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Résumé

Dans le domaine de la conception avion, l’optimisation de structure fait intervenir deux
types de variables. On trouve des variables continues de forme, décrivant des épaisseurs
de panneau et celles des profils de section de raidisseur. Egalement, certaines variables
d’optimisation sont catégorielles. Ces variables sont associées à des choix technologiques,
comme par exemple un choix de matériau ou de type de raidisseur. Di�érents algorithmes
permettent de traiter ce type de problème, mais avec une e�cacité limitée en compara-
ison aux algorithmes basés sur le gradient. Le plus souvent, les codes d’optimisation de
structure traitent les variables continues et ignorent les variables catégorielles. Cela est
notamment lié à la di�culté de gérer les deux types de variables simultanément tout en
préservant l’e�cacité de l’algorithme.

Une méthodologie industrielle existante s’appuie sur une décomposition du problème.
Elle consiste à réaliser dans un premier temps des optimisations locales à e�orts internes
figés, élément par élément. Puis, ces choix optimaux locaux figés, une mise à jour les
e�orts internes est réalisée. L’algorithme, capable de traiter des problèmes de taille
industrielle, s’appuie cependant sur des choix locaux et l’optimum trouvé est parfois sous-
optimal. Enfin, les contraintes globales comme celles de déplacement ne sont pas visibles
et ne peuvent donc pas être prises en compte à travers cette approche. L’objectif principal
de ces travaux consiste donc à mettre en place une méthodologie permettant de traiter
les variables continues et catégorielles, tout en respectant les contraintes industrielles en
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termes de performance et d’e�cacité.

Pour atteindre cet objectif, un problème jouet (P) illustrant l’aspect combinatoire de
ce problème est mis en place. Ce problème utilise un modèle structure constitué de n

éléments structuraux de type barre travaillant en tension et compression. Les variables
catégorielles sont notées c, les variables continues a. Le problème d’optimisation inclut
des contraintes s sur les contraintes structurales, appelées également contraintes stress,
ainsi que des contraintes ” inter-éléments sur les déplacements, appelées contraintes de
déplacement. Les contraintes stress incluent des contraintes de flambage locales et glob-
ales sur chaque élément, en plus des contraintes en traction et compression. L’objectif de
ce problème est la masse de la structure, notée w.

minimiser
cœ�n

,aœRn
w(a, c)

soumis à s(a, c) Æ 0
n,m

”(a, c) Æ 0
d

¯
a Æ a Æ ā

(P)

Il permet de pouvoir faire varier facilement le nombre d’éléments structuraux, et donc
le nombre de variables continues et catégorielles dont dépend directement la complexité
du problème. Il est ainsi possible avec ce problème d’évaluer les performances des algo-
rithmes proposés en construisant des instances di�érentes de ce problème, en augmentant
progressivement le nombre d’éléments structuraux. Les problèmes de petite taille, pour
lesquels il est possible de calculer la solution exacte, servent à évaluer la qualité des
solutions des algorithmes proposés. En augmentant le nombre d’éléments, il est égale-
ment possible d’évaluer l’évolution du coût de calcul, puisqu’il s’agit d’une des principales
di�cultés de cette étude.

Dans les trois prochains chapitres sont proposés trois nouveaux algorithmes permet-
tant de résoudre le problème d’optimisation mixte décrit ci-dessus. Chacun d’entre eux
inclut une description théorique de la méthodologie, la présentation détaillée de la résolu-
tion d’un problème treillis 3 barres, et des applications numériques évaluant la qualité des
solutions et les performances en terme de coût de calcul. Dans le Chapitre 2 est présenté
un algorithme basé sur une approche de type séparation et évaluation (Branch & Bound).
Le calcul des minorants s’e�ectuant habituellement grâce à l’évaluation d’une version
continûment relâchée du problème d’origine, une relaxation spécifique à ce problème
d’optimisation a donc été proposée. Une méthode de séparation est également présentée.
Dans le Chapitre 3, la méthodologie proposée consiste à décomposer le problème en deux
sous-problèmes, un problème supérieur et inférieur. Le problème inférieur correspond au
problème d’origine avec les variables catégorielles figées. Une approximation du résultat
de cette optimisation est ensuite optimisée au sein du problème supérieur, par rapport
aux variables catégorielles uniquement. Dans le Chapitre 4 est présenté un algorithme
s’appuyant sur les deux précédents algorithmes. Une formulation continue du problème
bi-niveau du chapitre précédent est proposée. Cette formulation permet l’utilisation de
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gradients des solutions du problème inférieur par rapport aux variables catégorielles, for-
mulées à présent de façon continue. Ces gradients sont e�cacement calculés par méthode
de pénalisation, et utilisés pour construire des hyperplans du problème inférieur, exploités
pour réaliser des coupes dans l’espace catégoriel. Pour finir, le Chapitre 5 présente les
conclusions et perspectives de ces travaux.

On résume ci-après les objectifs de ces travaux, ainsi que des caractéristiques clé du
problème traité :

• L’objectif principal de ces travaux consiste à construire un algorithme qui permette
la résolution de problèmes d’optimisation de structures de grande taille à variables
mixtes catégorielles et continues,

• Les variables catégorielles sont des variables discrètes à valeurs non ordonnées et
non continûment relâchables,

• La valeur d’une variable catégorielle, également appelée catalogue, correspond à un
choix de matériaux et de type de raidisseur pour un élément structural,

• Les variables continues sont des variables dites de dimensionnement, à savoir les
aires de section des éléments structuraux,

• Le problème d’optimisation est un problème d’optimisation combinatoire, avec un
nombre de configurations possibles pour décrire la structure complète qui est égal
au nombre de catalogues à la puissance du nombre d’éléments structuraux,

• Le problème d’optimisation inclut les contraintes sur les contraintes structurales,
appelées également contraintes stress, ainsi que des contraintes inter-éléments sur
les déplacements, appelées contraintes de déplacement.

1.1 Industrial context

Overall aircraft performance is often measured in terms of fuel consumption or range. There-
fore, in aeronautics industry, optimizing these indicators is a major concern for engineering
departments. These indicators depend directly on the overall weight of the structure, that
encompasses primary and secondary structure weight. The primary structure is composed of
every load carrying structural elements like spars, ribs, frames, load bearing skin, sti�eners,
etc. The secondary structure includes structural elements of an aircraft that carry only air
and inertial loads generated in the secondary structure. The aircraft primary structure can
mainly be described as an assembly of sti�ened panels. This kind of modular structure is
widely used in aeronautics. A sti�ened panel, also called super-sti�ener, is an abstraction
of the structure made of a sti�ener and the two halves of surrounding panels. Some aircraft
manufacturers use this notion as an elementary structural component for stability analyses
(buckling). For example, fuselage sti�ened panels are made of load carrying skin reinforced
by orbital frames and longitudinal sti�eners, as seen in Figure 1.1. In the present work, the
structure will always refer to the primary structure, seen as an assembly of sti�ened panels.
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Figure 1.1: Sti�ened panel example (Grihon et al. 2009)

The structure is also defined by variations in materials and thicknesses. Each structural
element is dimensioned by critical load cases, which may result in di�erent materials and
sti�ening principles optimal choices, and a specific thickness distribution over the major
aircraft components (e.g., fuselage, wings). In his concern to minimize the weight of the
structure, the designer will hence need to find the best choice of material, sti�ener, and size
of the elements. The objective of this work is to enhance the resolution of the mathematical
problem through numerical optimization and heuristic strategies.

Material definitions
With a view to minimize the weight of the structure, the structural designer has to choose
the best material for each structural element. Aircraft structures have been largely made
of di�erent grades of aluminium (from Duralumin to current Lithium-based grades) since
the 30’s thanks to its excellent mechanical properties and specific weight with respect to
other classical materials. Its weight, compared to other metals like steel that is referred to
as heavy, was indeed one of the main reason of the massive use of aluminium by aircraft
manufacturers. More specifically, the strength to weight ratio was a real advantage when
compared to other available materials in the past. It is not the strongest of the pure materials,
however, its strength is improved when combined to other elements. Additionally, it o�ers an
interesting compromise between its performance characteristics, fabrication costs, established
manufacturing methods and practice. This is why aluminium alloys are, still today, used in
the industry. In addition to aluminium grades, for some highly-loaded massive components
(e.g., door lintel, pylon, landing gear) and local structural reinforcements, grades of titanium
are often used in today civil aircrafts thanks to their excellent corrosion properties. Steel
grades can also be used in some specific parts (typically in the landing gear). Moreover some
impact contraints (e.g., HTP tips, inlet) or complex geometries impose the use of metal alloys.

