

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Anaïs FINZI

lundi 11 juin 2018

Specification and analysis of an extended AFDX with TSN/BLS shapers for
mixed-criticality avionics applications

Spécification et analyse d'un AFDX étendu avec TSN/BLS pour des applications
avioniques de criticités mixtes

ED MITT : Réseaux, télécom, système et architecture

Équipe d'accueil ISAE-ONERA MOIS

M. Jean-Yves LE BOUDEC, Professeur EPFL - Président
M. Fabrice FRANCES, Professeur Associé ISAE-SUPAERO
M. Laurent GEORGE, Professeur ESIEE Paris - Rapporteur

M. Emmanuel LOCHIN, Professeur ISAE-SUPAERO - Directeur de thèse
Mme AhlemMIFDAOUI, Professeure ISAE-SUPAERO - Co-directrice de thèse

M. Ye-Qiong SONG, Professeur Université de Lorraine - Rapporteur

M. Emmanuel LOCHIN (directeur de thèse)
Mme AhlemMIFDAOUI (co-directrice de thèse)

ii

RÉSUMÉ

L’augmentation du nombre de systèmes interconnectés et l’expansion des données échangées
dans les réseaux avioniques ont contribué à la complexification des architectures de com-
munication. Pour gérer cette évolution, une nouvelle solution basée sur un réseau coeur
haut débit, e.g., l’AFDX (Avionics Full DupleX), a été implémentée sur l’A380. Cependant, il
reste des réseaux bas débit, e.g, CAN ou A429, utilisés pour certaines fonctions spécifiques.
Cette architecture réduit le délai de développement, mais en contrepartie, elle conduit à de
l’hétérogénéité et à de nouveaux challenges pour garantir les contraintes temps-réel.

Pour résoudre ces challenges, une architecture homogène basée sur l’AFDX pourrait ap-
porter de grands avantages, tels que une facilité de l’installation et maintenance, et une ré-
duction de poids et coûts. Cette architecture homogène doit supporter des applications de
criticités mixtes, où coexistent les trafics critiques (SCT), Best-effort (BE) et le trafic AFDX
actuel (RC).

Pour atteindre ce but, nous commençons par évaluer les avantages et les inconvénients
des solutions existantes par rapport aux contraintes avioniques.

Cela nous conduit à sélectionner le Burst Limiting Shaper (BLS) (proposé par le groupe
IEEE Time Sensitive Networking (TSN)) allié à un ordonnanceur Static Priority non-preemptif.

Ainsi, nous identifions quatre contributions principales dans cette thèse. Tout d’abord,
nous spécifions un AFDX étendu avec le TSN/BLS. Une analyse préliminaire basée sur de la
simulation a donné des résultats encourageants pour poursuivre sur cette voie.

En second, nous détaillons une analyse temporelle de l’AFDX étendu, grâce au Network
Calculus, pour calculer des bornes maximales des délais pire cas des différents types de trafic,
pour prouver le déterminisme du réseau et le respect des contraintes temporelles. Une anal-
yse de performance préliminaire montre l’efficacité de la solution à améliorer les délais de
RC, tout en garantissant les contraintes du SCT. Cependant, cette analyse a aussi montré cer-
taines limitations du modèle en termes de pessimisme.

Notre troisième contribution est par conséquent la réduction de ce pessimisme, grâce à
une seconde modélisation de l’AFDX étendu, et à une méthode de paramétrage des variables
système. Cette méthode permet d’améliorer les performances de RC, tout en garantissant les
contraintes temporelles du SCT et RC.

Finalement, nous validons notre proposition à travers des études de cas avioniques réal-
istes pour vérifier son efficacité. Les résultats montrent une forte amélioration des délais de
RC ainsi que de l’ordonnançabilité de SCT et RC, en comparaison à l’AFDX actuel et au Deficit
Round Robin.

iii

iv

ABSTRACT

The growing number of interconnected end-systems and the expansion of exchanged data in
avionics have led to an increase in complexity of the communication architecture. To cope
with this trend, a first communication solution based on a high rate backbone network, i.e.,
the AFDX (Avionics Full Duplex Switched Ethernet), has been implemented by Airbus in the
A380. Moreover, some low rate data buses, e.g., CAN or ARINC 429, are still used to han-
dle some specific avionics domains. Although this architecture reduces the time to market,
it conjointly leads to inherent heterogeneity and new challenges to guarantee the real-time
requirements.

To handle these emerging issues, a homogeneous avionic communication architecture
based on the AFDX technology to interconnect different avionics domains may bring sig-
nificant advantages, such as easier installation and maintenance and reduced weight and
costs. Furthermore, this homogeneous communication architecture needs to support mixed-
criticality applications, where safety-critical traffic (SCT), current rate constrained AFDX traf-
fic (RC) and best effort traffic (BE) co-exist.

To achieve this aim, first, we assess the pros and cons of most relevant existing solutions
vs the main avionics requirements, to support mixed-criticality applications on the AFDX
network. Afterwards, the Burst Limiting Shaper (BLS) (proposed by IEEE Time Sensitive Net-
working (TSN) Task group) on top of a Non-Preemptive Static Priority (NP-SP) scheduler has
been selected as the most promising solution.

Hence, our main contributions in this thesis are fourfold. First, we specify the extended
AFDX incorporating the TSN/BLS on top of NP-SP. A preliminary performance analysis based
on simulations has been conducted. These first results were encouraging to pursue this pro-
posal.

Second, we conduct a timing analysis of the extended AFDX using Network Calculus, to
compute the delay upper bounds of the different traffic classes and prove the determinism of
such a solution. The preliminary performance evaluation has shown the efficiency of the ex-
tended AFDX to enhance the RC delay bounds, while guaranteeing the constraints. However,
they have also highlighted some limitations of the proposed model in terms of pessimism.

Third, we introduce a second model of the extended AFDX to enhance the delay bounds
tightness. Moreover, we propose a tuning method of TSN/BLS parameters to enhance as
much as possible the RC timing performance, while guaranteeing the SCT constraints.

Finally, we validate our proposal through representative avionics case studies to assess its
efficiency. The results show the enhancements of the RC delay bounds as well as the schedu-
lability level of both SCT and RC traffic, in comparison to the current AFDX and Deficit Round
Robin.

v

vi

CONTENTS

Résumé iii

Abstract v

Contents vii

List of Figures ix

List of Tables xii

List of Abbreviations xiii

1 General Introduction 1
1.1 Introduction . 1
1.2 Context and Problematic . 1

1.3 Followed methodology . 3
1.4 Main contributions and outline . 4

2 Problem Statement and State of the art: Mixed-Criticality Solutions for Avionics Ap-
plications 7
2.1 Introduction . 8

2.2 Avionics Context . 8
2.3 Real Time Ethernet-compliant Solutions . 14
2.4 Discussion . 29
2.5 Conclusion . 31

3 Specification: the extended AFDX switch 33
3.1 Introduction . 33
3.2 The Burst Limiting Shaper . 34
3.3 Switch architecture . 38

3.4 Preliminary Analysis . 43
3.5 Conclusion . 47

vii

4 Formal Worst-Case Timing Analysis 49

4.1 Introduction . 50

4.2 Related Work: Worst-case Timing Analysis of TSN/BLS Shaper 50

4.3 Computing a novel NC model for TSN/BLS . 53

4.4 Preliminary performance evaluation . 69

4.5 Conclusion . 82

5 Performance Enhancement 83

5.1 Introduction . 83

5.2 Improving the BLS modelisation: the Continuous-Credit-based Approach (CCbA) 84

5.3 BLS parameter tuning . 92

5.4 Performance analysis . 103

5.5 Conclusion . 105

6 Validation 107

6.1 Introduction . 107

6.2 Generic Avionics Case study . 108

6.3 Avionics Application: adding A350 Flight Control to the AFDX 116

6.4 Conclusion . 120

7 Conclusions and Perspectives 121

7.1 Conclusions . 122

7.2 Perspectives . 124

8 Appendix 127

8.1 Computing Achievable Worst-Cases . 127

8.2 Applying CPA model to the proposed architecture 136

8.3 Window-based Approach model proofs . 140

8.4 Intuitive fluid models . 144

8.5 Continuous-Credit-based Approach (CCbA) model proofs 152

8.6 Window-based vs Continuous Credit-based approaches when LR = 0 for 3-classes
case study . 162

References 165

viii

LIST OF FIGURES

1.1 Methodology . 4

2.1 ARINC 429 network . 9
2.2 MIL-STD-1553 diagram . 10
2.3 AFDX diagram . 12
2.4 Credit Based Shaper . 19
2.5 Time Aware Shaper . 26
2.6 Burst Limiting Shaper . 27
2.7 Urgency-based Scheduler . 29

3.1 Burst Limiting Shaper on top of NP-SP at the output port with 3 classes 35
3.2 BLS credit evolution . 36
3.3 An extended AFDX switch architecture with 3 classes 39
3.4 The output port of an extended AFDX switch . 39
3.5 BLS behaviour in an output port of an extended AFDX switch 40
3.6 Example of an output port of an extended AFDX switch 40
3.7 Considered extended AFDX network . 44
3.8 Specification: impact of SCT max. utilisation rate on delay bounds 46
3.9 Specification: impact of RC max. utilisation rate on delay bounds 46

4.1 Two examples of worst-case BLS behaviour . 52
4.2 CPA model: impact of LM on SCT delay bounds 53
4.3 An extended AFDX switch architecture with 3 classes 57
4.4 Output port multiplexer node nomenclature . 58
4.5 Idle and sending windows of a class k . 60
4.6 Strict minimum service curve βbl s

SCT
(t) . 62

4.7 Maximum service curve γbl s
SCT (t) when MC(k) traffic is enqueued 64

4.8 NC vs AWC: impact of SCT maximum utilisation rate on delay bounds 70
4.9 NC vs AWC: impact of RC maximum utilisation rate on delay bounds 71
4.10 NC vs AWC: impact of LM on delay bounds . 72
4.11 NC vs AWC: impact of BW on delay bounds . 73

ix

4.12 NC vs AWC: impact of LR on delay bounds . 73
4.13 NC vs CPA: impact of SCT maximum utilisation rate on delay bounds 76
4.14 NC vs CPA: impact of RC maximum utilisation rate on delay bounds 76
4.15 NC vs CPA: impact of LM on delay bounds . 77
4.16 NC vs CPA: impact of BW on delay bounds . 77
4.17 NC vs CPA: impact of LR on delay bounds . 78
4.18 DRR-compliant AFDX output port architecture 79
4.19 BLS vs (SP,DRR): impact of SCT maximum utilisation rate on delay bounds . . . 81
4.20 BLS vs (SP,DRR)- impact of RC maximum utilisation rate on delay bounds . . . 81

5.1 WbA: discontinuities with βbl s
k

windows . 85

5.2 WbA: discontinuities with γbl s
k

windows . 85

5.3 Computing βbl s
k

(t) . 87

5.4 Computing γbl s
k

(t) . 88
5.5 WbA vs CCbA: impact of LR on delay bounds . 90
5.6 WbA vs CCbA: impact of LM on delay bounds . 91
5.7 WbA vs CCbA: impact of BW on delay bounds . 92
5.8 Dichotomous search of optimum

∑

deadl i neSCT 101
5.9 Comparing intuitive and optimised BLS, when varying SCT 102
5.10 Comparing intuitive and optimised BLS when varying RC 103
5.11 Comparing optimised BLS, SP and DRR when varying SCT 104
5.12 Comparing optimised BLS, SP and DRR when varying RC 105

6.1 Representative AFDX network . 108
6.2 WbA vs CCbA: impact of U Rbn

SCT on delay bounds 110
6.3 WbA vs CCbA: impact of U Rbn

RC on delay bounds 110
6.4 WbA vs CCbA: impact of LM on delay bounds . 111
6.5 WbA vs CCbA: impact of LR on delay bounds . 111
6.6 WbA vs CCbA: impact of BW on delay bounds . 112
6.7 Intuitive vs Optimisations: impact of U Rbn

SCT . 112
6.8 Intuitive vs Optimisations: impact of U Rbn

RC . 113
6.9 Intuitive vs Heuristic Deadline Optimisation: per switch impact of U Rbn

SCT
. . . 114

6.10 Dichotomous Deadline Optimisation for BLS vs (SP,DRR): impact of U Rbn
SCT . . 115

6.11 Dichotomous Deadline Optimisation for BLS vs (SP,DRR): impact of U Rbn
RC . . 116

6.12 A350 flight control architecture . 117
6.13 Primary network: new A350 flight control architecture 118
6.14 Output port type layout for the extended AFDX 118

7.1 Example of a 6-classes output port of an extended AFDX switch 124
7.2 Current DiffServ core router architecture . 125
7.3 Proposed DiffServ core router architecture . 126

8.1 Two examples of worst-case BLS behaviours . 128
8.2 Two examples of best-case BLS behaviours . 132

x

8.3 Computing a
q

SCT
. 138

8.4 Idle and sending windows of a class k . 141
8.5 Two examples of worst-case BLS behaviours . 145
8.6 Minimum service curves: multiple BLS behaviour examples 146
8.7 Two examples of best-case BLS behaviours . 148
8.8 Maximum service curves: BLS behaviour examples 149
8.9 Computing βbl s

k
(t) . 154

8.10 Computing γbl s
k

(t) . 157

xi

LIST OF TABLES

2.1 Existing solutions vs avionics requirements and challenges 31

3.1 QoS identification solution comparison . 42
3.2 Avionics flow Characteristics . 45
3.3 Parameters considered for testing scenarios 1 and 2 45

4.1 CPA and NC models computation times for the different scenarios 75

6.1 Avionics flow Characteristics . 109
6.2 Evaluation scenarios: input traffics and BLS parameters 109
6.3 Comparing parameter tuning methods . 116
6.4 Flight Control application: scenarios . 119
6.5 Flight Control application: results . 120

xii

LIST OF ABBREVIATIONS

AFDX Avionics Full DupleX
SCT Safety Critical Traffic
RC Rate Constrained
BE Best-Effort
BLS Burst Limiting Shaper
TSN Time Sensitive Networking
NP-SP Non-Preeptive Static Priority
SP Static Priority
CPA Compositional Performance Analysis
QoS Quality of Service
DRR Deficit Round Robin
VL Virtual Link
MFS Maximum Frame Size
BAG Bandwidth Allocation Gap
IMA Integrated Modular Avionics
GPA Generalised Processor Sharing
TTE Time Triggered Ethernet
AVB Audio Video Bridging
AV Audio Video
NC Network Calculus
ILP Integral Linear Programming
AWC Achievable Worst-Case
WbA Window-based Approach
CCbA Continuous Credit-based Approach
DD Dichotomous Deadline
HD Heuristic Deadline

xiii

xiv

NOTATIONS

C Link speed

MF Si Maximum Frame Size of flow or class i

J f ,Dl f ,B AG f Jitter, deadline and BAG of flow f

Lk
M ,Lk

R BLS maximum and resume credit levels of class k

LM ,LR BLS maximum and resume credit levels when considering a single shaped
class in a single-hop network

Lmux
M ,Lmux

R BLS maximum and resume credit levels when considering a single shaped
class in an output port multiplexer mux in a multi-hop network

BW k BLS reserved bandwidth of class k

BW BLS reserved bandwidth when considering a single shaped class in a
single-hop network

BW mux BLS reserved bandwidth when considering a single shaped class in an out-
put port multiplexer mux in a multi-hop network

I k
i dle

, I k
send

BLS idle and sending slopes of class k , defined in Eq.(3.1) and Eq.(3.2)

Ii dle , Isend BLS idle and sending slopes when considering a single shaped class

∆
k , j

i
i ∈ {send , i dl e}, and j ∈ {max,mi n} the BLS windows defined for class k

in Eq.(4.7), Eq.(4.3), Eq.(4.2), and Eq.(4.5)

∆
j

i
i ∈ {send , i dl e}, and j ∈ {max,mi n} the BLS windows when considering
a single shaped class

p(k) Priority level of a class k

pH (k) BLS high priority of class k

pL(k) BLS low priority of class k

HC (k) Set of flows or classes with a priority strictly higher than pH (k), i.e., ∀ j

such as: pH (k)> p(j);

xv

LC (k) Set of flows or classes with a priority strictly lower than pL(k), i.e., ∀ j such
as: pL(k)< p(j);

MC (k) Set of flows or classes with a priority strictly between pL(k) and pH (k);

γn
k

Maximum service curve guaranteed for the traffic class k within node n

γ
bl s, f lui d

k
Maximum service curve of class k in the BLS node when considering fluid
traffics

γ
bl s,i nt ui , f lui d

k
Intuitive maximum service curve of class k in the BLS node when consid-
ering fluid traffics

βn
k , f

Strict minimum service curve guaranteed to a flow f of class k in a node
n ∈ {es,mux}

βn
k

Strict minimum service curve guaranteed for the traffic class k in a
node n ∈ {es,mux} (end-system or output multiplexer) or component
n ∈ {bl s, sp}

β
sp

k∈BLS,p Strict minimum service curve guaranteed to BLS class k when having the
priority level p in a sp component

β
bl s, f lui d

k
Strict minimum service curve of class k in the BLS node when consider-
ing fluid traffics

β
bl s,i nt ui , f lui d

k
Intuitive minimum service curve of class k in the BLS node when consid-
ering fluid traffics

αn
k , f

Input arrival curve of the flow f of class k in the node n ∈ {es,mux} or
component n ∈ {bl s, sp} in its path

αn
k

Input arrival curve of the aggregated flows of class k in a node n ∈

{es,mux} or component n ∈ {bl s, sp}

α∗,n
k , f

Output arrival curve of the flow f of class k from the node n ∈ {es,mux} or
component n ∈ {bl s, sp} in its path

α∗,n
k

Output arrival curve of the aggregated flows of class k from a node n ∈

{es,mux} or a component n ∈ {bl s, sp}

U Rk Utilisation rate of a class k at the input of a output port

U Rbn
k

The bottleneck network utilisation rate of a class k

nes
k

Number of flows of class k generated per node es

F m
k

set of flows of class k crossing multiplexer m

R
j

β,i ,T
j

β,i Guaranteed rate and initial latency of β
j

i
such as β

j

i
= R

j

β,i · (t −T
j

β,i)+

xvi

Deadl i neend2end
k , f

End-to-end deadline of flow f of class k

del a yend2end
k , f

End-to-end delay of flow f of class k

del a yn
k , f

Delay of flow f of class k in a node n ∈ {es, sw,mux}

del a y
pr op

k , f
Propagation delay of flow f of class k

del a yend2end ,m
k

End-to-end delay of class k with m = BLS for the extended AFDX, and
m = SP for the current AFDX

del a ym,SW 1
k

delay of class k in switch SW 1 with m = BLS for the extended AFDX,
and m = SP for the current AFDX

xvii

List of Abbreviations

xviii

CHAPTER

ONE

GENERAL INTRODUCTION

"It’s the job that’s never started as takes longest to finish."

-J.R.R. Tolkien

1.1 Introduction

The growing number of interconnected end-systems and the expansion of exchanged data in
avionics have led to an increase in complexity of the communication architecture. As a result,
aircraft have gone from using point-to-point low rate data-buses such as ARINC 429 to using
switched networks interconnecting dozens of systems. To cope with this trend, a first commu-
nication solution based on a high rate backbone network, i.e., the AFDX (Avionics Full Duplex
Switched Ethernet) [1], has been implemented by Airbus in the A380, to interconnect critical
subsystems. Moreover, some low rate data buses, e.g., CAN [2] and MIL-STD-1553-B [3], are
still used to handle some specific avionics domains, such as the I/O process and the Flight
Control Management. Although this architecture reduces the time to market, it conjointly
leads to inherent heterogeneity and new challenges to guarantee the real-time requirements.

To deal with these emerging issues, with the maturity and reliability progress of the AFDX
after a decade of successful use, a homogeneous avionic communication architecture based
on such a technology to interconnect different avionics domains may bring significant advan-
tages, such as easier installation and maintenance and reduced weight and costs.

In this first chapter, we start by presenting the context and problematic, before introduc-
ing the followed methodology to cope with this challenging issue. We finish by presenting the
main contributions and the thesis outline.

1.2 Context and Problematic

Since the beginning of avionics engineering, with the fly-by-wire technology, electronic de-
vices have conquered more and more systems in an aircraft. As a result, networks have been
developed to interconnect these communication devices. Nowadays, all airliners rely heavily

1

Chapter 1. General Introduction

on data networks to fly safely, communicate with and entertain passengers, and assess the
status of the aircraft itself.

The growing number of interconnected end-systems and the expansion of exchanged
data in avionics have led to an increase in complexity of the communication architecture.
Part of the problem was ARINC 429 data bus. The unidirectional point-to-point nature of this
data bus led to increasingly complex architectures, resulting in high cost and weight.

To cope with these limitations, a first communication solution based on a high rate back-
bone network, i.e., the AFDX (Avionics Full Duplex Switched Ethernet) [1], has been imple-
mented by Airbus in the A380 to interconnect essential subsystems. The resulting architec-
ture is less complex and requires less cables, but results in data multiplexing and higher de-
lays.

Moreover, some low rate data buses, e.g., CAN [2] or ARINC 429[4], are still used to han-
dle specific avionics domains. Although this architecture reduces the time to market, it con-
jointly leads to inherent heterogeneity and new challenges to guarantee the real-time require-
ments.

Currently, the backbone network is a 100 Mbps AFDX network. However, a Gigabit version
is under specification. Additionally, even though the ARINC 664 part 7 defines two levels of
priorities, the AFDX currently on the A380 and on the A350 implements a FIFO queue and is
only used for essential traffic. Thus, data with either higher or lower criticality level have their
own private networks, interconnected via gateways to the AFDX[5].

This heterogeneity causes increasing delays, high complexity and costs. In fact, the AFDX
was a strong step in the direction of architecture homogeneity, i.e., having a single network
in an aircraft for all criticality levels. For all these reasons, we believe it is interesting to go
further and define a new avionics network for mixed-criticality applications.

Additionally, we must keep in mind that our work has an industrial dimension. Devel-
oping new networks is very expensive, especially in terms of development and certification
costs. The fulfilment of every safety criteria must be proved for each modification of the
avionics hardware and software. Hence, each modification must be worth the resulting costs
and provide a strong enhancement over the current architecture.

There are several problems to solve to define such a network. First, in the avionics context,
for certification purposes, strict guarantees are defined, in terms of complexity, modularity
and predictability for instance. Secondly, in the industrial context, the proposed solution
must be cost-effective and the impact on current traffic, i.e. essential traffic, should be miti-
gated as much as possible.

Thus, this new homogeneous communication architecture, based on the AFDX technol-
ogy, needs to support mixed-criticality applications, where safety-critical and best effort traf-
fic co-exist. Hence, in addition to the current AFDX traffic profile for essential traffic, called
Rate Constrained (RC) traffic, at least two extra profiles have to be handled. The first, denoted
by Safety-Critical Traffic (SCT), is specified to support flows with hard real-time constraints
and the highest criticality, e.g., flight control data; whereas the second is for Best-Effort (BE)
flows with no delivery constraint and the lowest criticality, e.g., In-Flight Entertainment traf-
fic.

2

1.3. Followed methodology

1.3 Followed methodology

In the previous part, we have highlighted the problematic caused by the increasing traffic and
heterogeneity of the network, e.g., delays, complexity, costs. Hence, our goal is to propose a
new architecture for mixed-criticality applications, in order to have a single and homoge-
neous network. To achieve this aim, we have adopted the following methodology:

Step 1: Assessment of existing solutions vs avionics requirements
The first step is to study the avionics need s due to the increase of data exchanges. This

infers the avionics r equi r ement s and chal l eng es, which are mainly predictability, modu-
larity, complexity and fairness. Then, to deal with these issues, we assess the pros and cons
of well-known mechanisms such as Static Priority, Deficit Round Robin, and solutions such
as Time Triggered Ethernet and the shapers proposed by the IEEE Time Sensitive Networking
group, with reference to the avionics constraints. This will help us identify the most promis-
ing solutions compliant with the AFDX technology.

Step 2: Specification of the avionics network supporting mixed-criticality
Based on the findings of the first step, we can specify a new avionics network fulfilling the

avionics requirements, while limiting the modifications of the current AFDX to reduce the
costs. Then, to assess the potential of the proposed solution, a preliminary analysis based on
simulations to compare its performances to the current AFDX implementing Static Priority
will bring further insights on the proposed solution.

Step 3: Formal Worst-Case Timing Analysis
To cope with the predictability and certification requirements, we need to define a formal

timing analysis this new network using Network Calculus, since it is framework used to certify
the current AFDX. Afterwards, we need to assess the efficiency of the proposed analytical
model by conducting sensitivity and tightness analyses when varying the traffic inputs and
system parameters. Finally, we need to compare the performances of the proposed solution
to current AFDX to assess its efficiency.

Step 4: Improving the solution performances
The idea is to start by identifying the main limitations or weaknesses of the solution and

model specified in step 2 and 3. Subsequently, this leads to the definition of a new model
and/or optimisation method to increase as much as possible the performances of the pro-
posed solution, i.e., reducing the impact of higher priority on the essential traffic currently
on the AFDX and increasing the traffic schedulability.

3

Chapter 1. General Introduction

Step 5: Validation
Finally, we need to validate our proposal using representative avionics use-cases. We con-

sider first a generic avionics case study, followed by a concrete application: adding Flight
Control traffic to the AFDX. We need to test multiple scenarios to validate the potential of our
proposed solution to support mixed-criticality.

This methodology followed during this thesis is illustrated in Fig.1.1.

Validation

Specification

Formal Timing Analysis

avionics requirements

vs

Assessment of existing solutions

Enhancement

Performance

Figure 1.1: Methodology

1.4 Main contributions and outline

Our main contributions in the thesis are fourfold:

1. The specification of an extended AFDX incorporating the TSN/BLS: after analysing
the existing solutions vs avionics requirements in Chapter 2, we have identified TSN/BLS
as the most promising solution to be incorporated within the AFDX. Hence, first, we
have defined the new AFDX switch architecture and an algorithm to implement the BLS.
In particular, we study the necessary modifications of the switch on both hardware and
software levels, including possible QoS identification mechanisms. This contribution
is detailed in Chapter 3.

4

1.4. Main contributions and outline

2. A novel formal modelisation of this new network using Network Calculus, in partic-
ular we have proposed a modelisation of the BLS node, based on so called sending
and idle windows, denoted Window-base Approach (WbA) model. The preliminary
timing analysis shows the accuracy of the model in comparison to the related work ap-
proach (CPA). Moreover, we observe noticeable enhancements of schedulability and
delay bounds, in comparison to current AFDX and another solution based on Deficit
Round Robin (DRR). This contribution is detailed in Chapter 4.

3. Improving performance of the proposed solution: first, an improved novel formal
modelisation of the BLS node, based on the continuity of the BLS credit has been pro-
posed, denoted Continuous Credit-base Approach (CCbA) model, to achieve further
enhancement of the model tightness. Afterwards, we have introduced BLS parameter
tuning methods to increase the solution efficiency. We have defined a first one with
a low complexity but with some flaws, denoted Heuristic Deadline method. Then, we
have detailed a second method, denote Dichotomous Deadline method, to fix these
identified flaws at the expense of increasing the complexity. These methods enable us
to conduct a fair comparison between our proposed solution and another one based on
DRR. The results confirm the efficiency of our proposal. This contribution is detailed
in Chapter 5.

4. The validation of the proposed architecture: this is detailed in Chapter 6, in particular
a comparison with two other solutions: the current AFDX implementing a Static Prior-
ity (SP) Scheduler and the DRR. We use a representative avionics multi-hop architec-
ture to validate the results of previous chapters. This validation confirms that the sec-
ond model is an improvement over the first one, and corroborates the enhancements
brought by the optimised BLS over both SP and DRR. In particular, we have shown
that the more complex tuning method has much better results, but of course needs
more computer power. Finally, we apply our proposal to a concrete avionics problem,
adding the flight control traffic to the backbone AFDX. The results have highlighted the
efficiency of our solution.

5

Chapter 1. General Introduction

6

CHAPTER

TWO

PROBLEM STATEMENT AND STATE OF THE ART:
MIXED-CRITICALITY SOLUTIONS FOR AVIONICS APPLICATIONS

"You can’t stop the change, any more than you can stop the suns from setting."

-Shmi Skywalker

Contents

2.1 Introduction . 8

2.2 Avionics Context . 8

2.2.1 ARINC 429 . 9

2.2.2 ARINC 629 . 9

2.2.3 MIL-STD-1553B . 10

2.2.4 Avionics Full-DupleX Ethernet (AFDX) 11

2.2.5 Avionics Requirements . 12

2.3 Real Time Ethernet-compliant Solutions . 14

2.3.1 Non-Preemptive Static Priority Scheduler 14

2.3.2 GPS approximations . 15

2.3.3 Time Triggered Ethernet . 16

2.3.4 Audio-Video Bridging . 17

2.3.5 Time-Sensitive Networking . 21

2.4 Discussion . 29

2.5 Conclusion . 31

7

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

2.1 Introduction

Avionics is a field that moved from point-to-point transmissions to high speed networks.
However, this field slowly evolves due to the stringent safety requirements and the aircraft
long life expectancy, around 25 to 30 years. The comparison of this lifespan against other net-
working fields is an interesting one. For example, the last 30 years have seen the development
of main stream Internet, from low rate 64K to high speed Gigabit fiber connections. Con-
cerning mobile networks, a new generation appears approximatively every 9 years. Hence,
between the day in 1990 when an airliner entered into service to its retirement in 2015, a
consumer download link was multiplied by 15,000 and 3 mobile network generations were
developed.

This highlights the stark difference between the closed avionics world, and the Internet
and mobile open world. However, linkages exist between these communities: the newest
avionics network, the Avionics Full-DupleX Ethernet (AFDX) is based on a technology devel-
oped for the Internet, the Switched Ethernet. The low cost and maturity, after decades of use
in the consumer and industrial markets, are the main advantages of this technology.

There are still many technologies from the open world that could be used for avionics
networks. The same features that attracted the AFDX designers to the Ethernet are present
in other technologies. In particular in the open world, many have studied and implemented
a large number of solutions allowing mixed-criticality within a network. In this chapter, we
study existing solutions to assess their potential use to solve our challenge: defining a new
avionics network for mixed-criticality applications.

Hence, we start by presenting the avionics context through the evolution of avionics net-
work and the main avionics requirements. Afterwards we assess the pros and cons of the most
relevant existing mixed-criticality solutions supporting mixed-criticality applications versus
the main avionics requirements. Finally, we select the most promising solution guarantee-
ing the requirements and challenges, i.e. Predictability, Modularity, Fairness and Complexity.
Hence, the identified solution is based on the Burst Limiting shaper defined by the IEEE Time
Sensitive Networking task group.

2.2 Avionics Context

Since the first planes relying sorely on mechanical instruments and fly-by-cable steering, elec-
tronics have had a growing importance in piloting an aircraft. This starts with the develop-
ment of electronic devices such as sensory feedback, radar, motor monitoring. Finally, even
the most important function of a plane, steering, is implemented using electronics: it is the
start of fly-by-wire aircraft. With the increasing need of data exchanges within the plane, new
standard have been developed, starting with ARINC 419[6] in 1966. This standard and its suc-
cessor, the ARINC 429 [4] (developed in 1978) are crafted, not by individual companies but
collectively by almost the entire industry. This highlights the dire need for new data networks
at the time. The ARINC 429 is well-established in the avionics industry[4] and it is used in
most of both retired and active commercial aircraft series.

8

2.2. Avionics Context

2.2.1 ARINC 429

The ARINC 429 [4] (in full MARK 33 Digital Information Transfer System), published in 1978,
was one of the first standard specifically developed for aircraft. ARINC 429 uses a twisted
shielded pair to connect one static sender to several static receivers (up to 19). As a conse-
quence, a receiver cannot reply to a message through the same bus. All lines are simplex
connection (even though shielded pairs are used) with a nominal throughput of 12−14kbps
for the low speed version, or 100kbps for the high speed version.

Due to the simplex links and the static definition of senders and receivers, when consid-
ering n systems having to exchange information, as illustrated in Fig.2.1, at least n buses are
necessary to allow each entity to reply to any other. In Fig.2.1, six Line Replaceable Units
(LRUs) [7] are represented with the six buses necessary to have each LRU able to send mes-
sages to the five others.

LRU LRULRU

LRU LRULRU

Figure 2.1: ARINC 429 network

As the number of interconnected systems grew, it became impossible to keep using such
low rate point-to-point technology and new standards were developed, such as ARINC 629
and MIL-STD-1553B.

2.2.2 ARINC 629

The ARINC 629[4][8], or Digital Autonomous Terminal Access Communication, was devel-
oped by Boeing and NASA to overcome ARINC 429 limitations. This standard was mainly
used in Boeing 777 with some ARINC 429 as backup. It addresses the main ARINC 429 limita-
tions: it can connect up to 128 systems, and each system can both send and receive messages,
and with a rate of 2Mbps. As a consequence, this network is a lot more flexible than ARINC
429 and requires less cable, resulting in a much reduced complexity. However, the proposed
standard uses a time-based, collision-avoidance concept in which each terminal is allocated
a particular time slot to access the bus and transmit data. Each terminal determines when
the appropriate time slot is available using several control timers embedded in the bus inter-

9

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

faces. As a consequence, collisions may occur on the bus, which decreases the determinism
of the bus and causes increased latency.

2.2.3 MIL-STD-1553B

The MIL-STD-1553B bus [3][4] is a military standard published in 1973. Unidirectional con-
nections were becoming too complex and too expensive, this is why new standards were de-
fined, among them the MIL-STD-1553A in 1973, then the MIL-STD-1553B in 1978. This bus
was first used by the US military air force inside the F-16. However, it is now broadly used
and part of the conception of many military aircraft and satellites. The MIL-STD-1553 was
implemented in the A350 because it is simple and less expensive to use than the 629 bus. It
is worth noting that the A350 flight control network with the 1553 bus has backup ARINC 429
networks.

The high reliability1 and capacity of 1 Megabits per second (Mbps) (which can be in-
creased up to 200Mbps) are the main interesting characteristics of this bus. This makes this
bus very useful for military architectures. MIL-STD-1553 is a numerical half-duplex Com-
mand/response bus. This means a terminal must wait for a command from the controller
before being allowed to send information on the bus. Additionally, this bus uses Time Divi-
sion Multiplexing: the messages are sent on the same bus at different times. The controller
manages the emission transaction table to prevent collisions. The main limitation of this
technology is the limited number of interconnected systems: only 31, far from the hundreds
of systems currently interconnected on a commercial aircraft. So, to connect 6 LRUs we need
only one 1553 bus. However, for redundancy purposes, additional bus may be necessary to
ensure strict safety guarantees as illustrated in Fig.2.2.

LRU LRULRU

LRULRULRU

bus A

bus B

Figure 2.2: MIL-STD-1553 diagram

However, none of these avionics standards fills the emerging need of more bandwidth.
The development of the A380 was the opportunity to develop a new standard customised to
AIRBUS needs: the Avionics Full-DupleX Ethernet, standardised as the ARINC 664 part 7[1].

1Reliability of bus 1553: one erroneous word for every 10 millions correct ones, one word is 20 bit long

10

2.2. Avionics Context

2.2.4 Avionics Full-DupleX Ethernet (AFDX)

To reduce the cost of such a development, the new network developed by Airbus is based on a
widely used one: the Ethernet. The Ethernet has been used for decades outside the avionics
industry and has proved its robustness, inexpensiveness, and flexibility. However, the non-
determinism of the Ethernet is an issue. This non-determinism is due to several facts [4]:
i) frames can be reorganised or manipulated due to micro-segmentation; ii) collisions may
occur within the network and lead to frame loss. Thus, no strict quality of service guarantees
can be enforced with Ethernet and the determinism of the new standard must be proved to
be usable in an avionics setting.

Firstly, full-duplex switched Ethernet is used to increase the determinism in the AFDX[1]
by preventing collisions. Secondly, segmentation is disable and static switching is imple-
mented. With these modifications, the route of a frame and the number of hops necessary to
reach a frame’s destination is known. However, the network is still non-deterministic, which
leads to the definition of Virtual Links and the use of shapers in the end-systems and switches
to isolate and manage the different flows.

Virtual Links are virtual point-to-point connections implementing the same concept as
used in ARINC 429: one sender, several receivers. Each VL is characterised by: i) a identifica-
tion number V LI D; ii) a priority iii) the Bandwidth Allocation Gap (B AG) ranging in powers
of 2 from 1 to 128 milliseconds, which represents the minimal inter-arrival time between two
consecutive frames; iv) the Maximal Frame Size (MF S) ranging from 64 to 1518 bytes, which
represents the size of the largest frame sent during each B AG ; v) the maximum jitter. The
V LI D and the priority are used by the switch to find the correct output port and the correct
queue. The MFS and the BAG define a maximum bandwidth for each VL. The maximum jitter
ensures a certain flexibility concerning the arrival time of the frames, while setting a limit for
the jitter.

Two safeguards have been defined to ensure that the characteristics of a VL are enforced
and to prevent over-talkative end-systems from impacting other flows. The first is a shaper in
the end-systems: before a frame is enqueued in an output port, the end-systems checks that
the VL characteristics are fulfilled, in particular if the BAG is respected. If not, the frame is
delayed. The second safeguard is a policer set in the switch that aims at ensuring the respect
of the flow characteristics[9]. If not, then the frame is discarded. This ensures flow isolation:
frames from over-talkative end-systems are discarded and so they do not delay other flows.

By fixing the VL parameters off-line and preventing changes online, the network keeps
constant timing properties, which favour a deterministic behaviour.

The A380 and A350 have fully redundant AFDX networks[10]. So to connect 6 LRUs, we
need to link them to both networks, as presented in Fig.2.3.

Obviously developing an entirely new network would require tremendous cost and effort.
Currently only important data transit on the network, with a maximum load of 30%. Mean-
while, highly critical data and lower criticality data have their own private networks.

However, the next AFDX generation remains in an experimental state and is a Gigabit
network, providing enough bandwidth to add new data to the current background data. As
for th current AFDX, the next generation of AFDX will most likely be certified for highly critical
data, leaving open the possibility of adding both highly critical data and low priority traffics.

11

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

LRU

LRU LRU LRU

LRULRU

Network A
SWITCH

SWITCH

Network A
SWITCH

SWITCH
Network B Network B

Figure 2.3: AFDX diagram

However, the impact of these new traffics on the current data should be mitigated as much as
possible and the determinism should be proved.

Hence, to achieve this aim, we study the most relevant solutions compliant with a switched
Ethernet network, and we mainly focus on their software aspects.

2.2.5 Avionics Requirements

In this section, we detail the different avionics requirements. From them, we identify the con-
straints that must be fulfilled by an avionics network. This provides a firm ground to compare
the different solutions and select the most appropriate one to support mixed-criticality traffic
on the AFDX.

• Predictability of the system: the traffic behaviours are predicable and repeatable[11].
With point-to-point network the determinism was trivial to prove, but it was one of
the main challenges of ARINC 629 or the AFDX. Moreover, response must be within
prescribed time period;

• Modularity: at first, the avionics networks had a federated architecture: it did not dis-
tinguish between hardware and software and implemented independent collections
of dedicated computing resources (computing processor, communications and I/O)
for each avionics function, typically contained in separate LRUs. These LRUs are thus
unique to a degree and each of them needs to be fully certified.

As there are no distinction between hardware and software, re-certification is necessary
even if only the software has been updated. Additionally, components of federate net-
works usually cannot share resources and spare resources need to be defined for each
system individually. This leads to a high degree of idle capacity, added weight and costs
due to the additional resources.

The resulting network is proprietary, has potentially extreme cable overhead, and is
made of multiple different line replaceable unit fulfilling unique roles. Due to the lim-

12

2.2. Avionics Context

itations of such an architecture a new model progressively emerged: Integrated Modu-
lar Avionics (IMA). IMA discriminates between software and hardware and defines an
abstraction layer between the hardware and software functionality.

As of now, IMA still uses unique LRUs but encourages the hardware homogenisation.
An IMA-host can execute several software but each application must be isolated from
each other. As resources are shared, spare resources can be computed collectively for
all run applications.

Finally, we can define modularity as the fact that common elementary components
can be configured to fit different avionic applications. This feature aims to minimise
the (re) configuration and readjustment effort to facilitate system maintenance and its
progress over the years;

• Safety: a fourth requirement is that systems must be classified according to their criti-
cality and respect the safety rules as set by FAR Part 25.1309. Among the defined mech-
anism to handle this is the system partitioning. Currently, the AFDX has been certified
for the highest criticality (Catastrophic) but is only used for Hazardous criticality [12].

Theses four requirements have been used to defined a standard: the ARINC 653, Avionics
Application Software Standard Interface. It is the only Real-time Operating System (RTOS)
that fulfils all the avionics requirements. It was developed by the air transport industry and
has been adopted in 1997. Since then, all new commercial aircraft implement it. In fact,
Airbus group specifically developed the AFDX to implement ARINC 653. It resulted in a par-
tially IMA compliant network: many systems, with the same criticality, are now on the AFDX
backbone. However, many other systems retained their private networks, causing additional
complexity. In this thesis, we propose to go a step further by proposing a new network for
mixed-criticality applications respecting the different requirements. Moreover, we identify
the main following challenges to achieve:

• Complexity : a first challenge is the simplicity of the system. Complex systems are
expensive both to implement and certify. A high level of complexity adds fault modes
that have to be explored and possibly solved. Hence, as a matter of fact, solutions must
be as simple as possible;

• Fairness: as we multiplex different types of traffics, the impact of higher priority traffic
must be limited as much as possible to preserve lower priority’s timing requirements.

Finally, the main avionics requirements and challenges considered here to analyse the
existing solutions are:

• Modularity: common elementary components can be easily configured to fit different
avionic applications to limit (re)configuration effort;

• Predictability: the impact of a system on an other is known and bounded. The commu-
nication architecture must be predictable, where the extended AFDX has to guarantee
bounded latencies respecting the temporal constraints of the mixed-criticality traffic;

13

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

• Fairness: the impact of higher priorities on lower priorities must be reduced as much
as possible while respecting timing constraints;

• Complexity: the complexity of implementation must be low.

Now that the avionics context has been presented, we review the different existing solu-
tions to support mixed-criticality applications in AFDX. We compare them to the avionics
requirements in order to select the most promising one.

2.3 Real Time Ethernet-compliant Solutions

Various solutions have been proposed in the literature to support mixed-criticality applica-
tions in embedded systems and particularly in avionics [13][14]. The first proposed solution
was the simplest one, based on static priority and event-triggered paradigm. Overtime, new
solutions with increased complexity were proposed. Some of these new solutions are based
on the time-triggered paradigm. The event-triggered paradigm is known as highly flexible
and facilitates the system reconfiguration, but it infers at the same time an indeterminism
level and needs further proofs to verify the predictability requirement. On the other hand,
the time-triggered paradigm is highly predictable, but presents some limitations in terms of
system reconfigurability.

Hence, the considered paradigm is of utmost importance to quantify the reconfiguration
effort needed by an alternative avionics communication architecture, in comparison to the
current AFDX standard. Furthermore, the modularity level of a solution also depends on the
communication paradigm.

There is a large number of solutions [15][16][17][18][19][20][21]. We reduce our presen-
tation to the most pertinent solutions: the current solution (Static Priority), well-known fair
schedulers (Deficit Round Robin and its family), and three new proposals: Time-Triggered
Ethernet[22], Audio Video Bridging [18] and Time-Sensitive Networking[21].

In this section, we study the main real time Ethernet-compliant solutions and compare
them to the identified avionics requirements and challenges. We also present the current
state of study of each solution in reference to the main steps of our followed methodology
(see Section 1.3).

2.3.1 Non-Preemptive Static Priority Scheduler

The Static Priority (SP) scheduler is the simplest QoS implementation, with very low com-
plexity. Each queue has a defined priority and the scheduler dequeues the first frame of the
eligible queue (a queue with enqueued traffic) with the highest priority, which makes the SP
highly unfair. This is the scheduler defined in the AFDX standard [1], more precisely, the
non-preemptive Static Priority Scheduler (NP-SP).

As NP-SP has been extensively used for decades, the scientific literacy is prolific on this
subject [23][24][25][26].

In the AFDX, the predictability is enforced[1] thanks to the leaky bucket shapers in the
end-systems and policers in the switches. There are many works on worst-case end-to-end

14

2.3. Real Time Ethernet-compliant Solutions

delays as it is a certification requirement. The first one in [27] was done with the Network Cal-
culus framework. Other methods, such as model checking [28][29], and Trajectory Approach
[30][31][32] have been proposed to improve the delay computation and schedulability. There
are even some works done on probabilistic delays [33][34].

Finally, like all event-triggered solutions, NP-SP has a good modularity. but presents some
unfairness[35].

2.3.2 GPS approximations

Another type of event-triggered solution is the Generalised Processor Sharing (GPS) approxi-
mation. The Generalised Processor Sharing is an idealised scheduling algorithm that achieves
perfect fairness: the capacity is shared depending on fixed weights. Many algorithms have
been developed to come as close as possible to the GPS, for instance the Weighted Fair Queu-
ing (WFQ) [16].

To approximate the fluid model of the GPS, WFQ calculates the arrival time of the first
frame in each queue from the size of a frame, and the theoretical departure time calculated
by the ideal GPS. WFQ then chooses the queue with the soonest arrival time and transmits
the packet. The worst-case delay for WFQ, compared to GPS, is increased by the transmission
time of a maximum-sized frame. However, the problem of WFQ compared to GPS is since the
packet is chosen depending on its arrival time it may arrive sooner than anticipated, which
creates a sizable jitter. This is why WFQ was improved to take into account the departure time
through a new algorithm called Worst-case Fair Weighted Fair Queuing [36] (W F 2Q). W F 2Q

results in a lessened jitter by transmitting the packet with the soonest arrival date only if the
GPS departure date has been reached. This gives W F 2Q almost the same service as GPS with
only an added delay of one maximum sized frame transmission time. Unfortunately, WFQ
and its family are difficult to implement in hardware [37] as they require a compromise be-
tween implementation complexity and accuracy in approximating an idealised model. This
drastically increases the complexity of such a hardware implementation in the AFDX switch.

