons à AADL dans la mesure où il existe des travaux (par exemple [43]) pour
modéliser et analyser des architectures fondées sur la norme ARINC 653. En particulier, une annexe
spécifique à AADL est en cours de standardisation pour prendre en compte la norme ARINC 653.

2.1.1 Le langage de description d’architecture AADL

Le langage de description d’architecture AADL a été introduit pour permettre la modélisation et
l’analyse formelle de systèmes embarqués temps réel. Dans ce langage, un système est décrit comme un
assemblage de composants qui peuvent être de nature logicielle, matérielle ou composite (un composant
peut être lui-même décrit comme un assemblage de composants). La figure 2.1, tirée de [46], résume la
syntaxe graphique des différents composants définis dans AADL V1.

��������

���������

������

������

���

�������

������

����

����������

��������

������������

����������

������ �������

�������������������� �������������������

Figure 2.1 – Composants définis dans AADL V1

Nous détaillons les différents composants logiciels définis dans le langage, en précisant pour chacun
d’eux son utilisation dans le cadre de la modélisation d’un système IMA :

data : il s’agit d’une structure de données.
→ Chaque variable échangée entre les fonctions est modélisée à l’aide d’une structure de données de

type data.

thread : un thread sert à modéliser une tâche.
→ Nous ne détaillons pas l’ensemble des tâches réalisant une fonction. Un unique thread est utilisé

pour modéliser une fonction. Les informations telles que la période et la durée d’exécution de la
fonction sont contenues dans ce thread.

thread group : modélise la notion de hiérarchie entre différents threads.

te
l-0

07
14

50
2,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2

Figure II.11: Graphical representation of the main AADL components (taken from
[18])

23

II.2. Model-Driven Engineering

1

2 -- Data
3 data a_data
4 properties
5 Source_Data_Size => 4 Bytes;
6 end a_data ;
7

8 -- Subprograms
9 subprogram Produce_Spg

10 features
11 output_parameter : out parameter a_data ;
12 properties
13 Source_Language => (C);
14 Source_Text => (" foo.c");
15 Compute_Execution_Time => 150 ms . . 200 ms ;
16 end Produce_Spg ;
17

18 -- Threads
19 thread Producer
20 features
21 out_data : out event data port a_data ;
22 properties
23 Dispatch_Protocol => Periodic ;
24 Period => 500 ms;
25 end Producer ;
26

27 thread implementation Producer .Impl
28 calls
29 call_subprogram : { the_subprogram : subprogram Produce_Spg ;

};
30 connections
31 parameter the_subprogram . output_parameter -> out_data ;
32 end Producer .Impl;
33

34 thread Consumer
35 features
36 in_data : in event data port a_data ;
37 properties
38 -- Omitted
39 end Consumer ;
40

41 thread implementation Consumer .Impl
42 -- Omitted
43 end Producer .Impl;
44

45 -- Process
46 process pc
47 end pc;
48

49 process implementation pc.Impl
50 subcomponents
51 Prod : thread Producer .Impl;
52 Cons : thread Consumer .Impl
53 connections
54 c1 : port Prod. out_data -> Cons. in_data ;
55 end pc.Impl;

Listing II.1: Producer/consumer software elements in AADL.

24

Chapter II. Background

constraints or characteristics that apply to the elements of the architecture such as
the clock frequency of a processor, the execution time of a thread, the bandwidth
of a bus, etc. Some standard properties are defined (e.g. for timing aspects), but
it is still possible to define new properties (e.g. to describe a particular security
policy). Each type is optionally attached with one or several implementations. An
implementation describes the internal structure of a component: subcomponents,
connections between subcomponents, behavioral specifications, source code, etc. A
component implementation can also refine the non-functional properties defined in
the component type.

Listing II.1 illustrates these concepts on a producer/consumer example. For in-
stance, a specific thread Producer type is declared at line 19. The component type
defines an output port to connect with another component, together with the main
real-time properties to describe the timing behavior of that type of thread. The
implementation at line 27 specifies subprogram calls to carry out this thread. The
subprogram type declared at line 9 references the actual source code of the program
within its properties.

Component declarations have to be instantiated into subcomponents of other com-
ponents in order to form the system architecture. For example, in Listing II.1,
the producer/consumer process at line 49 has two subcomponents, i.e. a producer
thread Prod and a consumer thread Cons. At the top-level, a system contains all
the component instances. Most of the components have subcomponents, so that an
AADL description is hierarchical. A complete AADL description must provide a
top-most level system that will contain certain kinds of components (i.e. processors,
processes, buses, devices, abstract components and memories), thus providing the
root of the architecture tree called the root system. Listing II.2 depicts the Pro-
ducer/consumer root system. At line 6, the system implementation consists of the
process and underlying software elements defined in Listing II.1, the processor to
schedule and execute the threads of the bound process, and the memory to store
the data.

1 -- System
2

3 system Producer_Consumer
4 end Producer_Consumer ;
5

6 system implementation Producer_Consumer .Impl
7 subcomponents
8 the_process : process pc.Impl;
9 the_processor : processor rm_processor .Impl;

10 the_memory : memory ram_mem ;
11

12 properties
13 Actual_Processor_Binding => (reference (the_processor))

applies to the_process ;
14 Actual_Processor_Binding => (reference (the_memory)) applies

to the_process ;
15

16 end Producer_Consumer .Impl;

Listing II.2: Producer/consumer system in AADL.

25

II.2. Model-Driven Engineering

Component interactions. Components use their features to interact in many
different ways:

• Connections are the most usual communication ways using ports, connecting
an out port of a component to an in port of another. AADL defines three
types of ports to transfer data, events (control flow), or both: data ports, event
ports and event data ports. For example, the pc process in Listing II.1 connects
the Prod and Cons threads (line 54) through their ports. Other types of con-
nections between components include access to data, buses or subprograms,
or parameters passed into and out of a subprogram. Connections represent
logical flows (e.g. control or data flow) between components through their
features,

• Calls to subprograms in a thread or another subprogram, as done in the
Producer thread (line 31 in Listing II.1),

• Bindings map application software components to execution platform compo-
nents. For example, a process can be bound to a processor to specify that this
specific process must be executed using this particular processor (line 13 in
Listing II.2).

Annex and property sets. In addition to the core language, AADL proposes
several user-defined extension mechanisms through property sets and annex sublan-
guages [68]:

• Property sets allow one to define custom properties to extend standard ones.
For example, the “Data modeling annex document” allows one to model pre-
cisely data types to be manipulated in an AADL model; or the “ARINC653
annex document” defines patterns for modeling ARINC653 systems,

• AADL annex sublanguages offer the possibility to attach additional consid-
erations to an AADL component like behavioral specifications. They bind a
domain-specific language to components.

These extensions mechanisms are of particular interest to address project-specific
concerns such as modeling electric power consumption, modeling precise perfor-
mances of buses, or error modeling. The combination of core and user-defined exten-
sions makes it possible to customize architecture models and to support specialized
analyses.

Analysis and code generation. The AADL initial requirement document men-
tions analysis as a key objective. AADL models can be analyzed with a large set of
analysis theories and tools3: real-time analysis with scheduling theory (e.g. Ched-
dar [8], MAST [9] or MoSaRT [69, 70] tools), real-time process algebra [71], real-
time calculus [72] or network calculus [73]; behavioral analysis through mappings
to formal methods and associated model-checkers based on Petri nets [74] or other
formalisms like FIACRE/TINA [75, 76], RT-Maude [77], UPPAAL [10, 78], BIP

3An updated list of tools, projects and papers with AADL is available at http://www.aadl.info.

26

http://www.aadl.info

Chapter II. Background

[79, 80], CADP [81, 82], etc.; dependability assessment from the Error Model An-
nex, like the COMPASS project [83] or ADAPT [84, 85]; security verification [86, 87];
etc.

In addition, AADL allows for code generation. For example, Ocarina [88] imple-
ments Ada and C code generators for a wide variety of regular real-time platforms
(RT-POSIX, FreeRTOS, Vxworks, RTEMS, Xenomai) and avionic platforms (AR-
INC653); or model transformations to synchronous programs in SIGNAL [89] or
LUSTRE [90], or to the hardware description language SystemC [91].

Related languages. We can mention UML-based languages SysML [6] and MARTE
[7] or EAST-ADL [4] among the languages providing concepts and abstractions sim-
ilar to AADL, as stated in [92, 93, 94].

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is a UML
profile dedicated to the modeling and analysis of real-time and embedded systems.
It relies on domain-specific extensions of the general UML to model real-time and
embedded applications. These extensions focus on the non-functional elements of
real-time applications. These elements may be defined to support modeling, analysis,
or both. For instance, Optimum [95] clarifies the usage of MARTE concepts for
schedulability analysis, or [96, 97] use MARTE for dependability assessment.

EAST-ADL (Electronics Architecture and Software Technology - Architecture De-
scription Language) [4] is an Architecture Description Language to model automo-
tive embedded systems, developed in several European research projects. It is based
on concepts from UML, SysML and AADL, but adapted for automotive needs and
compliance with AUTOSAR [5]. EAST-ADL has been designed to complement
AUTOSAR by providing higher levels of abstraction: vehicle features, functions,
requirements, variability, software components, hardware components and commu-
nications. EAST-ADL models can be analyzed. For instance, Chen et al. [98, 99]
deal with the analysis of EAST-ADL models, focusing on model checking using
SPIN, safety analysis using Hip-Hops and some timing analyses.

We reviewed and compared these languages in more detail in a paper [100].

II.2.4.B CPAL: the Cyber-Physical Action Language

CPAL (Cyber-Physical Action Language) is a language to model, simulate, verify
and program Cyber-Physical Systems (CPS) [19, 101]. The language in itself is
inspired by the synchronous programming approach [102, 103] and time-triggered
languages such as Giotto [104]. The syntax of CPAL is close to the syntax of
the C language but provides concepts specific to embedded systems with a formal
execution semantics. In addition, CPAL is a real-time execution engine. CPAL
models are interpreted with the guarantee that a model will have the same behavior
in simulation mode on a workstation and in real-time mode on any embedded board.
CPAL is jointly developed at the University of Luxembourg and by the company
RTaW since 2011.

Functional architecture in CPAL. CPAL enables to represent the functional
architecture of the system. The functional architecture consists of the set of func-

27

II.2. Model-Driven Engineering

tions, the activation scheme and the data flow between the functions. In addition,
a CPAL model describes the functional behavior of the functions, that is the code
of the function itself.

Processes are the core entities of a CPAL model. Processes have their own dynam-
ics: they are activated at a specified rate or when a specific condition is fulfilled.
CPAL processes are equivalent to the concepts of tasks, runnables or threads in
other domain-specific modeling languages. A process is firstly defined with a list of
parameters completed with the code of the function itself. One or several instances
of the process can then be created in the CPAL program.

Finite-State Machines (FSMs) describe the logic of a process based on the semantics
of Mode-Automata [105]. Each process embeds a FSM. The simplest version of a
process consists in a single state that is executed repeatedly. For instance, FSMs can
be used to describe the different running modes of a system. CPAL implements the
following semantics for a FSM: execute a possible transition first and then execute
the current state of the FSM.

Communications inter-processes are supported via process arguments passed through
in and out ports. The argument can be either a global variable or a communication
channel. The main difference is that a global variable is passed by value to a process,
meaning that the processes will work on copied data, while a channel is a reference
to the actual data. Communication channels are more efficient in terms of speed and
memory compared to communications supported by global variables. In addition,
communication channels provide more powerful data buffering mechanisms: queues
and stacks respectively implement FIFO (First In, First Out) and LIFO (Last In,
First Out) buffering.

Real-time is an integral part of CPAL with precise activation models and scheduling
policies. Process activations are specified through specific process parameters, in-
cluding periods and, possibly, offsets or specific activation conditions. Processes are
then scheduled according to a scheduling algorithm. First In First Out (FIFO), Non-
Preemptive Earliest Deadline First (NPEDF) and Non-Preemptive Fixed Priority
(NPFP) are scheduling policies available in CPAL.

Figure II.12 illustrates the main constructs of CPAL through a monitoring process
example. The CPAL program defines a monitoring process which signals an abnor-
mal behavior and, possibly, raises an alarm after a while when a value measured from
a sensor exceeds a threshold. The first level alarm is to be confirmed from another
sensor monitored by a second process at a higher rate. If the first alarm is confirmed,
a second level alarm is set. The CPAL program describes all the functional, logical
and real-time aspects.

Analysis and execution of CPAL models. The second main objective of CPAL
is to make it possible to evaluate and execute cyber-physical systems. For this
purpose, the CPAL core language is completed with (1) analysis-specific language
constructs called annotations and (2) an interpreter.

Annotations describe the non-functional properties of a system in great detail. Tim-
ing annotations for instance, defined in a dedicated @cpal:time block, specifies
the timing behavior of the CPAL program. CPAL provides execution-time annota-
tions (e.g. varying execution times or worst-case execution times) and scheduling

28

Chapter II. Background

Figure II.12: A monitoring process in CPAL (taken from [19]).

annotations (e.g. interarrival times, jitters, scheduling parameters such as process
priorities, deadlines, etc.). For example, Listing II.3, depicts a CPAL model that
includes several execution time annotations within process states, e.g. @cpal:time
{State1.execution_time = 15ms;}. According to these annotations, the execu-
tion time of a state is static (for instance at lines 6 or line 12) or dynamic (for
example if it depends on a condition at line 24 or line 26). Execution times could
be equally expressed at the process level, thus applying to all potential states of a
process.

The interpreter enables to execute CPAL models. The interpreter runs either in
simulation mode or in real-time mode. An execution in simulation mode is as fast
as possible, meaning that the interpreter makes optimistic assumptions and the
program is not granted access to the hardware. For instance, the code executes in
zero-time except if timing annotations are provided in the code. The real-time mode
enables to actually execute the model on a platform, with access to the hardware.
The interpreter does not consider optimistic assumptions but real executions, e.g.
the code execution time depends on the frequency of the processor, usage of I/O
devices, etc. Table II.1 summarizes the platforms and execution modes currently
supported by the interpreter.

CPAL provides different types of analyses based on the annotations and/or the
interpreter:

• simulation of the timing behavior of the system in the dedicated mode,

• mechanisms to measure the WCETs on a specific target in the real-time mode,

• schedulability analysis using timing annotations, e.g. see [106].

For example, Figure II.13 represents a simulation of the CPAL program in List-
ing II.3, as displayed in the CPAL-Editor. The vertical bars represent the activa-

29

II.2. Model-Driven Engineering

1

2 process def Varying_Execution_Time ()
3 {
4 state State1 {
5 @cpal:time {
6 State1 . execution_time = 15ms;
7 }
8 }
9 on (true) to State2 ;

10

11 state State2 {
12 @cpal:time {
13 State2 . execution_time = 35ms;
14 }
15 }
16 on (true) to State1 ;
17 }
18

19 process def Conditional_Execution_Time ()
20 {
21 state Main {
22 @cpal:time {
23 if (uint16 . rand_uniform (0 ,2) ==0) {
24 Main. execution_time = 1ms;
25 } else {
26 Main. execution_time = 15ms;
27 }
28 }
29 }
30 }
31

32 process Constant_Execution_Time : p1 [70 ms]();
33 process Conditional_Execution_Time : p2 [200 ms]();

Listing II.3: CPAL program with timing annotations.

Platform Supported
execution mode Access to HW?

Windows 32/64bit Simulation 7

Embedded Windows
32/64bit

Real-time and
Simulation 7

Linux 64bit Simulation 7

Embedded Linux 64bit Real-time and
Simulation 3

Mac OS X Simulation 7

Freescale FRDM-K64F Real-Time 3

Raspberry Pi Real-time and
Simulation 3

Table II.1: Platforms supported by the CPAL interpreter.

30

Chapter II. Background

tions of the processes based on their periods, whereas the widths of the bars depict
the execution times according to the execution time annotations. The processes
are scheduled according to a FIFO policy, while the execution times depend on the
states of the processes’ FSMs.

Figure II.13: Gantt diagram representing the execution of the processes defined
in Listing II.3.

Related languages. Synchronous dataflow models provide an intermediate level
of abstraction between a low-level program and a high-level architecture model such
as AADL. More importantly, models with synchronous languages like LUSTRE
[107], SIGNAL [108], Esterel [109] or Prelude [110, 111] have a formal execution
semantics (i.e. the synchronous semantics). The synchronous approach is based
on strong mathematical foundations and naturally meets the needs of design and
verification of reactive systems, e.g. see [112, 113].

Giotto is a time-triggered architecture language [104]. A Giotto model depicts the
software architecture of a system with both the functional and timing aspects. At
its core, Giotto provides a formal execution semantics (i.e. the Giotto semantics).

Navet et al. [19] outline some links between synchronous architecture languages and
CPAL. They explain that CPAL is a lighter and easier to learn programming lan-
guage compared to synchronous programming languages, while being equally able to
guarantee the necessary timing predictability of the application. The authors high-
light bridges with the higher-level languages Prelude and Giotto. Yet, they observe
that those languages are neither programming languages to define the functional
behaviors of the tasks, nor an execution platform.

Works like [90, 114, 115] show overlaps between high-level ADLs and synchronous
ADLs. For instance, the authors in [90] translate a subpart of an AADL model
into a LUSTRE program; and evaluate AADL models with tools available for syn-
chronous programs. Henzinger et al. [104] highlighted some bridges between Giotto
and MetaH, the ancestor of AADL. In particular, Giotto captures some aspects of
MetaH (e.g. real-time tasks and communications) in an abstract and formal way.

31

II.3. Model-based analysis

In the context of this thesis, we present in Chapter VII a case study that combines
CPAL and AADL to fully model an avionic system.

II.3 Model-based analysis

Analysis, or more specifically verification, is an important aspect of the design of
embedded systems. These activities aim to check that the system will meet the
non-functional properties at run time. In that context, models are valuable assets
to investigate a system design, answering questions in place of the real system.

II.3.1 Main analysis approaches

We can cite three main analysis approaches that are fully or partly based on models:

Simulation consists in a virtual execution of a system according to a model
of this system and a simulation environment [90]. Simulation approaches
are able to deal with large systems. Yet, a simulation is generally unable to
enumerate all potential system’s states and execute all possible scenarios.
Therefore, a lengthy simulation time (the amount of time provided to the
simulator to explore system’s states) may be necessary to compute precise
simulation results, but does not guarantee that these results are complete.

Model-checking is a formal approach to automatically verify finite-state
software or hardware systems [116]. Model-checking considers a formal
model (e.g. Petri nets [117], timed automata [118], etc.) and properties
to verify, expressed in a logical formula. An algorithm explores all possible
states of the model and determines whether given properties hold or not.
A major limitation of model-checking is known as the state space explosion
problem that results in huge computation times and memory consumption.

Analytical methods are all mathematically founded approaches which do
not belong to the aforementioned analysis approaches. These approaches
consider an analytical model that is to be analyzed through an algorithm to
answer a given question about the system. For example, schedulability tests
determine whether real-time tasks will meet their deadlines according to a
given scheduling algorithm [21]. Schedulability tests are based on a task
model and consist of equations to verify. Another example is the Network
Calculus, a mathematical approach that reasons in terms of data flow and
servers to compute worst case performances of networks [119]. Network
Calculus tools implement algorithms based on the min-plus algebra [120] to
analyze such models, e.g. the RTaW-Pegase tool [121].

Tests operate on the product system. More precisely, “testing is the process
of executing a [system] with the intent of finding errors”4 [122]. Testing
consists in executing the system according to test cases in order to verify
that the system conforms to its specification. Testing cannot guarantee

4the original quotation is “testing is the process of executing a program with the intent of finding
errors” but the approach is analogous when considering the whole system

32

Chapter II. Background

Analysis
Approach

Supported
activity

Analysis
Support

Scope of
results

Simulation Design Simulation model Non-exhaustive
Model-checking Design Formal model Exhaustive
Analytical methods Design Analytical model Deterministic

Tests Verification Test model
+ System Non-exhaustive

Table II.2: Some special features of usual model-based analysis approaches.

the absence of all errors. A major issue in testing is hence to maximize the
detection of errors through efficient testing methods and effective test cases,
e.g. Model-Based Testing is an approach to support tests with the help of
models [123].

Table II.2 summarizes some key features of these analysis approaches. In particu-
lar, the approaches differ with respect to the supported activities (e.g. design vs.
verification), the analysis support (product system vs. model) and the scope of the
result (e.g. exhaustiveness, determinism).

In this thesis, we concentrate on analytical methods. We are especially interested in
the analysis of real-time properties. In particular, we study an analysis approach for
this purpose: the real-time task scheduling analysis (or simply: real-time scheduling
analysis).

II.3.2 Case study: real-time task scheduling analysis

A real-time system is made up of a set of tasks which much be executed on one or
more processors and possibly share some resources. The tasks must be executed such
that the temporal constraints required by the environment are met. The scheduler
is the component in charge of building up an execution order (i.e. a schedule) that
fulfills the temporal constraints with available resources. We firstly review the basic
concepts of ‘real-time task’ and ‘scheduling’. We then introduce some analytical
approaches to analyze real-time task scheduling.

II.3.2.A Real-time task model

Real-time tasks are the basic entities of a real-time system. A task is a logical unit
of computation in a processor [124], that is a set of program instructions that are to
be executed by a processor. Tasks may be also referred to as processes or threads
in other contexts. A task job is a specific instance of a task execution.

A task τi can be characterized by temporal parameters. Table II.3 summarizes some
common task parameters.

According to the occurrence of jobs, we usually distinguish between periodic, aperi-
odic and sporadic tasks. Jobs in a periodic task are released in a regular basis and
are separated by a constant interval of time called the period. Sporadic tasks occur
irregularly but can be characterized by a minimum inter-release time between con-

33

II.3. Model-based analysis

Parameter Notation Note
worst-case execution time
(or capacity) Ci

relative deadline Di

period or
minimum inter-release time Ti

offset Oi
jitter Ji
priority
(if applicable) Pi

release time ri,j periodic task: ri,j = Oi + (j − 1) · Ti
start time si,j si,j ≥ ri,j
finish time fi,j
absolute deadline di,j periodic task: di,j = ri,j +Di

response time Ri,j
Ri,j = fi,j − ri,j , a valid schedules requires
that ∀τi ∈ T , max∀j(Ri,j) ≤ Di

Table II.3: Usual real-time task parameters.

secutive jobs. Aperiodic tasks occur at unknown times. For example, Figure II.14
represents a periodic task execution with a Gantt diagram.

ri,j

τi,j

si,j ei,j di,j

Di

Ri,j

Ci

ri,j+1

τi,j+1

si,j+1 ei,j+1 di,j+1

Di

Ri,j+1

Ci

Ti

Figure II.14: Representation of a real-time periodic task with a Gantt diagram
(taken from [125]). For a task τi: Ti the period, Ci the computation time and Di

the relative deadline. τi,j denotes the jth job of a task i: ri,j is the release time,
si,j the start time, ei,j the completion time, di,j the absolute deadline. A system is
schedulable if ∀τi ∈ T , ∀Ri,j the response time respects Ri,j ≤ di,j.

II.3.2.B Scheduling

The objective of real-time scheduling is to define an execution order of the tasks that
fulfill the timing constraints with available resources. A scheduling takes account
of a set of tasks T = {τ1, τ2, . . . , τn}, a set of processor P = {P1, P2, . . . , Pm} to
execute the tasks and, possibly, a set of shared resources R = {R1, R2, . . . , Rs}.

Scheduling algorithm. Numerous scheduling algorithms have been proposed in
the literature. A scheduling algorithm provides a schedule of tasks, that is, at
any time, assigns ready task jobs to available processors and, if necessary, shared

34

Chapter II. Background

resources. A real-time scheduling algorithm aims at providing a schedule that meets
all the timing constraints.

We do not provide a complete taxonomy of scheduling algorithms (see for example
[126]). Yet, we can distinguish the scheduling algorithms mentioned in this thesis
between:

• monoprocessor scheduling (or uniprocessor scheduling) if the system has only
one processor versus multiprocessor scheduling otherwise,

• off-line scheduling (or static scheduling) where the schedule is specified prior
to run time in opposition to on-line scheduling (or dynamic scheduling) where
the schedule is calculated during the execution of the system,

• preemptive scheduling if the algorithm is able to suspend a task execution to
execute a higher priority task, and then to resume the execution of the first
task; and non-preemptive scheduling whether a task cannot be interrupted
until its execution is completed,

• priority-driven algorithms that assign a fixed or dynamic priority to tasks
(i.e. Fixed Task Priority), respectively jobs (i.e. Fixed Job Priority, Dynamic
Priority), and schedule at any time the task, resp. job, with the highest-
priority,

• independent tasks scheduling that considers task sets with no precedence rela-
tionships and no shared resources; and dependent tasks scheduling that must
take account of precedence constraints, critical shared resources, or both.

Rate Monotonic (RM), Deadline Monotonic (DM) and Earliest Deadline First (EDF)
are among the most popular real-time scheduling algorithms. Table II.4 summarizes
some features of the algorithms mentioned in this thesis with respect to the classi-
fication discussed earlier.

Figure II.15 represents a schedule produced by the Deadline Monotonic algorithm.
The Deadline Monotonic algorithm assigns a fixed priority to each task τi according
to its relative deadline Di. The task with the lowest relative deadline is assigned
the highest priority: D1 ≥ D2 ≥ D3 so P1 ≥ P2 ≥ P3. Thereby, the scheduler plans,
at each time, the task with the highest priority. The scheduling algorithm is able to
preempt a task to allocate the processor to a task which has an higher priority. For
example, τ3 is preempted at time 5 to execute the highest priority task τ1, and then
resumes at the completion of τ1 at time 6.

II.3.2.C Scheduling analysis

Scheduling analysis aims to determine whether the scheduling algorithm will produce
a schedule that will meet the timing constraints at run time.

Schedulability and feasibility. According to Davis and Burns [127]:

• a task set is schedulable according to a given scheduling algorithm if the sched-
ule produced by this algorithm satisfies all the deadlines,

35

II.3. Model-based analysis

Sc
he

du
lin

g
al
go

ri
th
m

H
ar
dw

ar
e

ar
ch
it
ec
tu
re

P
re
em

pt
io
n

Sc
he

du
lin

g
po

lic
y

T
yp

e
of

ex
ec
ut
io
n

D
ep

en
de

nc
y

of
ta
sk
s

Fi
rs
t
In
,F

irs
t
O
ut

(F
IF
O
)

un
ip
ro
ce
ss
or

no
n-
pr
ee
m
pt
iv
e

ex
ec
ut
es

jo
bs

in
th
e
sa
m
e

or
de

r
of

jo
b
ar
riv

al
on

-li
ne

ig
no

re
d

Fi
xe
d
Pr

io
rit

y
(F

P)
un

ip
ro
ce
ss
or

pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Ta

sk
Pr

io
rit

y
on

-li
ne

ig
no

re
d

R
at
e
M
on

ot
on

ic
(R

M
)

un
ip
ro
ce
ss
or

pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Ta

sk
Pr

io
rit

y
ac
co
rd
in
g
to

pe
rio

ds
on

-li
ne

ig
no

re
d

D
ea
dl
in
e
M
on

ot
on

ic
(D

M
)

un
ip
ro
ce
ss
or

pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Ta

sk
Pr

io
rit

y
ac
co
rd
in
g
to

re
la
tiv

e
de

ad
lin

es
on

-li
ne

ig
no

re
d

Ea
rli
es
t
D
ea
dl
in
e
Fi
rs
t
(E

D
F)

un
ip
ro
ce
ss
or

pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Jo

b
Pr

io
rit

y
ac
co
rd
in
g
to

ab
so
lu
te

de
ad

lin
es

on
-li
ne

ig
no

re
d

N
on

-P
re
em

pt
iv
e

Fi
xe
d
Pr

io
rit

y
(N

PF
P)

un
ip
ro
ce
ss
or

no
n-
pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Ta

sk
Pr

io
rit

y
on

-li
ne

ig
no

re
d

N
on

-P
re
em

pt
iv
e

Ea
rli
es
t
D
ea
dl
in
e
Fi
rs
t
(N

PE
D
F)

un
ip
ro
ce
ss
or

no
n-
pr
ee
m
pt
iv
e

pr
io
rit

y-
dr
iv
en

,
Fi
xe
d
Jo

b
Pr

io
rit

y
ac
co
rd
in
g
to

ab
so
lu
te

de
ad

lin
es

on
-li
ne

ig
no

re
d

T
ab

le
II
.4
:
C
ha

ra
ct
er
ist

ic
s
of

so
m
e
sc
he

du
lin

g
al
go

rit
hm

s
us
ed

in
th
is

th
es
is.

36

Chapter II. Background

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

16

16

16

17

17

17

18

18

18

19

19

19

20

20

20

τ1 τ1 τ1 τ1

τ2 τ2

τ3,1 τ3,2

Figure II.15: An example of schedule produced by the Deadline Monotonic algo-
rithm (taken from [125]). τ1: C1 = 1, T1 = 5, D1 = 4 ; τ2 : C2 = 3, T2 = 10,
D2 = 7 ; τ3 : C3 = 3, T3 = 20, D3 = 8

• a task set is feasible if it exists any scheduling algorithm that makes it schedu-
lable.

Schedulability tests , or simply schedulability analyses, are analytical methods
based on the real-time scheduling theory to state if a task set is schedulable according
to a given scheduling algorithm [21]. We usually distinguish between:

• exact tests that provide a sufficient and necessary condition with respect to
the scheduling of a set of tasks, hence allowing to state with certainty whether
the task set is schedulable or not; and

• approximate tests that only provide a sufficient condition, saying only if the
task set is schedulable as soon as the test succeeds (and providing no conclusion
when the test fails).

There exists plenty of schedulability analyses. These analytical techniques evaluate
different performance metrics. For example:

• utilization-based tests evaluate the processor utilization factor to determine the
feasibility of a task set. Such tests check that the fraction of processor time
used to execute the task set does not exceed the theoretical bound admissible
for a given scheduling algorithm. For examples see [128, 129],

• response-time analysis calculates the worst-case response time of each task.
A necessary and sufficient schedulability test is then to check that the worst-
case response times are lower than the relative deadlines. For examples see
[130, 131],

• other analyses may consider the processor demand criterion [21], etc.

Liu and Layland [128] proposed for example an exact schedulability test for EDF
based on the processor utilization. They firstly defined the processor utilization
factor of a set of n periodic tasks as:

37

II.4. Discussion

U =
n∑
i=1

Ci
Ti

(II.1)

Liu and Layland then proved that a set of n periodic tasks with Pi = Di is schedu-
lable according to the deadline driven scheduling algorithm EDF if and only if:

U ≤ 1 (II.2)

Many schedulability tests have been proposed so far, targeting the numerous task
models and scheduling algorithms proposed in the literature, or improving many
aspects of the tests (e.g. scope of the result, pessimism, computational complexity,
etc.) [21]. We do not discuss the evolution of the real-time scheduling analysis in
greater depth. Sha et al. [21], Davis and Burns [127] and Stigge and Yi [132], for
example, have provided good surveys on the matter. Yet, we will be required to
review some evolutions of task models and associated analyses in the context of
Chapter III and Chapter IV. Furthermore, we use various schedulability analyses
throughout this manuscript to illustrate and put into practice the concepts presented
in this thesis.

II.4 Discussion

In this thesis, we emphasize on models to develop embedded systems. In this sec-
tion, we firstly review two approaches that consider model as first-class artifacts:
model-based engineering and model-driven engineering. Secondly, we discuss the
link between models and analyses that founded the motivation of our work.

II.4.1 Model-Driven Engineering or Model-Based Engineering?

Models are valuable assets to develop embedded systems. Yet, the use of mod-
els for systems engineering has been explored in different directions: model-based
software-systems engineering, model-driven engineering, model-driven architecture,
etc. These different terminologies actually overlap.

Model-based is the more general view. It denotes such approaches that use models as
the central artifact to support various activities in relation to systems engineering,
e.g. design only, development that target the creation of the system, or engineering
when considering the complete life cycle of the system. According to the INCOSE
MBSE initiative [133], “model-based systems engineering (MBSE) is the formalized
application of modeling to support system requirements, design, analysis, verifica-
tion and validation activities beginning in the conceptual design phase and contin-
uing throughout development and later life cycle phases”. MBSE operates a shift
from a document-based to a model-based approach to enhance systems engineering.
Yet, MBSE is more a precept than (for the moment) a systemic approach (see the
roadmap proposed by the INCOSE initiative [133]). MBSE promotes methodolo-
gies, processes, methods, tools and environment that use models for the engineering
of complex systems. For instance, SysML is a language devoted to model-based sys-
tems engineering targeting specification, analysis, design, verification and validation
of complex systems. For further examples see a review by Estefan [134].

38

Chapter II. Background

Model-driven engineering is a slight different view, with stronger bases. The motto
of MDE is “everything is a model”. As stated in Definition 3, MDE is firstly a
software development approach that partly or totally generates a software system
from models. MDE is secondly an architecture to that end, based on the triad model,
metamodel, model transformation. For instance, Model-Driven Architecture (MDA)
is a particular implementation of MDE with a set of OMG standards like MOF
(Meta Object Facility), UML (Unified Modeling Language), XMI (XML Metadata
Interchange) or OCL (Object Constraint Language).

Let us illustrate the difference between MBSE and MDE through AADL. AADL
supports an architecture-centric model-based engineering approach [18]. MBSE with
AADL is supported by a tool platform called OSATE [135]. This tool platform
includes a model editor, analysis tools and code/model generators. MBSE through
AADL must fully define a methodology, that is processes, methods, and tools, to
develop a system. MDE with AADL emphasize less on the methodological aspects
but must address the models “around” AADL, that is the definition of the AADL
language through metamodels in Ecore [14], definition of the couplings between
models and analyses, or definition of transformations between Platform Independent
Models (e.g. from AADL models to analysis-specific models) or to code.

MDEMBE

methodology

process

model

language

metamodel

transformation

method
tool

megamodel

Figure II.16: Intersection between Model-Driven Engineering and Model-Based
Engineering.

MBSE and MDE are still under exploration at the present time. If numerous core
concepts have been established so far, with application in many tools, it is neither
possible to give a complete map of MBSE and/or MDE yet, nor to define clearly
the border between MBSE and MDE (there are many overlaps between the two
visions). For example, megamodeling is an initiative to define a theory about MDE
concepts through a dedicated model called a megamodel [136]. On the other hand,
the definition of a MBSE theory is part of the roadmap defined by the INCOSE
MBSE initiative [133].

The works presented in this thesis actually occur in the two contexts: MBE as we
emphasize on models at large to develop embedded systems, and MDE as we reuse
the fundamental concepts of models, metamodels and model transformations.

39

II.4. Discussion

II.4.2 Link between ADLs and analysis

Analysis tools are based on specific models that implement the analytical models.
Therefore, numerous works seek to analyze architectural models by bridging the
gap between architectural models and analysis-specific models, as represented in
Figure II.17. These works, referring more or less explicitly to the principles of
MDE, typically implement a model transformation that translates an architectural
model into a tool-specific model used for analysis.

Analytical

modelrepresents

applies

on

Analysis-

specific model

Architectural

model

transformation
Analysis

inputs

Analysis toolModeling tool

Figure II.17: Link between Architecture Description Languages and model-based
analysis. A model transformation is used to translate an architectural model into an
analysis-specific model.

For example with AADL, model transformations have been implemented towards
terminal tools or intermediate frameworks: real-time specific languages Cheddar
ADL and MAST with the OCARINA tool suite [137, 138] or MoSaRT [70]; trans-
formations exist to connect AADL models to model-checkers UPPAAL [78], TINA
via FIACRE [75, 76] or CADP via LNT [82]; ADAPT for dependability analysis
[85]; etc. A more exhaustive list of analysis tools and transformations applicable to
AADL models is available in a survey [12].

We review the link between architectural models and analyses in greater detail in
Chapter III.

II.4.3 Design process: Design vs. Modeling vs. Analysis

Design, modeling and analysis are concepts closely intertwined. As discussed previ-
ously, modeling is the activity that consists in representing a system. As stated by
France and Rumpe [2], “models are created to serve particular purposes, for exam-
ple, to present a human understandable description of some aspect of a system or to
present information in a form that can be mechanically analyzed”. Analysis hence
represents the other side of the coin. Analysis is “a careful study of something to
learn about its parts, what they do, and how they are related to each other; an ex-
planation of the nature and meaning of something”5. Analysis helps to understand
a system through dissection of its model. Design is finally the process of creating
the system from models and analyses. As represented in Figure II.18, the creation

5according to http://www.merriam-webster.com/

40

http://www.merriam-webster.com/

Chapter II. Background

(design) of embedded systems is based on an iterative process involving modeling
and analysis steps.

1.3. THE DESIGN PROCESS

ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.

8 Lee & Seshia, Introduction to Embedded Systems

Figure II.18: Modeling and analysis in the design process (taken from Lee and
Seshia [17]). Designing an embedded system involves several iterations on modeling
and analysis steps.

If the use of models for the design of embedded systems is now better defined
by the Model-Driven Engineering, the use of analyses is less clear. In practice,
analysis remains considered as a side activity, if not ignored. Some solutions exist
through model transformations as discussed earlier or with integrated frameworks,
for example with well-known MATLAB/Simulink [139] or SCADE [113] in industry,
the Ptolemy project in academia [140], or AADL-based frameworks OSATE [135],
MASIW [141], ASIIST [142], etc. Yet, these solutions are incomplete. Integrated
frameworks hardcode models and analyses in a same environment, with the key
advantage of providing a solid integration of these artifacts. Nevertheless, they do
not always provide the way to use them in the design process. Another shortcom-
ing is that modeling and analysis capabilities are de facto restricted to a specific
and closed environment. The modeling and analysis capabilities can be extended
through model transformations, as discussed earlier. Yet, these model transforma-
tions, beyond the intrinsic problem of their implementation (treated in Chapter III),
do not give attention to the semantics of the analysis (tackled in Chapter IV and
Chapter V). The problem of defining exhaustively the design process goes far beyond
the scope of this thesis.

II.5 Summary and conclusion

This chapter reviewed methods and tools to develop real-time embedded systems.
We firstly underlined two special features of embedded systems: hardware/software
architectures and non-functional constraints. We discussed in particular the crucial
role of models to develop complex embedded systems with strong quality constraints.
In essence, a model represents some aspect of a system and enables to analyze it.

41

II.5. Summary and conclusion

We presented two methods based on models to cope with the constraints of embedded
systems development: model-driven engineering and model-based analyses.

Model-Driven Engineering is a development approach that partly or totally gen-
erates a software system from models. We reviewed the core concepts of MDE:
models, metamodels, and model transformations. We presented a particular kind of
domain-specific language: Architecture Description Languages. An ADL captures
the static and dynamic architecture of a system during the early design phase. This
architecture model can then be used to automatically, semi-automatically or man-
ually derive an actual system. We presented two ADL used in this thesis in more
detail: the Architecture Analysis and Design Language (AADL), an SAE interna-
tional standard, and the Cyber-Physical Action Language (CPAL), a new language
inspired by the synchronous programming approach.