Since the 70s, the use of composite materials in loaded aeronautics structures is growing
continually. In aircraft industry, recent airplanes are made of more than 50% of composite,
for example the Airbus A350 in Figure 1.2. Composites have been the most important
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Figure 1.2: Composite application on Airbus A350 (image courtesy of Airbus).

materials introduced in the aerospace field since the use of aluminium alloys. Their benefit
from a very low density when compared to metal alloys. A composite material is in facts a
composition material, made of two (or more) materials. Each of them plays a di�erent role:
one material acts as a matrix and the other as a reinforcement material. The two components
have significantly di�erent physical properties, and remain separate in the composite material.
The resulting material has properties di�erent from the individual materials involved.

There are several di�erent types of composites, according to the nature of the matrix
involved: organic matrix composites (e.g., silicium, carbon) that are the most used in the
industry, ceramic matrix composites relevant for high temperature environments, metal ma-
trix composites (e.g.; GLARE), carbon fiber reinforced polymer, . . . In the industrial target
problem, only laminates organic matrix composites are considered. Laminates composites are
composites made of multiple layers (also named plies) of unidirectional fibers. Indeed, the
fibers oriented on the x axis (for example) will never contribute to the composite resistance
along the y axis. This means that a composite material subjected to exterior stresses in mul-
tiple directions has to be composed of a superposition of plies with di�erent orientations in
order to withstand the stresses. Thus, the designers need to choose the best combination of
layers to optimize the composite material characteristics with respect to the external stresses.
The characterization of a composite material in terms of layer fiber orientation and number
of layers is called the stacking sequence. This optimization of the stacking sequence will allow
to build structures with a high ratio of performance over weight.

Sti�ening principle definitions

A stringer or sti�ener, in aircraft construction, is a thin bar on which the skin of the
aircraft structure is fastened. Sti�eners have a major role in an aircraft structure, since they
are responsible for transfering the loads acting on the skin onto the frames. The sti�eners
allow to cancel the overall buckling modes of the sti�ened structure. Buckling is thus reduced
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Figure 1.3: Examples of commonly used sti�eners in aircraft structural design. The internal
geometrical variables are latent variables, scaled by the area of the cross-section.

to the instability of the stringer itself of the skin. For example, the distance between two
sti�eners is directly involved in the computation of the skin buckling modes. This is called
local buckling. The use of sti�eners also depicts a mesh that, in some cases, can contain
a damage in a specific zone or transfer loads in other parts of the panel. The material of
panel stringers can be alluminium or composite. Examples of sti�eners geometries are given
in Figure 1.3.

Sizing definition

The sizing of a structure consists of finding the best (according to a specific objective, that
is mainly the weight minimization) geometrical dimensions that define the structural elements
subjected to external stresses. In current aircraft or aerostructures manufacturers design
o�ce, common practice is to set materials, build process and overall sti�ening principle prior
to structural sizing, as these choice highly impacts both manufacturing costs and maintenance
costs and therefore the overall aircraft cost. The sizing is obviously constrained by physical
limits, that can be maximum limits on stresses due to material properties, limits induced by
buckling of sti�eners, by manufacturing processes, costs, reliability, . . . They can be applied
to each structural element and involve local physical behaviors (e.g., buckling limit stress of
a structural element), or applied on physical quantities depending on the overall structure
(e.g., maximum displacement of a wing tip). These so-called limits are chosen by the designer
when the design problem is formulated. They are the translation of the design requirements
specification into physical constraints onto the design problem. The choice of these criteria
is crucial, because they have a strong influence on the performance of the structure (in most
cases, the weight). This sizing problem is thus subjected to constraints that limit the designs
to feasible ones.

1.2 Problem statement

In the field of structural design, weight minimization of the structure is a major concern
for engineers. In the aircraft industry for example, structural optimization problems can
combine changes in choices of materials, cross-section types, or sizes of elements based on
manufacturer catalogs. As a consequence, the number of design variables grows significantly
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Figure 1.4: Catalogs principle, where the links between the thickness and stacking sequences,
area and detailed variables as proposed in (Grihon 2018).

and prevents practical resolution of the associated optimization problems. In this work, it is
proposed to solve large scale structural weight minimization problems with both categorical
and continuous variables, subject to stress and displacements constraints. The topology of
the structure is fixed. Continuous variables describe the size of aircraft structural parts: in
case of thin-sheet sti�ened sizing, they describe panel thicknesses and sti�ening cross-sections
(in the sense of the areas). The categorical variables take values belonging to an unordered
and unrelaxable set. Typically, in the context of structural optimization, the choices of
materials or cross-section types are depicted by categorical variables. In the literature, a
catalog for an element can be considered as a guide to a given composite panel (Adams et al.
2004; Carpentier et al. 2006a; Carpentier et al. 2006b). Composite guide approach has been
extended to sti�ening profiles as illustrated in the Figure 1.4. Indeed, as described in (Grihon
2018), a choice of thickness maps to a choice of a stacking, and a choice of area corresponds to
a choice of scaled profile (including stacking). Furthermore, a change of catalog choice leads
to a change in stacking sequence (symmetric, balanced, oriented, iso). In case of a metal,
the catalogs reduce to a list of profiles and the thicknesses do not drive choices of stacking
sequences.

Most existing algorithms used to handle such classes of problems (Fister et al. 2013)
are known to scale badly as the number of the categorical design variables increases. To
illustrate the curse of dimensionality encountered for such problems, an order of magnitude
of the targeted industrial problem’s dimensions can be as follows. Consider an engine pylon
structural model as addressed in (Gazaix et al. 2019) with 100 elements, each one having a
hundred possible choices of material and sti�ening principles. In this case, the categorical
design space counts 100100 possible configurations to describe the whole structure. Thus,
the high combinatorial dimension of the categorical design space enforces the need for a
methodology to solve such problems e�ciently.
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The optimization problem, as formulated at Airbus, is defined as follows. Let be t the
thicknesses of the sti�ened panels skin and a the areas of the profiles, n being the number of
elements in the structural model. The set � is an enumerated set which allows to list choices,
for example the material or the sti�ener type of an element. With p is the number of catalogs,
we can note � the categorical design space

� = {1, . . . , p}

that contains the p available combinations of materials and sti�eners.

All these variables are vectors for which each component is associated to an element. In
our industrial case, a finite element model involves about n = 100 elements leading to 200
continuous variables, and 10 up to 100 categorical choices per element. The categorical vari-
able can take a value among (number of categorical choices per element at the power of the
number of elements) values of the set. This high combinatory dimension demonstrates the
need for a methodology to solve e�ciently such problems. Within the framework of sti�-
ened panels, as key concept of aeronautics structures, targeted mixed categorical continuous
optimization problem to solve is:

minimize
cœ�n

,(a,t)œRn◊n
w(a, t, c)

subject to s(a, t, c) Æ 0
n,m

”(a, t, c) Æ 0
d

¯
a Æ a Æ ā

¯
t Æ t Æ t̄

(1.1)

where (
¯
a,

¯
t) œ Rn◊n and (ā, t̄) œ Rn◊n are the lower and upper bounds on areas and thick-

nesses, respectively. The constraints ” on displacements u ensure that on d given nodes of the
truss the displacements will not exceed predefined upper bounds ū œ Rd. With P a projector
that selects the elements on which the displacement constraint will apply, the definition of ”

function is given as follows:

” : Rn◊n ◊ �n æ Rd

(a, t, c) ‘æ P u(a, t, c) ≠ ū.

The structural constraints function s

s : Rn◊n ◊ �n æ M(Rn,m)
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is of the form

Qcccccca

Constraint type 1 . . . Constraint type m

elt1 s11(a1, t1, c1, �1(a, t, c)) . . . s1m

(a1, t1, c1, �1(a, t, c))
elt2 s21(a2, t2, c2, �2(a, t, c)) . . . s2m

(a2, t2, c2, �2(a, t, c))
...

...
... . . .

elt

n

s

n1(an

, t, c

n

, �
n

(a, t, c)) . . . s

nm

(a
n

, t

n

, c

n

, �
n

(a, t, c))

Rddddddb
(1.2)

and ensures, element per element, that the structural stress does not exceed a limit stress
value. The internal loads of the structure, computed by a finite element method (FEM), are
noted �.

1.3 Motivations

The need for a methodology that supports trade-o� studies in early design stages both in terms
of choice of sti�ening principle and material is not new in the aircraft industry. Methodologies
have emerged in the industry to tackle the curse of dimensionality when dealing with cate-
gorical variables in structural optimization (Collier et al. 2002; Grihon 2018). For instance
at Airbus, an existing tool named PRE-sizing Solution for Trade-O�s (PRESTO), as been
developed (Grihon 2018). It solves a problem that is close to (1.1), but di�erent for two
reasons. First, the sizing variables a and t are not continuous but belong to the discrete real
subspaces Y

a

and Y

t

, respectively. Second, there is no constraint on displacements in the
problem solved by PRESTO.