Other GPS implementations in avionics are the Round Robin and its family, for example
Weighted Round Robin (WRR) [38] and Deficit Round Robin (DRR) [39]. Ordinary round-
robin servicing of queues can be done in constant time. With WRR, the usual implementation
consists in setting a number of frames that can be consecutively sent for each queue. The
major problem of this scheduler is the unfairness caused by possibly different packet sizes of
the different flows [40][41]. A first solution is to adapt the weights depending on the traffic
[41][42]. A counter can also be used to keep track of traffic transmitted as proposed by the
Deficit Round Robin (DRR) [40]. Each round, each queue has a certain quantum of service
(in bytes) assigned. When a frame is transmitted, its size is subtracted from the quantum. If
the remaining quantum is not sufficient to send the next frame, it is added to the quantum
received in the next round. Thus, the quantum keeps track of the deficits: queues that do not
consume all their quantum in a round are compensated in the next round.

In [39], an AFDX network implementing the DRR was specified and studied. Results show
the good performance of the proposal in terms of fairness. However, in [43], the trade-off
between low complexity, low latency and fairness of DRR has been discussed. The results

15

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

show structures such as vector trees are used to achieve a good fairness with an algorithmic
complexity of O(1).

Like NP-SP, GPS approximations, especially WRR and DRR have been extensively studied
and used: they are implemented in most well-known simulators for instance OMNET++ or
ns-2. Additionally, the schedulability and parameter tuning are well-known issues, which are
still considered to be complex problems[43].

There are formal worst-case timing analyses for both WRR [44] and DRR [43][45]. In [45],
a new Network Calculus model is proposed. The conclusion of their performance analysis
is that the DRR is not suitable for flows with low delays and a hierarchical scheduler (with
priorities) should be envisaged. In [46], an avionics architecture using DRR, is proposed but
they consider video and audio flows rather than flows with tight deadlines, giving credit to
the conclusions of [45].

Finally, DRR is the GPS approach which seems to be the most promising: it can be imple-
mented in hardware without the complications due to a virtual clock, and is better for vari-
able length traffics than WRR. Additionally, DRR is a well-known fair scheduler with several
proposed modelisations.

2.3.3 Time Triggered Ethernet

TTE [22][17] is an industrial protocol developed by TTTech Computertechnik AG and is fully
compliant with the Ethernet standard. This network consists of TTE switches, TTE end sys-
tems, standard Ethernet switches and standard Ethernet end-systems. TTE end systems can
only be connected to TTE switches, while standard Ethernet end systems can be connected
to either TTE or standard switches. The access to the medium is done through coordinated
Time Division Multiple Access (TDMA). The main feature of TTE is its system-wide global
time. It is fault tolerant with a good fault isolation and consistent diagnosis.

TTE defines three message formats. The first one is Time Triggered (TT) which is defined
by its period, offset and length. This type is configured off-line with dedicated transmission
slots and messages are dropped if they arrive outside of these slots. If a TT slot is unused,
then it is freed and can be used by another traffic class. TTE has different policies for traffic
integration: preemption and shuffling. In the case of non-preemptive traffic, with shuffling
the transmission and relay of TT traffic may be delayed by unsynchronised frame. The sec-
ond type of traffic is Rate Constrained (RC). These messages have specified rate and length,
and are not sent at fixed points in time. RC frames can be queued inside the switches. Losses
are avoided by calculating minimal buffer sizes offline and by limiting bandwidth with a leaky
bucket algorithm. This is done in the end-system, the time between two frame emissions is
measured and if a minimum gap is not reached, the frame is delayed. This class has been
designed with the AFDX traffic in mind, which makes TTE a good avionics network candi-
date. The last class is Best-Effort (BE) which has the lowest priority, uses what is left of the
bandwidth and has neither guarantee of transmission nor reception.

This solution has been entirely specified by TTTech and its design has been analysed [22].
Extensive research has been done to provide good simulation environment for TTE: a new
simulation framework for TTE proposed in [47], while an extension of the OMNeT++ frame-
work to add TTE is proposed [48]. Formal timing analysis models have also been developed,

16

2.3. Real Time Ethernet-compliant Solutions

one with a Network Calculus model [49], and a model based on "busy period" [50]. Finally,
the problem of schedulability and parameter tuning has also been studied, a solver reducing
the NP-hard schedulability problem to a manageable size is proposed in [51].

TTE relies on a complex time table to manage the link access. So, when a flow is added,
deleted or modified, this can impact the whole system through the time table. This gives TTE
a very low modularity and high complexity.

Also, the aim of TTE is to guarantee the best service to the TT class and as such the full
impact of the added TT traffic is felt by lower priorities (RC and BE). Thus, the fairness of TTE
is also low. However, the leaky bucket and time table checks prevent over-talkative traffics
from impacting other traffic, so TTE has a good predictability.

2.3.4 Audio-Video Bridging

The rapid spread of multimedia usage makes the IEEE 802.1 Audio/Video Bridging (AVB) [18]
protocol of interest as it provides end-to-end delay guarantees in Ethernet networks.

This standard has been developed to provide strict timing guarantees to the media (au-
dio and video) flows. AVB has several advantages, first, it offers a single mechanism for both
audio and video flows. Secondly, the AVB offers quality control mechanisms to ensure the re-
liability of the transfer. This includes Quality of Service (QoS), Traffic Shaping and Bandwidth
Reservation. Also on a more practical side, AVB offers an easy set up with AVB switches which
automates network set up. Finally, AVB makes network convergence more easy to achieve, as
AVB is an IEEE protocol compatible with current data standard.

Our objective is to multiplex different kinds of data streams, which is a kind of network
convergence. To support this, we study in detail the AVB protocol to determine if it could be
used in avionics case.

First, in IEEE 802.1BA published in 2009: Audio Video Bridging (AVB) Systems, a set of
usage-specific traffic profiles are specified to help interoperability between networked de-
vices using the AVB specifications.

To enforce deadlines to these AVB flows, three standards have been proposed:

• IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications (general-
ized Precision Time Protocol or gPTP)

• IEEE 802.1Qat: Stream Reservation Protocol (SRP)

• IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams (FQTSS)

In the next sections, we present the different features of the AVB standards.

2.3.4.1 Timing and Synchronisation

The first standard, IEEE 802.1AS, defines a Layer 2 time synchronisation service using the
most stringent requirements of consumer electronics applications.

Before AVB, the used timing synchronisation had been defined in the IEEE 1588 standard,
officially entitled "Standard for a Precision Clock Synchronization Protocol for Networked

17

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

Measurement and Control Systems". It is called the Precision Time Protocol (PTP). This pro-
tocol is based on a "GrandMaster clock", which is used to set a common time between the
elements of the synchronised network. The selection of this grandmaster clock is based on
a negotiated process that selects the network clock considered as "best", using a so-called
"Best Master Clock Algorithm" (BMCA). Once it has been selected, the job of the GrandMas-
ter clock is to send its current time to any device that requests it using "sync" packets. In
order to be well-synchronised, the receiving clock must also take into account the link delay
and transfer time to compensate for the transfer time of "sync packet".

However, there are a few limitations in IEEE 1558. First, even in a single switch network,
the transfer time of a packet is not a constant value. The jitter is even larger in multi-hop
transfers. Hence, as only the GrandMaster clock sends "sync" messages, the jitter can quickly
become very large and cause clock drifts.

With IEEE 802.1AS, a "GrandMaster clock" is also used. However, it only serves to ini-
tialise the synchronisation process. While IEEE 1558 is based on an end-to-end synchroni-
sation, from the GrandMaster clock to the different clocks, IEEE 802.1AS is based on peer-to-
peer exchanges. After the first device receives its clock from the GrandMaster, it synchronises
with the next AVB switch or end-device. As a result, several clocks can be updated at the same
time while limiting time drift, as the clock exchanges are done with the closest neighbours.

Hence, the IEEE 802.1AS is also called generalized Precision Time Protocol (gPTP). Thanks
to this new standard, the time synchronisation is much improved, with an accuracy better
than 1µs. This allows better synchronisation of Audio and Video flows.

Now that we have presented the time synchronisation, in the next section, we present
another important AVB feature: bandwidth reservation.

2.3.4.2 Stream Reservation Protocol

Stream Reservation Protocol is a key AVB feature, described in IEEE 802.1Qat. A talker on a
AVB network advertises its stream and specifies the necessary bandwidth to the switch it is
connected to. Then, all the switches in the network become aware of the stream availability
and the required bandwidth.

If a listener wants to receive a stream on the network, it can request to receive the stream
to the nearest switch. The switch then determines whether bandwidth is sufficiently avail-
able for the new stream without overloading the output port. The request is passed on to all
the switches in the stream path. When this stream is determined to be achievable (i.e. all
the output ports in the path have sufficient bandwidth), the bandwidth required is reserved
across the entire path. It is worth noting that the amount of bandwidth that can be reserved
for Audio Video (AV) stream is limited to a certain quantity adjustable within AV switches.

With this bandwidth reservation, the network participates in the media exchange and
the reservation prevents the overloading of the network, protecting the existing media flows
and automating part of the management of the network. Finally, by limiting the maximum
reserved bandwidth, AVB ensures that a certain amount of bandwidth is left for data transfer,
participating in the network convergence previously mentioned.

18

2.3. Real Time Ethernet-compliant Solutions

2.3.4.3 Forwarding and Queuing: the Credit Based Shaper

In IEEE 802.1Qav, the Forwarding and Queuing for AV bridges provides a mechanism to split
time-critical and non-time-critical traffics into different classes. The time-critical traffic can
then be applied to the credit-based shaper (CBS).

AVB specifies the Credit-based Shaper (CBS) algorithm for real-time (RT) traffic classes
“A” and “B”. Each traffic class uses dedicated queues, so scheduling within a class follows a
FIFO order. The aim is to guarantee a fixed maximum latency for up to 7 hops within the
network for class A and B: 2ms for A and 50ms for B. This is done by preventing traffic bursts
thanks to a credit-dependant shaping.

Each shaped class has a credit-counter managing a gate allowing or forbidding the frame
transmissions. The credit is consumed (decreased) at the constant rate (the send slope) when
data of the specific class is transferred, or else replenished (increased) at a different constant
rate (the so-called idle slope) when a shaped frame is enqueued. Depending on the credit
value, the gate associated to the queue is open (when the credit is positive or null) or closed
(when the credit strictly negative). When the queue is empty, the credit immediately returns
to 0.

The idle slope and send slope are configured using the Stream Reservation Protocol (SRP)
as defined by IEEE 802.1Qat: the reserved bandwidth depends on the bandwidth needed by
the considered stream.

After the CBS, the different classes are scheduled using a static priority scheduler (see
Fig.2.4). Hence, CBS prevents the starvation of lower priorities, while ensuring bandwidth
guarantees to the shaped queue. These are good properties for mixed-criticality applications.

Queue1 Queue2

CBS CBS

Queue nQueue3

Static Priority

Figure 2.4: Credit Based Shaper

2.3.4.4 AVB related research

Extensive research work has been done on the AVB as it has gathered the interest of the au-
tomotive, automation and aeronautics communities. Among this work, many simulation re-

19

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

sults have been presented, such as [18][52], showing the high potential of the AVB for auto-
motive networks. In [53] and [54], the ability of the AVB to deal with the real-time constraints
typically found in the industrial automation was assessed. Finally, concerning the avionics
applications, in [55], the reliability of AVB was evaluated and results showed that it could only
be used for low safety classes, which demand less reliability. This is mainly due to the com-
plexity inherent to automation of bandwidth reservation and the failure probability of devices
evaluated in [55]. In [56], the AVB is compared to the ARINC 664 (AFDX). The results again
highlight the need for further work to enable the AVB as a standard for avionics. However, the
authors note the possibility of implementing the CBS shaper on the AFDX.

Quite a number of worst-case timing analyses have been done, with different methods.
There are examples using delay computation [53], Network Calculus framework [57], Trajec-
tory Approach [58], and Modular Performance Analysis (MPA) [59]. These four methods make
easy the computation of a class worst-case delay.

With the formal worst-case timing evaluation in [60], the response time of each individ-
ual message is proposed. This work has generally shown that Ethernet AVB substantially in-
creases the latencies for the highest-priority Class-A traffic compared to the static-priority
arbitration, due to the additional traffic shaping delay. We also observe in these evaluations
that class B traffic can not benefit from the shaping of class A as it is shaped itself. However,
work presented in [61] shows that the analysis done in [60] only considers one blocking effect,
from lower priority messages. But with AVB, this is not always the case due to traffic shaping.
So a new response time analysis is presented in [61]. The proposed analysis is limited to the
constrained deadline traffic model and a single-switch architecture. In [62], the [61] model is
extended to include multi-hop networks, where the effect of over-reservation is also studied.

Concerning the avionics requirements, a consequence of the shaping of classes A and B
with CBS is that the worst-case latency of unshaped lower priorities is improved. The shaping
allows giving minimum bandwidth guarantees to lower priority traffic. Hence, this shaper
validates the fairness condition.

Concerning the predictability, the different classes are isolated from each other thanks to
the counters and their associated blocking effects when the gate is closed, i.e., the credit is
strictly negative. The use of VL from the AFDX specification can also isolate the non-shaped
traffics from each other. However, it is shown in [61] that the impact of the blocking effect of
the AVB on the latency is high, giving a medium predictability to this shaper: the respect of
the deadlines is uncertain due to the high latency caused by the CBS.

Among all these works, one recurring conclusion is the high latency caused by the AVB
shaper. The main drawback of the AVB/CBS is the fact that it is by nature a blocking shaper:
frames cannot be transmitted if the credit is strictly below 0, no matter the state of the other
queues. This can cause unnecessary delays if other queues are empty.

To try and solve this issue, several approaches such as fragmentation and preemption, are
studied in [63]. However, in our avionics setting, such solutions are deemed too complex to
implement. Other solutions using the second generation of the AVB, called Time Sensitive
Network (TSN) have been explored and will be explained in the next section.

20

2.3. Real Time Ethernet-compliant Solutions

2.3.5 Time-Sensitive Networking

As presented in the previous section, the main limitation of the AVB is the high latency due
to the shaping. Hence, in the AVB generation 2, a new traffic class with very strict timing
guarantees has been proposed.

To limit the impact of the lower priorities on higher priority traffic, two standards have
been published: IEEE Std 802.1Qbu-2016 Frame Preemption and IEEE Std 802.1Qbv-2015
Enhancements for Scheduled Traffic. The first one allows a Bridge Port to suspend the trans-
mission of non time-critical frames during the transmission of critical frames. The second
one specifies time-aware queue draining to schedule the transmission of frames relative to a
known time scale.

An other standard has been published to provide explicit trees for data traffic: IEEE Std
802.1Qca-2015 Path Control and Reservation.

Finally, there are several on-going draft by the TSN task group.

• 802.1AS-Rev - Timing and Synchronisation: Timing and Synchronisation for Time-Sensitive
Applications - Revision

• 802.1CB - Frame Replication and Elimination for Reliability

• 802.1Qcc - Stream Reservation Protocol (SRP) Enhancements and Performance Improve-
ments

• 802.1Qch - Cyclic Queuing and Forwarding

• 802.1Qci - Per-Stream Filtering and Policing

• 802.1Qcj - Automatic Attachment to Provider Backbone Bridging (PBB) services

• 802.1CM - Time-Sensitive Networking for Fronthaul

• 802.1Qcp - YANG Data Model

• 802.1Qcr - Asynchronous Traffic Shaping

In the following section, we detail the different TSN standards. Then in the next section,
we present the different shapers proposed in TSN. Among all the standard, two do not present
an interest to our study: 802.1CM - Time-Sensitive Networking for Fronthaul and 802.1Qcp
- YANG Data Model. The detail of these two standards are informational only and can be
skipped. The other parts of TSN offer interesting possibilities in terms of delay management
and network configuration such as preemption, queue management [64], automatic band-
width reservation.

21

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

2.3.5.1 TSN standards

In this section we present the different TSN standards, published and drafted. SO if a TSN
solution is selected, we will be able to take into account the full scope of the possibilities
offered.

IEEE Std 802.1Qbu-2016 Frame Preemption

The purpose of this standard is to reduce the latency transmission for scheduled, time-
critical frames in a bridged LAN.

A large, non time-critical frame may start before time-critical frame transmission. This
condition leads to excessive latency for the time-critical frame. The lack of transmission pre-
emption severely limits the capabilities of implementing a real-time network with applica-
tions using scheduled frame transmission.

IEEE Std 802.1Qbu also provides the discovery, configuration, and control of preemption
service for a bridge port and end station, while ensuring that preemption is only enabled on
a given link if both link partners have that capability.

This standard defines a class of service for time-critical frames that requests the trans-
mitter in a bridged Local Area Network to suspend the transmission of a non-time-critical
frame, and allow for one or more time-critical frames to be transmitted. When the time-
critical frames have been transmitted, the transmission of the preempted frame is resumed.
A non time-critical frame could be preempted multiple times.

To achieve this, the preemption is done at the MAC layer, after two processes of frame
selection, one for the non-preemptable queue (called express), and one for the preemptable
queues. Both process go through MAC control before being merged in a MAC merge sublayer.
Meanwhile, the physical layer remains ignorant of the preemption. Finally, guard band can
protect the express traffic completely from interferences from preemptable traffic: the time
reserved for scheduled traffic is increased to take into account guard bands, which prevents
the preemption time from impacting the scheduled frames.

IEEE Std 802.1Qbv-2015 Enhancements for Scheduled Traffic

Bridges are increasingly used to interconnect devices that support scheduled applications
(e.g., industrial automation, process control and vehicle control). This standard provides
performance assurances of latency and delivery variation to enable these applications while
maintaining the existing guarantees for the credit-based shaper and best-effort traffic.

This standard specifies time-aware queue-draining procedures, managed objects and ex-
tensions to existing protocols that enable bridges and end stations to schedule the transmis-
sion of frames based on timing derived from IEEE Std 802.1AS: the transmission from each
queue is scheduled relative to a known timescale using the global time. A transmission gate
is associated with each queue and the state of the gate determines whether or not queued
frames can be selected for transmission. The detailed of the Time Aware Shaper defined in
this standard will be presented in Section 2.3.5.2.

22

2.3. Real Time Ethernet-compliant Solutions

802.1AS-Rev - Timing and Synchronisation: Timing and Synchronisation for Time-Sensitive
Applications - Revision

This standard enables stations attached to bridged Local Area Networks (LANs) to meet
the respective jitter, and time synchronisation requirements for time-sensitive applications.
To facilitate the widespread use of bridged LANs for these applications, synchronisation in-
formation is one of the components needed at each network element where time-sensitive
application data are sent or a time-sensitive function is performed. This standard uses the
work of the IEEE 1588 Working Group by developing the additional specifications needed to
address these requirements.

802.1AS-Rev specifies the protocol and procedures used to ensure that the synchronisa-
tion requirements are met for time-sensitive applications, such as audio, video, and time-
sensitive control, across the whole network. This includes the maintenance of synchronised
time during normal operation and following addition, removal, or failure of network com-
ponents and network reconfiguration. It also specifies the possibility of using IEEE Std 1588
specifications.

The revision includes an improved scalability through a one-step processing, and the im-
proved support for long-chains and rings. The new standard is also more responsive with
faster Grand Master changes, and a reduced Best Master Clock Algorithm convergence time.
The redundancy of GrandMaster and paths are also possible.

802.1CB - Frame Replication and Elimination for Reliability

This standard specifies procedures, managed objects and protocols for bridges and end
stations that provide the identification and replication of frames, for redundant transmission,
the identification of duplicate frames and the elimination of duplicate frames.

802.1Qcc - Stream Reservation Protocol (SRP) Enhancements and Performance Improve-
ments

This amendment provides protocols, procedures and managed objects for bridges and
end stations that are compatible with existing automatic reservation AVB mechanisms and
provides:

• Support for more streams

• Configurable SR (stream reservation) classes and streams

• Better description of stream characteristics

• Support for Layer 3 streaming

• Deterministic stream reservation convergence

• UNI (User Network Interface) for routing and reservations

23

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

802.1Qch - Cyclic Queuing and Forwarding

This amendment specifies synchronised cyclic enqueuing and queue draining procedures,
managed objects, and extensions to existing protocols that enable bridges and end stations
to synchronise their transmission of frames to achieve zero congestion loss and deterministic
latency.

802.1Qci - Per-Stream Filtering and Policing

The development of standards for Time-Sensitive Networking (TSN) have shown that
there exist no interoperable standards that enable a bridge to detect whether or not some
systems in a network are conforming to behaviours agreed by configuration and/or proto-
col exchanges. For example, devices that exceed the allocated bandwidth for one stream can
prevent the network from achieving the benefits of TSN for any or all streams, not just the
misbehaving stream.

This standard specifies procedures and managed objects for a bridge to perform frame
counting, filtering, policing, and service class selection for a frame based on the particular
data stream to which the frame belongs, and a synchronised cyclic time schedule. Policing
and filtering functions include the detection and mitigation of disruptive transmissions by
other systems in a network, improving the robustness of that network.

802.1Qcj - Automatic Attachment to Provider Backbone Bridging (PBB) services

This standard specifies the protocols, procedures and management objects for auto at-
tachment of network devices to Provider Backbone service instances by using Type, Length,
Value (TLVs) within the Link Layer Discovery Protocol (LLDP).

This also simplifies the deployment and administration of PBB networks, e.g. controlled
by Shortest Path Bridging (SPB), by allowing for automatic configuration of the virtual LANs
and service identifiers, thus allowing access to services of network devices without the need
of manual configuration.

802.1CM - Time-Sensitive Networking for Fronthaul

Fronthaul is a new mobile architecture. The fronthaul portion of a Centralized Radio
Access Network (C-RAN) telecommunications architecture comprises the intermediate links
between the centralised radio controllers and the radio heads (or masts) at the "edge" of a
cellular network.

A mobile operator’s radio equipment and radio equipment controller are often separated
and the connection between them has very stringent requirements. This fronthaul connec-
tion is not provided by a bridged network today. In an IEEE 802.1 bridged network potentially
carrying other categories of traffic, specific configurations of various IEEE 802 standards are
needed to meet the requirements of the fronthaul streams. Therefore, the use and the con-
figurations of functions defined in the IEEE 802 standards have to be specified by standard
profiles for bridged fronthaul networks.

This standard defines profiles that select features, options, configurations, defaults, pro-
tocols and procedures of bridges, stations and LANs that are necessary to build networks that
are capable of transporting fronthaul streams, which are time sensitive.

24

2.3. Real Time Ethernet-compliant Solutions

802.1Qcp - YANG Data Model
802.1Qcp specifies a Unified Modeling Language (UML) based information model and a

YANG data model that allows configuration and status reporting for bridges and bridge com-
ponents including Media Access Control (MAC) Bridges, Two-Port MAC Relays (TPMRs), Cus-
tomer Virtual Local Area Network (VLAN) Bridges, and Provider Bridges. It further defines the
relationship between the information and data model and models for the other management
capabilities specified in this standard.

YANG (Request For Comment (RFC) 6020) is a formalised data modeling language that
can be used by NETCONF, a widely accepted protocol that is being used to simplify network
configuration. Other standards development organisations (e.g. Internet Engineering Task
Force (IETF) and the Metro Ethernet Forum) have adopted YANG, and are developing a broad
range of data models.

802.1Qcr - Asynchronous Traffic Shaping
There is well defined traffic that requires zero congestion loss and deterministic latency.

Current bridging standards do not provide a sufficiently fine grained asynchronous traffic
mechanism to meet these requirements without using network topology information. The
draft specifies mechanisms that do not rely on synchronous communication, thereby provid-
ing independence from clock synchronisation mechanisms and higher link utilisation than
synchronous mechanisms. The proposed mechanism is called Urgency-based scheduler (UBS)
and will be detailed in section 2.3.5.2.

Hence, the TSN task group aims at improving the AVB standards with 802.1AS-Rev and 802.1Qcc,
but they also seek to add new features such a preemption and frame replication. Now that we
have presented the different parts of TSN, we present in more details the shaping solutions
proposed by the TSN task group. TSN first proposed 3 shapers: Time Aware Shaper (TAS),
Peristaltic Shaper (PS) and Burst Limiting Shaper (BLS). Among these 3, TAS was selected for
the standard 802.1Qbv and uses the time synchronisation defined in 802.1AS and 802.1AS-
Rev. After this, a last mechanism was proposed for the 802.1Qcr standard, the Urgency-based
scheduler (UBS). In the next 4 sections we present them all.

2.3.5.2 TSN shapers

In this section, we present the four shapers proposed by the TSN task group, starting with the
Time Aware Shaper.

Time Aware Shaper
TAS[65] uses time-driven scheduling to manage link access between traffic classes which

makes it a good candidate for mixed-criticality traffic. The global time used by TAS is defined
in 802.1AS and 802.1AS-Rev. As illustrated in Fig.2.5, for each traffic class, the scheduler at an
output port contains a time-aware gate per queue, which allows frames to pass when opened
and blocks frames when closed. The times Tn at which these gates open (o) and close (C) are
programmed offline (gate schedule). Gates of multiple traffic classes can be opened at the
same time. Then, dequeuing is arbitrated according to the priority of these classes.

25

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

Time aware gates

Queue1 Queue2 Queue n

Gate Schedule

T1:Cooo

T0:oCCC

Static Priority

Figure 2.5: Time Aware Shaper

To prevent frames transmission after its gate is closed, TAS defines guard bands. From the
start of a guard band until the gate is closed, no new frames of the corresponding class are
allowed to start transmission. The idea behind TAS is that each critical traffic class has priv-
ileged link access, i.e., every critical traffic class has exclusive link access during its intervals,
i.e., without interference by higher or lower-priority traffic. However, same-priority traffic
can still impact a frame.

TAS has been specified by the TSN Task Goup[21] and even before the specification, in
[66], simulations have been run to compute end-to-end latencies in an automotive setting.
Concerning the formal analysis, a formal modelisation using the Compositional Performance
Analysis (CPA) methodology is proposed in [65]. In [67], the schedulability is studied, the
authors explore the constraints linked to the gate opening and closing, which is a first step
toward finding a formal method of schedulability.

TAS is very close to TTE in terms of goals and how to achieve them. Due to the gate
schedule, modifications are propagated to all flows, giving TAS a low modularity and high
complexity.

As TTE, the aim of TAS is to reduce the impact of lower classes. Additionally, when lower
classes’s gates are opened, they are scheduled using a Static Priority. A solution could be to
use time-synchronisation on several classes to reserve for them a certain bandwidth. How-
ever, this comes with other problems, such as bandwidth over-reservation due to use of
guard-bands to limit the impact of non-preemption. With guard-bands, part of the band-
width cannot be used, resulting a higher impact on the asynchrone traffics. Thus, TAS does
not have a good fairness.

Finally, while TAS does not define bandwidth guards for asynchrone traffics, these already
exist on the AFDX. So with the use of V L, TAS has a good predictability.

Since the publication of the standard, numerous works have been published concerning
this new shaper and its impact on AVB traffics [62], [68], in the automotive industry [69][70],
and also in the mobile fronthaul network [71][72][73].

26

2.3. Real Time Ethernet-compliant Solutions

Peristaltic Shaper
The Peristaltic Shaper (PS) [74] uses a global time divided in odd and even phases to man-

age different traffic classes. If a shaped frame arrives in an odd (resp. even) phase, it can not
be sent before the start of the next even (resp. odd) phase. The idle time can be used by other
priorities.

The Peristaltic Shaper has been proposed by the same task group as TAS. Hence, before
the standardisation, they have often been studied together and similar work has been done
such as simulations and formal models [66] [65].

As for TTE and TAS, the use of a global time has a strong impact on the modularity: a flow
modification can impact the calculation of odd and even phases not only on its path, but on
others too as the phase modification impacts other flows. So, PS has a low modularity and
high complexity.

Due to the initial waiting time caused by the odd and even phases, it is possible that lower
priority traffic is sent faster than with a Static Priority scheduler. Hence, Peristaltic Shaper is
slightly fairer than Static Priority, making it an interesting solution.

Concerning the predictability, with the VL, the Peristaltic Shaper has a good predictability.
Now that the time-triggered solutions have been presented, we detail the event-triggered

solutions.

Burst Limiting Shaper
The Burst Limiting Shaper (BLS) belongs to the credit-based shaper class. Presented in

[15], the BLS is always based on a static priority scheduler, as it modifies the priority seen by
the SP depending on a credit counter.

Queue1 Queue2 Queue n

BLS

Static Priority

Figure 2.6: Burst Limiting Shaper

27

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

Hence, depending on the priority value, the shaped frames can be blocked or not by other
classes. However, no matter the state of the credit, the first frame with the highest priority is
sent. Thus, contrary to CBS, the BLS is a non-blocking shaper, which is a large improvement
for the predictability of the solution. The BLS also has a low complexity thanks to the simple
counter and priority change.

The priority change is the feature that enables the BLS to reserve bandwidth for the shaped
queue. It also has an other consequence: the limitation of the bandwidth available to the
shaped queue, which make the association of BLS and SP much fairer than the SP alone.

The Burst Limiting Shaper has been studied. In particular simulation results and timing
analysis are available in [66] [75].

Urgency-based Scheduler

The main idea of the Urgency-based Scheduler (UBS) [76] is a separation between per
flow and per queue. The conceptual separation of per flow queue and state provides per flow
shaping at every hop for flow aggregated in the queues. This concept is called i nt er l eaved

shapi ng . This significantly reduces the algorithmic complexity by limiting the number of
required queues. Hence the first step when a new frame arrives in the output port is to select
the appropriate queue depending on the priority of the flow and its "urgency" as decided by
an interleaving algorithm.

This results in a two level queuing mode: first an array of shaped queues outside of the
scheduler, each associated to a fixed priority and an individual shaper and secondly one
queue per priority level in the scheduler. Each of the latter queues merges the output of the all
shaped queue of the same priority level. The queues outside the scheduler are called queues

and the queues in the scheduler, pseudo queues. The term pseudo queues is based on
an implementation assumption: if only a few (shaped) queues are necessary, efficient sched-
uler implementation are possible that directly transmit from the (shaped) queues. The next
packet for transmission is identified by comparison of (i) the associated priority levels, (ii)
the eligibility times of the Head-of-Queue (HQ) packets (which depends on an interleaving
algorithm [76]). This has motivated the introduction of new theory of traffic regulators able
to explain the “reshaping-for free” property of minimal interleaved regulators [77]. In [78],
the UBS synthesis problem of assigning hard real-time data flows to queues and priorities to
queues is presented and solved. However, while very easy to implement on a software level,
this seems quite complex to implement at the hardware level or at the MAC level. Addition-
ally, the selection of an appropriate queue for each packet again increases the complexity and
adds potential points of failure.

This is summed up in Fig.2.7: when a new frame arrives in the output port, it is dispatched
in a queue depending on a queue allocation scheme. Then, each (shaped) queue is shaped
by an interleaving algorithm before merging same priority queues into a single queue using
the time stamp, computed by the interleaving algorithm. Finally, a static priority scheduler
selects the appropriate packet. From this, the complexity of the solution and the many points
of failure are quite obvious.

This scheduler is still new, so little research has been done yet. In [79], a first analysis of
the integration of UBS in a fault tolerant system is done. The aim is to find an optimum archi-

28

2.4. Discussion

tecture with minimal cost. In [76], the scheduler is presented, simulations and timing analy-
sis are performed. The results show high link utilisation and low delays. They also conclude
that the implementation complexity is low, in part because they assume the queue selection
process is already implemented in the switches thanks to the standardisation of 802.1Qci-Per-
Stream Filtering and Policing. But as showed here, while implementing it in higher layer is
simple, implementing at the hardware level is much more complex.

����
����
����
����
����
����

����
����
����
����
����
����

Static Priority

Queue yQueue xQueue 1 Queue 2

Queues

Pseudo Queues

Shapers

new frame

?Queue selection

Figure 2.7: Urgency-based Scheduler

Now that we have presented and studied the different solutions to add mixed-criticality
to the AFDX, in the next section we compare these solutions and select the most promising
one regarding the avionics requirements and challenges.

2.4 Discussion

From the presentations of the different mixed-criticality solutions, we can select the solutions
fit for an avionic context.

In this section, we assess the pros and cons of the different solutions vs the four avionics
requirements and challenges, to find the eligible ones:

• predictability: thanks to the leaky bucket shapers in the AFDX end-systems and the
policers in the switches, all the presented solutions can achieve the necessary deter-
minism and isolation;

29

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

• modularity: the event-triggered paradigm is known for its modularity, contrary to the
time-triggered event paradigm. Because of the time-synchronisation, a modification
of a flow can impact other flows directly and necessitate a recomputation of the gate
schedules. Hence, the time triggered solutions do not fulfil the modularity criterion,
contrary to event-triggered solutions;

• fairness: there are four solutions fulfilling the fairness constraint: DRR, CBS, PS and
BLS.

• Complexity: time-triggered solutions necessitate implementing a complex time syn-
chronisation. Both CBS and BLS can be used independently from the synchronisation
aspect of AVB and TSN. Concerning UBS, while is also asynchronous, we showed that
its complexity is nevertheless high.

Finally, the only eligible fair solutions are the DRR, the AVB/CBS and the TSN/BLS.
However, AVB/CBS has two main issues: i) even when the other queues are empty, if the

credit is negative a shaped frame is blocked; ii) the credit returns to 0 when the queue is
empty, erasing any potential positive impact due to the idleness of previous frames. This
causes unnecessary delays, so we also discard CBS. Interestingly, the BLS solves both theses
limitations as it is a non-blocking shaper with a continuous credit.

The DRR is a well-known scheduler that has been used and studied extensively by many
communities, among them the avionics community [39]. But, it infers high complexity due
to its parameters, i.e., weights, tuning process. BLS however, is a new shaper, mainly studied
by the automotive community [75]. Nonetheless, it has also started gaining attention from
the avionics community [80].

One of the interesting feature of the BLS is its ability to shape one queue and leave the
others to SP. A simple DRR however, shapes all the queues, reserving bandwidth for lower
priority traffic; whereas the BLS lets the non-real time traffic use the remaining bandwidth
left by real-time traffic.

Therefore, the BLS is considered herein as the most interesting solution to be incorpo-

rated within the AFDX standard, to enable an homogeneous avionics communication ar-

chitecture supporting mixed-criticality applications.

As the BLS was proposed with TSN, we now study the possibility of using other TSN fea-
tures. First, we discard the time synchronisation as too complex and not useful since we
selected an event-triggered solution. The different standards requiring time synchronisation,
such as 802.1Qch-Cycle Queuing and Forwarding and 802.1Qbv Enhancement for Scheduled
Traffic, must be discarded too. The standards adding automation (802.1Qcj and 802.Qcc)
to the network cannot be used as they add unpredictability to the network. Finally, the re-
maining three features are frame preemption (802.1Qbu), frame replication (802.1CB), and
per-stream filtering and policing (802.1Qci). The last two are already implemented in the
AFDX so we discard them. Concerning frame preemption, it is a very interesting feature but
it is complex to implement, so we discard it. Thus, the BLS is the only feature we selected to
specify the new avionics network.

The conclusions on the considered solutions vs the main avionics requirements and chal-
lenges are illustrated in Table 2.1.

30

2.5. Conclusion

Solutions references Constraints Key studies

NP-SP [25][81] XX XX X XX X X X X

GPS/DRR [43][45][44][39] XX XX XX X X X X X

TTE [22][47][17][50][51] XX X X X X X X X

AVB/CBS [60][82][61] X XX XX XX X X X X

TSN/TAS [65][66] XX X X X X X

TSN/PS [74][66][65] XX X X X X X

TSN/BLS [66][15][75] XX XX XX XX X X

TSN/UBS [76][79][78] XX XX XX X X X

Predictability

Avionics constraints Modularity

and challenges Fairness

Complexity

Specification

Timing Analysis Simulation-based

Analytical-based

Performance enhancement

Table 2.1: Existing solutions vs avionics requirements and challenges

2.5 Conclusion

After analysing the existing solutions, it appears clearly that time-triggered solutions are not
fit for avionics due to their high complexity and low modularity . Among the event-triggered
solutions, DRR, CBS and BLS are all possible solutions, but the BLS seems the best one, as it
is less complex and has better predictability.

Now that we have selected the most promising solution, we will follow the methodology
described in Section 1.3. In particular, since the specification of the BLS has not been com-
pleted yet, we will start by specifying our proposed solution in Chapter 3. It will contain the
specification of an AFDX switch incorporating the BLS and an algorithm of such an imple-
mentation.

31

Chapter 2. Problem Statement and State of the art: Mixed-Criticality Solutions for
Avionics Applications

32

CHAPTER

THREE

SPECIFICATION: THE EXTENDED AFDX SWITCH

"Without requirements or design, programming is the art of adding bugs to an empty text file."

-Louis Srygley

Contents

3.1 Introduction . 33

3.2 The Burst Limiting Shaper . 34

3.2.1 Basic concepts . 34

3.2.2 Implementation . 36

3.3 Switch architecture . 38

3.3.1 Overall architecture . 38

3.3.2 QoS identification . 41

3.4 Preliminary Analysis . 43

3.4.1 Case study . 43

3.4.2 Simulation results . 45

3.5 Conclusion . 47

3.1 Introduction

The development of avionics data exchanges led to study the possibility and the impact of
mixing different criticality levels within a single network. Introducing mixed-criticality in a
network is a hot topic that can be handled using different solutions ranging from well-known
scheduling schemes (e.g., SP, WRR,...) to newly proposed shapers (e.g., CBR, BLS,...). Among
this myriad of solutions, we have shown in Chapter 2 the potential of the Burst Limiting
Shaper (BLS) proposed by the Time Sensitive Networking (TSN) task group, part of the 802.1
working group, in the specific case of an avionics network.

33

Chapter 3. Specification: the extended AFDX switch

Hence, the aim of incorporating the TSN/BLS within the AFDX switch is to handle mixed
criticality data, and more specifically three AFDX traffic profiles, as illustrated in Fig.3.1: (i)
the Safety-Critical Traffic (SCT) with the highest criticality and the tightest temporal deadline,
e.g., Flight-control flows; (ii) Rate-Constrained traffic (RC) with the medium criticality and a
deadline constraint to guarantee, e.g., the current AFDX flows; (iii) the best-effort traffic (BE)
with the lowest criticality and no time constraint, e.g., in-Flight Entertainment.

The aim of this chapter is to detail the specification of such a solution. We start by de-
tailing the BLS basic concepts. This is a necessary step to first gain a better understanding
of the BLS before proposing an implementation. Secondly, the extended AFDX switch archi-
tecture is presented to highlight the necessary modifications of the current one. Finally, a
preliminary analysis is done to emphasise the interest of the BLS to enhance performances.

As a result, this chapter presents the first contribution of this thesis, which is the speci-
fication of an extended AFDX implementing the TSN/BLS on top of Non-preemptive Static
Priority (NP-SP) scheduler, along with a preliminary analysis. The study shows the BLS is
straightforward to implement and that the current AFDX switch architecture implementing a
NP-SP scheduler requires few modifications to implement the BLS. Additionally, our prelimi-
nary simulations show the potential of such a solution with improvements of both maximum
utilisation rates and delay bounds of RC traffic.

3.2 The Burst Limiting Shaper

In this section, we first present the functioning of the BLS, then we propose an algorithm to
implement it in Section 3.2.2.

3.2.1 Basic concepts

The BLS belongs to the credit-based shapers class. Each shaped queue is associated to a
class k and has been defined in [15] by an upper threshold Lk

M , a lower threshold Lk
R , such as

06 Lk
R < Lk

M , and a reserved bandwidth BW k . Additionally, the priority of a class k shaped by
BLS, denoted p(k), can vary between a high and a low value , denoted pH (k) and pL(k) (with
priority 0 the highest priority, and pL(k) > pH (k)). The low value is usually below the lowest
priority of the unshaped traffic. In the avionic context, to guarantee the safety isolation level
between the different traffic profiles, the low value associated to the SCT is set to be lower
than the RC priority level, but higher than the BE priority. Therefore, when considering one
class for each traffic type, SCT queue priority oscillates between 0 (the highest) and 2 (see
Fig.3.1), RC priority is 1 (see Fig.3.1) and BE has the priority 3 (the lowest, see Fig.3.1). Thus,
when SCT traffic is enqueued, BE traffic can never be sent no matter the state of BLS. In this
case, RC is the only traffic that can be sent and this only happens when the SCT priority is 2.
As a consequence, BE traffic is isolated from SCT and RC traffics.

34

3.2. The Burst Limiting Shaper

#3

SCT class

RC class

BE class

#1

#{0,2}

SP

sets queue priority between {0,2}

BLS

Figure 3.1: Burst Limiting Shaper on top of NP-SP at the output port with 3 classes

The credit counter varies as follows:

• initially, the credit counter starts at 0 and the priority of the queue of the burst limited
flows is high (#0);

• the main feature of the BLS is the change of priority p(k) of the queue of the shaped
class, which occurs in two contexts: 1) if p(k) is high and credit reaches Lk

M ; 2) if p(k) is
low and credit reaches Lk

R ;

• when a frame is transmitted, the credit increases (is consumed) with a rate of I k
send

, else

the credit decreases (is gained) with a rate of I k
i dle

;

• when the credit reaches Lk
M , it stays at this level until the end of the transmission of the

current frame;

• when the credit reaches 0, it stays at this level until the end of the transmission of the
current frame (if any). The credit remains at 0 until a new BLS frame is transmitted.

The behaviour of the BLS is illustrated in Fig.3.2. As shown, the credit is always between
0 and Lk

M . The credit rates of the BLS shaper are defined as follows:

• the decreasing rate is:
I k

i dle = BW k
·C (3.1)

where C is the link speed and BW k is the percentage of bandwidth reserved for BLS
frames.

• the increasing rate is:
I k

send =C − I k
i dle (3.2)

35

Chapter 3. Specification: the extended AFDX switch

���������������
���������������
���������������

���������������
���������������
���������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������������
���������������
���������������

���������������
���������������
���������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

send

M

R R

M

Sporadic traffic

idle

Transmitted
traffic

Bursty traffic

Time Time

Other queues traffic

High priority

Low prioriry

Shaped queue k traffic

credit

Shaped

credit

Shaped
Queue kQueue k

k

k

k

k

k

k

I

L

L L

L

I

Figure 3.2: BLS credit evolution

It is worth noting that with the BLS, both the priority of the queue of the shaped class and
the state of all the queues, i.e., empty or not, define whether the credit is gained or lost. This
aspect is depicted in Fig.3.2 for two arrival scenarios. The first one (left figure) shows the case
of a bursty traffic, where the maximum of traffic shaped by the BLS is sent when its priority
is the highest. Consequently, the other priorities send as much traffic as possible when the
priority of the BLS class has the low value. The second one (right figure) is for sporadic traffic,
where we can see that when the shaped-class priority is highest but no frame is available, then
the credit is regained. However, when the priority is at the low value and the other queues are
empty, then shaped-class frames can be transmitted and the credit is consumed.

3.2.2 Implementation

The implementation of BLS at the hardware level requires a counter to track the credit and
a timer to handle credit updates. These parameters, i.e., a counter and a timer, induce low
extra complexity to implement a BLS on top of a NP-SP scheduler, in comparison to a regular
NP-SP scheduler. Hence, the algorithm allowing to implement the BLS corresponds to a mod-
ification of the priority scheduler. The new dequeuing algorithm is presented in Algorithm 1.
This algorithm operates in two cases: 1) if a frame arrives when all queues are empty; 2) at
the end of the current frame transmission, a new frame has to be elected for dequeuing.

The credits of each class k is stored in cr edi t s[k]. Each shaped class k has a dequeuing
timer. Likewise, for each class, Lk

M , Lk
R , BW k , pL(k) and pH (k) are stored in LM s, LR s, BW k s,

pLs and p H s. A class k shaped by BLS is characterised by the fact that pLs[k] > p H s[k]
(as priority 0 is the highest priority), otherwise pLs[k] = p H s[k]. The current priority of a
class is stored in p . We suppose that several class can be shaped and no two classes can
have the same priority. All the timestamps used in the algorithm are set to the time value at
the start of execution. Also, t i mer DQs[k] represents the estimated end of the shaped frame
transmission.

36

3.2. The Burst Limiting Shaper

The credits cr edi t and the dequeuing timers t i mer DQs[k] are initialised to zero. The
initial priority is set to the high value. First, we store the current time in t i me in line 2. Then,
for each BLS class k (line 1), we compute δt i me , the difference between the current time and
the time stored in t i mer DQs[k] in line 3. The duration δt i me represents the time elapsed
since the last credit update, during which no shaped packet was sent, we call this the idle time.
Then, if δt i me > 0, the credit is updated by removing the credit gained during the idle time that
just occurred (lines 4 and 5). Next, t i mer DQs[k] is set to the current time to keep track of the
last time when the credit was updated (line 6). If the credit reaches Lk

R , the priority changes
to its high value (lines 7 and 8). Then, with the updated priorities, the priority scheduler
performs as usual: each queue is checked for dequeuing (lines 2 and 13). When a BLS queue
is selected, the credit expected to be consumed is added to the cr edi t variable (line 16). The
time taken for the packet to be dequeued is added to the variable t i mer DQs[k] (lines 16 and
17). Therefore, the transmission time of the packet will not be taken into account in the idle
time δt i me (line 3). If the credit reaches Lk

M , then the priority changes to its low value (lines
18 and 19). Finally, the packet is dequeued (line 22), and the loop is exited in line 23.