Model-based analyses are mathematically founded approaches applied on analyti-
cal models to check that the system will meet the non-functional properties at run
time. We mentioned simulation, model-checking or analytical methods as examples
of model-based analyses. In this thesis, we concentrate on analytical methods, es-
pecially real-time task scheduling analyses that determine whether a task system
meets some temporal constraints (e.g. deadlines) or not. We presented the impor-
tant concepts of real-time scheduling (analysis) used in this thesis.

In the last part of this chapter, we emphasized the link between design and analy-
sis through models. This founded the motivation of our work: by fully supporting
the coupling between modeling and analysis, we may greatly enhance the design of
high-quality embedded systems. The link between modeling and analysis has been
explored in different ways by the research community, e.g. trough a model transfor-
mation from an architectural model to an analysis-specific model, or with “all-in-
one” frameworks. Yet, these solutions are incomplete. Integrated frameworks nar-
row the scope of modeling and analysis to a specific and closed environment. Model
transformations, beyond the intrinsic problem of correctly implementing them, do
not give attention to the semantic aspects of the analysis process. This approach
results in practice in a cul-de-sac for the designer: is the transformation correct? Is
the analysis applicable? What is the meaning of the result? How to consider analysis
results in the design process? And so on.

In the next chapters, we study both the technical and semantic aspects of the model-
analysis integration problem (respectively in Chapter III and the next two chapters
Chapter IV and Chapter V). We implement our solutions in a prototype of tool
presented in Chapter VI, and apply it to design various embedded systems (case
studies are explained in Chapter VII).

42

Chapter III

Model query through accessors

Abstract

This chapter deals with query mechanisms, called accessors, to analyze the non-
functional properties of a system at design time. In Section III.1, we present the
rationale behind model query. In particular, we review the analysis elements in
detail – analysis algorithms and data structures – and show how these elements are
linked to the notions of models and metamodels. In Section III.2, we present several
data structures that can be used for the analysis of real-time systems. Section III.3
presents a first implementation of accessors in Python. We finally end this chapter
with a discussion about related works (Section III.4) and a conclusion (Section III.5).

III.1 Rationale behind model query

In this section, we firstly identify the basic elements that exist in any analysis. In
particular, we show how these elements are linked to the notions of models and meta-
models. Then, we explain the notion of accessor. Finally, we propose to implement
accessors using a dedicated Application Programming Interface.

III.1.1 Identifying the analysis elements

Analysis algorithm and data structure. An analysis is nothing more than a
particular program. An analysis is thus made of two parts: data structures to rep-
resent and organize the data, and algorithms to process them, and gain information
from them. Paraphrasing Wirth [143], we could say:

“Data Structure + Algorithm = Analysis Program”

For instance, a real-time scheduling analysis consists of data structures to describe
real-time workloads at different levels of abstraction, e.g. with a simple periodic task
model or with more exhaustive graph-based models [132]; and algorithms to compute
performance metrics from those data structures such as the processor utilization
factor, task response times, etc.

43

III.1. Rationale behind model query

Link with models and metamodels. We distinguish between the analysis space
and the modeling space. In Figure III.1a, the data structures that are part of an
analysis can be represented to the user via a model. Figure III.1b clearly shows the
metamodel that defines the model. Thus, a relation must exist between the analysis
data structure and the metamodel: there should be a mapping between the analysis
data structures and the model concepts defined in the metamodel.

Data Structure

Analysis
(algorithm) Model

represents

applies on

accesses data

(a) Implicit metamodel.

Data Structure

Analysis
(algorithm) Model

Metamodel

instance ofapplies on

accesses data

mapping

(b) Explicit metamodel.

Figure III.1: Elements involved in an analysis and their relationships. Analysis
algorithms and data structures on the one hand, models and metamodels on the other
hand are involved in the analysis process. The analysis of a model instance assumes
a mapping to the analysis data structure, possibly via a metamodel.

Let us also note that “design-specific” or “analysis-specific” models only differ in the
abstraction gap that separates the analysis data structures from the model concepts.
In fact, an “analysis-specific” model represents concepts for a particular analysis
problem (for example, concepts of the real-time scheduling theory in MoSaRT or
Cheddar ADL), whereas a “design-specific” model provides more general concepts
to fully design a system (for example, the general concepts of system, process or
bus in AADL). In any case, analysis data are present in a model, appearing more
or less explicitly to the user.

Thus, to analyze a specific model, the user must:

1. at design time,

(a) clearly define the data structures that are required by the analysis,
(b) define the model concepts which maps those data structures,

2. at run time, access the data in the model, i.e. extract the data from the model
by taking into account (1a) and (1b) and then analyze the data.

We explain the notion of accessor in the following subsection.

44

Chapter III. Model query through accessors

III.1.2 Accessors

In the same way as SQL queries enable to retrieve information from databases [144],
or Xquery to query data from XML documents [145], accessors make it possible to
extract data from domain-specific models.

Definition 11 (Accessor). An accessor is a function that gives back a typed data
from a model according to the type of data structure passed as an argument, i.e.
data = acc(data_structure_type).

Figure III.2 depicts two use cases of accessors. In Figure III.2a, an Analysis1
that considers Independent Tasks (IT) retrieves a list of tasks from an AADL
model. Other analyses may extract different data structures from that model,
e.g. a graph of dependencies to analyze Dependent Tasks (Analysis2, DT) or a
directed_acyclic_graph to assess tasks with non-deterministic behaviors (Analysis3,
DAG). In Figure III.2b an analysis can extract the same data structure from many
models (e.g. AADL, CPAL, etc.). In conclusion, with accessors, many analyses can
analyze many data structures from many models.

Analysis 2

(DT)

acc(tasks, dependencies)

Analysis 3

(DAG)

Analysis 1

(IT)

Model

(AADL)

acc(tasks, directed_acyclic_graph)acc(tasks)

(a) Use case: many analyses can query a model. Three analyses extract different types of
data structures (e.g. tasks and their dependencies) from an AADL model via accessors
acc(...).

Analysis

(IT)

acc(tasks)

Model 1

(AADL)

Model 2

(CPAL)

Model n

(SysML)
…

(b) Use case: an analysis can query many models. An analysis retrieves tasks from different
models, e.g. written in AADL, CPAL or SysML.

Figure III.2: Two use cases of accessors with domain-specific models.

In this thesis, we implement accessors via a specific Application Programming In-
terface (API). This API makes it possible to extract data from any architectural
model, and manipulate them in an analysis program.

45

III.2. Data structures for the analysis of real-time systems

III.1.3 Implementation through an Application Programming in-
terface

We propose to implement accessors through a dedicated Application Programming
Interface (API). In Figure III.3, the Data Access API operates on top of various
architectural models. This API is to be implemented in two parts:

1. definition of the data structures that can be used by the analyses,

2. implementation of the accessors to retrieve the data from the models. For
this purpose, one must explore the model instances with the help of language-
specific APIs.

Taking advantage of the expertise of stakeholders. Design and analysis ac-
tivities are usually carried out by different stakeholders: (1) designers who define
the models and (2) analysts who concentrate on the study of the model data. The
stakeholders have their own expertise: definition and manipulation of models on the
one hand, definition of data structures and analytical reasoning on the other hand.

In Figure III.3, we break up the application in three components: analyses on the
one hand, models on the other hand, Data Access API as the interface between
them. This approach brings several advantages:

1. separation of concerns, independence: the components are independent (e.g.
the API separates the analysis of data from the manipulation of these data in
models), the stakeholders can concentrate on the subject that they master the
best,

2. collaboration: the collaboration between designers and analysts is eased by the
definition of a clear API that consists of data structures and methods to access
them in the models,

3. reliability: the stakeholders can define and implement the API based on their
own expertise, i.e. definition of the data structures by the analyst, commu-
nication of the data structures to the designer, and implementation of the
accessors to model internals by the designer.

We present some common data structures used to describe and analyze real-time
workloads in Section III.2. Section III.3 presents a first implementation of the Data
Access API in Python. Accessors have been implemented towards AADL and CPAL
models.

III.2 Data structures for the analysis of real-time sys-
tems

In this section, we review some important data structures proposed by the real-time
research community to formally describe and analyze real-time workloads. These
data structures known as task models have been surveyed for example in [132], [21]
or [127]. We only study task models defined for preemptive uniprocessor systems.

46

Chapter III. Model query through accessors

Data Access API

Analysis 2

(DT)

Analysis m

(DAG)

Analysis 1

(IT)
…

…Model 1

(AADL)

AADL API

Model 2

(CPAL)

CPAL API

Model n

(SysML)

SysML API

Figure III.3: Proposed Application Programming Interface. The Data Access API
specifies accessors to retrieve analysis data from various models. It uses language-
specific APIs to manipulate the model instances in AADL, CPAL or SysML.

We present each data structure as follows. First, we shortly present the theoretical
model. Secondly, we describe the data structure with a UML class diagram. Lastly,
we provide an example of representation with a concrete syntax, e.g. in Python
(programming language), AADL or CPAL (architecture description languages).

III.2.1 The basic periodic task model and its extensions

Real-time scheduling analysis grew up from the periodic task model. Since then,
this model has been extended many times.

III.2.1.A The periodic task model

Theoretical model. The periodic task model has been introduced by Liu and
Layland in 1973 [128]. It is based on the concept of task to realize an application,
i.e. an application comprises one or more tasks.

A task τ = (T,C) is characterized by a period T and a computation time C (or an
upper bound on the computation time called worst-case execution time WCET). T
and C are positive integers, i.e. T ∈ N and C ∈ N.

In addition, the model specifies a processor to execute the tasks and a scheduling
policy to decide the scheduling of the set of tasks on the processor, e.g. Rate
Monotonic (RM).

Data structure. Figure III.4 depicts the definition of the data structure of the
periodic task model with a class diagram. The elements of the theoretical model are
represented with various classes: Task, Processor and SchedulingPolicy are the
basic elements of the model. The attributes of the classes describe the elements prop-
erties, e.g. a PeriodicTask has a name, a period and a worst_case_execution_time.
The relationships between the elements are also defined, e.g. an association denotes
that a SchedulingPolicy must be defined for a TaskSet over a Processor.

47

III.2. Data structures for the analysis of real-time systems

Concrete syntax. Listing III.1 and Listing III.2 represent a task with two dif-
ferent concrete syntaxes. The first representation uses the Python programming
language. The second representation uses the AADL language. Figure III.4 pro-
vides the mapping between the elements of the data structure and the elements of
the metamodels.

1

2 " A simple class to represent a task "
3

4 class Task(Data_Struct):
5 name=’A_Task ’
6 " Timing values in milliseconds "
7 period =20
8 best_case_execution_time =0
9 worst_case_execution_time =10

Listing III.1: Periodic task model represented with a class in Python.
1 thread A_Task
2 properties
3 Dispatch_Protocol => Periodic ;
4 Period => 20 ms;
5 Compute_Execution_Time => 0 ms .. 10 ms;
6 end A_Task ;

Listing III.2: Periodic task model represented with a Thread in AADL.

III.2.1.B Later developments

Theoretical model. The periodic task model has been later generalized with the
sporadic task model and the multiframe models. These models represent tasks that
have non-regular release times, worst-case execution times and deadlines.

In the sporadic task model [146], task jobs are not released periodically but have to
respect a Minimum Inter-release Time (MIT) T . In addition, the model considers
an explicit deadline D (D ∈ N): τ = (T,C,D).

The Multiframe model [147] and the Generalized MultiFrame (GMF) model [148]
are able to express k jobs of different types, e.g. a task in the generalized multiframe
model involves a triple τ = (T,C,D) with three vectors to describe k potentiality
of frames:

• T = (T0, T1, . . . , Tk−1) are the minimum inter-release times,

• C = (C0, C1, . . . , Ck−1) are the worst-case execution times,

• D = (D0, D1, . . . , Dk−1) are the deadlines.

Data structure. Tasks in a model can be defined according to different patterns.
For example, in Figure III.5 a Task can be a PeriodicTask, a SporadicTask or
a GeneralizedMultiFrame task. These tasks can have different properties, e.g.
periods, minimum inter-release times or deadlines as explained previously.

48

Chapter III. Model query through accessors

Figure III.4: Data structure of a periodic task model represented with a class
diagram. Task, Processor and SchedulingPolicy are the basic elements of the
model.

Data Structure Concrete syntax
Python AADL

class: Task class: Task (Data_Struct) Component Type: Thread
attribute: name attribute: name Component_Identifier

attribute: period attribute: period Thread_Properties: Period
attribute: worst_case_execution_time attribute: worst_case_execution_time Thread_Properties: Compute_Execution_Time

Table III.1: Mapping between the element of the data structure and the elements
of the AADL and Python metamodels for the periodic task model.

Figure III.5: Data structure to represent several type of tasks with a class di-
agram. A Task can be implemented with a PeriodicTask, a SporadicTask or a
GeneralizedMultiFrame task.

49

III.2. Data structures for the analysis of real-time systems

III.2.2 Graph-based task models

Graphs are among the more expressive data structures to characterize real-time
workloads. We illustrate two cases of utilization: dependent tasks and tasks with
non-deterministic behaviors.

III.2.2.A Dependency graph

Theoretical model. The periodic task model and its generalizations presented
in the previous subsection represent independent tasks. In real systems, the tasks
can be dependent in many situations, e.g. when sharing resources such as buffers,
network buses or other hardware devices. We can use a graph G=(V,E) to represent
the dependencies between the tasks:

• V are vertices, each vertex is a task of the model V ⊆ T = {τ1, τ2, . . . , τn},

• E ∈ V × V are edges, representing dependencies between tasks.

In that case, the resources must be accessed in a mutually exclusive manner. In
order to cope with synchronization problems such as priority inversion in fixed-
priority preemptive systems, concurrency control protocol have been introduced,
e.g. Priority Inheritance Protocol (PIP) and Priority Ceiling Protocol (PCP) [149].

Data structure. Figure III.6 represents the data structure of the dependent task
model. New elements are introduced:

• dependency graph: a Dependency involves a couple of Tasks,

• shared resource: a Dependency can involve a SharedResource. A SharedResource
can be further defined, e.g. as a Buffer, a Bus, etc.

• protocol: several concurrency control protocols (ConcurrencyProtocol class)
can be used to manage the shared resources, e.g. PriorityInheritance or
Priority Ceiling protocols.

Concrete syntax. Figure III.7 depicts four tasks in the CPAL graphical syntax.
Three tasks Task1, Task2 and Task3 (represented with rounded rectangles with
periods within brackets) use a shared resource named aSharedData (represented
with a simple rectangle). Arrows depict access modes: read or write. The last
Task4 is independent.

III.2.2.B Directed acyclic graphs

Theoretical model Task models based on Directed Acyclic Graph (DAG) [132]
can be used to represent tasks that have non deterministic behaviors, i.e. non
deterministic inter-release times, worst-case execution times and deadlines. In a
DAG structure G = (V,E):

50

Chapter III. Model query through accessors

Figure III.6: Data structure to represent dependent tasks with a class diagram. A
graph can be used to denote the dependencies between the tasks, i.e. a Dependency
can be associated with a Task. Access to SharedData (e.g. Buffer or Bus) involves
a concurrency control protocol (ConcurrencyProtocol class).

Figure III.7: Dependent tasks represented in the CPAL graphical syntax. Four
tasks are represented with rounded rectangles with periods within brackets. Three
tasks use a shared data represented with a simple rectangle. Arrows depict access
modes: read or write. The fourth task is independent.

51

III.3. Implementation of the Data Access API in Python

• V are vertices, with each vertex v ∈ V represents the release of a job,

• E ∈ V × V are edges, and each edge (v, v′) ∈ E represents the inter-release
separation.

In addition, labels are assigned to the edges and vertices:

• a pair < e(v), d(v) > is associated to a each vertex to denote job execution
times and deadlines,

• a value t(v, v′) is associated to each edge (v, v′) to denote the minimum inter-
release times.

Data structure. Figure III.8 represents a DAG Task data structure with a class
diagram. A DAG task consists of several jobs and release times, hence the class
DAGTask has a composition relationship with Job and Release classes. In the DAG
task model, a release has input and output jobs, hence the class Release has two
associations input and output pointing to the class Job. The Job and Release are
further described by the attributes worst_case_execution_time and deadline,
and the attribute minimum_inter-release_time respectively.

Figure III.8: Data structure to represent DAG tasks with a class diagram. A
graph is used to represent jobs and release times of a task, here a DAGTask is defined
via Job classes that can be associated with Release classes.

III.3 Implementation of the Data Access API in Python

Accessors enable to retrieve data from a model, and then to analyze them. In the
previous section, we presented various real-time task models and associated data
structures. In this section, we sketch an implementation of accessors in Python.

52

Chapter III. Model query through accessors

Accessors have been implemented towards AADL and CPAL models in our tool
prototype (see Chapter VI for a full presentation of the prototype).

Figure III.9 represents the application layers involved in our prototype. The im-
plementation of the prototype is based on the Python programming language. In
addition, we may use dedicated resources for low-level model manipulations, e.g. we
use the OCARINA [88] tool suite to parse AADL models.

Analysis
External Tools

(MAST,

Cheddar, etc.)

Data Access

Cheddar, etc.)

OCARINA,

etc.

Domain-Specific Models (AADL, CPAL)

Data Model Accessors

Figure III.9: Application layers in our prototype. The prototype involves a layer
to implement the analysis, the data access layer to retrieve data from domain-specific
models. The analysis can be externalized to a third-party tool.

III.3.1 Data Structure, Data Model and Accessors

The data model is the centerpiece of the data access API. It contains the data
that are to be used by the analysis at run time. The data model is based on data
structures which are class-oriented implementations of the analysis data structures
presented in Section III.2.

At run time, an analysis uses the data model to: (1) get the data to process and (2)
store the result of this processing. Access to the data is implemented in two parts:

1. data model: different procedures to access the data structures and maintain
such data structures up-to-date,

2. low-level accessors to retrieve data from the domain-specific models if neces-
sary.

For instance, Figure III.10 describes the procedure to get a data structure from the
data model. If the required data structure is not present in the data model, the data
model must retrieve such data structure from the domain-specific model. For this
purpose, it uses the sub-procedure Get Data Structure from Model.

We must implement the low-level accessors so as to extract data from the domain-
specific models. Such accessors are specific to the target models. For example, we
may need to explore the AADL Instance Tree (AIT) in order to retrieve data about
real-time tasks from an AADL model.

53

III.3. Implementation of the Data Access API in Python

Parse the Data

Model

Data

Structure

Identifier

Data

Model

Get Data Structure from Data Model:

Is the

Data Structure in the

Data Model?

Return:

Data Structure

Get Data

Structure

from model

Domain-

specific

model

Add Data

Structure in Data

Model

NO

YES

Figure III.10: Process Flowchart describing the procedure to get a data structure
from the data model. If necessary, the data structure is accessed in the domain-
specific model via the sub-process Get Data Structure from Model.

54

Chapter III. Model query through accessors

III.3.2 Analysis

The analysis module implements the analysis algorithm. The analysis algorithm
consists of the basic sequence: (1) load the input data, (2) process the data, and (3)
store the analysis results.

For example, the schedulability analysis of a set of independent tasks can simply be
implemented with the Python language, as shown in Listing III.3. First, we load
the list_of_tasks necessary for the analysis at line 4. Next, the analysis com-
putes the processor utilization factor (_utilization_factor) for the list of tasks
and compares it against the theoretical bound (_test_bound) at line 11. Last, we
initialize a data structure that contains the analysis result about the schedulability
of the task set (Schedulability class). The data model is updated with that data
structure at line 16.

1 def analysis (self , data_model):
2

3 # extract data from the data model
4 self. list_of_tasks = data_model . getListOfTasks ()
5

6 # analyze the data
7 # compute the processor utilization factor
8 _utilization_factor =0.0
9 for task in self. list_of_tasks :

10 _utilization_factor = _utilization_factor +task.
execution_time /task. period

11 _tasks_nbr = float(len(self. list_of_tasks))
12 # compare it against the theoretical bound
13 _test_bound = _tasks_nbr *(2.0**(1.0/ _tasks_nbr) -1.0)
14 if _utilization_factor <= _test_bound :
15 _Sched ="OK"
16 else:
17 _Sched ="NOK (NAP)"
18

19 # update the data model with the result
20 data_model . update (Data_Struct (" SCHEDULABILITY_TEST ", [

Schedulability (_Sched , [])]))

Listing III.3: A schedulability analysis defined in Python. We access the
list_of_tasks at the beginning of the analysis. Next, the analysis computes the
processor _utilization_factor and compares it against the theoretical bound
_test_bound. Last, we update the data model with the schedulability result.

III.4 Discussion

Accessors enable to analyze the non-functional properties of a system from one of its
models. This section first discusses related works based on model transformations,
and then compares model transformations with accessors. We show that the two
issues are actually orthogonal.

55

III.4. Discussion

III.4.1 Related works

Model transformation. Modeling and analysis activities are usually based on
distinct tools which use their own models. An approach commonly used to connect
the toolsets is hence to translate a model used for design into a model used for
analysis, as represented in Figure III.11.

Analysis-

specific model

Design-specific

model

transformation

Analysis

Analysis tool

applied on

1 11 1

Modeling tool Analysis toolModeling tool

Transformation tool

Figure III.11: Analysis based on a model transformation. Design and analysis
features are part of distinct tools: (1) a model used for design in a first tool is
translated into a model used for analysis in a third-party tool; (2) the analysis in the
third-party tool is then applied on its own model.

Numerous transformations have been defined to connect analysis tools to AADL
models. For example, transformations have been implemented to translate AADL
models into Cheddar ADL and MAST models with the OCARINA tool suite [137,
88], transformations chains exist towards UPPAAL [78], TINA [75, 76] or CADP
model-checkers [82], etc. A more exhaustive list of transformations applied to AADL
models is available in a survey [12]. Yet, we note several limitations with this
approach:

• How to define the model transformation? One can either implement a compre-
hensive model transformation (e.g. metamodeling under the MOF standard
[13] in the Eclipse Modeling Framework [14], transformation with a dedicated
language such as ATL [15]), or more often relies on an ad hoc transformation
chain to deal with the design and analysis models under different technical
spaces (i.e. tools).

• How many model transformations are necessary? A transformation is defined
in terms of a couple of models, themselves being part of particular tools as
represented in Figure III.11. Thus, it is necessary to define multiple transfor-
mations attached to specific tools/models.

• Is the model transformation correct? An important challenge is to ensure that
the model transformation is correct. To the best of our knowledge, very few
transformations applying on the analysis problem and which are discussed
in the literature are proved to be correct, e.g. see [76] for a discussion on
the subject. This is a huge problem as soon as an analysis result is the by-
product of a transformation process which is itself not trustworthy. Verifying
the correctness of models transformations is actually a problem in its own
right which is the object of ongoing and dedicated researches, e.g. see works
by Amrani [16].

In conclusion, in a transformation-based analysis approach, one must define a large
number of ad hoc model transformations with weak guarantees on their correctness.

56

Chapter III. Model query through accessors

Use of a pivot model. The previous strategy can be improved by using a pivot
model. As depicted in Figure III.12, a pivot model is used to carry out several anal-
yses. Pivot models can be connected with designs-specific models and/or analysis-
specific models through model transformations.

Pivot

model

Design-

specific model

transformation

Analysis
1 1

applied on

1 1..*

Figure III.12: Analysis of a design-specific model via a pivot model. The pivot
model is used to apply several analyses. Model transformations can be used to map
the pivot with design-specific models.

For instance, MoSaRT and Cheddar have been used as intermediate frameworks
between AADL models and temporal analysis tools [69, 150]; Fiacre is an inter-
mediate formal language that is mapped to design languages (e.g. AADL, SDL,
UML and SysML) in input and model checkers (e.g. TINA and CADP toolboxes)
in output [151]; ADAPT is an intermediate framework between AADL models and
dependability analysis tools based on Generalized Stochastic Petri Nets (GSPNs)
[85].

Using a pivot model brings the benefit of reducing the number of transformations
that are necessary to connect design-specific models with analyses. Yet, this ap-
proach still requires to implement an important number of ad hoc model transfor-
mations with little guarantee on their correctness.

III.4.2 Data access vs. model transformation

An analysis can be done either through a model transformation, as seen in related
works, or accessors, as done in this thesis. Let us examine the difference between
the two approaches in more detail.

Figure III.13 depicts the elements that can be involved in the analysis of a model.
We can observe that the data access and model transformation issues are actually
“orthogonal”.

In the modeling space (bottom part of the figure), a model calledModelA represents
the system. The ModelA is defined by its metamodel MetamodelA. The ModelA
can possibly be transformed into another ModelB (to switch from a design view
to an analysis view for example). In this case the model transformation is defined
in terms of the source and target metamodels, i.e. MetamodelA and MetamodelB
respectively. The reverse transformation can be defined from ModelB to ModelA.
Notice that model transformations are syntactic, transforming a model syntax into
another.

In the analysis space (top part of the figure), the analysis algorithm processes precise
data structures such as a list of tasks, a graph of dependencies, etc. The analysis
must access these data in the domain-specific model by taking into account the
mapping between the analysis data structure and the model concepts. Notice that
the link between models and analyses are data.

57

III.4. Discussion

Data Structure

Analysis
(algorithm)

MetamodelB

ModelB

MetamodelA

ModelA

instance of

mapping

applies on

instance of
transformations

“query/view/transform”

mapping

mapping

data accessdata access

Analysis
space

Modeling
space

ViewA

(e.g. design view)
ViewB

(e.g. analysis view)

Figure III.13: Data access vs. model transformation. Analyses query data over
models according to the mapping between data structures and metamodels. Multiple
views involve model transformations defined in terms of source and target metamod-
els.

From these observations, we can now clearly distinguish between model transforma-
tions and accessors. A model transformation is a syntactic operation to transform
a model syntax into another. A model transformation occurs in the modeling space
as it only affects models. A model transformation requires a full definition of meta-
models and model transformations (e.g. following the “query/view/transform” stan-
dard). In contrast, accessors operate on data. Indeed, accessors enable to extract
some relevant data from a model in order to analyze them in a program (i.e. “analy-
sis program=data structure + algorithm”). Data access requires to take into account
the mapping between analysis data structures and model concepts. In conclusion,
accessors connect analyses to models “vertically”, whereas model transformations
connect models “horizontally”.

The special case of transformation-based analyses. The transformation-
based analysis approaches discussed in Section III.4.1 mix explicit model trans-
formations with implicit data accesses.

In Figure III.14, we firstly distinguish between the tool spaces: the design tool on
the left, and the analysis tool on the right. We secondly note that accessors are hard-
coded in the analysis tool. Therefore, it is necessary to define a model transformation
to connect a design-specific model with the analysis via the analysis-specific model.
In this case, the model transformation is:

• unidirectional: a model used for design in a first tool is translated into a model
used for analysis in a third-party tool,

58

Chapter III. Model query through accessors

• exogenous: the models are defined in different technical spaces (tools).

Data Structure

Analysis

MetamodelB

Analysis-specific
Model

Design-specific
Model

MetamodelA

instance of instance of

mapping

applies on

data access

transformation

mapping

Design tool Analysis tool

Figure III.14: The special case of transformation-based analyses. The approaches
discussed in Section III.4.1 are a specific case of the view presented in Figure III.13:
a model used for design in a first tool is translated into a model used for analysis in
a second tool. The data structure is implicitly represented by the target metamodel,
and the analysis applied on its own model.

The main bias in this approach is to focus on tool spaces, based on specific models,
rather than activities (i.e. modeling and analysis). Analyses are hard-wired in a
transformation framework that translates a model used for design in a first tool
into a model used for analysis in another tool, in order to comply with a particular
analysis engine. Therefore, the analysis occurs at the end of a two-steps process:
“horizontally” one must execute an ad hoc transformation process, and “vertically”
we must use tool-specific accessors. We already commented on the limitations of
this approach in Section III.4.1.

III.5 Summary and conclusion

In this chapter, we presented query mechanisms called accessors to analyze the non-
functional properties of a system from architectural models.

We firstly presented the rationale behind model queries. In particular, we identified
the elements which are involved in the analysis of an architectural model – models
and metamodels are the design components on the one hand, algorithms and data
structures are the analysis components on the other hand – and the relations be-
tween them. We underlined the crucial role of the data structures at the core of
the analysis definition, and reviewed several data structures that can be used for
the analysis of real-time properties. We also emphasized the mapping that exists
between analysis data structures and metamodels, making it possible to link an
analysis to an architectural model.

59

III.5. Summary and conclusion

This perspective led us to completely revisit the way analyses are applied on archi-
tectural models in Model-Driven Engineering. We showed that the application of
an analysis on a model does not always require to translate a model used for design
into a model used for analysis, and thus implement a complex and untrustworthy
transformation chain. In fact, we showed that accessors enable just as well to ana-
lyze a model. These mechanisms enable to extract some relevant data from a model,
and then analyze them. We implemented accessors through a dedicated Application
Programming Interfaces in Python. As an example, we used this API to analyze
real-time properties from AADL models.

In conclusion, accessors completely shift the way analyses are applied on domain-
specific models. It is no longer necessary to take a “detour” via an analysis-specific
model or a pivot model as soon as an implementation of accessors to model internals
is provided. The distinction between “design-specific” and “analysis-specific” models
does not hold anymore. An analysis-specific model is not a model to be implemented
in order to comply with a specific analysis engine, but simply represent the system
from a particular point of view. Furthermore, we are able to analyze any model, as
soon as an implementation of accessors towards these models is provided. Finally,
implementation of accessors through a dedicated API facilitates the collaboration
between designers and analysts while enhancing the reliability of the application.

In the next chapter IV, we will use those accessors to fully implement analyses,
including their preconditions and postconditions.

60

Chapter IV

Semantics of an analysis

Abstract

Accessors introduced in the previous chapter enable to query and analyze the non-
functional properties of a system from architectural models. This chapter focuses
on the analysis itself, especially its semantics. As an introductory example (Sec-
tion IV.1), we explain the difficulty to apply real-time scheduling analyses in a
model-based engineering approach. We present our solutions in the following sec-
tions. In Section IV.2, we propose a general formalism to define the semantics of an
analysis, and instantiate it to a simple real-time scheduling analysis. Section IV.3
evaluates several implementations. This chapter terminates with a discussion about
related works (Section IV.4) and a conclusion (Section IV.5).

IV.1 Introductory example: model-based real-time schedul-
ing analysis

In this introductory example, we consider real-time task scheduling analyses in gen-
eral and schedulability tests in particular. We quickly remind the real-time task
model used in such tests and the real-time scheduling problem. We then discuss
schedulability tests and the difficulty to apply them in a model-based engineering
approach.

Task model. Let us consider a system that has to carry out a set of tasks. Flight
control, flight guidance or fuel control are some examples of tasks in an airplane.
In Figure IV.1, a task τi ∈ T (card(T) = n, i, n ∈ N) is a software module, that
is a set of instructions to execute. A task can have several characteristics, e.g. in
the context of the seminal works by Liu and Layland [128] the tasks are periodic.
A periodic task τi consists of an infinite sequence of jobs τi,j (j ∈ N). A task can
admit an offset Oi that is the amount of time to the first release of the task. This
implies that the jth job of a periodic task is released at time ri,j = Oi + (j − 1) · Ti
where Ti is the task period. Each job consumes an amount of processor time Ci
called the computation time (or worst-case execution time). Finally, a task has a
relative deadline Di, or expressed on the jth job of a periodic task: di,j = ri,j +Di.

61

IV.1. Introductory example: model-based real-time scheduling analysis

Real-time scheduling. Real-time scheduling is the problem of building up an
execution order such that the timing constraints are met, usually the deadlines. In
the case of on-line scheduling, a scheduling algorithm decides the scheduling of a
set of tasks T = {τ1, τ2, . . . , τn} on a set of processor X = {X1, X2, . . . , Xm} and,
possibly, a set of shared resources U = {U1, U2, . . . , Us}. Rate Monotonic (RM) is
an example of scheduling algorithm which is mainly characterized by preemption
(i.e. it is able to suspend a task execution to execute one or several other tasks, and
then to resume the execution of the first task), deterministic deadlines (Di = Ti)
and fixed priorities according to the rule “the smaller the period, the higher the
priority”.

ri,j

τi,j

si,j ei,j di,j

Di

Ri,j

Ci

ri,j+1

τi,j+1

si,j+1 ei,j+1 di,j+1

Di

Ri,j+1

Ci

Ti

Figure IV.1: Usual representation of a real-time task with a Gantt diagram (repli-
cated from Figure II.14). For a task τi: Ti the period, Ci the computation time and
Di the relative deadline. τi,j denotes the jth job of a task i: ri,j is the release time,
si,j the start time, ei,j the completion time, di,j the absolute deadline. A system is
schedulable if ∀τi ∈ T , ∀Ri,j the response time respects Ri,j ≤ di,j.

Schedulability tests. Schedulability tests are analytical methods to state if there
is a schedule that will meet all the deadlines for a given task set and scheduling
algorithm, i.e. to check whether a task set is schedulable according to a given
scheduling algorithm.

For instance, Liu and Layland [128] proposed a test which is based on the analysis
of the processor utilization factor U that is the fraction of processor time used by
the tasks. They have shown that a set of n periodic tasks is schedulable with the
RM algorithm if:

U ≤ n(2
1
n − 1) with U =

n∑
i=1

Ci
Ti

(LL-test)

The LL-test is a proved sufficient condition for the schedulability of a set of tasks
with the Rate Monotonic algorithm and under certain assumptions (e.g. the dead-
lines are equal to the periods, the tasks are independent that is to say have no shared
resources or precedence constraints, etc).

Later developments have improved or proposed new schedulability tests, relaxed the
assumptions, or considered new task models. For instance, Sha et al. [149] deal
with real-time tasks with shared resources. In this case, access to the resources
must be managed with a concurrency control protocol. They have shown that a
set of n periodic tasks using the Priority Ceiling Protocol is schedulable with Rate
Monotonic if the following test is verified:

62

Chapter IV. Semantics of an analysis

C1
T1

+ . . .+ Cn
Tn

+max

(
B1
T1
, . . . ,

Bn−1
Tn−1

)
≤ n(2

1
n − 1) (SRL-test)

In Equation (SRL-test), Bi denotes the worst-case blocking time for a task τi, that
is the time that this task can be blocked by all the lower priority tasks that can
access a shared resource.

Another approach is calculate the worst-case response time Ri of each task. The
set of tasks is schedulable by a given scheduling algorithm if and only if the worst-
case response time of each task is less than, or equal to, its deadline. For example,
see [152] for the response time analysis of a set of tasks scheduled under the Rate
Monotonic scheduling algorithm.

How to use schedulability tests? Since the origins of the real-time scheduling
theory in the 1970s, the research community has provided multiple schedulability
tests, targeting many task models and providing numerous feedbacks on these mod-
els.

In the first place, the application of a schedulability test depends on the model
which is provided for the analysis, e.g. there are at least 9 task models that can be
used to analyze real-time workloads for preemptive uniprocessors [153, 132]. Those
task models offer different trade-offs between expressiveness (modeling precision)
and computation cost (analysis complexity). For instance, the aforementioned Liu
and Layland’s task model is simple and easily computable (a few parameters, its
complexity is linear in the number of tasks) but restricts the tasks to a representation
that does not always fit the reality. At the opposite, the timed automata formalism
[154] provides an accurate representation at the price of a much higher algorithmic
complexity.

For a given model, numerous schedulability tests can be chosen. To give an idea,
200+ articles are cited by Sha et al. [21] as regards the advances in real-time systems
modeling and associated real-time task scheduling analyses! In another survey, Davis
et al. [127] examine the schedulability tests which are provided for multiprocessor
architectures, and list about 120 different works. Last but not least, each analysis
may report on the schedulability of the system in a different way: computed metrics
(e.g. processor utilization factor, worst-case response times), scope of the result (e.g.
exact test, sufficient condition only, necessary condition), etc.

Thus, applying the right real-time scheduling analysis on the right model is a tedious
and error-prone task. The problem for the designer is first to define the conditions
under which an analysis can be applied (e.g. assumptions on model of the system)
and then to state whether the input model complies with these conditions or not. In
addition, the analysis result (processor utilization factor, worst-case response times,
. . .) must be completely interpreted in order to report on the schedulability status.
In the next section, we propose solutions to address this problem:

• by fully defining an analysis with pre and postconditions in Section IV.2,

• by exploring implementation means in Section IV.3.

63

IV.2. Semantics of an analysis

IV.2 Semantics of an analysis

An elementary model-based analysis process consists of the computation chain rep-
resented in Figure IV.2:

Ê the analysis inputs data from a model,

Ë the analysis program processes the data,

Ì the analysis outputs data about the model (i.e. analysis results).

Model Analysis Result

A{P} {Q}

input data output data

is about

Ê
Ë

Ì

Figure IV.2: Elementary model-based analysis process. An analysis can be made
equivalent to a Hoare triple {P} A {Q}. Preconditions P express the properties to
hold true in an input model to successfully execute an analysis A. Postconditions Q
are the properties guaranteed on the model after the analysis execution.

We can formally define the semantics of an analysis with a triple analogue to a Hoare
triple [155].

Definition 12 (Analysis (semantics)). An analysis is a triple {P} A {Q}:

• P is a logical assertion expressed on input data called the precondition of A,

• A is an analysis program to compute output data from input data,

• Q is a logical assertion expressed on output data called the postcondition of
A.

Preconditions P express the properties that the model must satisfy prior to execute
an analysis. Postconditions Q express the properties that the analysis guarantees in
return. Thus, if P is true on a model, executing A can lead to a model where Q is
true. In practice, preconditions and postconditions can be expressed with first-order
logic formulas and checked through a dedicated verification engine.

Example: semantics of a schedulability test. Let us consider a simple input
data model that can be used for real-time scheduling analysis, consisting of the tuple
(T , X , G, S):

• T is the set of task, with each τi ∈ T is a tuple (Ti, Ci, Di, Oi) (respectively:
the period, the computation time, the deadline and the offset),

• G is the graph (V,E) giving the dependencies between the tasks,

– V are vertices, each vertex is a task of the model V ⊆ T ,

64

Chapter IV. Semantics of an analysis

– E ∈ V × V are edges and represent dependencies between tasks,

• X = {X1, X2, . . . , Xm} is the set of processors,

• S is the scheduling algorithm, S ∈ {FP,RM, . . .} where FP =“Fixed Prior-
ity”, RM =“Rate Monotonic”, etc.

Liu and Layland defined up to 10 assumptions on the task model to analyze with
their schedulability test:

• mono-processor (p1): there is just one processor,

• periodic tasks (p2): all the tasks are periodic,

• no jitters (p3): all the tasks are released at the beginning of periods,

• implicit deadlines (p4): all the tasks have a deadline equal to their period,

• independent tasks (p5): all the tasks are independent, that is to say have
no shared resources or precedence constraints,

• fixed computation times (p6): all the tasks have a fixed computation time
(or at least a fixed upper bound on their computation time) that is less than
or equal to their period,

• no self-suspension (p7): no task may voluntarily suspend itself,

• preemption (p8): all the tasks are fully preemptive,

• no overheads (p9): all the overheads are assumed to be null,

• fixed priorities (p10): all the tasks have a fixed priority given by Rate Mono-
tonic.