The full discrete PRESTO approach uses a bi-step strategy involving massively parallel
element-wise optimizations. The algorithm consists of the following steps, after an initializa-
tion of all the design variables. First, a FEM analysis is performed in order to get the internal
loads �

i

in the structure, given the areas, thicknesses, and categorical design variables fixed.
Second, the internal loads are fixed to their computed value in the stress constraints of the
optimization problem. The stress constraints functions on a structural element i are thus inde-
pendent from the definition of the other elements. Thus, the following optimization problem
is solved for each element independently (’i œ {1, . . . , n}):

minimize
ciœ�n

,aiœYa,tiœYt

w(a
i

, t

i

, c

i

)

subject to s

ij

(a
i

, t

i

, c

i

, �
i

) Æ 0 ’j œ {1, . . . , n}

¯
a

i

Æ a

i

Æ ā

i

¯
t

i

Æ t

i

Æ t̄

i

.

These optimizations are performed in parallel, and return a new candidate solution. The
FEM is then initialized with the returned areas, thicknesses and catalogs. The process is
repeated until a tolerance on the optimal weight or a maximal number of iterations is reached.
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Figure 1.5: A 10-bar truss structure.

This approach industrially used at Airbus simplifies the impact of each categorical choice
on the overall optimal internal loads distribution by deporting the optimization at element
(subsystem) level. Although the industrial approach is highly scalable, it can not handle
system-level behavior (optimum internal load distribution) nor system-level constraints (e.g.,
flutter, modal or displacement constraints) in a same optimization process. The absence of
such constraints in the problem formulation is not representative of aircraft structure design
problems, in a multidisciplinary context for instance. Furthermore, there is no formal proof
that at the end of the algorithm, the optimum is the exact one.

The objective of this work is thus to build an algorithm that solves a large scale mixed
categorical-continuous structural optimization problem that is subject to stress constraints
and constraints on displacements. The main di�culty is to introduce the constraint on dis-
placements, while keeping the computational cost as low as possible in case of large scale
problems. The best compromise between computational cost and the quality of the optimum
has to be found.

1.4 A toy problem

Instead of tackling the targeted industrial case that deals with aeronautics box-section struc-
tures, a toy problem has consisted in the implementation of a test-case that can be handled
within short execution-times. The structural model is a truss model where members support
tension and compression forces. This makes easier the exploration of new algorithms and
allows for identifying interesting leads. A well-known truss used in structural optimization is
the 10-bar truss illustrated Figure 1.5. The design variables definition is similar to the one
implemented in the existing industrial approach. However in the toy problem, the structural
elements are bars instead of sti�ened panels. Therefore, the categorical design variables c

denote choices of a material (among metal alloys) and sti�ener and the continuous design
variables are reduced to the areas a. The mixed categorical continuous optimization problem
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becomes:
minimize
cœ�n

,aœRn
w(a, c)

subject to s(a, c) Æ 0
n,m

”(a, c) Æ 0
d

¯
a Æ a Æ ā

(P)

where
¯
a œ Rn and ā œ Rn are the lower and upper bounds on areas, respectively. The

objective function (i.e., the global weight of the structure) is defined as follows:

w : Rn ◊ �n æ R

w(a, c) ‘æ
nÿ

i=1
a

i

fl

i

(c
i

)L
i

,

where fl

i

(c
i

) corresponds to the material density of element i driven by the choice c

i

.

The constraints ” on displacements u ensures that on d given nodes of the truss the
displacements will not exceed predefined upper bounds ū œ Rd. In the case of a truss model,
the constraint on displacements ” does not depend from thicknesses anymore, and becomes:

” : Rn ◊ �n æ Rd

(a, c) ‘æ P u(a, c) ≠ ū.

In this toy problem, four di�erent structural constraints per element will be considered,
i.e., m = 4 in the generic structural constraints expressions given by (1.2). The constraint
function s is then defined as:

s : Rn ◊ �n æ M(Rn,4)

and is of the form

Qcccccca

Allowable Tension Allowable Compression Euler Buckling Local Buckling
elt1 s11(a1, c1, �1(a, c)) s12(a1, c1, �1(a, c)) s13(a1, c1, �1(a, c)) s14(a1, c1, �1(a, c))
elt2 s21(a2, c2, �2(a, c))) s22(a2, c2, �2(a, c)) s23(a2, c2, �2(a, c)) s24(a2, c2, �2(a, c))
...

...
...

...
...

elt

n

s

n1(an

, c

n

, �
n

(a, c))) s

n2(an

, c

n

, �
n

(a, c)) s

n3(an

, c

n

, �
n

(a, c)) s

n4(an

, c

n

, �
n

(a, c))

Rddddddb
(1.3)

First, one has two constraints in tension and compression, respectively, given by

s

i1(a, c) := �
i

(a, c)
a

i

≠ ‡

t(c
i

)

s

i2(a, c) := �
i

(a, c)
a

i

≠ ‡

c(c
i

)
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with ‡

t(c
i

) œ R the stress limit in tension and ‡

c(c
i

) œ R the stress limit in compression.
The two other constraints are the Euler and local buckling constraints, respectively, given by

s

i3(a, c) := �
i

(a, c)
a

i

≠ fi

2
E(c

i

)I(a
i

, c

i

)
a

i

L

2
i

s

i4(a, c) := �
i

(a, c)
a

i

≠ 4fi

2
E(c

i

)K2(c
i

)
12(1 ≠ ‹

2(c
i

))

with E(c
i

), I(a
i

, c

i

), L

i

, ‹(c
i

) respectively the Young modulus, the area moment of inertia,
the length and the poisson coe�cient of element i. The ratio between cross-section internal
sizes, depending on the sti�ener profile, is given by K(c

i

). It is worth to note that the choice
of sti�ener’s profile a�ects the buckling constraints through the terms I(a

i

, c

i

) and K(c
i

) in
the buckling constraints definitions. Indeed, the computation of I(a

i

, c

i

) and K(c
i

) involves
a detailed description of the cross-section geometry. For each section i, the vector of detailed
variables x

(i) of the i

th bar varies with respect to the detailed variables of the reference profile,
noted x0(ci

) such that:

x

(i) := ·

i

x0(ci

) ’i œ {1, . . . , n} (1.4)

The corresponding cross-section can be written as:

a

i

= ·

2
i

a0(ci

) ’i œ {1, . . . , n} (1.5)

From equations (1.4) and (1.5) can be deduced an expression of ·

i

, the scaling ratio of the
profiles:

·

i

=
Û

a

i

a0(ci

) ’i œ {1, . . . , n}

Thus, the simple mathematical function detailed below can be used to compute the detailed
variables with respect to areas a

i

coming from the optimizer, and the reference profile de-
scribed by a0 and x0(ci

):

x

(i)(a
i

) =
Û

a

i

a0(ci

)x0(ci

).

The detailed geometric variables x

(i) are thus indirectly optimized as latent variables that
depend on a

i

. This description of the internal sti�ener geometry is inspired from existing
approaches like for example the PRESTO methodology in (Grihon 2012) or in (Gao et al.
2018).

Internal forces � and displacements u will be computed using the direct sti�ness method,
introduced in (Turner 1959; Turner et al. 1964). Structural elements are considered as truss
elements with pin-jointed connections. This means that the bars will only carry axial forces.
At each node, displacements are allowed along the global axes. Each element i is defined by
the elementary sti�ness matrix K

e

i

(a
i

, c

i

) œ Rq,q, with q the number of free nodes multiplied
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Figure 1.6: Scaling of a bar section. Example with “T”-sti�ener.

by the number of physical space dimensions. The global sti�ness of the whole truss is given
by the matrix K(a, c) œ Rq,q in global coordinates. Such matrix can be computed as the sum
of each elementary sti�ness matrix expressed after its transformation with the i

th element
rotation matrix T

i

, i.e., (Turner 1959; Turner et al. 1964):

K(a, c) =
nÿ

i=1
[T t

i

K

e

i

(a
i

, c

i

)T
i

].

Given a vector f œ Rq of external loads applied on each of the free nodes in the global
coordinates, the vector of displacements u œ Rq can be obtained by solving the following
equation:

K(a, c)u(a, c) = f .

The vector of internal forces � œ Rn is then given by:
’i œ {1, . . . , n},

�
i

(a, c) = K

e

i

(a
i

, c

i

)T
i

u

i

(a, c),

where �
i

is the axial internal force through element i and u

i

its displacement vector.

In Table 1.1 are depicted the dependencies between the design variables, the latent vari-
ables and the main functions of interest of the optimization problem. Thus, it is worth to note
that the objective depends only on the choice of materials and areas, while the constraints
depend on both (excepted the density) the material properties and the sti�ener definition.
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c a

Sti�ener Material Sizing variables
≠ fl E ‡

allow

‹ a � K
weight • •

stress constraints (compr/tension) • •
stress constraints (local/euler) • • • • • •

displacements constraints • • •
all constraints • • • • • • •

internal forces � • •
detailed geometrical parameters K •

Table 1.1: Dependencies between the main functions of the optimization problem and the
design variables c and a.