Algorithm 1 BLS algorithm: dequeuing process

Input: cr edi t s; t i mer DQs;C LM s;LR s;BW s;pLs; p H s;
1: for each class k with pLs[k]> p H s[k] do
2: t i me = g et cur r ent T i me()
3: δt i me = t i me − t i mer DQs[k]
4: if δt i me > 0 then
5: cr edi t s[k]= max(cr edi t s[k]−δt i me ·BW s[k] ·C ,0)
6: t i mer DQs[k]= t i me

7: if cr edi t s[k]6 LR s[k] and p[k]= pLs[k] then
8: p[k]= p H s[k]
9: end if

10: end if
11: end for
12: for each priority level pl , highest first do
13: if length(queue(pl))>0 then
14: k=queue(pl)
15: if pLs[k]> p H s[k] then
16: cr edi t s[k]=min(LM s[k],cr edi t s[k]+size(head(k) ·(1−BW s[k])))
17: t i mer DQs[k]=t i me+size(head(k))/C
18: if cr edi t s[k]> LM s[k] and p[k] = p H s[k] then
19: p[k]= pLs[k]
20: end if
21: end if
22: dequeue(head(k))
23: break
24: end if
25: end for

37

Chapter 3. Specification: the extended AFDX switch

Algorithm 1 also implements the following functions:

• g et cur r ent T i me() uses a timer to return the current time;

• queue(pl) returns the queue associated to the priority pl ;

• head (k) returns the first packet in the queue of class k ;

• si ze(f) returns the size of the packet f ;

• dequeue(f) activates the dequeuing event of packet f .

The complexity of this algorithm is the same as a priority scheduler and is O(1), since the
number of queues is constant.

3.3 Switch architecture

In this section, we present the switch architecture. First we explain the overall view of the
switch, then we detail the different solutions for QoS identification to select the best one.

3.3.1 Overall architecture

Now that BLS and its implementation has been presented, we explain here the detail of the
proposed extended AFDX switch architecture.

The AFDX standard manages the exchanged data through the Virtual Link (VL) concept.
This concept provides a way to reserve a guaranteed bandwidth for each traffic flow as ex-
plained in Chapter 2. Furthermore, the AFDX supports a NP-SP scheduler based on two pri-
ority levels within switches to enable the QoS features.

For the new extended AFDX, we consider that depending on the constraints of the flows,
the different traffics can be separated in several classes: {SC T1, ...SC Tn},{RC1, ...RCm}, and
{BE1, ...BEl }, with n, m, l , the number of classes for each type of traffic. Additionally, also
depending on the different constraints, any class can be shaped by a BLS at the output port
as shown in Fig.3.4 to reduce the impact of the considered class on lower priorities.

In Fig.3.3, we illustrate the architecture of our extended AFDX switch in the case of 3
classes. It consists of: (i) store and forward input ports to verify each frame correctness before
sending it to the corresponding output port; (ii) a static configuration table to forward the re-
ceived frames to the correct output port(s) based on their VL identifier; (iii) the output ports
can handle k = m +n + l priority queues, multiplexed with a NP-SP scheduler, as illustrated
in Fig.3.4.

As a consequence, for each queue, we associate a class k , and we can set two different
priorities: pL(k) and pH (k). The BLS is only activated if pL(k) > pH (k) (because the priority
increases when p(k) decreases, i.e., priority 0 is the highest priority). In this case, a credit
counter monitoring the SP dequeuing process is attributed to this queue. The credit manages
the selection of the priority of the queue viewed by the NP-SP as described in Fig.3.5.

38

3.3. Switch architecture

BLS

BLS

forwarding processInput ports Output ports

Configuration table SP

SCT

RC

BE BLS

BLS

SP

SCT

RC

BE BLS

BLS

Figure 3.3: An extended AFDX switch architecture with 3 classes

SCT

1

n

 RC 1

 RC m

 BE

 BE l

SP

BLS

BLS

BLS

BLS

BLS

SCT1 BLS

Figure 3.4: The output port of an extended AFDX switch

The resulting architecture is very flexible and offers many opportunities to manage each
class as needed. For example for homogeneous classes, we can only consider one queue by
type of traffic and we can shape the SCT as proposed in Fig.3.1. Or, for more heterogeneous
classes, we can use two queues by type of traffic and only shape the second queue of both
SCT and RC-type traffic classes, leaving the first ones for tighter deadlines, as illustrated in
Fig.3.6

The current AFDX switch distinguishes the flow priority level based on its VL identifier
stored in the static configuration table, i.e., for each VL identifier, there is a predefined prior-
ity level stored in the table. However there are other solutions available. We will study them
in the next section. Hence, to manage both extra AFDX profiles, i.e., SCT and BE, within our
extended AFDX switch, we need to update the configuration table to add the corresponding
VL identifiers and their associated priority levels. Moreover, we need to update the QoS iden-
tification to implement at least 3 priorities.

39

Chapter 3. Specification: the extended AFDX switch

P
L

P
H

P

Priority

i

P

Updates

Selects

Credit

Sets

SP

Active BLS queues

Non Active BLS queues

i

(i) (i)

(i)

k

Priority

k

Figure 3.5: BLS behaviour in an output port of an extended AFDX switch

BLS

BLS

SCT

1

2

 RC 1

 RC 2

 BE

 BE 2

SP

SCT1

#2/5

#4/6

#1

#3

#8

#7

Priorities

Figure 3.6: Example of an output port of an extended AFDX switch

40

3.3. Switch architecture

3.3.2 QoS identification

In order to implement Quality of Service (QoS), the first problem is the identification of the
class of a frame. The AFDX already uses a system to differentiate two classes of service. Cur-
rently two priorities are implemented, low and high, with 2 queues in each output port. Only
one is used, leaving one free. It is enough for adding the Flight Control traffic but leaves no
space for adding other traffics. In this part, we explore the different possibilities to add more
priorities.

3.3.2.1 Potential solutions

Configuration Files
In the AFDX, the characteristics of a VL are defined in a configuration file shared by every

switch in the network, called Filtering _Policing _and _Forwarding_ Configuration_Table. Its
last column, denoted “prioritisation”, defines the priority (“high” or “low”) of a VL. We pro-
pose to modify this field to add other possibilities by adding new priority qualifiers, or using
numbers to define the priority. Since "prioritization" is the last item of a line, it will not dis-
place other fields in the line even if its length is increased, i.e., it will only change the line
size. The drawback of this is the possible change of type of the “prioritisation” information,
and possibly a slight growth of the configuration table file. The advantage is that no modifica-
tion is necessary to the current AFDX frames. However, some modifications may be required
within the switch to interpret differently the configuration file.

MAC Address
A second solution consists in using part of the constant field of the MAC address to en-

code the priority. This would slightly decrease the size of the configuration table since the
prioritisation field could then be deleted. However, it requires changing the End-Systems
and switches to build the MAC address field and guarantee its correct interpretation in the
configuration table.

802.1Q
Another solution consists in using the 802.1Q header [83]. In the Tag control information

(TCI) field, the Priority code point (PCP) is a 3 bits field used to define the priority of a frame,
which offers 8 possibilities. Unfortunately, while this solution is appealing due to the use
of a well known and globally used standard, it has the same drawbacks as the MAC address
solution, i.e., required changes within End-systems and switches and no real advantage com-
pared to the current implementation.

IP Header
A fourth solution is using the Differentiated Services Code Point (DSCP) [84][85], a field

used in the IP header to differentiate the different classes. This solution is based on layer 3 of
the OSI model, while the current switches only use layer 2 fields. It would mean accessing a
higher thus more complicated OSI layer. Similarly to the two previous solutions, the current

41

Chapter 3. Specification: the extended AFDX switch

AFDX frames would have to be modified in order to incorporate the assigned priority. More-
over, since the third layer is more complex, it might also be more difficult and more costly to
obtain the certification of the switches.

3.3.2.2 Discussion

The various alternatives are compared in Table 3.1 according to 3 criteria:

• complexity: it takes into account the modifications needed for the switch, the End-
Systems, the frame structure and the frame layer accessed by the switch;

• scalability: it is measured using the number of available classes;

• performance: it depends on the induced overhead.

The solution using the current configuration file is the one that does not require the mod-
ification of the switch, the End-Systems, or the frame, thus it has the lowest complexity. More-
over, it has a good scalability in terms of number of classes since any number could be added
to the file. It also has good performances in terms of overhead, with only one column needed
in the configuration table. With the other solutions, the way a switch identifies the frame class
is very different. They do not use the configuration file at all and store the class inside the
frame. Hence, these solutions are more complex because they require more modifications
than the one based on the configuration file. Both the MAC and IP addresses use already
existing field, unlike the 802.1Q which needs more modifications of the AFDX frame and con-
sequently more overhead. However, the MAC address and the 802.1Q are less complex than
the IP Address since they are layer-2 fields. Finally, 802.1Q is the less scalable solution be-
cause the number of classes is limited to 8, whereas the others can have several thousands of
classes due to their field lengths.

Config. file MAC address 802.1Q IP address

Complexity ++ + + –

Scalability +++ +++ + ++

Performance ++ +++ + +++

Table 3.1: QoS identification solution comparison

Hence, extending the current way to set priorities in the AFDX network seems the sim-
plest solution since it necessitates only few modifications, and does not need access to a
higher OSI layer. Moreover, with this configuration file, new and old AFDX switches could
be in the same network, with a different Filtering_Policing _and _Forwarding _Configuration
_Table for each type, to take into account the number of queues in each output port.

42

3.4. Preliminary Analysis

In comparison to the current AFDX switch architecture, the main modifications required
for the proposed extended AFDX switch consists in:

• at the software level, updating the static configuration table to manage at least three
priority levels instead of two (note that the update overhead is very limited since only
one additional bit per line is necessary to have 4 priorities);

• at the hardware level, adding the necessary extra priority queues at the output port
since the current AFDX switch only supports two priorities; and implementing the BLS
on top of the NP-SP scheduler, as illustrated in Fig.3.4.

From the global avionics communication architecture point of view, our extended AFDX
necessitates the update of the End-Systems at the application layer to enable a consistent
mapping between VL identifiers and the appropriate priority level. Moreover, the implemen-
tation and certification of this extended AFDX may imply extra costs, in comparison with the
current one. However, this fact is counterbalanced by the major pros of such an homoge-
neous architecture, in terms of enhancing performance and reducing cables and weight.

Now that we have presented the extended AFDX, we use the proposed algorithm to im-
plement the solution on a NS2 simulator to assess the potential of our solution through sim-
ulations.

3.4 Preliminary Analysis

We present in this section the results of a preliminary analysis, which aims to show through
simulations that the extended AFDX with BLS solution has promising results. While we have
specified an architecture with any number of priorities, this analysis is done considering 3
classes, one for each type of traffic. First, we present our case study. Then we discuss the
simulation results.

3.4.1 Case study

We consider a Gigabit switch described in Fig.3.7, and with the input traffic described in Table
3.2. The switch is connected to 4 Gigabit cables for each type of input traffic, and one Gigabit-
cable for the output traffic. The number of flows of a class k enqueued in an output port,
denoted ni n

k
, determines the load of the output port. We denote U Rk the utilisation rate of

class k ∈ {SC T,RC ,BE }, which directly depends on ni n
k

:

U Rk =ni n
k ·

MF Sk

B AGk

For this preliminary analysis, we consider 2 scenarios described in Table 3.3. The aim
of scenario 1 (resp. 2) is to get a first idea of the impact of increasing the SCT (resp. RC)
utilisation rate on RC and SCT delay bounds. In particular, we want to verify the real-time
requirement, i.e., the deadlines are fulfilled when varying the load of the network; in addition
to the fairness challenge, i.e., the impact of SCT on the RC in terms of delay bounds is limited.

43

Chapter 3. Specification: the extended AFDX switch

4 SCT traffic

generators

BLS

SP

SCT

RC

BE

Forwarding

process

generators

4 RC traffic

generators

4 BE traffic

Figure 3.7: Considered extended AFDX network

Thus, in scenario 1 (resp. 2), we set RC (resp. SCT) input rates at 20%, which means gen-
erating 156 (resp. 790 flows). Then, we vary SCT (resp. RC) utilisation rate, denoted U RSCT

(resp. U RRC) from 0 to over 70%. BE is used to bring the load up to 100% and we do not
present its timing results as BE does not have a deadline.

As there is only one shaped class, SCT, we use k =; to simplify the notations for the BLS
parameters Lk

M , Lk
R , BW k . Throughout the chapters, we do this when considering this use-

case, for the non-ambiguous notations, such as I k
send

or ∆k ,mi n
i dle

for instance.
The BLS parameters are the same in both scenarios:

• LR = 0 bit;

• LM = 22,118 bits;

• BW = 0.46.

Hence, LR is set to its minimum value, LM is set to absorb a burst of 80 frames and BW is
just below its median (0.5) value.

A scenario is defined by the input traffics and by the BLS parameters. So, we define a
vector to describe our scenarios:

Scenar i o= [U RSCT (in %),U RRC (in %),LM (in bits),LR (in bits),BW]

So, for scenario 1 and 2 this gives:

Scenar i oSCT = (U RSCT ∈ [0.1 : 0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

We have simulated our extended AFDX switch incorporating the BLS on top of the NP-SP
scheduler and the current AFDX switch, which implements the regular NP-SP scheduler. For
our case study, the simulation supports the three priority levels, based on NS2 tool. Each
conducted simulation has a duration of 5s, which represents up to 3.2 millions SCT and RC
simulated frames. The results of scenarios 1 and 2 are presented in Figures 3.8 and 3.9, re-
spectively.

44

3.4. Preliminary Analysis

Priority Traffic type MFS BAG deadline jitter

(Bytes) (ms) (ms) (ms)

0/2 SCT 64 2 2 0

1 RC 320 2 2 0

3 BE 1024 8 none 0.5

Table 3.2: Avionics flow Characteristics

Scenarios Scenario 1 Scenario 2

(U RSC T ;U RRC)(%) ([0.1..78];20) (20;[0.5..72])

(nin
SC T

;nin
RC

) ([4 : 160 : 3044];156) (780;[4 : 40 : 564])

(BW ;LM ;LR) (0.46;22,118;0) (0.46;22,118;0)

Table 3.3: Parameters considered for testing scenarios 1 and 2

3.4.2 Simulation results

Impact of varying SCT utilisation rate
The delay bounds of SCT and RC when varying the SCT utilisation rate are presented in Fig.3.8.
We can see that the SCT delay bound is increased by the BLS (see Fig.3.8(a)), comparatively to
the regular NP-SP scheduler. In fact, after an initial sharp increase, the increase of the SCT de-
lay bound has the same increase rate with our extended AFDX proposition and current AFDX.
This is due to the BLS parameters chosen: our extended AFDX is made of two parts, a BLS and
a SP, and depending on the BLS parameters and the traffic flows, one is predominant on the
other. This is confirmed by the RC delay bounds (see Fig.3.8(b)): below 16%, the current and
extended AFDX curves are overlapping: the SP part is predominant. After 16% they separate,
showing that BLS has now a stronger impact. While the delay bound with current AFDX soars,
it remains constant with our extended AFDX. This shows the good isolation provided to RC
by the BLS. In fact, while the BLS increases the SCT delay bound by 0.7ms, it reduces the RC
delay bound by 4ms. As a result, the RC delay bound is much reduced with our extended
AFDX, while the SCT delay bound is only slightly increased. It is also worth noting that with
current AFDX the RC deadline is reached at 54% while it is never reached with our extended
AFDX. Thus, the maximum utilisation rate is improved by 48% (from 54% to 80%) under the
proposed scheduler.

Impact of varying RC utilisation rate
The delay bounds of SCT and RC when varying the RC utilisation rate are presented in Fig.3.9.
As before, we can see that the SCT delay bound is increased by the BLS (see Fig.3.9(a)), while
the RC delay bound is either improved or identical. While the increase is sizable (128%), the
SCT delay bound remains well below its deadline. Additionally, we can see that with the cho-
sen BLS parameters, the BLS has a stronger impact for low values of RC: in Fig.3.9(b), there is

45

Chapter 3. Specification: the extended AFDX switch

a gap between the RC delay bound with current and extended AFDX. This gap decreases as
RC utilisation rate increases. The reason is when the RC rate increases, the impact of the BLS
on RC traffic decreases until it becomes negligible and only SP rules the RC delay bound be-
haviour. This shows the RC delay bound can be improved by the BLS, even when the BLS pa-
rameters are intuitively set. At the current utilisation rate of the AFDX (30% on the 100Mbps
AFDX network, so 3% on a Gigabit AFDX) the gain in terms of delay bound with our extended
AFDX compared to the current AFDX for RC traffic is around 40%. This gain is still over 17%
for an utilisation rate RC at 15% of the capacity.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

SCT deadline

Current AFDX (SP)
Extended AFDX (BLS)

(a)

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT utilisation rate (%)

54

RC deadline

Current AFDX (SP)
Extended AFDX (BLS)

(b)

Figure 3.8: Scenario 1: impact of SCT max. utilisation rate on: (a) SCT delay bounds; (b) RC
delay bounds, with (U RSCT ∈ [0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

Current AFDX (SP)
Extended AFDX (BLS)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

R
C

 d
e

la
y
 (

m
s
)

RC utilisation rate (%)

3

RC deadline

Current AFDX (SP)
Extended AFDX (BLS)

(b)

Figure 3.9: Scenario 2: impact of RC max. utilisation rate on: (a) SCT delay bounds; (b) RC
delay bounds, with (U RSCT = 20,U RRC ∈ [0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

These results show the ability of our extended AFDX switch to favour the predictability

of the mixed-criticality traffic, which is one of the key avionics requirements. Moreover, our

extended AFDX switch offers good fairness property since it enables a noticeable RC laten-

cies decrease while guaranteeing the SCT deadline.

46

3.5. Conclusion

Now that the potential of this solution has been assessed, the next chapter presents a
formal timing analysis to prove its predictability, a key requirement for avionics.

3.5 Conclusion

In this chapter, we have specified our extended AFDX, incorporating the BLS shaper on top of
NP-SP, considered as the most promising solution to support mixed-criticality applications.
This specification has detailed the BLS implementation and highlighted the few necessary
modifications at the software as well as the hardware levels, to extend the current AFDX
switches to incorporate the BLS. Finally, we have conducted simulations to evaluate the abil-
ity of our proposal to guarantee the predictability requirement, while favouring the fairness
property. Results show the noticeable enhancement of the latencies of the current AFDX traf-
fic (RC) in presence of the highest priority one (SCT) under our extended AFDX, with refer-
ence to the current AFDX.

As a next step, we will conduct formal worst-case timing analyses to compute the worst-
case latencies and prove the predictability of such a promising solution to fulfil the certifica-
tion needs.

47

Chapter 3. Specification: the extended AFDX switch

48

CHAPTER

FOUR

FORMAL WORST-CASE TIMING ANALYSIS

" A theory has only the alternative of being right or wrong. A model has a third possibility: it

may be right, but irrelevant."

-Manfred Eigen

Contents

4.1 Introduction . 50

4.2 Related Work: Worst-case Timing Analysis of TSN/BLS Shaper 50

4.2.1 CPA model . 50

4.2.2 Impact of busy periods . 51

4.2.3 Discussion . 52

4.3 Computing a novel NC model for TSN/BLS . 53

4.3.1 Timing analysis methodology . 54

4.3.2 Extended AFDX network modelisation 58

4.3.3 Discussion: is the BLS really a shaper? . 68

4.4 Preliminary performance evaluation . 69

4.4.1 Case study . 69

4.4.2 Sensitivity and Tightness Analyses . 69

4.4.3 Comparing CPA and NC models . 74

4.4.4 Comparing extended AFDX (BLS), current AFDX (SP), and DRR-compliant
AFDX . 78

4.5 Conclusion . 82

49

Chapter 4. Formal Worst-Case Timing Analysis

4.1 Introduction

As presented in Chapter 2, the avionics networks have to be certified through the proof of de-
terminism, i.e., the worst-case delay bounds fulfil the timing requirements. This fact necessi-
tates a formal analysis of the network timing performances and particularly the BLS impact.

In this chapter, after presenting the existing works in this area and their limitations, we
conduct a worst-case timing analysis of the extended AFDX (specified in Chapter 3) using
Network Calculus. We finish with a preliminary performance evaluation of the proposed so-
lution, considering the case study in Section 3.4.1.

Results show that the proposed model copes with the limitation of the state of the art ap-
proaches (CPA approach) while being tighter and more scalable. Finally, a sensitivity analysis
highlights the importance of wisely choosing the BLS parameters, in particular the reserved
Bandwidth BW .

4.2 Related Work: Worst-case Timing Analysis of TSN/BLS Shaper

In this section, we present the existing work on the BLS formal analysis. Then, we detail the
limitations of the main one, the Compositional Performance Analysis (CPA) model.

There are some interesting approaches in the literature concerning the worst-case tim-
ing analysis of TSN network, and more particularly BLS shaper. The first and seminal one
in [86] introduces a first service curve model to deduce worst-case delay computation. How-
ever, this presentation published by the TSN task group has never been extended in a formal
paper. The second one has detailed a more formal worst-case timing analysis in [66], which
also has some limitations. Basically, the proposed model does not take into account the im-
pact of either the same priority flows or the higher ones, which will clearly induce optimistic
worst-case delays. The last and more recent one in [75] has proposed a formal analysis of
TSN/BLS shaper, based on a CPA method. This approach has handled the main limitations
of the model presented in [66]; and interesting results for an automotive case study have been
detailed. However, this method necessitates extensive computation power to solve two max-
imisation problems, an Integral Linear Programming (ILP) problem and a fixed point prob-
lem. Additionally, in some situations that will be detailed in Section 4.2.1, the CPA model can
lead to optimistic delay bounds because the worst-case computation is based on the classic
hypothesis that all classes are backlogged during the worst-case scenario. We will show in
Section 4.2.2 that this fact may provide optimistic delay bounds; thus false guarantees for
messages that will actually miss their deadline in the worst-case.

4.2.1 CPA model

The CPA model [75] computes the impact of the other flows by dividing them in four cate-
gories: the lower-priority blocking, the same-priority blocking, the higher priority blocking,
and the BLS shaper blocking. The latter is defined as follows for a flow of class I :

I SB
i (δt)= ⌈

δt

t S−
I

⌉ · t R+
I

50

4.2. Related Work: Worst-case Timing Analysis of TSN/BLS Shaper

with:

• LI
R , LI

M and I I
i dle

BLS parameters of class I ;

• t R+
I

= ⌈
LI

M−LI
R

I I
i dle

⌉+max j∈l p(I)
MF S j

C
, with MF S j the Maximum Frame Size of flow j , l p(I)

the streams with a priority lower than I : the maximum blocking time, called the replen-
ishment interval

• t S−
I

= max
{⌊

LI
M−LI

R

I I
send

⌋

,max j∈I
MF S j

C

}

the shortest service interval for class I .

We have identified three main limitations in the CPA model, which may lead to over-
pessimistic delay bounds, or worse, optimistic delay bounds, as it will be showed in Sec-
tion 4.2.2. The first limitation concerns the maximum replenishment interval t R+

I . The ad-

ditional frame transmission max j∈l p(I)
MF S j

C consider all the priorities lower than I . This
computation considers two implicit assumptions, which are not necessarily fulfilled in the
general case. The first implicit hypothesis is to consider that the priority for I is the BLS high
priority. The second implicit hypothesis is the fact that the low BLS priority is the lowest one.

The delay caused by max j∈l p(I)
MF S j

C
is due to the transmission of a frame while the BLS pri-

ority is low, just before the credit reaches the resume level. But only classes with a priority
higher than the low BLS priority can be transmitted while BLS frames are enqueued, thanks
to the Static Priority Scheduler. Thus, CPA model considers that all the flows are in l p(I) and
the BLS low priority is the lowest one. This may not be the case, especially when multiple BLS
are considered. As a consequence, the shaper blocking effect may be overestimated, depend-
ing on the maximum frame sizes.

The second limitation concerns the shaper blocking as a whole. The definition of both
t R+

I and t S−
I are completely independent from the lower priority traffic rates and bursts. As

a consequence, if the replenishment intervals are too large in comparison to the traffic load,
the shaper blocking is again overestimated: when no lower priority traffic is available, the BLS
flows can be sent no matter the state of the credit. The BLS is actually a non-blocking shaper:
only the state of the queues and their respective priorities matter.

Finally, the third limitation is due to the blocking shaper computation hypothesis: the
busy period considered concerns the class I, but also all lower priority classes. But, we will
show in the next section that this can lead to optimistic bounds.

4.2.2 Impact of busy periods

To assess the CPA model optimism, we consider herein the 3-classes case study presented in
Section 3.4.1, where the SCT class is shaped by a BLS.

Usually, to compute the worst-case delay using CPA, the main assumption is to consider
all the traffics are backlogged. In the case of the BLS however, we will show that this may lead
to optimistic bounds.

To compute the worst-case delay, we first detail the case where all classes are backlogged.
The resulting credit evolution and the SCT output traffic are visible in Fig.4.1 in plain line (1).

Then, we consider the case where RC traffic is not backlogged between two times t 0 and
t 1 (dotted lines (2) in Fig.4.1):

51

Chapter 4. Formal Worst-Case Timing Analysis

• the credit starts at LM at t i and decreases until it reaches LM

2 at t 0;

• then it increases until t 1 when the credit reaches LM ;

• finally it decreases until reaching LR at t 2.

t0 t1

t

credit

(2)

(1)

t

(1)
t0 t1ti t2

ti t2

y
(2)

SCT output

LM

LR

LM

2

Figure 4.1: Two examples of worst-case BLS behaviour

We see in Fig.4.1 that in this particular case, the SCT output corresponding to the dotted
line (2) can be below the one corresponding to the plain line (1). This shows that the most
intuitive worst-case SCT output, i.e., all traffic are backlogged, is not actually the worst-
case SCT output.

From both scenarios presented in Fig.4.1, we have computed in Appendix 8.1 two Achiev-

able Worst-Case delay bounds for SCT. In the next part, we show the optimism of the CPA
model in reference to these achievable worst-case delays.

4.2.3 Discussion

To support our claim, we have implemented the CPA model for three classes as detailed in
Appendix 8.2. It is worth noting that for SCT, the implementation is very straightforward: no
ILP problem and no fixed-point problem need to be solved. However, this is not the case for
RC delay computation, since it requires solving an ILP problem for each defined fixed-point
problem when searching for the maximum delay bound.

The first achievable worst-case (AWC-1) has been computed using the same "all traffic
are backlogged" hypothesis as CPA and as a consequence both have similar results. The sec-
ond achievable worst-case (AWC-2) however was computed using a different hypothesis (as
illustrated by dotted line (2) in Fig.4.2) and so we use AWC-2 to show the optimism of SCT
delay bounds computed with CPA.

We have evaluated the SCT delay bounds with the CPA model for the case study described
in Section 3.4.1 under the following parameters:

Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

52

4.3. Computing a novel NC model for TSN/BLS

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 50 100 150 200

S
C

T
 d

e
la

y
 (

m
s
)

LM (10
3
 bits)

analytical CPA
AWC-2

Figure 4.2: CPA model - impact of LM on SCT delay bounds with
(U RSCT = 20%,U RRC = 20%,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

The results are illustrated in Fig.4.2 and it can be noticed that there are several points
where the CPA delay bounds are below the achievable worst-case delays, proving that the
CPA model can be optimistic. This is because the CPA model considers that all the traf-
fic classes are backlogged during the busy period of SCT to compute the worst-case delay
bounds.

On the contrary, for extreme LM values, the CPA delay bounds are pessimistic compared
to AWC-2. To conclude, the CPA model can lead to either pessimistic or optimistic delay
bounds, depending on the BLS parameters and input traffics.

To overcome the identified limitations of the CPA modelisation, our proposal is based on
the Network Calculus [87] framework. Contrary to CPA, Network Calculus necessitates only
the calculation of a maximum and has been proved as highly modular and scalable, in com-
parison with CPA method [88]. Several existing works have used Network Calculus to analyse
the timing performance of Ethernet networks [49] [89] [90]. In particular, Network Calculus
has been used to certify the AFDX [27]. To the best of our knowledge, the issue of modelling
and analysing the TSN/BLS on top of a NP-SP scheduler using the Network Calculus has not
been handled yet in the literature.

4.3 Computing a novel NC model for TSN/BLS

In this section, we start by presenting the followed timing analysis methodology based on
the Network calculus framework. Then, we will explain our extended AFDX network modeli-
sation and particularly the BLS impact through the definition of arrival and service curves.
Finally, we will discuss the nature of the BLS from the theoretical point of view, in reference
to commom "greedy shapers".

53

Chapter 4. Formal Worst-Case Timing Analysis

4.3.1 Timing analysis methodology

To explain our followed methodology, we first present the Network Calculus framework and
we describe the schedulability conditions. Afterwards, we explain how to compute end-to-
end delay bounds.

4.3.1.1 Network Calculus framework

The timing analysis used here is based on Network Calculus theory [87] providing upper
bounds on delays and backlogs. Delay bounds depend on the traffic arrival described by
the so called arrival curve α, and on the availability of the traversed node described by the so
called minimum service curve β. The definitions of these curves are explained as following.

Definition 1 (Arrival Curve). [87] A function α(t) is an arrival curve for a data flow with an

input cumulative function R(t),i.e., the number of bits received until time t , iff:

∀t ,R(t)≤ R ⊗ 1α(t)

Definition 2 (Strict minimum service curve). [87] The function β is the minimum strict service

curve for a data flow with an output cumulative function R∗, if for any backlogged period

]s, t]2, R∗(t)−R∗(s) ≥β(t − s).

Definition 3 (Maximum service curve). [87] The function γ(t) is the maximum service curve

for a data flow with an input cumulative function R(t) and output cumulative function R∗(t)
iff:

∀t ,R∗(t) ≤R ⊗γ(t)

To compute end-to-end delay bounds of individual traffic flows, we need the following
Theorem.

Theorem 1. (Blind Multiplex of two flows) [91] Consider two flows f1, f2 crossing a system n

with the strict minimum service β(t), and with the flows f j α j -constrained, j ∈ {1,2}. Then,

the residual minimum service curve offered to f1 is:

βn
1 (t)= (β(t)−α2(t))↑

Then, to compute the main performance metrics, we need the following results.

Corollary 1. (Left-over service curve - NP-SP Multiplex)[91] Consider a system with the strict

service β(t) and m flows crossing it, f1, f2,.., fm . The maximum frame size of fi is MF Si , its

priority is p(i), and fi is αi -constrained. The flows are scheduled by the NP-SP policy. For each

i ∈ {2, ..,m}, the strict service curve offered to fi is given by3:

βi (t)=

(

β(t)−
∑

∀ j ,p(j)<p(i)
α j (t)− max

∀l ,p(l)>p(i)
MF Sl

)

↑

1 f ⊗g (t) = inf0≤s≤t { f (t − s)+g (s)}
2]s, t] is called backlogged period if R(τ)−R∗(τ)> 0,∀τ ∈]s, t]
3g↑(t) = max{0,sup06s6t g (s)}, and ∀i , the priorities strictly higher than p(i), are ∀ j , p(j) < p(i)

54

4.3. Computing a novel NC model for TSN/BLS

Theorem 2 (Performance Bounds). [87] Consider a flow F constrained by an arrival curve α

crossing a system S that offers a minimum service curve β and a maximum service curve γ.

The performance bounds obtained at any time t are:

Backlog4: ∀ t : q(t)≤ v(α,β)
Delay5: ∀ t : d (t)≤ h(α,β)
Output arrival curve : α∗(t)=α⊘ 6β(t)
Tight Output arrival curve: α∗(t)=

(

(γ⊗α)⊘β
)

(t)

The computation of these bounds is greatly simplified in the case of leaky bucket arrival
curve α(t) = b + r t , with b the maximal burst and r the maximum rate, i.e., the flow is (b,r)-
constrained; and the Rate-Latency service curve βR ,T (t)= [R · (t −T)]+ ([x]+ is the maximum
between x and 0) with latency T and rate R . In this case, the delay is bounded by h(α,β) =
b
R
+ T , and the backlog bound is v(α,β) = b + r · T . Moreover, the output arrival curve is

α∗(t) = b + r (t +T).
In the case of a piecewise linear input arrival curve and a piecewise linear minimum ser-

vice curve, we can compute the delay bound as follows:

Corollary 2 (Maximum delay bound under a piecewise arrival curve and piecewise minimum
service curve). Consider a flow f constrained by a piecewise linear arrival curve α such as:

α f (t) = min
i

(αri ,bi
(t)), with αri ,bi

(t) = ri · t +bi , i ∈ [1,n] and minimum service curve such as:

β f (t)= max
j

(

βR j ,T j
(t)

)

, with βR j ,T j
(t)= R j · (t −T j)+. The maximum latency of flow f is:

del a ymax
f =min

j

(yk

R j
+T j −xk

)

, with: k = min{i |ri 6R j }

and:

x1 = 0, y1 = b1

xk =
bk−bk−1
rk−1−rk

, yk = bk + rk ·xk , for 26 k 6n

xn+1 =+∞, yn+1 =+∞

Proof. From Theorem 2, we know that the maximum delay bound of flow f is the maximal
horizontal distance between α f (t) and β f (t). Moreover, from Lemma 1 in [92], we know that
the maximum horizontal distance between α f (t)= min

i
(αri ,bi

(t)) and βR j ,T j
(t) = R j ·(t −T j)+

is:
del a ymax =

yk

R j
+T j −xk , with: k = min{i |ri ≤ R j }

and with:

x1 = 0, y1 = b1

αk (x1) =αk+1(x1) = yk , for 16 k 6n

xn+1 =+∞, yn+1 =+∞

4v: maximal vertical distance
5h: maximal horizontal distance
6 f ⊘g (t) = sups≥0{ f (t + s)−g (s)}

55

Chapter 4. Formal Worst-Case Timing Analysis

With a few algebraic considerations, we deduce that xk =
bk−bk−1
rk−1−rk

, yk = bk+rk ·
bk−bk−1
rk−1−rk

, for 26
k 6 n

Finally, we consider a service curve β f (t) = max
j

(βR j ,T j
(t)). From Network Calculus con-

cepts in [87], we know that del a ymax
f

= inft>0
{

(α f ⊘β f)(−t)6 0
}

. Thus, if we consider a
piecewise service curve we have:

(α⊘β)(t) = sup
s>0

{

α(t + s)−β(s)
}

= sup
s>0

{

α(t + s)−max
j

(βR j ,T j
(s))

}

= sup
s>0

{

min
j

[

α(t + s)−βR j ,T j
(s)

]

}

= min
j

[

sup
s>0

{

α(t + s)−βR j ,T j
(s)

}

]

Hence, to compute the maximum delay we can compute the maximum delay for everyβR j ,T j
(t)

and keep the minimum value.

Theorem 3 (Concatenation-Pay Bursts Only Once). [87] Assume a flow crossing two servers

with respective service curves β1 and β2. The system consisting of the concatenation of the two

servers offers a service curve β1 ⊗β2.

4.3.1.2 Schedulability Conditions

To infer the real-time guarantees of our proposed solution, we need first to define a neces-
sary schedulability condition. This consists in respecting the stability condition within the
network, where the sum of maximum arrival rates of the input traffic flows i at any crossed
node n has to be lower than its minimum guaranteed service rate within the node n . This
constraint is denoted as rate constraint:

∀node n ∈ network,
∑

∀i∋n

ri 6Rn

Then, we define a sufficient schedulability condition to infer the traffic schedulability,
which consists in comparing the upper bound on end-to-end delay of each traffic flow f

of a class k to its deadline, denoted Deadl i neend2end
f

. This constraint is called deadline

constraint:

∀class k ,∀flow f ∈ k ,del a yend2end
k , f 6 Deadl i neend2end

k , f

For this sufficient schedulability condition, we detail the end-to-end delay expression of
a flow f in the class k , del a yend2end

k , f
, along its path pat h f as follows:

del a yend2end
k , f = del a yes

k , f +del a y
pr op

k , f
+

∑

sw∈pat h f

del a y sw
k , f (4.1)

56

4.3. Computing a novel NC model for TSN/BLS

with del a yes
k , f

the delay within the source end-system es to transmit the flow f of class

k and del a y
pr op

k , f
the propagation delay along the path, which is generally negligible in an

avionics network.
The last delay del a y sw

k , f
represents the upper bound of the delay within each intermedi-

ate switch along the flow path, and it consists of several parts as shown in Fig.4.3:

BLS

BLS

forwarding processInput ports Output ports

Configuration table SP

SCT

RC

BE BLS

BLS

SP

SCT

RC

BE BLS

BLS

Figure 4.3: An extended AFDX switch architecture with 3 classes

• the store and forward delay at the input port, equal to MF S
C , with MF S the length of

the frame and C the capacity;

• the technological latency due to the forwarding process, upper-bounded by 1µs in the
pre-specification of the AFDX next generation;

• the output port multiplexer delay due to the BLS and NP-SP scheduler, denoted del a ymux
k , f

.
Hence, the only two unknown are the delays in the end-system and the output port of
the switch. To enable the computation of upper bounds on these delays, we need to
model the different parts of the network, and more particularly the BLS.

4.3.1.3 Computing End-to-End Delay Bounds

The computation of the end-to-end delay upper bounds follows four main steps:

1. computing the strict minimum service curve guaranteed to each traffic class k in each
node n of type {es,mux}, βn

k
, will infer the computation of the residual service curve,

guaranteed to each individual flow f of class k , βn
k , f

with Theorem 1;

2. knowing the residual service curve guaranteed to each flow within each crossed node
allows the propagation of the arrival curves along the flow path, using Theorem 2. We
can compute the output arrival curve, based on the input arrival curve and the mini-
mum service curve, which will be in its turn the input of the next node;

3. the computation of the minimum end-to-end service curve of each flow f in class k ,
based on Theorem 3, is simply the concatenation of the residual service curves, βn

k , f
,

∀n along its path pat h f ;

57

Chapter 4. Formal Worst-Case Timing Analysis

4. given the minimum end-to-end service curve of each flow f in class k along its pat h f

and its maximum arrival curve at the initial source, the end-to-end delay upper bound
del a yend2end

k , f
is the maximum horizontal distance between the two curves using The-

orem 2 and Corollary 2.

Hence, as we can notice, we need to model all the unknown service curves, in the end-
systems and in the switch output ports to enable the end-to-end delay upper bounds com-
putation. These curves are detailed in the next section. It is worth noting that since the BE
class has no deadline, the service curves guaranteed to this class and the computation of the
respective upper bounds on end-to-end delays are not detailed here, but can easily be com-
puted using Corollary 1 and Theorem 2.

Switch output port multiplexer

mux

bls

BLS node

SP node

sp
NBLS class

BLS class

Figure 4.4: Output port multiplexer node nomenclature

In the next Section, we present the modelisation of the extended AFDX network starting
with the traffic and end-system modelling and continuing with the BLS model. As illustrated
in Fig.4.4, an output port mux consist of a NP-SP node sp and a BLS node bl s. We denote
BLS classes the classes shaped by a BLS, and N BLS classes the classes not shaped by a BLS.
Hence, the modelisation of the BLS node bl s is necessary to compute the service curve of
output port mux, βmux

k
(t), ∀ class k ∈ {BLS, N BLS}.

4.3.2 Extended AFDX network modelisation

We can now model the different parts of our extended AFDX: traffic, the end-systems es, the
switch output port multiplexers mux and particularly the BLS node bl s. We start by present-
ing the considered traffic model.

4.3.2.1 Traffic Modelling

To compute upper bounds on end-to-end delays of different traffic classes using Network
Calculus, we need to model each message flow to compute its maximum arrival curve.

The arrival curve of each flow f in class k at the input of the node n ∈ {es, sw } or a compo-
nent n ∈ {bl s, sp} along its path is a leaky-bucket curve with a burst bn

k , f
and a rate r n

k , f
:

αn
k , f (t)= bn

k , f + r n
k , f · t

58

4.3. Computing a novel NC model for TSN/BLS

Therefore, the arrival curve of the aggregate traffic in class k at the input (resp. output)
of the node n ∈ {es, sw } or a component n ∈ {bl s, sp} is: αn

k
(t) =

∑

f ∈k
αn

k , f
(t) (resp. α∗,n

k
(t) =

∑

f ∈k
α∗,n

k , f
(t) based on Theorem 2).

Each traffic flow f of class k , generated by an end-system, is characterised by
(

B AG f , MF S f , J f

)

for respectively the minimum inter-arrival time, the maximum frame size integrating the pro-
tocol overhead, and the jitter.

Hence, the arrival curve of traffic class k in the end-system es, based on a leaky bucket
model, is as follows:

αes
k (t) =

∑

f ∈k

αes
k , f (t)=

∑

f ∈k

MF S f +
MF S f

B AG f

(

t + J f

)

= bk + rk t with

bk =
∑

f ∈k
MF S f +

MF S f

B AG f
J f

rk =
∑

f ∈k

MF S f

B AG f

4.3.2.2 End-System Modelling

For the end-systems, they are implementing a NP-SP scheduler. This scheduler has been
already modelled in the literature [91] through Corollary 1, and the defined strict minimum
service curve guaranteed to a traffic class k ∈ {SC T,RC ,BE } within an end-system es is as
follows:

βes
k (t)=

[

C · t −
∑

∀(i , f), f ∈i ,p(i)<p(k)

αes
i , f (t)− max

∀(i , f), f ∈i ,p(i)>p(k)
MF S f

]

↑

4.3.2.3 BLS node model: Window-based Approach (WbA)

In this section, we describe our proposed BLS node model.To compute the guaranteed ser-
vice curves by the BLS to a class k , we need to detail two types of windows, which are enforced
by the BLS behaviour. The first one is denoted as sending window, during which the class k

has the high BLS priority and is sent uninterruptedly until the consumed credit reaches the
maximum threshold, Lk

M . The second one is called idle window where the class k has the
low BLS priority and the consumed credit is decreasing uninterruptedly until reaching the
minimum threshold, Lk

R . Moreover, due to the non-preemptive message transmission, both
windows have minimal and maximal durations, as illustrated in Fig.4.5.

For each class k shaped by a BLS, with a BLS high priority pH (k) and a BLS low priority
pL(k), (with pL(k)> pH (k) and priority 0 the highest priority), we define:

• MC(k) the set of classes with a priority strictly between the low BLS priority pL(k) and
the high BLS priority pH (k), i.e., ∀ j such as: pH (k)< p(j)< pL(k);

• LC(k) the set of classes with a priority strictly lower than pL(k), i.e., ∀ j such as: pL(k)<
p(j);

59

Chapter 4. Formal Worst-Case Timing Analysis

• HC(k) the set of classes with a priority strictly higher than pH (k), i.e., ∀ j such as: pH (k)>
p(j).

Strict Minimum Service curve
The strict minimum service curve of a BLS class k defines a lower bound on the class-

k output cumulative traffic from the BLS. This curve represents the most deteriorated be-
haviour of BLS, in terms of offered service to class k , which maximises its delay within the
BLS.

Hence, to cover this worst-case behaviour, we combine the maximum idle window and
the minimum sending window durations illustrated in Fig.4.5.

t

credit of class k

∆
k,max
send

∆
k,mi n
i dle

MF Sk MF Sk

∆
k,mi n
send

∆
k,max
i dle

∆
k,max
send ,0

Lk
M

Lk
R

Lk,mi n
R

max f ∈MC (k) MF S f

Figure 4.5: Idle and sending windows of a class k

To compute idle and sending windows, we consider only the impact of MC(k) and class k .
The impact of HC(k) flows is taken into account when considering the residual service curve
offered to class k . The LC(k) flows have a priority strictly lower than class-k BLS low priority.
Thus, the LC (k) frames can never be sent during idle windows.

The minimum sending window duration ∆k ,mi n
send

, illustrated in Fig.4.5, is the time for the

consumed credit to go from the lowest to the highest thresholds, i.e., from Lk
R to Lk

M , with an
increasing slope I k

send
:

∆
k ,mi n
send

=
Lk

M −Lk
R

I k
send

(4.2)

The maximum idle window duration ∆k ,max
i dle

, illustrated in Fig.4.5, is the time for the con-

sumed credit to go from Lk
M to Lk

R with a decreasing slope I k
i dle

, in addition to the transmis-
sion time of a maximum frame of the RC traffic. The latter is due to the non-preemption fea-
ture when a MC(k) frame is starting its transmission just before the consumed credit reaches

60

4.3. Computing a novel NC model for TSN/BLS

the lowest threshold, Lk
R

.

∆
k ,max
i dle

=
Lk

M −Lk
R

I k
i dle

+
max f ∈MC (k) MF S f

C
(4.3)

Therefore, the strict minimum service curve guaranteed to the class-k , βbl s
k

, is defined in
Theorem 4.

Theorem 4 (Strict Minimum Service Curve offered to a BLS class k by a BLS node). Consider a

server with a constant rate C , implementing BLS shapers. The traffic class k crosses this server

and is shaped by the BLS. The input arrival curve of a flow j ∈ HC (k) in the NP-SP node is

α j (t)= r j · t +b j .

The strict minimum service curve guaranteed to the BLS class k is as follows:

βbl s
k∈BLS(t) =

β(∆k ,mi n
send

)

β(∆k ,mi n
send

)+β(∆k ,max
i dle

)
·

(

C −
∑

j∈HC (k)
r j

)

·

(

t −∆k ,max
i dle

)+

(4.4)

with:

β(t)=

(

C −
∑

j∈HC (k)

r j

)

· t −
∑

j∈HC (k)

b j

where [x]+ is the maximum between x and 0.

Proof. We present here a sketch of proof. The full proof is detailed in Appendix 8.3.1. Using
the credit variations due to the sending and idle windows, we are able to compute the lower
bound for the output cumulative function of class k , which is also the strict minimum service
curve. We obtain the curve illustrated in Fig.4.6 in the particular case of the 3-classes case
study presented in Section 3.4.1.

Corollary 3 (Strict Minimum Service Curve offered to SCT by a BLS node in the case of three
traffic classes). Consider a server with a constant rate C , implementing a BLS shaping the SCT

traffic. The SCT, RC and BE traffics cross this server with the following priorities: p(SC T) ∈
{pH (SC T)= 0, pL(SC T)= 2}, p(RC)= 1, p(BE)= 3, as illustrated in Fig.3.3.

The strict minimum service curve guaranteed to SCT is as follows:

βbl s
SCT (t) =

∆
mi n
send

∆
mi n
send

+∆max
i dle

·C ·
(

t −∆max
i dle

)+

with ∆mi n
send

=
LM−LR

Isend
and ∆max

i dle
=

LM−LR

Ii dle
+

MF SRC

C

Proof. We apply Theorem 4 in the particular 3-classes case study presented in Fig.3.1, with
SCT as class k . Thus HC (k)=;, MC(k)=RC, and β(t)=C · t .