According to the input model defined previously and the assumptions given above,
we can define the preconditions with predicates in First-Order Logic:

PLL−test = {p1 ∧ . . . ∧ p10}

with:

• p1 := {X | card(X) = 1}

• p2 := {∀τi ∈ T | Ti 6= ∅}

• p4 := {∀τi ∈ T | Ti = Di}

• p5 := {G | card(V) = 0}

• p6 := {∀τi ∈ T | Ci ≤ Ti}

• p10 := {S | S = RM}

• p3, p7, p8 and p9 are axioms, alternatively the data model could be extended
with any suitable data structure on which those predicates could be expressed
(for example a graph explaining the task behaviors).

65

IV.3. Implementation of the analysis

Provided the respect of the preconditions, the analysis by Liu and Layland com-
putes the processor utilization factor U (see LL-test). Hence, the postcondition that
determines the schedulability of the task set is given by QLL−test = {q1} with:

• q1 : {U | U ≤ card(X)(2
1

card(X) − 1)}

Section IV.3 presents an implementation of a full analysis process based on this
formalization.

IV.3 Implementation of the analysis

In the previous section, we discussed a general formalism to define the semantics of
an analysis. In this section, we explain how this formalism can be used to completely
and correctly analyze architectural models. We quickly explain our approach before
reviewing several implementations.

IV.3.1 Proposed approach

In the previous section, we showed that an analysis can be made equivalent to
a Hoare triple. In particular, the preconditions are the properties to be checked
true in an input model to successfully execute an analysis. The postconditions are
the properties guaranteed on the model after the analysis execution. At run time,
we hence evaluate the preconditions prior to execute the analysis, and check the
postconditions at the end of the analysis execution.

Figure IV.3 explains the analysis process in greater detail with a Process Flow
Diagram. At the very beginning, we verify the analysis preconditions on the model
(1). If the model fulfills the preconditions then we can carry out the analysis (2a).
Otherwise, the process terminates (2b). Lastly, we check the analysis postconditions
(3). The process ends whether the postconditions are true or not.

In the following sections, we evaluate several ways to implement this approach:

• using general-purpose constraint languages, e.g. REAL [156] with AADL mod-
els (Section IV.3.2),

• using the generic query mechanisms introduced in the previous Chapter III
together with the Python programming language (Section IV.3.3),

• we discuss model transformation or metamodeling approaches (Section IV.3.5).

IV.3.2 A first implementation with constraint languages

We firstly implement the approach in Figure IV.3 by using the REAL constraint
language which can be used with AADL models.

66

Chapter IV. Semantics of an analysis

Checking analysis

preconditions

Process starts

Are

the preconditions

met?

NO

YES

Process ends

Checking analysis

postconditions

Analysis

execution

(1)

(2a)

(3)

(2b)

analysis

preconditions

Model

(input

data)

starts

preconditions

YES

ends

analysis

postconditions

Analysis

execution

Result

(output

data)

Figure IV.3: Process Flowchart describing the analysis execution. The analysis
execution depends on the verification of the preconditions. The postconditions are
checked at the end of the analysis execution.

67

IV.3. Implementation of the analysis

IV.3.2.A REAL at a glance

In former works, Gilles et al. [156] proposed REAL (Requirements Enforcement and
Analysis Language) to express and verify constraints on AADL models. It has been
designed as an AADL annex language and comes with its own interpreter.

REAL considers theorems as basic execution units. A theorem expresses one or
more constraints to check on an AADL model based on model queries and analysis
capabilities.

REAL provides key features for our application:

• it makes it possible to manipulate the elements of an AADL instance model
as many sets (thread_set, bus_set, memory_set, etc.) with getters for their
properties (get_property_value),

• it enables mathematical computing with classical operators (+, −, ×, etc.) or
high-level functions (cardinal, min, max, etc.),

• it provides a syntax for predicate calculus with quantifiers (∀, ∃), logical
operators (¬, ∧, ∨, etc.) and predicate functions (is_subcomponent_of,
is_bound_to, etc.).

IV.3.2.B Application to the Liu and Layland’s schedulability test

We can implement the analysis and its preconditions through dedicated REAL the-
orems.

Preconditions. In Listing IV.1, the periodic_task theorem implements the pre-
condition p2=“all the tasks are periodic” in Section IV.2. The expression of this
precondition in a theorem is straightforward: we check that the Period property
is provided (property_exists predicate function) for each element in the task set
(the thread_set in the AADL instance model).

The theorems needed to express the mono-processor (p1), implicit deadlines
(p4), fixed computation times (p6) and fixed priorities (p10) preconditions are
of similar complexity.

1 -- This theorem checks that the release period of each task exists
2 theorem periodic_tasks
3 foreach t in thread_set do
4 check (property_exists (t, " Period "));
5 end periodic_tasks ;

Listing IV.1: An example of REAL theorem. A REAL theorem expresses
constraints on an AADL model. The simple theorem here is used to check that
the threads described in the model are periodic.

Listing IV.2 depicts the theorem for the precondition p5=“all the tasks are inde-
pendent”. It translates the assertion for AADL models with two sub-theorems:
no_task_precedences and no_shared_data.

68

Chapter IV. Semantics of an analysis

The first sub-theorem assumes that a precedence (task_precedence) involves a
connection between two AADL threads (Is_Connected_To (t2, t1) with t1 and
t2 are elements in the thread_set) and checks that the number of precedences is
null (cardinal (task_precedence) = 0).

In the second sub-theorem, we assume that a shared data situation occurs when at
least two AADL threads access a same AADL data (Is_Accessing_To (t,d) with
d in Data_Set and t in Threads_Set). We thus check that at most one thread
accesses each data (Cardinal (accessor_threads) <= 1).

1 -- independent_tasks : this theorem checks that tasks are mutually
independent , ie

2 -- (1) tasks do not share (access) a same resource and
3 -- (2) tasks have no precedence relationships
4

5 theorem independent_tasks
6 foreach e in local_set do
7 requires (no_task_precedences and no_shared_data);
8 check (1=1);
9 end independent_tasks ;

10

11 -- subtheorem
12 theorem no_task_precedences
13 foreach t1 in thread_set do
14 task_precedence := { t2 in thread_set | Is_Connected_To (t2 , t1

)};
15 check ((cardinal (task_precedence) = 0));
16 end no_task_precedences ;
17

18 -- subtheorem
19 theorem no_shared_data
20 foreach d in Data_Set do
21 accessor_threads := {t in Thread_Set | Is_Accessing_To (t, d)};
22 check (Cardinal (accessor_threads) <= 1);
23 end no_shared_data ;

Listing IV.2: Independent tasks theorem. The theorem on top checks that
the threads in the AADL model are independent: (1) a task cannot precede
another, i.e. in AADL a thread cannot be connected to another one (second
theorem); (2) the threads cannot share data with each other (third theorem).

69

IV.3. Implementation of the analysis

Analysis and postconditions. Listing IV.3 depicts the full implementation of
the Liu and Layland’s schedulability test with REAL theorems. The topmost theo-
rem liu_layland_schedulability_test implements the schedulability test.

In this theorem, we first evaluate the (pre)conditions under which the analysis
is applicable (requires keyword at line 6). The preconditions are listed in the
liu_layland_assumptions sub-theorem (lines 19 to 23) and fully defined in other
sub-theorems (e.g. we discussed the periodic_tasks and independent_tasks the-
orems in the previous paragraphs, see Listings IV.1 and IV.2). If the preconditions
are met, then the test can be executed (the requires command at line 6 aborts the
main theorem if any predicate is false).

The analysis then executes (compute keyword at line 10). We calculate the processor
utilization factor (var U, line 10) via the processor_utilization_factor sub-
theorem (lines 30 to 34). This sub-theorem needs the set of threads, previously
retrieved from the AADL model at line 9.

Lastly, we evaluate the postcondition (check keyword at line 12). We check that
the processor utilization factor is under the acceptable limit. If the test succeeds,
then the task set represented in the AADL model is schedulable.

IV.3.2.C Lessons learned in using REAL

We firstly observe that a constraint language is defined according to a precise meta-
model. Consequently, a constraint language can only be used with models that
belong to the same technical space. For example, REAL is defined by the AADL
metamodel and can only be used with AADL models, OCL can only be used with
MOF-compliant models such as UML, etc.

From our practical experience, we also note that a constraint language such as
REAL does not always meet our needs in terms of expressiveness, e.g. because of
restricted operators, limited control flow, etc. In particular, a major shortcoming
is that model queries must be defined in terms of design-oriented concept, obliging
to reason about analysis data through design-oriented concepts. For example in
this subsection, the Liu and Layland’s schedulability test is defined through REAL
theorems. Consequently, the analysis must be tailored to both the REAL syntax and
AADL design-oriented concepts. Preconditions such as no self-suspension (p7),
preemption (p8) and no overheads (p9) cannot be expressed because AADL
models do not enable to model such cases. Behavioral modeling would be more
adapted to represent these real-time systems; provided that the constraint language
enables to query this kind of models.

In conclusion, constraint languages such as REAL or OCL enable to query and ana-
lyze data structures. However, as “design-specific” query languages, these languages
suffer strong limitations in terms of queried models and expressiveness. In the fol-
lowing, we resolve this problem by combining generic accessors with the Python
programming language.

70

Chapter IV. Semantics of an analysis

1 -- liu_layland_feasibility_test : this main theorem implements a
schedulability test

2

3 theorem liu_layland_schedulability_test
4 foreach e in Processor_Set do
5 -- verification of the analysis preconditions
6 requires (liu_layland_assumptions);
7 -- analysis of the "model of tasks"
8 Proc_Set (e) := {x in Process_Set | Is_Bound_To (x, e)};
9 Threads := {x in Thread_Set | Is_Subcomponent_Of (x,

Proc_Set)};
10 var U := compute processor_utilization_factor (Threads);
11 -- Liu and layland ’s test
12 check (U <= (Cardinal (Threads) * (2 ** (1 / Cardinal (Threads

))) -1));
13 end liu_layland_schedulability_test ;
14

15 -- subtheorem : verification of the test assumptions
16

17 theorem liu_layland_assumptions
18 foreach t in thread_set do
19 requires (mono_processor and periodic_tasks
20 and no_offsets and implicit_deadlines
21 and independent_tasks and fixed_computation_times
22 and fixed_priority);
23 check (1=1);
24 end liu_layland_assumptions ;
25

26 -- subtheorem : computation of the processor utilization factor
27

28 theorem processor_utilization_factor
29 foreach e in Local_Set do
30 var Period := get_property_value (e, " period ");
31 var WCET := last (get_property_value (e, "

compute_execution_time "));
32 var U := WCET/ Period ;
33 return (MSum (U));
34 end processor_utilization_factor ;

Listing IV.3: A complete schedulability test implemented in REAL. The
analysis starts in the theorem on top. At line 6, the preconditions are verified by
calling the second theorem. If all the assumptions associated to the test are true,
then the processor utilization factor is calculated by calling the third theorem at
line 10. The postconditions are finally checked at line 12.

71

IV.3. Implementation of the analysis

IV.3.3 Implementation through accessors and Python

We acknowledged that constraint languages are dedicated to particular Domain-
Specific Modeling Languages (e.g. REAL operates with AADL models, OCL with
UML models, etc.). These constraint languages neither enable to address analysis
data structures nor to express the analysis logic easily. This second implementation
combines accessors with the Python programming language to fully implement an
analysis.

IV.3.3.A Motivations for Python

In Chapter III, we introduced accessors so as to retrieve data from a domain-specific
model and analyze them. Figure IV.4 reminds the approach: we use accessors to
retrieve the data from a model before analyzing them in a program. For example,
we can extract some data from an AADL model and analyze them in a Python
program.

In this section, we extend this approach to fully implement an analysis, i.e. by
including the preconditions and postconditions as explained in Section IV.3.1.

Architectural
model

Analysis

(e.g. AADL) (Python)

acc(data_structure)
* 1

Figure IV.4: Analysis of an architectural model using accessors. We carry out the
analysis via access to data on an architectural model written for example in AADL.
We firstly retrieve the data in the model before analyzing them in a Python program.

The Python programming language provides key features for our application:

• usability: Python is a high-level, general-purpose programming language that
supports multiple programming paradigms, including object-oriented program-
ming,

• rich and simple syntax: Python provides numerous data types (e.g. Boolean,
signed integers or floats to represent numbers, strings for sequences of char-
acters, sets or lists for sequences of any type, etc.) and operators on them
(assignment, arithmetic, logical, relational, etc.), usual control flow and deci-
sion mechanisms (loops, branches, and function calls), and many customized
tools via built-in functions or external libraries,

• extendibility: Python enables to structure the program with modules and
packages and, in doing so, to create reusable libraries, e.g. to help the stake-
holders to reuse existing model accessors and analyses or develop new libraries,

• portability: Python is a cross-platform software that can run on a wide variety
of systems through code interpretation.

72

Chapter IV. Semantics of an analysis

IV.3.3.B Application to the Liu and Layland’s schedulability test

We implement both the analysis and its preconditions through a related function,
the necessary data structures being passed as function arguments. Listing IV.4
shows a prototype of an analysis function with the def keyword in Python.

1

2 def analysis (self , required_data_structure):
3

4 """ both the analysis and its preconditions are implemented in
Python through an analysis function with data structures

passed as arguments """

Listing IV.4: Definition of a precondition through a Python function.

Preconditions. Listing IV.5 depicts three precondition checks in a Python pro-
gram: mono_processor, fixed_computation_times and independent_tasks. Each
function is carried out on its own data structure passed as a function parameter, i.e.
a processors_list, a tasks_list and a dependency_graph respectively.

1 """ Examples of functions to check preconditions in Python
2 Arguments : data structures
3 """
4

5 # precondition 1
6 def __mono_processor (self , processors_list):
7 if len(processors_list) != 1 :
8 return False
9 return True

10

11 # precondition 6
12 def __fixed_computation_times (self , tasks_list):
13 for task in tasks_list :
14 if task. worst_case_execution_time != None and task.

worst_case_execution_time > task. period :
15 return False
16 return True
17

18 # precondition 5
19 def __independent_tasks (self , dependency_graph):
20 for task in dependency_graph :
21 dependent_tasks = dependency_graph [task]
22 if len(dependent_tasks) > 0:
23 return False
24 return True

Listing IV.5:
Three functions defined in Python to check preconditions. Preconditions are
verified in functions (i.e. mono_processor, fixed_computation_times and
independent_tasks) with the help of data structures passed as parameters
(processors_list, tasks_list or dependency_graph respectively).

The mono_processor function implements the precondition p1=“there is just one
processor” in Section IV.2 by simply checking that there is only one element in the
processors_list.

73

IV.3. Implementation of the analysis

The fixed_computation_times function analyze the precondition p6. We verify
that all tasks in tasks_list have a computation time (task.worst_case_execution_time)
which is less than or equal to their period (task.period).

The verification of the precondition p5=“all the tasks are independent” is carried out
directly from the dependency_graph. The graph is built out of lists and dictionaries
in Python: each key in the dictionary is a vertex of the graph (i.e. a task) and the
corresponding value is a list containing the vertices that are connected via an edge
to this vertex (i.e. dependent tasks). For each key in the dictionary (i.e. task in the
dependency_graph), we check that the corresponding value (i.e. dependent_tasks)
is empty.

1 """ Liu and Layland schedulability test in Python """
2

3 class liu_layland_schedulability_test (Analysis):
4

5 def analysis (self , model):
6

7 #input data structures (model access)
8 tasks_list =model.get(" LIST_OF_TASKS ")
9 processors_list =model.get(" LIST_OF_PROCESSORS ")

10 dependency_graph =model.get(" TASKS_DEPENDENCIES ")
11

12 try:
13 #check analysis preconditions
14 assert (self. __mono_processor (processors_list)), "p1"
15 assert (self. __periodic_tasks (tasks_list)), "p2"
16 assert (self. __no_offsets (tasks_list)), "p3"
17 assert (self. __implicit_deadlines (tasks_list)), "p4"
18 assert (self. __independent_tasks (dependency_graph)), "p5"
19 assert (self. __fixed_computation_times (tasks_list)), "p6"
20

21 # compute the analysis and check postcondition is true
22 assert (self. __ll_test (tasks_list)),"q1"
23

24 except AssertionError as e:
25 print ’analysis aborted ’, e.args

Listing IV.6: A complete schedulability test implemented in Python. The
test is implemented by
the analysis method in the liu_layland_schedulability_test class. The
preconditions are checked at the beginning of the function (assert statements).
If no exception is raised (try-except statement), we execute the schedulability
test via the ll_test function.

Analysis and postconditions. Listing IV.6 shows a complete implementation
of the Liu and Layland’s schedulability test with Python. We implement the test
through a liu_layland_schedulability_test class which has an analysis method.
First of all, the analysis retrieves the input data from the AADLmodel: a processors_list,
a tasks_list and a dependency_graph (lines 8 to 10). Then the preconditions are
checked with the useful functions (lines 14 to 19). We use assert statements to eval-
uate the preconditions. An assertion raises an exception, caught and handled with
the try-except statement, if a precondition is evaluated to false. If an exception
occurs in the try clause, the analysis terminates. Contrariwise if all the precondi-

74

Chapter IV. Semantics of an analysis

tions are true, then the schedulability test is to be executed via the ll_test function
(line 22). Violating the postcondition (i.e. assert statement at line 22) raises a last
program exception synonym of analysis failure.

IV.3.4 Constraint Language vs. accessors+Python

We saw that constraint languages enable to query model instances and analyze them.
In this chapter, we used the REAL constraint language to analyze AADL models.
However, we noted two main drawbacks when using constraint languages:

• queried models: constraint languages are limited in terms of addressable mod-
els as they are included in a specific technical space, e.g. REAL runs with
AADL, OCL with UML,

• the expressiveness of constraint languages is not adapted to our use, e.g. oper-
ations must be though in terms of design-oriented concepts (obliging to reason
about analysis data through design-oriented concepts), languages may have
limited operations or control flow (according to our practical experience with
REAL), or be at times unnecessary verbose and hard to read (both OCL and
REAL languages).

To overcome these issues, we presented an improved implementation that combined
accessors (introduced in Chapter III) with the Python programming language. We
clearly separate data definition through data structures, from data extraction using
accessors, from data analysis via a Python program. In this way, we enhance the
implementation of the analysis:

• queried models: accessors enable to analyze any model as soon as an imple-
mentation of accessors towards these models is provided. In addition, both
the data structures and the language used to analyze these data structures are
independent of the models,

• expressiveness: this approach makes it possible to directly analyze analysis-
specific data structures rather than interpreting them through a third-party
metamodel. In addition, Python is a general-purpose programming language
that enables to easily express analysis operations with a simple and rich syntax,
and additional libraries.

IV.3.5 Other possible implementations

The implementations presented in the previous sections combined different kinds
of accessors with a dedicated language to analyze architectural models. Accessors
enable to extract data from a model, whereas a constraint language (e.g. REAL) or
a general-purpose programming language (e.g. Python) makes it possible to analyze
such data. We discuss some other possible implementations that we believe less
optimal.

Implementing preconditions as part of a model transformation. This first
alternative implementation would apply in a situation where a transformation is

75

IV.4. Discussion: related works

necessary to translate a model used for design into a model used for analysis (notice
that we dismissed this approach in the previous Chapter III, more arguments are
provided in Section III.4). In such a case, precondition checks could be implemented
as specific transformation rules, e.g. expressed with ATL [15]. Yet, we note sev-
eral limitations with this approach. First, this approach is only applicable within
a fully defined modeling framework with models, metamodels and transformation
languages; and is restricted to this specific technical space. The second main dis-
advantage is that the analysis preconditions must be checked according to model
syntaxes (obliging to think analysis data structures in terms of design-oriented con-
cepts) and with the help of the transformation language (which can have limited
capabilities in terms of data exploration, operations, and so on).

Constraining model instantiations through well-formedness rules. An-
other approach is to implement the preconditions via well-formedness rules (WFR)
as part of the metamodel definition. Through WFRs, models are tuned to conform
to a specific analysis (or transformation) engine. In other words, model instances
must satisfy the WFR rules to apply an analysis. A constraint language such as
OCL can be used with UML-based metamodels. First, we note that this approach is
very restrictive as it constrains the construction of the models (i.e. definition of the
metamodels). Secondly, we claim that this approach is paradoxical: models must
be tailored to fit analysis aims, and not to implement system requirements. Lastly,
we observe that analysis the preconditions must be adjusted to DSML syntaxes (i.e.
to both the design-specific language and the constraint language).

The main advantage of our approach is to separate the analysis from model trans-
formation and metamodeling issues. First, we clearly separate the user concerns,
i.e. data definition, from data extraction, from data analysis. Secondly, we can use
all the powerful features provided by a general-purpose programming language to
express the analysis, including preconditions and postconditions.

IV.4 Discussion: related works

This section discusses related works that aim at providing some kinds of analysis
semantics, and then compare them to our works. We distinguish between imple-
mentation means and analysis frameworks.

Implementation through constraint languages. OCL (Object Constraint Lan-
guage) [157, 158] is a constraint language working with UML models. In practice
OCL can be used for expressing many sorts of (meta)model queries, manipulations
and requirements. OCL is adopted as a standard by the OMG, the latest specifica-
tion of OCL is the version 2.4 [159].

REAL (Requirements Enforcement and Analysis Language) is a language proposed
by Gilles [160], [156] aiming at expressing constraints on AADL models. REAL
has initially been designed to support system optimization in a model-based process
[161] but can be used more generally to enforce some semantics or consistency checks
on AADL models. REAL is available as an AADL annex language and comes with
its own interpreter integrated in the OCARINA tool [137, 88].

76

Chapter IV. Semantics of an analysis

We firstly note that constraint languages can be used to express many kinds of
model queries. Thus, they do not provide specific guidelines to implement analysis at
large. Constraint languages are query languages towards design-specific models (e.g.
REAL/AADL, OCL/UML, etc.). Thus, constraints languages cannot inter-operate
and have a limited expressiveness (e.g. design-oriented data structures, operations,
control flow, etc.). See our experimentation with REAL in Section IV.3.2.

Analysis frameworks. We can mention works from Ouhammou [70] and Gaudel
[162] that preceded our works.

Ouhammou et al. [163] proposed an intermediate framework between real-time
design languages and real-time analysis tools called MoSaRT (Modeling-oriented
Scheduling analysis of Real-Time systems). MoSaRT consists of a Domain Spe-
cific Modeling Language providing the core concepts of real-time systems, and an
Analysis Repository to analyze the models with the help of the real-time schedul-
ing theory. The main novelty in MoSaRT is the automatic selection of real-time
scheduling analyses. For this purpose, the authors firstly formalize the applicability
of real-time scheduling analyses with real-time contexts (i.e. a set of assumptions re-
lated to the task model). Real-time contexts are then automatically checked on the
models to choose any suitable schedulability analysis. This feature is implemented
through a set of OCL invariants expressing real-time contexts.

Gaudel [162] builds on architectural design patterns to select schedulability tests
[164, 165] in the Cheddar tool. The authors define an architectural design pattern as
a set of applicability constraints applying on architectural models. They implement
their own algorithm to select schedulability tests in the Cheddar tool [166]. This
algorithm aims at detecting the design patterns which are present in a model and
analyze their composition if multiple patterns are represented.

We note that the two approaches are devoted to specific DSMLs and tools (Cheddar
and MoSaRT). It is hence necessary to either re-implement the approach to reuse it
in another tool or to define bridges between tools, e.g. a transformation chain exists
from AADL to Cheddar or MoSaRT tools [138, 70], or more recently Gaudel et al.
[150] redefined architectural design patterns for AADL models as AADL subsets.
Let us note that these palliatives have several disadvantages: the semantics gap
between design languages, adaptation of technical solutions (for instance, constraint
language vs. ad hoc implementation of selection algorithms), weak guarantees on
the transformation correctness, etc.

Our approach builds on and generalizes the related works while proposing different
implementation means. We introduced a more general formalization of the seman-
tics of an analysis based on the Hoare notation. We note that this notation applies
for real-time scheduling analysis just as well as for any sort of analysis (depend-
ability, security, etc.). A full analysis, including preconditions and postconditions,
can be implemented in several ways, e.g. with constraint languages (REAL in Sec-
tion IV.3.2) or through accessors combined with a general-purpose programming
language (Python in Section IV.3.3). Our approach is naturally portable and in-
teroperable as soon as an implementation towards models is provided. We finally
note that we are able to implement an improved decision process based on contracts
to describe analysis interfaces and SAT resolution methods to evaluate them (the
latter contribution is presented in Chapter V).

77

IV.5. Summary and conclusion

IV.5 Summary and conclusion

We started this chapter by discussing the difficulty to correctly apply real-time
scheduling analyses in a MDE process. The problem for the designer is firstly to
define the conditions under which an analysis can be applied, and secondly to state
whether the input model fulfills these expectations or not. In addition, the analysis
result should be completely interpreted in order to report on the schedulability
status.

Thus, we formalized the analysis process. We showed that an analysis can be made
equivalent to a Hoare triple {P} A {Q}. The preconditions P in this triple are
the properties to hold true in an input model to successfully execute an analysis
A. The postconditions Q are the properties guaranteed on the model after the
analysis execution. With preconditions and postconditions, an analysis is complete
and sound. Hence, a full analysis requires first to validate the preconditions, then to
execute the analysis and lastly to check the postconditions. We experimented two
implementations of this approach: constraint languages (REAL on AADL models)
first, and accessors introduced earlier in Chapter III combined with a general-purpose
programming language (Python) next. We noticed that the second implementation
is more efficient: easier implementation, better portability and interoperability.

Chapter V extends the work presented in this chapter to provide greater decision
and orchestration support. In particular, we introduce contracts to describe analysis
interfaces and dedicated resolution methods to evaluate them.

78

Chapter V

Contract-driven analysis

Abstract

In the previous chapter, we formalized the analysis process via a Hoare triple that
consists of preconditions, the analysis program and postconditions. We showed that
a combination of accessors and a general-purpose programming language such as
Python could be used to implement a full analysis, including preconditions and post-
conditions. Yet, these artifacts, in the current state, offer a limited decision support
when analyses have to be considered in a design workflow: e.g. which analysis can be
applied on a given model? How to handle the analysis results? Is it possible to com-
bine the analysis results? Are there interferences between analyses? Etc. To answer
those questions, one must be able to better characterize an analysis with interfaces
and properties first and be able to evaluate the analysis features afterwards.
In Section V.1, we explain that the analysis, as an integral part of Model-Based
Systems Engineering (MBSE) approaches, must be handled in a systematic manner.
In Section V.2, we introduce contracts as a means to formally define the design
components, i.e. the models, the analyses and their goals. We then explain in
Section V.3 how these contracts can be used to systematize the analysis activities. In
particular, we present a proof-of-concept using the Alloy specification language. This
chapter ends with a discussion about related works and some potential improvements
of the approach in Section V.4, before the conclusion in Section V.5.

V.1 Motivating context: analysis in a design process
supported by an architectural language

Architectural languages provide a support for the Model-Based Engineering of real-
time embedded systems [18]. An advanced design process supported for instance by
AADL involves conjoint modeling and analysis activities, as shown in Figure V.1:

1. the AADL model is the centerpiece of the process. The AADL model repre-
sents the top-level architecture of the system. It depicts the static software
architecture, the computer platform architecture with behavioral descriptions
in a single model,

2. analyses are carried out on the AADL model to provide feedbacks about the
system design. Analyses can be used for validation purposes (e.g. to assess the

79

V.1. Motivating context: analysis in a design process supported by an architectural
language

processor workload or analyze the schedulability of the task set) or to compute
new data to integrate in the model (for instance, we combine AADL models
with an analysis chain in order to define some important network parameters
of an avionic system in Chapter VII),

3. the system is progressively defined and validated via the successive modeling
and analysis steps. Platform-Specific Models (runnables, configuration files,
etc.) can be fully or partially generated from the higher level models (for
instance, see works by Lasnier [167])

captures

input - real-time

Specifications
document

- functional
- non-functional

Additional
extend

AnalysesAADL Model

System

Binaries,
configs, etc.

feedbacks (results)

generation

input - real-time
- safety
- etc.

- validation
- correction
- refinement
- etc.

Additional
models

- programs
- annexes
- etc.

extend

Figure V.1: Architecture-centric Model-Based Systems Engineering process sup-
ported by AADL. AADL models capture the functional and non-functional archi-
tecture of an embedded system. We conduct analysis from AADL analytical repre-
sentations, e.g. to assess real-time or safety properties. The system is progressively
defined and validated via the successive modeling and analysis steps. Finally, we can
generate Platform-Specific Models (PSM) such as the runnables.

Yet, we note that, apart high-level principles and abstract guidelines, MBSE tools
such as OSATE (Open Source AADL Tool Environment) [135] provide little support
to carry out the modeling and analysis steps.

How to make the analysis systematic? Let us discuss a simple design flow
represented with a directed graph in Figure V.2. The vertices represent the modeling
and analysis activities while the directed edges represent the transitions between
activities:

• M : the designer starts by modeling the system in AADL,

• preA1, A1: the designer can apply a schedulability test (A1 vertex) to assess a
real-time property: are the tasks schedulable? Before that, the designer
must check the analysis preconditions (PreA1 vertex) as discussed in Chap-
ter IV,

• G1, M ′: if the schedulability test succeeds the model is valid (G vertex: the
deadlines are met), if not the designer must propose a correction (vertex M ′).

80

Chapter V. Contract-driven analysis

The process can continue to assess other properties based on the validated
AADL model or its correction.

M

PreA1

...

A1

G M ′

...

initial AADL
model

schedulability test

the deadlines
are met

check preconditions

correction of
AADL model

are the tasks
schedulable?

are the analysis preconditions
true?

yes no

yesno

Figure V.2: An example of design workflow. The design flow involves modeling
and analysis activities to achieve goals. Vertically: we evaluate temporal constraints
(goal) on an initial AADL model with a schedulability test. If the analysis does not
succeed we must correct the model. The process can continue to achieve other goals.

We notice that the design flow in Figure V.2 systematically involves the following
elements:

1. one or several models that must be analyzed: M and M ′,

2. goals which are the properties that must be assessed on those models: G,

3. analyses that must be applied on the models to achieve goals: PreA1, A1.
Analyses can be combined to provide intermediate data (PreA1) or end data
(A1).

The problem for the designer is hence to handle a workspace which is made up of
models representing the system and analyses that should be applied to meet specific
goals. As stated by Vaziri and Jackson [168], classic constraint languages such as
OCL or REAL used in the previous Chapter IV do not provide the adequate level
of abstraction and decision support to tackle this problem. Indeed, one must be
able to fully characterize the design components (i.e. models, analyses and goals)
with their interfaces and properties. Analysis features should then be evaluated in
order to answer specific questions such as: which analysis can be applied on a given
model? For a given goal? Are there analysis results to possibly combine? Are there
interference to forbid between analyses? Etc.

We present our solutions to answer these questions in the next sections:

81

V.2. Contracts

• we first introduce contracts in Section V.2,

• we then explain how these contracts can be used to systematize the analysis
activities in Section V.3.

V.2 Contracts

In this section, we introduce contracts as a means to formally define models, analyses
and goals.

We firstly provide formal definitions for models, analyses and goals. We then intro-
duce contracts and their properties. All the concepts discussed in this section are
illustrated in the real-time scheduling domain.

V.2.1 Preliminary definitions: models, analyses and goals

Model. We propose the following definition for the approach presented in this
chapter:

Definition 13 (Model). A model is a couple M = (S, P):

• S is a set of data structures,

• P is a set of properties. A property is an association of data structures P :
S → S.

Data structures encompass basic data types such as mathematical data types (e.g.
Boolean, integers, floats, etc.), domain-specific types (e.g. scheduling algorithms in
the real-time scheduling theory), or more sophisticated data structures (e.g. using
sets, lists, graphs, etc.). Data structures are closely related to the facet of the system
being considered (e.g. a set of tasks in a real-time system).

Properties can specify invariants such as periods of tasks, a scheduling policy for a
processor, but also a system property like being schedulable, safe, etc.

Analysis. We define an analysis as a mathematical function:

Definition 14 (Analysis (function)). An analysis is a function that operates over
a model A : M →M .

M=(
S,
P)

A

M’=(
S,
P)

Figure V.3: Analysis as a mathematical function. An analysis A inputs a model
M and outputs another model: M ′ = A(M).

82

Chapter V. Contract-driven analysis

Goal. According to the previous definitions, we can combine models and analyses
to produce other models. We finally define goals as particular models.

Definition 15 (Goal). LetM be a set of models and A be a set of analyses. A goal
is a particular model required over a set of models and analyses G :M×A→M .

Example. Let us discuss the models, analyses and goals of the design workflow
represented in Figure V.4.

M0=(Per,

Exec, A1Exec,

…)

A2

M2=(respTime,

…)
A3

A1

M3=(

Dline,

…)

G1=(

isSched)

Figure V.4: Models, analyses and goals in the design workflow of a real-time
system. From the periodic task model M0, both the schedulability test A1 and the
response time analysis A2 enable to conclude about the schedulability of the task set
(G1). An additional analysis A3 inputs M2 together with an extra model M3 in
order to compare the responses times against the deadlines.

We can represent a real-time system through the periodic task model proposed by
Liu and Layland [128] (referred to as M0 in the following). This model defines a set
of tasks with their periods and execution times plus a processor with a scheduling
policy, as specified in Table V.1.

The latter task model allows for several sorts of schedulability analysis. For instance,
we can use a schedulability test based on the computation of the processor utilization
factor [128] or a response time analysis [130] (respectively referred to as A1 and A2
in the following).

Table V.2 describes the results of the two analyses. The first model (M1 = A1(M0))
specifies a property (isSched) which associates a Boolean value to a set of tasks.
true means that the set of tasks is schedulable and false means it is not. The
second model (M2 = A2(M0)) associates a worst-case response time to each task
(respTime data). The response time is the time taken to complete a task in the
worst-case scenario.

Any of M1 and M2 models can be a goal. In that case, it is referred to as G1 or G2.
We consider G1 in Figure V.4:

• A2 (response time analysis) requires further interpretation of the resulting
modelM2. An additional analysis A3 inputsM2 together with an extra model
M3 in order to compare the task responses times against the task deadlines: if
the response-times respTime are lower than the deadlines Dline, the system
is schedulable (isSched is true).

83

V.2. Contracts

da
ta

de
si
gn

at
io
n

da
ta

st
ru
ct
ur
e

T
as
kS

et
ta
sk

se
t

T
as
kS

et
=
{T

as
k}

T
as
k

ta
sk

T
as
k

=
(P
er

,E
xe
c)

P
ro
c

pr
oc
es
so
r

P
ro
c

=
(S
ch
ed

)
P
er

pe
rio

d
P
er
∈
N

E
xe
c

(w
or
st
-c
as
e)

ex
ec
ut
io
n
tim

e
E
xe
c
∈
N

Sc
he

d
sc
he

du
lin

g
po

lic
y

Sc
he

d
∈
{F
P
,R
M
,D
M
}

T
ab

le
V
.1
:
D
at
a
de

fin
ed

in
th
e
pe

rio
di
c
ta
sk

m
od

el
M

0.

m
od
el

da
ta

or
pr
op
er
ty

de
si
gn

at
io
n

da
ta

st
ru
ct
ur
e
or

as
so
ci
at
io
n

M
1

is
Sc
he

d
sc
he

du
la
bi
lit
y
of

th
e
ta
sk

se
t

re
su
lt
∈
{t
ru
e,
f
a
ls
e}
→

T
as
kS

et

M
2

T
as
kS

et
ta
sk

se
t

T
as
kS

et
=
{T

as
k}

T
as
k

ta
sk

T
as
k

=
(r
es
pT

im
e)

re
sp
T
im

e
re
sp
on

se
tim

e
re
sp
T
im

e
∈
R

T
ab

le
V
.2
:
Tw

o
m
od

el
s
pr
ov
id
ed

by
sc
he

du
la
bi
lit
y
an

al
ys
es
.
A

sc
he

du
la
bi
lit
y
te
st

ou
tp
ut
s
th
e
m
od
el
M

1.
A

re
sp
on

se
-t
im

e
an

al
ys
is

ou
tp
ut
s

th
e
m
od
el
M

2.

pr
op
er
ty

de
si
gn

at
io
n

as
so
ci
at
io
n

pe
rT

as
ks

al
lt
he

ta
sk
s
ar
e
pe

rio
di
c

re
su
lt
∈
{t
ru
e,
f
a
ls
e}
→

T
as
kS

et
fix

ed
E
xe
c

al
lt
he

ta
sk
s
ha

ve
a
fix

ed
co
m
pu

ta
tio

n
tim

e
re
su
lt
∈
{t
ru
e,
f
a
ls
e}
→

T
as
kS

et
fix

ed
Sc
he

d
th
e
pr
oc
es
so
r
im

pl
em

en
ts

a
fix

ed
pr
io
rit

y
sc
he

du
lin

g
po

lic
y

re
su
lt
∈
{t
ru
e,
f
a
ls
e}
→

P
ro
c

...
ot
he

r
as
su
m
pt
io
ns

(s
ee

Se
ct
io
n
IV

.2
)

T
ab

le
V
.3
:
Pr

op
er
tie

s
re
qu

ire
d
to

ap
pl
y
th
e
Li
u
an

d
La

yl
an

d’
s
sc
he
du

la
bi
lit
y
te
st
.

84

Chapter V. Contract-driven analysis

V.2.2 Contracts

A contract, represented in Figure V.5, formally defines the interfaces of a model, an
analysis or a goal in terms of data and properties.

Definition 16 (Contract). A contract, related to an element (i.e. a model, an
analysis or a goal), is a tuple K=(I,O,A,G):

• I are inputs: the data required by the element,

• O are outputs: the data provided by the element,

• A are assumptions: the properties required by the element,

• G are guarantees: the properties provided by the element.

Notice that the ‘data’ directly refer to the accessors presented in Chapter III, whereas
the ‘properties’ relate to the preconditions and postconditions introduced in Chap-
ter IV. Hence, a contract is semantically equivalent to a Hoare triple as set out in
Chapter IV.

K{I} {O}

{A}

{G}

“inputs” “outputs”

“assumptions”

“guarantees”

Figure V.5: Representation of a contract. A contract formally defines the in-
terfaces of a model, an analysis or a goal in terms of required and provided data
and properties. It specifies the data through inputs and outputs, and properties via
assumptions and guarantees.

Notation convention. A number of notation conventions are used throughout
this chapter:

• K.I, K.O, K.A and K.G denote the diverse kinds of interfaces in a contract,
i.e. inputs, outputs, assumptions and guarantees respectively,

• the notation K(x) is used to denote the contract of the element x. We can
use an uppercase letter M , A or G instead of x when referring to a model, an
analysis or a goal respectively,

• we can use several indexes to point out the different elements in the sets, e.g.
Ki∈N is a specific contract, Mj∈N is a model, Ak∈N is an analysis, Gl∈N is a
goal.

85

V.2. Contracts

Example. Let us define contracts for our simple example.