1.5 Research background

Optimization problems can involve di�erent kinds of design variables, as illustrated Figure 1.7.
First, there are continuous design variables. When the objective and constraints functions are
continuous and derivable, it is possible to leverage the e�ciency of gradient-based algorithms.
There are many existing gradient descent methods used to solve engineering problems, e.g.,
sequential linear programming (Marcotte and Dussault 1989; Etman et al. 1996), sequential
quadratic programming (Boggs and Tolle 1995; Wright and Nocedal 2006), method of moving
asymptotes (Svanberg 2002). Second, there are non-continuous design variables. This group
of design variables collects two di�erent kinds of variables. First, there are discrete design
variables. For example, these discrete design variables can take integer, or binary values. It
is worth to note that these values are scalar values, and not vector of values. In addition,
these variables are relaxable. This means that the optimizer can rely on evaluations of the
objective and constraints at intermediate values. If the functions are derivable, the optimizer
can even benefit from their gradient. The discrete variables can also be ordered, meaning
that there exists a natural definition of a neighborhood. The main di�erence with continuous
optimization lies in the fact that the result of a discrete optimization has to be a discrete
optimum. Finally, there are categorical design variables. These variables take values in a
finite set of instances where there is no definition of intermediate values. Furthermore, in
the case of non-ordered categorical values there is no neighborhood definition neither. Most
often, the categorical values are either non-numerical ones, or vector of values. In the context
of this work, the optimization problem involves both continuous design variables (the areas),
and categorical design variables (the materials and cross-section types).

In general, to handle mixed categorical-continuous optimization problems, many opti-
mization algorithms can be used, e.g., metaphor-based metaheuristics and swarm intelligence
algorithms (Goldberg 1989; Nouaouria and Boukadoum 2011; Liao et al. 2014). Pattern
search strategies have also been proposed to solve mixed variable optimization problems with
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Figure 1.7: Illustration of continuous, discrete, integer and categorical design variables (Her-
rera et al. 2014).

categorical variables (Audet and Dennis 2001; Abramson et al. 2009; Audet et al. 2018).
However, this type of methods is not designed to solve e�ciently large scale optimization
problems (Sigmund 2011; Stolpe 2011). In these approaches, mixed variables programming
(MVP) is combined with mesh adaptive direct search (MADS) and a surrogate-assisted strat-
egy (Audet et al. 2018). The drawback of such approaches is mainly related to the definition
of a suitable neighborhood to be able to handle the categorical choices. Other approaches
based on the discrete global descent method have been proposed to solve mixed optimization
problems (Lindroth and Patriksson 2011).

In the context of structural optimization problems, various surrogate-based optimization
strategies have been extended to categorical variables (Filomeno Coelho 2014; Müller et al.
2013; Herrera et al. 2014; Roy et al. 2017; Roy et al. 2019; Garrido-Merchán and Hernández-
Lobato 2018; Pelamatti et al. 2019). One of the main challenges of such approaches is related
to their e�ciency when handling large dimension categorical design space. Furthermore, a
definition of a neighborhood is often required during the construction of the surrogate model.
As an example, in (Pelamatti et al. 2019), the neighborhood is defined through an appropriate
kernel definition. In these approaches, once the surrogate model is built, the optimizer still
faces a large scale discrete optimization problem. A recent work (Gao et al. 2018) also
suggests reducing the dimension of the problem by finding implicit correlation between the
design variables. Existing works propose to solve structural optimization problems (with
multi-material and multi-cross-section design variables) using a continuous formulation of the
design space which is provided by means of interpolation schemes (Stegmann and Lund 2005;
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Krogh et al. 2017). Although such approaches allow to leverage the e�ciency of gradient-
based optimization algorithms, there is no guarantee that the optimization will retrieve integer
values corresponding to a given material, for instance.

Other existing approaches rely on the structure of the mathematical mixed variable prob-
lem to decompose the intial problem into several more tractable subproblems. For instance,
by the use of Benders decomposition (Benders 1962; Geo�rion 1972) or by outer approxima-
tion schemes (Duran and Grossmann 1986; Hijazi et al. 2014). For structural optimization,
decomposition schemes have been mostly applied to continuous optimization problems, e.g.,
Sti�Opt (Samuelides et al. 2009), Quasi Separable Decomposition (QSD) (Haftka et al. 2006;
Schutte et al. 2004). The QSD has then been applied to structural optimization of large
scale composite structures (Bettebghor et al. 2011; Bettebghor et al. 2018). In this context,
the composite stacking sequences were formulated as continuous variables by using lamina-
tion parameters. In (Allaire and Delgado 2015), both the composite fiber, lay-up sequence
and the ply topology are optimized into a bi-level scheme. The main di�culty of existing
decomposition schemes is related to the fact that they are not able to handle large scale
mixed optimization problems with categorical variables. In the industry, methodologies have
emerged to tackle the curse of dimensionality when dealing with categorical variables in struc-
tural optimization. For instance, (Grihon 2018) uses a bi-step strategy involving massively
parallel element-wise optimizations. This approach industrially used at Airbus simplifies the
impact of each categorical choice on the overall optimal internal loads distribution by de-
porting the optimization at element (subsystem) level. Although the proposed approach is
highly scalable, it can not handle system-level behavior (optimum internal load distribution)
nor system-level constraints (e.g., flutter, modal or displacement constraints). The absence of
such constraints in the problem formulation is not representative of aircraft structure design
problems, in a multidisciplinary context for instance.

To summarize, in one hand the algorithms that tackle mixed categorical continuous prob-
lems in a generic way are often metaheuristics, which are known to fail at solving large
scale instances e�ciently (curse of dimensionality). Another class of existing algorithms (non
metaheuristics) in the literature are either (a) solving a di�erent problem (compared with the
problem tackled in this work), (b) based on the definition of a neighborhood, or (c) rely on a
straightforward continuous relaxation of the variables. All these approaches are not possible
to use in the case of categorical design variables.

1.6 Outline

In Chapter 1, the industrial context and the motivations of the thesis are given. The main goal
of the research includes the implementation of an algorithm that can solve e�ciently a large
scale mixed categorical structural optimization problem. This optimization problem involves
continuous variables that are the areas of the structural elements, and the non-relaxable non-
ordined design variables, also called categorical variables. This problem is highly sensitive to
the number of structural members as well as the values that can take the categorical variables.
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The formulation of the industrial optimization problem is presented. Then, a toy problem
that illustrates the industrial problem combinatorial complexity is defined. Several instances
of this problem will be used to assess the proposed algorithms performances. In the three next
chapters are proposed three new algorithms that can solve the mixed categorical structural
optimization problem. All of them include a theoretical description of the methodology,
a step by step solution on a 3-bar truss problem, numerical applications with evaluations
of the computational cost scaling, and a comparison to a state of the art algorithm. The
numerical implementation of the proposed methodologies relies on the Generic Engine for
MDO Scenarios (GEMS) (Gallard et al. 2018). Details on the implementations have been
published into a conference proceeding (Gallard et al. 2019).

In Chapter 2 is presented a Branch & Bound based algorithm. This single-tree approach
allows to find the optimum without proceeding to a complete enumeration of the solutions. It
splits the main problem into several smaller problems for which a lower bound of the solution
can be e�ciently computed. Usually, these lower bounds are obtained thanks to a continuous
relaxation of the optimization problem. However in the case of the targeted problem, it is not
possible to turn the categorical space into a continuous one. A specific continuous formulation
of these smaller problems is proposed in order to make possible the evaluation of the lower
bounds. A specific branch rule is also presented. The algorithm is then tested over several
truss optimization problems instances.

In Chapter 3, the proposed methodology consists of using a bi-level decomposition involv-
ing two problems, named master and slave. For given categorical choices, the slave addresses
the continuous variables of our optimization problem. The master consists of minimizing
a first order like approximation of the slave problem with respect to the categorical design
variables. The algorithm is then tested over several truss optimization problems instances.

Chapter 4 introduces a new multi-tree based framework. A continuous formulation of the
optimization problem is proposed. A bi-level decomposition is then applied to this continuous
formulation. Thanks to the continuous formulation of the problem, the gradients of the slave
problem are used to build supporting hyperplanes of the slave problem. They are e�ciently
computed thanks to a post-optimal sensitivity analysis. The resulting algorithm is then tested
over several truss optimization problems instances.

Finally, the Chapter 5 presents the conclusions and perspectives of the thesis. The simi-
larities, di�erences, advantages and drawbacks of the proposed approaches are discussed. The
further perspectives and development are suggested.