61

Chapter 4. Formal Worst-Case Timing Analysis

t

C

∆
max
i dl e

βbl s
SC T

(t)

∆
max
i dl e

∆
mi n
send

Figure 4.6: Strict minimum service curve βbl s
SCT (t)

Maximum Service curve
The maximum service curve of BLS class k represents the best offered service to class k ,

which induces the minimum processing delay within the BLS. As such, in the presence of
MC(k) traffic, we combine the minimum idle window duration and the maximum sending

window one to handle this best-case behaviour.
We consider the best-case scenario, when neither HC(k) not LC(k) interfere with class-

k traffic. So as before, we focus on the impact of MC(k) and class k on idle and sending
windows.

The maximum sending window duration∆k ,max
send

, illustrated in Fig.4.5, is equal to the sum
of:

• the time necessary for the gained credit to go from Lk
R

to Lk
M

with an increasing slope

I k
send

, equals to
Lk

M−Lk
R

I k
send

;

• the transmission time of a maximum-sized class-k frame due to the non-preemption
feature, i.e., one class-k frame may start its transmission just before the consumed
credit reaches Lk

M , equals to MF Sk

C ;

• the time to consume the gained credit during the transmission of one additional maxi-
mum frame of MC(k) traffic at the end of the idle window. The latter parameter is due
to the fact that the resume level of BLS, Lk

R , is the lower threshold on the consumed
credit to trigger the priority change of the class k from low to high, but not an extreme
value for the consumed credit itself (Lk

M or 0).

So, if a frame of MC(k) traffic has been transmitted just at the end of the idle window,
the consumed credit keeps decreasing until it either reaches 0, or the transmission ends.

62

4.3. Computing a novel NC model for TSN/BLS

Therefore, the lowest value the consumed credit can reach due to the non-preemption
feature illustrated in Fig.4.5 is:

Lk ,mi n
R

= max(0,Lk
R −

max f ∈MC (k) MF S f

C
.I k

i dle)

The additional time during which the consumed credit can then increase with a slope

I k
send

is
Lk

R−Lk,mi n
R

I k
send

= min(
max f ∈MC(k) MF S f

C
·

I k
i dle

I k
send

,
Lk

R

I k
send

).

Thus, the maximum sending window duration is as follows:

∆
k ,max
send

=
Lk

M −Lk
R

I k
send

+
MF Sk

C
+min(

max f ∈MC (k) MF S f

C
·

I k
i dle

I k
send

,
Lk

R

I k
send

) (4.5)

However, it is worth noting that the consumed credit may start at 0, such as at the initialisa-
tion phase or after a long period of inactivity. Hence, the maximum initial sending window

duration, denoted ∆k ,max
send ,0 and illustrated in Fig.4.5 covers such possibility, and is as follows:

∆
k ,max
send ,0 =

Lk
M

I k
send

+
MF Sk

C
(4.6)

The minimum idle window duration ∆k ,mi n
i dle

, illustrated in Fig.4.5, is simply the time it

takes for the consumed credit to go from Lk
M

to Lk
R

with a decreasing slope of I k
i dle

:

∆
k ,mi n
i dle

=
Lk

M
−Lk

R

I k
i dle

(4.7)

Therefore, the maximum service curve guaranteed to the BLS class k , γbl s
k

(t), is defined
in Theorem 5.

Theorem 5 (Maximum Service Curve offered to a BLS class k by a BLS node). Consider a server

with a constant rate C , implementing BLS shapers. The traffic class k crosses this server and is

shaped by the BLS.

The maximum service curve guaranteed to the class-k traffic is as follows.

γbl s
k∈BLS(t)=

if MC(k) traffic is enqueued: C
∆γk

·∆
k ,max
send

· t + C
∆γk

·∆
k ,max
send ,0 ·∆

k ,mi n
i dle

Otherwise: C · t

with ∆γk =∆
k ,max
send

+∆
k ,mi n
i dle

.

Proof. We present here a sketch of proof. The full proof is detailed in Appendix 8.3.2. In the
general case, the maximum service curve is C · t . When MC(k) is enqueued, we compute a
tighter maximum service curve. The main idea is very similar to the proof in Appendix 8.3.1.
Using the relation linking sending and idle windows through the credit variations, we are able
to compute the upper bound for the output cumulative function, which is also the maximum
service curve. We obtain the leaky-bucket curve illustrated in Fig.4.7 in the particular case of
the 3-classes case study presented in Section 3.4.1.

63

Chapter 4. Formal Worst-Case Timing Analysis

t

C

∆
mi n
i dl e

∆
max
send

∆
max
send ,0

γbl s
SC T

(t)

Figure 4.7: Maximum service curve γbl s
SCT (t) when MC(k) traffic is enqueued

Corollary 4 (Maximum Service Curve offered to SCT by a BLS node in the case of three traf-
fic classes). Consider a server with a constant rate C , implementing a BLS shaping the SCT

traffic. The SCT, RC and BE traffics cross this server with the following priorities: p(SC T) ∈
{pH (SC T)= 0, pL(SC T)= 2}, p(RC) = 1, p(BE)= 3, as illustrated in Fig.3.3.

The maximum service curve guaranteed to the SCT traffic is as follows.

γbl s
SCT (t)=

if RC traffic is enqueued: C
∆γSCT

·∆max
send

· t + C
∆γSCT

·∆max
send ,0 ·∆

mi n
i dle

Otherwise: C · t

with ∆γSCT = ∆
max
send

+∆mi n
i dle

, ∆max
send

=
LM−LR

Isend
+

MF SSCT

C +min(MF SRC

C ·
Ii dle

Isend
, LR

Isend
) and ∆mi n

i dle
=

LM−LR

Ii dle

Proof. We apply Theorem 5 to the particular case of the 3-classes case study presented in
Fig.3.1, with SCT as class k and RC as MC(k).

Maximum Output Arrival curve
The maximum output arrival curve of a BLS class k is detailed in the following Corollary:

Corollary 5 (Maximum Output Arrival Curve of a BLS class). Consider a BLS class k with

a maximum leaky-bucket arrival curve α at the input of a BLS shaper, guaranteeing a mini-

mum rate-latency service curveβbl s
k

and a maximum service curve γbl s
k

. The maximum output

arrival curve is:

α∗,bl s
k

(t)= min(γbl s
k (t),α⊘βbl s

k (t))

Proof. To prove Corollary 5, we generalise herein the rule 13 in p. 123 in [87], i.e., (f ⊗g)⊘g ≤

f ⊗(g ⊘g), to the case of three functions f , g and h when g ⊘h ∈F , where F is the set of non
negative and wide sense increasing functions:

F = { f : R+
→R

+
| f (0) = 0,∀t ≥ s : f (t)≥ f (s)}

64

4.3. Computing a novel NC model for TSN/BLS

According to Theorem 2, we have α∗(t)= (γbl s
k

⊗α)⊘βbl s
k

. Moreover, in the particular case of

a leaky-bucket arrival curve α and a rate-latency service curve βbl s
k

, α⊘βbl s
k

is a leaky-bucket
curve, which is in F . Hence, we have the necessary condition to prove the following:

(α⊗γ)⊘β(t) ≤γ⊗ (α⊘β)(t) ≤ min(γ(t),α⊘β(t))

(α⊗γ)⊘β(t)

= sup
u≥0

{

(γ⊗α)(t +u)−β(u)
}

= sup
u≥0

{

inf
−u≤s ′≤t

{

γ(t − s′)+α(s′+u)−β(u)
}

}

≤ sup
u≥0

{

inf
0≤s ′≤t

{

γ(t − s′)+α(s′+u)−β(u)
}

}

≤ sup
u≥0

{

inf
0≤s ′≤t

{

γ(t − s′)+sup
v≥0

{

α(s′+v)−β(v)
}

}}

=γ⊗ (α⊘β)(t) ≤ min(γ(t),α⊘β(t))

4.3.2.4 Output port multiplexer modelisation

In this section, we compute the strict minimum service curves offered by a switch output
port multiplexer mux. Such a multiplexer mux consists of sp and bl s nodes as illustrated in
Fig.4.4.

The strict minimum service curve offered by each output port multiplexer to a BLS class
is defined in Theorem 6, and the strict minimum service curves offered by each output port
multiplexer to a N BLS class, i.e., not shaped by a BLS, is defined in Theorem 7.

Theorem 6 (Strict Minimum Service Curve offered by an output port multiplexer to a BLS
class). Consider a system implementing a BLS with the strict minimum service β.

The strict minimum service curve offered to a BLS class k by an output port multiplexer is:

βmux
k∈BLS(t) =max

(

β
sp

k∈BLS,pL(k),β
bl s
k∈BLS ⊗β

sp

k∈BLS,pH (k)

)

(t)

with:

• β
sp

k∈BLS,pL(k)(t) = (β(t) −
∑

j∈MC (k)∪HC (k)α
sp

j
(t) − max j∈LC (k)∪k MF S j)↑ the strict mini-

mum service curve offered by the NP-SP when the class-k BLS priority is low;

• βbl s
k∈BLS

(t) the strict minimum service curve offered by the BLS node to class k, defined in

Theorem 4;

• β
sp

k∈BLS,pH (k)(t) = (β(t)−
∑

j∈HC (k)α
sp

j
(t)−max j∉HC (k) MF S j)↑ the strict minimum ser-

vice curve offered by the NP-SP when the class-k BLS priority is high;

65

Chapter 4. Formal Worst-Case Timing Analysis

• α
sp

j
(t) the input arrival curve of flow j at the sp node, such as:

{

if j ∈ N BLS, α
sp

j
(t) =α j (t)

if j ∈ BLS, α
sp

j
(t)=α∗,bl s

j
(t) =min(γbl s

j
,αbl s

j
⊘βbl s

j
)(t),defined in Corollary 5

Proof. The idea is to model the impact of a BLS implemented on top of the NP-SP scheduler
on BLS class k . To achieve this aim, we distinguish two possible scenarios. The first one
covers the particular case where the class-k priority remains low, i.e., the other queues are
empty; whereas the second one covers the general case where the priority of class k oscil-
lates between pL(k) and pH (k), as explained in Section 3.2.1. Firstly, the minimum service
curve guaranteed within mux in the first scenario is due to the NP-SP scheduler and denoted
β

sp

k∈BLS,pL(k), which is computed via Corollary 1 when considering the class-k priority is pL(k).
Secondly, the minimum service curve guaranteed within mux in the second scenario is com-
puted via Theorem 3, through the concatenation of the service curves within the BLS node
βbl s

k∈BLS
(computed in Theorem 4) and the NP-SP node β

sp

k∈BLS,pH (k) (computed via Corollary 1
when class-k priority is high).

Corollary 6 (Strict Minimum Service Curve offered by an output port multiplexer to SCT in
the case of three traffic classes). Consider a server with a constant rate C , implementing a BLS

shaping the SCT traffic. The SCT, RC and BE traffics cross this server with the following priori-

ties: p(SC T)∈ {pH (SC T)= 0, pL(SC T)= 2}, p(RC)= 1, p(BE)= 3, as illustrated in Fig.3.3.

The strict minimum service curve offered to SCT by an output port multiplexer is:

βmux
SCT (t) = max

(

β
sp

SCT,2,βbl s
SCT ⊗β

sp

SCT,0

)

(t)

with:

• β
sp

SCT,2(t) = (C · t −αRC (t)−max j∈BE∪SCT MF S j)↑ the strict minimum service curve of-

fered by the NP-SP when the class-k BLS priority is low;

• βbl s
SCT (t) the strict minimum service curve offered by the BLS node to SCT, defined in

Corollary 3;

• β
sp

SCT,0(t) = (C · t −max j∈{SCT,RC ,BE} MF S j)↑ the strict minimum service curve offered by

the NP-SP when the BLS priority is high;

Proof. We apply Theorem 6 in the particular 3-classes case study presented in Fig.3.1, with
SCT as class k . Thus HC (k)=;, MC(k)=RC, and β(t) =C · t .

66

4.3. Computing a novel NC model for TSN/BLS

Theorem 7 (Strict Minimum Service Curve offered to a NBLS class by an output port multi-
plexer). Consider a system implementing a BLS with the strict service β and m flows crossing

it, f1, f2,.., fm . The strict minimum service curve offered to a NBLS class k by an output port

multiplexer is:

βmux
k∈NBLS(t) =max

(

β
sp

k∈NBLS
,βbl s

k∈NBLS

)

(t)

with:

• β
sp

k∈NBLS
= (β−

∑

pH (j)<p(k), j∈BLS α j ⊘βbl s
j

−
∑

p(j)<p(k), j∈NBLS α j −maxp(j)>p(k) MF S j)↑;

• βbl s
j

, with j ∈ BLS, the strict minimum service curve offered by the BLS node to class j ,

defined in Theorem 4;

• βbl s
k∈NBLS

= (β−
∑

pH (j)<p(k), j∈BLS γ
bl s
j

−
∑

p(j)<p(k), j∈NBLS α j −maxp(j)>p(k) MF S j)↑;

• γbl s
j

, with j ∈ BLS, the maximum service curve offered by the BLS node to class j , defined

in Theorem 5.

Proof. The proof of Theorem 7 is straightforward. Theorem 7 is obtained through replacing
within the equation of Corollary 1 the arrival curve of higher priority traffic than class k ∈

N BLS by the curves computed in Corollary 5.

Corollary 7 (Strict Minimum Service Curve offered to RC by an output port multiplexer in the
case of three traffic classes). Consider a server with a constant rate C , implementing a BLS

shaping the SCT traffic. The SCT, RC and BE traffics cross this server with the following priori-

ties: p(SC T)∈ {pH (SC T)= 0, pL(SC T)= 2}, p(RC)= 1, p(BE)= 3, as illustrated in Fig.3.3.

The strict minimum service curve offered to RC by an output port multiplexer is:

βmux
RC (t) =max

(

β
sp

RC ,βbl s
RC

)

(t)

with:

• β
sp

RC
(t)= (C · t −αSCT (t)⊘βbl s

SCT (t)−max j∈{SCT,RC ,BE} MF S j)↑;

• βbl s
SCT (t) the strict minimum service curve offered by the BLS node to SCT, defined in

Corollary 3;

• βbl s
RC

(t)= (C · t −γbl s
SCT

(t)−max j∈{SCT,RC ,BE} MF S j)↑;

• γbl s
SCT (t) the maximum service curve offered by the BLS node to SCT, defined in Corol-

lary 4.

Proof. We apply Theorem 7 to the particular case of the 3-classes case study presented in
Fig.3.1, with SCT as class k and RC as MC(k).

Now that we have modelised the proposed network, we use this model to answer the
question whether "shaper" is the correct qualifier for the BLS.

67

Chapter 4. Formal Worst-Case Timing Analysis

4.3.3 Discussion: is the BLS really a shaper?

The most common kind of shapers is the greedy shaper, which has been detailed in [87]. Ac-
cording to [87], a shaper with a shaping curve σ is a bit processing device that forces its
output to have σ as an output arrival curve. A g r eed y shaper is a shaper that delays the in-
put bits in a buffer, whenever sending a bit would violate the constraint σ, but outputs them
as soon as possible. A consequence of this definition is that, for an input flow R , the output
flow R∗ is defined by R∗ = R ⊗σ. Moreover, as the service curve β and maximum service
curve γ are defined by R∗ > R ⊗β and R∗ 6 R ⊗γ, this means that σ = β = γ in the case of
a greedy shaper. Obviously, this is not the case for the BLS. Another property of the greedy
shaper is that the difference between the fluid model and the packetized model is bounded
by the maximum sized packet.

From the BLS WbA model in Section 4.3.2.3, we can easily compute the corresponding
fluid (bit-per-bit) WbA model: we do not consider an additional frame due to non-preemption.

As a consequence, the defined windows are ∆k ,mi n
send

, ∆k ,mi n
i dle

,and ∆k ,mi n
send ,0 =

Lk
M

I k
send

.

After simple calculations, we obtain that
∆

k,mi n
send

∆
k,mi n
send

+∆
k,mi n
i dle

= I k
i dle

and
∆

k,mi n
i dle

∆
k,mi n
send

+∆
k,mi n
i dle

= I k
send

. So,

when considering the 3-classes case study presented in Section 3.4.1, we have:

γ
bl s, f lui d

SCT
(t) =

∆
mi n
send

∆
mi n
send

+∆mi n
i dle

·C · t +∆mi n
send ,0 ·C ·

∆
mi n
i dle

∆
mi n
send

+∆mi n
i dle

= Ii dle · t +LM = γ
bl s,i nt ui , f lui d

SCT
(t)

β
bl s, f lui d

SCT (t)=
∆

mi n
send

∆
mi n
send

+∆mi n
i dle

·C ·

(

t −∆mi n
i dle

)+

= Ii dle ·

(

t −
LM −LR

Ii dle

)+

=β
bl s,i nt ui , f lui d

SCT (t)

where β
bl s,i nt ui , f lui d

SCT
(t) and γ

bl s,i nt ui , f lui d

SCT
(t) are the intuitive fluid models of minimum

and maximum service curves defined in Appendix 8.4 in Eq.(8.12) and Eq.(8.14), respectively.
Hence, we obtain an interesting insight about the behaviour of the BLS during the worst-case.

This shows that the difference between the fluid and packetized models, i.e., β
bl s, f lui d

k

and βbl s
k

, is larger than a single maximum sized frame: an additional MC(k) frame is consid-
ered in every idle window, and an additional frame of class k is considered in each sending
window

Finally, the BLS functioning itself shows that the BLS is not a greedy shaper: if a frame
is enqueued and there is no higher priority frame enqueued, then the frame is dequeued no
matter the state of the BLS credit. Hence, the BLS is non-blocking contrary to the definition
of a greedy shaper. Moreover, if no higher priority traffic is present, then the BLS does not
force the output to conform to a certain σ, unlike a shaper.

So, if the BLS is not a shaper, what is its nature? The BLS changes the priority of a queue
through reordering the priority of the different queues, and it cannot be used without a Static
Priority Scheduler. So trying to characterise it on its own is futile. Together with the NP-
SP however, they are able to reorganise the output traffic according to the BLS parameters.
Because of this, BLS+SP is much closer to schedulers such as Deficit Round Robin (DRR) than
shapers.

68

4.4. Preliminary performance evaluation

4.4 Preliminary performance evaluation

In this section, we start by evaluating the tightness and sensitivity of our model, in reference
to Achievable Worst-Cases (AWCs) described in Appendix 8.1. Next, we compare the CPA and
NC models under different scenarios. We finish by comparing the extended AFDX incorpo-
rating BLS, the current AFDX implementing NP-SP and an AFDX incorporating DRR.

4.4.1 Case study

We consider the case study presented in Section 3.4.1, a single-hop Gigabit network described
in Fig.3.7.

To evaluate our model, we conduct tightness and sensitivity analyses using different sce-
narios when varying the input rates of SCT and RC and the BLS parameters. The first two
scenarios are identical to those in Chapter 3, and the third is the one used in Section 4.2.3 to
prove the CPA model optimism. The five scenarios are described by the following vectors:

Scenar i oSCT = (U RSCT ∈ [0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

Scenar i oLR = (U RSCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46)

Scenar i oBW = (U RSCT = 20,U RRC = 20,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99])

Finally, since there is no strict order between the two achievable worst-cases (see Ap-
pendix 8.1), we will use the maximum value, denoted AWC=max(AWC-1, AWC-2), as a ref-
erence to assess our model tightness.

4.4.2 Sensitivity and Tightness Analyses

In this section, we analyse our model by assessing first, the impact of the BLS parameters
and the utilisation rates of SCT and RC on the delay bounds, then its tightness in reference to
AWC.

4.4.2.1 Sensitivity Analysis

In this section, we analyse the sensitivity of the BLS model when varying the BLS parameters
and utilisation rates, i.e., U RSCT , U RRC , LM , LR , BW . The results of the different scenarios
are reported in Fig.4.8, Fig.4.9 Fig.4.10, Fig.4.11, and Fig.4.12.

From our modelisation of the output port multiplexer and the BLS node, we notice that
in βmux

SCT (t) (see Corollary 6) andβmux
RC (t) (see Corollary 7) the evolution of the strict minimum

service curves of SCT and RC follows the maximum of two linear curves: one is the SP part,
the other is the BLS part. Consequently, the delay bounds of SCT and RC evolve also following
two parts under the different scenarios.

69

Chapter 4. Formal Worst-Case Timing Analysis

Impact of U RSCT

In Fig.4.8(a), when the SCT utilisation rate increases, we observe an increase of the SCT
delay bounds starting close to 0 thanks to a low initial latency and high rate of the guaranteed
minimum service curve due to the BLS part. Then, at U RSCT = 20%, the delay bounds due to
the BLS part reaches the delay bounds due to the SP part. After this point, the delay follows
the maximum rate according to Corollary 6, i.e., the SP part. Furthermore, in Fig.4.8(b), when
the SCT utilisation rate increases, we observe a noticeable increase of the RC delay bounds
following the increasing guaranteed rate of the service curve due to the SP part. Then, after
U RSCT = 18%, the delay bounds becomes constant since it depends on the strict minimum
service curve due to the BLS part, which is constant when the RC utilisation rate is constant.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

analytical NC
AWC

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

R
C

 d
e

la
y
 (

m
s
)

SCT utilisation rate (%)

analytical NC
AWC

(b)

Figure 4.8: NC vs AWC - impact of SCT maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds, with Scenar i oSCT =

(U RSCT ∈ [0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

Hence, this analysis shows that the SCT utilisation rate has an inherent impact on SCT
and RC delay bounds, where:

• the SCT delay bound is ruled below U RSCT = 20% by the strict minimum service curve
due to the BLS part, (β

sp

SCT,0 ⊗βbl s
SCT)(t); whereas after U RSCT = 20%, it is ruled by the

strict minimum service curve due to the SP part, β
sp

SCT,2(t);

• the RC delay bound is ruled below U RSCT = 18% by the strict minimum service curve
due to the SP part,βsp

RC
(t); whereas after U RSCT = 18%, it is ruled by the strict minimum

service curve due to the BLS part, βbl s
RC (t).

These results infer that the variation of U RSCT has a large impact on both the SCT (resp. RC)
delay bounds with a maximum variation of 2.5ms (resp. 0.4ms), i.e., the delay bound is mul-
tiplied by 24 (resp. 2.3).

70

4.4. Preliminary performance evaluation

Impact of U RRC

Similar analysis conducted for Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 72] ,
LM = 22,118,LR = 0,BW = 0.46) in Fig.4.9 shows that the RC utilisation rate has an inherent
impact on SCT and RC delay bounds. We observe a behaviour symmetrical to the one noticed
in Scenar i oSCT :

• the SCT delay bound is ruled below U RRC = 20% by the strict minimum service curve
due to the SP part; whereas after U RRC = 20%, it is ruled by the strict minimum service
curve due to the BLS part;

• the RC delay bound is ruled below U RRC = 30% by the strict minimum service curve
the BLS part; whereas after U RRC = 30%, it is ruled by the strict minimum service curve
the SP part.

These results infer that the variation of U RRC has a large impact on both the SCT (resp.
RC) delay bounds with a maximum variation of 0.58ms (resp. 2.2ms), i.e., the delay bound is
multiplied by 2.8 (resp. 23).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

analytical NC
AWC

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

R
C

 d
e

la
y
 (

m
s
)

RC utilisation rate (%)

analytical NC
AWC

(b)

Figure 4.9: NC vs AWC - impact of RC maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds, with Scenar i oRC =

(U RSCT = 20,U RRC ∈ [0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

Finally, it is worth noting that our model has the same behaviour for SCT and RC (two
linear curves) as the simulations in Fig.3.8 and Fig.3.9 from Chapter 3.

Impact of LM

Concerning SCT delay bounds, in Fig.4.10(a), before LM = 50,000 bits (which represents
sending windows allowing the transmission of 200 consecutive frames) they are ruled by
βbl s

SCT . The increase of LM increases both idle and sending windows ∆max
i dle

and ∆mi n
send

. Thus,

both the rate and the initial latency of the minimum service curve βbl s
SCT (see Corollary 6) in-

crease. This fact induces a variation of the SCT delay bounds, which decrease then increase.
After LM = 50,000 bits, the SCT delay bound is constant, because it is ruled by a constant
β

sp

SCT,0.

71

Chapter 4. Formal Worst-Case Timing Analysis

Concerning RC delay bounds, in Fig.4.10(b), they are ruled by βbl s
RC

(t) (see Corollary 7).
When increasing LM , both the rate and initial latency increase. Before LM = 7,000 bits (which
represents sending windows allowing the transmission of 24 consecutive frames), the impact
of the increasing rate is stronger, resulting in the delay bound decrease; whereas after LM =

7,000 bits, the impact of the initial latency takes over, resulting in a delay bound increase.
These results infer that the variation of LM has a limited impact on the SCT delay bounds

with a maximum variation of 5%, and a larger effect on RC delay bounds with a variation of
35%.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 50 100 150 200

S
C

T
 d

e
la

y
 (

m
s
)

LM (10
3
 bits)

analytical NC
AWC

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200

R
C

 d
e

la
y
 (

m
s
)

LM (10
3
 bits)

analytical NC
AWC

(b)

Figure 4.10: NC vs AWC - impact of LM on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

Impact of BW

As shown in Fig.4.11(a), when BW is below 40%, the SCT delay bound is constant since
it is ruled by β

sp

SCT,2 (see Corollary 6): the bandwidth allocated by the BLS is not sufficient to
send the SCT traffic. As a consequence, the SCT traffic also uses the bandwidth left by the
RC traffic. However, for BW higher than 40%, SCT delay bound decreases. This is due to the
fact that Ii dle = BW ·C , thus the guaranteed rate of the SCT minimum service curve βbl s

SCT

increases while its initial latency decreases.
Concerning the RC delay bounds, we observe in Fig.4.11 the opposite behaviours: for BW

higher than 55%, RC delay bound is constant and ruled by β
sp

RC
(see Corollary 7); whereas

for BW lower than 55%, RC delay bound is ruled by βbl s
RC

. Thus, when increasing BW , Ii dle

increases. This leads to decreasing the guaranteed rate of βbl s
RC

, and consequently to the delay
bounds increase.

These results infer that the variation of BW has a high impact on both SCT and RC delay
bounds with an increase of 0.60ms (resp. 0.55ms) for SCT (resp. RC), representing an increase
of 170% (resp. 137%).

72

4.4. Preliminary performance evaluation

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
C

T
 d

e
la

y
 (

m
s
)

BW (%)

analytical NC
AWC

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
C

 d
e

la
y
 (

m
s
)

BW (%)

analytical NC
AWC

(b)

Figure 4.11: NC vs AWC - impact of BW on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oBW = (U RSCT = 20,U RRC = 20,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99])

Impact of LR

In Fig.4.12(a), we see that increasing LR from 40% to 70% slightly increases SCT delay
bounds. Before LR = 70%, the equation ruling the SCT behaviour is βbl s

SCT ⊗β
sp

SCT,0 (see Corol-

lary 6). The increase of LR decreases both ∆max
send

and ∆mi n
i dle

(see Eq.(4.5) and Eq.(4.7)), leading

here to a low increase of SCT delay bounds. After 70%, the SCT behaviour is ruled by β
sp

SCT,2

(see Corollary 6). Since β
sp

SCT,2 does not depend on BLS parameters, the SCT delay bound
becomes constant after LR = 70%.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

S
C

T
 d

e
la

y
 (

m
s
)

LR(% LM)

analytical NC
AWC

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
C

 d
e

la
y
 (

m
s
)

LR(% LM)

analytical NC
AWC

(b)

Figure 4.12: NC vs AWC - impact of LR on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oLR = (U RSCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46)

In Fig.4.12(b), the RC delay bound is ruled by βbl s
RC

, until LR = 90%, after which it becomes
ruled by β

sp

RC
. Hence, when LR increases, LM − LR decreases, leading to a decrease of the

minimum service rate and consequently an increase of the RC delay bound.
These results show that LR has a limited impact on the SCT delay with a maximum varia-

tion of 2%; whereas its impact is higher on RC delay bounds, with a variation of 26%.

73

Chapter 4. Formal Worst-Case Timing Analysis

To conclude the sensitivity analysis of the WbA model, both LR and LM have very limited

impact on the SCT delay bound (under 5%), but a large one on RC delay bounds (around

30%). Moreover, the largest impact however, is due to the the SCT and RC utilisation rates

and BW parameter, with delay bound increases up to 137% and 170% for RC and SCT re-

spectively.

4.4.2.2 Tightness Analysis

Thanks to the modelisation of both the BLS and SP parts of the output port multiplexer, the
SCT and RC delay bounds are very tight in reference to AWC, under the different considered
scenarios. For instance, as shown in Fig.4.8(a), when varying the SCT utilisation rate, the max-
imum gap between the AWC and the NC delay bounds of SCT is 0.5ms, which represents an
increase of 33%. Moreover, when varying the RC utilisation rate, we have similar results: the
largest percentage increase of the RC delay bounds happens for a gap of 0.5ms and represents
27% in Fig.4.9(b). When varying BW , we also have similar results in Fig.4.11 for both SCT and
RC delay bounds.

However, when the BLS parameters come close to open limits, we can see that the WbA
model is less tight. For instance, when LR is close to LM in Fig.4.10 and Fig.4.12, the largest
gap for SCT delay bounds compared to AWC is 0.25ms, which represents an increase up to
36%. This is because LM = LR is a forbidden state as it results in a null minimum service rate
in βbl s

SCT and βbl s
RC . Hence, when the guaranteed rate is close to 0, the delay bounds increase,

until reaching the limits set by β
sp

SCT,0 and β
sp

RC .
Finally, with a gap between AWC and the NC model usually below 15% under the various

scenarios, the proposed model can be considered as an accurate one.

Thus, the tightness of the model is very high: the gap between the NC model and AWC is

usually less than 15%, with peaks at 35%. However, we note a situation where the tightness

of the model could be improved: when LM is close to LR .

4.4.3 Comparing CPA and NC models

In this section, we compare our proposed model to the CPA model. We start by comparing
the computation times, before studying the SCT and RC delay bounds.

4.4.3.1 Computation times

In this section, we consider the computation time to obtain all the computed times under
each scenario.

With our NC model, we compute each delay bound through simple linear computations.
With CPA however, the computation is much more complex:

• SCT delay bounds necessitate finding a maximum using a while-loop;

74

4.4. Preliminary performance evaluation

• RC delay bounds necessitate solving:

– a maximisation problem;

– fixed point problems;

– ILP problems.

We can see clearly in Table 4.1 that the NC model necessitates much less computation
power than the CPA model. In fact, we can notice that the NC model is between 20,000 and
100,000 times faster than the CPA model.

scenario CPA NC CPA/NC

(s) (s)

varying SCT 97.2 0.0051 19,058

varying RC 71.4 0.0032 22,187

varying LM 384.4 0.0072 53,388

varying LR 1059 0.0100 105,900

varying BW 390 0.0095 41,052

Table 4.1: CPA and NC models computation times for the different scenarios

4.4.3.2 SCT delay bounds

We can see in Fig.4.13(a) that the SCT delay bounds of the two models are overlapping for low
values of U RSCT . Then, they diverge at U RSCT = 20%. The analytical NC curve starts to follow
a linear curve with a lower increase rate. The CPA model however, keeps the same rate. As
a consequence, the gap between CPA and NC curves increases (up to 70%), which shows the
increasing pessimism of CPA under high SCT utilisation rates.

The main cause of this pessimism is due to the fact that the CPA shaper blocking does
not take into account the RC rate. As BW is close to 50%, the idle and send slopes are very
close: the replenishment and service intervals are very similar. So, when the SCT utilisation
rate becomes visibly larger than the RC one (over U RSCT = 20%), the replenishment intervals
are not completely filled: SCT traffic is sent even-though the SCT priority is low. This causes
the decreasing SCT delay bounds under the NC model. Similar results are visible when vary-
ing the different parameters in Fig.4.14(a), Fig.4.15(a), Fig.4.17(a), and Fig.4.16(a), where the
delay bounds are generally more pessimistic with CPA model than the ones with NC model.

However, in Fig.4.15(a), we can see that SCT delay bounds with CPA are sometimes lower
than the ones with NC model. This fact confirms our conclusions in Section 4.2.1 about the
CPA model optimism.

75

Chapter 4. Formal Worst-Case Timing Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

analytical NC
analytical CPA

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

R
C

 d
e

la
y
 (

m
s
)

SCT utilisation rate (%)

analytical NC
analytical CPA

(b)

Figure 4.13: NC vs CPA - impact of SCT maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds, with Scenar i oSCT =

(U RSCT ∈ [0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

analytical NC
analytical CPA

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

R
C

 d
e

la
y
 (

m
s
)

RC utilisation rate (%)

analytical NC
analytical CPA

(b)

Figure 4.14: NC vs CPA - impact of RC maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds, with Scenar i oRC =

(U RSCT = 20,U RRC ∈ [0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

76

4.4. Preliminary performance evaluation

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 50 100 150 200

S
C

T
 d

e
la

y
 (

m
s
)

LM (10
3
 bits)

analytical CPA
analytical NC

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200

R
C

 d
e

la
y
 (

m
s
)

LM (10
3
 bits)

analytical NC
analytical CPA

(b)

Figure 4.15: NC vs CPA - impact of LM on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

4.4.3.3 RC delay bounds

Concerning the RC traffic, in Fig.4.13(b)) and Fig.4.14(b) both analytical models have the
same shape. In NC, this is again thanks to the association of the BLS and SP parts, βbl s

RC and
β

sp

RC
. In the CPA model, this is thanks to solving an ILP problem, which takes into account the

maximum available SCT traffic.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
C

T
 d

e
la

y
 (

m
s
)

BW (%)

analytical NC
analytical CPA

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
C

 d
e

la
y
 (

m
s
)

BW (%)

analytical NC
analytical CPA

(b)

Figure 4.16: NC vs CPA - impact of BW on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oLR = (U RSCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46)

It is worth noting that in the part of the curve ruled by the sp node, NC and CPA have
very similar delay bounds; whereas in the part ruled by the bl s node, CPA leads to slightly
larger delay bounds. This can be explained by the pessimism of maximum replenishment
intervals t R+

SCT in the ILP problem of CPA: the credit replenishment is over-evaluated as ex-
plained in Section 4.2.1. Hence, the resulting sending interval is also over-evaluated, which
adds pessimism to the RC delay bounds.

77

Chapter 4. Formal Worst-Case Timing Analysis

An exception of this general behaviour is visible in Fig.4.15(b) where for large LM , the CPA
model is less pessimistic than the NC model (up to 10%).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

S
C

T
 d

e
la

y
 (

m
s
)

LR(% LM)

analytical CPA
analytical NC

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
C

 d
e

la
y
 (

m
s
)

LR(% LM)

analytical CPA
analytical NC

(b)

Figure 4.17: NC vs CPA - impact of LR on: (a) SCT delay bounds; (b) RC delay bounds, with
Scenar i oBW = (U RSCT = 20,U RRC = 20,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99])

From this analysis, we can point out the low complexity of our model compared to the

CPA model. Moreover, concerning the SCT traffic, we have solved the optimism issue of the

CPA model, and most of the pessimism issues too. Finally, both CPA and NC models lead to

very close RC delay bounds except for large values of either LM or LR .

4.4.4 Comparing extended AFDX (BLS), current AFDX (SP), and DRR-compliant
AFDX

As presented in the related work, an other possible solution for mixed-criticality applications
is the Deficit Round Robin (DRR). Hence, in this part, we will compare the extended AFDX to
the current AFDX, i.e., a 3-priority Non-preemptive Static Priority Scheduler, and to a DRR-
compliant AFDX, i.e., an AFDX incorporating a DRR scheduler. First, we detail the DRR archi-
tecture and parameters in Section 4.4.4.1. Afterwards, we present the comparative analysis of
computed SCT and RC delay bounds, based on Scenar i oSCT and Scenar i oRC.

4.4.4.1 DRR-compliant AFDX architecture and parametrisation

As our aim is to compare the extended AFDX to the DRR, the first challenge is to find a
scheduling architecture with the DRR equivalent to the one with the BLS on top of the NP-
SP. In our proposed implementation of the extended AFDX incorporating the BLS, shown in
Fig.3.1, the shaped queue is the highest priority: SCT. Thus, the BLS shares the bandwidth
between the SCT and the other priorities, RC and BE. An equivalent of this is a DRR with two
queues, one for the SCT traffic and one for both RC and BE traffic. A second important aspect
of the extended AFDX is the association of the BLS to the NP-SP scheduler that privileges the

78

4.4. Preliminary performance evaluation

RC traffic over the BE traffic. To keep this aspect within the DRR-compliant AFDX architec-
ture, we use a NP-SP upstream the DRR to privilege RC over BE, as illustrated in Fig.4.18.

From [45], we know that the minimum service curves offered by the DRR to SCT and
RC∪BE in an output port mux are as following:

βDRR ,mux
SCT

(t) =
QSCT

QSCT +QRC∪BE
·C ·

(

t −
QSCT · (maxi∈RC∪BE MF Si −ǫ)

QSCT ·C

+
QRC∪BE · (QSCT +MF SSCT −ǫ)

QSCT ·C

)+

βDRR ,mux
RC∪BE

(t) =
QRC∪BE

QRC∪BE +QSCT
·C ·

(

t −
QRC∪BE · (MF SSCT −ǫ)

QRC∪BE ·C

+
QSCT · (QRC∪BE +maxi∈RC∪BE MF Si −ǫ)

QRC∪BE ·C

)+

with QSCT and QRC the quantums of SCT and RC respectively, and ǫ is the basic unit, e.g., 1
when considering bytes and 8 when considering bits.

With Theorem 3, we can concatenate the SP and the DRR to obtain the service curve
offered to the RC traffic by the DRR-compliant AFDX output port multiplexer:

βDRR ,mux
RC (t) = [βDRR ,mux

RC∪BE (t)− max
i∈RC∪BE

MF Si]↑ (4.8)

RC

BE

#1

#2

SCT

SP

DRR

Figure 4.18: DRR-compliant AFDX output port architecture

We can see in Fig.4.8(b) (resp. Fig.4.9(a)) that RC (resp. SCT) delay bound is constant after
a certain value of U RSCT (resp. U RRC). Hence, to compare DRR-compliant and extended
AFDX, we set DRR weights such as the delay bounds of SCT and RC under DRR-compliant
AFDX are similar to the delay bounds with extended AFDX in the constant part, e.g., when
U RSCT is over 18%, and when U RRC is over 20%.

First, we set the SCT Quantum QSCT such as the number of SCT frames sent in a BLS
sending window is the same with DRR:

QSCT =
LM

(1−BW) ·MF SSCT
.

Then, we set the RC Quantum QRC to achieve the constant delay bound under Scenar i oSCT

when U RSCT is over 18% as follows:

QRC = ⌊(1−BW) ·QSCT ·1.85⌋

79

Chapter 4. Formal Worst-Case Timing Analysis

and under Scenar i oRC when U RRC is over 18%:

QRC = ⌊(1−BW) ·QSCT ·2.55⌋

Now that we have presented the parameterisation of the DRR-compliant AFDX architec-
ture, we can detail the comparative results.

4.4.4.2 Comparative analysis

Impact of SCT
First, in Fig.4.19(a) we can see that the SCT delay bounds increase with both DRR-compliant

and extended AFDX (BLS). However, the BLS delay bounds are higher than the DRR delay
bounds beforeU RSCT reaches 32%, and become lower for highU RSCT . Moreover, in Fig.4.19(b),
we can see that the RC delay bound is higher with DRR for low SCT utilisation rates (under
15%), compared to the extended AFDX. Over 15%, DRR-compliant and extended AFDX are
equal and constant. Afterwards, we can notice that both DRR-compliant and extended AFDX
induce a noticeable reduction of the RC delay bounds compared to the current AFDX (SP).
For instance for U RSCT = 40%, both the DRR-compliant and extended AFDX divide the RC
delay bound by 2.6 compared to the current AFDX. It is interesting to note that while the RC
delay bound with DRR-compliant AFDX can be higher than with current AFDX, it is either
equal or lower than current AFDX with the extended AFDX. This fact shows the beneficial
impact of the BLS on the RC delay bounds, in comparison with DRR.

Moreover, we notice that the SCT schedulability is enhanced by the BLS, in comparison
to DR and SP. For instance in Fig.4.19(a):

• for current AFDX (SP), the maximum U RSCT is 42%, when the RC deadline is crossed;

• for DRR-compliant AFDX, the maximumU RSCT is 49%, when the SCT deadline is crossed;

• for extended AFDX (BLS), the maximumU RSCT is 63%, when the SCT deadline is crossed;

Hence, the extended AFDX increases the schedulability of the SCT traffic by 50% com-
pared to the current AFDX, and by 28% compared to DRR-compliant AFDX. Additionally, it is
interesting to note that above U RSCT = 49%, DRR drops SCT frames, which is not the case for
BLS.

Impact of RC
First, in Fig.4.20(a), we can see that as before the SCT delay bound increases with both

DRR-compliant and extended AFDX, even-though they remain lower with extended AFDX
until U RRC = 20%. Then, both mechanisms lead to equal and constant delay bounds as ex-
pected from the DRR parameterisation, explained in Section 4.4.4.1. In Fig.4.20(b), we can
see that the RC delay bound is slightly lower with DRR-compliant AFDX than the extended
AFDX, until a RC utilisation rate of 45%. Then, DRR-compliant AFDX delay bound becomes
the highest. As before, while the RC delay bound with DRR-compliant AFDX can be higher
than with the current AFDX, the extended AFDX is either equal or lower than current AFDX.
So, the RC delay bound is positively impacted by the BLS, in comparison to DRR. For instance,
the delay bound is divided by 2 for U RRC = 10%, in comparison to the current AFDX (SP).

80

4.4. Preliminary performance evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

SCT deadline

extended AFDX (BLS)
DRR-compliant AFDX

current AFDX (SP)

(a)

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT utilisation rate (%)

RC deadline

extended AFDX (BLS)
DRR-compliant AFDX

current AFDX (SP)

(b)

Figure 4.19: BLS vs (SP,DRR) - impact of SCT maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds with Scenar i oSCT =

(U RSCT ∈ [0.1 : 78] ,U RRC = 20,LM = 22,118,LR = 0,BW = 0.46)

Concerning the schedulability, the deadlines are still fulfilled for different values of U RRC .
For instance in Fig.4.20(b), for DRR-compliant AFDX, the maximum U RRC is 57% and for
current and extended AFDX, the maximum U RRC is 62%.

Hence, the BLS increases the schedulability of the SCT traffic by 8.7%, compared to DRR.
Moreover, there are DRR drops, this time of RC frames, above 57%.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

extended AFDX (BLS)
DRR-compliant AFDX

current AFDX (SP)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

RC utilisation rate (%)

RC deadline

extended AFDX (BLS)
DRR-compliant AFDX

current AFDX (SP)

(b)

Figure 4.20: BLS vs (SP,DRR) - impact of RC maximum utilisation rate
on: (a) SCT delay bounds; (b) RC delay bounds with Scenar i oRC =

(U RSCT = 20,U RRC ∈ [0.5 : 72] ,LM = 22,118,LR = 0,BW = 0.46)

Finally, we can conclude that the BLS largely improves the schedulability of SCT com-
pared to both DRR and NP-SP. Moreover, both DRR-compliant and extended AFDX can largely
decrease the RC delay bounds. Depending on the utilisation rates, extended AFDX can be bet-
ter or worse than DRR-compliant AFDX in terms of delay bounds. But contrary to DRR, the
BLS never degrades the RC delay bounds compared to the current AFDX (SP).

81

Chapter 4. Formal Worst-Case Timing Analysis

4.5 Conclusion

In this chapter, we have detailed the worst-case timing analysis of our extended AFDX in-
corporating the BLS, using Network Calculus. Then, we have analysed the sensitivity and
tightness of the proposed model, in addition to its accuracy compared to the CPA model.
Moreover, we have assessed the performance of our solution, compared to an other promis-
ing architecture implementing the DRR and the standard one implementing the NP-SP.

The sensitivity analysis has shown that BW has a strong impact on the SCT and RC de-
lay bounds, contrary to LM and LR . Concerning the tightness, the different scenarios have
demonstrated that the gap between the AWC and analytical NC model is usually below 15%,
which highlights its accuracy.

The comparison with the CPA model for SCT confirms that we have solved the optimism
issue of the CPA model, and most of the pessimism issues too. Concerning RC traffic, both
models have very close delay bounds except for large values of either LM or LR .

Finally, we have shown that the extended AFDX offers a better SCT schedulability and
often better RC delay bounds than the DRR-compliant AFDX.

However, we note situations where the tightness of the NC model could be improved:
when LM is close to LR . Additionally, the sensitivity analysis has highlighted the importance
of selecting adequate BLS parameters. Therefore, in the next chapter, we will detail an im-
proved NC model to enhance delay bounds tightness and define two BLS parameter tuning
methods to enhance the schedulability.

82

CHAPTER

FIVE

PERFORMANCE ENHANCEMENT

"Even if a scientific model, like a car, has only a few years to run before it is discarded, it serves

its purpose for getting from one place to another."

-David L. Wingate

Contents

5.1 Introduction . 83

5.2 Improving the BLS modelisation: the Continuous-Credit-based Approach
(CCbA) . 84

5.2.1 Identification of WbA limitations . 84

5.2.2 Improving BLS model: the Continuous-Credit-based Approach (CCbA) 86

5.2.3 Tightness Analysis of the CCbA model . 90

5.3 BLS parameter tuning . 92

5.3.1 Problem formulation . 93

5.3.2 Problem relaxation . 93

5.3.3 Constraint propagation . 94

5.3.4 Solving the problem . 97

5.3.5 Comparing intuitive parameters to optimised parameters 102

5.4 Performance analysis . 103

5.5 Conclusion . 105

5.1 Introduction

In the previous chapter, we have highlighted some performance limitations of the Window-
based Approach, in terms of delay bound pessimism. More specifically, the evaluation results
have shown that the delay bounds are not that tight when LR is close to LM . Additionally,

83

Chapter 5. Performance Enhancement

through a sensitivity analysis of the window-based model done by varying the different BLS
parameters, we have highlighted the impact of BLS parameterisation to enforce the flow con-
straints.