The schedulability test A1 requires several data from the input model M1 (see the
previous Table V.1). In addition, the test proposed by Liu and Layland relies on a
set of assumptions as specified in Table V.3 (see also Section IV.2 for the complete
list of assumptions).

Under the Liu and Layland’s assumptions, this analysis provides the processor uti-
lization factor (U data) and a guarantee about the schedulability of the system
(isSched property).

We hence define the contract for A1 as follows: K3(A1) = (I3, O3, A3, G3) with

I3 = {Per,Exec,Sched, . . .},

O3 = {U},

A3 = “Liu and Layland’s assumptions” = {perTasks,fixedExec,fixedSched, . . .}

and G3 = {isSched}.

Following the same method we are able to define the contracts for all the models,
analyses and goals in Figure V.4. Table V.4 summarizes those contracts. Notice
that we have to use an additional analysis (A0 in the following) to check that the
assumptions of Liu and Layland are met.

contract I O A G

K1(M0) ∅
Per,

∅ ∅Exec,
. . .

K2(A0)
Per,

∅ ∅
perTasks,

Exec, fixedExec,
.

K3(A1)
Per,

U
perTasks,

isSchedExec, fixedExec,
.

K4(A2)
Per,

respTime
perTasks,

∅Exec, fixedExec,
.

K5(M3) ∅ Dline ∅ ∅

K6(A3)
respTime,

∅
perTasks,

isSchedDline fixedExec,
. . .

K7(G1) ∅ ∅ isSched ∅

Table V.4: Contracts for the various models, analyses and goals from Section V.2.1.
We must use an additional analysis A0 to check the Liu and Layland’s assumptions.

V.2.3 Properties of contracts: complementarity and precedence

We note that the interfaces (inputs and outputs, assumptions and guarantees) of
two distinct contracts can be complementary. In that case, there is a precedence
order between the underlying elements (models, analyses or goals).

86

Chapter V. Contract-driven analysis

Vertical precedence. A vertical precedence denotes a precedence between two
elements with respect to the computation of the properties (from assumptions to
guarantees).

Property 1 (Vertical precedence (informal)). There is a vertical precedence of an
element X over a distinct element Y if and only if the guarantees of X and the
assumptions of Y are complementary.

Property 2 (Vertical precedence (formal)). Let:

• E be a set of elements, with (X,Y) ∈ E distinct elements (X 6= Y),

• K(X) and K(Y) be the contracts of X and Y respectively.

X vertically precedes Y , denoted next_vertical(X,Y) = true, iff K(Y).A∩K(X).G 6=
∅.

Horizontal precedence. An horizontal precedence denotes a precedence between
two elements with respect to data computation (from outputs to inputs).

Property 3 (Horizontal precedence (informal)). There is an horizontal precedence
of an element X over a distinct element Y if and only if the outputs X and the
input of Y are complementary, and there are elements M and N to evaluate the
assumptions of X and Y respectively.

Property 4 (Horizontal precedence (formal)). Let:

• E be a set of elements, with (M,N,X, Y) ∈ E distinct elements (M 6= N 6=
X 6= Y),

• K(X) and K(Y) be the contracts of X and Y respectively,

• next_vertical(M,X) and next_vertical(N,Y) be vertical precedences over el-
ements of E.

X horizontally precedes Y , denoted next_horizontal(X,Y) = true, iff K(Y).I ∩
K(X).O 6= ∅ and (K(X).A = ∅ or next_vertical(M,X) = true) and (K(Y).A = ∅
or next_vertical(N,Y) = true).

Example. A graphical representation of the precedences involving the contracts
of Table V.4 is given in Figure V.9.

According to Properties 1 and 2, there are 5 cases of vertical precedences. For
instance, between two analyses: K3.A ∩ K2.G = {perTasks,fixedExec, . . .} 6=
∅ ⇐⇒ next_vertical(A0, A1) = true.

According to Properties 3 and 4, there are 5 cases of horizontal precedence. For
instance, between a model and an analysis: K3.I ∩K1.O = {Per,Exec, . . .} 6= ∅ ∧
K1.A = ∅∧ next_vertical(A0, A1) = true ⇐⇒ next_horizontal(M0, A1) = true.

87

V.3. Contract-driven analysis

Figure V.6: Example of precedences between models, analyses and goals. The
complementarities between the contracts in Table V.4 bring out the precedences be-
tween the models, the analyses and the goals. Horizontal precedences refer to data
(computed from outputs to inputs) while vertical ones concern properties (computed
from guarantees to assumptions).

V.3 Contract-driven analysis

In this section, we explain how contracts can be used to systematize the analysis
activities in a design workflow. We discuss the general approach first. We then
present a proof-of-concept with Alloy.

V.3.1 Proposed approach

We propose the approach defined with a Process Flow Diagram in Figure V.7. Our
approach relies on the evaluation of contracts to derive an analysis graph that fulfills
goals for any input model. The approach consists of 3 main steps:

(1) Definition of the contracts. We define contracts for the input configuration.
A configuration consists of:

• a set of models,

• a set of analyses,

• a set of goals.

Contracts specify the interfaces of an element with logical formulas from both the
data (inputs/outputs) and property (assumptions/guarantees) points of view.

88

Chapter V. Contract-driven analysis

Contracts

definition
Analyses

Process starts

Contracts

evaluation

Models +

Goals

Analysis

graph

Contracts

Process ends

Analysis graph

execution

evaluation

Results

Goals graph

Figure V.7: Process Flowchart for contract-driven analysis. The analysis graph
is executed (step 3) according to the definition (step 1) and evaluation (step 2) of
analysis contracts.

89

V.3. Contract-driven analysis

(2) Evaluation of the contracts. Subsequently, we evaluate the contracts. Dur-
ing this step, we use (a) the contracts from step 1 together with (b) the precedence
constraints (Properties 1 to 4 in Subsection V.2.3). Then, we proceed as follows:

(i) given (a) and (b), we search the complementarity between the contracts,

(ii) if a complementarity between two contracts exists, we set the precedence be-
tween the underlying elements.

This is in essence a Constraint Satisfaction Problem (CSP). A satisfiable interpre-
tation of the contracts will provide the analysis graph that complies with a model
and a goal.

The implementation with Alloy presented in the next subsection is optimal in the
sense that it allows us to identify all the analysis paths to fulfill a goal according to
an input model.

(3) Execution of the analyses. Finally, we can execute the analysis graph.
The analyses have to be executed with their tools according to the analysis graph
resulting of step 2 to produce sound result(s) on the model.

An implementation of steps 1 and 2 is presented in the next Section V.3.2. An
implementation of step 3 is presented in Chapter VI.

V.3.2 Proof-of-concept with Alloy

As a proof-of-concept, we implement contracts definition (step 1) and their eval-
uation (step 2) in Figure V.7 with the help of Alloy. Notice that the execution
of the analysis graph (step 3) is not part of the Alloy problem and is presented
in the context of a more advanced prototype in Chapter VI (see Section VI.2.4 in
particular).

In this section, we firstly give a quick overview of Alloy. We then describe the
toolchain used for the proof-of-concept. This toolchain includes modeling and anal-
ysis tools together with the Alloy tool. We finally experiment the contract-based
approach on several models.

V.3.2.A Alloy at a glance

Motivations. Our objective is to define contracts as precisely as possible to then
provide a correct, exhaustive and time-efficient evaluation of these contracts.

We chose not to use a classic constraint language such as OCL or REAL for several
reasons. As stated by Vaziri and Jackson [168]:

1. constraint languages are not stand-alone languages: they need an accompany-
ing model, e.g. OCL needs an UMLmodel, REAL requires an AADLmodel. In
our case, contracts must be expressed independently of design-oriented models,

2. constraint languages are not conceptual languages: they use low-level opera-
tions and complicated type systems, expressions are hard to read, etc. Conse-
quently, they are hardly amenable to automatic and extensive evaluation.

90

Chapter V. Contract-driven analysis

Instead, we choose Alloy [169], a language for expressing complex structural con-
straints completed with a tool for analyzing them. Alloy provides key advantages
for our application:

• Alloy is a formal language with abstract and analytical notations based on
first-order logic that we use to specify contracts,

• Alloy provides a constraint solver to analyze an Alloy specification; we use the
Alloy analyzer to evaluate contracts.

Alloy specification. Alloy is based on a specification that contains signatures.
Signatures may have fields to define relationships with other signatures. In addition,
facts express constraints on the signatures and fields.

We define contracts with Alloy in two parts:

• a basic signature specifies the structure of a contract: fields are not only used
to define contract interfaces (inputs, outputs, assumptions and guarantees)
but also dependencies with other contracts (nextHoriz and nextVertical).
Listing V.1 describes the contract structure in the Alloy syntax,

• signature facts specify the concrete constraints about the contract instances.
Listing V.2 defines the contract of a schedulability test called DC_FPP_RTA with
its inputs, outputs, assumptions and guarantees.

The Alloy specification is completed in Listing V.3 with VerticalPrecedence and
HorizontalPrecedence facts. They define the logical conditions under which the
nextHoriz and nextVertical relationships hold between two contracts.

Alloy analysis. The Alloy analyzer provides full and automatic analysis of an
Alloy specification. The Alloy analyzer is a ‘model finder’: it searches a model that
satisfies the logical formula generated from the Alloy specification. If there is a
solution that makes the formula true, Alloy will find it. Alloy provides several SAT
solvers for this purpose.

Given several contracts in an Alloy specification, the analyzer finds the precedences
between the models, the analyses and the goals. The solution visualized from Alloy
in Figure V.9 describes the precedences with a graph. Here, the graph exhibits the
analysis paths that should be executed to conclude about the schedulability of a
satellite system modeled with AADL. We experiment Alloy more exhaustively in
the next sections.

V.3.2.B Toolchain

We propose a toolchain to model and analyze real-time embedded systems, repre-
sented in Figure V.8:

• Modeling: the system architecture is specified with AADL [170, 135],

• Analysis:

91

V.3. Contract-driven analysis

1 /* Basic signatures manipulated in the Alloy specification */
2

3 /* Definition of Data and Property signatures */
4 abstract sig Data {}
5 abstract sig Property {}
6

7 /* Definition of the structure of a contract */
8 abstract sig Contract {
9 // interfaces

10 input: set Data , // required - provided data
11 output :set Data ,
12 assumption : set Property , // required - provided

properties
13 guarantee : set Property ,
14 // relationships with other contracts
15 nextHoriz :set Contract , // output ->input
16 nextVertical :set Contract // guarantee -> assumption
17 }

Listing V.1: Basic signatures of the Alloy specification. Signatures in Alloy
describe the entities to reason about. Here, the contract signature specifies the
structure of a contract: fields are not only used to define the contract interfaces
(input, output, assumption and guarantee) but also dependencies with other
contracts (nextHoriz and nextVertical).

1 /* Data structure in an AADL model */
2 abstract sig Component extends Data {
3 subcomponents : set Component ,
4 type: lone ID ,
5 properties : set ID
6 }
7

8 /* An analysis contract using this structure */
9 one sig DC_FPP_RTA extends Contract {

10 }{
11 // specification of input data structures
12 input ={S: Component |
13 S.type= system and (
14 some sub:S. subcomponents | sub.type = processor

and (scheduling_protocol +
preemptive_scheduler) in sub. properties) and

(
15 some sub:S. subcomponents | sub.type= process and
16 thread in sub. subcomponents .type and
17 (let th=sub. subcomponents & thread .~ type

|
18 (dispatch_protocol + period +

compute_execution_time + priority
+ deadline) in th. properties and

19 (not (offset) in th. properties)
20)
21)
22 }
23 // specification of output data structures
24 // assumptions and guarantees
25 [...]
26 }

Listing V.2: Specification of an analysis contract. Input/output fields are
defined according to the Component data structure used for AADL modeling.
Here, the analysis expects a precise hierarchy of components which consists of a
system with processors and threads; with properties attached to the components,
e.g. a period is required, an offset is not required.
92

Chapter V. Contract-driven analysis

1 /* Predicate specifying contracts interdependencies */
2

3 // between inputs / outputs
4 fact HorizontalPrecedence {
5 all c_current : Contract |
6 c_current . nextHoriz ={ c_next : Contract |
7 (c_current . output & c_next .input != none) and
8 (all a : c_current . assumption | a in Contract . guarantee) and
9 (all a : c_next . assumption | a in Contract . guarantee)

10 }
11

12 // between assumptions / guarantees
13 fact VerticalPrecedence {
14 all c_current : Contract |
15 c_current . nextVertical ={ c_next : Contract |
16 (c_current . guarantee & c_next . assumption != none)
17 }

Listing V.3: Additional constraints on signatures and fields expressed with
facts. Here,
interdependencies between inputs/outputs and assumptions/guarantees are
defined by HorizontalPrecedence and VerticalPrecedence facts respectively.

– MAST [9] and Cheddar [8] tools provide several analyses to assess real-
time workloads,

– we use RTaW-Pegase [121] and RTaW-Sim [171] tools to calculate traver-
sal times in networks. RTaW-Pegase uses the network calculus to com-
pute communication delays in Rate-Constrained networks (e.g. AFDX
networks). RTaW-Sim provides a set of analyses for the performance
evaluation of CAN networks,

– we can define user-specific analyses (e.g. to check analysis preconditions)
with the help of REAL or Python (see section IV.3),

• Orchestration: we use Alloy to both define the contracts and evaluate them.

Backends. REAL is supported by the OSATE/OCARINA plugin. Python-based
analyses rely on the accessors introduced in Section IV.3. Transformations from
AADL models to tool-specific models and contracts are partly supported by the
OCARINA tool [88]. Currently implemented bridges are represented with solid
arrows in Figure V.8.

V.3.2.C Experimentation and lessons learned

We evaluated the strengths and shortcomings of an implementation with Alloy. We
experimented the orchestration of the real-time scheduling analysis of AADL models.

Configuration of the experimentation. We explain the models, analyses and
goals used for this experimentation.

93

V.3. Contract-driven analysis

Analysis tools

Contracts generation Contracts generation

Alloy

(Contracts)

Modeling tool

Analysis tools

RTaW-

Pegase
CheddarMAST

RTaW-

Sim…

AADL

(OSATE)

REAL Python

transfo.

access

Figure V.8: Proposed toolchain for the proof-of-concept. The toolchain mixes
modeling and analysis tools together with Alloy. An AADL model specifies the sys-
tem. Several analysis tools enable to assess real-time workloads at task and network
levels. We use Alloy to both define the contracts and evaluate them. Solid arrows
represent currently implemented bridges between tools.

Models. We consider 5 models1:

• M1 : a multitasked real-time system implementing the ravenscar profile [173].
Several tasks access a shared resource in an asynchronous way according to a
priority inheritance protocol,

• M2 : a simple distributed real-time system. The system is made up of 2 cal-
culators to execute some tasks. We consider a Fixed Priority Preemptive
(FPP) policy to schedule the tasks. An Avionics Full Duplex-Switched Ether-
net (AFDX) network supports the communications between the calculators,

• M3 : the mars pathfinder system [126]. The system consists of a stationary
lander and a micro-rover. Each sub-system schedules the tasks according to a
Fixed Priority scheduling algorithm. CAN buses support the communications,

• M4 : a simplified satellite system. This model describes the software together
with the execution platform of an on-board satellite system. The applica-
tion involves several tasks scheduled according to a Fixed Priority Preemptive
policy and 1553B-based communications,

• M5 : a Flight Management System (FMS) [174, 175]. We consider a sub-
part of a FMS that consists of five functions to be executed according to the
ARINC653 standard. CAN buses and AFDX virtual links support the com-
munications between the tasks,

• we finally consider an “all-in-one” model M6 = M1 ∪M2 ∪M3 ∪M4 ∪M5.
1the models are part of the AADLib project accessible online [172]

94

Chapter V. Contract-driven analysis

The AADL models specify systems of different complexity. Table V.5 defines some
metrics related to the complexity of the AADL models: number of lines of code
(LOC), number of components (NOC), number of system properties (NOP), and
average number of properties by component (NOP/NOC). We propose an addi-
tional metrics OAADL mixing the number of components and the number of system
properties described in the AADL model:

OAADL(Mn) = NOC(Mn)×NOP (Mn)
NOC(M5)×NOP (M5) (V.1)

In Table V.5, apart from M6, the model of the FMS is the most complex according
to OAADL: OAADL(M5) = 1. The AADL model that uses the ravenscar profile
is the least complex: OAADL(M5) ≈ 16 × OAADL(M1). The “all-in-one” model
M6 is obviously more complex than the model of the FMS as OAADL(M6) = 9 ×
OAADL(M5).

AADL model LOC NOC NOP NOP
NOC OAADL

M1 148 7 39 5,57 0,06
M2 337 20 57 2,85 0,25
M3 395 24 51 2,125 0,27
M4 464 27 85 3,148 0,5
M5 753 47 97 2,064 1
M6 2097 125 329 2,632 9,02

Table V.5: Several metrics defining the complexity of the AADL models. We
consider the number of lines of code (LOC), the number of components (NOC), the
number of system properties (NOP) and the average number of properties defined
per component (NOP/NOC). We propose an additional metrics OAADL mixing the
number of components and the number of properties described in the AADL model.
The models are ordered by ascending complexity following OAADL.

Analyses. The toolchain (see Figure V.8) comprises 14 analyses in total. MAST,
Cheddar, RTaW-Pegase and RTaW-Sim tools implement 7 analyses to assess the
schedulability of the tasks and the traversal times in the networks. In addition,
4 analyses defined in REAL or Python enable to evaluate the analysis precondi-
tions. We finally use 3 analyses (also described in REAL or Python) to compare the
response times and the traversal times against the deadlines.

Goals. We focus on a single goal which is to conclude about the schedulability of
the system, that is the schedulability at both task and network levels.

Experimental Results. The experimentation has been carried out on a computer
with a processor Intel Core i7-3770 (3,40 GHz), 8.00 GB of RAM, using the version
4.2 of Alloy and the MiniSat solver.

Analysis graph. The Alloy analyzer found a solution satisfying the Alloy specifica-
tion for each AADL model.

95

V.3. Contract-driven analysis

Figure V.9 represents the analysis graph visualized from Alloy for the satellite case
study:

• the Alloy analyzer finds the analyses which are directly applicable on the
AADL model (6 analyses connected to the aadl_model vertex),

• it also finds all the precedences between the analyses (15 precedences repre-
sented by edges between analyses),

• it finally identifies the analyses that reach the goal (4 analyses connected to
the is_schedulable vertex).

We can then use the graph found by Alloy to execute the analyses: here, there are
4 complete paths to execute (from aadl_model to is_schedulable).

Contract processing times. Let us now study the time taken by the Alloy analyzer
to find the analysis graph. We call contract processing time (CPT) the time taken
by Alloy to analyze the contracts together with the precedence constraints in the
Alloy specification, and find the solutions that satisfy the specification. The CPT
encompasses two dimensions: (1) the generation time (GT) of the formula to be
solved and (2) the resolution time (RT) of the formula. This is simply summarized
by:

CPT = GT +RT (V.2)

Figure V.10 describes the Contract Processing Times (CPT) measured for each
input model.

Firstly notice that the generation times (GT) increase exponentially with the com-
plexity of the input AADL model (OAADL). The best value (GT = 639ms) is
measured for the ravenscar profile model (M1). The worst case occurs with the
model of the flight management system (M1) for which GT = 121159ms (≈ 2min).
In that case where we handle all the models at once (M6), the generation time is
multiplied by 20 (GT ≈ 40min) compared to the case involving the FMS only. A
better strategy is to break such a wide resolution space in smaller affordable pieces,
evaluate them separately and then aggregate the results. For instance, we are able
to reduce the processing time of M6 from 40 minutes to less than 3 minutes by
simply handling the input models independently and subsequently.

We secondly observe that, for all the models, almost all the contract processing
time (CPT) is devoted to generate the Boolean formula to be solved (GT). The
resolution time itself (RT) never exceeds 1 second (RT = 856ms being the worst
measured values).

Lessons learned. We showed that our approach is applicable on sets of models,
analyses and goals of realistic complexity.

Despite the important resolution spaces to handle, the Alloy analyzer is able to find
solutions in a reasonable time (the worst processing time is about 2 minutes).

We secondly experienced the scalability of our approach: we applied our approach
on a configuration including all the models together (which represents 5 models, 125

96

Chapter V. Contract-driven analysis

F
igure

V
.9:

V
isualization

ofa
solution

found
by

the
A
lloy

analyzer
for

contracts
specified

in
A
lloy

(satellite
system

case
study).

H
ere,the

graph
describes

the
precedences

between
the

m
odel,the

analyses
and

the
goal.

From
this

graph,we
can

execute
the

right
analyses

to
conclude

about
the

schedulability
ofa

satellite
system

m
odeled

in
A
A
D
L.

97

V.4. Discussion

6 · 10−2 0.250.5 1 9

104104.3

105.08

106.38

M2M3 M4

M5

M6

OAADL : complexity of the input AADL model

G
T

:
G
en

er
at
io
n
tim

es
[m

s]

6 · 10−2 0.250.5 1 9
50
150

850

M1 M2M3M4 M5

M6

R
T

:
R
es
ol
ut
io
n
tim

es
[m

s]

Figure V.10: Contract processing time CPT = GT + RT dependence of the
input model complexity OAADL. The generation time (GT) of the Boolean formula
increases exponentially with the complexity of the input AADL model (OAADL).
The resolution time (RT) evolves to a lesser extent as it never exceeds 1 second
(RT = 856ms is the worst measured value).

components and 329 system properties). Although this strategy is poorly efficient
(the processing time increases exponentially to 40 minutes), we are able to find
all the solutions. A better strategy to avoid huge processing times is to break
wide resolution spaces into smaller pieces, compute them subsequently and finally
aggregate the results. In fact, this strategy enables to reduce the processing time
from 40 minutes to less than 3 minutes.

A major benefit of an implementation of the contract-based approach with Alloy
is that if any solution exists for the specification, the analyzer will always find it.
Furthermore, the Alloy analyzer is able to find all the solutions. As a disadvantage,
the use of Alloy requires a minimal expertise to define the contracts and, possibly,
adjust manually the resolution scope of the SAT solver.

V.4 Discussion

The notion of contract is the keystone of the approach presented in this chapter:
it formally captures analysis features and enables to reason about them. Contracts
can then be used in various settings to systematize the analysis activities in a design
workflow. We discuss related works on contracts and sketch possible improvements
around this notion.

V.4.1 Related works

Background on contracts. Contracts have been formerly introduced and used
in various contexts.

98

Chapter V. Contract-driven analysis

Assume-guarantee and contract reasoning have their roots in the Floyd-Hoare logic
[176, 155]. Contracts explicitly handle pairs of properties called assumptions and
guarantees: the assumptions describe the properties expected by a given system on
its environment, whereas the guarantees specify the properties provided by the sys-
tem under these assumptions. Thus, a contract expresses: (1) under which context
the system operates and (2) what its obligations are. A contract can define any kind
of ‘system’ but usually relate to the various components of a computer system in
contract-based design, as in [177].

A well-known application of contracts is design-by-contract, an approach to design
software popularized by Meyer [178]. More recently, contracts have been investigated
for the design of Cyber-Physical Systems [179, 180]. A more exhaustive description
of general contracts together with a meta-theory is presented in [181].

Related works. To the best of our knowledge, few works investigated contracts
to resolve the analysis problem in systems engineering.

We can cite works from Ruchkin et al. [182, 183, 184] that study a problem close to
ours. Ruchkin et al. [182] deal with the integration of analyses for Cyber-Physical
Systems in the OSATE/AADL tool environment. They acknowledge that properties
of AADL models can be computed by tools coming from different scientific domains
(e.g. real-time scheduling, power consumption, safety or security). They hence use
the contract formalism to express the semantics of analysis domains and avoid the
execution of conflicting tools (to not invalidate the properties computed by a tool
with another one). This is made possible with a language to specify contracts (being
part of AADL) and a verification engine that combines SMT solving and model
checking. They detail an implementation of this approach through the ACTIVE
tool in [183].

Although we share a root formalism, we develop and investigate it in quite dis-
tinct contexts. Firstly, the works of Ruchkin et al. take place in the development
of the OSATE tool. Hence, contracts are intrinsically bound to AADL in their de-
velopment. For instance: Ruchkin et al. [182] define the contracts in terms of the
AADL type system (AADL property sets, AADL components such as threads and
processors) through a sub-language annex; the ACTIVE tool presented in [183] is
developed within the OSATE/AADL infrastructure; analyses as part of OSATE re-
lies on more usual ad hoc model transformations. For our part, we define an holistic
approach based on (i) analysis data structures and accessors to extract them from
any type of model (be it written with AADL, CPAL, SysML or another language)
in Chapter III, (ii) the definition of the semantics of an analysis in Chapter IV, (iii)
analysis contracts to make the analysis systematic in a design workflow.

Let us note secondly that Ruchkin et al. focus on the interaction between anal-
yses coming from heterogeneous domains (e.g. real-time scheduling, power con-
sumption, safety or security). This problem is here again strongly linked with
the AADL/OSATE tool platform that integrates analysis plugins from multiple do-
mains. They thus use contracts to prevent the incorrect ordering of the analyses,
i.e. an order where the result of one analysis is invalidated by the result of another
analysis executed afterwards. In our view, contracts are neither relevant to analysis
domains only (but also to intra-domain analysis) nor to be considered from a “de-
structive” point of view (but should be rather handled in a “constructive” way). In

99

V.4. Discussion

this thesis for instance, we use contracts to handle different kinds of analyses com-
ing only from the real-time scheduling domain (we consider for instance execution
time analysis, schedulability analysis, response time analysis, or traversal time anal-
ysis). We have shown in addition that data dependencies between analyses could
be used to (1) build wider analyses and (2) compute expected results (goals). We
believe that contracts can be extended to cover more advanced use cases (see the
next discussion about possible improvements).

V.4.2 Improvements

Advanced use cases. A first improvement will be to enrich contracts with met-
rics: e.g. complexity, rapidity of an analysis execution, precision of a result. This
will enable to deal with more advanced use cases through additional reasoning ca-
pabilities. For instance:

• to handle the analysis dynamics more precisely: coarse-grained but fast analy-
ses such as schedulability tests can be used during the early design stages, e.g.
for prototyping; in-depth and costly analyses such as model-checking are more
relevant at the last stages in the design process (before the implementation
phase), when the early results should be consolidated,

• to enable more advanced design space exploration and/or optimization [185,
186]. In this case, numerous design strategies could be proposed on the base of
heuristics mixing model states, analysis properties and multiple goals expressed
in terms of non-functional requirements.

Let us note that the evaluation of the metrics adds little algorithmic complexity
and can be quite easily integrated to our approach, e.g. by looking for the shortest
analysis paths on a weighted analysis graph. Yet, investigation of design strategies
and heuristics is a problem on its own that will require fully dedicated researches
(see works by Gilles [160] and Cadoret [186] for instance).

Contract language. The proof-of-concept presented in this chapter is based on
Alloy. We use Alloy because it is a standalone high-level language with powerful
analysis features.

We already reported some limitations from our experimentation of Alloy. In partic-
ular, it is necessary to modify manually the Alloy specification in some contexts, e.g.
to define manually the contracts for analyses and goals, or to adjust the resolution
scope. Moreover, we note that the grammar of Alloy does not enable a neophyte to
deal with contracts in a straightforward way.

A perspective is hence to define a domain-specific language that captures well the
concept of contract and allows for automatic processing. Additional investigations
will enable to move forward this topic and find the most efficient implementation
of the contract-based approach. We present our prototype that includes Alloy in
Chapter VI.

100

Chapter V. Contract-driven analysis

V.5 Summary and conclusion

Analysis, as a set of model assessment activities, takes an active part in the con-
struction of a system, be it to evaluate a specific property or compute new data that
could be added to the model.

In this chapter we presented an approach to systematize the analysis activities in a
design workflow. We define the interfaces of a model, an analysis or goal through
generic contracts, semantically equivalent to a Hoare triple as set out in Chapter IV.
We then use SAT methods to reason about the data structures and properties defined
in contracts. In particular, we are able to find: (1) the analyses that are applicable
on a model; (2) the analyses that meet a given goal; (3) the data dependencies
that bring out analysis combinations. In the proof-of-concept, we used Alloy to
both support both the definition of contracts and their evaluation. We can use the
analysis graph derived from the contracts to execute the analyses in a systematic
manner. A typical use case is to combine heterogeneous real-time analyses to assess
the schedulability of a system including tasks and networks.

Defined through contracts in close relation with system models and engineering
goals, analyses are no longer considered apart from the design process but become
first-class citizens in the design workflow. We present a more advanced prototype
involving contracts in the next Chapter VI.

101

V.5. Summary and conclusion

102

Part 2

Application

103

Chapter VI

Tool prototype

Abstract

In this chapter, we present a tool prototype that implements the various concepts
introduced in the first part of this thesis. The tool implements various functions so
as to automatically handle the analysis process when designing an embedded system.
We firstly present the modular architecture of the tool (Section VI.1). In particular,
we introduce the basic functions of the tool and provide an object-oriented design
of the software. We implemented the first version of the prototype with a set of
scripts written in Python that we run on top of modeling tools (e.g. OSATE, CPAL-
Editor) and, possibly, external analysis tools (e.g. TkRTS, MAST, Cheddar, etc.).
Section VI.2 introduces the key elements of implementation. We present the workflow
supported by the tool in Section VI.3. Section VI.4 finally concludes this chapter.
The tool prototype presented in this chapter will allow us to experiment a type of de-
sign process that systematically combines architectural models and real-time schedul-
ing analyses. We further explore the case studies in the next Chapter VII.

VI.1 Tool architecture

We firstly describe the general architecture of the tool and the basic functions. We
then present the object-oriented architecture that we implemented in Python.

VI.1.1 General architecture and basic functions

The tool is made up of 4 modules-functions (or layers) as represented in Figure VI.1.
Tool modules shown in colors interface with external resources shown in light gray.
We presented the foundations of each layer in the first part of the thesis. The next
paragraphs present the modules in a few words.

Models enable to fully or partly represent an embedded system. We use Domain-
Specific Languages such as AADL or CPAL (see Section II.2.4) for this purpose.

Analysis. This module makes it possible to analyze some properties of a system
from (one of) its model(s). This module provides domain-specific analyses such

105

VI.1. Tool architecture

Analysis

Orchestration Alloy

External Tools

(TkRTS, etc.)

Data Access
OCARINA /

CPAL runtime

Domain-Specific Models (AADL, CPAL)

Figure VI.1: Modular and layered tool architecture. The tool involves the so-
lutions presented in the previous chapters within separate modules in colors. The
modules from modeling to orchestration are organized in layers. We can interface
these modules with external tools in light gray.

as real-time scheduling analyses (schedulability of a task set, computation of com-
munication delays in embedded networks for example), dependability analyses, etc.
This module provides in addition the analyses to verify the preconditions of above-
mentioned analyses (see Chapter IV). It is possible to outsource the analysis to
third-party tools (e.g. bridges exist towards REAL, TkRTS, Cheddar, MAST, etc.
through OCARINA).

Accessors. The interaction between models and analyses is managed by means of
accessors (see Chapter III).

From an analysis perspective, accessors consist of programming interfaces to be
used in an analysis program, i.e. getters and setters to the data model. The data
model holds data about the system from one of its representations (e.g. in AADL
or CPAL). It relies on standard data structures. For example, real-time tasks,
processors, shared resources and scheduling algorithms are some data structures
required to analyze real-time workloads.

Accessors to model internals must then be implemented. Accessors must be imple-
mented in three parts: (1) access to the data model at the topmost level; (2) access
to the domain-specific models in possibly distinct technical spaces (mapping for ex-
ample the data model to AADL and CPAL models); (3) possibly, combination of
the accessors to build wider accessors. We use functionalities provided by dedicated
tools to interface with the domain-specific models. We use for example OCARINA
to parse AADL models, or the cpal2x tool to extract data from CPAL source files.

Orchestration. The orchestration module directs the analysis process according
to the input model(s), the repository of analyses, and the analysis goals.

The orchestration relies on the concept of contract to firstly represent and then
evaluate the interfaces of an analysis (see Chapter V). We use specific resolution
methods to find the interdependencies between the analyses. Alloy is used to that

106

Chapter VI. Tool prototype

end. The orchestration module finally visits the graph, executing the analysis paths
that fulfill both the input models and the goals.

We sketch the object-oriented architecture of the software in the next subsection.

VI.1.2 Object-oriented design

We developed the tool with the Python language. We implement the basic modules
of the tool in Figure VI.1 with classes in Python. Figure VI.2 shows the architecture
of the tool as a class diagram. The diagram represents the basic modules-classes as
well as the relations between them. From top to down:

DataModel

data_model : DataStructure [1..*]{unique}

Orchestration

analysis_graph : Graph [1]

init(analysis_graph : Graph)

visit(analysis_graph : Graph)

AADL

aadl : Model [1]
get_list_of_tasks
(list_of_tasks : Tasks_List)

CPAL

cpal : Model [1]
get_list_of_tasks
(list_of_tasks : Tasks_List)

Accessors

model : Model [1]
get_list_of_tasks(list_of_tasks :
Tasks_List)

Analysis

analyze(data_model : DataModel)

ll_rm_test

analyze(data_model :
DataModel)

ll_context

analyze(data_model :
DataModel)

uses
dataModels[1]

accessorss[1..*]

gets and updates
analysiss[1]

dataModels[1]

executes
orchestrations[1]

analysiss[1..*]

Figure VI.2: Object-oriented tool architecture. We implement the various modules
with classes in Python.

The orchestration class relies on an analysis graph. It provides two methods to
use the graph: (1) a method to initialize the graph; (2) a method to visit the graph
(the analyses are executed when the graph is visited).

An analysis is an interface. It makes possible the analysis of a data model via
a specific method analyze(data_model Data_Model). The ll_rm_test is a spe-
cific implementation of this interface that analyzes a task set with the help of the
schedulability test of Liu and Layland in order to determine whether the task set

107

VI.2. Key elements of implementation

is schedulable or not. The ll_context is another analysis that checks if the test
assumptions defined by Liu and Layland are true or not.

The data model (i.e. DataModel) is made up of a set of data structures (i.e.
DataStructure) to organize the data about the system. The aforementioned ll_rm_test
uses data structures such as real-time tasks, processors, scheduling algorithms, etc.
On the one hand, the data model provides methods to get and update the data
structures, i.e. the high-level accessors. On the other hand, the data model uses
low-level accessors to the domain-specific models.

The accessor interface defines the methods to implement in order to retrieve data
from a domain-specific model, e.g. get_list_of_tasks. An implementation of this
interface is specific to a technical space. For example, the class AADL_accessor
implements the method get_list_of_tasks for the AADL technical space with
the help of the Python/OCARINA API. The class CPAL_accessor implements the
same method working on top of CPAL models by using the cpal2x tool.

Interactions between the modules. The sequence diagram in Figure VI.3 rep-
resents a typical execution of the tool:

• the orchestration module directs the analysis process. The init() method
computes the analysis graph at first. The orchestration module then visits
the analysis graph with the visit() method, and executes each analysis with
the analysis() method. According to the analysis graph, we execute the
ll_context analysis to evaluate a set of preconditions, before the ll_rm_test,

• the analyses ll_context and ll_rm_test compute results from input data.
These analyses firstly use the get method to retrieve input data from the data
model. The analyses finally update the data model (i.e. update method) with
the computed results (i.e. ll_context and isSched),

• the data model use accessors to domain-specific models when necessary, for
example the get_list_of_tasks method retrieves data about real-time tasks
from AADL or CPAL models.

We introduce the key elements of implementation in Section VI.2.

VI.2 Key elements of implementation

In this section, we present some key elements of implementation. We implement
the software architecture described in the previous section. We used the Python
programming language to develop a first prototype of the tool.

VI.2.1 Data model and data structure

The data model consists of a collection of data structure instances and methods to
access them. Listing VI.1 illustrates the principles of implementation of the data
model and its use in a Python program.

108

Chapter VI. Tool prototype

Figure VI.3: Sequence diagram describing a typical tool execution. The diagram
represents the timeline of each object (i.e. module), the various functions executed
within each timeline and the interactions between the objects.

109

VI.2. Key elements of implementation

1

2 """ A simple script to create and use a data model
3 """
4

5 # declaration of a ’Task ’ data structure via a class
6 class Task:
7

8 def __init__ (self , name , period , best_case_execution_time ,
worst_case_execution_time , deadline , offset):

9 """ This function initializes the class
10 Arguments : task properties
11 """
12 self.name=name
13 self. period = period
14 self. best_case_execution_time = best_case_execution_time
15 self. worst_case_execution_time = worst_case_execution_time
16 self. deadline = deadline
17 self. offset = offset
18

19 # declaration of several objects using that class
20

21 # some tasks
22 T1=Task("A task", 10, 2, 3, 10, 0)
23 T2=Task(" Another task", 5, 1, 3, 5, 0)
24 T3=Task("A third task", 20, 1, 1, 20, 0)
25

26 # a list of tasks with previous objects
27 list_of_tasks =[T1 , T2 , T3]
28

29 # a a graph of dependencies between tasks
30 dependency_graph = dependency_graph ={T1: [T2],T2: [T1],T3: []}
31

32 # declaration of the data model and update with previous objects
33 data_model ={}
34 data_model . update ({" LIST_OF_TASKS ": list_of_tasks })
35 data_model . update ({" TASKS_DEPENDENCIES ": dependency_graph })

Listing VI.1: Definition and use of a simplified data model in a Python
program.

110

Chapter VI. Tool prototype

In this simplified example, we firstly declare a data structure that represents a task
with the help of a class. We can then instantiate several tasks with their respective
properties, i.e. T1, T2 and T3. We can also use the task data structures to build
more complex data structures: a list of tasks and a graph of task dependencies.
Last, we can update the data model with these various objects. These objects can
be used later by any analysis through the reverse method get.

Our prototype implements a little more sophisticated data model than the one
sketched in Listing VI.1. In particular, a comprehensive data model must bind
the high-level get and update methods to low-level accessors so as to retrieve data
represented in domain-specific models. Figure VI.4 (replicated from Chapter III)
describes the extended procedure to get a data structure from the data model. This
procedure executes an alternative thread in the event that the required data struc-
ture is not yet present in the data model: the sub-procedure Get Data Structure
from Model builds a data structure from its counterpart in a domain-specific model.
We discuss a more detailed implementation of this sub-procedure in the next sub-
section.

Parse the Data

Model

Data

Structure

Identifier

Data

Model

Get Data Structure from Data Model:

Is the

Data Structure in the

Data Model?

Return:

Data Structure

Get Data

Structure

from model

Domain-

specific

model

Add Data

Structure in Data

Model

NO

YES

Figure VI.4: Process Flowchart describing the procedure to get a data structure
from the data model (replicated from Figure III.10). If necessary, the data structure
is accessed in the domain-specific model via the sub-process Get Data Structure
from Model.