1.7 Contributions

The main objective of this thesis is building an algorithm that can solve large scale mixed
categorical-continuous optimization problems. To that end, it was first necessary to lay the
theoretical bases of a new algorithm that can handle the target problem. In this work are
presented three theoretical contributions, that correspond to three new algorithms described
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in three di�erent chapters, respectively. The work presented in the Chapter 2 has been
published into a conference proceeding (Barjhoux et al. 2018b). The work presented in the
Chapter 3 has been published into a conference proceeding (Barjhoux et al. 2018a) and into
a journal article (Barjhoux et al. 2020). Finally, an article focused on the work presented
in the Chapter 4 is being drafted. Second, it was necessary to implement these algorithms
numerically. These developments are themselves contributions. Implemented in a generic way,
components of these implementations can be re-used to solve other optimization problems.
The numerical implementations of the proposed methodologies rely on the Generic Engine for
MDO Scenarios (GEMS) (Gallard et al. 2018). The tool o�ers an e�cient way to test multi-
level formulations, with built-in classes that facilitate optimization problems manipulations.
For example, the resulting generic algorithms implementations allow to change the truss
geometries of the structural optimizations with minor changes in the launch scripts. This
was a major advantage since the scalability of the algorithm had to be rated. Details on the
implementations have been published into a conference proceeding (Gallard et al. 2019).

In this Chapter, the following items have been discussed:

• The main objective of this work is to build an algorithm that solves a large scale
mixed categorical-continuous structural optimization problem,

• The categorical variables are non-ordered and non-relaxable discrete variables,

• The value of a categorical design variable corresponds to a choice of both material
and sti�ening principle for a structural element,

• The continuous design variables are sizing variables, that are areas (cross-sections)
of the structural elements,

• The optimization problem is a combinatorial optimization problem, with a number
of possible configurations to describe the whole structure that is equal to the number
of catalogs at the power of the number of structural elements,

• The optimization problem includes stress constraints and inter-element constraints,
e.g., constraints on displacements.
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Résumé

Dans le contexte de l’optimisation de structure dans l’industrie, les variables de conception
peuvent décrire des tailles d’éléments, par exemple issues de listes mises à disposition par
les fabricants. Ces variables sont discrètes ordonnées et relâchables. Pour résoudre ce type
de problème et éviter d’attaquer de front la combinatoire complète, on résout souvent une
suite de sous-problèmes plus simples. C’est le cas des algorithmes basés sur des approches
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de séparation et évaluation (Branch & Bound). Historiquement, ces approches s’appuient
sur la résolution d’une suite de sous-problèmes relâchés continûment (Land and Doig 1960;
Dakin 1965), c’est-à-dire où la variable discrète est considérée comme étant continue. Les
optima correspondant sont, sous réserve d’hypothèse de convexité des sous-problèmes,
des minorants du problème d’origine. Une comparaison de ces minorants à la meilleure
solution connue (majorant) permet d’éliminer des sous-espaces de solution. L’e�cacité
de la méthode dépend fortement de l’ordre dans lequel ces sous-problèmes sont résolus.

Dans ces travaux de thèse, le problème considéré ne rentre pas directement dans le
cadre de cette approche, du fait du caractère catégoriel (non-ordonné et non-relâchable)
de certaines des variables d’optimisation. En e�et, sans possibilité de relâcher les variables
catégorielles dans le problème d’origine, le calcul du minorant nécessite une adaptation
de la formulation des sous-problèmes. Ainsi, la relaxation suivante (rP(I)) du problème
(P) est proposée:

minimiser
EœÂ�n

,aœRn

Â
w(a, E)

soumis à Â
s(a, E) Æ 0

m,nÂ
”(a, E) Æ 0

d

¯
a Æ a Æ ā,

E

k

= E(I
k

) ’k œ {1, . . . , |I|}.

(rP(I))

avec Â
w, Â

s, et Â
” des sous-estimateurs des fonctions masse, contraintes stress et déplace-

ments, respectivement. Le vecteur I est composé des |I| valeurs de variables catégorielles
fixées au noeud courant de l’arbre des solutions. Les variables catégorielles ont été rem-
placées par les propriétés continues que sont les modules de Young E. Ce sous-problème
est donc à présent un problème complètement continu, et peut se résoudre e�cacement
à l’aide d’un algorithme basé sur le gradient. L’algorithme résultant, appelé Branch &
Bound hybride (h-B&B), repose donc sur la méthode Branch & Bound avec une modifi-
cation de la formulation des sous-problèmes, rendue compatible avec les variables caté-
gorielles de ce problème.

Une analyse des performances de l’algorithme proposé permet les observations suiv-
antes. D’après la Table 2.3, on note que les optima obtenus sur des instances de treillis 10
barres sont identiques à ceux obtenus par énumération. Cela permet de valider la qualité
des solutions de l’algorithme proposé. En revanche, on observe sur la Figure 2.13 que
l’e�ort de calcul évolue de façon exponentielle en fonction du nombre d’éléments struc-
turaux. Cette évolution du coût de calcul rend l’approche incompatible avec le besoin de
pouvoir traiter des problèmes de taille industrielle. On notera toutefois que les coûts de
calculs mentionnés correspondent à des résultats obtenus après convergence des optimi-
sations jusqu’à l’optimalité, garantie par la théorie propre aux approches de type Branch
& Bound. On observe sur la Figure 2.11, que la solution optimale est obtenue après la
résolution de 18 sous-problèmes, et que les 87 résolutions suivantes servent uniquement à
prouver que cet optimum est le meilleur.
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2.1 Introduction

In the context of structural optimization in the industry, the design variables can describe
the structural element sizes, that could be selected from a list of commercially available
discrete values. The presence of such design variables, called (ordered and relaxable) discrete
variables, makes the optimization problem belong to the class of mixed optimization problems.
Due to the hard nature of combinatorial problems, it is often easier to tackle the problem by
breaking up, iteratively, the admissible set of solutions into several subsets and thus define sub-
problems. This kind of problem can be handled, for example, by solvers relying on the Branch
& Bound theory. However, this kind of problem is di�erent from the target mixed categorical
optimization problem, where categorical variables are non-ordered and non-relaxable.

Historically, the notion of Branch & Bound as a proof of concept for integer programming
is first given in (Markowitz and Manne 1957). In this article, the Branch & Bound method
is described as a general optimization scheme, not an algorithm. The methodology is more
presented as a general approach that could be subjected to variations, than an automatic
algorithm. The Branch & Bound automatic method, in the context of linear programming,
is then provided a few years later in (Land and Doig 1960), and improved in (Dakin 1965).
More than twenty years after, the Branch & Bound method is successfully applied to convex
non-linear integer programming problems (Gupta and Ravindran 1985). To understand the
origins of the Branch & Bound theory, one can refer to (Cook 2012).

In the context of structural optimization, various methods based on the Branch & Bound
have been presented to solve convex non-linear mixed optimization problems. In (Schmit
and Fleury 1980), dual methods are used to solve the mixed problem. The e�ciency of this
approach relies on a separable approximation of the original problem. In (Bremicker et al.
1990), a sequential linear discrete programming method is used. Dakin’s method is applied
in (Gupta and Ravindran 1983) to non-linear mixed-integer problems, using a generalized
reduced gradient method to solve the nonlinear continuous sub-problem at each node. The
same approach is used in (Sandgren 1990b), with equality constraints having binary variables.
This method has been applied to solve various design problems, as in (Sandgren 1990a) where
discrete (0-1) variables represent a choice between a number of di�erent options such as ma-
terials or cross-section types. In this last work, a test case involves the design of a planar
truss considering material and cross-section geometric choices among I, C and O types. The
major drawback of this approach is the explosion of the number of design variables and con-
straints used to reformulate the problem. In order to reduce the computational cost of the
non-linear Branch & Bound, heuristics have been implemented. In (Hager and Balling 1988),
the design of a 16 members steel frame is achieved, with choices among 194 standard sections.
In this approach, the discrete optimum is computed from the continuous optimum. Once the
continuous-optimum solution is obtained, the problem is converted into a linear problem. It
is then solved using the Branch & Bound method in the neighborhood of the continuous
optimum. Improvements of this method have then been proposed in (Tseng et al. 1995).
The Branch & Bound approach has also been applied to solve topology optimization of truss
structures. For example in (Sheu and Schmit Jr 1972), the structure to optimize is a truss
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with redundant members (that is called a ground structure). In most of the aforementioned
proposed Branch & Bound based methods, the structural optimization problem is not formu-
lated with categorical non-ordered non-relaxable categorical design variables. In this work, a
Branch & Bound algorithm is proposed to solve a mixed categorical-continuous optimization
that does not fall in the scope of the methodologies presented in the literature. This is mostly
due to the fact that the categorical design variables can not be be continuously relaxed in the
problem (P).