In this chapter, we aim to overcome these limitations and improve the extended AFDX
performances. First, we propose a new BLS modelisation, called Continuous Credit-based
Approach (CCbA) to improve the delay bounds tightness. Then, we define a BLS parameter
tuning method to improve both RC delay bounds and schedulability. Finally, we conduct
a comparative analysis of both analytical models (CCbA vs WbA) in terms of tightness, and
a performance evaluation of the extended AFDX when using CCbA and the BLS parameter
tuning method, in reference to the DRR and SP as done in the previous chapter.

Results show that the new CCbA model solves the main limitations of the WbA; thus,
the SCT and RC delay bounds are tighter with CCbA than with WbA. Concerning the tun-
ing method, the extended AFDX with optimised parameters leads to a larger schedulability
enhancement, compared to both SP and DRR.

5.2 Improving the BLS modelisation: the Continuous-Credit-based
Approach (CCbA)

In this section, we propose a new BLS model (CCbA) to overcome the limitations of the WbA
model. First, we identify the origin of the WbA limitations. Afterwards, we deal with the
identified WbA limitations by introducing the improved model, CCbA.

5.2.1 Identification of WbA limitations

The inherent idea of the WbA is based on the different possible combinations of idle and
sending BLS windows to model the minimum and maximum service curves. However, when
taking a closer look at the credit behaviour of the BLS covering the worst-case scenario of the
minimum service curve, we found out the origin of the pessimism inherent to the WbA model.
We illustrate this behaviour in Fig.5.1, where the windows introduce a credit discontinuity,
which is not a realistic behaviour. Moreover, we have also noticed a similar discontinuity
when studying the best-case scenario of the maximum service curve, as shown in Fig.5.2.

We can notice that the discontinuity of the BLS credit happens between the end of the idle
window and the start of the sending window for both the minimum and maximum service
curves. This issue is situated around LR . This highlights the fact that LR is not taken into
account in an accurate way by the WbA model, detailed in Chapter 4.

Last but not least, there is an issue when the high priority pH (k) of a BLS class k is not the
highest priority. We denote αH ,k (t) = rH ,k · t +bH ,k the aggregated higher priority traffics of
HC(k). In the cases where the BLS high priority pH (k) is not the highest, the service left by the
priorities strictly higher than pH (k) is C · t −αH ,k (t). The resulting rate of the strict minimum
service curve βbl s

k
of the considered BLS class k with the WbA model, denoted Rbl s

β,k , can be

84

5.2. Improving the BLS modelisation: the Continuous-Credit-based Approach (CCbA)

computed using Eq.(4.4) in Theorem 8:

Rbl s
β,k =

β(∆k ,mi n
send

)

β(∆k ,mi n
send

)+β(∆k ,max
i dle

)
· (C − rH ,k)=

(C − rH ,k) ·∆k ,mi n
send

−bH ,k

(C − rH ,k) ·
(

∆
k ,mi n
send

+∆
k ,max
i dle

)

−2 ·bH ,k

· (C − rH ,k)

t

class−k credit

∆
k,max
i dle

∆
k,mi n
send

Lk
M

Lk
R

Lk,mi n
R

Figure 5.1: WbA: discontinuities with βbl s
k

windows

t

class−k credit

∆
k,mi n
i dle

∆
k,max
send

∆
k,max
send ,0

Lk
M

Lk,mi n
R

Lk
R

Figure 5.2: WbA: discontinuities with γbl s
k

windows

Hence, the burst of the higher priority traffic bH ,k has an inherent impact on the mini-
mum service rate. As a consequence, when this burst is too large, the service rate may tend
toward 0. This fact may induce very pessimistic delay bounds for class k.

When several BLS are considered, one of them obviously does not have the highest pri-
ority (since each BLS class has its own low and high priorities), which shows again the pes-
simism of such assumption.

Hence, our aim is to handle these identified limitations of the WbA model to better take
into account the continuity of the BLS credit and fix the issue of the minimum service rate.

85

Chapter 5. Performance Enhancement

5.2.2 Improving BLS model: the Continuous-Credit-based Approach (CCbA)

We detail here the computation of BLS service curves offered to a BLS class k . The main idea is
to compute the consumed and the gained credits. Knowing that the credit is continuous and
always between 0 and Lk

M , we use the sum of the consumed and gained credits to compute
the minimum and maximum service curves of the BLS node. The main difficulty consists in
computing the traffic sent during saturation times, i.e., when the credit is neither gained nor
consumed due to the minimum and maximum levels, 0 and Lk

M , respectively.
The strict minimum and maximum service curves offered to a BLS class k by a BLS node

are defined in Theorem 8 and in Theorem 9, respectively.

Theorem 8 (Strict Minimum Service Curve offered to a BLS class k by a BLS node). Consider

a server with a constant rate C , implementing BLS shapers. The traffic of class k crosses this

server and is shaped by the BLS. Class k has a high priority denoted pH (k) and a low priority

denoted pL(k) (with pL(k) > pH (k)). We call HC (k) the traffic classes with a priority strictly

higher than pH (k) and MC(k) the classes with a priority between pL(k) and pH (k). The strict

minimum service curve guaranteed to the BLS class k is as follows:

βbl s
k (t) =

(

C −
∑

h∈HC (k)
rh −

MF S sat
k

∆
k ,β
i nt er

)

·
I k

i dle

C
·

(

t −∆
k ,β
i dle

)+

where

MF S sat
k = max(max

j∈MC (k)
MF S j −

C

I k
i dle

·Lk
R ,0)

∆
k ,β
i nt er

=
Lk

M −Lk ,mi n
R

I k
send

+
Lk

M −Lk
R

I k
i dle

+
max j∈MC (k) MF S j

C

Lk ,mi n
R

= max

(

Lk
R −

max j∈MC (k) MF S j

C
· I k

i dle ,0

)

∆
k ,β
i dle

=
Lk

M −Lk
R

I k
i dle

+
max j∈MC (k) MF S j

C

Proof. We present here only a sketch of proof, the complete proof is available in Appendix 8.5.2.
We search a strict minimum service curve defined by a rate-latency curve, i.e., βbl s

k
(t) =

ρ · (t −τ)+ with rate ρ and latency τ.
First, to compute τ, we consider the maximum latency caused by the BLS.
Secondly, to compute ρ, we consider the fact the credit is a continuous function with

values between 0 and Lk
M . Consequently, the sum of the gained and consumed credits is

upper bounded by Lk
M , and the credit can saturate at 0 or Lk

M . Thus, the credit consumed
during a period δ is not simply the product of the credit increasing rate (denoted I k

send
) and

the transmission time of the output traffic (denoted∆R∗(δ)). It is actually the product of I k
send

and the output traffic transmitted while the credit is not saturated. The same is true for the
gained credit. Hence, the main issue of the proof is the computation of these saturation times.
In particular, we compute the maximum saturation for the MC(k) and HC(k) classes, and the

86

5.2. Improving the BLS modelisation: the Continuous-Credit-based Approach (CCbA)

minimum saturation for the class k , as illustrated in Fig.5.3. After this, we use the definition
of β(t) and the limit of ∆R∗(δ)

δ toward infinity to compute ρ.

L
M

L
R

L
M

L
R

I
idle

MFS
j

C

MFS
MC(k)

sat

L
M

I
send

=0

t

transmission

MC(k)

transmission

class k

k

k

L
R

k,min

k k k

kk

class−k credit

L
R

k,min

Figure 5.3: Computing βbl s
k

(t)

Corollary 8 (Strict Minimum Service Curve offered to SCT by a BLS node). Consider a server

with a constant rate C , implementing a BLS shaping the SCT traffic. The SCT, RC and BE

traffics cross this server with the following priorities: p(SC T) ∈ {pH (SC T) = 0, pL(SC T) = 2},
p(RC)= 1, p(BE)= 3, as illustrated in Fig.3.3.

The strict minimum service curve guaranteed to SCT class is as follows:

βbl s
SCT (t) =

(

C −
MF S sat

SCT

∆
β

i nt er

)

·
Ii dle

C
·

(

t −∆
β

i dle

)+

where

MF S sat
SCT = max(max

j∈RC
MF S j −

C

Ii dle
·LR ,0)

∆
β

i nt er
=

LM −Lmi n
R

Isend
+

LM −LR

Ii dle
+

max j∈RC MF S j

C

Lmi n
R = max

(

LR −
max j∈RC MF S j

C
· Ii dle ,0

)

∆
β

i dle
=

LM −LR

Ii dle
+

max j∈RC MF S j

C

Proof. We apply Theorem 8 in the particular 3-classes case study presented in Fig.3.1, with
SCT as class k .; thus HC (k)=; and MC(k)=RC.

Theorem 9 (Maximum Service Curve offered to a BLS class k by a BLS node). Consider a server

with a constant rate C , implementing BLS shapers. The traffic of class k crosses this server and

is shaped by the BLS. Class k has a high priority denoted pH(k) and a low priority denoted pL(k)
(with pL(k)> pH (k)). We call MC(k) the classes with a priority between pL(k) and pH (k).

87

Chapter 5. Performance Enhancement

The maximum service curve offered to the class k traffic is as follows. In the absence of

backlogged MC(k) traffic: γbl s
k

(t) =C · t ; otherwise, during a backlogged period of MC(k):

γbl s
k (t) =

∆
k ,γ
send

∆
k ,γ
i nt er

·C · t +bmax
k ·

∆
k ,γ
i dle

∆
k ,γ
i nt er

where

bmax
k =

C

I k
send

·Lk
M +MF Sk

∆
k ,γ
send

=
MF Sk

C
+

Lk
M −Lk

R

I k
send

∆
k ,γ
i dle

=
Lk

M
−Lk

R

I k
i dle

and

∆
k ,γ
i nt er

=∆
k ,γ
send

+∆
k ,γ
i dle

Proof. We present here only a sketch of proof, the complete proof is available in Appendix 8.5.3.
We search a maximum service curve defined by a leaky-bucket curve, i.e., γbl s

k
(t)= r ·t+b with

rate r and burst b. First, for r we use the fact that the sum of the gained and consumed credits
is lower bounded by −Lk

M . Then, we calculate the bounds of saturation times during a period
δ. In particular, we calculate the minimum and maximum saturations, as illustrated in Fig.5.4.
Finally, we use the definition of γ(t) and the limit toward infinity of ∆R∗(δ)

δ
to compute r .

L
M

L
R

idle
I I

send

idle
I

L − L
M R

I
send

MFS
k

C

tL − L
M R

transmission transmission
MC(k) class k

k

k

k k

k k

k k

k k

class−k credit

Figure 5.4: Computing γbl s
k

(t)

88

5.2. Improving the BLS modelisation: the Continuous-Credit-based Approach (CCbA)

Corollary 9 (Maximum Service Curve offered to SCT by a BLS node). Consider a server with a

constant rate C , implementing a BLS shaping the SCT traffic. The SCT, RC and BE traffics cross

this server with the following priorities: p(SC T) ∈ {pH (SC T) = 0, pL(SC T) = 2}, p(RC) = 1,

p(BE)= 3, as illustrated in Fig.3.3.

The maximum service curve offered to the SCT traffic class is as follows. In the absence of

backlogged RC traffic: γbl s
SCT (t) =C · t ; otherwise, during a backlogged period of RC:

γbl s
SCT (t)=

∆
γ

send

∆
γ

i nt er

·C · t +bmax
SCT ·

∆
γ

i dle

∆
γ

i nt er

where

bmax
SCT =

C

Isend
·LM +MF SSCT

∆
γ

send
=

MF SSCT

C
+

LM −LR

Isend

∆
γ

i dle
=

LM −LR

Ii dle

and

∆
γ

i nt er
=∆

γ

send
+∆

γ

i dle

Proof. We apply Theorem 9 in the particular 3-classes case study presented in Fig.3.1, with
SCT as class k ; thus HC (k)=; and MC(k)=RC.

Discussion
First, we consider the fluid traffic assumption, we notice that there is no more credit sat-

uration, neither at 0 nor LM . For instance, the analysis of the CCbA model in the particular 3-
classes case study in Section 3.4.1 shows that: as soon as the credit reaches LM , the transmis-
sion of SCT traffic stops, and as soon as the credit reaches LR , the transmission of RC traffic
stops. As a consequence, MF S sat

SCT = 0, MF S sat
RC = 0 and no additional frame when comput-

ing the maximum initial latency (for βbl s
SCT (t)) or burst (for γbl s

SCT (t)). Based on Appendix 8.4,

we can easily show that γ
bl s, f lui d

SCT (t) = γ
bl s,i nt ui , f lui d

SCT (t) and β
bl s, f lui d

SCT (t) = β
bl s,i nt ui , f lui d

SCT (t).
Hence, the CCbA model under the fluid traffic assumption is equivalent to the fluid traffic
model of the WbA computed in Section 4.3.2.3.

Secondly, in the particular case where LR = 0, we show in Appendix 8.6 that both models
are equal when considering the case study from Section 3.4.1.

Finally, when the BLS queue does not have the highest priority, the minimum service

rate under the CCbA model is ρ =

(

C −
∑

h∈HC (k)
rh −

MF Ssat
MC(k)

∆
β

i nter

)

·
Ii dle

C . Hence, unlike the WbA (as

discussed in Section 5.2.1) the impact of higher priorities on the minimum service rate is only
caused by their input rates, not their bursts. This induces a great improvement of the delay
bounds under CCbA compared to WbA.

Now that we have discussed the differences between the two models and shown that the
CCbA seems very promising, we need to compare both models under varying BLS parameters.

89

Chapter 5. Performance Enhancement

The aim is to quantify the induced enhancement by CCbA in terms of tightness, in reference
to the WbA model.

5.2.3 Tightness Analysis of the CCbA model

To compare the two models, we use the same 3-classes case study and scenarios as in Chap-
ter 4. First, concerning Scenar i oSCT and Scenar i oRC, in both scenarios LR = 0, resulting in
identical delay bounds, as detailed in Appendix 8.6. So, we compare WbA and CCbA with the
following scenarios:

Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

Scenar i oLR = (U RSCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46)

Scenar i oBW = (U RSCT = 20,U RRC = 20,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99])

Impact of LR

SCT and RC delay bounds when varying LR are shown in Fig.5.5. We notice that CCbA
remains firmly below the limit set by β

sp

SCT,2, and it is always ruled by βbl s
SCT ⊗β

sp

SCT,0. When
LR increases, LM −LR decreases, leading to the slow decrease of both CCbA and WbA. Addi-
tionally, MF S sat

RC decreases until it hits 0 at LR = MF SRC ·
Ii dle

C (according to Theorem 9). This
happens in Fig.5.5 at LR = 0.053 ·LM .

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90 100

S
C

T
 d

e
la

y
 (

m
s
)

LR(% LM)

5.3

WbA
CCbA
AWC

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
C

 d
e
la

y
 (

m
s
)

LR(% LM)

WbA
CCbA

AWC

(b)

Figure 5.5: WbA vs CCbA: impact of LR on: (a) SCT delay bound; (b) RC delay bound with
Scenar i oLR = (U RSCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46)

Consequently, the tightness of the SCT delay bounds with CCbA is much improved, in
reference to the ones with WbA, with the gap remaining around 0.05ms. For instance, around
LR = 0.8 ·LM , the CCbA improves the SCT delay bound tightness by 50% compared to WbA.

In Fig5.5, the RC delay bound is ruled by βbl s
RC . Hence, the RC delay bounds increase when

LR increases with CCbA, but remains below the RC delay bounds of WbA. Consequently, the
tightness of the RC delay bound is much improved with CCbA, in reference to the ones with
WbA (up to 70% at LR = 0.85 ·LM).

90

5.2. Improving the BLS modelisation: the Continuous-Credit-based Approach (CCbA)

From this analysis, we conclude that the best value for LR when using CCbA seems to be
LR = MF SRC ·

Ii dle

C . With no saturation at 0, it gives SCT a good output rate, while limiting
the impact on RC traffic. Concerning the differences between WbA and CCbA, we show in
Appendix 8.6 that they are identical at LR = 0. This is verified in Fig.5.5.

We can conclude that in reference to WbA, CCbA better takes into account the impact of LR

on the SCT and RC delay bounds, especially when LR becomes close to LM . As a result, the

delay bounds tightness of SCT (resp.RC) is improved by up to 50% (resp. 70%), compared to

WbA.

Impact of LM

In this second scenario, we have set LR = MF SRC ·
Ii dle

C = 1177.6 bits to see the difference
between WbA and CCbA (since they are identical for LR = 0).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 50 100 150 200

S
C

T
 d

e
la

y
 (

m
s
)

LM (10
3
 bits)

WbA
CCbA
AWC

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200

R
C

 d
e
la

y
 (

m
s
)

LM (10
3
 bits)

WbA
CCbA

AWC

(b)

Figure 5.6: WbA vs CCbA: impact of LM on: (a) SCT delay bound; (b) RC delay bound with
Scenar i oLM = (U RSCT = 20,U RRC = 20,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46)

First, concerning the SCT delay bound, we see in Fig.5.6(a) that below LM = 50,000 bits
(which correspond to sending 200 consecutive frames between LR and LM), the SCT delay
bound is ruled by βbl s

SCT ⊗β
sp

SCT,0. Hence, with CCbA, when LM decreases, the rate of the min-

imum service rate of βbl s
SCT increases and its initial latency decreases. Consequently, the SCT

delay bounds decrease with CCbA when LM decreases toward LR . The resulting SCT delay
bound tightness is much improved with reference to the WbA model (up to 44%).

Over LM = 50,000 bits, the SCT delay bound is ruled by β
sp

SCT,2, which explains that it is
constant and that both models have identical SCT delay bounds.

Concerning RC delay bounds with WbA and CCbA in Fig.5.6(b), they are mostly overlap-
ping, except around LM = 7,000 bits (which corresponds to sending 24 consecutive frames
between LR and LM) resulting in an improvement of the RC tightness of 50%.

We can conclude that in reference to WbA, the impact of LM on the SCT delay bounds,

when LM is close to LR , is better taken into account with CCbA. As a result, the delay bounds

tightness of SCT (resp.RC) is improved by up to 44% (resp. 50%), compared to WbA.

91

Chapter 5. Performance Enhancement

Impact of BW

SCT and RC delay bounds when varying BW are shown in Fig.5.7. For both the SCT and
RC delay bounds, the WbA and CCbA are overlapping, with the CCbA delay bounds slightly
lower than with WbA.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

S
C

T
 d

e
la

y
 (

m
s
)

BW (%)

WbA
CCbA
AWC

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
C

 d
e
la

y
 (

m
s
)

BW (%)

WbA
CCbA

AWC

(b)

Figure 5.7: WbA vs CCbA: impact of BW on: (a) SCT delay bound; (b) RC delay bound with
Scenar i oBW = (U RSCT = 20,U RRC = 20,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99])

From this comparative tightness analysis, we can conclude that the tightest model is

CCbA, with a maximum distance from AWC usually around 10%, and sometimes up to 20%.

In comparison to WbA, the tightness of the SCT (resp. RC) delay bounds is improved up to

50% (resp. 70%).

Now that we have improved the BLS model, we propose in the next part a BLS parameter
tuning method to enhance the schedulability.

5.3 BLS parameter tuning

We have noticed that with current AFDX it is easy to guarantee SCT deadlines, but at the
expense of increasing the RC delay bounds. On the contrary, with the extended AFDX, we are
able to enhance both SCT and RC schedulability and RC delay bounds. Furthermore, we have
shown the importance of good BLS parameterisation.

Hence, in this section, we propose a BLS parameter tuning method to improve the schedu-
lability. In the general case, this means parametrising all the BLS parameters in an extended
AFDX output port to minimise the impact of higher priorities on lower priorities. Due to the
possible interferences between the BLS classes, this seems to be quite difficult in the general
case. Additionally, minimising the impact on one class may in turn increase the impact on
another class.

So in this section, we study the optimisation problem in the particular 3-classes case de-
scribed in Fig.3.1 and used in chapters 3, 4 and 5. We propose to tune the BLS parameters to
enforce the end-to-end deadlines of the different RC and SCT flows to enhance schedulability,
while limiting the impact of the SCT on RC.

92

5.3. BLS parameter tuning

5.3.1 Problem formulation

We consider a multi-hop network with individual flows f of class SCT and RC with input
arrival curves ∀ f , α f (t)= r f · t +b f .

The aim is to minimise the end-to-end RC flow delay bounds, while fulfilling several con-
straints. In Section 4.3.1.2, we defined the rate constraint, stating the load of a node is lower
than minimum guaranteed rate in the considered node. This constraint can be applied to the
output port multiplexers and to each traffic class. Hence the constraints are:

1. the class rate constraint, stating that in each output port mux, the input rate of an ag-
gregate traffic of class k must be lower than the minimum offered service rate, denoted
Rmux
β,k ;

2. the aggregate rate constraint, stating that the load of an output port multiplexer is
lower than output link capacity C .

3. the deadline constraint, stating that the end-to-end delay del a yend2end
k , f

of a flow f of

class k must be lower than its end-to-end deadline Deadl i neend2end
k , f

.

We call F mux
k

the set of flows of a class k in an output port multiplexer mux. The optimi-
sation problem can be formulated as follows: find BLS parameters for each multiplexer mux

along the path of each flow f ∈ RC ,
(

Lmux
M ,Lmux

R ,BW mux
)

such as:

∀ flow f ∈ RC ∀mux ∈ pat h f mi ni mi ze
Lmux

M ,Lmux
R ,BW mux

(

del a yend2end
RC , f (Lmux

M ,Lmux
R ,BW mux)

)

subject to

∀ flow f of class k ∈ {SC T,RC }, ∀mux ∈ pat h f :

1. Rmux
β,k , f

>
∑

f ∈F mux
k

r f

2.
∑

g∈F mux
SCT

rg +
∑

f ∈F mux
RC

rg 6C

3. Deadl i neend2end
k , f

> del a yend2end
k , f

(Lmux
M ,Lmux

R ,BW mux)

5.3.2 Problem relaxation

Due to the high number of minimisations to be done, one in each output port in each switch,
this is a multi-criteria problem and it may not have a solution. Additionally, to solve this prob-
lem globally, each set of parameters in each output port needs to be tested for each flow. So,
if we consider testing N values for each parameter (Lmux

M ,Lmux
R ,BW mux), this means having

a complexity of O(l ·N 3) in an output port; thus O(l m ·N 3·m) in the whole network, with m

the number of output ports and l the number of flows. This requires of course a tremendous
amount of computer power.

93

Chapter 5. Performance Enhancement

In order to drastically reduce this complexity, we will do a per-port analysis for the aggre-
gate traffic of each class. Hence, we will only have to consider one minimisation per port, in-
stead of one minimisation per-port per-RC-flow. Thus, this will reduce the complexity down
to O(m ·N 3).

Class rate constraint
We keep the input arrival rate of each SCT and RC aggregate traffic, denoted r mux

SCT and
r mux

RC , below the minimum service rate offered to their class in each multiplexer mux, de-
noted Rmux

β,SCT
and Rmux

β,RC
;

1. ∀mux
∑

g∈F mux
SCT

rg = r mux
SCT 6 Rmux

β,SCT

2. ∀mux
∑

f ∈F mux
RC

r f = r mux
RC 6Rmux

β,RC

Deadline constraint
We propose to define a local deadline for class k in the output port multiplexer mux,

denoted Deadl i nemux
k

, that has to be fulfilled by the aggregate traffic class k ∈ {SC T,RC } in
the output port mux:

Deadl i nemux
k > del a ymux

k (Lmux
M ,Lmux

R ,BW mux), k ∈ {SC T,RC }, ∀mux,

where the del a ymux
k

is the class-k delay within mux.

The relaxed optimisation problem is then as follows:

∀output port mux, mi ni mi ze
Lmux

M ,Lmux
R ,BW mux

(

del a ymux
RC (Lmux

M ,Lmux
R ,BW mux)

)

subject to ∀mux:

1. Rmux
β,k > r mux

k
, k ∈ {SC T,RC }

2. r mux
SCT

+ r mux
RC

6C

3. Deadl i nemux
k

> del a ymux
k

(Lmux
M ,Lmux

R ,BW mux), k ∈ {SC T,RC }

Now that we have a problem with an acceptable complexity, we express the objective and
the constraints using the parameters of the BLS to assess its linearity.

5.3.3 Constraint propagation

Concerning the class rate constraint, the guaranteed minimum rates of the strict minimum
service curves of SCT and RC are defined in Corollary 8 and Corollary 9, respectively. For each

service curve β
j

i
, we define R

j

β,i and T
j

β,i such as β
j

i
(t) = R

j

β,i · (t −T
j

β,i)+. Thus, the class rate
constraints are:

Rmux
β,SCT = max(C − r mux

RC ,min(C ,Rbl s
β,SCT)) = max(C − r mux

RC ,Rbl s
β,SCT)

Rmux
β,RC = max(C − r mux

SCT ,Rbl s
β,RC)

94

5.3. BLS parameter tuning

When taking into account the aggregate rate constraint r mux
SCT

+r mux
RC

6C , this gives: r mux
SCT

6

C − r mux
RC and r mux

RC 6C − r mux
SCT :

Rmux
β,SCT > max(r mux

SCT ,Rbl s
β,SCT)> r mux

SCT

Rmux
β,RC > max(r mux

RC ,Rbl s
β,RC)> r mux

RC

Hence, the class rate constraint is always fulfilled and can be ignored.
Concerning the deadline constraint, we compute the delay bounds of class k ∈ {SC T,RC }

using Theorem 2, with the arrival curve αk = min(C · t ,rk · t +bk) and service curves of sp and
bl s using Corollaries 6 and 7, respectively. Thus:

del a ymux
k (Lmux

M ,Lmux
R ,BW mux) = min(del a ybl s,mux

k
,del a y

sp,mux

k
)(Lmux

M ,Lmux
R ,BW mux)

(5.1)

with del a yn,mux
k

(Lmux
M ,Lmux

R ,BW mux), n ∈ {sp,bl s} and k ∈ {SC T,RC } as follows:

del a yn,mux
k

(Lmux
M ,Lmux

R ,BW mux) =
bk + rk ·

bk

nl i nks
k

·C−rk

Rn
β,k

+T n
β,k −

bk

nl i nks
k

·C − rk

So finally we obtain:

∀output port mux, mi ni mi ze
Lmux

M ,Lmux
R ,BW mux

(

del a ymux
RC (Lmux

M ,Lmux
R ,BW mux)

)

subject to:

1. r mux
SCT

+ r mux
RC

6C

2. Deadl i nemux
k

> del a ymux
k

(Lmux
M ,Lmux

R ,BW mux), k ∈ {SC T,RC }

This is a non-linear problem, with complex functions defining the delays and the rates.
There are many ways of solving such a problem numerically: brute force method, random
search or heuristics for example. In our case, we will solve this problem based on heuristics
taking advantages from the sensitivity analysis done in Section 5.2.3, to select heuristics for
Lmux

M and Lmux
R .

Computing Lmux
R :

First, from the sensitivity analysis in Fig.5.5, we have noticed that the most promising
value for Lmux

R leading to a good SCT output rate while limiting the impact on RC traffic is:

Lmux
R = MF SRC ·BW mux (5.2)

95

Chapter 5. Performance Enhancement

Computing Lmux
M

Second, we have shown in Fig.5.6, when Lmux
M increases, so does the SCT delay bound

until it becomes constant thanks to β
sp

SCT,2 (see Theorem 6). Moreover, from Fig.5.6(b), we
can see that the RC delay bound starts by decreasing, then it increases. So, our aim is to find
the expression of Lmux

M at this inflection point, which is on the BLS part of the delay bound.
Hence, the objective function to minimise is as follows:

del a ymux
RC (Lmux

M ,Lmux
R ,BW mux) =

bRC + r mux
RC ·

bRC

nl i nks
RC

·C−r mux
RC

Rbl s
β,RC

+T bl s
β,RC −

bRC

nl i nks
RC

·C − r mux
RC

=

bRC + r mux
RC ·

bRC

nl i nks
RC ·C−r mux

RC

Rbl s
β,RC

+
maxk∈{SCT∪RC∪BE} MF Sk

Rbl s
β,RC

+
Lmux

M

(1−BW mux) ·C
+

MF SSCT

C
−

bRC

nl i nks
RC

·C − r mux
RC

We denote A = bRC + r mux
RC

·
bRC

nl i nks
RC

·C−r mux
RC

+maxk∈{SCT∪RC∪BE} MF Sk; thus:

del a ybl s,mux
RC

(Lmux
M ,Lmux

R ,BW mux) =
A

(1−BW mux) ·C
·

(

1+
BW mux · (1−BW mux) ·MF SSCT

Lmux
M

−Lmux
R

)

+
LM

(1−BW mux) ·C
+

MF SSCT

C
−

bRC

nl i nks
RC ·C − r mux

RC

To find the inflection point in Fig.5.6, we derive del a ybl s,mux
RC

(Lmux
M

,Lmux
R

,BW mux) to find
the null point of the derived function:

d (del a ybl s,mux
RC

(Lmux
M ,Lmux

R ,BW mux))

d (Lmux
M

)
=

A

(1−BW mux) ·C
·

(

−
BW mux · (1−BW mux) ·MF SSCT

(Lmux
M

−Lmux
R

)2

)

+
1

(1−BW mux) ·C

= −
A ·BW mux ·MF SSCT

C · (Lmux
M

−Lmux
R

)2
+

1

(1−BW mux) ·C
= 0

⇒ (Lmux
M −Lmux

R)2 = (1−BW mux) ·C ·
A ·BW mux ·MF SSCT

C
= A · (1−BW mux) ·BW mux

·MF SSCT

⇒ Lmux
M = MF SRC ·BW mux +

√

A · (1−BW mux) ·BW mux ·MF SSCT (5.3)

96

5.3. BLS parameter tuning

Therefore, using Eq.(5.2), Eq.(5.3), the relaxed optimisation problem is as follows:

∀output port mux, mi ni mi ze
BW mux

(

del a ymux
RC (BW mux)

)

with: Lmux
R = MF SRC ·BW mux

Lmux
M = MF SRC ·BW mux +

√

A · (1−BW mux) ·BW mux ·MF SSCT

subject to ∀mux:

1. Rmux
β,k > r mux

k
, k ∈ {SC T,RC }

2. r mux
SCT + r mux

RC 6C

3. Deadl i nemux
k

> del a ymux
k

(BW mux), k ∈ {SC T,RC }

5.3.4 Solving the problem

To compute BW mux , we propose Algorithm 2, which takes into account as inputs Deadl i nemux
SCT

and Deadl i nemux
RC . We use a loop to compute the possible values for BW mux in Line 2. Inside

the loop, we compute the corresponding values of Lmux
R , i.e., l r , and Lmux

M , i.e., l m, in Lines 4
and 5. Then with Eq.(5.1), we compute the SCT and RC delay bounds in Lines 6 and 7. Next,
in Line 8, we verify the local deadlines conditions. If they are fulfilled, we store the delays and
bw in Outputs, in Line 9. Finally, after testing all the bw in the loop, we select the BW mux

leading the the minimum RC delay bounds, in Line 13. If no BW mux fulfils the condition, we
return +∞ for each delay bound.

As we can notice, we need to define both local deadlines of SCT and RC within mux to
enable Algorithm2. Hence, we have defined two methods to compute these local deadlines:
Heuristic Deadline (HD) and Dichotomous Deadline (DD) methods.

Heuristic Deadline Method
We propose to set the local deadline of class k in the output port multiplexer mux as the

product of the sum of the multiplexer deadlines, denoted
∑

deadl i nemux
k

, and the weight
of class k rate going through multiplexer mux, relatively to the global class k rate in all the
multiplexers m along the path pat h f , thus:

Deadl i nemux
k =

∑

f l w∈F mux
k

r f l w

∑

m∈pat h f

∑

f l w∈F m
k

r f l w
·
∑

deadl i nemux
k

Using Eq.(4.1) in Section 4.3.1.2 we have:

∑

sw∈pat h f

del a y sw
k , f 6Deadl i neend2end

k , f −del a yes
k , f −del a y

pr op

k , f

97

Chapter 5. Performance Enhancement

with del a y sw
k , f

=
MF S f

C +1µs +del a ymux
k , f

⇒
∑

mux∈pat h f

del a ymux
k , f 6 Deadl i neend2end

k , f −
∑

mux∈pat h f

(

MF S f

C
−1µs

)

−del a yes
k , f −del a y

pr op

k , f

6
∑

deadl i nemux
k

⇒
∑

deadl i nemux
k = min

m∈pat h f , f ∈F mux
k

{

Deadl i neend2end
k , f −

∑

m∈pat h f

(

MF S f

C
−1µs

)

−del a yes
k , f −del a y

pr op

k , f

}

We use the minimum to reduce the complexity, even though this strengthens the con-
straint. This method has the benefice of being simple to use. However, it has the potential
flaw of imposing a local deadline to class k delay bound in a multiplexer, without checking
that the delay bounds in the other switches are able or not to reach their own deadlines. To
cope with these limitations, we propose the second computation method, DD method de-
scribed, in Algorithm 3.

Algorithm 2 BLS parameters algorithm in a multiplexer mux knowing the local dead-
lines:Delays&BLSparams()

Input: Deadl i nemux
SCT ; Deadl i nemux

RC bSCT ;r mux
SCT ;MF SSCT ;bRC ;r mux

RC ;MF SRC ;MF SBE ;
Output: BW mux ,del a ymux

SCT ,del a ymux
RC

1: Data=[Deadl i nemux
SCT ; Deadl i nemux

RC ; bSCT ;r mux
SCT ;MF SSCT ;bRC ;r mux

RC ;MF SRC ;MF SBE]
2: for bw ∈ [0.001 : 0.001 : 0.999] do

3: K =

√

(bSC + rST ·
bRC

nl i nks
RC ·C−r mux

RC

+maxk∈{SCT∪RC∪BE} MF Sk) · (1−bw) ·bw ·MF SSCT

4: l r = MF SRC ·bw

5: lm = lr +K

6: d mux
SCT = Del a ymux

SCT (Data, bw , lm, lr)
7: d mux

RC = Del a ymux
RC (Data, bw , lm, lr)

8: if d mux
SCT 6Deadl i nemux

SCT and d mux
RC 6Deadl i nemux

RC then
9: Outputs.add(bw ,d mux

RC ,d mux
SCT)

10: end if
11: end for
12: if notEmpty(Outputs) then
13: [BW mux ,del a ymux

RC
,del a ymux

SCT
]=Outputs.get(IndexOfMinDRCs(Outputs))

14: else
15: [BW mux ,del a ymux

SCT ,del a ymux
SCT]=[-,+∞,+∞] %no admissible parameters

16: end if

98

5.3. BLS parameter tuning

Algorithm 3 Local deadline computation algorithm with dichotomous method, along the
path of flow f : DichotomousDeadline()

Input: ∀mux ∈ pat h f ,∀g ∈ F mux
k

,k ∈ {SC T,RC }, MF Sg ,rg ,bg ,
∑

deadl i nemux
k

Output: ∀mux,Deadl i nemux
SCT

,Deadl i nemux
RC

1: Data=[∀mux ∈ pat h f , Deadl i nemux
RC ; ∀mux ∈ pat h f ,∀g ∈ F mux

k
,k ∈ {SC T,RC },

MF Sg ,rg ,bg]
2: for ∀mux in pat h f do
3: Deadl i nemux

RC = RCHeuristicDeadline(
∑

deadl i nemux
RC ,data)

4: Deadl i neunder,mux
SCT = SCTHeuristicDeadline(

∑

deadl i nemux
SCT ,data);

5: Deadl i neover,mux
SCT =

∑

deadl i nemux
SCT

6: del a yunder,mux
SCT, =Delays&BLSparams(Deadl i neunder,mux

SCT
,d at a).delay

7: del a yover,mux
SCT

=Delays&BLSparams(Deadl i neove,nmux
SCT

,d at a).delay
8: end for
9:

∑

deadl i neover,mux
SCT

=
∑

mux∈pat h f
Deadl i neover,mux

SCT

10:
∑

deadl i neunder,mux
SCT

=
∑

mux∈pat h f
Deadl i neunder,mux

SCT

11: if
∑

mux∈pat h f
del a yover,mux

SCT 6
∑

deadl i nemux
SCT then

12: return ∀mux ∈ pat h f ,Deadl i nemux
RC ,Deadl i neover,mux

SCT

13: else if
∑

∀mux∈pat h f
del a yover,mux

SCT
>

∑

deadl i nemux
SCT >

∑

∀mux∈pat h f
del a yunder,mux

SCT

then
14: while

∑

deadl i nemux
SCT −

∑

mux∈pat h f
del a yunder,mux

SCT
> ǫ do

15:
∑

deadl i necur,mux
SCT

= (
∑

deadl i neover,mux
SCT

+
∑

deadl i neunder,mux
SCT

)/2
16: for ∀mux in pat h f do
17: Deadl i necur,mux

SCT
= SCTHeuristicDeadline(

∑

deadl i necur,mux
SCT

, data);
18: del a ycur,mux

SCT
=Delays&BLSparams(Deadl i necur,mux

SCT
,d at a).delay

19: end for
20: if

∑

∀mux∈pat h f
del a ycur,mux

SCT
>

∑

deadl i nemux
SCT then

21:
∑

deadl i neover,mux
SCT

=
∑

deadl i necur,mux
SCT

22: else
23:

∑

deadl i neunder,mux
SCT =

∑

deadl i necur,mux
SCT

24: ∀mux ∈ pat h f ,Deadl i neunder,mux
SCT

= Deadl i necur,mux
SCT

25: end if
26: end while
27: end if
28: return ∀mux ∈ pat h f ,Deadl i nemux

RC ,Deadl i neunder,mux
SCT

99

Chapter 5. Performance Enhancement

Dichotomous Deadline Method
The main idea of this second method is to compute a less constrained local deadline for

SCT than the one with HD. This fact will give more improvement margins for RC delay bounds.
Hence, to simplify the computation, we use the heuristic local deadline for RC and we pro-
pose to use the dichotomous method (described in Algorithm 3) for SCT. To compute the
delay bound of class SC T along the path of a flow f , we will use two deadline values: one
leading to delay bounds equal or lower to the deadline, and one leading to delay bounds
equal or higher than the deadline.

The first deadline is computed with the heuristic method, and may give a SCT lower
bound.

Deadl i neunder,mux
SCT =

∑

f l w∈F mux
SCT

r f l w

∑

m∈pat h f

∑

f l w∈F m
SCT

r f l w
·
∑

deadl i nemux
SCT

To obtain a higher SCT delay bound, we consider the following SCT deadline:

Deadl i neover,mux
SCT =

∑

deadl i nemux
SCT

The Dichotomous Deadline (DD) method is detailed in Algorithm 3. The objective is to
find

∑

deadl i necur,mux
SCT

such as:

∑

mux∈pat h f

del a y s(Deadl i necur,mux
SCT

) =
∑

deadl i nemux
SCT

with Deadl i necur,mux
SCT

= SCTHeuristicDeadline(
∑

deadl i necur,mux
SCT

), as illustrated in Fig.5.8.
From Line 2 to Line 10, we initialise the dichotomous search. In Lines 3, 4 and 5, we com-

pute the initial Deadlines, i.e., Deadl i nemux
RC , Deadl i neover,mux

SCT
and Deadl i neunder,mux

SCT
for

each mux. This leads to Lines 6 and 7, to the computation of the corresponding SCT delay
bounds del a yover,mux

SCT
and del a yunder,mux

SCT
using Algorithm 2. After all the mux have been

considered, we compute in Lines 9 and 10 the two dichotomous variables:
∑

deadl i neover,mux
SCT

and
∑

deadl i neover,mux
SCT

, the sum of the deadlines leading to SCT delay bounds under or over
the sum of the multiplexer deadlines

∑

deadl i nemux
SCT , as illustrated in Fig.5.8.

Then in Line 11, we check whether the value
∑

mux∈pat h f
del a yover,mux

SCT is actually over
∑

deadl i nemux
SCT

. If not, we return Deadl i neover,mux
SCT

since a dichotomous search is not pos-
sible. Else, we start the dichotomous search as illustrated in Fig.5.8, where

∑

deadl i nemux
SCT

is

bounded by
∑

mux∈pat h f
del a yover,mux

SCT
and

∑

mux∈pat h f
del a yunder,mux

SCT
.

In Line 14, we set the stop condition using an ǫ<< 0 such as:

∑

deadl i nemux
SCT −

∑

mux∈pat h f

del a yunder,mux
SCT

> ǫ

The objective is to find a solution as close as possible to the
∑

deadl i nemux
SCT

and respecting
the deadline constraint.

Then, we start the next iteration in Line 15, by computing the current
∑

deadl i necur,mux
SCT

.
We use it to compute the local deadlines in each mux and the resulting SCT delay bounds in
Lines 17 and 18.

100

5.3. BLS parameter tuning

The final steps consist in determining whether
∑

mux∈pat h f
del a ycur,mux

SCT
(the sum of the

current delay bounds), is under or over
∑

deadl i nemux
SCT in Line 20. Then, we redefine the

values of the current loop, either
∑

deadl i neover,mux
SCT

in Line 21, or
∑

deadl i neunder,mux
SCT

and Deadl i neunder,mux
SCT

in Lines 23 and 24.

?

∑

deadl i nemux
SC T

∑

mux∈pat h f
del a yunder,mux

SC T

∑

mux∈pat h f
del a ymux

SC T
(
∑

deadl i neSC T)

∑

mux∈pat h f
del a ycur,mux

SC T

∑

deadl i necur,mux
SC T

∑

deadl i neSC T

∑

deadl i neover,mux
SC T∑

deadl i neunder,mux
SC T

∑

mux∈pat h f
del a yover,mux

SC T

Figure 5.8: Dichotomous search of optimum
∑

deadl i neSCT

Finally, we obtain the Algorithm 4. First, we compute the local deadlines with either the
Heuristic method or the Dichotomous one described in Algorithm 3. Then, we use the func-
tion Delays&BLSparams() described in Algorithm 2 to compute the BLS parameters and delay
bounds of SCT and RC.

Algorithm 4 BLS parametrisation along the path of flow f

Input: local deadline;∀mux ∈ pat h f ,∀g ∈ F mux
k

,k ∈ {SC T,RC }, MF Sg ,rg ,bg ,
∑

deadl i nemux
k

Output: ∀mux,Lmux
M ,Lmux

R ,BW mux

1: if local deadline = heuristic deadline then
2: ∀mux in pat h f , Deadl i nemux

SCT ,Deadl i nemux
RC =HeuristicDeadline(Input)

3: else
4: ∀mux in pat h f , Deadl i nemux

SCT ,Deadl i nemux
RC =DichotomousDeadline(Input)

5: end if
6: return ∀mux ∈ pat h f =Delays&BLSparams(Deadl i nemux

SCT ,Deadl i nemux
RC ,Input)

101

Chapter 5. Performance Enhancement

5.3.5 Comparing intuitive parameters to optimised parameters

We only test herein the parameter tuning method on a single-hop network, where:

Deadl i neunder,mux
k

=

∑

f l w∈F mux
k

r f l w

∑

m∈pat h f

∑

f l w∈F m
k

r f l w
·
∑

deadl i nemux
k

=
∑

deadl i nemux
k = Deadl i neover,mux

k

Hence, in this single-hop case, heuristic deadline and dichotomous deadline methods
lead to the same local deadlines. The full testing on a multi-hop network is done in the vali-
dation chapter, Chapter 6.

To show the gain of optimising the BLS parameters, we consider an intuitive tuning with
LR such as the saturation at 0 is minimum, and such as 80 frames can be sent consecutively:

LR = MF SRC ·BW and LM = 80 · (1−BW) ·MF SSCT .

Also, we choose BW such as the reserved bandwidth is equal to the minimally needed band-
width:

BW =U RSCT

The SCT and RC delay bounds under Scenar i oSCT and Scenar i oSCT are illustrated in
Fig.5.9 and Fig.5.10, respectively.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

SCT Deadline

Optimised
Intuitive

(a)

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT utilisation rate (%)

Optimised
Intuitive

(b)

Figure 5.9: Comparing intuitive and optimised BLS when varying SCT maximum utilisation
rate with Scenar i oSCT = (U RSCT ∈ [0.1 : 78] ,U RRC = 20)

First, concerning the schedulability, we can see in both Fig.5.9(a) and Fig.5.10(a) that the
maximum SCT and RC utilisation rates are much improved with the optimised parameters.
For instance, it is almost doubled in Fig.5.10(a), with U Rmux

RC going from 40% to 79% and up
to 24% in Fig.5.9(a), with U RSCT increasing from 62% to 77%.

Secondly, concerning RC delay bounds, both Fig.5.9(b) and Fig.5.10(b) show that the op-
timised tuning can largely reduce the RC delay bounds, while keeping the SCT schedulability.

102

5.4. Performance analysis

For instance, in Fig.5.9 it divides the RC delay bound by 3 at U RSCT = 60% in comparison to
intuitive tuning.

Hence, we have shown that the optimised parameters enable us to obtain an enhanced
schedulability and RC delay bounds, without having to go through a time-expensive process
like brute force, to find appropriate parameters.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

SCT Deadline

Optimised
Intuitive

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

RC utilisation rate (%)

Optimised
Intuitive

(b)

Figure 5.10: Comparing intuitive and optimised BLS when varying RC maximum utilisation
rate with Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 72])

5.4 Performance analysis

In this section, we compare the performances of the extended AFDX based on the WbA model
in chapter4 (with LM = 22,118,LR = 0,BW = 0.46) to the performances of the extended AFDX
based on the CCbA model in Chapter 5 and enhanced by the HD parameter tuning method,
in reference to the current AFDX. Then, we compare the extended AFDX with CCbA and HD
tuning method to the DRR-compliant AFDX (also enhanced by the tuning method), in refer-
ence to the current AFDX.

We consider the single-hop network defined in Section 3.4.1 with Scenar i oSCT

= (U RSCT ∈ [0.1 : 78] ,U RRC = 20) and Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 72]). Thus,
both local deadline computation methods lead to the same results, and WbA and CCbA are
identical for LR = 0 as shown in Appendix 8.6.