VI.2.2 Accessors

The low-level accessors are the methods to retrieve data about a system from its
model. These methods implement low-level routines to query the domain-specific

111

VI.2. Key elements of implementation

models such as reading of the AADL Instance Tree (AIT) or extraction of data from
CPAL source files. Notice that data are accessed once in the domain-specific model
and then stored as data structures in the data model, thus minimizing costly and
useless operations on the domain-specific models (see Figure VI.4 and the previous
subsection).

AADL accessors. Listing VI.2 shows for example the Python code of the ListOfTasks
accessor towards an AADL model. In this method, we explore the AADL Instance
Tree (AIT) so as to retrieve the task set in the AADL model. We use the Python
API provided by the OCARINA tool:

• the method lmp.getInstances(‘thread’) at line 12 returns a list of tasks
from an AADLmodel, i.e. it returns all instances of AADL thread components
from an AADL model,

• the methods lmp.getInstanceName and ocarina.getPropertyValueByName
respectively return task names and various properties of tasks, i.e. ‘period’,
‘compute_execution_time’, ‘dispatch_offset’, etc. in the AADL syn-
tax.

CPAL accessors rely on the cpal2x tool which is part of the CPAL development
environment [101]. Among other features, this tool extracts given data from CPAL
source files and formats them in an easy-to-read output data file, e.g. in a JSON
or rt-format textual data format. Figure VI.5 represents the cpal2x toolchain
underlying CPAL accessors.

CPAL
cpal2x generates reads

CPAL

Source

file

data file

(JSON,

rt-format, …)

CPAL

accessors

Figure VI.5: Implementation of CPAL accessors by means of the cpal2x tool.

Generation of tool-specific data models. Accessors can also be used to gen-
erate a data file in a tool-specific format when the analysis is to be externalized.
Figure VI.6 depicts the toolchain that generates a tool-specific data file from acces-
sors to analyze these data with an external tool.

Externalgenerated from reads

Accessors Tools

(TkRTS, etc.)

tool-specific

data file

Accessors

Figure VI.6: Using accessors to generate a tool-specific data file.

112

Chapter VI. Tool prototype

1

2 """ A function to return a list of tasks from an AADL model
3 """
4

5 def ListOfTasks (self):
6

7 #local variables
8 _task_name = _period = _best_case_execution_time =

_worst_case_execution_time = _deadline = _offset = _priority =
_respTime =None

9 _list_of_tasks =[]
10

11 #we must specify the properties to get in the aadl instance
model

12 properties =[’period ’, ’priority ’, ’deadline ’, ’
compute_execution_time ’, ’dispatch_offset ’]

13 property_value =None
14

15 #we then explore - the AADL Instance Tree
16 #get tasks from the AADL Instance Tree
17 aadlInstances =lmp. getInstances (’thread ’)[0]
18

19 #get task properties
20 for task in aadlInstances :
21 #task name
22 _task_name =lmp. getInstanceName (task)
23 print ’ ’ * self. _indentation , _task_name
24 # various properties
25 for prop in properties :
26 #if the property exists
27 if ocarina . getPropertyValueByName (task ,prop) [0][1] != ’

KO’:
28 property_value = ocarina . getPropertyValueByName (task ,

prop) [0][1]
29 print ’ ’ * self. _indentation , prop+’=’+ property_value
30 #we process values and store them
31 for case in switch (prop):
32 if case(’period ’):
33 _period =util. getValueFromAADLTime (property_value , ’

ms’)
34 break
35 [...]
36 else:
37 print ’ ’ * self. _indentation , prop+’ not found in

the model!’
38 #we create a Task object and add it to the list
39 _list_of_tasks . append (Task(_task_name ,_period ,

_best_case_execution_time , _worst_case_execution_time ,
_deadline ,_offset ,_priority , _respTime))

40 #we finally return the list of tasks
41 return _list_of_tasks

Listing VI.2: Implementation of a specific AADL accessor using the
OCARINA-Python API (ListOfTasks accessor).

113

VI.2. Key elements of implementation

Each generation program uses its own adequate means to generate a tool-specific
data file, according to the expected target format. Target data files range from
lightweight text files (e.g. TkRTS [197]) to comprehensive analysis-specific models
defined by metamodels (e.g. Cheddar [8], MAST [9], RTaW-Pegase [121], etc.).

VI.2.3 Analysis

An analysis carries out a set of operations and calculations from the data model.
When completed, the analysis updates the data model with the calculated results.
Our prototype enables two types of implementations: through an internal program
in Python or by referencing an external tool.

Analysis with a Python program. Listing VI.3 shows a schedulability analysis
written in the Python programming language. We implement the analysis from Sha
et al. [149] via the analysis() method of the specific class srl_pcp_test_th16.
The data model is an argument of this method. Any analysis must implement the
following procedure:

1. retrieve the data to analyze from the data model. Here, the analysis requests
a list of tasks at line 13,

2. analyze the data. Schedulability analysis is performed with a call to the built-
in function __srl_pcp_test_theorem16(...) at line 16. This function firstly
calculates an upper admissible bound of the processor utilization factor (line
39). It then compares the actual utilization rate against the threshold (the ef-
fective processor utilization is calculated in the for loop at line 42, comparison
to the upper limit occurs at line 47). The test result is stored in the isSched
variable from the function return,

3. update the data model with the analysis result. The analysis updates the data
model with the schedulability property (line 21) through a specific data struc-
ture task_meta that contains the isSched result (set at line 20).

Analysis through an external tool. The analysis can be outsourced to a third-
party tool. Listing VI.4 shows how to reference an external tool. In this example,
we use the commands provided by the MAST tool to launch the remote analysis
(line 18). We must previously generate a tool-specific data model from accessors
(line 15, see also Generation of tool-specific data models in Section VI.2.2).

VI.2.4 Orchestration

The orchestration module is implemented in two parts. First, we initialize the
analysis graph. Then, we visit the analysis graph to execute the analyses.

Initialization of the analysis graph. Initialization of the analysis graph relies
on contracts manipulated in Alloy. In particular, we write the contracts with the
Alloy language and evaluate them with the SAT solvers provided by the Alloy tool.

114

Chapter VI. Tool prototype

1 """ Example of analysis class
2 """
3

4 class srl_pcp_test_th16 (Analysis): # define an analysis
5

6 def analysis (self , model):
7 """ This function implements the basic analysis process
8 Arguments :
9 model (DataModel): the data model

10 """
11

12 # read data from the data model
13 tasks_list =model.get(" LIST_OF_TASKS ")[0]
14

15 # execute the main test
16 isSched =self. __srl_pcp_test_theorem16 (tasks_list)
17

18 # write data in the data model
19 task_meta =model.get(" TASKS_META ")
20 setattr (task_meta , ’isSched ’, isSched)
21 model. update (" TASKS_META ", task_meta)
22

23

24 # return the result to the orchestration module
25 return isSched
26

27 def __srl_pcp_test_theorem16 (self , tasks_list):
28 """ This function implements the business analysis
29

30 Arguments :
31 tasks_list ([Task]): a list of tasks
32 """
33

34 # local variables
35 utilization_factor =0.0
36 res=None
37 blockingTime_factor =[]
38

39 # compute the test bound
40 test_bound = float (len(tasks_list)) *(2.0**(1.0/ float(len(

tasks_list))) -1.0)
41

42 # compute the utilization factor
43 for task in tasks_list :
44 utilization_factor += task. worst_case_execution_time /task.

period
45 blockingTime_factor . append (task. blockingTime /task. period)
46

47 # compare the utilization factor against the test bound
48 if utilization_factor +max(blockingTime_factor) <= test_bound :
49 # test is successful
50 res=True
51 else:
52 # test is successful
53 res=False
54

55 return res

Listing VI.3: An example of schedulability analysis written in Python.

115

VI.2. Key elements of implementation

1 """ A class to externalize an analysis
2 """
3

4 class classic_rm_MAST (Analysis):
5

6 def analysis (self , model):
7 """
8 This function outsources the ’classic_rm ’ analysis to the MAST

tool
9

10 Arguments :
11 model (DataModel): the data model
12 """
13

14 # generate the MAST model from the data model
15 self. generate_mast_input (model)
16

17 # run the mast analysis with that generated model
18 os. system (" mast_analysis classic_rm mast -model.txt")

Listing VI.4: Example of function that outsources the analysis to a third-party
tool.

Figure VI.7 provides an overview of the Alloy workspace:

• main is the file to execute with Alloy. It defines the resolution scope and
references all the files to analyze with the SAT solvers,

• model, analysis and goal files describe the contracts associated to models,
analyses and goals respectively,

• lib is the library defining the set of data structures and properties that can
be used in contracts,

• the meta module defines the main concepts manipulated in the Alloy specifi-
cation, that is to say the concept of contract and the associated constraints
(in particular the precedence constraints).

We implemented new functionalities in the OCARINA tool in order to generate part
of the Alloy workspace in an AADLib project. We generate the blue-colored files
in Figure VI.7 from AADL models. The other files (in red- and white-color) are
generated as static files. The red-colored files can be edited manually to add new
contracts (we generate samples only).

The generated Alloy specification have to be evaluated with the Alloy analyzer.
We finally inject the graph found by Alloy in the Python program. This is done
either manually in the first version of the prototype, or through an intermediate
graph-formatted file in future versions.

Visit of the analysis graph. The analysis graph found by the Alloy tool provides
the analysis paths to execute. We implemented methods to visit the analysis graph
and execute the analyses.

Listing VI.5 shows how to define and use an analysis graph in a Python program. We
must previously define the accessors (line 3), the data model (line 4) and the various

116

Chapter VI. Tool prototype

meta

lib

model analysis goal

main

Figure VI.7: Files of the Alloy workspace.

analyses (lines 7 to 10). The orchestration module visits the graph, defined from line
16 to line 23 and represented in Figure VI.8, with the method exec_analysis(...).
This method considers a starting node that is the AADL_model, and an arrival node
that is the isSched goal.

We could visit the graph in many ways, e.g. performing topological ordering prior
to execute the analyses, finding the shortest paths between nodes, or using common
algorithms to traverse a graph such as Depth-First Search (DFS) or Breadth-First
Search (BFS), etc. In our case, the chosen strategy must fulfill two constraints:

1. the graph must be visited such that the data and properties used by an analysis
are computed beforehand,

2. the analyses for which the preconditions are no met must not be executed; more
widely, the analysis paths that include analyses for which the preconditions
are no met must be aborted.

At the time of writing this dissertation, the prototype implements a Breadth First
Search (BFS) algorithm. In addition, the preconditions are verified in priority, i.e.
before the subsequent analyses. When a precondition is not met, the subsequent
analysis paths are removed from the execution stack. That way, the orchestra-
tion module fulfills the above-mentioned constraints. According to this policy, the
graph represented in Figure VI.8 is visited in the following order: aadl_model ->
ll_context -> srl_pcp_context -> ll_rm_test -> srl_pcp_test -> isSched.
Notice that the aadl_model and isSched elements that denote the starting and end-
ing nodes are not to be executed. This execution stack enables to compute the data
and properties in a correct order. In addition, if a precondition (represented with a
red arrow in Figure VI.8) is not satisfied the subsequent elements are removed from
the execution stack. For instance, if the property computed by the ll_context
analysis is false then the subsequent ll_rm_test analysis will not be executed.
Let us finally note that discarding a path does not prevent from reaching the goal

117

VI.2. Key elements of implementation

1

2 """ A script that creates an analysis graph with its components
and visit it

3 """
4

5 # declaration of the data model with accessors
6 aadl_accessors = AADL_accessors () # aadl accessors
7 data_model = DataModel (aadl_accessors); # data model using the

accessors
8

9 # declaration of analyses
10 ll_context = ll_context () # preconditions
11 srl_pcp_context = srl_pcp_context ()
12 ll_rm_test = ll_rm_test () # analyses
13 srl_pcp_test = srl_pcp_test ()
14

15 # declaration of the orchestration module
16

17 # the analysis graph is hardcoded according to an Alloy solution
18 # an example of graph for the mars pathfinder case study
19 analysis_graph = {
20 " AADL_model " : [ll_context , srl_pcp_context , ll_rm_test ,

srl_pcp_test],
21 ll_context : [ll_rm_test],
22 srl_pcp_context : [srl_pcp_test],
23 ll_rm_test : [" isSched "],
24 srl_pcp_test : [" isSched "],
25 " isSched " : [],
26 }
27

28 o = Orchestration (analysis_graph)
29

30 # visit the analysis graph from " AADL_model " to " isSched " goal
31 # execute the analyses with help of the data model
32 o. exec_analysis (" AADL_model ", " isSched ", data_model)

Listing VI.5: Creation and visit of an analysis graph in a Python program.

118

Chapter VI. Tool prototype

isSched if an alternative (correct) path exists. An alternative here is to execute the
srl_pcp_context and srl_pcp_test analyses for which the results must be true.

aadl_model

ll_context srl_pcp_context

ll_rm_test srl_pcp_test

isSched

Figure VI.8: Example of analysis graph to be visited by the orchestration module.

More sophisticated algorithms to visit analysis graphs will be proposed in future
versions of the prototype in order to address more advanced use cases, e.g. to
detect redundant paths, to find optimal paths according to customized metrics, to
(re-)execute a subpart of a graph, and so on.

VI.3 Working with the tool

Figure VI.9 illustrates the activities that are supported by the tool. The tool im-
plements the following workflow:

1. Creation of the analysis repository: the first task is to create the models,
analyses and goals that form together the analysis repository. We can build
a model with the help of a language such as AADL or CPAL. We can fully
program an analysis in Python, or reference an external tool, and add it to the
analysis repository. Last, we can specify the analysis objectives. Presently, the
models can be created via their respective editors, i.e. OSATE and the CPAL-
Editor. The analyses must be coded separately and then included manually
in the tool program. The goals must be defined in Alloy.

2. Analysis of the repository, in two steps:

(a) Evaluation of contracts: we semi-automatically generate the Alloy
specification that we then evaluate through SAT resolution methods. The
analysis graph found by the Alloy solvers is injected in the Python pro-
gram,

(b) Execution of the analyses: the tool automatically executes the analy-
ses from the analysis graph. The execution takes into account the input

119

VI.3. Working with the tool

models and the analysis goals. The analyses use accessors to extract
relevant data from models.

3. Feedbacks: the tool finally provides feedbacks about the models. These
feedback are trustworthy (i.e. built in a systematic way) and fulfill the analysis
objectives, e.g. answering questions about the schedulability of the system,
computing precise dependability attributes, etc. The tool is able to adapt the
analysis process to the input models, the available analyses and the analysis
goals.

Modeling – AADL, CPAL Contracts evaluation – Alloy

(1) (2)Generation of the

Alloy specification

Feedbacks

(1)

Analysis – Python,

external tools

(3)

Initialization of

the analysis graph

Accessors

Figure VI.9: Workflow supported by the tool.

Listing VI.6 shows a typical execution of the tool. The trace involves the various
modules presented earlier in this chapter: orchestration, analysis, data model and
accessors. We firstly initialize the different modules, by choosing for instance the
input model which is an AADL model of the mars pathfinder robot in this example
(see Section VII.2 for a complete description of this case study). We also initialize
the orchestration module with the analysis graph, the data model with the AADL
accessors as well as the various analyses referenced by the tool. The tool then visits
the nodes-analyses of the graph according to the Breadth-First Search algorithm.
At each visited node, we execute the associated analysis and update the execution
stack in accordance with the analysis result.

The graph which is the same of Figure VI.8 includes some nodes-analyses in order
to verify the schedulability of the mars pathfinder system modeled with AADL.
The visit starts with the AADL_model node at iteration 1. At iteration 2,
the ll_context analysis is unsuccessful, meaning that the preconditions of the
ll_rm_test analysis are not met. The ll_rm_test is therefore discarded. Instead,
at iteration 4, the graph executes the srl_pcp_test by firstly checking its precon-
ditions via the srl_pcp_context analysis at iteration 3. The system is schedu-
lable according to the srl_pcp_test. The visit of the graph ends at iteration 5:

120

Chapter VI. Tool prototype

$ python main . py
main thread . . . i n i t i a l i z e s components . . .

Ava i l ab l e models are : (1) fms (2) paparazz i (3) p a t h f i n d e r (4) s a t e l l i t e
P lease choose a model (number) : 3
∗∗ F i l e s d i r e c t o r y : aadl_model/ p a t h f i n d e r

[. . .]
main thread . . . execute a n a l y s e s from c o n t r a c t s . . .
v i s i t i n g graph accord ing to b f s a lgor i thm . . .
∗∗ i t e r a t i o n 1

execute node AADL_model . . .
AADL_model i s not an executab l e node

prepare graph . . .
ad jacent node found . . .
l l_contex t added in queue f o r execut ion
srl_pcp_context added in queue f o r execut ion
l l_rm_test added in queue f o r execut ion
srl_pcp_test_th16 added in queue f o r execut ion
∗∗ i t e r a t i o n 2

execute node l l_contex t . . .
Check p r e c o n d i t i o n s f o r LL−t e s t . . .
p r e c o n d i t i o n f a i l e d (’ t a sk s are dependent ’ ,)

prepare graph . . .
update graph . . . d e l e t e subsequent paths . . .
∗∗ i t e r a t i o n 3

execute node srl_pcp_context . . .
Check p r e c o n d i t i o n s f o r SRL−PCP−t e s t . . .
OK

prepare graph . . .
ad jacent node found . . . sr l_pcp_test_th16
srl_pcp_test_th16 a l r eady in execut ion queue , sk ip
∗∗ i t e r a t i o n 4

execute node srl_pcp_test_th16 . . .
SRL−PCP−t e s t i s s a t i s f i e d , U=0.725420 <= 0.728627 −> the t a s k s s e t i s

s c h e d u l a b l e !

prepare graph . . .
ad jacent node found . . . i sSched
s t r added in queue f o r execut ion
∗∗ i t e r a t i o n 5

execute node i sSched . . .
i sSched i s not an executab l e node

prepare graph . . .
End o f graph : no more a n a l y s i s to execute
v i s i t e d nodes : [[’ AADL_model ’ , None] , [’ l l_context ’ , Fa l se] , [’

srl_pcp_context ’ , True] , [’ srl_pcp_test_th16 ’ , True] , [’ i sSched ’ , None]]

Listing VI.6: Record of a typical tool execution displayed in the terminal.

121

VI.4. Summary and conclusion

the goal isSched is met. The tool finally summarizes the nodes-analyses visited and
their results.

VI.4 Summary and conclusion

In this chapter, we presented a tool prototype that implements the concepts intro-
duced in the first part of this thesis. The prototype implements several functions
in order to integrate models and analyses in a same design environment. By that
means, the tool manages the analysis process when designing an embedded system.
In particular, the tool is able to adapt the analysis process to the input models, the
available analyses and the analysis goals.

Our prototype implements several modules-functions, each one implementing a part
of the concepts presented in the first part of this thesis. We implemented the first
version of the prototype through a set of scripts written in Python and various model
processors (e.g. parsers, model generators, SAT solvers, etc.). We run the scripts on
top of modeling tools (OSATE, CPAL-Editor) and, possibly, external analysis tools
(TkRTS, MAST, Cheddar, etc.).

This tool prototype will allow us to apply a design process that systematically com-
bines architectural models and real-time scheduling analyses. We present several
case studies in Chapter VII.

122

Chapter VII

Case studies

Abstract

In the first part of this thesis, we reviewed several concepts in order to analyze non-
functional properties in Model-Driven Engineering. We implemented these concepts
through a tool prototype introduced in Chapter VI. In this chapter, we apply these
concepts to resolve practical engineering problems. We systematically combine ar-
chitectural models and real-time scheduling analyses to design concrete embedded
systems coming from the aerospace domain.
We present three case studies in this chapter. Section VII.1 deals with the timing
validation of the Paparazzi drone. In the second case study (Section VII.1), we use
our approach to resolve the original design error that caused a serious failure of the
Mars Pathfinder system. The last case study in Section VII.1 concerns the design
space exploration of an avionic system that comprises a Flight Management System
(FMS) and a Flight Control System (FCS). To design these systems, we use the tool
prototype presented in the previous chapter together with architecture description
languages (i.e. AADL and/or CPAL) and many real-time scheduling analyses.

VII.1 Continuous validation of the Paparazzi UAV de-
sign

This section deals with the Paparazzi case study [188, 189]. We firstly present the
Paparazzi UAV project. We then introduce the analysis problem that occurs at
design time. We finally apply our approach to resolve this problem.

VII.1.1 System overview

Paparazzi UAV and Papabench. Paparazzi UAV (Unmanned Aerial Vehicle)
is an open-source drone project launched at the ENAC1 school in 2003 [188, 190].
The Paparazzi project encompasses hardware and software such as the source code
– airborne and ground station – and various design documents. As a free and open-
source project, Paparazzi encourages reuse, extension and improvement of these

1École nationale de l’aviation civile (French Civil Aviation University)

123

VII.1. Continuous validation of the Paparazzi UAV design

elements, in particular to implement the UAV on various platforms. Paparazzi
developers include researchers, companies or hobbyists.

In our case, we consider the Paparazzi UAV in order to experiment the approach
presented in this thesis. We updated, corrected and extended the AADL models
originally developed by Nemer et al. [189], Nemer [191]. The source models are
part of Papabench [189, 192], a benchmark for WCET evaluation at IRIT (used in
[193, 191] or more recently in [194]).

Architecture. The Paparazzi system basically consists of an airborne system and
a ground control station. The systems communicate with each other via a radio
link. We only consider the embedded system for our experimentation.

The embedded system includes hardware, e.g. a control card with power supply
and processors (dual micro-controllers), sensors (infrared sensors, GPS, Gyroscope),
actuators (servos, motor controllers) and other payloads (camera and video trans-
mitter). The airborne system also comprises a R/C receiver and a radio modem to
communicate with the ground station.

The system is based on a dual processor architecture, as described by the AADL
model in Figure VII.1a: the first processor MCU1 commands the aircraft (Fly-
By-Wire subsystem) while the second MCU0 manages navigation, sensors, pay-
load communications and other processings (Autopilot subsystem). The two micro-
controllers communicate via a Serial Peripheral Interface (SPI) bus. For example,
Figure VII.1b describes the architecture of the autopilot subsystem, especially the
autopilot process that includes the 12 tasks listed in Table VII.1.

More information about the functions or hardware and software components is avail-
able in the Paparazzi documentation, for instance in [188, 190].

VII.1.2 Problem: timing validation throughout the design process

The design of an embedded system such as the Paparazzi UAV is progressive. The
designer starts for example with a definition of the task set from the functional de-
scription of the system. He or she then defines the way these tasks are to be activated
(e.g. strictly periodically, sporadically, according to a mixture of periodic, sporadic
and aperiodic activation, etc.) according to task parameters (e.g. periods or min-
imum inter-release times, worst-case execution times, deadlines, etc.). In addition,
the designer has to set the scheduling policy that will meet the timing constraints.
A full and correct design must also take into account the task dependencies. To
this end, the designer defines an appropriate policy for inter-task data exchanges,
possibly implements synchronization mechanisms, enforces task dependencies, etc.

Throughout the design process, the designer must be able to evaluate the hypotheses
and the choices made. An analysis enables to validate, or conversely, invalidate some
choices. The goal is to define an architecture that will meet the functional and non-
functional requirements (in our case, the real-time constraints). It is thus necessary
to adjust the analysis process to the models provided at each stage in the design
process. The analysis to apply greatly differs at the early and late stages in the
design process, whether a model is simplified, coarse-grained, far from reality at the

124

Chapter VII. Case studies

(a) Topmost architecture of the airborne system.

(b) Architecture of the autopilot subsystem.

Figure VII.1: Architecture of the Paparazzi system in AADL

125

VII.1. Continuous validation of the Paparazzi UAV design

beginning of the design, or, on the contrary, more exhaustive, complex, and close to
the final system in the last design stages.

To illustrate this case study, we defined several AADL models of the Paparazzi
system describing the task sets at different design stages:

• step 1: we assume periodic, non-preemptive tasks and aim to evaluate either
a Fixed Task Priority (e.g. Rate Monotonic) or Fixed Job Priority scheduling
algorithm (e.g. Earliest Deadline First),

• step 2: we rather consider preemptive tasks, still periodic and scheduled
according to a Fixed Priority algorithm,

• step 3: we model the system more accurately and consider a mixture of
periodic and aperiodic tasks, with preemptive and Fixed Priority scheduling,

• step n: the design can continue to further describe task dependencies, task
precedences, inter-task caches, etc.

Our problem is thus to adapt, at each step in the design process, the scheduling
analysis to the input AADL model in order to check that the system fulfills the
timing constraints (i.e. satisfies all the deadlines). Table VII.1 summarizes the
various task parameters. We study the Autopilot subsystem only (the process would
be identical for the Fly-By-Wire).

Task Description Parameters
T C

I4 interrupt-spi-1 50 ms1 {251 µs, 447 µs}
I5 interrupt-spi-2 50 ms1 {151 µs, 228 µs,}
I6 interrupt-modem 100 ms1 {303 µs,520 µs}
I7 interrupt-gps 250 ms1 {283 µs,493 µs}
T6 radio-control 25 ms {15,6 ms, 21,1 ms}
T7 stabilization 50 ms {5681 µs, 6654 µs}
T8 link-fbw-send 50 ms {233 µs, 471 µs,}
T9 receive-gps-data 250 ms {5987 µs, 6659 µs}
T10 navigation 250 ms {44,42 ms, 54,35 ms}
T11 altitude-control 250 ms {1478 µs, 1660 µs}
T12 climb-control 250 ms {5429 µs, 6241 µs}
T13 reporting 100 ms {5 ms, 12,22 ms}

1applies for step 1 and step 2 only.

Table VII.1: Task parameters of the Paparazzi UAV (taken from [191] and [194]).

VII.1.3 Application of our approach

We apply our approach in order to analyze the schedulability of the Paparazzi system
throughout the design process. We model the software architecture with the help
of the AADL language at each stage in the design process (i.e. step 1, step 2 and
step 3 described in the previous section).

126

Chapter VII. Case studies

Analysis repository. We consider the following analyses:

• schedulability tests:

– srl_rm_test which is a schedulability test contributed by Sha et al. [149],
– lss_sporadic_test is another schedulability test proposed by Lehoczky

[195] and studied later by Bernat and Burns [196],
– rts_periodic_npfp is a schedulability test based on worst-case response

times [187, 197].

• analyses to check the preconditions of the above-mentioned schedulability
tests: srl_rm_context, lss_sporadic_context and periodic_npfp_context

Table VII.2 sums up the preconditions of the various analyses.

hhhhhhhhhhhhhhhhhPrecondition
Analysis srl_rm_test lss_sporadic_test rts_periodic_npfp

mono-processor 3 3 3

periodic tasks 3 3 3

aperiodic tasks 7 ¬ 7

offsets Oi ≥ 0
jitters 7 7 7

implicit deadlines 3 3 3

fixed computation times 3 3 3

dependent tasks 7 7 7

self-suspension 7 7 7

preemption 3 3 7

overheads 7 7 7

scheduling algorithm RM RM NP − FP

¬ aperiodic tasks must be scheduled via a Sporadic Server (SS).

Table VII.2: Analysis preconditions for the Paparazzi case study. 3: the predicate
must be true. 7: the predicate must be false. #: special conditions. Otherwise, the
expected condition is stated explicitly.

First of all, we set the precedences between these analyses. Figure VII.2 describes
the analysis graph. The rectangular-shaped elements represent the starting (the
aadl_model) and ending nodes (the isSched goal). Elliptic forms represent the
analyses. Black arrows display data dependencies while red arrows show property
dependencies. This graph, which is to be executed at each stage in the design
process, will enable us to evaluate the AADL model in a systematic and dynamic
way.

Step 1. At the first stage in the design process, we assume strictly periodic tasks.
The model describes a set of n tasks Π = {τ1, . . . , τn} with τi = (Ci, Ti, Di), Ci
is the worst-case execution time, Ti is the period and Di is the deadline such that
Di = Ti. We consider a non-preemptive scheduling algorithm, either with Fixed Task
Priorities (FTP, e.g. Rate Monotonic) or Fixed Job Priorities (FJP, e.g. Earliest
Deadline First).

127

VII.1. Continuous validation of the Paparazzi UAV design

aadl_model

lss_sporadic_context srl_rm_context

lss_sporadic_test srl_rm_test

periodic_npfp_context

rts_periodic_npfp

isSched

Figure VII.2: Analysis graph for the Paparazzi UAV case study.

We visit the graph displayed in Figure VII.2. Figure VII.3 recaps the analysis
process during the first design stage. First of all, we evaluate the preconditions
with the following analyses: Ê lss_sporadic_context, Ë srl_rm_context and Ì
periodic_npfp_context. The properties computed by the lss_sporadic_context
and srl_rm_context are false because the tasks are non-preemptive. Thus, the pre-
conditions of the lss_sporadic_test and the srl_rm_test are not fulfilled, meaning
that these analyses cannot be executed. On the contrary, the properties calculated
by the periodic_npfp_context analysis are true. Therefore, we can execute the Í
rts_periodic_npfp analysis.

2

3

false false true

4

1

true

4

Figure VII.3: Analysis process during the first design stage of the Paparazzi UAV.

We carry out the rts_periodic_npfp analysis via the TkRTS tool [187, 197]. We
evaluated both the FTP and FJP scheduling cases through NP-FP (priorities defined
according to RM) and NP-EDF algorithms respectively. Table VII.3 and Table VII.4
summarize the results.

The results are successful in the case of a FTP scheduling given an optimal priority
assignment calculated by the tool. For each task, the worst-case response time bound
in Table VII.3 is lower than the deadline D. On the contrary, in the case of a FJP
scheduling, the produced schedule does not meet all the deadlines. The laxity in
Table VII.4, that is the remaining time to deadline at the task completion, can be
negative for two tasks (i.e. interrupt_spi_th1 and interrupt_spi_th2), meaning

128

Chapter VII. Case studies

Algorithm Task C (µs) T (µs) D (µs) bound (µs)

np-fp

ctrl_by_rc_th 21100 100000 100000 21100
interrupt_gps_th 493 250000 250000 493
interrupt_modem_th 520 100000 100000 520
interrupt_spi_th2 228 50000 50000 228
interrupt_spi_th 447 50000 50000 447
send_grd_station_th 12220 100000 100000 12220
send_mcu1_th 471 250000 250000 471
stab_th 6654 100000 100000 6654
climb_ctrl_th 6241 250000 250000 6241
nav_th 53350 250000 250000 53350
alt_ctrl_th 1660 250000 250000 1660
data_acq_filt_th 6659 250000 250000 6659

Table VII.3: Result of the rts_periodic_npfp analysis computed via the TkRTS
tool.

Algorithm Task C (µs) T (µs) D (µs) bound (µs) laxity (µs)

np-edf

ctrl_by_rc_th 21100 100000 100000 95193 4807
interrupt_gps_th 493 250000 250000 152562 97438
interrupt_modem_th 520 100000 100000 95193 4807
interrupt_spi_th2 228 50000 50000 54024 -4024
interrupt_spi_th1 447 50000 50000 54024 -4024
send_grd_station_th 12220 100000 100000 95193 4807
send_mcu1_th 471 250000 250000 152562 97438
stab_th 6654 100000 100000 95193 4807
climb_ctrl_th 6241 250000 250000 152562 97438
nav_th 53350 250000 250000 152562 97438
alt_ctrl_th 1660 250000 250000 152562 97438
data_acq_filt_th 6659 250000 250000 152562 97438

Table VII.4: Result of the rts_periodic_npedf analysis computed via the TkRTS
tool

129

VII.1. Continuous validation of the Paparazzi UAV design

that several deadlines can be missed. As a consequence, the designer would select
the NP-FP scheduling algorithm instead of the NP-EDF.

Step 2. During this second analysis stage, we aim at evaluating the following
scheduling configuration: periodic tasks to be scheduled according to a Fixed Tasks
Priority, preemptive algorithm.

Similarly to step 1, we execute the precondition analyses in the first place: lss_sporadic_context,
srl_rm_context and periodic_npfp_context. That time, only the srl_rm_test
can be carried out as: (i) the result of the srl_rm_context analysis is true; (ii) the
properties calculated by the lss_sporadic_context and periodic_npfp_context are
false (the tasks are not to be periodic for the first analysis and must not be preemp-
tive for the second). Therefore, the lss_sporadic_test and the rts_periodic_npfp
analysis cannot be used.

We carry out the srl_rm_test with the help of our tool. According to the analysis
result shown in Listing VII.1, the task set does not pass the test. Indeed, the
amount of processor time used by the task set is above the limit not to be exceeded
so as to be sure that the task set is schedulable. This test is exact (i.e. provides
a sufficient and necessary condition) and, thus, we conclude that the task set is in
fact unschedulable.
$ python main . py
[. . .]
Execute SRL−RM−t e s t (theorem 15) . . .
[. . .]
Number o f e r r o r s : 0 − number o f a b o r t i o n s 3
SRL−RM−t e s t aborted : the system i s not s c h e d u l a b l e !

Listing VII.1: Result of the srl_rm_test computed via our tool.

Step 3. At the third design step, we model the system more accurately. We no
longer assume that all the tasks are periodic. Rather, we characterize the Paparazzi
system with a mixture of periodic and aperiodic tasks. Thus, the model describes
a set of n periodic tasks Πp = {τ1, . . . , τn} and an additional tasks τs to serve the
k aperiodic tasks Πap = {τ1, . . . , τk}. Indeed, aperiodic tasks must be scheduled
through a Sporadic Server (SS) characterized by a maximum capacity CSSs and a
replenishment period TSSs according to [198]. We define these parameters as follows:

• the server capacity such that CSSs =
∑

{τj∈Πap}
Cj ,

• TSSs = min Ti,τi∈Πp in order to execute the server task with the highest priority.

We still consider a FTP scheduling algorithm (Rate Monotonic is the priority as-
signment policy), which is able to preempt tasks.

In this new context, the preconditions of the srl_rm_test and rts_periodic_npfp
are no longer satisfied: the tasks are not periodic. Hence, we cannot execute these
analyses. Alternatively, we can use the lss_sporadic_test as the properties com-
puted by the lss_sporadic_context analysis are true.

130

Chapter VII. Case studies

The test by Lehoczky [195] computes the amount of processor time that is used
by the set of tasks. In this case, the processor utilization factor encompasses two
dimensions: the fraction of processor time consumed by the periodic tasks Up and
the fraction of processor time used by the sporadic server USSs . Lehoczky [195]
defined a limit not to be exceeded:

Up ≤ ln 2
USSs + 1 (LSS-test)

According to the result of the lss_sporadic_test displayed in Listing VII.2, this
threshold is respected, meaning that the system is schedulable for the task model
explained above.

$ python main . py
[. . .]
Execute l s s _ s p o r a d i c _ t e s t . . .
l s s _ s p o r a d i c _ t e s t i s s a t i s f i e d , U i s 0 .673264 <= 0.676408064556 −> the t a s k s

s e t i s s c h e d u l a b l e !

Listing VII.2: Result of the lss_sporadic_test computed via our tool.

Figure VII.4 recaps the analysis paths applied at each design step, displayed as
Step 1 , Step 2 and Step 3 . The analysis paths shown with plain-blue arrows
comprise the analyses used to verify the schedulability of the task set at each stage
in the design process (step 1 to 3 described in the previous paragraphs). Sub-paths
shown with dashed-red arrows include analyses in order to verify the preconditions
of the diverse schedulability tests.

Step 1Step 3 Step 2

Figure VII.4: Analysis paths executed at each design stage of the Paparazzi UAV.

Step n. The model can be enriched to represent the Paparazzi system even more
finely: data dependencies and/or precedences between tasks, synchronization mech-
anisms, inter-task caches, etc.

The approach that we applied during the early stages can be applied at any stage
in the design process, including the late stages. Our approach is applicable to any
type of model (nature, complexity) and to a large panel of analyses.

131

VII.2. Correct design of the Mars pathfinder system

VII.1.4 Conclusion

The design of an embedded system such as the Paparazzi drone is progressive. Dur-
ing this process, the designer defines the system through a multitude of models, e.g.
from a simple, coarse-grained model at an early design stage to a more complex
and accurate one during late design steps. The designer must be able to evaluate
a model at any stage in the design process. An analysis enables to validate some
design choices, assumptions made about the system, etc. It is hence necessary to
automatically tune the analysis process according to the models provided at each
stage in the design process.

We illustrated this case study with various AADL models to represent the Pa-
parazzi UAV at different design stages. These models delineates several task sets,
e.g. strictly periodic tasks versus a mixture of periodic and aperiodic activation,
preemptive against non-preemptive scheduling, Fixed Task Priority or Fixed Job
Priority scheduling algorithms, etc.

First of all, our approach identifies the interdependences between analyses. For
this specific case study, this information enables us to find any analysis A0 that
can be used to check the set of preconditions {P1} of any analysis A1. Afterwards,
our tool executes the analyses according to the input model, the interdependences
between the analyses and the analysis goals. We have been able to adjust the
analysis process to verify the schedulability of the task sets defined through the
AADL models at different stages in the design process (i.e. Step 1 , Step 2 and
Step 3 in Figure VII.4)

Let us finally note that the approach applied in this case study could be used sim-
ilarly at more advanced design stages: to model and analyze task dependencies
and/or task precedences, to propose and evaluate policies for inter-task data ex-
changes and/or synchronization mechanisms between tasks, to represent and assess
inter-tasks caches, etc. In addition, this approach can be applied just as well with
more complex analyses, more important analysis repositories, and models of diverse
kinds (e.g. see the case study including CPAL in Section VII.3), typically as part of
a complete design environment.

VII.2 Correct design of the Mars pathfinder system

This section deals with the Mars Pathfinder case study [199, 126]. First of all, we
provide an overview of the Mars Pathfinder system. Next, we present the software
error that occurred during the Mars Pathfinder mission and caused a major failure
of the system. Last, we show that our approach would have detected and fixed this
error trough a combination of architectural models and systematic analyses of these
models at an early design stage.

VII.2.1 System overview

Mars Pathfinder mission. The Mars Pathfinder mission was a discovery mission
that took place in the late 1990s in the context of the MESUR (Mars Environmental
SURvey) program led by the NASA.

132

Chapter VII. Case studies

F
igure

V
II.5:

H
ardw

are
architecture

ofthe
M
ars

Pathfinder
system

in
A
A
D
L.

133

VII.2. Correct design of the Mars pathfinder system

Mars Pathfinder is a robotic spacecraft that landed on Mars and released an ex-
ploratory robot. The Mars Pathfinder system consists of a stationary lander and a
microrover named Sojourner.

Sojourner is a six-wheeled vehicle controlled from Earth. This control is done by
means of high frequency radio waves, between the lander and Earth and between the
lander and the rover. Both the lander and the rover are equipped with instruments
to investigate the surface of Mars: cameras, spectrometers, atmospheric structure
instrument and meteorology. Among those instruments, we can mention an altimeter
and an accelerometer embedded on the station on Mars as well as a sun sensor and a
star analyzer on the rover. During the mission the spacecraft collected gigabytes of
data about the Martian environment (images, measurements about the atmosphere,
etc.).