This chapter is organized as follows. First, the general theory of Branch & Bound in
the frame of mixed integer (relaxable) programming will be detailed and illustrated with an
analytic example. The proposed formulation relying this generic Branch & Bound theory will
then be presented, including adaptations of the major branch and bound steps to handle the
categorical design variables involved in (P). After a description of the implementation, the
accuracy of the optimum and the scalability of the proposed approach are compared with a
state-of-the-art algorithm. Finally, possible future concluding remarks will be given in the
last section.

2.2 Theory of discrete Branch & Bound algorithms

For the purpose of this section, a generic problem (MINLP) is defined as follows :

minimize
xœX, yœY

f(x, y)

subject to g(x, y) Æ 0
(MINLP)

In this problem, a function f : Rn ◊ Rn æ R is minimized w.r.t. continuous design variables
x œ X µ Rn and n discrete design variables y, while satisfying m constraints g : Rn ◊
Rn æ Rm. As a remark, this problem is thus di�erent from (P) since the discrete design
space is relaxable and ordered, and the functions are continuously defined. Each discrete
design variable can take a value among p possible discrete values, so that the set Y counts a
combination of p

n discrete values :

Y = {0, . . . , p}n

The simplest way to solve (MINLP) that we can imagine could consist in enumerating the
p

n instances of (MINLP) knowing y fixed. Each of these optimizations would thus be solved
w.r.t. the continuous design variables x only. It is clear that such approach, although it
ensures the solution to be the optimal one, would be impractical in terms of computation
time.

In order to solve e�ciently large scale instances of such problems, a mathematical program
that would allow to find the optimum without proceeding to a complete enumeration of
the solutions is needed. The goal of the Branch & Bound theory is to avoid this complete
enumeration of the solutions: it restricts progressively the set of solutions. This is why this
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kind of methodology is also called implicit enumeration. The underlying idea is to solve the
original problem by solving a succession of smaller and easier subproblems. In this Section,
the basics of the Branch & Bound theory are provided. The process of spawning subproblems
is named the branch step, presented in section 2.2.1. It is followed by a bound step, responsible
of the evaluation of the subproblems, and detailed in section 2.2.2. According to the results
of the bound step, the nodes will be discarded or not, reducing the enumeration of the
subproblems. The Branch & Bound algorithms alternatively proceed to a branch step and a
bound step, as described in section 2.2.

2.2.1 The branch step

In this Section is presented the step responsible of the restriction of the set of solutions. The
principle of a solution tree is first presented, followed by an exemple of a problem decompo-
sition.

2.2.1.1 Tree structure

According to the Branch & Bound theory, the iterative process of solving the problem
(MINLP) consists of searching in a state space. A state space is made of a set of states
and operators. The states include the original problem to be solved and all the subproblems
that can be generated. Each state is illustrated by a node. The operators are branching
rules that map one node to another. The set of states forms a graph, where two states are
connected by a branch if a branching rule transforms the first state into the second one. The
branching rules are thus used to decompose a problem into subproblems. In general, it is done
by reducing the design space. Although the choice of a branching rule is problem dependent,
a good rule of thumb is to decompose a problem into child subproblems so that their feasible
subspace forms a partition of the parent feasible space. This means that, by design, a solu-
tion to a child subproblem cannot be solution to any other sibling subproblem. This generic
branching rule is at the origin of most of the resulting branch and bound algorithms. As a
consequence, all the branches in the graph link di�erent nodes, since all child subproblems
are uniquely defined. The resulting graph can thus be seen as a tree, depicted in Figure 2.1.
The nodes are organized in levels in the tree. There is only one node at the level 0, also called
root node. The root node contains the entire tree, by construction of the subproblems and
their design space (as subspace of the parent node).

2.2.1.2 Problem decomposition

The decomposition of the main problem into subproblems (nodes) is done iteratively, by
restricting the feasible set of the parent problem. Let name (

¯
y

b

, ȳ

b

) a design variable to
branch on with b œ {1, . . . , n}, also named branching variable. Each node of the tree is
uniquely defined by a set of lower and upper bounds (

¯
y, ȳ) on the integer design variable y,

with 1 Æ
¯
y

b

and ȳ

b

Æ p, with b œ {1, . . . , n}. These bounds ensure that the generated subspace
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Figure 2.1: A tree structure corresponding to problem (MINLP) with three binary design
variables, such that n = 3 and p = 1.

and thus the subproblem are restrictions of the ascending ones. The resulting subproblem
associated to the node defined by (

¯
y, ȳ) is given by :

minimize
xœX, yœY

f(x, y)

subject to g(x, y) Æ 0

¯
y Æ y Æ ȳ

(MINLP(y, ȳ))

The restriction is brought by the addition of bound constraints over the integer design vari-
ables. It can be noted that the root node (MINLP) is also defined by (MINLP(≠Œ, +Œ)).
The selection of the design variable to branch on, and the definition of the bounds (

¯
y, ȳ) are

part of the branch strategy. It is detailed in the Section 2.2.4.2.

2.2.2 The bound step

In practice, the entire tree (as depicted in Figure 2.1) is never completely explored (otherwise
the algorithm would be ine�cient), thanks to the properties of the bounding principle pre-
sented hereafter. More specifically, the e�ciency of the algorithm depends on the number of
nodes, or subspaces, for which we know that they do not contain the optimal solution. The
bound step is a major step of the Branch & Bound theory, because it allows to identify what
subspace, and thus what part of the tree is useless to be explored.

To each subspace, or subproblem (MINLP(y, ȳ)), say each node, is associated another
problem called evaluation problem. This evaluation problem allows to compute a lower bound
of the solution of the problem (MINLP(y, ȳ)). One of the most employed techniques to
compute the lower bound consists of solving a relaxation of this problem. A relaxation problem
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of an original problem (MINLP(y, ȳ)) has a design space that contains the original one, and/or
when the objective and constraint functions are proved to be underestimate functions of those
involved in the original problem (in case of a minimization problem, with lower inequality
constraints). The continuous relaxation is probably the most common relaxation technique
when it is applied to discrete optimization problems. It consists of removing the integrity
constraints. In other words, the integer design variables are set as continuous design variables.
The continuous relaxation of the problem (MINLP(y, ȳ)) is written as follows :

minimize
xœX, ÂyœÂ

Y

f(x,

Â
y)

subject to g(x,

Â
y) Æ 0

¯
y Æ Â

y Æ ȳ

(NLP(y, ȳ))

where Â
Y is the continuous relaxation of the integer design space Y , is defined by :

Â
Y := [1, p]n.

The continuous design space Â
Y is such that it contains the integer space Y :

Y µ Â
Y .

This ensures that the optimum of (NLP(y, ȳ)) is a lower bound of (MINLP(y, ȳ)). Let the
solution of the problem (NLP(y, ȳ)) be (x(

¯
y,ȳ)

, y

(
¯
y,ȳ)), such that :

(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) := argmin

xœX, ÂyœÂ
Y

{f(x, y) s.t. g(x, y) Æ 0;
¯
y Æ Â

y Æ ȳ}.

The optimal value of the objective f(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) is a lower bound of the feasible space of the

problem (MINLP(y, ȳ)). If y

(
¯
y,ȳ) is an integral optimal solution of the problem (NLP(y, ȳ)),

(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) is also the optimal solution of (MINLP(y, ȳ)), the restriction of (MINLP) over

the bounds (
¯
y, ȳ). In other words, the optimal objective value f(x(

¯
y,ȳ)

, y

(
¯
y,ȳ)) with y

(
¯
y,ȳ)

integral, yields an upper bound of the optimal solution of the generic problem (MINLP).

2.2.3 The generic algorithmic process

As stated before, the Branch & Bound theory lies on the exploration of a tree that depicts a
breakdown of the integer design space. This tree is explored following a process involving the
aforementioned branch and bound tasks, such that the set of feasible solutions of (MINLP)
is not to be entirely explored. In this section is given the generic Branch & Bound process.