The aim of the optimisation is to minimise the RC delay bounds. To be able to compare
extended (BLS) and DRR-compliant AFDX, we must find a set of DRR parameters that offers
similar guarantees. To do so, we change the service curves offered by the BLS in the opti-
misation problem in Section5.3 by the service curves offered by the DRR implementation
(detailed in Section 4.4.4.1). Finally, to solve such an optimisation problem, we use the brute
force method with two loops: one for QSCT and one for QRC . The SCT and RC delay bounds
are shown in Fig.5.11 and Fig.5.12 under the considered scenarios.

103

Chapter 5. Performance Enhancement

Extended AFDX: WbA vs CCbA + tuned parameters

In Fig.5.11(a), results shows that the SCT delay bounds computed with the extended AFDX
from chapter 4 do not fulfil the SCT deadline after U RSCT = 63%. Hence, the enhancements
of chapter 5 (CCbA and parameter tuning) have improved the SCT schedulability by 25%,
from 63% to 79%. Similarly, Fig.5.12(b), we can see that the RC deadline is not fulfilled after
U RRC = 63% under the WbA model defined in Theorem 7, leading to an RC schedulability en-
hancement of 14% under the CCbA and tuning method, compared to the RC schedulability
under WbA.

In Fig.5.11(b) and Fig.5.12(b), the RC delay bounds have also been largely improved by
the CCbA model and parameter tuning compared to the ones under the WbA model, while
guaranteeing the SCT schedulability. For instance, in Fig.5.11(b), at U RSCT = 60% the RC
delay bound is decreased by 50% under CCbA and the tuning method, compared to the one
under WbA. Similarly, at U RRC = 39% in Fig.5.12(b), the RC delay bound is also decreased by
50% under CCbA and the tuning method, compared to the one under the WbA.

Extended AFDX chap5 vs DRR-compliant

Concerning the SCT and RC schedulability, the extended AFDX of Chapter 5 (CCbA with
the parameter tuning) and DRR-compliant AFDX have the same performances.

The difference of performance between extended and DRR-compliant AFDX concerns
the RC delay bounds. In Fig.5.11(b), extended AFDX of Chapter 5 and DRR-compliant AFDX
are both largely better than the current AFDX. For instance, at U RSCT = 60%, the RC delay
bound with current AFDX is 10-times the one under extended AFDX in Chapter 5. Addition-
ally, extended AFDX of chapter 5 is either equal or better than DRR-compliant. In fact, at
U RSCT = 60%, the RC delay bound under the DRR-compliant AFDX is three times the delay
bound under the extended AFDX with CCbA and tuned parameters in Chapter 5. Interest-
ingly, the extended AFDX is consistently better than the DRR-compliant AFDX, which was
not the case in the results of Chapter 4.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT utilisation rate (%)

63

extended AFDX (BLS) chap4
extended AFDX (BLS) chap5
DRR-compliant AFDX chap5

current AFDX

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT utilisation rate (%)

RC Deadline

63

extended AFDX (BLS) chap4
extended AFDX (BLS) chap5
DRR-compliant AFDX chap5

current AFDX

(b)

Figure 5.11: Comparing optimised BLS, SP and DRR when varying SCT maximum utilisation
rate with Scenar i oSCT = (U RSCT ∈ [0.1 : 78] ,U RRC = 20)

104

5.5. Conclusion

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC utilisation rate (%)

extended AFDX (BLS) chap4
extended AFDX (BLS) chap5
DRR-compliant AFDX chap5

current AFDX

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

RC utilisation rate (%)

RC Deadline

63

extended AFDX (BLS) chap4
extended AFDX (BLS) chap5
DRR-compliant AFDX chap5

current AFDX

(b)

Figure 5.12: Comparing optimised BLS, SP and DRR when varying RC maximum utilisation
rate with Scenar i oRC = (U RSCT = 20,U RRC ∈ [0.5 : 72])

Finally, we conclude that the extended AFDX with CCbA and tuned parameters leads to
a large improvement compared to Chapter 4 WbA extended AFDX, in terms of schedulability
(up to 27%) and RC delay bounds (up to 50%).

5.5 Conclusion

In this chapter, we have presented a new model for the BLS node and its associated tuning pa-
rameters. The results have shown the improvements inherent to the new model (CCbA) over
the previous one (WbA) in terms of tightness. In particular, the impact of the BLS parameter
LR and the higher priority bursts are much better taken into account. As a result, the main
limitation of the previous model (low tightness when LR is close to LM) has been handled.

With the new model, for the 3-classes case study, we have been able to propose a method
to compute BLS parameters to obtain a better SCT (resp. RC) schedulability compared to intu-
itive parameters, up to 49% (resp. 24%). The BLS parameter tuning has also largely enhanced
the RC delay bound by dividing it up to three times, compared to intuitive parameters.

We have also shown that the CCbA with tuned BLS parameters improves SCT (resp. RC)
schedulability up to 25% (resp. 14%) and RC delay bounds up to 50%, with reference the WbA
from chapter 4.

Finally, compared to DRR-compliant AFDX with tuned parameters, the extended AFDX
with CCbA and tuned parameters consistently improves the RC delay bounds, up to 66 %.

Now that we have a good BLS modelisation and an appropriate BLS tuning method, in
the next chapter we will validate our proposal using realistic avionics case studies.

105

Chapter 5. Performance Enhancement

106

CHAPTER

SIX

VALIDATION

"There is nothing like looking, if you want to find something."

-J.R.R. Tolkien

Contents

6.1 Introduction . 107

6.2 Generic Avionics Case study . 108

6.2.1 Case study . 108

6.2.2 Comparing Window-based and Continuous Credit-based Approaches 109

6.2.3 Comparing heuristic and dichotomous deadline tuning methods . . . 112

6.2.4 Comparative Performance Analysis with current and DRR-compliant
AFDX under DD method . 114

6.3 Avionics Application: adding A350 Flight Control to the AFDX 116

6.3.1 Defining a new network architecture . 117

6.3.2 Timing analysis of the proposed solution 119

6.4 Conclusion . 120

6.1 Introduction

In the previous chapters, we have proposed an extended AFDX to add mixed-criticality to the
AFDX. We have also proposed two models, which have been compared to select the tightest
one. Then, we have proposed two tuning methods to find the best BLS parameters. Until now,
all the verifications have been done using preliminary evaluations on a single-hop network.

In this chapter, we will extend these preliminary evaluations through a generic avionics
case study to validate the proposal. In particular, we compare the two deadline computation
methods. This had not been possible on the single-hop network since both methods result
in the same deadline in this case. Then, we compare DRR-compliant, current and extended

107

Chapter 6. Validation

AFDX with both deadline computation methods. Finally, we detail an avionics application,
adding A350 flight control traffic to the AFDX.

6.2 Generic Avionics Case study

In this section, we consider a representative and generic avionics network with a multi-hop
architecture. The aim is to generalise the conclusions of the previous chapters on the single-
hop network to a multi-hop network. We start by presenting the case study. Then, we conduct
a comparative analysis of both proposed BLS models, and intuitive vs optimised BLS param-
eters under both local deadline computation methods. We finish by comparing the delay
bounds with the extended, current and DRR-compliant AFDX.

switch switch

switch switch

ES

(a)

switch switch

switch switch

ES source

ES destination

ES

(b)

Figure 6.1: Representative AFDX network: (a) Architecture; (b) Traffic communication pat-
terns

6.2.1 Case study

Our case study is a representative avionics communication architecture of the A380, based
on a 1-Gigabit AFDX backbone network, which consists of 4 switches and 64 end-systems as
shown in Fig. 6.1 (a). Each circulating traffic flow on the backbone network is a multicast
flow with 16 destinations, and crosses two successive switches before reaching its final des-
tinations. The first switch in the path receives traffic from 16 end-systems to forward it in a
multicast way to its two neighbouring switches. Afterwards, the second switch in the path,
which receives traffic from the two predecessor switches, forwards the traffic in its turn to the
final end-systems. Each end-system receives data from 16 end-systems. Figure 6.1 (b) shows
the traffic communication patterns between the source and the final destinations of a given
flow.

108

6.2. Generic Avionics Case study

In this multi-hop network, each end-system es generates nes
i

flows of traffic type i ∈

{SC T,RC ,BE }. We consider that all end-systems are identical and each generates the same
number of flows nes

i
.

As a consequence, the utilisation rate in both the first and second switches is the bottle-
neck utilisation rate for each type of traffic i ∈ {SC T,RC ,BE }, U Rbn

i
= 16 ·nes

i
·

MF Si

B AGi
· 1

C .
We consider the traffics SCT, RC and BE defined in Table 6.1, and various scenarios similar

to the ones defined in the previous chapters and described in Table 6.2.

Priority Traffic type MFS BAG deadline jitter

(Bytes) (ms) (ms) (ms)

0/2 SCT 64 2 2 0

1 RC 320 2 2 0

3 BE 1024 8 none 0.5

Table 6.1: Avionics flow Characteristics

scenario U Rbn
SC T

(%) nes
SC T

U Rbn
RC

(%) nes
RC

LM LR BW

(%) (%) (bits) (bits) (%)

scenar i oSC T [0.40...78.6] [1:3:192] 20.48 10 22,118 0 46

scenar i oRC 20.07 49 [2.05...79.9] [1:1:39] 22,118 0 46

scenar i oLM
20.07 49 20.48 10 [1382.4..216,830] 1177.6 46

scenar i oLR
20.07 49 20.48 10 22,118 [0..0.99]·LM 46

scenar i oBW 20.07 49 20.48 10 22,118 1177.6 [1...99]

Table 6.2: Evaluation scenarios: input traffics and BLS parameters

6.2.2 Comparing Window-based and Continuous Credit-based Approaches

The first validation concerns the comparison of the Window-based (WbA) and Continuous
Credit-based Approaches (CCbA). The delay bounds of SCT and RC under the different sce-
narios, illustrated in Figures 6.2, 6.3, 6.4, 6.5 and 6.6, lead the same conclusion: CCbA outper-
forms WbA.

The differences between the two models are particularly visible when LR is close to LM .
In Figure 6.4(a), when LM decreases toward 0, the SCT delay bounds under the WbA in-
creases until 2.3ms; whereas under CCbA, it decreases linearly toward 1.9ms, as shown in
Figure 6.5(a). Furthermore, we can observe the same behaviour in Figure 6.5(b), where the
RC delay bounds under CCbA remain strictly below the ones under WbA.

Hence, these results confirm that the CCbA model still outperforms the WbA even in a

multi-hop network.

109

Chapter 6. Validation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80

S
C

T
 l
a
te

n
c
y
 (

m
s
)

SCT bottleneck utilisation rate (%)

WbA
CCbA

(a)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80

R
C

 l
a
te

n
c
y
 (

m
s
)

SCT bottleneck utilisation rate (%)

WbA
CCbA

(b)

Figure 6.2: Comparing WbA and CCbA, impact of U Rbn
SCT

on:
(a) SCT delay bound; (b) RC delay bound, with Scenar i oSCT =
(

U Rbn
SCT ∈ [0.4 : 79] ,U Rbn

RC = 20.5,LM = 22,118,LR = 0,BW = 0.46
)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80

S
C

T
 l
a
te

n
c
y
 (

m
s
)

RC bottleneck utilisation rate (%)

WbA
CCbA

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80

R
C

 l
a
te

n
c
y
 (

m
s
)

RC bottleneck utilisation rate (%)

WbA
CCbA

(b)

Figure 6.3: Comparing WbA and CCbA, impact of U Rbn
RC on: (a) SCT delay bound; (b) RC delay

bound, with Scenar i oRC =
(

U Rbn
SCT = 20,U Rbn

RC ∈ [2 : 80] ,LM = 22,118,LR = 0,BW = 0.46
)

110

6.2. Generic Avionics Case study

 1.9
 1.95

 2
 2.05
 2.1

 2.15
 2.2

 2.25
 2.3

 2.35
 2.4

 0 5 10 15 20 25 30 35

S
C

T
 l
a
te

n
c
y
 (

m
s
)

LM (10
4
 bits)

WbA
CCbA

(a)

 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8

 0 5 10 15 20 25 30 35

R
C

 l
a
te

n
c
y
 (

m
s
)

LM (10
4
 bits)

WbA
CCbA

(b)

Figure 6.4: Comparing WbA and CCbA, impact of LM on: (a)
SCT delay bound; (b) RC delay bound, with Scenar i oLM =
(

U Rbn
SCT = 20,U Rbn

RC = 20.5,LM ∈ [1382.4..216,830] ,LR = 1177.6,BW = 0.46
)

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 0 10 20 30 40 50 60 70 80 90 100

S
C

T
 l
a
te

n
c
y
 (

m
s
)

LR (% LM)

WbA
CCbA

(a)

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0 10 20 30 40 50 60 70 80 90 100

R
C

 l
a
te

n
c
y
 (

m
s
)

LR (% LM)

WbA
CCbA

(b)

Figure 6.5: Comparing WbA and CCbA, impact of LR on: (a)
SCT delay bound; (b) RC delay bound, with Scenar i oLR =
(

U Rbn
SCT = 20,U RRC = 20,LM = 22,118,LR ∈ [0..0.99] ·LM ,BW = 0.46

)

111

Chapter 6. Validation

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 20 30 40 50 60 70 80 90 100

S
C

T
 l
a
te

n
c
y
 (

m
s
)

BW (%)

WbA
CCbA

(a)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 20 30 40 50 60 70 80 90 100

R
C

 l
a
te

n
c
y
 (

m
s
)

BW (%)

WbA
CCbA

(b)

Figure 6.6: Comparing WbA and CCbA, impact of BW on: (a)
SCT delay bound; (b) RC delay bound, with Scenar i oBW =
(

U Rbn
SCT = 20,U Rbn

RC = 20.5,LM = 22,118,LR = 1177.6,BW ∈ [0..0.99]
)

6.2.3 Comparing heuristic and dichotomous deadline tuning methods

In this section, we study the impact of optimised BLS parameters compared to intuitive pa-
rameters on a multi-hop network.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

32 36

SCT deadline

DD Optimised
HD Optimised

Intuitive

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

RC deadline

32 36

DD Optimised
HD Optimised

Intuitive

(b)

Figure 6.7: Comparing Intuitive and Optimised parameters, impact of U Rbn
SCT on: (a) SCT

delay bound; (b) RC delay bound, with Scenar i oSCT =
(

U Rbn
SCT ∈ [0.4 : 79] ,U Rbn

RC = 20.5
)

In chapter 4, we have proposed two methods to compute the local deadline: the heuris-
tic deadline (HD) and dichotomous deadline (DD) methods. Hence, we compare the delay
bounds of SCT and RC under HD and DD methods, in reference to the intuitive parameteri-
sation detailed in Section 5.3.5.

In Figures 6.7 and 6.8, the SCT and RC delay bounds are illustrated under scenar i oSCT

and scenar i oRC . It is worth noting that we only present the admissible results, i.e., when all
the deadlines are fulfilled.

112

6.2. Generic Avionics Case study

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC bottleneck utilisation rate (%)

SCT deadline

28

DD Optimised
HD Optimised

Intuitive

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

RC bottleneck utilisation rate (%)

RC deadline

28

DD Optimised
HD Optimised

Intuitive

(b)

Figure 6.8: Comparing Intuitive and Optimised parameters, impact of U Rbn
RC

on: (a) SCT delay
bound; (b) RC delay bound, with Scenar i oRC =

(

U Rbn
SCT

= 20,U Rbn
RC

∈ [2 : 80]
)

First, concerning the maximum bottleneck utilisation rates:

• in Figure 6.7, we note that the maximum bottleneck SCT utilisation rate is 32% with
intuitive parameters, 36% with HD optimised parameters, and 40% with DD optimised
parameters;

• in Figure 6.8, the maximum bottleneck RC utilisation rate is 28% with intuitive param-
eters, and 40% with both HD and DD tuning methods.

These results show an improvement of the SCT (resp. RC) schedulability up to 25% (resp.
42%) under the optimised parameters, in comparison to the intuitive ones.

Secondly, in Figure 6.7(b), the RC delay bounds with HD optimised parameters are lower
than the delay bounds with intuitive parameters until U RSCT = 18%. However, for U RSCT

between 18% and 32%, the intuitive tuning is better than the optimised tuning. The same
issue is visible in Figure 6.8(b): for U RRC between 20% and 28%, the intuitive parameters are
better than the HD optimised ones.

To understand the reasons of this issue, in Figure 6.9, we present separately the SCT delay
bound in the first and in the second switch output ports, denoted del a ymux1

SCT and del a ymux2
SCT .

In Figure 6.9(a), we can separate the optimised SCT delay bounds in 4 areas, with U RSCT :

• between 0% and 20%, del a ymux1
SCT

< Deadl i nemux1
SCT

and del a ymux2
SCT

<Deadl i nemux2
SCT

⇒

del a yend2end
SCT <Deadl i neend2end

SCT . The multiplexer deadline is reached in neither switches;

• between 20% and 45%, del a ymux1
SCT

= Deadl i nemux1
SCT

, del a ymux2
SCT

< Deadl i nemux2
SCT

⇒

del a yend2end
SCT = Deadl i neend2end

SCT . The switch output port 1 deadline (about 1ms, see
Figure 6.9(a)) is reached and the SCT delay bound remains at this deadline Deadl i nemux1

SCT

until U RSCT = 50% (see Figure 6.9(a)). However, in the second switch output port, the
SCT delay remains firmly below its deadline;

113

Chapter 6. Validation

• between 45% and 50%, del a ymux1
SCT

= Deadl i nemux1
SCT

, del a ymux2
SCT

= Deadl i nemux2
SCT

⇒

del a yend2end
SCT = Deadl i neend2end

SCT . The SCT end-to-end delay bound is equal to the
end-to-end deadline, as the delays in both output ports are equal to their respective
deadlines (see Figure 6.9);

• between 50% and 80%, del a ymux1
SCT > Deadl i nemux1

SCT and del a ymux2
SCT = Deadl i nemux2

SCT ⇒

del a yend2end
SCT

> Deadl i neend2end
SCT

. The end-to-end delay bound is over the end-to-end
deadline as the delay in the switch output port 1 is over its deadline (see Figure 6.9).

Hence, this highlights the fact that limiting the local deadline in an output port without
taking into account the state of other ones in the path decreases the performance of the RC
delay bounds.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

S
C

T
 S

W
1
 d

e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

HD Optimised
Intuitive

(a)

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

S
C

T
 S

W
2
 d

e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

HD Optimised
Intuitive

(b)

Figure 6.9: Intuitive vs HD method, impact of U Rbn
SCT

on SCT delay bound in: (a) Switch 1 (b)
Switch 2 with Scenar i oSCT =

(

U Rbn
SCT

∈ [0.4 : 79] ,U Rbn
RC

= 20.5
)

Contrary to the HD method, the DD method takes into account the output ports along
the flow path. In Figures 6.7 and 6.8, the RC delay bounds with DD optimised parameters is
consistently better than the ones with both intuitive and HD optimised BLS parameters. For
instance at U RSCT = 32%, the RC delay bound is improved by 49% with reference to intuitive
parameters, and by 74% compared to HD optimised parameters.

We can conclude from this performance analysis that Dichotomous Deadline method

leads to a great improvement over both the intuitive and Heuristic Deadline methods. The

schedulability of SCT is actually increased by up to 31%, and the RC delay bound is de-

creased by up to 75%.

6.2.4 Comparative Performance Analysis with current and DRR-compliant AFDX
under DD method

We compare extended, current and DRR-compliant AFDX when computing the parameters
with the Dichotomous Deadline method (for both extended and DRR-compliant AFDX). The
results are illustrated in Fig.6.10 and Fig.6.11.

114

6.2. Generic Avionics Case study

First, concerning the maximum bottleneck utilisation rates:

• in Figure 6.10, we note that the maximum bottleneck SCT utilisation rate is 27% with
the current AFDX, 35% with DRR-compliant AFDX and 41% with the extended AFDX.

• in Figure 6.11, the maximum bottleneck RC utilisation rate is 33% with the current
AFDX, 38% with DRR-compliant and 41% with the extended AFDX.

Hence, the extended AFDX improves the maximum utilisation rate, compared to both the
current AFDX (up to 24%) and DRR-compliant AFDX (up to 17%).

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

SCT deadline

current AFDX (SP)
DRR-compliant AFDX
extended AFDX (BLS)

(a)

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

SCT bottleneck utilisation rate (%)

RC deadline

4127 35

current AFDX (SP)
DRR-compliant AFDX
extended AFDX (BLS)

(b)

Figure 6.10: Dichotomous Deadline Optimisation method: impact of U Rbn
SCT on: (a) SCT de-

lay bound; (b) RC delay bound with Scenar i oSCT =
(

U Rbn
SCT ∈ [0.4 : 79] ,U Rbn

RC = 20.5
)

Secondly, in Figure 6.10(b), the RC delay bounds with BLS are lower than the delay bounds
with either DRR-compliant and current AFDX. The extended AFDX improves the RC delay
bound up to 77% compared to the current AFDX, and up to 73% compared to DRR-compliant
AFDX (when the SCT and RC deadlines are fulfilled). The same behaviour is visible in Fig-
ure 6.11(b): the extended AFDX improves the RC delay bounds up to 89% compared to the
current AFDX, and up to 38% compared to DRR-compliant AFDX (when the deadlines are
fulfilled).

The improvements of the RC delay bounds and schedulability with the extended (BLS)
and DRR-compliant AFDX, in reference to the current AFDX (SP) are illustrated in Table 6.3.
We have also computed the computation times with both tuning methods.

First, we can see that the DD method improves both the RC delay bounds and the maxi-
mum utilisation rates of SCT and RC, compared to the HD method. We note that the positive
impact is much stronger under the extended AFDX than under the DRR-compliant AFDX.

However, the HD method is less complex, with a much lower computation time. For in-
stance, in Table 6.3, we can see that the computation time is multiplied up to 52 times for
DRR-compliant AFDX and up to 25 times for extended AFDX with the DD method, in refer-
ence to HD method.

115

Chapter 6. Validation

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

S
C

T
 d

e
la

y
 (

m
s
)

RC bottleneck utilisation rate (%)

SCT deadline

current AFDX (SP)
DRR-compliant AFDX
extended AFDX (BLS)

(a)

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

R
C

 d
e
la

y
 (

m
s
)

RC bottleneck utilisation rate (%)

RC deadline

413833

current AFDX (SP)
DRR-compliant AFDX
extended AFDX (BLS)

(b)

Figure 6.11: Dichotomous Deadline Optimisation method: impact of U Rbn
RC

on: (a) SCT delay
bound; (b) RC delay bound, with Scenar i oRC =

(

U Rbn
SCT

= 20,U Rbn
RC

∈ [2 : 80]
)

improvement compared to SP(%) computation times (s)

Scheduler/Shaper maximum RC delay at maximum of Scenario

U Rbn
SC T

= 33% U Rbn
RC

= 28% U Rbn
SC T

U Rbn
RC

SCT RC

HD method BLS 18 22 33 21 57 9

DRR 18 16 26 15 395 58

DD method BLS 77 55 52 24 117 233

DRR 18 17 30 15 15,000 3017

Table 6.3: Comparing parameter tuning methods

From these scenarios, we can conclude that with an accurate parameter tuning method,

the extended AFDX implementing the BLS has a large positive impact on both SCT and RC,

compared to the current AFDX implementing the SP scheduler or DRR-compliant AFDX.

Both optimisation methods enhance the RC delay bounds and the schedulability of SCT

and RC. Nevertheless, the dichotomous deadline method leads to better results with much

higher computation times, in comparison to heuristic deadline method.

6.3 Avionics Application: adding A350 Flight Control to the AFDX

The flight control traffic is the most important on an aircraft. It is currently on private MIL-
STD-1553B networks (which has been presented in Section 2.2) to keep it isolated from other
traffics. In this part, we study the possibility of adding the Flight Control traffic to the AFDX
using our proposed 3-classes extended AFDX.

116

6.3. Avionics Application: adding A350 Flight Control to the AFDX

6.3.1 Defining a new network architecture

The AFDX fulfils all the avionics requirements and can be used for Safety Critical traffic, such
as flight Control traffic. However, the main concern is the way the Flight Control devices can
be connected to the AFDX to guarantee the avionics requirements, particularly the safety rule
stating that a single failure must not cause the loss of a function. After a reverse-engineering
process of the current A350 flight control architecture illustrated in Fig.6.12, we have pro-
posed a new architecture connecting the flight control calculators and actuators based on
the extended AFDX technology, as illustrated in Fig.6.13.

Figure 6.12: A350 flight control architecture, image downloaded from from
https://www.quora.com/How-are-the-Airbus-A350-and-A330-different

First, to connect the calculators, we use 2 switches (SS1 and SS2) so that we do not lose
a full network due to one switch loss. To obtain similar timing results for all actuators, we
use the remaining 5 switches (L1, L2, C, R1, R2) to connect the actuators taking into account
the energy supplier network, the type of actuator to fulfil the safety rule, and trying to have
the same number of connections on each switch. The result is visible in Fig.6.13, we obtain a
diamond-like structure with central switches (L1, L2, C, R1, R2) connected to 6 or 7 actuators.

In this architecture, the BLS is incorporated within the output ports from SS1/SS2 to the
central switches, from the central switches to SS1/SS2, and from SS1/SS2 to the calculators.
However, for the output port linking the central switches to the actuators, the BLS is not useful
since the flight control traffic is the only type of traffic in these output ports. Hence, we obtain
the network presented in Fig.6.14, where there is only one BLS along the path of each flow
from a calculator to an actuator.

117

Chapter 6. Validation

Figure 6.13: Primary network: new A350 flight control architecture

Calculators

Calculators

Left wing

Tail
BLS output port

Right wing

L2 R1L1 C R2

SS2

SS1

SP output port

Figure 6.14: Output port type layout for the extended AFDX

118

6.3. Avionics Application: adding A350 Flight Control to the AFDX

6.3.2 Timing analysis of the proposed solution

In this section, we will consider many different scenarios to assess the performance of the
extended AFDX solution in terms of delay bounds. The SCT traffic consists of Flight Control
frames and the considered scenarios are described in Table 6.4.

We use the architecture presented in Fig.6.13. Hence, each calculator generates 17 flows
with a periodicity B AGSCT and a frame size MF SSCT . Then, the frames arrive in SS1 or SS2.
The output port with the heaviest load receives 7 flows from each of the 3 calculators con-
nected to the considered switch; thus a total of 21 flows. Finally, the flows arrive in the central
switches. Each central switch output ports receives 6 flows, one from each calculator.

The current heaviest load on the current 100Mbps AFDX is 30%. With the considered
1Gbps network, the heaviest load will be 3%. Hence, we consider that in each output port
there are nRC flows defined by MF SRC and B AGRC to obtain an utilisation rate of 3%:

nRC =

⌈

3
100 ·C ·

B AGRC

MF SRC

⌉

. Hence, we obtain αRC (t)= nRC ·

(

MF SRC

B AGRC
· t +MF SRC

)

.

We use this αRC in both the calculators and the first switch (either SS1 or SS2). The delay
bounds are computed with the CCbA modelisation and the BLS parameterisation are com-
puted with the HD method. It is worth noting that since there is only one BLS along the path,
the DD and HD methods are similar.

scenario MF SSC T B AGSC T Deadl i neSC T MF SRC B AGRC Deadl i neRC

(bytes) (ms) (ms) (bytes) (ms) (ms)

1 64 2 1 320 2 2

2 64 1 1 320 2 2

3 64 1 0.5 320 2 2

4 64 1 1 320 4 4

5 64 1 1 640 2 2

6 64 1 1 1280 2 2

7 128 1 1 320 2 2

8 256 1 1 320 2 2

Table 6.4: Flight Control application: scenarios

The computed SCT and RC delay bounds under the different scenarios for the extended
and current AFDX are detailed in Table 6.5. We consider two performance measurements.
First, the end-to-end SCT delay bounds between a calculator and an end-system, denoted
del a yend2end ,m

SCT
for either the extended AFDX (m = BLS) or the current AFDX (m = SP). The

goal is to verify that the end-to-end SCT deadline is fulfilled. Secondly, the RC delay bounds
in the switches SS1 and SS2 under BLS. We denote del a ySW 1,m

RC
, the delay bound of the RC

traffic in the first switch in the considered path, with SW 1 being SS1 or SS2 depending on
the considered flow, with m ∈ {BLS,SP }. It is worth noting that due to the symmetry of the
network the delay bound in SS1 is identical to the one in SS2.

119

Chapter 6. Validation

From the results in Table 6.5, we can see that for very diverse configurations, SCT delay
bounds still fulfil the deadlines. Additionally, the RC delay bounds with the extended AFDX
is always lower than the ones with the current AFDX, up to 49.9% of improvement in SW1.
This confirms the efficiency of our proposal to handle mixed-criticality traffic.

scenario del a y
end2end ,BLS
SC T

del a y
end2end ,SP
SC T

del a y
SW 1,BLS
RC

del a y
SW 1,SP
RC

(µs) (µs) (µs) (µs)

1 120.00 56.17 44.89 55.16

2 121.96 58.15 44.89 55.63

3 121.96 58.15 44.89 55.63

4 184.54 60.09 84.73 95.92

5 129.91 66.01 47.46 58.25

6 145.80 81.74 52.60 63.48

7 176.53 112.36 45.55 67.76

8 298.62 233.71 46.79 93.38

Table 6.5: Flight Control application: results

6.4 Conclusion

In this chapter, we have validated the first conclusions of the preliminary analyses in previous
chapters. First, we have used a generic avionics architecture to confirm the positive impact
of the Continuous Credit based Approach in terms of schedulability and tightness, compared
to Window based Approach.

Then, using the Continuous Credit based Approach, we have compared both parameter
tuning methods, in comparison to intuitive method. Results show that both optimisation
methods lead to better delay bounds, compared to intuitive parameters. Nevertheless, the
dichotomous deadline optimisation improves schedulability (by up to 31%) and RC delay
bounds (by up to 30%), but it induces much larger computation times (multiplied by up to 50
times), in comparison to the heuristic method. Hence, the choice of the method will depend
on the complexity of the network, along side the time and computation power available. Fur-
thermore, when comparing extended AFDX under both tuning methods to DRR-compliant
and current AFDX, results have shown that with both methods, the extended AFDX imple-
menting BLS has better schedulability and RC delay bounds than both current and DRR-
compliant AFDX.

Finally, the validation of our proposal to support flight control traffic on the A350 using
our extended AFDX has shown the large enhancement of the RC delay bounds, compared to
the current AFDX implementing a SP scheduler (up to 50% of decrease), while guaranteeing
the SCT schedulability.

120

CHAPTER

SEVEN

CONCLUSIONS AND PERSPECTIVES

"From the end spring new beginnings."

-Pliny the Elder

This chapter summarises the major contributions of this thesis and discusses the perspec-
tives opened by our research.

The current AFDX backbone on the A380 and A350 is only used for essential systems,
resulting in private networks for critical and non-essential traffics. The resulting architecture
is very heterogeneous, leading to increased complexity, weight, delay and costs. With the
strong increase of data exchanges and network complexity, the evolution of the current AFDX
towards the next step of IMA architecture is inevitable. However, there are certain issues
that we need to deal with before such a possibility can be realistic. Part of this issue comes
from the industrial context: designing a new network is an expensive process, during the
specification, development and certification. Hence, the rewards must be worth the costs.
Concerning the research aspect of this problem, the challenge consists in finding the best
solution specification and an accurate timing analysis for the latter.

In this thesis, we have proposed a solution to add mixed-criticality applications to the
AFDX. We took industrial constraints into consideration, such as cost, weight, and reliability.
These constraints lead to the conclusion that the best way to proceed is to modify the cur-
rent AFDX. Due to the many existing ways to mix traffics, we started by identifying the main
avionics requirements and challenges: predictability, modularity, complexity and fairness.
After assessing the most relevant solutions, i.e., NP-SP, GPS, TTE, AVB, TSN, by comparing
their benefits vs the identified requirements, we have identified the most promising solution:
the Burst Limiting Shaper proposed by TSN, and the second best solution, DRR.

121

Chapter 7. Conclusions and Perspectives

7.1 Conclusions

We summarise herein the main results of this thesis when following the methodology de-
scribed in Chapter 1.

7.1.1 Specification

Concerning this first step, we have detailed in Chapter 3 the Burst Limiting Shaper (BLS) fea-
tures and an eventual software implementation of this mechanism. Then, we have speci-
fied the full extended AFDX switch, incorporating the BLS. In particular, we have studied
the possibilities offered by the unused field of an AFDX header for QoS identification. We
have concluded that extending the current configuration files is the best solution: less com-
plex, more scalable and with good performances. The comparison with the current AFDX
has highlighted the few modifications needed at the software level, i.e., updating the static
configuration table to manages additional priorities and at the hardware level, i.e., adding
extra priority queues and implementing the BLS on top the NP-SP. We have concluded that
the additional costs due to the switch modification and certification are counterbalanced by
the homogenisation of the network, leading to decreased weight, cost and delays.

A preliminary analysis, conducted through ns-2 simulations, has showed the good per-
formances of the extended AFDX compared to the current AFDX, in terms of delay bounds
and schedulability. However, simulations are not enough to prove that a system fulfils hard
timing guarantees. This contribution has been published in [93].

7.1.2 Formal timing analysis

In Chapter 4, we proposed a formal timing analysis of the extended AFDX to formally prove
that the hard real-time requirements are fulfilled. First, we have studied the existing work in
this area. In particular, we have shown that the most recent one, based on the CPA method,
is optimistic. Hence, a new modelisation is necessary. We have selected the Network Calcu-
lus framework, already used to certify the AFDX. We have first presented the timing analysis
methodology. Then, we have detailed the modelisation of the BLS and then of the extended
AFDX output port multiplexer. This has led to a discussion on the nature of the BLS showing
the BLS is not a greedy shaper, and that it is better to consider the association of the BLS and
NP-SP as a scheduler.

A sensitivity and tightness analyses have shown the good properties of our modelisation.
Then, the comparison to the CPA model has shown that our model is less complex and has
solved the optimistic and most of the pessimistic issues of the CPA. We have finished this
chapter with a comparison of the extended AFDX to the current AFDX and a DRR-compliant
AFDX (DRR being the second most promising mechanism). Results have shown that the best
schedulability is obtained with the extended AFDX and that the RC delay bounds are notice-
ably enhanced with the extended AFDX.

Although we have obtained good results with this model, the evaluations have highlighted
some scenarios where its accuracy could be improved. They have also shown the very large

122

7.1. Conclusions

impact of the BLS parameters on the delay bounds; thus the importance of selecting appro-
priate ones to enhance performances. This contribution has been published in the case of
three classes in [94].

7.1.3 Performance enhancement

In the first part of Chapter 5, we have proposed a second BLS modelisation, still using the
Network Calculus framework. We start by identifying the flaw of the previous model, i.e., the
continuity of the credit is not well-taken into account. Hence, this second modelisation is
based on the continuity of the BLS credit. A sensitivity analysis has confirmed the good per-
formances of this second model, compared to the first in terms of tightness. This contribution
has been published in the case of three classes in [95].

Secondly, we have proposed a parameter tuning method to enhance the schedulability
and delay bounds. We start by detailing the optimisation problem. Then, we propose resolu-
tion methods. One of the key step of the problem solving is to find good local deadlines within
output port multiplexer. Thus, we have proposed two local deadline computation methods:
one based on a heuristic, the other based on a dichotomous search. This contribution has
been published in [96].

Our performance analysis has been conducted on a single hop network, giving the same
local deadline with both methods. The comparison of the optimised vs intuitive parameters
has shown the large schedulability and delay enhancements thanks to the optimisation. Fi-
nally, we have compared the extended AFDX to the current and DRR-compliant AFDX, lead-
ing to the conclusion that the extended AFDX enhances both the schedulability and delay
bounds, compared to both current and DRR-compliant AFDX.

7.1.4 Validation

In a first part of Chapter 6, we have validated our proposal with a realistic multi-hop net-
work. First, we have highlighted the good performances of the CCbA model over the WbA
model. Then, we have compared the two optimisation methods to tune BLS parameters, i.e.,
heuristic deadline and dichotomous deadline, to intuitive parameters. Results have shown
the beneficial aspects of the local deadline optimisation methods. However, in some situa-
tions, intuitive parameters provide better delay bounds than the heuristic deadline method.
The second optimisation, dichotomous deadline method, solves this issue at the expense of
the computation time. We use both methods to compare the performances of the extended
AFDX to current and DRR-compliant AFDX. Results have shown that with both optimisation
methods extended AFDX has the best performances, in terms of schedulability and delay
bounds.

Finally, we conclude that both optimisation methods have merits. The heuristic deadline
method gives adequate results with low computation time; whereas the dichotomous dead-
line method has better performances with much larger computation time. Hence, the selec-
tion of the tuning method depends on the computer power and complexity of the network
and traffics.

123

Chapter 7. Conclusions and Perspectives

In the second part of Chapter 6, we have considered a concrete avionics application:
adding A350 flight control traffic to the AFDX. We have defined a new network architecture
adapted to the flight control and we have computed the delay bounds using the heuristic
deadline tuning method. We have considered multiple scenarios, by varying the size and pe-
riod of the traffics. Across all the scenarios, we have shown the large enhancement of the
delay bounds, compared to the current AFDX.

7.2 Perspectives

During this thesis, we have proposed an extension of the AFDX to support mixed-criticality
applications. Our work has shown the positive impact of the Burst Limiting Shaper on the
AFDX, using formal timing analyses on a 3-classes architecture. These results have opened
new perspectives detailed in this section.

7.2.1 Testing other BLS configurations

The BLS is a very flexible scheduler, capable of supporting various configurations. In this
thesis, we have selected an effective 3-classes configuration to limit the impact of the homo-
geneous SCT traffic on RC traffic, but the BLS can also be implemented for very diverse uses,
such as heterogeneous avionics or internet traffics.

7.2.1.1 Application to heterogeneous avionics traffics

An interesting extension would be to consider more heterogeneous traffic classes and test the
effect of using several BLS, for example using Fig.7.1.

BLS

BLS

SCT

1

2

 RC 1

 RC 2

 BE

 BE 2

SP

SCT1

#2/5

#4/6

#1

#3

#8

#7

Priorities

Figure 7.1: Example of a 6-classes output port of an extended AFDX switch

With this architecture, we can set the SCT (resp. RC) traffic with strict deadlines into the
SC T1 (resp. RC1). SCT (resp. RC) traffics with less strict deadlines can be set into the SC T2

124

7.2. Perspectives

(resp. RC2) traffic classes. With this architecture, the BLS set for the SC T2 queue can limit the
impact of SC T2 traffic on both RC and BE traffic classes, and the BLS set for the RC2 queue
can limit the impact of RC2 traffic on BE traffic classes.

7.2.1.2 Application to Internet DiffServ core network architecture

An other application is to apply the BLS to the DiffServ core network architecture [84] [85].
The modelisation of the BLS done in Chapter 5 in Theorem 9 has highlighted the limitation
of maximum utilisation rate available to the shaped class to share the bandwidth between
several other classes. In the standard DiffServ core router architecture, illustrated in Fig.7.2,
rate schedulers such as WRR, DRR, or WFQ are used to enforce the same sharing principle,
to provide minimum service guarantees to the Assured Forwarding (AF) and Best effort (BE)
classes. Thus, in [97], we have proposed to replace the standard rate scheduler schemes by
a BLS, as illustrated in Fig.7.3. The idea is to leave to the real time traffic (UDP) the Efficient
Forwarding class, with the first priority as is the case in Fig.7.2. The elastic traffic (TCP) in the
AF is shaped by a BLS in order to make its output rate more predictable and less sensitive to
EF traffic variations.

UDP

TCP

BE

EF class

AF class

DE class

priority #1

priority #2

(WRR, WFQ, ...)

Rate Scheduler
Priority Scheduler

Figure 7.2: Current DiffServ core router architecture

Initial simulation results published in [97] have shown the good properties of the BLS
to enforce more predictable output rates for the shaped class. We have presented our work
to the ICCRG of the 99th IETF [98] under the name of Priority Switching Scheduler (encom-
passing both NP-SP and BLS) and published an Internet Draft [99] we currently defend as an
independent submission validated by TSVWG. The next step is a real implementation of the
architecture to test it on real internet traffic and on satellite links, to verify that the real be-
haviour fits the preliminary simulations. A second step is the implementation of several BLS
to monitor their interactions.

125

Chapter 7. Conclusions and Perspectives

7.2.2 Enhancing BLS parameter management

A second axis of perspectives concerns the BLS parameter management.

7.2.2.1 Generalising the parameter tuning

Throughout this thesis, we have highlighted the strong impact of BLS parameters on delay
bounds. This has led to Section 5.3, where we have presented a parameter tuning for the
3-classes architecture. First, the computation of the delay bounds considered in the optimi-
sation may be enhanced by considering alternative concatenation methods [100]. Secondly,
at the start of Section 5.3, we have explained the difficulties posed by the generalisation of the
parameter tuning, such as the issue of the interactions between multiple BLS. Nevertheless,
to test other architecture configurations, a generalisation of the parameter tuning will be an
interesting perspective.

BLS SP

UDP

TCP

BE

sets queue priority between {2,4}

#{2,4}

#1

#3

EF class

AF class

DE class

Figure 7.3: Proposed DiffServ core router architecture

7.2.2.2 Efficient network parameter setting

Over the last few years, there have been discussion about the best ways to set and update the
parameters of a network. This have led to the development of the Software Defined Networks
(SDN)[101]. SDN has been considered for TSN [102] and for the AFDX [103] but has yet to
be implemented in an avionics network. We believe that using SDN to set and update the
BLS parameters, when the aircraft is on the ground, could improve the management and
maintenance of the AFDX network.

7.2.3 Considerations about the future of the AFDX

The commercial certification of TTE on board the 787-10 Dreamliner could soon make pos-
sible the integration of timing synchronisation within aircraft. In this case, our proposed
extended AFDX can perfectly be combined with time-triggered mechanisms to mitigate the
impact of the different classes on lower priorities. In particular, we have shown the benefits
of using the BLS rather than the commonly used DRR to handle such an issue.

126

CHAPTER

EIGHT

APPENDIX

Contents

8.1 Computing Achievable Worst-Cases . 127

8.1.1 SCT achievable worst-cases . 128

8.1.2 RC achievable worst-cases . 132

8.2 Applying CPA model to the proposed architecture 136

8.2.1 SCT delay . 136

8.2.2 RC delay . 138

8.3 Window-based Approach model proofs . 140

8.3.1 Th.4: WbA strict minimum service curve 141

8.3.2 Th.5: WbA maximum service curve . 142

8.4 Intuitive fluid models . 144

8.4.1 Fluid minimum service Curve . 144

8.4.2 Fluid maximum service Curve . 148

8.5 Continuous-Credit-based Approach (CCbA) model proofs 152

8.5.1 Continuous-credit Lemmas . 152

8.5.2 Th.8: CCbA strict minimum service curve 157

8.5.3 Th.9: CCbA maximum service curve . 159

8.6 Window-based vs Continuous Credit-based approaches when LR = 0 for 3-
classes case study . 162

8.1 Computing Achievable Worst-Cases

We consider the 3-priority case study, where the SCT class is shaped by a BLS, presented in
Section 3.4.1. As there is only one shaped class: SCT, we use k = ; to simplify, for the non-
ambiguous notations, such as Lk

M
or I k

send
. Our aim is to compute Achievable Worst-Cases

for SCT and RC delays, i.e., realistic worst-cases.

127

Chapter 8. Appendix

In this section, we consider several hypothesis :

• traffics are packetized, i.e., we need to integrate the non-preemption impact;

• the same frame size for each class SCT, RC and BE, i.e., homogeneous traffic within
each traffic class;

We use the four curves presented in Fig.8.1 and Fig.8.2 to compute two Achievable Worst-
Cases for each traffic class, i.e., SCT and RC, for the single-hop network defined in Section
3.4.1. It is worth noting there is not strict order between the different cases. Based on these
scenarios, we will be able to calculate so called Achievable Worst-Case delays to have an idea
on the tightness of both RC and SCT delay bounds.

As illustrated in Fig.8.1 and Fig.8.2, there is an alternation of sending windows (when
SCT traffic is sent) and idle windows (when RC traffic is sent). We call a cycle a sending win-
dow followed by an idle window (or an idle window followed by a sending window). A so
called maximum-sized cycle is made of so called realistic maximum sending and idle win-
dows: ∆real

send
, ∆real

i dle
.

8.1.1 SCT achievable worst-cases

We start by presenting the methodology, before considering the two BLS behaviours described
in Fig.8.1.

8.1.1.1 Methodology

t0 t1

t

credit

(2)

(1)

t

(1)
t0 t1ti t2

ti t2

y
(2)

SCT output

LR

LM

Figure 8.1: Two examples of worst-case BLS behaviours

To compute the worst-case delay of the SCT class, del a ymax
SCT

, we need to take into ac-
count of the following effects:

• BE class impact due to the non-preemption feature. We need to consider the transmis-
sion of a maximum-sized BE frame that may be transmitted before a SCT frame;

128

8.1. Computing Achievable Worst-Cases

• Transmission time of SCT burst: it is the time needed for the output port multiplexer to
transmit the maximum SCT burst bSCT =ni n

SCT ·MF SSCT , with a transmission capacity
C , when taking into account the shaping effect of the upstream links. Each one of these
link has a capacity C , resulting in the following transmission time:

ni n
SCT ·MF SSCT

C
−

ni n
SCT ·MF SSCT

nl i nks
SCT ·C

• RC class blocking effect∆blocki ng

RC
: it is the blocking effect of the shaper, which enforces

the presence of i dl e wi ndow s (resp. sendi ng wi ndow s) to send the RC (resp. SCT)
traffic.

Thus, we need to compute ∆
blocki ng

RC
in each case to obtain the Achievable worst-cases.