Hardware and software architecture. Figure VII.5 represents the simplified
hardware architecture of the Mars Pathfinder system. The subsystems (lander and
rover) include processing and memory resources together with control and mea-
surement devices (radio, altimeter, accelerometer, thrusters, etc.). The components
communicate with each other through VME or 1553 buses. Two couplers connect
the subsystems (high frequency communication link).

The software architecture is based on a real-time operating system (VxWorks) and
includes over 25 tasks. Figure VII.6 depicts the simplified software architecture of
the Mars Pathfinder system. The exploration mode involves the following tasks:

• bus_scheduling to control the transactions on the 1553 bus,

• data_distribution to collect the data from the 1553 bus and write them in the
shared data buffer,

• control_task to control the rover,

• radio_task to communicate between the lander and Earth,

• measure_task to control the lander camera,

• measure_task and meteo_task for the various measurements (altimeter, ac-
celerometer, meteorological, etc.).

All the tasks are to be executed by the RTOS according to their periods. In addition,
four tasks access a Data resource in a concurrent way. Table VII.5 summarizes the
tasks with their properties.

VII.2.2 Problem: dealing with the original design error

During the Mars Pathfinder mission, the spacecraft experienced several resets, each
one resulting in losses of data. After some investigations, the failure proved to come
from a typical priority inversion phenomenon.

Figure VII.7 shows the execution sequence leading to the system failure with a
temporal diagram. In that scenario, the meteo_task has an execution time equal
to 75 ms (3 with reduced parameters). The RTOS schedules the tasks according

134

Chapter VII. Case studies

Figure VII.6: Software architecture of the Mars Pathfinder system in AADL.

Task Priority
Parameters

(ms)
Reduced
parameter Critical

section
T C T C

bus_scheduling 1 125 25 5 1 -
data_distribution 2 125 25 5 1 1
control_task 3 250 25 10 1 1
radio_task 4 250 25 10 1 -
camera_task 5 250 25 10 1 -
measure_task 6 5000 50 200 2 2
meteo_task 7 5000 {50,75} 200 {2,3} {2,3}

Table VII.5: Task parameters of the Mars Pathfinder system (taken from [126]).

135

VII.2. Correct design of the Mars pathfinder system

to the priority given in Table VII.5. Yet, the temporal diagram shows that the
data_distribution task misses its deadlines during its third job. This fault causes a
reset of the system.

R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

?

Reset

Priority inversion

Bus_Scheduling

Data_Distribution

Control_Task

Radio_Task

R R R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
t

: Task not using resource : Task using resource

Priority inversion Camera_task

Measure_Task

Meteo_Task

R R

R R

Figure VII.7: Faulty schedule of the Mars Pathfinder task set (taken from [126]).

The failure comes from a priority inversion problem. The meteo_task accesses the
resource at time 9 and holds it during the whole task execution. The data_distribution
task, which has an higher priority, awakes at time 10. Nevertheless, it cannot execute
because the data resource is blocked. During this blocking time, the radio_task and
the camera_task can execute as prioradio_task < priocamera_task < priometeo_task.
There is a priority inversion phenomenon as tasks with intermediate priorities (radio_task
and camera_task) execute before the task with the higher priority (data_distribution)
because the latter task shares a resource with a task of lower priority (meteo_task).
The priority inversion causes an abnormal blocking time of the data_distribution
task that finally leads to a violation of deadline.

The system failure experienced during the Mars Pathfinder mission comes from a
design error due to a lack of analysis during the early design stages. We show in the
next section how this system can be designed correctly by combining architectural
models with systematic real-time scheduling analyses.

VII.2.3 Application of our approach

We apply our approach to design the software architecture of the Mars Pathfinder
system. We model the system with the help of AADL on the one hand, and sys-
tematically analyze these models with real-time scheduling analyses on the other
hand.

Analysis repository. We consider the following analyses:

136

Chapter VII. Case studies

• schedulability tests: ll_rm_test [128] and srl_pcp_test [149],

• a schedule simulator: cheddar_simu [8],

• several analyses to check preconditions: ll_context, srl_pcp_context and
cheddar_simu_context.

Table VII.6 summarizes the preconditions of the various real-time scheduling anal-
yses. Figure VII.8 describes the precedences between the analyses computed from
their contracts.
hhhhhhhhhhhhhhhhhPrecondition

Analysis ll_rm_test cheddar_simu srl_pcp_test

mono-processor 3 3 3

periodic tasks 3 N.R 3

offsets N.R. N.R. N.R.
jitters 7 N.R. 7

implicit deadlines 3 N.R. 3

fixed computation times 3 3 3

dependent tasks 7 N.R. 3

self-suspension 7 7 7

preemption 3 N.R. 3

overheads 7 7 7

scheduling algorithm RM N.R. RM
concurrency control protocol N.A. N.R PCP

Table VII.6: Analysis preconditions for the Mars Pathfinder case study. 3: the
predicate must be true. 7: the predicate must be false. Otherwise, the expected
condition is stated explicitly. N.A.=not applicable, N.R.=no restriction.

aadl_model

ll_context srl_pcp_context

ll_rm_test srl_pcp_test

cheddar_simu_context

cheddar_simu

isSched

Figure VII.8: Analysis graph for the Mars Pathfinder case study.

Analysis of the original model. We firstly consider a faulty AADL model that
would lead to the execution error and final system failure that we explained in the
previous Section VII.2.2.

137

VII.2. Correct design of the Mars pathfinder system

The tool visits the graph from Figure VII.8 as presented in Figure VII.9. It firstly
checks the various preconditions with the following analyses: Ê ll_context, Ë
srl_pcp_context and Ì cheddar_simu_context. The results of the ll_context
and srl_pcp_context analyses are false: on the one hand the tasks are not inde-
pendent, on the other hand no protocol is defined to access the shared resources.
Thus, we cannot execute the ll_rm_test and srl_pcp_test. On the contrary, the
result of the cheddar_simu_context analysis is true; therefore we can apply the Í
cheddar_simu.

1 2

3

4

false false true

4

false

Figure VII.9: Analysis process performed from the original AADL model of the
Mars Pathfinder system.

The simulation is carried out with the Cheddar tool. We observe from the result
schedule displayed in Figure VII.10 that the third job of the data_distribution
task does not complete before its deadline at time 15 (i.e. 375ms). This violation of
deadline comes from a priority inversion phenomenon as explained in Section VII.2.2.

Correction. We propose to implement a dedicated protocol called Priority Ceiling
Protocol (PCP) in order to handle concurrent access to the shared resource. This
protocol enables to avoid priority inversions and also prevent from blocking the
system due to mutual exclusions (i.e. deadlocks).

Listing VII.3 shows a sys_mars_pathfinder.correct extension of the initial sys_
mars_pathfinder.impl AADL model. This corrective specifies the aforementioned
Priority_Ceiling protocol as a specific property of the prs_PSC.data_rw resource.

Validation. We finally analyze the corrected AADL model. Figure VII.11 sum-
marizes the analysis process at the second design iteration. We check the anal-
ysis preconditions first, through the Ê ll_context, Ë srl_pcp_context and Ì
cheddar_simu_context analyses. The result of the ll_context analysis is negative
because the tasks are dependent: we must not use the ll_rm_test. According to
the result of the srl_pcp_context which is true, we can now execute the Í (a)
srl_pcp_test. Indeed, the corrected model specifies a protocol to access the shared
resource (the Priority Ceiling Protocol). Alternatively, the Í (b) cheddar_simu is
still applicable as the result of the cheddar_simu_context analysis remains true.

138

Chapter VII. Case studies

?
deadline missed

Figure VII.10: Simulation of an invalid schedule of the Mars Pathfinder task set
computed with Cheddar (cheddar_simu).

1 system implementation sys_mars_pathfinder . correct
2 extends sys_mars_pathfinder .impl
3 properties
4 Concurrency_Control_Protocol => Priority_Ceiling applies to

prs_PSC . data_rw ;
5 end sys_mars_pathfinder . correct ;

Listing VII.3: Extension and correction of the original AADL model of the
Mars Pathfinder system.

1 2

3

4b

false true true

4b

4a

true true

Figure VII.11: Analysis process performed from the corrected AADL model of
the Mars Pathfinder system.

139

VII.3. Design space exploration of an avionic system

The srl_pcp_test checks that the amount of processor time needed to execute the
tasks is acceptable (in other words, the actual processor utilization factor must be
under a specific threshold to make sure that the task set is schedulable under a given
algorithm). Unlike the test by Liu and Layland [128], the processor utilization factor
that is computed with the test by Sha et al. [149] takes into account the time that
each task may be blocked when attempting to access a shared resource. The result
of the srl_pcp_test, computed from our tool, is displayed in Listing VII.4. As the
calculated utilization factor is under the acceptable limit, the system is schedulable
(sufficient condition), meaning that all the tasks will meet their deadlines at run
time. Cheddar also simulates a valid schedule. However, a valid simulation is only
a necessary condition, in contrast to the test by Sha et al. [149] that provides a
sufficient condition.
$ python main . py
[. . .]
Execute SRL−PCP−t e s t (theorem16) . . .
SRL−PCP−t e s t i s s a t i s f i e d , U=0.725420 <= 0.728627 −> the t a s k s s e t i s

s c h e d u l a b l e !

Listing VII.4: Result of the srl_pcp_test computed via our tool.

VII.2.4 Conclusion

This case study showed that analyses are of great importance to design embedded
systems. Indeed, this is a design error of the software architecture that caused a
significant failure of the system used during the Mars Pathfinder mission. Although
it could have been fixed at design time, this error was very difficult to detect at
that time given the lack of automated analysis. Thus, the early design error came
undetected before the system operation and caused the system to shut down.

We showed that our approach was suitable to resolve this problem. First, our tool
detects the interdependences between the analyses. This information is important to
build a correct sequence of analyses. Next, the tool executes the analyses according
to the input model (an AADL model representing the Pathfinder system in this
example) and expected results (here, the goal was to verify the schedulability of the
system).

We saw that the analysis process can change, depending on the input model and
the analysis results (in particular the preconditions). We have been able to firstly
select an appropriate analysis for each AADL model, and then analyze the models to
correct or validate them. That way, we have been able to detect the original design
error of the Mars Pathfinder system, propose a correction and finally validate the
correction.

VII.3 Design space exploration of an avionic system

In this section, we deal with the design space exploration of an avionic system. First,
we give an overview of the system with a functional description and a brief presen-
tation of the target platform called Integrated Modular Avionics (IMA). Next, we
combine two architecture description languages, AADL and CPAL, to model the

140

Chapter VII. Case studies

various aspects of the avionic system. Last, we apply our approach to automatically
analyze timing properties from the architectural models. We show that the system-
atic analysis of the architectural models enables to explore the design space of the
embedded system.

VII.3.1 System overview

Firstly, we present the avionic system that we study in this section. Secondly, we
give an introduction to the Integrated Modular Avionics (IMA) platform that hosts
the avionic embedded system.

VII.3.1.A Avionic system

The avionic system comprises a Flight Management System (FMS) [175, 174] and a
Flight Control System (FCS) [110, 200].

Flight Management System. The primary task of a Flight Management System
(FMS) is in-flight management of the flight plan. The Flight Management System
uses values measured from various sensors to compute the flight plan in flight and
guide the aircraft. The crew interacts with the FMS via a Multi-Function Control
and Display Unit (MCDU).

Figure VII.12 describes the functional architecture of the Flight Management Sys-
tem. This system is made up of five main functions. The Keyboard and cursor
control Unit (KU) handles requests from the crew while the Multi Functional Dis-
play (MFD) displays data from the flight plan such as the waypoints or the Estimated
Time of Arrival. The Flight Manager (FM) computes the flight plan by querying
static data (waypoints, airways, etc.) from the Navigation Data Base (NDB) and
dynamic data (altitude, speeds, position, etc.) from the Air Data Inertial Reference
Unit (ADIRU).

Flight Control System. The Flight Management System also interfaces with
several other avionic systems in order to accomplish these functions. Figure VII.13
shows the connection between the Flight Management System and the Flight Control
System (FCS). The aim of this system is to control the altitude, the speed and the
trajectory of the aircraft from the flight plan [110]. In this section, we use the
functional architecture coming from the ROSACE (Research Open-Source Avionics
and Control Engineering) case study [200].

VII.3.1.B Integrated Modular Avionics platform

The functions are to be stored and executed on an Integrated Modular Avionics
(IMA) platform. The IMA defines the use of the hardware and software resources
through two standards:

• the ARINC 653 [201] for computational resources,

• the ARINC 664 (part 7) [202] for communication resources.

141

VII.3. Design space exploration of an avionic system

Crew

KU MFD

FM

ADIRU NDB

Sensors

req disp

wpInfowpId

query
answerspeed

pres

Figure VII.12: Functional architecture of the flight management system. The
functional architecture describes the set of functions and the dataflows between the
functions.

Flight
Management

Flight
ControlTactical cmds,

modes

Roll axis cmds,
pitch axis cmds,
thrust axis cmds

Figure VII.13: Interface between the Flight Management System and the Flight
Control System.

142

Chapter VII. Case studies

One particular objective of the IMA is to ensure timing predictability. In the fol-
lowing, we review some important concepts of its core standards. This description
emphasizes on the parameters that are to be analyzed later on in this section.

Calculators – ARINC 653. The ARINC 653 is a standard to share processing
and memory resources between several functions in a hardwaremodule, or calculator.
According to the ARINC 653, each function is to be hosted in a specific partition
with a strict access to processing and memory resources:

• temporal partitioning ensures that partitions are executed during specific time
slots defined at system start-up,

• spatial partitioning guarantees that each partition has a reserved memory space
defined at system start-up.

Hence, an ARINC 653 schedule is both static and cyclic. Partitions are scheduled
according to several parameters:

• at module level: a major time frame is defined for each module (MAFm);
possibly, a minor cycle can also be defined (MIFm).

• at partition level: an offset (Omp) that is the delay between the MAFm origin
and the start of the partition execution; and a duration (Dmp) that is the time
allocated to each partition to access the processor.

Each partition is planned one or several times during the major cycle. This major
cycle is then repeated indefinitely. In a partition, a function is realized through one
or several processes. These processes are scheduled at the partition level according
to a specific scheduling algorithm (e.g. FIFO or NP-FP).

Networks – ARINC 664. The ARINC 664 standard defines a predictable com-
munication network called Avionics Full Duplex-Switched Ethernet (AFDX). It uses
full-duplex links to convey the packets and switches to route a packet from a source
to one or several destination(s). AFDX implements the core concept of Virtual Link
(VL) to share the network bandwidth between the data flows. A VL is a unidirec-
tional logical connection from one sender to one or several receiver(s) (i.e. unicast
or multicast VLs). In particular, each VL has:

• a limited bandwidth (ρv) according to two parameters: the Bandwidth Allo-
cation Gap (bagv) that is the minimum time interval between two successive
transmissions of frames of the same flow; and the maximal allowed packet size
(smaxv); ρv = smaxv

bagv
,

• a predefined and static route (routev) crossing one or several switch(es).

VII.3.2 Co-modeling with AADL and CPAL

We model the various aspects of the avionic system with two Architecture Descrip-
tion Languages: AADL and CPAL.

143

VII.3. Design space exploration of an avionic system

Operational architecture in AADL. We represent the highest-level operational
architecture of the avionic system with AADL. Initially, only the Flight Management
System (FMS) is represented. The model uses AADLv2 core specifications and the
ARINC653 Annex [68]. Figure VII.14 shows the graphical view of the model. The
model represents four ARINC653 calculators to host the avionic functions connected
through an AFDX network2.

The model follows the initial specifications and AADL design patterns for AR-
INC653 systems: a module is a distinct system (containing a global memory and a
processor) that hosts partitions (each is a process) bound to separate memory seg-
ments and virtual processors (representing spatial and temporal partitioning).
thread components contained in partitions realize the avionic functions. Thanks
to annex guidelines, we can model precisely the ARINC653 components and asso-
ciated parameters (modules Major Frames, partition duration, partition scheduling
policies, etc.).

AADL does not provide specific guidelines for modeling AFDX networks. The AADL
concept of virtual bus defines a connection supported in a bus. We use this con-
cept to define AFDX virtual links. Switches are represented by device components
bound to the virtual links. A dedicated property set has been defined to model
parameters attached to virtual links, end systems and switches.

FCS processes in CPAL. A functional description of the calculators completes
the highest-level operational architecture. For example, we model the functions (i.e.
processes) of the Flight Control System (FCS) with the CPAL language (the CPAL
models of the FCS come from [203]).

Figure VII.15 shows the functional architecture of the FCS in the CPAL graphical
syntax. The functional architecture specifies the processes, their activation pattern
and the data flows between them. For instance, the process az_filter executes at a
rate of 100Hz (i.e. Taz_filter = 10ms). It computes an output variable az_meas used
by another process named vz_controller from input variables Az_Filter_Conf
and az .

In addition, the CPAL model describes the logic of each process with a Finite-State
Machine (FSM). For example, the states of the FSM in Figure VII.16 implement two
distinct running modes of the altitude_holder process: Manual and Auto. The
operations in each state are specified in a textual syntax close to the syntax of the
C language, e.g. Altitude_Holder process in Listing VII.5.

VII.3.3 Problem: exploration of the design space

An architectural model captures different facets of a system. For instance, we used
AADL together with CPAL to represent three aspects of the FMS as shown in
Figure VII.17: the functions, the IMA platform that implements the functions and
the non-functional properties to comply with. We observe that the modeling views
depicted in Figure VII.17 are interdependent:

2The full AADLv2 textual model is part of the AADLib project, see http://www.openaadl.org
for more details.

144

http://www.openaadl.org

Chapter VII. Case studies

A
R

IN
C

 6
5

3
 M

o
d

u
le

A
F

D
X

 N
e

tw
o

r
k

F
igure

V
II.14:

O
verview

of
the

operational
architecture

of
the

Flight
M
anagem

ent
System

in
A
A
D
Lv2.

A
A
D
L

com
ponents

specify
the

A
R
IN

C
653

calculators
and

the
A
FD

X
network.

145

VII.3. Design space exploration of an avionic system

Figure VII.15: Functional architecture of the flight controller in CPAL.

Figure VII.16: Logic of the altitude_holder process defined as a Finite-State
Machine in CPAL.

146

Chapter VII. Case studies

1

2 process def Altitude_Holder (
3 in Flight_Mode : mode ,
4 in float64 : Vz_input ,
5 in float64 : Vz_link ,
6 in float64 : h_f ,
7 in float64 : h_input ,
8 out float64 : y
9)

10 {
11 static var float64 : integrator = 532.2730285;
12

13 state Auto {
14 var float64 : error = h_f - h_input ;
15

16 if (error < -50.0) {
17 y = Vz_link ;
18 } else if (error > 50.0) {
19

20 y = -Vz_link ;
21 } else {
22 /* Output */
23 y = Kp_h * error + Ki_h * integrator ;
24 /* state */
25 integrator = integrator + (float64 .as(self. period) / float64

.as(1s)) * error;
26 }
27 }
28 on (mode == MANUAL) to Manual ;
29

30 [...]
31

32 }

Listing VII.5: Textual description of the altitude_holder process in CPAL.

147

VII.3. Design space exploration of an avionic system

Allocation. The functional architecture must be allocated to the hardware archi-
tecture. The operational architecture maps both the functions and the variables to
the IMA platform. For example:

• we set the cyclic frame of the modules (MAFm and MIFm) according to the
periods of the functions (Tf): MAFs and MIFs are the lcm (least common
multiple) of the periods and the shorter period respectively,

• we define the duration of a module partition depending on the related function
execution time: Dmp ≥ Cf ,

• we set the parameters of the virtual links (bagv and smaxv) from the number
of messages to be sent by the linked function (nf), and the maximum size of
the messages that can be sent by this function (mf).

Compliance with the non-functional constraints. In addition, the opera-
tional architecture has to fulfill non-functional constraints. For instance:

• response time is the time needed to realize an activity,

• traversal times are communication delays between functions,

• end-to-end latencies encompass response times and traversal times.

One must take these constraints into account when defining the architecture:

• the parameters of the calculators (scheduling policies, execution times, etc.)
impact the response times,

• the configuration of the AFDX network (VLs parameters, topology and routing
strategies) influences the traversal times,

• the interaction between the platform components (calculators, networks) causes
latencies along functional chains.

Towards exploration of the design space. The problem is hence to explore
potentially large design spaces that integrate multiple interrelated views, e.g. func-
tional aspects, platform concerns, non-functional constraints. We show in the fol-
lowing that the automatic analysis of architectural models enables to explore and
evaluate many different design proposals. In particular, we explain how to dimension
some important platform parameters from a functional description of the system,
and fulfill the timing constraints.

VII.3.4 Application of our approach

We apply our approach to explore design proposals and evaluate them. We apply
a systematic analysis approach based on the AADL and CPAL models presented in
Section VII.3.2. In particular, we define several parameters of the avionic system in
order to meet the real-time constraints expressed at task and network levels.

148

Chapter VII. Case studies

Functional view
Non-functional

Functional view
view

Platform view

ARINC

653

ARINC

664

allocation compliance

Operational view

AADL

Architectural

model
capture

Figure VII.17: Different views captured in an architectural model An AADL
model describes the functions, the IMA platform that implements the functions and
the non-functional properties to comply with.

VII.3.4.A Analysis repository

We derive the analysis graph in Figure VII.18 from the analysis contracts. The
graph describes the analysis process that will enable us to check that the avionic
system represented with AADL and CPAL models (respectively aadl_model and
cpal_model nodes in the graph) respects the timing constraints (isSched node in
the graph). See Section VII.3.2 for a presentation of the AADL and CPAL models.

The analysis graph comprises two analysis flows that run separately at the beginning
of the process and then converge towards the same goal:

(1) the left-hand analysis flow, starting from the aadl_model, includes several
analyses in order to iteratively define the parameters of the AFDX network
and finally validate them;

(2) the right-hand analysis flow, starting from the cpal_model, enables to check
the schedulability of the tasks described in the CPAL model, which are part
of the ARINC653 processes to be represented in AADL;

(3) the distinct flows meet at the arinc653_dimensioning analysis. First, we
define the ARINC653 parameters in the AADL model from tasks parameters
defined in the CPAL model. Then, we validate the ARINC653 parameters.

We explain the various analysis flows in greater depth, providing experimental re-
sults, in the following sections.

VII.3.4.B From the analysis of CPAL processes to the definition of AR-
INC 653 modules

This first experimentation aim at fully validating the timing behavior of the software,
that is to verify that all the processes will meet their deadlines at run time. For
this purpose, we need to specify a new ARINC 653 module for the Flight Control
System.

149

VII.3. Design space exploration of an avionic system

2
b

2
a

1
4

5

6

7

8
3
a

3
b

(F
ligh

t M
an

agem
en

t S
ystem

)
(F

ligh
t C

o
n

tro
l S

ystem
)

F
igure

V
II.18:

A
nalysis

graph
for

the
avionic

case
study.

T
he

graph
describes

the
analysis

process
to

check
the

schedulability
ofthe

system
(isSched

goal)
depending

on
the

input
aadl_model

and
the

cpal_model.
B
lack

arrow
s
convey

data,red
arrow

s
involve

properties.

150

Chapter VII. Case studies

Ê WCET analysis and Ë (b) simulation. A CPAL model can be simulated
so as to evaluate the timing behavior of the software. The CPAL simulator uses the
following data:

• the scheduling algorithm which can be FIFO, NP-FP or NP-EDF in a CPAL
model,

• the task activation model that basically consists of few tasks parameters, e.g.
periods and offsets,

• timing annotations that may be execution times, jitters, priorities or deadlines.

The processes execute in zero time when the code is not annotated. Timing annota-
tions defined within a @cpal:time block specifies the timing behavior that must have
a CPAL program at run time. In the first place (step A), we measure the WCET
experienced by the processes on several target platforms with the help of the CPAL-
interpreter option --stats. Next (step B), we inject the measured WCET as timing
annotations in the CPAL model in order to make the simulation more accurate.

Table VII.7 and Table VII.8 summarize the WCET measured on two execution
platforms:

• Embedded Linux 64-bit: a laptop with a processor Intel Core i7-4710HQ @2,50GHz
(4 cores), 7895 MiB of RAM, and running under Ubuntu 14.10 operating sys-
tem,

• Raspberry Pi: a single-board embedded computer Raspberry Pi 2 - Model B
V1.1 with a processor ARM Cortex-A7 (Broadcom BCM2836) @900MHz (4
cores), 1 GiB of RAM, and running under Raspbian operating system.

Process WCET (µs)
Vertical
Speed Airspeed Climb

va_filter 298.961 71.177 39.989
vz_filter 218.330 70.387 103.836
q_filter 131.875 29.189 70.725
az_filter 55.561 71.162 43.751
h_filter 298.590 69.999 110.573
altitude_holder 43.108 70.526 74.800
vz_controller 207.780 270.470 123.423
va_controller 170.519 1326.751 32.260

Table VII.7: WCET measured on an Embedded Linux platform (wcet_analysis)
in the different running modes of the Flight Control System: vertical speed, airspeed
and climb modes.

Figure VII.19 shows the timing simulation of the CPAL model of the flight controller
in the Vertical Speed scenario. The bars represent process executions according to
the periods and offsets (which are null here). The processes are scheduled according
to a FIFO (First-In First-Out) policy, i.e. the processes are executed in the exact

151

VII.3. Design space exploration of an avionic system

Process WCET (µs)
Vertical
Speed Airspeed Climb

va_filter 498.210 241.769 259.894
vz_filter 188.797 252.915 192.916
q_filter 440.518 218.801 209.739
az_filter 3402.323 371.920 190.832
h_filter 543.221 303.957 238.227
altitude_holder 162.448 164.531 262.551
vz_controller 194.634 263.957 216.561
va_controller 208.125 232.967 241.405

Table VII.8: WCET measured on a Raspberry Pi platform (wcet_analysis) in
the different running modes of the Flight Control System: vertical speed, airspeed
and climb modes.

order of their activation. The widths of the bars represent the execution times of
the processes.

We observe from the simulation result in Figure VII.19 that the schedule fulfills
the timing constraints: (1) the process activation respects the periods; (2) only one
process is scheduled on the processor at every time; (3) all the processes complete
before their deadlines, i.e. before the activation of the next job.

Ë (a) Scheduling analysis. Static scheduling analyses (i.e. schedulability tests)
are in general safer than simulation. Indeed, the simulation of a valid schedule is usu-
ally a necessary condition while schedulability tests provide sufficient and, possibly,
necessary conditions. We evaluate the task response times from the CPAL model
with the help of the TkRTS tool. Table VII.9 shows the worst-case response times (i.e.
bound) under NP-FP scheduling in the Airspeed scenario. Table VII.10 displays the
worst-case response times under NP-EDF scheduling in the Climb scenario.

Algorithm Task C (ns) T (ns) D (ns) bound (ns) laxity (ns)

np-fp

altitude_holder 164531 20000000 20000000 2049989 17950011
va_controller 232967 20000000 20000000 2049989 17950011
vz_controller 263957 20000000 20000000 1885458 18114542
va_filter 241769 10000000 10000000 1652491 8347509
h_filter 303957 10000000 10000000 1410722 8589278
az_filter 371092 10000000 10000000 1146765 8853235
q_filter 218801 10000000 10000000 842808 9157192
vz_filter 252915 10000000 10000000 624007 9375993

Table VII.9: Worst-case response times computed by the rts_periodic_np anal-
ysis under NP-FP scheduling in the Airspeed scenario.

The results are conclusive in the two scenarios. Every calculated worst-case response
times (bound) is less than its related deadline D. Thus, every laxity, which is the
remaining time to deadline, is positive. Therefore, the task set is schedulable in

152

Chapter VII. Case studies

Figure VII.19: Timing simulation of the flight controller (cpal_simu) under FIFO
scheduling in the V erticalSpeed scenario.

Algorithm Task C (ns) T (ns) D (ns) bound (ns) laxity (ns)

np-
edf

va_controller 241405 20000000 20000000 1812125 18187875
vz_controller 216561 20000000 20000000 1812125 18187875
altitude_holder 262551 20000000 20000000 1812125 18187875
h_filter 238227 10000000 10000000 1354158 8645842
az_filter 190832 10000000 10000000 1354158 8645842
q_filter 209739 10000000 10000000 1354158 8645842
vz_filter 192916 10000000 10000000 1354158 8645842
va_filter 259894 10000000 10000000 1354158 8645842

Table VII.10: Worst-case response times computed by the rts_periodic_np anal-
ysis under NP-EDF scheduling in the Climb scenario.

153

VII.3. Design space exploration of an avionic system

the Airspeed scenario, resp. Climb scenario, according to the NP-FP scheduling
algorithm, resp. NP-EDF scheduling algorithm.

Í definition of ARINC653 partitions and Î validation. From a validated
schedule of the FCS processes, we can specify an ARINC 653 module M5 to host
these processes.

The simplest approach is actually to define a unique partition for all the processes.
We can simply dimension this partition from the parameters of the processes:

• the MAF5 is equal to the least common multiple of the process periods,

• a differentMIF5 is not necessary as there is only one partition, henceMIF5 =
MAF5,

• the duration to execute the single partition is D51 = MAF5

In this particular case, the scheduling analysis is quite trivial as there is only one
partition and the MAF is set to the hyperperiod of the processes. Figure VII.20
depicts a schedule of the FCS partitions and processes. The MAFs depict the rep-
etition of the major cycle. A unique partition is scheduled during this major cycle,
as represented with red rectangles. We note that the duration of the partition is
equal to the MAF. Finally, the CPAL processes are scheduled within the partition
according to a FIFO algorithm.

MAF MAF etc.

Figure VII.20: “Pen & paper” simulation of an ARINC 653 schedule (FCS module,
V erticalSpeed scenario).

If we choose a different partitioning of the processes (i.e. by assigning processes to
different partitions), we must use a specialized scheduling analysis. In fact, the global
schedule encompasses two hierarchical levels, i.e. the partition level schedule and
the process level schedule(s). For example, a compositional analysis methodology
could be applied to determine whether the processes are schedulable or not [204].

154

Chapter VII. Case studies

VII.3.4.C Iterative definition of the Bandwidth Allocation Gap (BAG)
from the AADL model

Let us consider an incomplete AADL model. The model in Listing VII.6 partly
specifies the system architecture: the modules that implement the functions and
part of the AFDX network (the connections between the functions and the network
devices). One problem is to allocate the dataflows to network resources (e.g. the
Virtual Links) and define the routing strategy. For example, in Listing VII.7, the
problem is to define the properties of a Virtual Link (e.g. the Bandwidth Allocation
Gap) that meet the latency constraints expressed on the dataflows.

At this stage, defining the BAG can be a difficult task. According to [202], any BAG
must be defined such that BAG= 2kms with k ∈ {1, 2, . . . , 7}. If we assume one VL
per dataflow then the design space comprises 8α solutions, with α is the number of
dataflows.

We visit the analysis graph in Figure VII.18. We use two analyses to define the
BAG:

1. bnh_bag_dimensioning to define the suitable BAG for each VL in the network,

2. pegase_nc_analysis that relies on Network Calculus to compute upper bounds
on communication delays (worst-case traversal times) in AFDX networks once
BAGs have been set.

Ï BAG definition from latency evaluation. We proposed in [205] an analysis
to evaluate the latency experienced by any message in the AFDX network, including
the delay in the end systems. The latency suffered by a message in the network is
the sum of the delays experienced in each crossed element: from the source end
system, through the successive switches, up to the destination end system(s). In few
words, the formula of the Worst-Cased Latency Time (WLn,v) suffered by the last
frame of the message n in the VL v is:

WLn,v = bagv×(pn,v−1+
n−1∑
k=1

pk,v)+
(
lag + 2× smaxv

BW
× (1 + rv) + jmax

)
+Dsw_v

(VII.1)

with

Dsw_v =

∑rv
k=1WSCLn,k

lag = 2×WETeL+ r ×WSTeL
subv − 1 = 1 (sub-vl are not considered)

From that formula, we can calculate the BAG of each VL to meet the latency
constraints expressed on the message LCn (i.e. WLn,v ≤ LCn):

bagv ≤
LCn −Dsw −

(
lag + 2× smaxv

BW × (1 + rv) + jmax
)

pn,v − 1 +
∑n−1
k=1 pk,v

(VII.2)

Thus, the model must provide several data to calculate the BAG:

• information about the messages: the maximal number of messages (nbrf) that
a function can send through a virtual link; the maximal size of each message
(mn); the latency constraint expressed on each message LCn,

155

VII.3. Design space exploration of an avionic system

1 -- This AADL model describes a basic architecture of the Flight
Management System

2

3 -- root system
4 system fms end fms;
5

6 -- system implementation = FMS architecture
7 system implementation fms.impl
8 subcomponents
9 -- ARINC653 modules

10 module1 : system subsystem :: m1_system .impl;
11 module2 : system subsystem :: m2_system .impl;
12 [...] -- other modules and devices
13

14 -- AFDX components
15 afdx_network : bus fms_hardware :: physical_afdx_link .impl;
16 sw1 : device subsystem :: afdx_switch ;
17 sw2 : device subsystem :: afdx_switch ;
18 sw3 : device subsystem :: afdx_switch ;
19

20 -- we define the data flow with connections
21 connections
22 nt_wpId : port module1 . ph_wpId1 -> module2 . ph_wpId1 ;
23 [...] --other connections between modules
24

25 flows
26 wpId_fl : end to end flow module1 . wpId_src ->
27 nt_wpId -> module2 . wpId_sink ;
28 [...] -- other data flow: wpInfo , query , answer , etc.
29

30 -- and we finally define the temporal constraints
31 properties
32 Latency => 0ms .. 15 ms applies to wpId_fl ;
33 [...] -- other latency constraints
34

35 -- one problem is to allocate the dataflow to Virtual Links
36 -- for instance :
37 Actual_connection_binding => (reference (afdx_network .VL1))
38 applies to nt_wpId ;
39

40 -- we must also define the routing strategy
41 end fms.impl;

Listing VII.6: Incomplete specification of the Flight Management System in
AADL. One problem is to allocate the dataflows to the Virtual Links.

156

Chapter VII. Case studies

1 -- This subpart of the AADL model defines the Virtual Links
2

3 virtual bus VL
4 properties
5 -- generic parameters from the standard
6 AFDX_Properties :: AFDX_Frame_Size => AFDX_Properties ::

AFDX_Std_Frame_Size ;
7 AFDX_Properties :: AFDX_Tx_Jitter => AFDX_Properties ::

AFDX_Std_Tx_Jitter ;
8 end VL;
9

10 -- definition of a Virtual Link
11 virtual bus implementation VL.vl1
12 properties
13 -- we must define the properties to meet the latency

constraints
14 AFDX_properties :: AFDX_Bandwidth_Allocation_Gap => 32 ms;
15 end VL.vl1;

Listing VII.7: Incomplete specification of a Virtual Link in AADL. The
problem is to define the Bandwidth Allocation Gap that meets the latency
constraints expressed on the dataflows.

• AFDX-specific parameters defined in the standard: the bandwidth (BW),
technological delays (lag) and a maximal transmission jitter in a end system
(jmax).

We can do the following assumptions if the other data are not set in the model:

• one virtual link is allocated to each dataflow (i.e. set of messages sent by a
function) with the same source/receiver(s) couple,

• the smaxv is set to:

– smaxv = mv + 67 bytes if mv ≤ 1471 bytes,
– its maximum value smaxv = 1538 bytes otherwise,

• all the messages can be fragmented, which means that pn,v ≥ 1 with
pn,v = d mn

smaxv−67e,

• if the routing strategy is missing, we assume that each VL crosses only one
switch: rv = Card(routev) = 1,

• if unknown, the delay in the switches Dsw_v = 0.

Ð Network Calculus. Network Calculus (NC) is a mathematical theory designed
to compute worst case performances of networks [119]. The Network Calculus theory
can be used to compute upper bounds on communication delays in AFDX networks.
For example, the NC has been used to certify the AFDX network of the Airbus’
A380 [206].

NC handles incoming flows expressed by an arrival curve α(t) and server elements
offering a minimal service specified through a service curve β(t). Given α(t) and
β(t), at time t, it is possible to estimate the backlog – the amount of bits held in the

157

VII.3. Design space exploration of an avionic system

network element – and the virtual delay – the delay suffered by a bit to cross the
element. The worst delay experienced by a flow in a server is given by the greatest
horizontal deviation between the curves: d = h(α, β). Furthermore, given an input
flow and a server, the output flow α∗(t) is α∗(t) = α(t+d). Afterwards, it is possible
to connect the output of a server to the input of another in order to propagate the
data flow along its route, and to compute the end-to-end delay.

We can use the NC technique to calculate the delay in the switches Dsw_v. For this
purpose, the model must detail the data needed to set the arrival curves belonging
to each virtual link v and the service offered by the end systems e and the switches
s:

• αv(t) depends on the bagv and the smaxv,

• βe(t) and βs(t) depend on smaxv, BW , lag and jmax.

We define smaxv, BW , lag and jmax as done for the BAG definition. In addition
to the VL parameters, the NC considers:

• the network topology made up of end systems, switches and links,

• the static routing table.

These data can either be part of the input model or we can assume them. In
particular, we can combine data from the model with assumptions. This brings
two advantages: (1) we can evaluate and, possibly, refine the network parameters
according to a virtual but realistic network configuration; (2) we can evaluate several
routing strategies.

We carry out the NC analysis with the help of the RTaW-Pegase tool [121]. We
also use NETAIRBENCH [207], an AFDX benchmark generator provided with the
RTaW-Pegase tool. NETAIRBENCH makes it possible to generate realistic avionic
networks according to user-defined parameters such as the number of elements, the
network traffic, etc. Figure VII.21 shows one instance of network generated by
NETAIRBENCH where the FMS and the FCS are included in a network architecture
of realistic size.

Iterative process. We execute the iterative process described in Figure VII.22.
We refine the model at each iteration (m1, m2 and m3) according to (1) analysis
results (successive BAGv and Dsw_v) and (2) modeling assumptions (as1, as2).

At Step 1 , the bnh_bag_dimensioning analysis (BAG in Figure VII.22) inputs
the incomplete model (m1, also represented in Listing VII.6) together with some
assumptions (as1) explained in the previous paragraphs (in particular, Dsw_v is
unknown and thus assumed to be null). We define five VLs for the FMS, fol-
lowing the assumption “one virtual link per dataflow”. Table VII.11 summarizes
the analysis results: the maximal BAGs that meet the latency constraints. Notice
that this first coarse-grained analysis discards 31328 incorrect BAG solutions, i.e.
“bag solutions for m1”− “bag solutions for m2” = 85 − 1440 = 31328.

We execute the pegase_nc_analysis (NC in Figure VII.22) at Step 2 . The NC
analysis evaluates the upper delay suffered by each frame in a Virtual Link (Dm2

sw_vli)

158

Chapter VII. Case studies

Figure VII.21: Realistic network architecture and background traffic generated
by the NETAIRBENCH tool. The topology and the background traffic are generated
from user-defined parameters such as the number of elements. A typical AFDX topol-
ogy can contain 100+ end systems and 8 switches. The AFDX switches form the cen-
tral backbone. The FMS and the FCS, represented with yellow-colored components,
are included in the overall network architecture generated by NETAIRBENCH.

from the first evaluation of the BAG. We defined each BAG in m2 with the highest
value available in the set of solutions computed by the bnh_bag_dimensioning.
In addition, we assume the topology computed by NETAIRBENCH described in
Figure VII.21 with an average utilization of switch ports of 25% (as2). We also
suppose a static shortest path routing. Table VII.12 details the analysis results
(Dm2

sw_vli).