Let be Q, named queue, the set of active nodes in the tree. A node is considered as active
when it has not been explored, in the sense that it has neither been branched, nor it has been
pruned during the process. Let define U an upper bound on the optimal solution of (MINLP).
An initialization of the process consists of setting up an upper bound U of the optimal solution
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Algorithm 1 An example of generic Branch & Bound framework
1: initialize U := Œ or best known solution of (MINLP)
2: initialize Q := {(NLP(≠Œ, Œ))}
3: while Q ”= {ÿ} do
4: Pick a node (NLP(y, ȳ)) in Q Û Search strategy
5: Q Ω Q \ {(NLP(y, ȳ))}
6: Select a variable y

(y,ȳ)
i

Û Branch strategy
7: Set ȳ

≠
i

:=
7
y

(
¯
y,ȳ)

i

8
,
¯
y

≠ :=
¯
y and

¯
y

+
i

:=
9
y

(
¯
y,ȳ)

i

:
, ȳ

+ := ȳ

8: children Ω {(NLP(
¯
y

≠
, ȳ

≠)), (NLP(
¯
y

+
, ȳ

+))}
9: for (NLP(

¯
y, ȳ)) among children do

10: Solve (NLP(y, ȳ)) and let its solution be (x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) Û Bound evaluation

11: if (NLP(y, ȳ)) is infeasible then
12: Prune node (infeasible case)
13: else if f(x(

¯
y,ȳ)

, y

(
¯
y,ȳ)) > U then

14: Prune node (dominated)
15: else if y

(
¯
y,ȳ) is integral then

16: Update best known solution :
17: U Ω f(x(

¯
y,ȳ)

, y

(
¯
y,ȳ))

18: (xú
, y

ú) Ω (x(
¯
y,ȳ)

, y

(
¯
y,ȳ))

19: else
20: Q Ω Q fi {(NLP(

¯
y, ȳ))}

21: end if
22: end for
23: end while
24: return x

ú
, y

ú
, f

ú = U .

of (MINLP). Either a value is already known by experience, or the upper bound is set to +Œ.
Also, the queue is set such that it contains only the root node (NLP(≠Œ, Œ)).

The solution tree can now be progressively built. This is first done by picking a node
(NLP(y, ȳ)) in Q following a search strategy, as long as the queue is not empty. At the first
iteration of the algorithm, the picked node is the root node. The algorithm proceeds then to
the branching on the picked node according to a branch strategy, for example the one defined
in the Section 2.2.4.2. For each of the child node NLP(

¯
y, ȳ), the following steps rules are

applied.

The subproblem (NLP(y, ȳ)) is solved. The solution is noted (x(
¯
y,ȳ)

, y

(
¯
y,ȳ)). There are

four possible cases :

• (infeasible node) If (NLP(y, ȳ)) is infeasible, then any descending subproblem in the
tree is also infeasible, by design of the tree. The node can be prune, meaning that the
entire associated subspace can be discarded.

• (dominated node) If the optimal value f(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) of (NLP(y, ȳ)) is dominated by
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the best known solution U so far, then the node can be pruned. Indeed, if the lower
bound f(x(

¯
y,ȳ)

, y

(
¯
y,ȳ)) of (MINLP) is greater than the best known solution, this means

that the subspace does not worth to be explored. Every feasible solution of this node
or its descendant will be greater than the best known solution.

• (integer feasible node) If the solution (x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) is such that y

(
¯
y,ȳ) is integral, and if

f(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)) < U , then the node is a new incubent. The best known solution can be

updated such that U := f(x(
¯
y,ȳ)

, y

(
¯
y,ȳ)), (xú

, y

ú) := (x(
¯
y,ȳ)

, y

(
¯
y,ȳ)). If f(y(

¯
y,ȳ)) > U ,

the integer feasible solution is worst than the best known solution. The node can thus
be discarded.

• (active node) If the current child does not meet any of the aforementioned conditions,
the node is still active. This means that the design sub-space covered by the child node
contains possibly the optimal solution. The node is thus added into the queue, and Q

is updated accordingly.

This ends the current iteration. The next one starts by picking another node in Q, until Q is
empty. The result obtained at the end of the procedure is given by the current upper bound.
It is proved to be a global optimum. The described procedure is detailed in Algorithm 1.

The major advantage of this generic approach lies in the fact that it can be applied to
every combinatorial optimization problem instances (MINLP). The algorithms built on the
basis of this Branch & Bound general scheme are defined by the strategies involved in the
described steps, that are :

• the bound evaluation (Section 2.2.2), thanks to the definition of the evaluation problem
NLP(y, ȳ). It is a key tool in the Branch & Bound theory, since the number of pruned
node is strongly related to the quality of the lower bound.

• the search strategy (Section 2.2.4.1), that drives the choice of the new node to explore.
The e�ciency of the resulting algorithm is also strongly dependent of this heuristics,
since it will influence the order in which the nodes are explored in the tree.

• the branch strategy (Section 2.2.4.2), that is to say the process of spawning subproblems.
One example is given in the Algorithm 1.

The performances of such schemes are highly depending on the way these steps are performed.

2.2.4 On the exploration strategies

During the Algorithm 1, a node among active nodes in the tree has to be selected. In this
Section are detailed some usual strategies that define how a new node to be branched on
is selected. In Section 2.2.1, the concept of a solution tree has been presented. Each node
represents a subproblem of (P) with bounds on some design variables. In this Section, it is
then proposed to detail how these bounds are chosen during the process: this is part of the
branch strategy.
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Figure 2.2: History of the tree structure corresponding to problem (MINLP) with three design
variables, when the complete tree is explored following the Depth First Strategy.

2.2.4.1 The search strategies

The search strategy aims to select a node to branch on. There is no unconditional best strategy
to define the order in which the nodes are picked in the queue Q.

• In the depth first search strategy (Dakin 1965), the node in Q with the largest level
in the tree is chosen for exploration. One of the advantages of this strategy is that it
allows to rapidly reach the bottom of the tree (where all the solutions are integral), and
thus may lead to an update of the upper bound. The Figure 2.3 depicts the exploration
sequence of the entire tree shown in Figure 2.1. The dashed blue arrows follows the
order of the nodes for the given depth first strategy.

• In contrast to depth first strategy, the breadth first search strategy consists in exploring
the tree horizontally. The exploration sequence is illustrated in Figure 2.3. The number
of nodes at each level of the search tree grows exponentially with the level in the tree.
It infeasible to do breadth first search for larger problems.

• Finally, the best first search (Land and Doig 1960) strategy consists in systematically
picking the node in Q with the lowest lower bound. This means that the node in Q

with the highest potential optimum is chosen.

2.2.4.2 The branch strategies

The branch strategy is a rule that defines a way of branching a node. As explained in Section
2.2.1, the subproblems are built by restricting the feasible space of the parent problem. This
is done by adding bounds on the branching variable. The branch strategy encompasses the

28



y1 = 0

y3 = 1

y2 = 0

y3 = 0

y2 = 0

y3 = 1y3 = 1 y3 = 0y3 = 0 y3 = 1

y1 = 1

y2 = 1

y3 = 0

y2 = 1

7
N011

6
N010

3
N000

4
N001

13
N110

14
N111

1
N0

8
N1

0
N

5
N01

2
N00

11
N101

10
N100

9
N10

12
N11

Figure 2.3: History of the tree structure corresponding to problem (MINLP) with three design
variables, when the complete tree is explored following the Breadth First Strategy.

choice of the branching variable and the branching rule that defines the bounds of the sub-
problems. It defines the process of spawning subproblems, through the definition of subspaces.
Therefore, the choice of a branch strategy could have a significant impact on the e�ciency of
the algorithm, since it a�ects the exploration of the tree. An example of a branch procedure
is given hereafter. The steps are also included in the Algorithm 1.

The choice of the branching variable is a key component of the Branch & Bound algo-
rithms. The sequence of branching variables has to be chosen such that the number of nodes
to be explored is as low as possible. Therefore, this directly a�ects the e�ciency of the algo-
rithm. Usually, the branching variable is chosen so that it maximizes the increase in the lower
bound at the child node. Indeed, it o�ers the best chances to compute a new lower bound
that is higher than the upper bound, so that the new node can be pruned. Several strategies
have been presented in the literature, like the maximum fractional branching (Ostrovsky et al.
1990), the strong branching (Applegate et al. 1995), or pseudocost branching (Benichou et al.
1971). It is also possible to branch over a randomly or predefined sequence of variables, if the
problem structure is known beforehand.

Once the branching variable has been selected, the branching rule dictates the decompo-
sition of the problem into subproblems. Usually, the decomposition is performed as follows.
Let name (Â

x,

Â
y) the optimal solution of (NLP(y, ȳ)), with Â

y

b

a fractional value. Let be Â
y

b

the branching variable. The branching of (MINLP(y, ȳ)) is defined such that it outputs two
child nodes. These nodes get two new sets of bounds, defined as follows :

(
¯
y

≠
, ȳ

≠) :=

Y][(
¯
y

k

, ÂÂ
y

k

Ê) if k = b,

(
¯
y

k

, ȳ

k

) otherwise.
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and

(
¯
y

+
, ȳ

+) :=

Y][(ÁÂ
y

k

Ë, ȳ

k

) if k = b,

(
¯
y

k

, ȳ

k

) otherwise.

The resulting nodes are noted (MINLP(
¯
y

≠
, ȳ

≠)) and (MINLP(
¯
y

+
, ȳ

+)).