The blocking effect depends the number of r eal i st i c idle windows ∆real
i dle

used by the RC

traffic, denoted N c yl eused
RC . The computation of N c yl eused

RC is based on both:
i) N c ycl eneeded

RC , the number of cycles needed to send the RC traffic during r eal i st i c idle
windows ∆real

i dle
;

ii) N c ycl eavai l able
RC , the number of cycles av ai l abl e to RC while the SCT traffic is be-

ing transmitted during r eal i st i c sending windows ∆real
send

. If a sending window is started, it

means that a full idle window ∆
real
i dle

is available to RC. We denote N c yl eused
SCT

the number of

∆
real
send

used by the SCT traffic. Hence, we have:

N c ycl eavai l able
RC =

⌈

N c yl eused
SCT

⌉

Thus, we obtain:

N c yl eused
RC = min(N c ycl eavai l able

RC , N c ycl eneeded
RC)

The computation of the number of cycles N c ycl eused
SCT necessary to compute ∆blocki ng

RC
is

based on:
i) the SCT and RC traffics;
ii) realistic windows, which depend on the chosen BLS behaviour and will be computed

in each specific case.
So first, we assess the SCT and RC traffics. A strong hypothesis we make while comput-

ing the SCT traffic is that we do not consider the SCT traffic that may arrive while the SCT
burst is being transmitted. Considering this additional traffic leads to the need of comput-
ing a fixed-point problem so we discard it here as it causes acceptable optimism rather than
unacceptable pessimism. Hence, the maximum amount of considered SCT traffic is:

B max
SCT = bSCT = ni n

SCT ·MF SSCT

However, not considering the amount of RC traffic arriving while SCT traffic is waiting
leads to a large optimism. Hence, to compute the impact of RC, we need to compute the

129

Chapter 8. Appendix

the maximum amount of RC traffic that arrives while the SCT burst is being sent, i.e., during
del a ymax

SCT :

B max
RC (del a ymax

SCT) = ni n
RC ·MF SRC · (1+

del a ymax
SCT

B AGRC
)

Hence, the SCT delay is as follows:

del a ymax
SCT =

MF SBE

C
+∆

blocki ng

RC (del a ymax
SCT)+

ni n
SCT ·MF SSCT

C
−

ni n
SCT ·MF SSCT

nl i nks
SCT

·C
(8.1)

As ∆blocki ng

RC
(del a ymax

SCT) depends on del a ymax
SCT , del a ymax

SCT can be computed by solving

this fixed point problem. We consider
ni n

SCT ·MF SSCT

C to be a good starting point.

8.1.1.2 SCT Achievable Worst-Case 1

We start by computing an Achievable Worst-Case for the SCT class, denoted SCT AWC-1 using
the plain line curve (1) in Fig.8.1.

1. Computing the RC blocking delay∆blocki ng

RC
(del a ymax

SCT
)

The RC blocking delay is defined by:

∆
blocki ng

RC (del a ymax
SCT) = N c ycl eused

RC ·∆
real
i dle

So, to compute the RC blocking delay, we need to compute the number of ∆real
i dle

windows

used by RC, N c ycl eused
RC .

To compute the number of cycles, we first need the realistic windows.

2. Computing realistic sending and idle windows
They are computed as the upper integer value of maximum number of frame that can be

sent during a minimum window multiplied by the transmission time of a frame. Concerning
the sending window, we consider that the window starts at Lmi n

R = max(0,LR − Ii dle ·
MF SRC

C).
This last hypothesis may be slightly optimistic as the window can in fact starts between LR

and Lmi n
R

depending on the frames transmissions and sizes.

∆
real
send =

⌈

LM−Lmi n
R

Isend

MF SSCT

C

⌉

·
MF SSCT

C

∆
real
i dle =

⌈ LM−LR

Ii dle

MF SRC

C

⌉

·
MF SRC

C

130

8.1. Computing Achievable Worst-Cases

3. Computing N c ycl eneeded
RC

We compute the number of cycles necessary to send the RC traffic B max
RC (del a ymax

SCT):

N c ycl eneeded
RC =

B max
RC

(del a ymax
SCT

)

C ·∆real
i dle

4. Computing N c ycl eavai l able
RC

Finally, the number of windows available to RC is:

N c ycl eavai l able
RC =

⌈

ni n
SCT

·MF SSCT

C ·∆real
send

⌉

8.1.1.3 SCT Achievable Worst-Case 2

For the second achievable worst-case, denoted SCT AWC-2, we use the dotted curve (2) in
Fig.8.1.

1. Computing the RC blocking delay ∆
blocki ng

RC (del a ymax
SCT)

To compute the RC blocking delay, we need to take into account the RC and SCT traffics
sent between ti and t1. So, we compute:

i) the SCT traffic sent between t0 and t1;
ii) the RC traffic sent between ti and t0, and the corresponding window ∆

real
t i t 0−i dle

.

Then, we can compute N c ycl eused
RC , the number of maximum-sized cycles, i.e., ∆real

send
+

∆
real
i dle

used to send the RC burst remaining after t 1, i.e., B max
RC

(del a ymax
SCT

)−∆real
t i t 0−i dle

·C .
Thus, we obtain the following RC blocking delay:

∆
blocki ng

RC (del a ymax
SCT) =∆real

t i t 0−i dle +N c ycl eused
RC ·∆

real
i dle

To compute the number of cycles, we first need the realistic windows between ti and t0,
and between t0 and t1.

2. Computing realistic sending and idle windows
We consider that during the first idle window, there is no RC traffic backlogged when the

credit reaches LM

2 . So SCT traffic is sent until there is again RC traffic, i.e., when the credit
reaches LR (see Fig.8.1).

First, we will use the same realistic maximum sending and idle windows as for AWC-1. We
will also compute the realistic sending and idle windows from LR to LM

2 and from LM

2 to Lmi n
R

.

∆
real
t 0t 1−send =

⌈ LM

2 −Lmi n
R

Isend
·

C

MF SSCT

⌉

·
MF SSCT

C

∆
real
t i t 0−i dle =

⌈ LM

2 −LR

Ii dle
·

C

MF SRC

⌉

·
MF SRC

C

131

Chapter 8. Appendix

3. Computing N c ycl eneeded
RC

The number of maximum-sized cycles necessary to send the RC traffic after t1 is the num-
bers of cycles necessary to send the RC burst minus the traffic sent during ∆real

t i t 0−i dle
:

N c ycl eneeded
RC =

B max
RC (del a ymax

SCT)−∆real
t i t 0−i dle

·C

C ·∆real
i dle

4. Computing N c ycl eavai l able
RC

To compute the number of cycle available to RC after t1, we consider the remaining SCT
burst after t1. Thus, we have:

N c ycl eavai l able
RC =

⌈

ni n
SCT ·MF SSCT −∆real

t 0t 1−send
·C

C ·∆real
send

⌉

8.1.2 RC achievable worst-cases

We start by presenting the methodology, before considering the two BLS behaviours described
in Fig.8.2.

y

credit

(1)

tt2t1t0ti

tt1t0 t2ti

(1)

(2)

(2)

SCT output

LR

LM

Figure 8.2: Two examples of best-case BLS behaviours

8.1.2.1 Methodology

To compute the worst-case delay of the RC class, del a ymax
RC

, we need to do an account of the
following effects:

• BE class impact due to the non-preemption feature. We need to consider the transmis-
sion of a maximum-sized BE frame that may be transmitted before a RC frame;

132

8.1. Computing Achievable Worst-Cases

• Transmission time of RC burst: it is the time needed for the output port multiplexer to
transmit the maximum RC burst bRC = ni n

RC ·MF SRC , with a transmission capacity C ,
when taking into account the shaping effect of the upstream links. Each one of these
link has a capacity C , resulting in the following transmission time:

ni n
RC

·MF SRC

C
−

ni n
RC

·MF SRC

nl i nks
RC ·C

• SCT class blocking effect ∆blocki ng

SCT
: it is the blocking effect of the shaper, which en-

forces the presence of i dl e wi ndow s (resp. sendi ng wi ndow s) to send the RC (resp.
SCT) traffic.

Thus, we need to compute ∆
blocki ng

SCT
in each case to obtain the Achievable worst-cases.

The blocking effect depends the number of r eal i st i c sending windows∆real
send

used by the

SCT traffic, denoted N c yl eused
SCT . The computation of N c yl eused

SCT is based on both:
i) N c ycl eneeded

SCT
, the number of cycles needed to send the SCT traffic during r eal i st i c

sending windows ∆real
send

;

ii) N c ycl eavai l able
SCT , the number of cycles av ai l abl e to SCT while the RC traffic is being

transmitted during r eal i st i c idle windows ∆real
i dle

. If an idle window is started, it means that

a full sending window ∆
real
send

is available to SCT. We denote N c yl eused
RC

the number of ∆real
i dle

used by the RC traffic. Hence, we have:

N c ycl eavai l able
SCT =

⌈

N c yl eused
RC

⌉

Thus, we obtain:

N c yl eused
SCT = min(N c ycl eavai l able

SCT , N c ycl eneeded
SCT)

The computation of the number of cycles N c ycl eused
SCT necessary to compute ∆

blocki ng

SCT
is

based on:
i) the SCT and RC traffics;
ii) realistic windows, which depend on the chosen BLS behaviour and will be computed

in each specific case.
So first, we assess the SCT and RC traffics. A strong hypothesis we make while comput-

ing the RC traffic is that we do not consider the RC traffic that may arrive while the RC burst
is being transmitted. Considering this additional traffic leads to the need of computing a
fixed-point problem so we discard it here as it causes acceptable optimism rather than unac-
ceptable pessimism. Hence, the maximum amount of considered RC traffic is:

B max
RC = bRC = ni n

RC ·MF SRC

However, not considering the amount of SCT traffic arriving while RC traffic is waiting
leads to a large optimism. Hence, to compute the impact of SCT, we need to compute the

133

Chapter 8. Appendix

the maximum amount of SCT traffic that arrives while the RC burst is being sent, i.e., during
del a ymax

RC :

B max
SCT (del a ymax

RC) =ni n
SCT ·MF SSCT · (1+

del a ymax
RC

B AGSCT
)

Hence, the RC delay is as follows:

del a ymax
RC =

MF SBE

C
+∆

blocki ng

SCT
(del a ymax

RC)+
ni n

RC
·MF SRC

C
−

ni n
RC

·MF SRC

nl i nks
RC

·C
(8.2)

As ∆
blocki ng

SCT
(del a ymax

RC) depends on del a ymax
RC , del a ymax

RC can be computed by solving

this fixed point problem. We consider
ni n

RC ·MF SRC

C to be a good starting point.

8.1.2.2 RC Achievable Worst-Case 1

We compute an Achievable Worst-Case for the RC class, denoted RC AWC-1 using the plain
line curve (1) in Fig.8.2.

1. Computing the SCT blocking delay ∆
blocki ng

SCT (del a ymax
RC)

An important difference between SCT and RC is the presence of an initial maximum send-
ing windows starting at 0, denoted ∆real

send ,0. It differs from the usual maximum sending win-

dows which start at LR . Hence, the initial SCT burst sent during this ∆real
send ,0 must be taken

into account throughout this computation of the SCT blocking delay.
To compute the SCT blocking delay, we need to compute:
i) N c ycl eavai l able

SCT , the number of cycles available to SCT after t0, taking into account the
impact of ∆real

send ,0;

ii) N c ycl eneeded
SCT , the number of cycles needed to send the SCT traffic remaining after t1,

i.e., the SCT burst minus the traffic sent during∆real
send ,0.

Finally, we can compute ∆blocki ng

SCT
, the interfering SCT traffic delay due to the shaper

blocking effect:

∆
blocki ng

SCT
(del a ymax

RC) = min
(

N c ycl eneeded
SCT , N c ycl eavai l able

SCT

)

·∆
real
send +∆

real
send ,0

To compute the number of cycles, we first need the realistic windows.

2. Computing realistic sending and idle windows
They are the same as Section 8.1.1, except for the fact that we consider for ∆real

send
that the

window starts at LR (instead of Lmi n
R

) which may again be slightly optimistic as the window
can in fact starts between LR and Lmi n

R
depending on the frames transmissions and sizes.

Additionally, we consider the initial sending window ∆
real
send ,0.

∆
real
send =

⌈ LM−LR

Isend

MF SSCT

C

⌉

·
MF SSCT

C

134

8.1. Computing Achievable Worst-Cases

∆
real
i dle =

⌈ LM−LR

Ii dle

MF SRC

C

⌉

·
MF SRC

C

∆
real
send ,0 =

⌈ LM−0
Isend

MF SSCT

C

⌉

·
MF SSCT

C

3. Computing N c ycl eneeded
SCT

Next, we compute the number of window cycles necessary to send the SCT traffic remain-
ing after t0. We must consider the first sending window, ∆real

send ,0 which starts at 0:
The amount of traffic sent during this window is:

bmax
SCT,0 =∆

real
send ,0 ·C

Finally, the number of cycles necessary to send the remaining SCT traffic after t0 is:

N c ycl eneeded
SCT =

B max
SCT (del a ymax

RC)−bmax
SCT,0

C ·∆real
send

3. Computing N c ycl eavai l able
SCT

The first available window is∆real
send ,0 , and is taken into account directly in∆blocki ng

SCT
(del a ymax

RC).

So, We must remove 1 from N c ycl eused
RC . Finally, we have:

N c ycl eavai l able
SCT =

⌈

ni n
RC ·MF SRC

C ·∆real
i dle

⌉

−1

8.1.2.3 RC Achievable Worst-Case 2

For the second achievable worst-case, denoted RC AWC-2, we use the dotted curve (2) in
Fig.8.2.

1. Computing the SCT blocking delay∆blocki ng

SCT
(del a ymax

RC
)

To compute the SCT blocking delay, we need to take into account the RC and SCT traffics
sent between ti and t1. So, we compute:

i) the RC traffic sent between t0 and t1;
ii) the SCT traffic sent between ti and t0, and the corresponding window ∆

real
t i t 0−send

.

Then, we can compute N c ycl eused
SCT , the number of maximum-sized cycles, i.e., ∆real

send
+

∆
real
i dle

used to send the SCT burst remaining after t 1, i.e., B max
SCT (del a ymax

RC)−∆real
t 0t 1−send

·C .
Thus, we obtain the following SCT blocking delay:

∆
blocki ng

SCT
(del a ymax

RC) =∆real
t i t 0−send +N c ycl eSCT ·∆

real
send

To compute the number of cycles, we first need the realistic windows between ti and t0,
and between t0 and t1.

135

Chapter 8. Appendix

2. Computing realistic sending and idle windows
We consider that during the first sending window, there is no SCT traffic backlogged when

the credit reaches LM

2 . So RC traffic is sent until there is again SCT traffic, i.e., when the credit
reaches LR (see Fig.8.2).

First, we will use the same realistic maximum sending and idle windows as for AWC-1. We
will also compute the realistic sending and idle windows from 0 to LM

2 and from LM

2 to LR .

∆
real
t i t 0−send =

⌈ LM

2 −0

Isend
·

C

MF SSCT

⌉

·
MF SSCT

C

∆
real
t 0t 1−i dle =

⌈ LM

2 −LR

Ii dle
·

C

MF SRC

⌉

·
MF SRC

C

3. Computing N c ycl eneeded
SCT

The number of maximum-sized cycles necessary to send the SCT traffic is the numbers
of cycles necessary to send the SCT burst minus the traffic sent during∆real

t i t 0−send
:

N c ycl eneeded
SCT =

B max
SCT (del a ymax

RC)−∆real
t i t 0−send

·C

C ·∆real
send

4. Computing N c ycl eavai l able
SCT

We consider the remaining RC burst after t1. Thus, we have:

N c ycl eavai l able
SCT =

⌈

ni n
RC ·MF SRC −∆real

t 0t 1−i dle
·C

C ·∆real
i dle

⌉

8.2 Applying CPA model to the proposed architecture

In this section we apply CPA model [75] to the switch presented in Fig.3.1. CPA is based on
an iterative approach. A local analysis is used to compute output event models maximising
the transmission delay. The output event models then become the input event models of the
next node. A global analysis loop is used to propagate event models. The analysis finishes if
all models become stable, else the system is deemed unschedulable, e.g, if a constraint such
as deadline, jitter, or delay is violated.

The model proposed in [75] necessitates at the local level solving an Integer Linear Pro-
gram (ILP), a fixed-problem, and two maximisations. So, we compute the delay bounds for a
single hop network. It will be a solid base of comparison between the different models.

8.2.1 SCT delay

The model separates the different queuing delays in several categories: the shaper blocking
delay, denoted I SB

SCT
, the same priority blocking delay, denoted I SPB

SCT
, the lower priority delay,

136

8.2. Applying CPA model to the proposed architecture

denoted I LPB
SCT and the higher priority delay, denoted I HPB

SCT . As SCT has the highest priority,
there is no higher priority delay. The delays due to the fact that RC sometimes has a higher
priory than SCT are taken into account in the shaper delay. In [75], the considered BLS low
priority is the lowest available priority, as a result the impact of lower priority is taken into
account in the shaper blocking delay, and not in I LPB

SCT .
As we consider only one switch, we have three aggregate traffic flows: SCT, RC and BE

flows, where each aggregate traffic flow is composed of ni n
k

identical flows of class k , defined

by a maximum frame size MF Skand a period B AGk . We call nl i nks
SCT

the number of input links
with SCT traffic (all have a capacity C).

First, we compute the delay for the q-th arrival of a SCT frame which arrives at a
q

SCT
. We

start by computing the blocking effects:

• I LPB
SCT = 0

• I SPB
SCT

= (q −1) · MF SSCT

C

• I SB
SCT

=

⌈

q·
MF SSCT

C

t S−
SCT

⌉

· t R+
SCT

with:

• t R+
SCT

= ⌈
LM−LR

Ii dle
⌉+max j∈{RC ,BE}

MF S j

C
, the maximum replenishment interval

• t S−
SCT =max

{⌊

LM−LR

Isend

⌋

,max j∈SCT
MF S j

C

}

, the shortest SCT service interval

Hence, we obtain the full transmission delay by adding the transmission time of a maxi-
mum sized frame to the queueing delays MF SSCT

C :

del a ymax
SCT (q) = q ·

MF SSCT

C
+

⌈

q ·
MF SSCT

C

t S−
SCT

⌉

· t R+
SCT −a

q

SCT

The largest worst-case delay of frame q is obtained by testing all the set of arrival candi-
date a

q

SCT as explained in [75]. In the case of SCT, its worst-case is obtained when considering

the shortest arrival duration a
q

SCT ,which can be computed as follows.

To compute a
q

SCT
, we propose to take into account two behaviours as illustrated in Fig.8.3.

First, the fact that frames can arrive at a maximum rate C from nl i nks
SCT due to traffic bursts.

Secondly, a flow is characterised by its burst bSCT = ni n
SCT · MF SSCT and input rate rSCT =

bSCT

B AGSCT
.

Hence, the shortest arrival time of a frame can be separated in two part: i) the number of
frames that can arrive with a rate nl i nks

SCT
·C multiplied by their arrival times; ii) the remaining

frames multiplied by their arrival times. This gives:

a
q

SCT
= min(q, qC

SCT) ·
MF SSCT

nl i nks
SCT ·C

+ (q −qC
SCT)+ ·

MF SSCT

rSCT

with the maximum number of frames that can be sent at rate C , denoted qC
SCT

.

137

Chapter 8. Appendix

t

arrival times

nl i nks
SC T

·C

a
q

SC T

qC
SC T

·
MF SSC T

nl i nks
SC T

·C

bSC T

rSC T

Figure 8.3: Computing a
q

SCT

Using the intersecting functions illustrated Fig.8.3, we can compute the intersection time:
qC

SCT
·

MF SSCT

nl i nks
SCT ·C

=
bSCT

nl i nks
SCT ·C−rSCT

Finally, we take into account the fact that qC
SCT

∈N. Hence, qC
SCT

is such as:

qC
SCT =

⌊

ni n
SCT ·

nl i nks
SCT ·C

nl i nks
SCT

·C − rSCT

⌋

The worst-case transmission of a SCT frame is obtained by finding the maximum delay
for q varying from 1 to qmax , the maximum number of frames in the longest SCT-busy period
as explained in [104]. For each flow of class k , the maximum number of frames arriving in δ

is

⌈

δ
B AGk

⌉

. So, when considering ni n
SCT flows we obtain:

qmax
SCT =

⌈

ni n
SCT ·

del a ymax
SCT (q)

B AGSCT

⌉

This qmax
SCT can be computed after del a ymax

SCT to make sure whether the condition
q 6 qmax

SCT if fulfilled and finish the computation if such is not the case.

8.2.2 RC delay

For the RC delay, we have the same composition of the delay, but this time there are higher
priority traffics: the SCT class. As SCT is a shaped class, we only have to consider I HPB,BLS

RC ,

and not I HPB,nBLS
RC

which applies to non shaped higher priority traffic. As RC is not shaped,
the shaper blocking delay is null. First, we compute the delay for the q-th arrival of a RC
frame which arrives at a

q

RC
. We start by computing the blocking effects:

I SB
RC = 0,

138

8.2. Applying CPA model to the proposed architecture

and the lower priority impact is taken into account in I LPB
SCT :

I LPB
RC =

MF SBE

C
.

The impact of same priority is similar to SCT:

I SPB
RC = (q −1) ·

MF SRC

C
.

The computation of I HPB,BLS
RC however is much more complicated. We consider only one

higher priority flow: the aggregate traffic of class SCT. Depending on a time interval δ, we
must compute xmax

SCT
, the maximum number of interfering SCT frames during δ, denoted

xSCT (δ), is:

I HPB,BLS
RC

(δ) = xmax
SCT ·

MF SSCT

C
= max(xSCT (δ)) ·

MF SSCT

C

The computation of xmax
SCT is an ILP problem. The workload problem has been formulated

in Eq.(9) in [75]. The value of xSCT (δ) is of course linked to the considered δ, but also to a
credit replenishment: when a class different from SCT sends frames, the credit decreases (is
replenished). We call xR

SCT (δ) the number of replenishing intervals. As SCT is the only class
with a priority higher than RC, the second term of Eq.(9) from [75], xD

j
, is null. Additionally,

xSCT (δ) and xR
SCT (δ) are constrained by the credit as defined in Eq.(8) in [75]. So, Eq.(8) and

Eq.(9) from [75] give the following two inequations:

06 xSCT (δ) · Isend ·
MF SSCT

C
−xR

SCT (δ) · t R+
SCT · Ii dle 6 LM +

MF SSCT

C
· Isend

06 xSCT (δ) ·
MF SSCT

C
+xR

SCT (δ) · t R−
SCT 6 δ+

MF SSCT

C

with t R−
SCT =

⌊

LM−LR

Ii dle

⌋

the minimum replenishment interval, and with the following constraints:

• xSCT (δ) is upper bounded by the number of frames that can arrive during a right half-
opened interval δ, i.e., the maximum burst plus the frames arriving during δ at the flow
rate;

• xR
SCT (δ) is the number of replenishment intervals, it is upper bounded by considering

the shortest service interval of class SC T .

This gives:

06 xSCT (δ) ·
MF SSCT

C
6ni n

SCT ·MF SSCT ·

(

δ

B AGSCT
+1

)

,

06 xR
SCT (δ) 6

⌈ δ

t S−
SCT

+ t R−
SCT

⌉

with: t S−
SCT

= max
(⌊

LM−LR

Isend

⌋

, MF SSCT

C

)

, t R−
SCT =

⌊

LM−LR

Ii dle

⌋

, and t R+
SCT

=

⌈

LM−LR

Ii dle

⌉

+max j∈RC ,BE
MF S j

C
.

139

Chapter 8. Appendix

So, we have defined the ILP problem depending on δ. This δ is actually the variable of the
fixed-point problem defined in Eq.(8.4).

Next, we can compute the maximum queuing delay QDmax
RC (q).

QDmax
RC (q) =

MF SBE

C
+ (q −1) ·

MF SRC

C
+ I HPB,BLS

RC
(QDmax

RC (q)) (8.3)

By implementing both the fixed point problem and the ILP problem we can compute the
RC queuing delay depending on q

The largest transmission delay, denoted del a ymax
RC , can be computed by adding the trans-

mission time and removing the arrival delay a
q

RC
from the maximum queuing delay QDmax

RC
(q).

del a ymax
RC (q) =QDmax

RC (q)+
MF SRC

C
−a

q

RC
(8.4)

The largest worst-case delay of frame q is obtained by testing all the set of arrival candi-
dates a

q

RC
as explained in [75]. In the case of RC, its worst-case is obtained when considering

the shortest arrival duration a
q

RC
, which we propose to compute similarly to SCT.

a
q

RC
= min(q, qC

RC) ·
MF SRC

nl i nks
RC

·C
+ (q −qC

RC)+ ·
MF SRC

rRC

with the maximum number of frames that can be sent at rate C :

qC
RC =

⌊

ni n
RC ·

nl i nks
RC

·C

nl i nks
RC

·C − rRC

⌋

Finally, similarly to SCT, the worst-case transmission of a RC frame is obtained by finding
the maximum delay for q varying from 1 to qmax

RC
, the maximum number of frames in the

longest RC-busy period [104]:

qmax
RC =

⌈

ni n
RC ·

del a ymax
RC (q)

B AGRC

⌉

This qmax
RC can be computed after del a ymax

RC to make sure whether the condition
q 6 qmax

RC if fulfilled and finish the computation if such is not the case.

8.3 Window-based Approach model proofs

The windows we use for the model are highlighted in Fig.8.4. In both proofs, to compute the
idle and sending windows, we consider only class k traffic and MC(k) flows because:

• for the strict minimum service curve, the impact of LC (k) is taken into account in
β

sp

k∈BLS,pH (k);

140

8.3. Window-based Approach model proofs

• for the strict minimum service curve, the impact of HC (k) is taken into account in the
residual minimum service curve offered to class k by HC (k);

• for the maximum service curve, to compute the best-case, we consider that neither
HC (k) nor LC (k) interfere with class k .

In both proofs, consider R∗
j

(t) the output traffic cumulative function of a class or set of
classes j ∈ {k , MC (k)}, and ∆R∗

j
(δ) the variation of the output cumulative function during δ.

t

credit of class k

∆
k,max
send

∆
k,mi n
i dle

MF Sk MF Sk

∆
k,mi n
send

∆
k,max
i dle

∆
k,max
send ,0

Lk
M

Lk
R

Lk,mi n
R

max f ∈MC (k) MF S f

Figure 8.4: Idle and sending windows of a class k

We start by the strict minimum service curve proof.

8.3.1 Th.4: WbA strict minimum service curve

Consider a backlogged period for the class k , and a server with a strict minimum service curve
β(t) left by HC(k), which computation is based on Corollary 1.

During δ, the class k traffic can send a minimum cumulative amount of traffic. This
amount can be described using the minimum sending window: ∃p ∈ R+ such as:

∆R∗
k (δ) ≥ p ·β(∆k ,mi n

send
) (8.5)

The idea is to find a lower bound of p to define the service curve guaranteed to k, βbl s
k

.

During p ·∆
k ,mi n
send

, the amount of consumed credit is p · (Lk
M −Lk

R). Additionally, in the

worst-case, the credit started at its maximum value Lk
M , leading to an initial credit deficit of

Lk
M −Lk

R . Hence, at least (p +1) · (Lk
M −Lk

R) credit must be gained during δ. The worst-case
for the class k occurs if credit is gained by sending MC(k) frames in the maximum amount of
time: (p +1) ·∆k ,max

i dle
. We obtain the following upper bound for ∆R∗

MC (k)(δ):

141

Chapter 8. Appendix

∆R∗
MC (k)(δ) ≤ (p +1) ·β(∆k ,max

i dle
) (8.6)

Giving the strict minimum service curve property of β(t) and using Eq.(8.6), we have:

β(δ) 6 ∆R∗
k (δ)+∆R∗

MC (k)(δ)

6 ∆R∗
k (δ)+ (p +1) ·β(∆k ,max

i dle
)

Consequently, the lower bound of p is as follows:

p >
β(δ)−∆R∗

k
(δ)

β(∆k ,max
i dle

)
−1 (8.7)

When injecting Eq.(8.7) in Eq.(8.5), we obtain:

∆R∗
k (δ)>

(

β(δ)−∆R∗
k

(δ)

β(∆k ,max
i dle

)
−1

)

·β(∆k ,mi n
send

)

∆R∗
k (δ) ·

(

1+
β(∆k ,mi n

send
)

β(∆k ,max
i dle

)

)

≥

(

β(δ)

β(∆k ,max
i dle

)
−1

)

·β(∆k ,mi n
send

)

∆R∗
k (δ)>

β(δ)

β(∆k,max
i dle

)
−1

β(∆k,mi n
send

)

β(∆k,max
i dle

)
+1

·β(∆k ,mi n
send

)

Given that ∆R∗
k

(δ) ≥ 0, then:

∆R∗
k (δ) >

β(∆k ,mi n
send

)

β(∆k ,mi n
send

)+β(∆k ,max
i dle

)
·

(

β(δ)−β(∆k ,max
i dle

)
)+

Finally, as we consider a server with a constant rate C, the strict minimum residual service
left by HC(k) is:

β(t)=C · t −
∑

j∈HC (k)

α j (t) =

(

C −
∑

j∈HC (k)

r j

)

· t −
∑

j∈HC (k)

b j

which gives:

∆R∗
k (δ) ≥

β(∆k ,mi n
send

)

β(∆k ,mi n
send

)+β(∆k ,max
i dle

)
·

(

C −
∑

j∈HC (k)

r j

)

·

(

δ−∆k ,max
i dle

)+

8.3.2 Th.5: WbA maximum service curve

First, it is obvious that γ(t)=C · t is always a maximum service curve for class k .
Secondly, we compute γ(t) when MC(k) traffic is enqueued.

142

8.3. Window-based Approach model proofs

From [87], we know that ∆R∗
k

(t − s)6B (s)+γ(t − s), with B (s) the backlog at s. We search
for z such as ∆R∗

k
(t − s)6 z. As B (s)> 0, we obtain:

∆R∗
k (t − s)6 z 6B (s)+ z

Hence, we select γ(t − s) = z, which gives:

∆R∗
k (t − s)6 γ(t − s)

During δ, the class k traffic can send a maximum cumulative amount of traffic. This
amount can be described using the sending windows: ∀δ ∈ R+, ∃p ∈ R+ such as:

∆R∗
k (δ)6 p ·γ(∆k ,max

send
)+γ(∆k ,max

send ,0) (8.8)

During ∆k ,max
send

, the credit consumed is Lk
M − Lk ,mi n

R
and during ∆k ,max

send ,0, the consumed

credit is Lk
M

. Hence, during δ:

cr edi t k
consumed 6 p ·

(

Lk
M −Lk ,mi n

R

)

+Lk
M

Since the credit is a continuous function between 0 and Lk
M , the credit variation (gained

credit plus consumed credit) is comprised between Lk
M

and −Lk
M

. Thus, we have:

cr edi t k
g ai ned +cr edi t k

consumed 6 Lk
M

cr edi t k
g ai ned 6 −cr edi tconsumed +Lk

M

cr edi t k
g ai ned 6 −p ·

(

Lk
M −Lk ,mi n

R

)

6−p ·

(

Lk
M −Lk

R

)

As gaining credit is a negative credit variation, cr edi t k
g ai ned

6 0. Thus:

∣

∣

∣cr edi t k
g ai ned

∣

∣

∣> p ·

(

Lk
M −Lk

R

)

Additionally, the best-case for the class k occurs if credit is gained by sending MC(k)
frames in the minimum amount of time. Since p ·∆

k ,mi n
i dle

is the minimum amount of time

necessary to regain p ·
(

Lk
M
−Lk

R

)

credits, we obtain:

∆R∗
MC (k)(δ) ≥ p ·γ(∆k ,mi n

i dle
) (8.9)

Giving the maximum service curve property of γ and using Eq.(8.9), we have:

γ(δ) ≥ ∆R∗
k (δ)+∆R∗

MC (k)(δ)

≥ ∆R∗
k (δ)+p ·γ(∆k ,mi n

i dle
)

Consequently, the upper bound of p is as follows:

p ≤
γ(δ)−∆R∗

k
(δ)

γ(∆k ,mi n
i dle

)
(8.10)

143

Chapter 8. Appendix

When injecting Eq.(8.10) in Eq.(8.8), we obtain:

∆R∗
k (δ) ≤

γ(δ)−∆R∗
k

(δ)

γ(∆k ,mi n
i dle

)
·γ(∆k ,max

send
)+γ(∆k ,max

send ,0)

We consider here a server with a constant rate C, thus:

γ(t)=C · t

Hence, we obtain:

∆R∗
k (δ) ·

(

1+
∆

k ,max
send

∆
k ,mi n
i dle

)

≤
δ

∆
k ,mi n
i dle

·C ·∆
k ,max
send

+C ·∆
k ,max
send ,0

∆R∗
k (δ) ≤

δ

∆
k,mi n
i dle

·C ·∆
k ,max
send

+C ·∆
k ,max
send ,0

1+
∆

k,max
send

∆
k,mi n
i dle

∆R∗
k (δ) ≤

∆
k ,max
send

∆γk
·C ·δ+∆k ,max

send ,0 ·C ·
∆

k ,mi n
i dle

∆γk

where ∆γk =∆
k ,max
send

+∆
k ,mi n
i dle

8.4 Intuitive fluid models

In this section, our goal is to compute intuitive maximum and minimum service curves using
a generalisation of the Achievable Worst-Cases. To keep the calculation manageable, we con-
sider fluid (bit-per-bit) traffics and the 3-classes case study, where the SCT class is shaped by
a BLS, presented in Section 3.4.1

8.4.1 Fluid minimum service Curve

In Chapter 4, we showed that the minimum service curve is not computed by considering all
the traffic backlogged, but rather by inserting times when other traffics are not backlogged,
as illustrated in Fig.8.1.

A generalisation of the ideas of Fig.8.5 is presented in Fig.8.6. It shows that intuitively, the
most tight modelisation of the minimum service curve βbl s

SCT , offered by the BLS to SCT class,
seems to be a linear function described in Fig.8.6 by a rate R and a latency T .

144

8.4. Intuitive fluid models

t0 t1

t

credit

(2)

(1)

t

SCT services
(1)

t0 t1ti t2

ti t2

y
(2)

LM

LR

LM

2

p1 : (t 1
p , y1

p)

p2 : (t 2
p , y2

p)

Figure 8.5: Two examples of worst-case BLS behaviours

In this section, we consider only fluid (bit-per-bit) traffic and our goal is to compute a

intuitive maximum service curve β
bl s,i nt ui , f lui d

SCT
. The challenge is to prove we can find a sce-

nario for each point of β
bl s,i nt ui , f lui d

SCT
=R ·(t −T)+ as described in Fig.8.6. This will not be the

proof that the β
bl s,i nt ui , f lui d

SCT
described is the minimum service curve β

bl s, f lui d

SCT
but that it is

an intuitive minimum service curve.
To verify the intuition proposed in Fig.8.6, we defined a family of curves inspired by line

(2) in Fig.8.5, with the credit starting at y = LM and considering fluid traffic to simplify cal-
culations. In particular, we compute the coordinates (t n

p , yn
p) of point pn , with n ∈ N

∗, as
described in Fig.8.5. It is the nth point where the credit reaches LR . By varying t 0 and t 1 we
wish to find points pn forming the bold dotted linear line in Fig.8.6.

We defined the curve family as follows:

• We define δ the time between t i and t 0. With t 0 happening during the initial idle time:
δ6

LM−LR

Ii dle
. The credit gained during δ is δ · Ii dle ;

• then the duration necessary for the credit to increase back to LM at a rate Isend is δ· Ii dle

Isend
;

• then the duration necessary to decrease to LR is LM−LR

Ii dle
;

• then the duration necessary to increase to LM is LM−LR

Isend
;

• the last two items are repeated indefinitely.

Finally, we have the nth point pn :

t n
p (δ) =δ+δ ·

Ii dle

Isend
+

LM −LR

Ii dle
+ (n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

Concerning yn
p , the traffic transmission at a rate C happen between t 0 and t 1, and then

during each duration necessary to go from LR to LM with a credit rate of Isend :

yn
p (δ) =δ ·

Ii dle

Isend
·C + (n −1) ·

LM −LR

Isend
·C

145

Chapter 8. Appendix

t

T

R

SCT services

βbl s
SC T

Figure 8.6: Minimum service curves: multiple BLS behaviour examples

First, we prove that when considering ∀δ, ∀n ∈N
∗, we obtain a continuous function f (t).

Then, we will find the expression of f (t).

Let’s consider a fixed n, then when δ varies, both yn
p (δ) and t n

p (δ) are continuous. Thus
the resulting function fn(δ) is continuous.

So, to obtain a continuous minimum service curve, we need to prove that when n varies
the functions fn(δ) form a continuous function f (t). We do this by showing that ∀n ∈ N

∗,
∃(δ1,δ2) such as t n

p (δ1) = t n+1
p (δ2) and yn

p (δ1)= yn+1
p (δ2).

As fn(δ) are continuous, δ1 and δ2 are the extremities of the definition domain: 0 and
LM−LR

Ii dle
. This gives:

t n
p (

LM −LR

Ii dle
) =

LM −LR

Ii dle
+

LM −LR

Ii dle
·

Ii dle

Isend
+

LM −LR

Ii dle

+(n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

=
LM −LR

Ii dle
+ (n) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

= t n+1
p (0)

146

8.4. Intuitive fluid models

and:

yn
p (

LM −LR

Ii dle
) =

LM −LR

Ii dle
·

Ii dle

Isend
·C + (n −1) ·

LM −LR

Isend
·C = (n) ·

LM −LR

Isend
·C

= yn+1
p (0)

We have now proved that the functions fn(t) form a continuous function f (t) defined as,
∀δ, ∀n ∈N

∗:
f (t n

p (δ)) = yn
p (δ)

Using Fig.8.6, we suppose that f (t) is probably a linear function. If we can find a and b

such as f (t) = a · t +b, then we have proved that the points pn form a linear function when δ

varies.
So, we search (a,b) such as:

yn
p (δ) = t n

p (δ) ·a +b

δ ·
Ii dle

Isend
·C + (n −1) ·

LM −LR

Isend
·C =

[

δ+δ ·
Ii dle

Isend
+

LM −LR

Ii dle

+(n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)]

·a +b

δ ·
Ii dle

Isend
·C + (n −1) ·

LM −LR

Isend
·C = δ ·a ·

(

1+
Ii dle

Isend

)

+a ·

[

LM −LR

Ii dle

+(n −1) · (LM −LR) ·

(

Ii dle + Ii dle

Isend · Ii dle

)

]

+b

From this we deduce:

Ii dle

Isend
·C = a ·

(

1+ Ii dle

Isend

)

(n −1) · LM−LR

Isend
·C = a ·

[

LM−LR

Ii dle
+ (n −1) · (LM −LR) ·

(

Ii dle+Ii dle

Isend ·Ii dle

)]

+b

Ii dle

Isend
·C = a ·

(

Isend +Ii dle

Isend

)

b = (n −1) · LM−LR

Isend
·C −a ·

[

LM−LR

Ii dle
+ (n −1) · (LM −LR) ·

(

C
Isend ·Ii dle

)]

a = Ii dle

b =−(LM −LR)

We have now defined f (t) ∀t such as t >
LM−LR

Ii dle
since δ> 0 and t 1

p (0) = LM−LR

Ii dle
.

Additionally, ∀t > LM−LR

Ii dle
, we know that f (t) is always greater or equal to 0, thus ∀t > 0:

f (t) = Ii dle ·

(

t −
LM −LR

Ii dle

)+

(8.11)

Finally, we obtain the desired intuitive fluid minimum service curve such as:

β
bl s,i nt ui , f lui d

SCT
(t)= Ii dle ·

(

t −
LM −LR

Ii dle

)+

(8.12)

147

Chapter 8. Appendix

8.4.2 Fluid maximum service Curve

SCT servicesy

credit

(1)

tt2t1t0ti

tt1t0 t2ti

(1)

(2)

(2)

LM

p1 : (t 1
p , y1

p)
p2 : (t 2

p , y2
p)

LM

2

LR

Figure 8.7: Two examples of best-case BLS behaviours

In Chapter 4, we showed that the maximum service curve is not computed by considering
all the traffic backlogged, but rather by inserting times when other traffics are not backlogged,
as illustrated in Fig.8.7.

A generalisation of the idea of Fig.8.7 is done in Fig.8.8. It shows that intuitively, the most
tight modelisation of the maximum service γbl s

SCT , offered by the BLS to SCT class when RC
is backlogged, seems to be a piecewise linear function (bold dotted line described in Fig.8.8).
The first piece is C · t during the time necessary for the credit to increase from 0 to LM at a
rate Isend : t 6 LM

Isend
, the second piece is a affine curve defined by a rate r and a burst b.

In this section, we consider only fluid (bit-per-bit) traffic and our goal is to compute a

intuitive maximum service curve γ
bl s,i nt ui , f lui d

SCT
. The challenge is to prove we can find an

intuitive scenario for each point of our γ
bl s,i nt ui , f lui d

SCT
as described in Fig.8.8. This will not

be the proof that γbl s,i nt ui , f lui d

SCT
described here is the maximum fluid service but that it is an

intuitive fluid maximum service curve.
To verify the intuition proposed in Fig.8.8, we defined a family of curves inspired by line

(2) in Fig.8.7, with the credit starting at y = 0. In particular, we compute the coordinates
(t n

p , yn
p) of point pn , with n ∈ N

∗, as described in Fig.8.7. It is the nth point where the credit
reaches LM . According to our initial analysis, it seems to be part of the maximum service
curve. By varying t 0 and t 1 we wish to find points pn forming the bold dotted linear line in
Fig.8.8.

We defined the curve family as follows:

• We define LR−0
Isend

+δ the time between t i and t 0. With t 0 happening during the initial

send time: δ6 LM−LR

Isend
. The credit consumed during δ is δ · Isend ;

• then the duration necessary for the credit to decrease back to LR at a rate Ii dle is δ· Isend

Ii dle
;

148

8.4. Intuitive fluid models

• then the duration necessary to increase to LM is LM−LR

Isend
;

• then the duration necessary to decrease to LR is LM−LR

Ii dle
;

• the last two items are repeated indefinitely.

t

SCT services

r

b

γbl s
SC T

Figure 8.8: Maximum service curves when RC is backlogged: BLS behaviour examples

Finally, we have the nth point pn defined as follows:

t n
p (δ) =

LR −0

Isend
+δ+δ ·

Isend

Ii dle
+

LM −LR

Isend
+ (n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

= δ+δ ·
Isend

Ii dle
+

LM

Isend
+ (n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

Concerning yn
p , the traffic transmission times at a rate C happen between t i and t 0, and then

during each duration necessary to go from LR to LM with a credit rate of Isend :

yn
p (δ) =

LR −0

Isend
·C +δ ·C +

LM −LR

Isend
·C + (n −1) ·

LM −LR

Isend
·C

= δ ·C +
LM

Isend
·C + (n −1) ·

LM −LR

Isend
·C

First, we prove that when considering ∀ δ such as LM−LR

Isend
> δ> 0, and ∀ n ∈N

∗, we obtain
a continuous function f (t). Then, we will find the expression of f (t).

As before, let’s consider a fixed n, then when δ varies, both yn
p (δ) and t n

p (δ) are continuous.
Thus the resulting function fn(δ) is continuous.

149

Chapter 8. Appendix

Again, to obtain a continuous minimum service curve, we need to prove that when n

varies the functions fn(δ) form a continuous function f (t). We do this by showing that ∀n ∈

N
∗, ∃(δ1,δ2) such as t n

p (δ1)= t n+1
p (δ2) and yn

p (δ1) = yn+1
p (δ2).

As fn(δ) are continuous, δ1 and δ2 are the extremities of the definition domain: 0 and
LM−LR

Isend
. This gives:

t n
p (

LM −LR

Isend
) =

LM −LR

Isend
+

LM −LR

Isend
·

Isend

Ii dle
+

LM

Isend

+(n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

=
LM

Isend
+ (n) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)

= t n+1
p (0)

and:

yn
p (

LM −LR

Isend
) =

LM −LR

Isend
·C +

LM

Isend
·C + (n −1) ·

LM −LR

Isend
·C

=
LM

Isend
·C + (n) ·

LM −LR

Isend
·C

= yn+1
p (0)

We have now proven that the functions fn(t) form a continuous function f (t) defined as,
∀δ, ∀n ∈N

∗:
f (t n

p (δ)) = yn
p (δ)

From Fig.8.8, we suppose that f (t) is a affine function ∀ t >
LM

Isend
. If we can find a and b

such as f (t) = a · t +b, then we have proved that the points pn form a linear curve when δ

varies.
So, we search (a,b) such as:

yn
p (δ) = t n

p (δ) ·a +b (8.13)

δ ·C +
LM

Isend
·C + (n −1) ·

LM −LR

Isend
·C =

[

δ+δ ·
Isend

Ii dle
+

LM

Isend

+(n −1) ·

(

LM −LR

Ii dle
+

LM −LR

Isend

)]

·a +b

δ ·C +
LM

Isend
·C + (n −1) ·

LM −LR

Isend
·C = δ ·a ·

(

1+
Isend

Ii dle

)

+a ·

[

LM

Isend

+(n −1) · (LM −LR) ·

(

Ii dle + Ii dle

Isend · Ii dle

)

]

+b

From this we deduce:

C = a ·

(

1+ Isend

Ii dle

)

LM

Isend
·C + (n −1) · LM−LR

Isend
·C = a ·

[

LM

Isend
+ (n −1) · (LM −LR) ·

(

Ii dle+Ii dle

Isend ·Ii dle

)]

+b

150

8.4. Intuitive fluid models

C = a ·

(

Isend+Ii dle

Ii dle

)

b =
LM

Isend
·C + (n −1) · LM−LR

Isend
·C −a ·

[

LM

Isend
+ (n −1) · (LM −LR) ·

(

Ii dle+Ii dle

Isend ·Ii dle

)]

a = Ii dle

b =
LM

Isend
·C − Ii dle ·

LM

Isend
= LM

We have now defined f (t) ∀t such as t >
LM−LR

Isend
since δ> 0 and t 1

p (0) = LM−LR

Isend
.

Additionally, ∀t 6 LM−LR

Isend
, we know that f (t)=C · t thus we define f such as:

f (t) =

∀t > LM−LR

Isend
: Ii dle · t +LM

ot her wi se : C · t

As ∀ t 6 LM−LR

Isend
: Ii dle · t +LM >C · t , this gives: f (t) =min(C · t , Ii dle · t +LM).