At Step 3 , the bnh_bag_dimensioning analysis refines the BAG to meet the la-
tency constraints (LCm1

vli
) according to the delays computed by the pegase_nc_analysis.

We narrow the set of correct BAGs (BAGm3) for all the VL excepted for V L1 and
for V L2. Indeed, we observe that 720 additional solutions do not meet the latency
constraints as “bag solutions for m2”−“bag solutions for m3” = 1440−720 = 720.

At Step 4 , we must calculate the delays suffered by the frames in the Virtual
Links (Dm3

sw_vli) with the pegase_nc_analysis according to the new definition
of the BAGs (BAGm3

vli
); and then refine the sets of BAGs (BAGm4

vli
) with the

bnh_bag_dimensioning analysis if necessary (Step 5). This iteration from m3

159

VII.3. Design space exploration of an avionic system

BAG

m2
n ; m ; Lc ; Etc.

m1

n ; m ; Lc ; Etc.

as1

smax _1;

route _1;

as2BAG_1
D_SW

Step 1

Steps 3, 5

n ; m ; Lc ; Etc.

BAG_1 ;

smax_1 ;

route_1 ;

as2

topology_2 ;

route_2 ;NC

BAG_1

m3

n ; m ; Lc ; Etc.

BAG_2 ;

smax_1 ;

topology_2 ;

route_2 ;

NETAIR-

BENCH

topology,

route

BAG_2

average utilization of

switch ports=25%

Step 2

Step 4

Figure VII.22: Bandwidth Allocation Gap definition process. Defining the BAG
requires an iterative process of modeling and analysis, i.e. Steps 1 to 5. Model data
used at the various steps are represented on the left in blue-headed shapes. Analyses
are represented on the center in green and orange rectangles. Assumptions which
are represented on the right in purple-headed shapes may be required at certain steps
to move forward. Arrows depict analysis inputs and outputs.

shows that: (1) the delays in the VLs do not evolve (Dm3
sw_vli = Dm2

sw_vli); thus, (2) it
is not necessary to adjust the BAGs (BAGm4

vli
= BAGm3

vli
). We reach a fixed-point:

the model m3 cannot be refined anymore with respect to the Bandwidth Allocation
Gap if the analysis data (input data and assumptions) remain identical.

Virtual nm1 sas1
max LCm1 BAGm2

max BAGm2

Link (bytes) (ms) (ms) (ms)
V L1 2 142 15 14,27456 {1, 2, 4, 8}
V L2 3 692 15 7,04928 {1, 2, 4}
V L3 2 192 10 9,25856 {1, 2, 4, 8}
V L4 2 567 35 34,13856 {1, 2, 4, 8, 16, 32}
V L5 2 567 20 19,13856 {1, 2, 4, 8, 16}

Table VII.11: Results of the bnh_bag_dimensioning analysis at Step 1 The
analysis computes the set of suitable BAG from the input model m1 and assumptions
as1. AFDX parameters (BW , lag, jittermax) not appearing in the table are set
according to the standard. In addition, ras1

vli
= 1 and Dm1

sw_vli = 0.

160

Chapter VII. Case studies

Virtual sas1
max BAGm2 Dm2

sw LCm1 ras2 BAGm3

Link (bytes) (ms) (ms) (ms)
V L1 142 8 2,774 15 2 {1, 2, 4, 8}
V L2 692 4 2,922 15 2 {1, 2, 4}
V L3 192 8 3,118 10 2 {1, 2, 4}
V L4 567 32 2,774 35 2 {1, 2, 4, 8, 16}
V L5 567 16 4,189 20 3 {1, 2, 4, 8}

Table VII.12: Results of the pegase_nc_analysis at Step 2 and
bnh_bag_dimensioning analysis at Step 3 First, the NC analysis computes the
upper bound on communication delays in each VL (Dm2

sw_vli) from the highest BAG
calculated at the previous step, and maximal frame sizes. Then, the BAG analysis
computes the set of BAGs that meets the latency constraints LC. Apart from the
number of crossed switches (ras2

vli
), the other inputs remain identical.

VII.3.5 Conclusion

This third case study dealt with the design of a complex embedded system: an
avionic system composed of a Flight Management System (FMS) and a Flight Con-
trol System (FCS). Our design approach includes:

1. a description of the system architecture at different levels of abstraction: over-
all and operational architecture of the system in AADL, functional architecture
of the applications in CPAL,

2. a repository of multiple analyses: WCET, scheduling, communication delays,
various simulators, etc.

3. a tool that automatically executes analyses according to input models and
analysis goals.

We have been able to explore the design space of the avionic system from the system-
atic analysis of the architectural models. In particular, we defined several parameters
of the ARINC653 calculators and the AFDX network in order to fulfill the real-time
constraints.

VII.4 Summary and conclusion

In this chapter, we experimented the core concepts contributed in this thesis (see
chapters III, IV and V), and implemented through a tool prototype (see Chapter VI),
to resolve practical engineering problems. We systematically combine architectural
models and real-time scheduling analyses to design concrete embedded systems com-
ing from the aerospace domain. We presented three case studies: the timing vali-
dation of the Paparazzi drone, the design of the Mars Pathfinder system, and the
design of an avionic system composed of a Flight Management System (FMS) and
a Flight Control System (FCS).

These case studies show several use cases of our approach. Table VII.13 summarizes
the use cases encountered in this chapter.

161

VII.4. Summary and conclusion

`````````````̀Use cases
Case studies Paparazzi Pathfinder FMS

Interoperability 7 7 3

Interdependencies 3 3 3

Context-aware analysis 3 3 3

Iterative process 7 3 3

Table VII.13: Use cases of our approach shown through the case studies.

Interoperability: our approach separates models from accessors and from analyses.
Therefore, analyses are independent of models; or, in other words, analyses can
work with any architectural model for which an implementation of accessors to
model internals is provided. For example, we analyzed the avionic system equally
with AADL or CPAL models.

Interdependencies between analyses: for each case study, we evaluate analysis con-
tracts to initialize the analysis graph. This graph describes the data flow between
the analyses and, thereby, the precedences between these analyses. The analysis
graph is necessary to execute the analyses in a correct order (i.e. to preserve the
results) or to build wider analyses (i.e. to build a result). We experimented the two
cases in this chapter, for example when we check the preconditions before applying
an analysis (preserving results); or, when data computed by an analysis are used by
another (building results).

Context-aware analysis: our tool is able to adapt the analysis process depending on
an input model, available analyses and some analysis goals. In the Paparazzi UAV
case study, we were able to analyze the AADL models at different design stages with
suitable schedulability analyses in order to verify timing constraints. In the Mars
Pathfinder case study, we automatically chose schedulability analyses depending on
an AADL model. Thereby, we were able to select an appropriate analysis to detect
the design error that caused an important failure of the system during the Mars
Pathfinder mission.

Iterative process: more generally, we can apply an automatic or semi-automatic
design process that takes into account three parameters: a set of system models,
a repository of multiple analyses, and goals in terms of non-function requirements.
Analysis becomes an integral part of the design process as depicted in Figure VII.23:

• analyses determine whether the system models meet some non-functional re-
quirements (system validation),

• analyses enable to fulfill the non-functional requirements from a model (system
definition).

We applied the iterative process represented in Figure VII.23 to design a subpart
of the avionic system and, to a lesser extent, design the software architecture of the
Mars Pathfinder system. In the Mars Pathfinder case study, we applied different
scheduling analyses to AADL models in order to verify that the system satisfied
the timing constraints. We were able to detect the original design error with the
right analysis, correct the model and finally validate the corrected model. In the
more complex avionic case study, we combined different analyses so as to define

162



Chapter VII. Case studies

M A G

{ M } { {P} A {Q} } { G }

Figure VII.23: Iterative design process that includes modelsM, analyses A and
goals G.

and then validate the architecture of the avionic system based on AADL and CPAL
models. We defined important parameters of the ARINC653 calculators and the
AFDX network, including Virtual Link parameters for example, and validated them
with respect to the real-time constraints.

163



VII.4. Summary and conclusion

164



Chapter VIII

Conclusion

Abstract

This thesis dealt with the coupling between models and analyses so as to increase the
efficiency and quality of critical embedded systems development, especially through
Model-Driven Engineering. This penultimate chapter summarizes our contributions
regarding this problem and recaps the main results of this thesis. The last Chapter IX
details some possible perspectives and future works after this thesis.

VIII.1 Summary of the thesis

Non-functional requirements. The development of embedded systems is a com-
plex and critical task, especially because of the non-functional requirements. In fact,
embedded systems have to fulfill a set of non-functional properties dictated by their
environment, expressed for example in terms of timing, dependability, security, or
other performance criteria. In safety-critical applications for instance (e.g. an air-
plane), missing a non-functional requirement can have severe consequences, e.g. loss
of life, personal injury, equipment damage, environmental disaster, etc.

A better integration of the analysis of non-functional properties in Model-Driven
Engineering will increase the efficiency and quality of critical embedded systems
development. This thesis aims at providing a general and coherent view on this
problem by investigating two fundamental questions:

• How to apply an analysis on a model? (technical issue)

• How to manage the analysis process? (methodological issue)

In Part 1, we advanced several important concepts regarding the integration issue.

1) model query through accessors. First of all, we revisited the way model
transformations are done to accommodate specific analysis engines (Chapter III).
Arguing that an analysis is less based on a particular model syntax than specific
data, we promoted query mechanisms called accessors to analyze the non-functional
properties of a system at design time. These accessors enable to extract data from a

165



VIII.2. Main results

model and then analyze them. Expected benefit is that an analysis can be integrated
to any kind of model as soon as an implementation of accessors to model internals
is provided. Another advantage is that an analysis can be easily implemented by
using a general-purpose programming language (e.g. Python) instead of relying on
specific analysis engines.

2) semantics of an analysis. Next, we formalized the analysis process (Chap-
ter IV). We showed that an analysis is basically a program with preconditions and
postconditions. The preconditions are the properties to hold true on an input model
to successfully execute the analysis, whereas the postconditions are the properties
guaranteed on the model after the analysis execution. With preconditions and post-
conditions, an analysis is complete and sound. We showed that a full analysis,
including preconditions and postconditions, can be implemented through a combi-
nation of above-mentioned accessors and a general-purpose programming language
such as Python.

3) contract-driven analysis. We abstracted away from the execution aspect
through the notion of contract (Chapter V). A contract formally defines the in-
terfaces of an analysis in terms of processed data and properties. Inputs/Outputs
(I/O) describe input and output data. Assumptions/Guarantees (A/G) describe
input and output properties. Notice that the ‘data’ directly refer to data targeted
by the accessors, whereas the ‘properties’ relate to the preconditions and postcon-
ditions of the analysis. SAT resolution methods can then be used to automatically
reason about these interfaces, and provide greater automation of the analysis pro-
cess: which analysis can be applied on a given model? Which are the analyses that
meet a given goal? Are there analyses to be combined? Are there interferences
between analyses? Etc. In practice, contracts can be defined with the help of a
specification language such as Alloy, and evaluated through associated SAT solvers.

Then in Part 2, we implemented these concepts and experimented them through
various case studies.

4) prototyping and application. We implemented a proof-of-concept tool to
demonstrate and evaluate the concepts proposed in the first part of the thesis (Chap-
ter VI). This tool implements several functions, each one implementing a part of the
concepts introduced earlier. In particular, our tool provides accessors towards AADL
and CPAL models, various real-time scheduling analyses programmed in Python,
and an orchestration module based on Alloy. We finally illustrated the capabilities
of our approach to design concrete systems coming from the aerospace: a drone, an
exploratory robot and a flight management system (Chapter VII).

VIII.2 Main results

We experimented our contributions for the timing analysis of architectural mod-
els. On the one hand, we demonstrated that accessors enable to apply real-time
scheduling analyses onto different kinds of architectural models, e.g. written with
the industry standard AADL (Architecture and Analysis Design Language) or the

166



Chapter VIII. Conclusion

new time-triggered language CPAL (Cyber-Physical Action Language). In fact, the
benefit of using accessors is dual:

1. analyses can be applied on various types of models,

2. as analyses can originate from many models, one can combine these models to
build wider analyses.

In addition to accessors and analyses, contracts make it possible to automate com-
plex analysis procedures and, to some extent, to mechanize the design process itself.
From a modeling and analysis repository, we are able to define and execute the anal-
ysis process that fulfills precise goals, e.g. is the system schedulable? To answer this
final question, the analysis process may need to consider tasks and networks defined
in the models, compute some missing data in the model, build a sound analysis
order, etc.

The avionic case study provided a good illustration of the capabilities of our ap-
proach. We designed an avionic system made up of a Flight Management System
and a Flight Control System by combining two architectural descriptions languages
(i.e. AADL and CPAL) and various timing analyses. The models provided different
abstractions from which we were able to carry out the analysis process, whereas the
analysis process enabled us to size important timing parameters and finally validate
the system from these complementary views.

In conclusion, this thesis provided some arguments and contributions supporting
the idea that analysis should become a first-class artifact in the design of critical
embedded systems. Defining the coupling between models and analyses was a first
step in this direction. This thesis advanced important concepts to make analyses
visible and usable by engineers in the design workflow. Future work may improve
or extend the concepts presented in this thesis, relax some initial work hypotheses,
support the approach with more advanced tools or additional language constructs,
or explore the notions of design space and design space exploration through analysis
contracts. Chapter IX presents these perspectives in more detail.

167



VIII.2. Main results

168



Chapter IX

Perspectives

Abstract

In this chapter, we sketch several possible directions to continue the work initiated in
this thesis. Some of the future works are direct improvements that may be carried out
in the short term; others are part of more substantial research works to be pursued
on their own. We detail five possible lines of research that follow the development
of this thesis: immediate improvements and extensions of the concepts presented in
this thesis (Section IX.1), definition of (a) language(s) that improve(s) the efficiency
of these concepts (Section IX.2), development of a more advanced analysis and or-
chestration tool (Section IX.3), researches around the notions of design space and
design space exploration (Section IX.4), and several relaxations of the initial work
hypotheses (Section IX.5).

IX.1 Improvement and extension of the concepts

Part 1 presented several concepts so as to analyze the multiple non-functional prop-
erties of embedded systems in a MDE approach. A natural perspective will be to
enhance and/or extend these concepts. The next subsections propose some potential
improvements.

IX.1.1 Factorization of accessors

Accessors must be implemented in a one-to-one fashion, pairing an accessor imple-
mentation with a specific model (see Chapter III). Therefore, we must implement
as many accessors as there are technical spaces to address (i.e. metamodeling pyra-
mids).

A possible improvement will be to “factorize” accessor implementations. A particu-
lar way to proceed would be to implement something like an interchange data format
between several modeling environments. This approach will bring several benefits:

• reducing the number of accessor implementations: the number of accessor im-
plementations will be reduced to the number of interchange data formats,

169



IX.2. Analysis and orchestration language(s)

• further separation of concerns and reliability: being implemented in two parts
(i.e. generic accessors towards the interchange data formats at the highest
level, and generation of the interchange data formats at the lowest level) ac-
cessors will be more reliable.

The definition of a data interchange format can be a consensus a minima between
several domain experts (e.g. the rt-format to exchange data between tools perform-
ing real-time scheduling analyses); or can be defined through of a more systematic
approach (e.g. an ontology of analysis theories).

IX.1.2 Additional contract evaluations and strategies

Another improvement will be to enrich contracts (presented in Chapter V) with
quality metrics (e.g. rapidity of an analysis execution, precision of a result). This
will enable to handle the analysis dynamics more precisely: coarse-grained but fast
analyses can be used during the early design stages, e.g. for prototyping; in-depth
and costly analyses are more relevant at the last design stages (i.e. before the
implementation phase) when the early results should be consolidated. We note that
the evaluation of quality metrics adds little algorithmic complexity as it can be
performed on a weighted analysis graph, e.g. by looking for the shortest analysis
paths.

IX.2 Analysis and orchestration language(s)

The notion of language is prominent in this thesis. In fact, we mentioned multiple
languages throughout this thesis: architecture description languages to represent
a system architecture (AADL, CPAL), metalanguages to define metamodels, lan-
guages to program analyses (Python), languages to express constraints on models
(REAL, OCL) or specify contracts (Alloy).

Future works may investigate the set of languages that capture well the concepts
presented in this thesis. Defining one or several domain-specific languages would
improve the:

• effectiveness of the concepts through optimal implementation means,

• usability of these concepts by engineers through customized representations.

Several languages may be defined:

Analysis and query language to express both model queries and analysis op-
erations.

Constraint languages (e.g. OCL, REAL) can be used to express queries on models.
Yet, we note two important shortcomings with constraint languages. First, con-
straints languages are defined by specific metamodels (e.g. UML or AADL meta-
models) and, consequently, can only express queries on models defined by the same
metamodels. Secondly, these languages have a syntax that does not always enable to
describe easily the analysis logic (e.g. data structures, control flows, ore operations

170



Chapter IX. Perspectives

are limited). We showed in this thesis that a high-level programming language such
as Python is perfectly able to describe all the aspects of the analysis logic. However,
a general-purpose programming language can have a too rich syntax, and extra,
useless, features.

Thus, an ideal query and analysis language would provide an intermediate level of
abstraction between a constraint language providing model queries together with
analysis data structures, and a programming language providing the analysis logic
with control flows, basic operators, mathematical operators, etc.

Constraint and contract language in order to describe analysis contracts, i.e.
the analysis interfaces. In fact, contracts have two purposes: (1) check whether an
analysis can be applied on a model, (2) check whether the analyses can be combined.
Thus, the choice of the language is strongly related to its final use. In the first case,
a constraint language (e.g. OCL, REAL) or a classic programming language (e.g.
Python), may be sufficient. The second case is a constraint satisfaction problem.
We used Alloy that provided suitable abstractions to describe contracts and SAT
resolution methods to automatically reason about the analysis interfaces.

Other existing or original languages may be experimented in order to find the most
efficient way to capture contracts and evaluate them (for example, see works by
Ruchkin et al. [183] where the authors define contracts through an AADL annex
language).

Goal language to specify goals. In this thesis, we specified analysis goals through
their contracts in Alloy. Goals may be expressed through a dedicated formalism
(e.g. see the goal-structuring notation [208, 209]). A dedicated notation would
enable to exhaustively specify the goals in terms of expected data and/or properties,
and reason more about them (hierarchization of goals, definition of assumptions,
presentation of solutions, etc.).

IX.3 Analysis and orchestration tool

Part 2 firstly presented a proof-of-concept tool that implements the various concepts
introduced in this thesis (in Chapter VI). Through diverse case studies, we showed
that this tool is capable to automate the analysis process at design time but also to
enhance the design process by systematically combining models and analyses (see
Chapter VII). However, at this stage, our tool is not mature enough to be used
by engineers. An interesting direction will be to implement the concepts presented
in this thesis in a more advanced prototype, either as a standalone tool or as a
tool add-on (e.g. as an Eclipse plug-in). This working prototype would be used to
both carry on more experimentations and show the capabilities of our approach as a
demonstrator. We discuss possible lines of research and/or development hereinafter.

Models and accessors. Models and accessors form together the first part of the
prototype. We already implemented accessors towards AADL and CPAL models.
Accessors towards other architectural models will be implemented in the short term,
e.g. towards SysML, MARTE, Cheddar ADL, MoSaRT, etc.

171



IX.4. Supporting design space exploration through analysis

From accessors, it will be interesting to explore the modeling and analysis synergies
offered by these various kinds of models. First of all, system-wide models could be
used to represent all the essential aspects of a system: overall system representation
using SysML, operational architecture in AADL, functional architecture and real-
time executions in CPAL, etc. System-wide models may be completed with more
specialized models, representing particular system views: real-time (e.g. Cheddar
ADL, MoSaRT, MAST, etc.), behavioral, dependability, security, etc. All these
models may overlap (provide the same data), complement one another (provide
complementary data), or be totally distinct (provide different data).

Analysis repository. The analysis repository is the second fundamental compo-
nent of the tool. The analysis repository should be implemented in two parts. First,
every analysis must be programmed. For this purpose, we may use a constraint
language, a general-purpose programming language as done in this thesis, or use a
dedicated language (see Section IX.2). Secondly, it is necessary to add every analysis
to the repository. More advanced plug-in mechanisms may be provided to this end.

From a broad repository of models, accessors and analyses, we will be able to explore
more combinations of these elements, and, we hope so, implement more powerful
“analysis co-design” processes.

Feedbacks. Providing information about the analysis process, i.e. feedbacks,
would be a great functionality for the user. We envision three main types of feed-
backs, in addition to raw analysis results:

• analysis solutions to indicate the analyses that are applicable on a model, sig-
nify the analyses that fulfill the goals, show the possible analysis combinations,
show all the analysis paths, or only the optimal analysis paths with respect to
some quality metrics (e.g. complexity, rapidity, precision), etc.

• advanced analysis results to explain the analysis results, notify the corrections
to make on a model if necessary, provide an integration of results in models,
etc.

• debugging to point out the missing data to apply an analysis, handle assump-
tions, provide a full trace of the analysis process, indicate which part of the
analysis process is to be re-executed when a model is modified, etc.

From effective feedbacks, we may greatly improve the way engineers interact with
models and analyses when designing an embedded system, thereby increasing the
impact of models and analyses on the design process.

IX.4 Supporting design space exploration through anal-
ysis

This thesis emphasized on the coupling between models and analyses so as to design
embedded systems. Applying our solutions on concrete case studies coming from
the aerospace (see Chapter VII), we showed that our approach enables not only to

172



Chapter IX. Perspectives

automate the analysis process at design time but also to automate some part of
the design process through analysis. In other words, analysis, as a set of model
assessment activities, is an integral part of the design process.

Hence, a natural research direction would be to explore more deeply such a design
that encompasses models and analyses, i.e. the notion of design space quickly saw
through the avionic case study (see Section VII.3). The main idea would be to define
the overall system (i.e. design space) and process (i.e. design space exploration) that
includes the notions of models and analyses. For example, we will define (1) the
elements that make up the design space (models, analyses, goals, etc.); and (2) the
techniques that enable to explore the design space (algorithms, constraints solving,
heuristics, optimization techniques, etc.).

This substantial research work will build on our contributions to move forward
the formal definition of the design process and its automation. Bridges may exist
with more specialized works: requirements engineering, systems synthesis, systems
optimization, etc.

1.3. THE DESIGN PROCESS

ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.

8 Lee & Seshia, Introduction to Embedded Systems

Figure IX.1: Modeling and analysis in the design process (replicated from Fig-
ure II.18). In future works, we may define more precisely how models and analyses
drive the design process.

IX.5 Relaxing the work hypotheses

In this thesis, we sought to define generic concepts that can be applied as widely
as possible, i.e. concepts that are not specific to particular modeling or analysis
domains. We successfully applied these concepts to architectural models and real-
time scheduling analyses.

Widening abstraction levels and analysis domains. A major challenge is
now to apply these concepts to other types of models and analyses. We believe
that our approach provides enough stability and genericness for this purpose. Yet,

173



IX.5. Relaxing the work hypotheses

some improvements and/or extensions may be necessary in order to address new
abstraction levels, or other analysis domains. For example, in another analysis
context such as model-checking, the analysis must be realized at a different level of
abstraction, i.e. on a behavioral model (Petri nets, behavioral annex or AADL, etc.)
rather than at the architectural level. In consequence, extensions and improvements
include:

(1) New accessors to address various kinds of models: architectural, behavioral, etc.
In the short term, accessors towards models at the same level of abstraction as AADL
and CPAL will be implemented with a minimum of effort (e.g. UML-based languages
SysML and MARTE, or analysis-specific languages such as MoSaRT, Cheddar ADL
and MAST, synchronous dataflow languages). Accessors towards other types of
abstractions will require more investigations to precisely define the analysis data
structures and mappings with metamodels,

(2) Enriched contracts to express and evaluate all types of analysis interfaces, i.e.
all types of data and properties that can be computed by analyses. We can proceed
as follows:

(a) list the interface types for different analysis domains (real-time, behavioral,
dependability, security, etc.)

(b) define the suitable means to express these types of interfaces (for example
the type of logic to use: First-Order Logic, Linear Temporal Logic, etc.); and
maybe propose new methods to evaluate them (SAT resolution methods, SMT
resolution methods, etc.).

Application to the development of complex systems? We restricted our
study to a specific development phase (the design phase) and a particular type of
system (embedded systems). We believe that our approach is more general than
just these activities and systems. Future works may experiment our approach to
support other development phases such as requirements engineering, implementa-
tion, and even the operational phase; and target all complex systems which have
non-functional requirements.

174



Appendix A

Summary of publications

This appendix provides a list of the publications issued from this thesis. We pre-
sented the motivations behind this thesis in a position paper [HB14]. The Confer-
ence paper [BHN15] introduced contract-driven analysis and constituted the core of
Chapter V. Proposed Journal article [BHN17] will provide an overview of the sys-
tematic analysis problem, thus covering the most important aspects of Chapter IV
and Chapter V, and some parts of Chapter VI. Part of the Flight Management Sys-
tem case study in Chapter VII has been published as a Technical Report [BHN13a],
and presented in a short version in a Workshop [BHN13b].

References

[BHN13a] G. Brau, J. Hugues, and N. Navet. Refinement of AADL models using
early-stage analysis methods. In Gabor Karsai David Broman, editor,
Proceedings of the 4th Analytic Virtual Integration of Cyber-Physical Sys-
tem (AVICPS) Workshop, pages 29–32, Vancouver, Canada, December 3
2013. Linköping University Electronic Press.

[BHN13b] G. Brau, J. Hugues, and N. Navet. Refinement of AADL models using
early-stage analysis methods – An avionics example. Technical Report
TR-LASSY-13-06, Laboratory for Advanced Software Systems, 2013.

[BHN15] G. Brau, J. Hugues, and Nicolas Navet. A contract-based ap-
proach for goal-driven analysis. In 18th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC). IEEE, 2015.

[BHN17] G. Brau, J. Hugues, and N. Navet. Towards the systematic analysis of
non-functional properties in model-based systems engineering. Science
of Computer Programming, 2017.

[HB14] J. Hugues and G. Brau. Analysis as a first-class citizen: An application
to architecture description languages. In Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on, pages 214–221, June 2014.

175



176



List of Figures

I.1 Introduction and discovery of faults in a development process supported
by the V-model (taken from [1]). . . . . . . . . . . . . . . . . . . . . . 2

I.2 Analysis supported via model transformation process. . . . . . . . . . 4

II.1 Embedded systems model (according to [23]). . . . . . . . . . . . . . 12
II.2 Interaction between an embedded system and the external physical world. 13
II.3 Waterfall development process model (according to [38]). . . . . . . . . 15
II.4 Relationships between a model, a subject system and a language (ac-

cording to [46]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
II.5 Components of a language (according to [49]) . . . . . . . . . . . . . . 17
II.6 Metamodeling approach (according to [46]) . . . . . . . . . . . . . . . 18
II.7 Metamodeling pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
II.8 Components involved in a model transformation (according to [16]). . 20
II.9 Positioning of Architecture Description Languages in the waterfall de-

velopment process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
II.10 Simplified metamodel of AADL (taken from [67]) . . . . . . . . . . . . 23
II.11 Graphical representation of the main AADL components (taken from

[18]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
II.12 A monitoring process in CPAL (taken from [19]). . . . . . . . . . . . . 29
II.13 Gantt diagram representing the execution of the processes defined in

Listing II.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
II.14 Representation of a real-time periodic task with a Gantt diagram (taken

from [125]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
II.15 An example of schedule produced by the Deadline Monotonic algorithm

(taken from [125]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
II.16 Intersection between Model-Driven Engineering and Model-Based En-

gineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
II.17 Link between Architecture Description Languages and model-based

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
II.18 Modeling and analysis in the design process (taken from Lee and Seshia

[17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III.1 Elements involved in an analysis and their relationships. . . . . . . . . 44
III.2 Two use cases of accessors with domain-specific models. . . . . . . . . 45
III.3 Proposed Application Programming Interface. . . . . . . . . . . . . . . 47
III.4 Data structure of a periodic task model represented with a class diagram. 49
III.5 Data structure to represent several type of tasks with a class diagram. 49
III.6 Data structure to represent dependent tasks with a class diagram. . . 51
III.7 Dependent tasks represented in the CPAL graphical syntax. . . . . . . 51
III.8 Data structure to represent DAG tasks with a class diagram. . . . . . 52
III.9 Application layers in our prototype. . . . . . . . . . . . . . . . . . . . 53

177



List of Figures

III.10 Process Flowchart describing the procedure to get a data structure from
the data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III.11 Analysis based on a model transformation. . . . . . . . . . . . . . . . . 56
III.12 Analysis of a design-specific model via a pivot model. . . . . . . . . . . 57
III.13 Data access vs. model transformation. . . . . . . . . . . . . . . . . . . 58
III.14 The special case of transformation-based analyses. . . . . . . . . . . . 59

IV.1 Usual representation of a real-time task with a Gantt diagram (repli-
cated from Figure II.14). . . . . . . . . . . . . . . . . . . . . . . . . . 62

IV.2 Elementary model-based analysis process. . . . . . . . . . . . . . . . . 64
IV.3 Process Flowchart describing the analysis execution. . . . . . . . . . . 67
IV.4 Analysis of an architectural model using accessors. . . . . . . . . . . . 72

V.1 Architecture-centric Model-Based Systems Engineering process supported
by AADL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V.2 An example of design workflow. . . . . . . . . . . . . . . . . . . . . . . 81
V.3 Analysis as a mathematical function. . . . . . . . . . . . . . . . . . . . 82
V.4 Models, analyses and goals in the design workflow of a real-time system. 83
V.5 Representation of a contract. . . . . . . . . . . . . . . . . . . . . . . . 85
V.6 Example of precedences between models, analyses and goals. . . . . . 88
V.7 Process Flowchart for contract-driven analysis. . . . . . . . . . . . . . 89
V.8 Proposed toolchain for the proof-of-concept. . . . . . . . . . . . . . . . 94
V.9 Visualization of a solution found by the Alloy analyzer for contracts

specified in Alloy (satellite system case study). . . . . . . . . . . . . . 97
V.10 Contract processing time CPT = GT + RT dependence of the input

model complexity OAADL. . . . . . . . . . . . . . . . . . . . . . . . . . 98

VI.1 Modular and layered tool architecture. . . . . . . . . . . . . . . . . . . 106
VI.2 Object-oriented tool architecture. . . . . . . . . . . . . . . . . . . . . . 107
VI.3 Sequence diagram describing a typical tool execution. . . . . . . . . . 109
VI.4 Process Flowchart describing the procedure to get a data structure from

the data model (replicated from Figure III.10). . . . . . . . . . . . . . 111
VI.5 Implementation of CPAL accessors by means of the cpal2x tool. . . . 112
VI.6 Using accessors to generate a tool-specific data file. . . . . . . . . . . . 112
VI.7 Files of the Alloy workspace. . . . . . . . . . . . . . . . . . . . . . . . 117
VI.8 Example of analysis graph to be visited by the orchestration module. . 119
VI.9 Workflow supported by the tool. . . . . . . . . . . . . . . . . . . . . . 120

VII.1 Architecture of the Paparazzi system in AADL . . . . . . . . . . . . . 125
VII.2 Analysis graph for the Paparazzi UAV case study. . . . . . . . . . . . 128
VII.3 Analysis process during the first design stage of the Paparazzi UAV. . 128
VII.4 Analysis paths executed at each design stage of the Paparazzi UAV. . 131
VII.5 Hardware architecture of the Mars Pathfinder system in AADL. . . . . 133
VII.6 Software architecture of the Mars Pathfinder system in AADL. . . . . 135
VII.7 Faulty schedule of the Mars Pathfinder task set (taken from [126]). . . 136
VII.8 Analysis graph for the Mars Pathfinder case study. . . . . . . . . . . . 137
VII.9 Analysis process performed from the original AADL model of the Mars

Pathfinder system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
VII.10 Simulation of an invalid schedule of the Mars Pathfinder task set com-

puted with Cheddar (cheddar_simu). . . . . . . . . . . . . . . . . . . 139

178



List of Figures

VII.11 Analysis process performed from the corrected AADL model of the
Mars Pathfinder system. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

VII.12 Functional architecture of the flight management system. . . . . . . . 142
VII.13 Interface between the Flight Management System and the Flight Con-

trol System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
VII.14 Overview of the operational architecture of the Flight Management

System in AADLv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
VII.15 Functional architecture of the flight controller in CPAL. . . . . . . . . 146
VII.16 Logic of the altitude_holder process defined as a Finite-State Ma-

chine in CPAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
VII.17 Different views captured in an architectural model . . . . . . . . . . . 149
VII.18 Analysis graph for the avionic case study. The graph describes the

analysis process to check the schedulability of the system (isSched
goal) depending on the input aadl_model and the cpal_model. Black
arrows convey data, red arrows involve properties. . . . . . . . . . . . 150

VII.19 Timing simulation of the flight controller (cpal_simu) under FIFO
scheduling in the V erticalSpeed scenario. . . . . . . . . . . . . . . . . 153

VII.20 “Pen & paper” simulation of an ARINC 653 schedule (FCS module,
V erticalSpeed scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VII.21 Realistic network architecture and background traffic generated by the
NETAIRBENCH tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

VII.22 Bandwidth Allocation Gap definition process. . . . . . . . . . . . . . . 160
VII.23 Iterative design process that includes modelsM, analyses A and goals G.163

IX.1 Modeling and analysis in the design process (replicated from Figure II.18).173

179



List of Figures

180



List of Tables

II.1 Platforms supported by the CPAL interpreter. . . . . . . . . . . . . . 30
II.2 Some special features of usual model-based analysis approaches. . . . . 33
II.3 Usual real-time task parameters. . . . . . . . . . . . . . . . . . . . . . 34
II.4 Characteristics of some scheduling algorithms used in this thesis. . . . 36

III.1 Mapping between the element of the data structure and the elements
of the AADL and Python metamodels for the periodic task model. . . 49

V.1 Data defined in the periodic task model M0. . . . . . . . . . . . . . . . 84
V.2 Two models provided by schedulability analyses. . . . . . . . . . . . . 84
V.3 Properties required to apply the Liu and Layland’s schedulability test. 84
V.4 Contracts for the various models, analyses and goals from Section V.2.1. 86
V.5 Several metrics defining the complexity of the AADL models. . . . . . 95

VII.1 Task parameters of the Paparazzi UAV (taken from [191] and [194]). . 126
VII.2 Analysis preconditions for the Paparazzi case study. . . . . . . . . . . 127
VII.3 Result of the rts_periodic_npfp analysis computed via the TkRTS tool. 129
VII.4 Result of the rts_periodic_npedf analysis computed via the TkRTS tool 129
VII.5 Task parameters of the Mars Pathfinder system (taken from [126]). . . 135
VII.6 Analysis preconditions for the Mars Pathfinder case study. . . . . . . . 137
VII.7 WCET measured on an Embedded Linux platform (wcet_analysis)

in the different running modes of the Flight Control System: vertical
speed, airspeed and climb modes. . . . . . . . . . . . . . . . . . . . . . 151

VII.8 WCET measured on a Raspberry Pi platform (wcet_analysis) in the
different running modes of the Flight Control System: vertical speed,
airspeed and climb modes. . . . . . . . . . . . . . . . . . . . . . . . . . 152

VII.9 Worst-case response times computed by the rts_periodic_np analysis
under NP-FP scheduling in the Airspeed scenario. . . . . . . . . . . . 152

VII.10Worst-case response times computed by the rts_periodic_np analysis
under NP-EDF scheduling in the Climb scenario. . . . . . . . . . . . . 153

VII.11 Results of the bnh_bag_dimensioning analysis at Step 1 . . . . . . 160
VII.12 Results of the pegase_nc_analysis at Step 2 and bnh_bag_dimensioning

analysis at Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
VII.13 Use cases of our approach shown through the case studies. . . . . . . . 162

181



List of Tables

182



List of Listings

II.1 Producer/consumer software elements in AADL. . . . . . . . . . . . 24
II.2 Producer/consumer system in AADL. . . . . . . . . . . . . . . . . . 25
II.3 CPAL program with timing annotations. . . . . . . . . . . . . . . . . 30
III.1 Periodic task model represented with a class in Python. . . . . . . . 48
III.2 Periodic task model represented with a Thread in AADL. . . . . . . 48
III.3 A schedulability analysis defined in Python. . . . . . . . . . . . . . . 55
IV.1 An example of REAL theorem. . . . . . . . . . . . . . . . . . . . . . 68
IV.2 Independent tasks theorem. . . . . . . . . . . . . . . . . . . . . . . . 69
IV.3 A complete schedulability test implemented in REAL. . . . . . . . . 71
IV.4 Definition of a precondition through a Python function. . . . . . . . 73
IV.5 Three functions defined in Python to check preconditions. . . . . . . 73
IV.6 A complete schedulability test implemented in Python. . . . . . . . . 74
V.1 Basic signatures of the Alloy specification. . . . . . . . . . . . . . . . 92
V.2 Specification of an analysis contract. . . . . . . . . . . . . . . . . . . 92
V.3 Additional constraints on signatures and fields expressed with facts. 93
VI.1 Definition and use of a simplified data model in a Python program. . 110
VI.2 Implementation of a specific AADL accessor using the OCARINA-

Python API (ListOfTasks accessor). . . . . . . . . . . . . . . . . . . 113
VI.3 An example of schedulability analysis written in Python. . . . . . . . 115
VI.4 Example of function that outsources the analysis to a third-party tool.116
VI.5 Creation and visit of an analysis graph in a Python program. . . . . 118
VI.6 Record of a typical tool execution displayed in the terminal. . . . . . 121
VII.1Result of the srl_rm_test computed via our tool. . . . . . . . . . . 130
VII.2Result of the lss_sporadic_test computed via our tool. . . . . . . . 131
VII.3Extension and correction of the original AADL model of the Mars

Pathfinder system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
VII.4Result of the srl_pcp_test computed via our tool. . . . . . . . . . . 140
VII.5Textual description of the altitude_holder process in CPAL. . . . 147
VII.6Incomplete specification of the Flight Management System in AADL. 156
VII.7Incomplete specification of a Virtual Link in AADL. . . . . . . . . . 157

183



List of Listings

184



Bibliography

[1] P. H. Feiler, J. Hansson, D. De Niz, and L. Wrage, “System architecture virtual
integration: An industrial case study,” DTIC Document, Tech. Rep., 2009.

[2] R. France and B. Rumpe, “Model-driven development of complex software: A
research roadmap,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 37–54.

[3] SAE International, Architecture Analysis and Design Language (AADL) AS-
5506A, Std., 2009.

[4] P. Cuenot, P. Frey, R. Johansson, H. Lonn, Y. Papadopoulos, M.-O. Reiser,
A. Sandberg, D. Servat, R. Tavakoli Kolagari, M. Torngren, and M. Weber,
“The EAST-ADL Architecture Description Language for Automotive Embed-
ded Software,” in Model-Based Engineering of Embedded Real-Time Systems.
Springer, 2011, pp. 297–307.

[5] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour,
J.-L. Maté, K. Nishikawa, and T. Scharnhorst, “Automotive open system ar-
chitecture - an industry-wide initiative to manage the complexity of emerging
automotive e/e-architectures,” Convergence International Congress & Exposi-
tion On Transportation Electronics, pp. 325–332, 2004.

[6] B. Selic and S. Gerard, Modeling and Analysis of Real-Time and Embedded
Systems with UML and MARTE: Developing Cyber-Physical Systems, ser. The
MK/OMG Press. Morgan Kaufmann, 2013.

[7] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, De-
sign, ser. The MK/OMG Press. Morgan Kaufmann, 2008.

[8] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real
time scheduling framework,” in ACM SIGAda Ada Letters, vol. 24, no. 4.
ACM, 2004, pp. 1–8, software available at http://beru.univ-brest.fr/~singhoff/
cheddar/.

[9] M. González Harbour, J. G. García, J. P. Gutiérrez, and J. D. Moyano, “Mast:
Modeling and analysis suite for real time applications,” in 13th Euromicro
Conference on Real-Time Systems (ECRTS). IEEE, 2001, pp. 125–134, soft-
ware available at http://mast.unican.es/.

[10] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Inter-
national Journal on Software Tools for Technology Transfer (STTT), vol. 1,
no. 1, pp. 134–152, 1997.

185

http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://mast.unican.es/


Bibliography

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2010: A toolbox
for the construction and analysis of distributed processes,” in Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer, 2011, pp.
372–387.

[12] B. Xu and M. Lu, “A survey on verification and analysis of non-functional
properties of aadl model based on model transformation,” in 5th International
Conference on Education, Management, Information and Medicine (EMIM).
Atlantis Press, 2015.

[13] Object Management Group (OMG), Meta Object Facility (MOF) Core Speci-
fication Version 2.5, Std., June 2015.

[14] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse mod-
eling framework. Addison-Wesley, 2008.

[15] F. Jouault and I. Kurtev, “Transforming models with atl,” in Workshop on
Model Transformations in Practice (MTiP), 2005.

[16] M. Amrani, “Towards the Formal Verification of Model Transformations:
An Application to Kermeta,” Ph.D. dissertation, University of Luxembourg,
november 2013.

[17] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-physical
systems approach. Lee & Seshia, 2011.

[18] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An In-
troduction to the SAE Architecture Analysis & Design Language. Addison-
Wesley, 2012.

[19] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer, “Lean Model-Driven Devel-
opment through Model-Interpretation: the CPAL design flow,” in Embedded
Real-Time Software and Systems (ERTS), 2016.

[20] J. A. Stankovic, “Misconceptions about real-time computing: A serious prob-
lem for next-generation systems,” Computer, no. 10, pp. 10–19, 1988.

[21] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory:
A historical perspective,” Real-Time Systems, vol. 28, no. 2-3, pp. 101–155,
2004.

[22] T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,” in
International Symposium on Formal Methods. Springer, 2006, pp. 1–15.

[23] T. Noergaard, Embedded systems architecture: a comprehensive guide for en-
gineers and programmers. Newnes, 2012.

[24] P. Koopman, “Design constraints on embedded real time control systems,”
1990.

[25] A. Burns and A. Wellings, Real-Time Systems and Programming Languages:
Ada, Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational
Publishers Inc, 2009.

186



Bibliography

[26] P. Marwedel, Embedded system design: Embedded systems foundations of
cyber-physical systems. Springer Science & Business Media, 2010.

[27] P. Koopman, “Embedded system design issues (the rest of the story),” in
Computer Design: VLSI in Computers and Processors, 1996. ICCD’96. Pro-
ceedings., 1996 IEEE International Conference on. IEEE, 1996, pp. 310–317.

[28] D. Harel and A. Pnueli, “On the development of reactive systems,” in Logics
and models of concurrent systems. Springer, 1985, pp. 477–498.

[29] H. Kopetz, Real-time systems: design principles for distributed embedded ap-
plications. Springer Science & Business Media, 2011.

[30] A. Burns, “Scheduling hard real-time systems: a review,” Software Engineer-
ing Journal, vol. 6, no. 3, pp. 116–128, 1991.

[31] G. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Springer Science & Business Media, 2011, vol. 24.

[32] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time Systems.
Springer, 2005.

[33] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. IEEE, 2007, pp. 239–243.

[34] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of
Computer Science, University of York, Tech. Rep, 2013.

[35] J. C. Knight, “Safety critical systems: challenges and directions,” in Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Confer-
ence on. IEEE, 2002, pp. 547–550.

[36] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions on
dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[37] I. Sommerville, Software Engineering, seventh edition ed., Addison-Wesley,
Ed., 2004.

[38] W. W. Royce, “Managing the development of large software systems,” in pro-
ceedings of IEEE WESCON, vol. 26, no. 8. Los Angeles, 1970, pp. 328–338.

[39] B. W. Boehm, “A spiral model of software development and enhancement,”
Computer, vol. 21, no. 5, pp. 61–72, 1988.

[40] J. Bézivin, “On the unification power of models,” Software & Systems Model-
ing, vol. 4, no. 2, pp. 171–188, 2005.

[41] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda frame-
work,” in Automated Software Engineering, 2001.(ASE 2001). Proceedings.
16th Annual International Conference on. IEEE, 2001, pp. 273–280.

187



Bibliography

[42] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
“Viewpoints: A framework for integrating multiple perspectives in system
development,” International Journal of Software Engineering and Knowledge
Engineering, vol. 2, no. 01, pp. 31–57, 1992.

[43] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software, vol. 12,
no. 6, pp. 42–50, 1995.

[44] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[45] D. Ghosh, DSLS IN ACTION. Wiley India Pvt. Limited, 2011. [Online].
Available: https://books.google.lu/books?id=9U9TpwAACAAJ

[46] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional, 2003.

[47] G. Booch, I. Jacobson, and J. Rumbaugh, “The unified modeling language
reference manual,” 1999.

[48] D. Harel and B. Rumpe, “Meaningful modeling: what’s the semantics of"
semantics"?” Computer, vol. 37, no. 10, pp. 64–72, 2004.

[49] B. Combemale, “Approche de métamodélisation pour la simulation et la véri-
fication de modèle–application à l’ingénierie des procédés,” Ph.D. dissertation,
Institut National Polytechnique de Toulouse-INPT, 2008.

[50] X. Blanc and O. Salvatori, MDA en action: Ingénierie logicielle guidée par les
modèles. Editions Eyrolles, 2011.

[51] A. Kleppe, Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008.

[52] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving executability into
object-oriented meta-languages,” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2005, pp. 264–278.

[53] I. Kurtev, J. Bézivin, and M. Akşit, “Technological spaces: An initial ap-
praisal,” 2002.

[54] J. Bézivin, I. Kurtev et al., “Model-based technology integration with the
technical space concept,” in Metainformatics Symposium, vol. 20, 2005, pp.
44–49.

[55] J.-M. Favre, J. Estublier, and M. Blay-Fornarino, “L’ingénierie dirigée par
les modèles: au delà du mda, traité ic2, série informatique et systèmes
d’information,” 2006.

[56] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim, E. Syriani, and
M. Wimmer, “Towards a model transformation intent catalog,” in Proceedings
of the First Workshop on the Analysis of Model Transformations. ACM, 2012,
pp. 3–8.

[57] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim, E. Syr-
iani, and M. Wimmer, “Model transformation intents and their properties,”
Software & systems modeling, pp. 1–38, 2014.

188

https://books.google.lu/books?id=9U9TpwAACAAJ


Bibliography

[58] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 125–142, 2006.

[59] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, vol. 45, no. 3. USA,
2003, pp. 1–17.

[60] A. Kleppe, “Mcc: A model transformation environment,” in European Confer-
ence on Model Driven Architecture-Foundations and Applications. Springer,
2006, pp. 173–187.

[61] Object Management Group (OMG), Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.3, Std., June 2016.

[62] I. Kurtev, “State of the art of qvt: A model transformation language stan-
dard,” in International Symposium on Applications of Graph Transformations
with Industrial Relevance. Springer, 2007, pp. 377–393.

[63] P. C. Clements, “A survey of architecture description languages,” in Proceed-
ings of the 8th international workshop on software specification and design.
IEEE Computer Society, 1996, p. 16.

[64] N. Medvidovic and R. N. Taylor, “A classification and comparison framework
for software architecture description languages,” IEEE Transactions on soft-
ware engineering, vol. 26, no. 1, pp. 70–93, 2000.

[65] P. Binns, M. Englehart, M. Jackson, and S. Vestal, “Domain-specific software
architectures for guidance, navigation and control,” International Journal of
Software Engineering and Knowledge Engineering, vol. 6, no. 02, pp. 201–227,
1996.

[66] S. Vestal, “Metah support for real-time multi-processor avionics,” in Parallel
and Distributed Real-Time Systems, 1997. Proceedings of the Joint Workshop
on. IEEE, 1997, pp. 11–21.

[67] J. Hugues, “Architecture in the Service of Real-Time Middleware,” Institut
Sup’erieur de l’A’eronautique et de l’Espace (ISAE), HDR, 2017.

[68] SAE/AS2-C, Data Modeling, Behavioral and ARINC653 Annex document for
the Architecture Analysis & Design Language v2.0 (AS5506A), October 2009.

[69] O. Yassine, G. Emmanuel, and H. Jérôme, “Mapping AADL models to a
repository of multiple schedulability analysis techniques,” in 16th IEEE In-
ternational Symposium on Object/component/service-oriented Real-time dis-
tributed Computing, IEEE, Ed., jun 2013, p. 8.

[70] Y. Ouhammou, “Model-based framework for using advanced scheduling theory
in real-time systems design,” Ph.D. dissertation, Ecole Nationale Supérieure
de Mécanique et d’Aérotechique de Poitiers, december 2013.

[71] O. Sokolsky, I. Lee, and D. Clarke, “Schedulability Analysis of AADL Models,”
in 20th International Parallel & Distributed Processing Symposium (IPDPS).
IEEE, 2006.

189



Bibliography

[72] O. Sokolsky and A. Chernoguzov, “Analysis of AADL Models Using Real-
Time Calculus with Applications to Wireless Architectures,” University of
Pennsylvania Department of Computer and Information Science, Tech. Rep.
No. MS-CIS-08-25., July 2008.

[73] M.-Y. Nam, K. Kang, R. Pellizzoni, K.-J. Park, J.-E. Kim, and L. Sha, “Mod-
eling Towards Incremental Early Analyzability of Networked Avionics Systems
Using Virtual Integration,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 11, no. 4, pp. 81:1–81:23, 2013.

[74] X. Renault, F. Kordon, and J. Hugues, “Adapting models to model checkers,
a case study: Analysing aadl using time or colored petri nets,” in 20th Inter-
national Symposium on Rapid System Prototyping (RSP). IEEE, 2009, pp.
26–33.

[75] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, and F. Ver-
nadat, “Formal verification of AADL specifications in the Topcased environ-
ment,” in 14th International Conference on Reliable Software Technologies
Ada-Europe. Springer, 2009, pp. 207–221.

[76] J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, and Z. Yang, “Towards
a verified transformation from aadl to the formal component-based language
fiacre,” Science of Computer Programming, vol. 106, pp. 30–53, 2015.

[77] P. C. Ölveczky, A. Boronat, and J. Meseguer, “Formal semantics and analy-
sis of behavioral aadl models in real-time maude,” in Formal Techniques for
Distributed Systems. Springer, 2010, pp. 47–62.

[78] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated verifi-
cation of aadl-specifications using uppaal,” in 14th International Symposium
on High-Assurance Systems Engineering (HASE). IEEE, 2012, pp. 130–138.

[79] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time com-
ponents in bip,” in Fourth IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM’06). Ieee, 2006, pp. 3–12.

[80] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Translating aadl into
bip-application to the verification of real-time systems,” in Models in Software
Engineering. Springer, 2009, pp. 5–19.

[81] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2011: a toolbox for
the construction and analysis of distributed processes,” International Journal
on Software Tools for Technology Transfer, vol. 15, no. 2, pp. 89–107, 2013.

[82] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “From aadl model to lnt
specification,” in 20th International Conference on Reliable Software Tech-
nologies Ada-Europe. Springer, 2015, pp. 146–161.

[83] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri,
“The COMPASS Approach: Correctness, Modelling and Performability of
Aerospace Systems,” in Proceedings of the 28th International Conference
on Computer Safety, Reliability, and Security, ser. SAFECOMP ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 173–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04468-7_15

190

http://dx.doi.org/10.1007/978-3-642-04468-7_15


Bibliography

[84] A.-E. Rugina, “Dependability modeling and evaluation–from aadl to stochastic
petri nets,” Ph.D. dissertation, Institut National Polytechnique de Toulouse,
2007.

[85] A.-E. Rugina, K. Kanoun, and M. Kaâniche, “The ADAPT tool: From AADL
architectural models to stochastic petri nets through model transformation,”
in Dependable Computing Conference, 2008. EDCC 2008. Seventh European,
2008.

[86] J. Hansson, B. Lewis, J. Hugues, L. Wrage, P. Feiler, and J. Morley, “Model-
Based Verification of Security and Non-Functional Behavior using AADL,”
IEEE Security & Privacy, vol. PP, no. 99, pp. 1–1, 2009.

[87] J. Delange, L. Pautet, and F. Kordon, “Design, verification and implementa-
tion of mils systems,” in Proceedings of the 21th International Symposium on
Rapid System Prototyping, 2010, pp. 1–8.

[88] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An Envi-
ronment for AADL Models Analysis and Automatic Code Generation for
High Integrity Applications,” in 14th International Conference on Reliable
Software Technologies Ada-Europe. Springer, 2009, software available at
http://www.openaadl.org/ocarina.html.

[89] Y. Ma, H. Yu, T. Gautier, J.-P. Talpin, L. Besnard, and P. Le Guernic, “Sys-
tem synthesis from aadl using polychrony,” in Electronic System Level Synthe-
sis Conference (ESLsyn), 2011. IEEE, 2011, pp. 1–6.

[90] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens, “Virtual
execution of AADL models via a translation into synchronous programs,” in
7th International Conference on Embedded Software (EMSOFT). ACM, 2007,
pp. 134–143.

[91] R. Varona-Gomez and E. Villar, “AADL Simulation and Performance
Analysis in SystemC,” in Proceedings of the 2009 14th IEEE International
Conference on Engineering of Complex Computer Systems, ser. ICECCS ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 323–328. [Online].
Available: http://dx.doi.org/10.1109/ICECCS.2009.11

[92] A. Johnsen and K. Lundqvist, “Developing Dependable Software-Intensive
Systems: AADL vs. EAST-ADL,” in Ada-Europe 2011, A. Romanovsky
and T. Vardanega, Eds. Springer-Verlag, June 2011, pp. 103–117. [Online].
Available: http://www.es.mdh.se/publications/1753-

[93] M. Faugere, T. Bourbeau, R. de Simone, and S. Gerard, “MARTE: Also an
UML Profile for Modeling AADL Applications,” Engineering of Complex Com-
puter Systems, IEEE International Conference on, vol. 0, pp. 359–364, 2007.

[94] R. Behjati, T. Yue, S. Nejati, L. Briand, and B. Selic, “Extending sysML
with AADL Concepts for Comprehensive System Architecture Modeling,” in
Proceedings of the 7th European Conference on Modelling Foundations and
Applications, ser. ECMFA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
236–252.

191

http://www.openaadl.org/ocarina.html
http://dx.doi.org/10.1109/ICECCS.2009.11
http://www.es.mdh.se/publications/1753-


Bibliography

[95] C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard, “Optimum: A MARTE-
based Methodology for Schedulability Analysis at Early Design Stages,” SIG-
SOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–8, Jan. 2011.

[96] S. Bernardi, J. Merseguer, and D. Petriu, “A dependability profile within
MARTE,” Software & Systems Modeling, vol. 10, no. 3, pp. 313–336, 2011.

[97] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling and
assessment in uml-based software development,” The Scientific World Journal,
vol. 2012, 2012.

[98] D.-J. Chen, R. Johansson, H. Lönn, H. Blom, M. Walker, Y. Papadopoulos,
S. Torchiaro, F. Tagliabo, and A. Sandberg, “Integrated safety and architec-
ture modeling for automotive embedded systems,” Elektrotechnik und Infor-
mationstechnik, vol. 128, no. 6, pp. 196–202, 2011.

[99] D. Chen, L. Feng, T.-N. Qureshi, H. Lonn, and F. Hagl, “An architectural
approach to the analysis, verification and validation of software intensive em-
bedded systems,” Computing, vol. 95, no. 8, pp. 649–688, 2013.

[100] J. Hugues and G. Brau, “Analysis as a First-Class Citizen: An Application
to Architecture Description Languages,” in IEEE 17th International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC), June 2014, pp. 214–221.

[101] L. Fejoz and N. Navet, The CPAL Programming Language: An introduction,
v1.05 ed., RealTime-at-Work and University of Luxembourg, October 2016.

[102] A. Benveniste and G. Berry, “The synchronous approach to reactive and real-
time systems,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1270–1282, 1991.

[103] N. Halbwachs, Synchronous programming of reactive systems. Springer Sci-
ence & Business Media, 2013, vol. 215.

[104] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-triggered
language for embedded programming,” in Embedded software. Springer, 2001,
pp. 166–184.

[105] F. Maraninchi and Y. Rémond, “Mode-automata: a new domain-specific con-
struct for the development of safe critical systems,” Science of computer pro-
gramming, vol. 46, no. 3, pp. 219–254, 2003.

[106] S. Altmeyer and N. Navet, “The case for fifo scheduling,” technical report from
the University of Luxembourg, to appear, Tech. Rep., 2015.

[107] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data
flow programming language lustre,” in Proceedings of the IEEE, vol. 79, no. 9.
IEEE, 1991, pp. 1305–1320.

[108] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous programming
with events and relations: the signal language and its semantics,” Science of
Computer Programming, vol. 16, no. 2, pp. 103–149, 1991.

192



Bibliography

[109] G. Berry and G. Gonthier, “The esterel synchronous programming lan-
guage: Design, semantics, implementation,” Science of Computer Program-
ming, vol. 19, no. 2, pp. 87–152, 1992.

[110] J. Forget, “A Synchronous Language for Critical Embedded Systems with
Multiple Real-Time Constraints,” Ph.D. dissertation, Université de Toulouse,
2009.

[111] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A real-time architecture
design language for multi-rate embedded control systems,” in 25th Symposium
on Applied Computing (SAC). ACM, 2010, pp. 527–534.

[112] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system design,”
Journal of Circuits, Systems, and Computers, vol. 12, no. 03, pp. 261–303,
2003.

[113] G. Berry, “Scade: Synchronous design and validation of embedded control
software,” in Next Generation Design and Verification Methodologies for Dis-
tributed Embedded Control Systems. Springer, 2007, pp. 19–33.

[114] Y. Ma, H. Yu, T. Gautier, P. L. Guernic, J. Talpin, L. Besnard, and M. Heitz,
“Toward polychronous analysis and validation for timed software architectures
in AADL,” in Design, Automation and Test in Europe (DATE), 2013, pp.
1173–1178.

[115] Z. Yang, K. Hu, J.-P. Bodeveix, L. Pi, D. Ma, and J.-P. Talpin, “Two formal
semantics of a subset of the aadl,” in 16th International Conference on Engi-
neering of Complex Computer Systems (ICECCS). IEEE, 2011, pp. 344–349.

[116] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 8, no. 2, pp.
244–263, 1986.

[117] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, 1962.

[118] R. Alur and D. Dill, “Automata for modeling real-time systems,” in Inter-
national Colloquium on Automata, Languages, and Programming. Springer,
1990, pp. 322–335.

[119] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. Springer Science & Business Media, 2001,
vol. 2050.

[120] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and
linearity: an algebra for discrete event systems. John Wiley & Sons Ltd,
1992.

[121] M. Boyer, J. Migge, and M. Fumey, “PEGASE - A Robust and Efficient
Tool for Worst-Case Network Traversal Time Evaluation on AFDX,” in SAE
AeroTech Congress & Exhibition, Toulouse, France, October 18-21 2011,
http://www.realtimeatwork.com/software/rtaw-pegase/.

[122] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John
Wiley & Sons, 2011.

193

http://www.realtimeatwork.com/software/rtaw-pegase/


Bibliography

[123] M. Utting and B. Legeard, Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

[124] N. Audsley and A. Burns, “Real-time system scheduling,” Tech. Rep., 1990.

[125] T. Kloda, “Conditions dordonnançabilité pour un langage dirigé par le
temps,” Ph.D. dissertation, Université de Toulouse (Institut Supérieur de
l’Aéronautique et de l’Espace), 2015.

[126] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in real-time
systems, 2002.

[127] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multi-
processor systems,” ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 35,
2011.

[128] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1,
pp. 46–61, 1973.

[129] E. Bini and G. Buttazzo, “A hyperbolic bound for the rate monotonic algo-
rithm,” in Real-Time Systems, 13th Euromicro Conference on, 2001. IEEE,
2001, pp. 59–66.

[130] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[131] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-preemptive real-
time uniprocessor scheduling,” Inria, Tech. Rep., 1996.

[132] M. Stigge and W. Yi, “Graph-based models for real-time workload: a survey,”
Real-Time Systems, vol. 51, no. 5, pp. 602–636, 2015.

[133] S. Friedenthal, R. Griego, and M. Sampson, “Incose model based systems
engineering (mbse) initiative,” in INCOSE 2007 Symposium, 2007.

[134] J. A. Estefan, “Survey of Model-Based Systems Engineering (MBSE) Method-
ologies,” INCOSE MBSE Initiative, Tech. Rep., 2007.

[135] Software Engineering Institute, “OSATE2 : An open-source tool platform for
AADLv2,” https://wiki.sei.cmu.edu/aadl/index.php/Osate_2, june 2016.

[136] J.-M. Favre, “Towards a basic theory to model model driven engineering,” in
3rd Workshop in Software Model Engineering, WiSME. Citeseer, 2004, pp.
262–271.

[137] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the prototype to the
final embedded system using the Ocarina AADL tool suite,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 7, no. 4, pp. 42:1–42:25,
2008.

[138] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and F. Kordon,
“Validate, simulate, and implement ARINC653 systems using the AADL,”
in SIGAda annual international conference on Ada and related technologies,
ser. SIGAda ’09, New York, NY, USA, 2009, pp. 31–44. [Online]. Available:
http://doi.acm.org/10.1145/1647420.1647435

194

https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
http://doi.acm.org/10.1145/1647420.1647435


Bibliography

[139] MathWorks, “Simulink - Simulation and Model-Based Design,” https://www.
mathworks.com/products/simulink.html (accessed January, 2017).

[140] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[141] A. Khoroshilov, I. Koverninskiy, A. Petrenko, and A. Ugnenko, “Integrating
aadl-based tool chain into existing industrial processes,” in 2011 16th IEEE
International Conference on Engineering of Complex Computer Systems, 2011.

[142] M.-Y. Nam, R. Pellizzoni, L. Sha, and R. M. Bradford, “ASIIST: Applica-
tion Specific I/O Integration Support Tool for Real-Time Bus Architecture
Designs,” in 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS). Potsdam, Germany: IEEE Computer Society,
2-4 June 2009, pp. 11–22.

[143] N. Wirth, Algorithms+ data structures= programs. Prentice Hall PTR, 1978.

[144] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide to
the standard relational language SQL. Addison-Wesley Longman, 1993, vol.
55822.

[145] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu, “Xquery 1.0: An xml query language,” 2002.

[146] A. K. Mok, “Fundamental design problems of distributed systems for the hard-
real-time environment,” 1983.

[147] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” Software
Engineering, IEEE Transactions on, vol. 23, no. 10, pp. 635–645, 1997.

[148] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe tasks,”
Real-Time Systems, vol. 17, no. 1, pp. 5–22, 1999.

[149] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Transactions on Computers
(TC), vol. 39, no. 9, pp. 1175–1185, 1990.

[150] V. Gaudel, A. Plantec, F. Singhoff, J. Hugues, P. Dissaux, and J. Legrand,
“Enforcing Software Engineering Tools Interoperability: An Example with
AADL Subsets,” in International Symposium on Rapid System Prototyping
(RSP). IEEE, 2013.

[151] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufil-
let, F. Lang, and F. Vernadat, “Fiacre: an Intermediate Language for Model
Verification in the Topcased Environment,” in Embedded Real-Time Software
(ERTS) Congress 2008, Toulouse, France, 2008.

[152] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Apply-
ing new scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

195

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html


Bibliography

[153] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task
model,” in 17th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS). IEEE, 2011, pp. 71–80.

[154] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedulabil-
ity, decidability and undecidability,” Information and Computation, vol. 205,
no. 8, pp. 1149–1172, 2007.

[155] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communi-
cations of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[156] O. Gilles and J. Hugues, “Expressing and enforcing user-defined constraints of
AADL models,” in 5th UML and AADL Workshop (UML and AADL 2010),
2010.

[157] J. B. Warmer and A. G. Kleppe, The object constraint language: getting your
models ready for MDA. Addison-Wesley, 2003.

[158] J. Cabot and M. Gogolla, “Object constraint language (ocl): a definitive
guide,” in Formal methods for model-driven engineering. Springer, 2012,
pp. 58–90.

[159] Object Management Group, Object Constraint Language, Version 2.4, Std.,
February 2014.

[160] O. Gilles, “Vers une prise en compte fine de la plate-forme cible dans la con-
struction des systemes temps réel embarqués critiques par ingénierie des mod-
eles,” Ph.D. dissertation, Télécom ParisTech, 2010.

[161] O. Gilles and J. Hugues, “A mde-based optimisation process for
real-time systems,” in 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, 2010, pp. 50–57.

[162] V. Gaudel, “Des patrons de conception pour assurer l’analyse d’architectures:
un exemple avec l’analyse d’ordonnancement,” Ph.D. dissertation, Université
de Bretagne Occidentale, november 2014.

[163] Y. Ouhammou, E. Grolleau, P. Richard, and M. Richard, “Reducing the Gap
Between Design and Scheduling,” in 20th International Conference on Real-
Time and Network Systems (RTNS). ACM, 2012, pp. 21–30.

[164] P. Dissaux and F. Singhoff, “Stood and cheddar: Aadl as a pivot language for
analysing performances of real time architectures,” in 4th European Congress
on Embedded Real Time Software and Systems (ERTS), 2008, p. 21.

[165] A. Plantec, F. Singhoff, P. Dissaux, and J. Legrand, “Enforcing applicability of
real-time scheduling theory feasibility tests with the use of design-patterns,”
in Leveraging Applications of Formal Methods, Verification, and Validation.
Springer, 2010, pp. 4–17.

[166] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini, P. Dissaux, and J. Legrand,
“An Ada Design Pattern Recognition Tool for AADL Performance Analysis,”
in Annual International Conference on Special Interest Group on the Ada Pro-
gramming Language (SIGAda). ACM, 2011, pp. 61–68.

196



Bibliography

[167] G. Lasnier, “Une approche intégrée pour la validation et la génération de
systèmes critiques par raffinement incrémental de modèles architecturaux,”
Ph.D. dissertation, Télécom ParisTech, 2012.

[168] M. Vaziri and D. Jackson, “Some shortcomings of ocl, the object constraint
language of uml.” in TOOLS (34), 2000, pp. 555–562.

[169] D. Jackson, Software Abstractions: logic, language, and analysis. MIT press,
2012.

[170] SAE/AS2-C, “Architecture Analysis & Design Language V2 (AS5506A),” Jan.
2009.

[171] RealTime-at-Work, “RTaW-Sim: Controller Area Network simulation
and configuration,” http://www.realtimeatwork.com/software/rtaw-sim/ (ac-
cessed January, 2017).

[172] “Open AADL/AADLib – Library of reusable AADL Models,” http://www.
openaadl.org/aadlib.html, (accessed January, 2017).

[173] A. Burns, B. Dobbing, and G. Romanski, “The ravenscar tasking profile for
high integrity real-time programs,” in International Conference on Reliable
Software Technologies. Springer, 1998, pp. 263–275.

[174] M. Lauer, “Une méthode globale pour la vérification d’exigences temps réel
- Application à l’Avionique Modulaire Intégrée,” Ph.D. dissertation, Institut
National Polytechnique de Toulouse, 2012.

[175] C. Spitzer, U. Ferrell, and T. Ferrell, Digital avionics handbook. CRC Press,
2014.

[176] R. W. Floyd, “Assigning meanings to programs,” Mathematical aspects of com-
puter science, vol. 19, no. 19-32, p. 1, 1967.

[177] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis, “Multiple viewpoint contract-based specification and design,” in
Formal Methods for Components and Objects. Springer, 2007, pp. 200–225.

[178] B. Meyer, “Applying “Design by Contract",” Computer, vol. 25, no. 10, pp.
40–51, 1992.

[179] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming dr.
frankenstein: Contract-based design for cyber-physical systems*,” European
journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[180] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-physical system
design contracts,” in Proceedings of the ACM/IEEE 4th International Confer-
ence on Cyber-Physical Systems. ACM, 2013, pp. 109–118.

[181] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinke-
meier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K. Larsen,
“Contracts for systems design: Theory,” Inria Rennes Bretagne Atlantique,
Tech. Rep., 2015.

197

http://www.realtimeatwork.com/software/rtaw-sim/
http://www.openaadl.org/aadlib.html
http://www.openaadl.org/aadlib.html


Bibliography

[182] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “Contract-based integration
of cyber-physical analyses,” in 14th International Conference on Embedded
Software (EMSOFT). ACM, 2014, p. 23.

[183] ——, “Active: A tool for integrating analysis contracts,” in 5th Analytic Vir-
tual Integration of Cyber-Physical Systems Workshop (AVICPS). LiU Elec-
tronic Press, 2014.

[184] I. Ruchkin, A. Rao, D. De Niz, S. Chaki, and D. Garlan, “Eliminating
inter-domain vulnerabilities in cyber-physical systems: An analysis contracts
approach,” in Proceedings of the First ACM Workshop on Cyber-Physical
Systems-Security and/or PrivaCy. ACM, 2015, pp. 11–22.

[185] M. Walker, M.-O. Reiser, S. Tucci-Piergiovanni, Y. Papadopoulos, H. Lönn,
C. Mraidha, D. Parker, D. Chen, and D. Servat, “Automatic optimisation
of system architectures using EAST-ADL,” Journal of Systems and
Software, vol. 86, no. 10, pp. 2467 – 2487, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121213000885

[186] F. Cadoret, “Génération stratégique de code pour la maîtrise des performances
de systèmes temps-réel embarqués,” Ph.D. dissertation, Télécom ParisTech,
2014.

[187] J. Migge, “Scheduling of recurrent tasks on one processor : a trajectory based
model,” Ph.D. dissertation, Université de Nice, 1999.

[188] P. Brisset, A. Drouin, M. Gorraz, P.-S. Huard, and J. Tyler, “The paparazzi
solution,” in 2nd US-European Competition and Workshop on Micro Air Ve-
hicles (MAV), 2006.

[189] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De Michiel, “Pa-
pabench: a free real-time benchmark,” in 6th International Workshop on
Worst-Case Execution Time Analysis (WCET), 2006.

[190] “Paparazzi - the free autopilot,” http://wiki.paparazziuav.org/wiki/Main_
Page, (accessed January, 2017).

[191] F. Nemer, “Optimisation de l’estimation du wcet par analyse inter-tâche du
cache d’intructions,” Ph.D. dissertation, Université de Toulouse, Université
Toulouse III-Paul Sabatier, 2008.

[192] Institut de Recherche en Informatique de Toulouse (TRACES team), “Pa-
pabench,” https://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?
id_rubrique=97, (accessed January, 2017).

[193] F. Nemer, H. Cassé, P. Sainrat, and J. P. Bahsoun, “Inter-task wcet com-
putation for a-way instruction caches,” in 2008 International Symposium on
Industrial Embedded Systems. IEEE, 2008, pp. 169–176.

[194] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “On the effectiveness of
cache partitioning in hard real-time systems,” Real-Time Systems, pp. 1–46,
2016.

198

http://www.sciencedirect.com/science/article/pii/S0164121213000885
http://wiki.paparazziuav.org/wiki/Main_Page
http://wiki.paparazziuav.org/wiki/Main_Page
https://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
https://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97


Bibliography

[195] J. P. Lehoczky, “Enhanced aperiodic responsiveness in hard real-time environ-
ments,” in Proceedings of the IEEE Symposium on Real-Time Systems, 1987,
pp. 261–270.

[196] G. Bernat and A. Burns, “New results on fixed priority aperiodic servers,” in
Real-Time Systems Symposium, 1999. Proceedings. The 20th IEEE. IEEE,
1999, pp. 68–78.

[197] J. Migge, TkRts: A tool for computing response time bounds (v 0.5.5), Decem-
ber 2000.

[198] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-real-
time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[199] Jet Propulsion Laboratory, NASA (website), “Mission to mars, mars
pathfinder / sojourner rover,” http://www.jpl.nasa.gov/missions/details.php?
id=5913 (accessed September, 2016).

[200] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The rosace case
study: from simulink specification to multi/many-core execution,” in 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2014, pp. 309–318.

[201] ARINC Report 653P0 Avionics Application Software Standard Interface, Part
0, Overview of ARINC 653. Aeronautical Radio Incorporated.

[202] ARINC Report 664P7-1 Aircraft Data Network, Part 7, Avionics Full-Duplex
Switched Ethernet Network. Aeronautical Radio Incorporated.

[203] L. Fejoz, “ROSACE Case Study: A CPAL implementation (version 1.0),”
RealTime-at-Work, Tech. Rep., September 2016.

[204] J. P. Gonçalves Crespo Craveiro, “Real-Time Scheduling in Multicore Time-
and Space-Partitioned Architectures,” Ph.D. dissertation, Universidade de Lis-
boa, 2013.

[205] G. Brau, J. Hugues, and N. Navet, “Refinement of AADL models using early-
stage analysis methods – An avionics example,” Laboratory for Advanced
Software Systems, Tech. Rep. TR-LASSY-13-06, 2013.

[206] F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize
the AFDX network,” in European Congress on Embedded Real-Time Software,
Toulouse France, 2006.

[207] M. Boyer, N. Navet, and M. Fumey, “Experimental assessment of timing veri-
fication techniques for AFDX,” in European Congress in Embedded Real Time
Software and Systems (ERTS), Toulouse, France, February 1-3 2012.

[208] T. Kelly and R. Weaver, “The goal structuring notation–a safety argument no-
tation,” in Proceedings of the dependable systems and networks 2004 workshop
on assurance cases. Citeseer, 2004.

[209] G. W. Group, GSN COMMUNITY STANDARD VERSION 1, http://www.
goalstructuringnotation.info/, Std., 2011.

199

http://www.jpl.nasa.gov/missions/details.php?id=5913
http://www.jpl.nasa.gov/missions/details.php?id=5913
http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/

	Abstract
	Résumé
	Acknowledgements
	Remerciements
	Contents
	Introduction
	Context and motivations
	Non-functional requirements in embedded systems
	Development process: combining models and analyses
	The need to couple models and analyses

	Problem statement
	How to apply an analysis on a model?
	How to manage the analysis process?

	Lines of research and contributions
	Technical integration through model query
	Semantics of an analysis and contract-driven analysis
	Proof-of-concept analysis and orchestration tool

	Work hypotheses
	Thesis organization

	1 Concepts
	Background
	Embedded systems
	Hardware and software architecture
	Non-functional constraints
	Development process

	Model-Driven Engineering
	What is a model?
	Notions of metamodeling
	Notions of model transformation
	Case study: Architecture Description Languages
	AADL: the Architecture Analysis and Design Language
	CPAL: the Cyber-Physical Action Language


	Model-based analysis
	Main analysis approaches
	Case study: real-time task scheduling analysis
	Real-time task model
	Scheduling
	Scheduling analysis


	Discussion
	Model-Driven Engineering or Model-Based Engineering?
	Link between ADLs and analysis
	Design process: Design vs. Modeling vs. Analysis

	Summary and conclusion

	Model query through accessors
	Rationale behind model query
	Identifying the analysis elements
	Accessors
	Implementation through an Application Programming interface

	Data structures for the analysis of real-time systems
	The basic periodic task model and its extensions
	The periodic task model
	Later developments

	Graph-based task models
	Dependency graph
	Directed acyclic graphs


	Implementation of the Data Access API in Python
	Data Structure, Data Model and Accessors
	Analysis

	Discussion
	Related works
	Data access vs. model transformation

	Summary and conclusion

	Semantics of an analysis
	Introductory example: model-based real-time scheduling analysis
	Semantics of an analysis
	Implementation of the analysis
	Proposed approach
	A first implementation with constraint languages
	REAL at a glance
	Application to the Liu and Layland's schedulability test
	Lessons learned in using REAL

	Implementation through accessors and Python
	Motivations for Python
	Application to the Liu and Layland's schedulability test

	Constraint Language vs. accessors+Python
	Other possible implementations

	Discussion: related works
	Summary and conclusion

	Contract-driven analysis
	Motivating context: analysis in a design process supported by an architectural language
	Contracts
	Preliminary definitions: models, analyses and goals
	Contracts
	Properties of contracts: complementarity and precedence

	Contract-driven analysis
	Proposed approach
	Proof-of-concept with Alloy
	Alloy at a glance
	Toolchain
	Experimentation and lessons learned


	Discussion
	Related works
	Improvements

	Summary and conclusion


	2 Application
	Tool prototype
	Tool architecture
	General architecture and basic functions
	Object-oriented design

	Key elements of implementation
	Data model and data structure
	Accessors
	Analysis
	Orchestration

	Working with the tool
	Summary and conclusion

	Case studies
	Continuous validation of the Paparazzi UAV design
	System overview
	Problem: timing validation throughout the design process
	Application of our approach
	Conclusion

	Correct design of the Mars pathfinder system
	System overview
	Problem: dealing with the original design error
	Application of our approach
	Conclusion

	Design space exploration of an avionic system
	System overview
	Avionic system
	Integrated Modular Avionics platform

	Co-modeling with AADL and CPAL
	Problem: exploration of the design space
	Application of our approach
	Analysis repository
	From the analysis of CPAL processes to the definition of ARINC 653 modules
	Iterative definition of the Bandwidth Allocation Gap (BAG) from the AADL model

	Conclusion

	Summary and conclusion


	Conclusion
	Summary of the thesis
	Main results

	Perspectives
	Improvement and extension of the concepts
	Factorization of accessors
	Additional contract evaluations and strategies

	Analysis and orchestration language(s)
	Analysis and orchestration tool
	Supporting design space exploration through analysis
	Relaxing the work hypotheses

	Summary of publications
	List of Figures
	List of Tables
	List of Listings
	Bibliography