It is worth noting that when computing the minimum RC service curve, according to The-
orem 7, if f(t) is a maximum service curve we have:

βRC (t) =

(

C · t −min(min(C · t , Ii dle · t +LM),αSCT ⊘βbl s
SCT (t))− max

i∈RC∪BE
MF Si

)

↑

=

(

C · t −min(C · t , Ii dle · t +LM ,αSCT ⊘βbl s
SCT (t))− max

i∈RC∪BE
MF Si

)

↑

=

(

max(C · t −C · t ,C · t − Ii dle · t −LM ,C · t −αSCT ⊘βbl s
SCT (t))

− max
i∈RC∪BE

MF Si

)

↑

=

(

max(− max
i∈RC∪BE

MF Si ,C · t − Ii dle · t −LM − max
i∈RC∪BE

MF Si ,

C · t −αSCT ⊘βbl s
SCT (t)− max

i∈RC∪BE
MF Si)

)

↑

As −maxi∈RC∪BE MF Si < 0 and βRC (t)> 0 this gives:

βRC (t) =

(

max(C · t − Ii dle · t −LM ,C · t −αSCT ⊘βbl s
SCT)− max

i∈RC∪BE
MF Si

)

↑

Hence, if f (t) = min(C · t , Ii dle · t +LM) is a maximum service curve for SCT traffic in the
BLS node, then fl i near (t) = Ii dle · t + LM is a maximum service curve that gives the same
minimum RC service curve as the piecewise version, f (t).

Finally, we obtain the desired intuitive fluid maximum service curve such as:

γ
bl s,i nt ui , f lui d

SCT
(t) = Ii dle · t +LM (8.14)

151

Chapter 8. Appendix

8.5 Continuous-Credit-based Approach (CCbA) model proofs

In this section, we detail the proofs of the strict minimum and maximum service curves. Both
proofs are based on three lemmas presented in the next section.

8.5.1 Continuous-credit Lemmas

We denote R∗
k

(t) the output cumulative function of the class k traffic, and∆R∗
k

(δ) its variation
during an interval δ.

The BLS credit tries to keep an accurate accounting of the traffic sent. There are two
situations when it loses track due to non-preempted transmissions:

1. when the credit reaches Lk
M and the current class k frame has not finished its transmis-

sion;

2. when the credit reaches 0 and the current frame is still being transmitted.

We call this the saturation of the credit, either at Lk
M by class k traffic, or at 0 by other

traffics. The saturation at Lk
M can only occur when a class k frame is being transmitted, while

the saturation at 0 can not occur when a class k frame is being transmitted.

Hence, we call ∆R∗

Lk
M

,sat
(δ) (resp.∆R∗

0,sat (δ)) the part of ∆R∗
k

(δ) (resp. δ ·C −∆R∗
k

(δ)), that

can be sent during any interval δ while the credit is saturated at Lk
M

(resp. at 0).

We present here three lemmas linked to the credit saturation and necessary to the service
curve proofs. First in Lemma 1, we show how to bound the sum of the credit consumed and
the credit gained, depending on the credit saturations. Then, we detail the bounds of the
credit saturations at Lk

M in Lemma 2, and at 0 in Lemma 3.

Lemma 1 (Continuous credit bounds). We consider a shaped class k, with a maximum credit

level Lk
M . ∀δ, computing the sum of the credit consumed and gained give the following inequa-

tions:

Lk
M >

∆R∗
k (δ)−

∆R∗

Lk
M ,sat

(δ)

C
· I k

send

−(δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

>−Lk
M

Proof. In an interval δ, the accurate consumed credit is the time it takes to send the non-

saturating traffic
∆R∗

k
(δ)−∆R∗

Lk
M

,sat
(δ)

C multiplied by the sending slope:

cr edi t k
consumed =

∆R∗
k

(δ)−∆R∗

Lk
M ,sat

(δ)

C

 · I k
send

152

8.5. Continuous-Credit-based Approach (CCbA) model proofs

And conversely, the accurate gained credit is the remaining time δ−
∆R∗

k
(δ)

C minus the satura-

tion time
∆R∗

0,sat (δ)
C

, multiplied by the signed idle slope:

cr edi t k
g ai ned =

(

δ−
∆R∗

k
(δ)+∆R∗

0,sat (δ)

C

)

· (−I k
i dle)

Thus ∀δ ∈R+, using the fact that I k
send

+ I k
i dle

= C , the sum of the gained credit and the
consumed credit is:

cr edi t k
consumed +cr edi t k

g ai ned = (
∆R∗

k
(δ)−∆R∗

Lk
M

,sat
(δ)

C
) · (I k

send)

+(δ−
∆R∗

k
(δ)+∆R∗

0,sat (δ)

C
) · (−I k

i dle)

= ∆R∗
k (δ)−

∆R∗

Lk
M ,sat

(δ)

C
· I k

send

−(δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

We know that the credit is a continuous function with a lower bound: 0 and an upper
bound Lk

M
. So the sum of credit consumed and gained is always bounded by −Lk

M
and +Lk

M
.

Lk
M > cr edi t k

consumed
+cr edi t k

g ai ned
>−Lk

M

Lk
M >

∆R∗
k (δ)−

∆R∗

Lk
M ,sat

(δ)

C
· I k

send

−(δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

>−Lk
M

Lemma 2 (credit saturation at 0). We consider a shaped class k, with the aggregate traffic of

priority strictly higher than pH (k) αh-constrained with αh = rh · t +bh.

∀δ, the amount of traffic sent while the traffic is saturated at 0 is such as:

06∆R∗
0,sat (δ) 6

∑

h∈HC (k)

rh ·δ+bh

+MF S sat
MC (k) ·

(

δ

∆
k ,β
i nt er

+1

)

with:

MF S sat
MC (k) = max(max

j∈MC (k)
MF S j −

C

I k
i dle

·Lk
R ,0)

153

Chapter 8. Appendix

∆
k ,β
i nt er

=
max j∈MC (k) MF S j

C
+

Lk
M
−Lk ,mi n

R

I k
send

+
Lk

M −Lk
R

I k
i dle

Lk ,mi n
R

= max(Lk
R −

max j∈MC (k) MF S j

C
· I k

i dle ,0)

Proof. First, we know that ∆R∗
0,sat (δ) > 0. Secondly, we consider the impact of MC(k) and

HC(k), the impact of LC(k) being taken into account in β
sp

k
(t) to compute an upper bound.

Impact of MC(k) on ∆R∗
0,sat (δ)

In the presence of class k frames, the saturation of the credit at 0 can occur if an additional
frame is sent while the credit is decreasing and about to reach Lk

R . Due to non-preemption,
the frame finishes its transmission even though the class k priority is now higher.

To be able to compute the largest impact of the non-preemption of MC(k) frames on class
k traffic, we must find the highest number of non-preempted frames that can be sent during
a time interval δ. Then, we must compute the part of the non-preempted frame sent while
the credit is saturated.

So first, we must compute the smallest duration between two occurrences of the phe-
nomenon. Fig.8.9 illustrates the following explanation.

L
M

L
R

MFS
MC(k)

sat

L
R

L
M

L
R

L
M

I
send

L
R

k

k

k

k k k

k

k,min
 =0

MFS
j

C I
idle

tk,min

class−k credit

Figure 8.9: Computing βbl s
k

(t)

After the first non-preempted MC(k) frame has been sent, the priority of the class k queue
is high. So, in presence of class k traffic, no MC(k) traffic can be sent until a priority change:
Lk

M
must be reached between two non-preempted MC(k) frames.

154

8.5. Continuous-Credit-based Approach (CCbA) model proofs

Thus, we study the intervals of time between the start of two transmissions of non-preempted
MC(k) frames starting their transmission just before Lk

R is reached. The smallest duration of
such an interval is equal to the sum of

1. the transmission time of the non-preempted MC(k) frame , such as at the end of the

transmission the credit reaches Lk ,mi n
R = max(Lk

R −
max j∈MC(k) MF S j

C · I k
i dle

,0);

2. the duration
Lk

M−Lk,mi n
R

I k
send

because class-k traffic has to be sent continuously in order for

the credit to reach Lk
M in the minimum duration ;

3. finally
Lk

M−Lk
R

I k
i dle

because MC(k) traffic has to be sent continuously in order for the credit

to return in the minimum duration to Lk
R .

In total, the minimum duration between the start of the transmission of two non-preempted
MC(k) frames (each starting just before Lk

R
is reached), is

∆
k ,β
i nt er

=
max j∈MC (k) MF S j

C
+

Lk
M −Lk ,mi n

R

I k
send

+
Lk

M −Lk
R

I k
i dle

Thus during δ, the number of time a non-preempted MC(k) frame can be sent is upper
bounded by ⌈ δ

∆
k,β
i nter

⌉.

Secondly, we need to compute the maximum amount data sent while the credit remains
at 0 during the transmission of one non-preempted maximum-sized MC(k) frame as illus-
trated in Fig.8.9. This is equal to the maximum size of a MC(k) frame, minus the amount of
data transmitted while the credit decreases from Lk

R to 0:

MF S sat
MC (k) = max(max

j∈MC (k)
MF S j −

C

I k
i dle

·Lk
R ,0)

Impact of HC(k) on ∆R∗
0,sat (δ)

The second way credit can saturate at 0 happens if traffic from HC(k) is sent while the
credit remains at 0. We denoted αh (t) the aggregate traffic of HC(k), arriving at a rate of rh ,
with a burst bh, such as αh (t)= rh ·δ+bh .

As a result, the amount of MC(k) and HC(k) traffic sent while the credit is saturated is such
as:

∆R∗
0,sat (δ)6

∑

h∈HC (k)
rh ·δ+bh +MF S sat

MC (k) · ⌈
δ

∆
k ,β
i nt er

⌉

6
∑

h∈HC (k)

rh ·δ+bh +MF S sat
MC (k) ·

(

δ

∆
k ,β
i nt er

+1

)

155

Chapter 8. Appendix

Lemma 3 (credit saturation at Lk
M

). We consider a shaped class k, with the aggregate traffic of

priority strictly higher than pH (k) αh -constrained with αh = rh · t +bh .

∀δ, the amount of traffic sent while the traffic is saturated at Lk
M is such as:

06∆R∗

Lk
M ,sat

(δ)6 MF Sk ·

(

δ

∆
k ,γ
i nt er

+1

)

with:

∆
k ,γ
i nt er

=
MF Sk

C
+

Lk
M −Lk

R

I k
i dle

+
Lk

M −Lk
R

I k
send

Proof. First, we know that ∆R∗

Lk
M ,sat

(δ) > 0. Secondly for the upper bound, in the presence

of MC(k) frames, the saturation of the credit at Lk
M can only occur if an additional frame is

sent while the credit is increasing and about to reach Lk
M . Due to non-preemption, the frame

finishes its transmission even though the class k priority is now lower.
To be able to compute the largest impact of the non-preemption of class k frames, we

must find the highest number of non-preempted frames that can be sent during a time in-
terval δ. So we must compute the smallest duration between two occurrences of the phe-
nomenon. Fig.8.10 illustrates the following explanation. After the first non-preempted class-
k frame has been sent, the priority of the class k queue is low, so in presence of MC(k) traf-
fic, no class k traffic can be sent until a priority change: Lk

R must be reached between two
non-preempted class-k frames. Thus, we study the intervals of time between the start of two
transmissions of non-preempted class-k frames starting their transmission just before Lk

M is
reached. The smallest duration of such an interval is equal to the sum of:

1. the transmission time of the non-preempted class-k frame (at the end of the transmis-
sion the credit is equal to Lk

M);

2. the duration
Lk

M−Lk
R

I k
i dle

because MC(k) traffic has to be sent continuously in order for the

credit to reach Lk
R in the minimum duration ;

3. finally
Lk

M−Lk
R

I k
send

because class k traffic has to be sent continuously in order for the credit

to return in the minimum duration to Lk
M .

In total, the minimum duration between the start of the transmission of two non-preempted
class-k frames (each starting just before Lk

M is reached), is

∆
k ,γ
i nt er

=
MF Sk

C
+

Lk
M −Lk

R

I k
i dle

+
Lk

M −Lk
R

I k
send

Thus during δ, the number of time a non-preempted class-k frame can be sent is upper
bounded by ⌈ δ

∆
k,γ
i nter

⌉.

156

8.5. Continuous-Credit-based Approach (CCbA) model proofs

L
M

L
M

L
R

L
M

L
R

L
R

MFS

C I

t

k

I
idle send

k

k

k k

k k

k k

class−k credit

Figure 8.10: Computing γbl s
k

(t)

As a result, the amount class k traffic sent while the credit is saturated is such as:

∆R∗

Lk
M ,sat

(δ) 6 MF Sk · ⌈
δ

∆
k ,γ
i nt er

⌉6 MF Sk ·

(

δ

∆
k ,γ
i nt er

+1

)

8.5.2 Th.8: CCbA strict minimum service curve

We search a strict minimum service curve offered to a class k defined by a Rate-Latency curve,
i.e., βbl s

k
(t)= ρ · (t −τ)+ with rate ρ and initial latency τ.

The impact of other classes, are separated into three parts: the impact of LC (k), MC (k),
HC (k).

According to the definition of the strict minimum service curve, ∀ backlogged period δ:

∆R∗
k (δ) >βbl s

k (δ) = ρ · (δ−τ)+ (8.15)

For any duration lower than τ, the variation of the output is lower bounded by 0.

∀δ6 τ,∆R∗
k (δ) > 0

157

Chapter 8. Appendix

Thus, the best τ for our strict service curve is the largest duration during which no class k

traffic can be sent. So, when considering the impacts of the different classes we have:

1. for traffic of Lower Classes LC (k), the impact is the one computed with Static Priority:
it is due to the non-preemption and is taken into account in the Static Priority model;

2. for traffic of Medium Classes MC (k): the worst-case occurs if the credit starts at Lk
M ,

MC(k) frames are transmitted until Lk
R

is reached and due to non-preemption an addi-

tional MC(f) frame is sent. We denote this duration ∆
k ,β
i dle

. So, we have:

∆
k ,β
i dle

=
Lk

M −Lk
R

I k
i dle

+
max j∈MC (k) MF S j

C

3. for Higher Classes HC (k), the impact is already computed with Static Priority and is
not taken into account here.

So finally, we have:

τ=∆
k ,β
i dle

Concerning the ρ, we search for a strictly positive rate. We use the definition of βbl s
k

as a
Rate-Latency strict service curve and Eq.(8.15) to deduce a property of ρ. We notice the limit
toward infinity of ∆R∗

k
(δ) over δ will be greater than ρ:

lim
δ→+∞

∆R∗
k

(δ)

δ
> lim

δ→+∞
ρ ·

(

1−
τ

δ

)

= ρ.

So we look for a x > 0 fulfilling the following condition:

lim
δ→+∞

∆R∗
k

δ
> x.

We now use the continuity property of the BLS credit to determine x. From Lemma 1, we
know that:

∆R∗
k (δ)−

∆R∗

Lk
M ,sat

(δ)

C
· I k

send

−(δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

>−Lk
M

Thus:

∆R∗
k (δ)>−Lk

M +

∆R∗

Lk
M

,sat
(δ)

C
· I k

send + (δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

To find x, we must find a lower bound of lim
δ→+∞

∆R∗
k

(δ)
δ

, so we have:

∆R∗
k

(δ)

δ
>

−Lk
M

δ
+

∆R∗

Lk
M ,sat

(δ)

δ ·C
· I k

send + (1−
∆R∗

0,sat (δ)

δ ·C
) · I k

i dle

158

8.5. Continuous-Credit-based Approach (CCbA) model proofs

lim
δ→+∞

∆R∗
k

(δ)

δ
> lim

δ→+∞

−Lk
M

δ
+

∆R∗

Lk
M ,sat

(δ)

δ ·C
· I k

send

+(1−
∆R∗

0,sat (δ)

δ ·C
) · I k

i dle (8.16)

We need the lower bound of ∆R∗

Lk
M

,sat
(δ), and the upper bound of ∆R∗

0,sat (δ). We use

Lemmas 2 and 3 to compute the bounds. This gives:

lim
δ→∞

∆R∗,max

Lk
M

,sat
(δ)

δ
> 0 (8.17)

lim
δ→∞

∆R∗,max
0,sat (δ)

δ
6

∑

h∈HC (k)
rh +

MF S sat
MC (k)

∆
k ,β
i nt er

(8.18)

Thus, from Eq.(8.16), Eq.(8.17), and Eq.(8.18), we deduce:

lim
δ→+∞

∆R∗
k

(δ)

δ
> lim

δ→+∞
(1−

∆R∗,max
0,sat (δ)

δ ·C
) · I k

i dle =

(

C −
∑

h∈HC (k)

rh −
MF S sat

MC (k)

∆
k ,β
i nt er

)

·
I k

i dle

C

Finally, we have found a suitable ρ such as: lim
δ→+∞

∆R∗
k

(δ)
δ > ρ with

ρ =

(

C −
∑

h∈HC (k)
rh −

MF S sat
MC (k)

∆
k ,β
i nt er

)

·
I k

i dle

C
.

8.5.3 Th.9: CCbA maximum service curve

We search a maximum service curve offered to a class k defined by a leaky-bucket curve, i.e.,
γbl s

k
(t)= r · t +b with rate r and burst b.
From [87], we know that ∆R∗

k
(t − s)6B (s)+γ(t − s), with B (s) the backlog at s. We search

for z such as ∆R∗
k

(t − s)6 z. As B (s)> 0, we obtain:

∆R∗
k (t − s)6 z 6B (s)+ z

Hence, with δ= t − s, we select γ(δ) = z, which gives:

∆R∗
k (δ) 6 γbl s

k (δ) (8.19)

In the absence of other traffic, class k can use the full capacity of the link, so∆R∗
k

(δ) 6C ·t .
Thus, we deduce that:

γbl s
k (t)=C · t .

In a MC(k) backlogged period, we use the definition of γbl s
k

as a leaky-bucket maximum ser-
vice curve to deduce a property of r using Eq.(8.19).

159

Chapter 8. Appendix

Computing r

We notice the limit toward infinity of ∆R∗
k

over δ will be lower than r :

lim
δ→+∞

∆R∗
k

δ
6 lim

δ→+∞
r +

b

δ
= r

So we search for a strictly positive rate x, equal or lower than the link output rate C fulfill-
ing the following condition:

lim
δ→+∞

∆R∗
k

δ
6 x

We use the continuity property of the BLS credit to determine x. From Lemma 1, we know
that:

∆R∗
k (δ)−

∆R∗

Lk
M ,sat

(δ)

C
· I k

send − (δ−
∆R∗

0,sat (δ)

C
) · I k

i dle 6 Lk
M

Thus,

∆R∗
k (δ)6 Lk

M +

∆R∗

Lk
M

,sat
(δ)

C
· I k

send + (δ−
∆R∗

0,sat (δ)

C
) · I k

i dle

To find x, we must find a lower bound of lim
δ→+∞

∆R∗
k

(δ)
δ , so we have:

∆R∗
k

(δ)

δ
6

Lk
M

δ
+

∆R∗

Lk
M ,sat

(δ)

δ ·C
· I k

send + (1−
∆R∗

0,sat (δ)

δ ·C
) · I k

i dle

lim
δ→+∞

∆R∗
k

(δ)

δ
6 lim

δ→+∞

Lk
M

δ
+

∆R∗

Lk
M ,sat

(δ)

δ ·C
· I k

send + (1−
∆R∗

0,sat (δ)

δ ·C
) · I k

i dle

We need the lower bound of ∆R∗
0,sat (δ), and the upper bound of ∆R∗

Lk
M ,sat

(δ). We use

Lemmas 2 and 3 to compute the bounds. This gives:

lim
δ→∞

∆R∗,max

Lk
M

,sat
(δ)

δ
> 0

lim
δ→∞

∆R∗,max

Lk
M ,sat

(δ)

δ
6

MF Sk

∆
k ,γ
i nt er

Thus, from Eq.(8.20), we deduce:

lim
δ→+∞

∆R∗
k

(δ)

δ
6 lim

δ→+∞
I k

i dle +

∆R∗,max

Lk
M

,sat
(δ)

δ ·C
· I k

send = I k
i dle +

MF Sk

∆
k ,γ
i nt er

·
I k

send

C

160

8.5. Continuous-Credit-based Approach (CCbA) model proofs

We call ∆
k ,γ,send

i nt er
the interval during which class k frames are sent, and ∆

k ,γ,i dle

i nt er
the inter-

val during which MC(k) frames are sent such as ∆
k ,γ
i nt er

=∆
k ,γ
send

+∆
k ,γ
i dle

.

∆
k ,γ
send

=
MF Sk

C
+

Lk
M −Lk

R

I k
send

∆
k ,γ
i dle

=
Lk

M −Lk
R

I k
i dle

Using the definitions of the different expressions, we deduce that:

I k
i dle +

MF Sk

∆
k ,γ
i nt er

·
I k

send

C
=
∆

k ,γ
send

∆
k ,γ
i nt er

·C <C

Finally, we have found a suitable r , such as: lim
δ→+∞

∆R∗
k

(δ)
δ 6 r with r =

∆
k,γ
send

∆
k,γ
i nter

·C

Now that we have found r , we need to find b such as ∀ MC(k) backlogged period δ:

∆R∗
k (δ)6

∆
k ,γ
send

∆
k ,γ
i nt er

·C ·δ+b

Computing b

We use the largest class k burst that can be sent with the BLS.
In the presence of MC(k) traffic, the largest period of time during which class k traffic can

be sent continuously occurs if the credit started at 0. Then, class k traffic is sent continuously
until Lk

M is reached and the priority is changed to its low value pL. If a new class k frame
started its transmission just before the credit reached Lk

M due to non-preemption, it will finish
its transmission before the waiting MC(k) traffic can be sent. Thus, with a link capacity C the
largest class k burst is bmax

k
= C

I k
send

·Lk
M +MF Sk . This gives:

∆R∗
k (

bmax
k

C
)6 bmax

k =
∆

k ,γ
send

∆
k ,γ
i nt er

·bmax
k +b

⇒ b = bmax
k ·

∆
k ,γ
i dle

∆
k ,γ
i nt er

So this gives: ∀δ>
bmax

k

C
, ∆R∗

k
(δ)6

∆
k,γ
send

∆
k,γ
i nter

·C ·δ+bmax
k

·
∆

k,γ
i dle

∆
k,γ
i nter

.

Additionally, we have: ∀δ6
bmax

k

C , ∆R∗
k

(δ) 6C ·δ6
∆

k,γ
send

∆
k,γ
i nter

·C ·δ+bmax
k

·
∆

k,γ
i dle

∆
k,γ
i nter

.

So, we have proved that ∀δ ∈R+,

∆R∗
k (δ)6

∆
k ,γ
send

∆
k ,γ
i nt er

·C ·δ+bmax
k ·

∆
k ,γ
i dle

∆
k ,γ
i nt er

.

161

Chapter 8. Appendix

8.6 Window-based vs Continuous Credit-based approaches when
LR = 0 for 3-classes case study

Consider the case study defined in Chapter 3. As there is only one shaped class: SCT, we use
k =; to simplify the notation whenever possible.

Concerning the modelisation of the strict minimum service curve, the initial latency is

identical: ∆max
i dle

=
LM−LR

Ii dle
+

MF SRC

C
=∆

β

i dle
.

In the specific case where LR = 0, both models have also the same strict minimum service
curve rate Rbl s

β,SCT
(LR = 0):

Rbl s
β,SCT (LR = 0) =

(

1−
MF Smax

RC ,sat
(LR = 0)

∆
β

i nt er
(LR = 0) ·C

)

· Ii dle

=

(

1−
MF SRC

C

LM

Isend
+

LM

Ii dle
+

MF SRC

C

)

· Ii dle

We now use the definition of Ii dle =BW ·C and Isend = (1−BW) ·C :

Rbl s
β,SCT (LR = 0) =

(LM

BW ·C +
LM

(1−BW)·C
LM

Isend
+

LM

Ii dle
+

MF SRC

C

)

·BW ·C

=

(LM ·(1−BW)
(1−BW)·C +

LM

(1−BW)·C
LM

Isend
+

LM

Ii dle
+

MF SRC

C

)

·C

=

LM

(1−BW)·C
LM

Isend
+

LM

Ii dle
+

MF SRC

C

·C

Finally, we find the expression of the rate of the strict minimum curve with the window-based
model.

Rbl s
β,SCT (LR = 0) =

LM

Isend

LM

Isend
+

LM

Ii dle
+

MF SRC

C

·C

=
∆

mi n
send

(LR = 0)

∆
mi n
send

(LR = 0)+∆max
i dle

(LR = 0)
·C

Concerning the maximum service curve, in the specific case where LR = 0, both models
have also the same service curve:

γSCT (t ,LR = 0) =
∆
γ,send

i nt er
(LR = 0)

∆
γ

i nt er
(LR = 0)

·C · t +bmax
SCT (LR = 0) ·

∆
γ,i dle

i nt er
(LR = 0)

∆
γ

i nt er
(LR = 0)

=

LM

Isend
+

MF SSCT

C

LM

Isend
+

LM

Ii dle
+

MF SSCT

C

·C · t

162

8.6. Window-based vs Continuous Credit-based approaches when LR = 0 for 3-classes
case study

+(
LM

Isend
·C +MF SSCT) ·

LM

Ii dle

LM

Isend
+

LM

Ii dle
+

MF SSCT

C

=
∆

max
send

(LR = 0)

∆
max
send

(LR = 0)+∆mi n
i dle

(LR = 0)
·C · t

+∆max
send ,0(LR = 0) ·C ·

∆
mi n
i dle

(LR = 0)

∆
max
send

(LR = 0)+∆mi n
i dle

(LR = 0)

Thus, for LR = 0, the two models are identical.

163

Chapter 8. Appendix

164

REFERENCES

[1] Airlines Electronic Engineering Committee. Aircraft Data Network Part 7, Avionics Full
Duplex Switched Ethernet (AFDX) Network, ARINC Specification 664. Aeronautical Ra-
dio, 2002.

[2] R. Bosch GmbH. CAN specification Version 2,0. Technical report, 1991.

[3] Condor Engineering. MIL-STD-1553 Tutorial.

[4] C. M. Fuchs and others. The evolution of avionics networks from ARINC 429 to AFDX.
Network Architectures and Services, 2012.

[5] H. Ayed, A. Mifdaoui, and C. Fraboul. Interconnection optimization for multi-cluster
avionics networks. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,
pages 145–154. IEEE, 2013.

[6] C. R. Spitzer. Avionics: Elements, Software and Functions. CRC Press, 2016.

[7] C. B. Watkins and R. Walter. Transitioning from federated avionics architectures to
integrated modular avionics. In Digital Avionics Systems Conference, 2007. DASC’07.

IEEE/AIAA 26th, pages 2–A. IEEE, 2007.

[8] Y. Isik. ARINC 629 data bus standard on aircrafts. Recent Researches in Circuits, Systems,

Electronics, Control & Signal Processing, pages 191–195, 2010.

[9] P. Vdovin and V. Kostenko. Organizing message transmission in AFDX networks. Pro-

gramming and Computer Software, 43(1):1–12, 2017.

[10] M. Li, G. Zhu, Y. Savaria, and M. Lauer. Reliability enhancement of redundancy man-
agement in AFDX networks. IEEE Transactions on Industrial Informatics, 13(5):2118–
2129, 2017.

[11] P. J. Prisaznuk. ARINC 653 role in integrated modular avionics (IMA). In Digital Avionics

Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pages 1–E. IEEE, 2008.

[12] S. International. ARP4761. In Guidelines and Methods for Conducting the Safety Assess-

ment Process on Civil Airborne Systems and Equipment, 1996.

165

References

[13] A. Burns and R. Davis. Mixed criticality systems-a review. Department of Computer

Science, University of York, Tech. Rep, pages 1–69, 2013.

[14] O. Cros, L. George, and X. Li. A protocol for mixed-criticality management in switched
ethernet networks. In Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, L.

Cucu-Grosjean and R. Davis (Eds.), pages 12–17, 2015.

[15] F.-J. Gotz. Traffic Shaper for Control Data Traffic (CDT). IEEE 802 AVB Meeting, 2012.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algo-
rithm. In ACM SIGCOMM Computer Communication Review, volume 19, pages 1–12.
ACM, 1989.

[17] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. TTEthernet Dataflow
Concept. In Eighth IEEE International Symposium on Network Computing and Appli-

cations, 2009. doi: 10.1109/NCA.2009.28.

[18] H.-T. Lim, D. Herrscher, M. J. Waltl, and F. Chaari. Performance analysis of the ieee
802.1 ethernet audio/video bridging standard. In Proceedings of the 5th International

ICST Conference on Simulation Tools and Techniques, pages 27–36. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2012.

[19] M. Andrews. Probabilistic end-to-end delay bounds for earliest deadline first schedul-
ing. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, volume 2, pages 603–612. IEEE, 2000.

[20] H. M. Goldberg. Analysis of the earliest due date scheduling rule in queueing systems.
Mathematics of Operations Research, 2(2):145–154, 1977.

[21] IEEE TSN Task Group. TSN Specifications. URL http://www.ieee802.org/1/pages/

tsn.html.

[22] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered ethernet
(tte) design. In Object-Oriented Real-Time Distributed Computing, 2005. ISORC 2005.

Eighth IEEE International Symposium on, pages 22–33. IEEE, 2005.

[23] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering Jour-

nal, 8(5):284–292, 1993.

[24] H. Zhang and D. Ferrari. Rate-controlled static-priority queueing. In INFOCOM’93. Pro-

ceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications

Societies. Networking: Foundation for the Future, IEEE, pages 227–236. IEEE, 1993.

[25] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analyzing fixed
priority hard real-time tasks. Real-Time Systems, 6(2):133–151, 1994.

166

References

[26] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors.
In Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, pages
193–202. IEEE, 2001.

[27] J. Grieu. Analyse et évaluation de techniques de commutation Ethernet pour

l’interconnexion des systèmes avioniques. PhD thesis, INPT, 2004.

[28] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul. Methods for bounding end-to-
end delays on an AFDX network. In Real-Time Systems, 2006. 18th Euromicro Confer-

ence on, pages 10–pp. IEEE, 2006.

[29] M. Anand, S. Vestal, S. Dajani-Brown, and I. Lee. Formal modeling and analysis of
the AFDX frame management design. In Object and Component-Oriented Real-Time

Distributed Computing, 2006. ISORC 2006. Ninth IEEE International Symposium on,
pages 7–pp. IEEE, 2006.

[30] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Improving the worst-case delay analysis of an
AFDX network using an optimized trajectory approach. IEEE Transactions on Industrial

informatics, 6(4):521–533, 2010.

[31] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Applying Trajectory approach with static
priority queuing for improving the use of available AFDX resources. Real-time systems,
48(1):101–133, 2012.

[32] X. Li, O. Cros, and L. George. The trajectory approach for afdx fifo networks revis-
ited and corrected. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2014 IEEE 20th International Conference on, pages 1–10. IEEE, 2014.

[33] J.-L. Scharbarg, F. Ridouard, and C. Fraboul. A probabilistic analysis of end-to-end
delays on an AFDX avionic network. IEEE transactions on industrial informatics, 5(1):
38–49, 2009.

[34] F. Ridouard, J.-L. Scharbarg, and C. Fraboul. Probabilistic upper bounds for heteroge-
neous flows using a static priority queueing on an AFDX network. In Emerging Tech-

nologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on,
pages 1220–1227. IEEE, 2008.

[35] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to un-
fairness in an m/gi/1. In ACM SIGMETRICS Performance Evaluation Review, volume 31,
pages 238–249. ACM, 2003.

[36] J. C. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair queueing. In INFO-

COM’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking

the Next Generation. Proceedings IEEE, volume 1, pages 120–128. IEEE, 1996.

[37] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi. Hardware-efficient fair queueing archi-
tectures for high-speed networks. In INFOCOM’96. Fifteenth Annual Joint Conference

167

References

of the IEEE Computer Societies. Networking the Next Generation. Proceedings IEEE, vol-
ume 2, pages 638–646. IEEE, 1996.

[38] T. ZHOU and X. Huagang. Design of energy-efficient hierarchical scheduling for inte-
grated modular avionics systems. Chinese Journal of Aeronautics, 2012.

[39] Y. Hua and X. Liu. Scheduling design and analysis for end-to-end heterogeneous flows
in an avionics network. In INFOCOM, 2011 Proceedings IEEE, pages 2417–2425. IEEE,
2011.

[40] S. Madhavapeddi and V. George. Efficient fair queuing using deficit round-robin. Net-

working, IEEE/ACM Transactions on, 1996.

[41] H. Wang, C. Shen, and K. G. Shin. Adaptive-weighted packet scheduling for premium
service. In Communications, 2001. ICC 2001. IEEE International Conference on, vol-
ume 6, pages 1846–1850. IEEE, 2001.

[42] L. Ji, T. Arvanitis, and S. Woolley. Fair weighted round robin scheduling scheme for
DiffServ networks. Electronics Letters, 39(3):333–335, 2003.

[43] L. Lenzini, E. Mingozzi, and G. Stea. Tradeoffs between low complexity, low latency, and
fairness with deficit round-robin schedulers. IEEE/ACM Transactions on Networking

(TON), 2004.

[44] D. Thiele, J. Diemer, P. Axer, R. Ernst, and J. Seyler. Improved formal worst-case timing
analysis of weighted round robin scheduling for ethernet. In Hardware/Software Code-

sign and System Synthesis (CODES+ ISSS), 2013 International Conference on, pages 1–10.
IEEE, 2013.

[45] M. Boyer, G. Stea, and W. M. Sofack. Deficit Round Robin with network calculus. In
Performance Evaluation Methodologies and Tools (VALUETOOLS), 2012.

[46] H. Yu and L. Xue. Scheduling heterogeneous flows with delay-aware deduplication for
avionics applications. IEEE Transactions on Parallel and Distributed Systems, 2012.

[47] M. Abuteir and R. Obermaisser. Simulation environment for time-triggered ethernet.
In Industrial Informatics (INDIN), 2013 11th IEEE International Conference on, pages
642–648. IEEE, 2013.

[48] T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt. An extension of the OMNeT++
INET framework for simulating real-time ethernet with high accuracy. In Proceedings

of the 4th International ICST Conference on Simulation Tools and Techniques, pages
375–382. ICST, 2011.

[49] Z. Luxi, P. Paul, L. Qiao, C. Junyan, and X. Huagang. Timing analysis of rate-constrained
traffic in TTEthernet using network calculus. Real-Time Systems, 2017.

168

References

[50] D. TamasSelicean, P. Pop, and W. Steiner. Timing analysis of rate constrained traffic for
the ttethernet communication protocol. In Real-Time Distributed Computing (ISORC),

2015 IEEE 18th International Symposium on, pages 119–126. IEEE, 2015.

[51] W. Steiner. An evaluation of SMT-based schedule synthesis for time-triggered multi-
hop networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pages 375–384.
IEEE, 2010.

[52] G. Alderisi, A. Caltabiano, G. Vasta, G. Iannizzotto, T. Steinbach, and L. L. Bello. Simu-
lative assessments of ieee 802.1 ethernet avb and time-triggered ethernet for advanced
driver assistance systems and in-car infotainment. In Vehicular Networking Conference

(VNC), 2012 IEEE, pages 187–194. IEEE, 2012.

[53] J. Imtiaz, J. Jasperneite, and L. Han. A performance study of Ethernet Audio Video
Bridging (AVB) for Industrial real-time communication. In Emerging Technologies &

Factory Automation, 2009. ETFA 2009. IEEE Conference on, pages 1–8. IEEE, 2009.

[54] J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber. A proposal for a generic real-
time ethernet system. IEEE Transactions on Industrial Informatics, 5(2):75–85, 2009.

[55] E. Heidinger, F. Geyer, S. Schneele, and M. Paulitsch. A performance study of Au-
dio Video Bridging in aeronautic Ethernet networks. In Industrial Embedded Systems

(SIES), 2012 7th IEEE International Symposium on, pages 67–75. IEEE, 2012.

[56] S. Schneele and F. Geyer. Comparison of IEEE AVB and AFDX. In Digital Avionics Sys-

tems Conference (DASC), 2012 IEEE/AIAA 31st, pages 7A1–1. IEEE, 2012.

[57] D. Azua, J. A. Ruiz, and others. Complete modelling of AVB in network calculus frame-
work. In Proceedings of the 22nd International Conference on Real-Time Networks and

Systems, page 55. ACM, 2014.

[58] X. Li and L. George. Deterministic delay analysis of avb switched ethernet networks
using an extended trajectory approach. Real-Time Systems, 53(1):121–186, 2017.

[59] F. Reimann, S. Graf, F. Streit, M. Glaß, and J. Teich. Timing analysis of Ethernet AVB-
based automotive E/E architectures. In Emerging Technologies & Factory Automation

(ETFA), 2013 IEEE 18th Conference on, pages 1–8. IEEE, 2013.

[60] D. T. J.Diemer and R. Ernst. Formal worst-case timing analysis of Ethernet topologies
with strict-priority and AVB switching. In SIES, 2012.

[61] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng. Schedulability analysis of ethernet avb
switches. In Embedded and Real-Time Computing Systems and Applications (RTCSA),

2014 IEEE 20th International Conference on, pages 1–10. IEEE, 2014.

[62] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. L. Bello. Schedulabil-
ity analysis of ethernet audio video bridging networks with scheduled traffic support.
Real-Time Systems, 53(4):526–577, 2017.

169

References

[63] J. Imtiaz, J. Jasperneite, and K. Weber. Approaches to reduce the latency for high pri-
ority traffic in IEEE 802.1 AVB networks. In Factory Communication Systems (WFCS),

2012 9th IEEE International Workshop on, pages 161–164. IEEE, 2012.

[64] Z. Zhou, Y. Yan, S. Ruepp, and M. Berger. Analysis and implementation of packet
preemption for time sensitive networks. In High Performance Switching and Routing

(HPSR), 2017 IEEE 18th International Conference on, pages 1–6. IEEE, 2017.

[65] D. Thiele, R. Ernst, and J. Diemer. Formal worst-case timing analysis of Ethernet TSN’s
time-aware and peristaltic shapers. In VNC. IEEE, 2015.

[66] S. Thangamuthu, N. Concer, P. J. Cuijpers, and J. J. Lukkien. Analysis of ethernet-switch
traffic shapers for in-vehicle networking applications. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2015, pages 55–60. IEEE, 2015.

[67] S. S. Craciunas, R. S. Oliver, and W. Steiner. Formal scheduling constraints for time-
sensitive networks. arXiv preprint arXiv:1712.02246, 2017.

[68] D. Maxim and Y.-Q. Song. Delay Analysis of AVB traffic in Time-Sensitive Networks
(TSN). In RTNS 2017-International Conference on Real-Time Networks and Systems,
page 10, 2017.

[69] S. Brunner, J. Roder, M. Kucera, and T. Waas. Automotive E/E-architecture enhance-
ments by usage of ethernet TSN. In Intelligent Solutions in Embedded Systems (WISES),

2017 13th Workshop on, pages 9–13. IEEE, 2017.

[70] N. Navet, J. Villanueva, J. Migge, and M. Boyer. Insights on the performance and con-
figuration of avb and tsn in automotive applications. 2017.

[71] M. K. Al-Hares, P. Assimakopoulos, D. Muench, and N. J. Gomes. Traditional queuing
regimes and time-aware shaping performance comparison in an Ethernet fronthaul
network. In Transparent Optical Networks (ICTON), 2017 19th International Conference

on, pages 1–4. IEEE, 2017.

[72] D. Hisano, Y. Nakayama, T. Kubo, T. Shimizu, H. Nakamura, J. Terada, and A. Otaka.
Gate-Shrunk Time Aware Shaper: Low-Latency Converged Network for 5G Fronthaul
and M2M Services. In GLOBECOM 2017-2017 IEEE Global Communications Confer-

ence, pages 1–6. IEEE, 2017.

[73] M. K. Al-Hares, P. Assimakopoulos, D. Muench, and N. J. Gomes. Modeling Time Aware
Shaping in an Ethernet Fronthaul. In GLOBECOM 2017-2017 IEEE Global Communica-

tions Conference, pages 1–6. IEEE, 2017.

[74] M. J. Teener. Back to the future:using TAS and preemption for deterministic distributed
delays. IEEE 802.1 AVB TG Meeting, San Antonio, 2012.

[75] D. Thiele and R. Ernst. Formal worst-case timing analysis of Ethernet TSN’s burst-
limiting shaper. In DATE, 2016.

170

References

[76] J. Specht and S. Samii. Urgency-based scheduler for time-sensitive switched ethernet
networks. In Real-Time Systems (ECRTS), 2016 28th Euromicro Conference on, pages
75–85. IEEE, 2016.

[77] J.-Y. L. Boudec. A theory of traffic regulators for deterministic networks with applica-
tion to interleaved regulators. arXiv preprint arXiv:1801.08477, 2018.

[78] J. Specht and S. Samii. Synthesis of queue and priority assignment for asynchronous
traffic shaping in switched ethernet. In Real-Time Systems Symposium (RTSS), 2017

IEEE, pages 178–187. IEEE, 2017.

[79] V. M. Gavrilut, B. Zarrin, P. Pop, and S. Samii. Fault-tolerant topology and routing syn-
thesis for ieee time-sensitive networking. In 25th International Conference on Real-

Time Networks and Systems, 2017.

[80] W. Steiner, P. Heise, and S. Schneele. Recent ieee 802 developments and their rele-
vance for the avionics industry. In 2014 IEEE/AIAA 33rd DASC. doi: 10.1109/DASC.
2014.6979419.

[81] R. Coelho, G. Fohler, and J.-L. Scharbarg. Worst-case backlog for AFDX network with
n-priorities. In RTN, 2014.

[82] Standard. IEEE Std. 802.1Qav, IEEE Standard for Local and metropolitan area networks,
Virtual Bridged Local Area Networks, Amendment 12: Forwarding and Queuing En-
hancements for Time-Sensitive Streams, 2009.

[83] IEEE. 802.1Q - Virtual LANs. URL http://www.ieee802.org/1/pages/802.1Q.html.

[84] F. Baker, J. Polk, and M. Dolly. A differentiated services code point (dscp) for
capacity-admitted traffic, May 2010. URL http://tools.ietf.org/rfc/rfc5865.

txt. RFC5865.

[85] D. Black and P. Jones. Differentiated services (diffserv) and real-time communication,
November 2015. URL http://tools.ietf.org/rfc/rfc7657.txt. RFC7657.

[86] F.-J. G. S. Kerschbaum and F. Chen. Towards the Calculation of Performance Guaran-
tees for BLS in Time-Sensitive Networks. IEEE 802.1 TSN Meeting, 2013.

[87] J. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing systems

for the internet. Springer-Verlag, 2001.

[88] P. Simon, W. Ernesto, T. Lothar, and et al. Influence of different abstractions on the
performance analysis of distributed hard real-time systems. Design Automation for

Embedded Systems, 2009. ISSN 1572-8080. doi: 10.1007/s10617-008-9015-1.

[89] J. Loeser and H. Haertig. Low-latency hard real-time communication over switched
ethernet. In ECRTS. IEEE, 2004.

171

References

[90] M. Fidler, V. Sander, and W. Klimala. Traffic shaping in aggregate-based networks: im-
plementation and analysis. Computer Communications, 2005.

[91] A. Bouillard, L. Jouhet, and E. Thierry. Service curves in Network Calculus: dos and
don’ts. Research report, INRIA, 2009.

[92] M. Boyer. Half-modeling of shaping in FIFO net with network calculus. In 18th Inter-

national Conference on Real-Time and Network Systems, pages 59–68, Toulouse, France,
November 2010.

[93] A. Finzi, A. Mifdaoui, E. Lochin, and F. Frances. Mixed-Criticality on the AFDX Network:
Challenges and Potential Solutions. In ERTS, 2017.

[94] A. Finzi, A. Mifdaoui, E. Lochin, and F. Frances. Network Calculus-based Timing Anal-
ysis of AFDX networks with Strict Priority and TSN/BLS Shapers. In SIES, 2018.

[95] A. Finzi, A. Mifdaoui, E. Lochin, and F. Frances. Incorporating TSN/BLS in AFDX for
Mixed-Criticality Applications: Model and Timing Analysis. In WFCS, 2018.

[96] A. Finzi, A. Mifdaoui, E. Lochin, and F. Frances. Performance Enhancement of Ex-
tended AFDX via Bandwidth Reservation for TSN/BLS Shapers. In RTN, 2018.

[97] A. Finzi, E. Lochin, A. Mifdaoui, and F. Frances. Improving RFC5865 Core Network
Scheduling with a Burst Limiting Shaper. In IETF, 2017.

[98] A. Finzi and E. Lochin. Improving RFC5865 Core Network Scheduling with a Burst
Limiting Shaper. URL https://datatracker.ietf.org/meeting/99/materials/

slides-99-iccrg-iccrg-presentation-5.

[99] F. Baker, A. Finzi, E. Lochin, A. Mifdaoui, and F. Frances. Prior-
ity Switching Scheduler. URL https://datatracker.ietf.org/doc/

draft-finzi-priority-switching-scheduler/.

[100] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic. Improving performance bounds in feed-
forward networks by paying multiplexing only once. In Measuring, Modelling and Eval-

uation of Computer and Communication Systems (MMB), 2008.

[101] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for
software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks, page 19. ACM, 2010.

[102] N. G. Nayak, F. Dürr, and K. Rothermel. Incremental Flow Scheduling & Routing in
Time-sensitive Software-defined Networks. IEEE Transactions on Industrial Informat-

ics, 2017.

[103] Z. Li, Q. Li, L. Zhao, and H. Xiong. Openflow channel deployment algorithm for
software-defined afdx. In Digital Avionics Systems Conference (DASC), 2014 IEEE/AIAA

33rd, pages 4A6–1. IEEE, 2014.

172

References

[104] P. Axer, D. Thiele, R. Ernst, and J. Diemer. Exploiting shaper context to improve per-
formance bounds of ethernet avb networks. In Proceedings of the 51st Annual Design

Automation Conference, pages 1–6. ACM, 2014.

173