2.2.5 An example

In order to illustrate the Algorithm 1, it is proposed to describe the steps of the algorithm
applied to the following pure discrete problem, also known as an instance of the knapsack
problem (KP) :

minimize
yœ{0,1}6

J(y) = ≠20y1 ≠ 16y2 ≠ 11y3 ≠ 9y4 ≠ 7y5 ≠ y6

subject to 9y1 + 8y2 + 6y3 + 5y4 + 4y5 + y6 ≠ 12 Æ 0
(KP)

An illustration of the tree at the end of the process is given in Figure 2.4. In this example,
it is proposed to branch on the design variables by following this order : y1, y2, y3, y4, y5,
y6. The restriction (KP(y, ȳ)) of the problem (KP) is defined by

minimize
yœ{0,1}6

J(y) = ≠20y1 ≠ 16y2 ≠ 11y3 ≠ 9y4 ≠ 7y5 ≠ y6

subject to 9y1 + 8y2 + 6y3 + 5y4 + 4y5 + y6 ≠ 12 Æ 0

¯
y Æ y Æ ȳ

(KP(y, ȳ))

At each level of the tree, the nodes are branched in two nodes, (KP(
¯
y

≠
, ȳ

≠)) and (KP(
¯
y

+
, ȳ

+)).
Since the design variables are binary variables, the set of bounds (

¯
y

≠
, ȳ

≠) and (
¯
y

+
, ȳ

+) are
such that in practice it is equivalent, in both corresponding problems, to fix the branched
design variable either to 0 or 1.

The lower bounds are computed by continuous relaxation of the integer variables. For
example, the non-linear restricted problem (NL-KP(y≠, ȳ

≠)) of the problem KP is defined
by

minimize
yœ[0,1]6

J(y) = ≠20y1 ≠ 16y2 ≠ 11y3 ≠ 9y4 ≠ 7y5 ≠ y6

subject to 9y1 + 8y2 + 6y3 + 5y4 + 4y5 + y6 ≠ 12 Æ 0

¯
y Æ y Æ ȳ

(NL-KP(y≠, ȳ

≠))

The process of the Algorithm 1 is now applied to the problem (KP). The discrete variables
are branched in the following order: y1, y2, y3, y4, y5, y6. The tree is explored following a best
first search strategy. First, the upper bound is initialized. It will be assumed that no upper
bound of the optimum is known, thus U := +Œ. It can be noted that in this case, it would
be easy to have an initial guess of an upper bound by finding a feasible solution, for example
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y

i

= 0 ’i œ {1, . . . , 6}. The queue is initialized with the root node : Q := {NL-KP(≠Œ, Œ)}.

At the first level, we pick the only node from Q, and branch on the variable y1. Q is
now empty. The problem (KP) is split into two nodes (KP(

¯
y

≠
, ȳ

≠)) and (KP(
¯
y

+
, ȳ

+)) with
’k œ J1, 6K

(
¯
y

≠
k

, ȳ

≠
k

) :=

Y][(0, 0) if k = 1,

(≠Œ, Œ) otherwise.

and

(
¯
y

+
k

, ȳ

+
k

) :=

Y][(1, 1) if k = 1,

(≠Œ, Œ) otherwise.

Since
¯
y

≠
1 = ȳ

≠
1 = 0 and

¯
y

+
1 = ȳ

+
1 = 1, in practice the branched variable is fixed in both

problems such that y1 = 0 and y1 = 1, respectively. The results of the corresponding non-
linear problems NL-KP(

¯
y

≠
, ȳ

≠), NL-KP(
¯
y

+
, ȳ

+) are such that J(y(
¯
y

≠
,ȳ

≠)) = ≠23.33 and
J(y(

¯
y

+
,ȳ

+)) = ≠26. These values are the lower bounds of the problems (KP(
¯
y

≠
, ȳ

≠)). These
solutions are lower than the best known solution U , meaning that none of the two nodes can
be pruned. The nodes are added to the queue : Q Ω Qfi{NL-KP(

¯
y

≠
, ȳ

≠), NL-KP(
¯
y

+
, ȳ

+)}.
This is the end of the first branch and bound iteration.

The new iteration starts with the selection of a node in Q. According to the best first
strategy, the new node to be selected is the one with the lowest lower bound : ≠26 obtained
when y1 = 1. The second variable y2 is branched, so that selected node is split into two child
nodes (NL-KP(

¯
y

≠
, ȳ

≠)) and (NL-KP(
¯
y

+
, ȳ

+)) with ’k œ J1, 6K

(
¯
y

≠
k

, ȳ

≠
k

) :=

Y__]__[
(1, 1) if k = 1,

(0, 0) if k = 2,

(≠Œ, Œ) otherwise.

and

(
¯
y

+
k

, ȳ

+
k

) :=

Y__]__[
(1, 1) if k = 1,

(1, 1) if k = 2,

(≠Œ, Œ) otherwise.

The fixed design variables are such that y1 = 1, y2 = 0 in the first node, and y1 = 1, y2 = 1
in the second one. The result of the first node is J(y(

¯
y

≠
,ȳ

≠)) = ≠25.5 and the second one has
no feasible solution. The infeasible node is thus pruned, meaning that Q is updated so that
Q Ω Q fi {NL-KP(

¯
y

≠
, ȳ

≠)}.

The same process is repeated 4 times. At this moment, the new child nodes are nodes 11
and 12 in the Figure 2.4). At these nodes, all the design variables are fixed. The associated
lower bounds are ≠20 and ≠21, meaning that at the end of this branch and bound iteration
the upper bound is updated such that U = ≠21. The process continues by the selection of
the node 1 that was still active in Q, until the solution is found at node 21. The optimum
is J

ú = ≠23 with y

ú
1 = y

ú
3 = y

ú
4 = 0 and y

ú
2 = y

ú
5 = y

ú
6 = 0. The algorithm required the
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Figure 2.4: Tree solution of Problem (KP), using a depth first search strategy. The variables
are branched in the following order : x1, x2, x3, x4, x5, x6. The lower bounds are computed
by solving continuous relaxations of Problem (KP).

exploration of 23 nodes, meaning that 23 problems (NL-KP(y≠, ȳ

≠)) have been solved. The
total number of nodes in the tree is equal to 127, while an enumeration of 65 optimizations
would have been required to solve the problem by enumeration.

32



2.3 A B&B formulation for solving a mixed categorical-continuous
structural optimization problem

2.3.1 Problem statement

The mixed categorical-continuous optimization problem (P) is recalled here after :

minimize
cœ�n

,aœRn
w(a, c)

subject to s(a, c) Æ 0
n,m

”(a, c) Æ 0
d

¯
a Æ a Æ ā

(P)

As presented in Section 2.2.2, one of the most common approaches to compute lower bounds
consists of solving a continuous relaxation (NLP(y, ȳ)) of the generated sub-problems (MINLP(y,
ȳ)) in the tree. However, the categorical nominal nature of c is not compatible with a con-
tinuous relaxation. In this section, a branch and bound algorithm that allows to solve the
problem (P) is presented. It is derived from the Branch & Bound theory and adapted to
handle the categorical design variables of the problem (P). In particular, a branch strategy is
presented in Section 2.3.2. A problem dependent relaxation that allows to compute the lower
bound of the subproblem (MINLP(y, ȳ)) is also presented in Section 2.3.3.

2.3.2 A branch strategy

As explained in the Section 2.2.4.2, the branch strategy encompasses the choice of a variable
to be branch on, and the definition of the restriction of the parent node design space. The
design variables that are fixed, level by level in the tree, are chosen on a criteria based on the
engineering judgement. The firsts variables to be fixed are indeed those that correspond to the
(supposed) highest loaded elements. That way, it maximizes the chances of producing nodes
that are dominated by the current upper bound U . Unlike the choice of a branching variable,
the definition of the design space restriction is not case dependent, but driven by the categor-
ical nature of the discrete design variables. As explained in the Section 2.2.4.2, the common
branching process over a node (MINLP(y, ȳ)) produces two subproblems (MINLP(

¯
y

≠
, ȳ

≠))
and (MINLP(

¯
y

+
, ȳ

+)). However, the problem (P) is di�erent from (MINLP) because of the
non-ordered and non-relaxable nature of the categorical design variable. In this adapted
branch strategy, it is proposed to fix the lower and upper bounds of the branched variable to
the same value. In other terms, in each new child node the branched design variable is fixed
to a single value in �. This multiway branching produces, at each branch step, as many child
nodes than the number of available catalogs in �. This multiplies the number of nodes at
each branch step but these can be evaluated in parallel.

The subproblems are mathematically defined as follows. Suppose that the categorical
design variable to branch on is c

b

, with b œ {1, . . . n}. Each child node is uniquely defined by
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an ordered list of values taken by all previously branched variables, in addition to the new
one. This list is noted I, and is built iteratively during the Branch & Bound process. Each
time a new node is built, the new list I relies on the parent node list updated with the value
j œ � of the newly fixed branched variable c

b

= j :

I Ω I fi {j} with j œ �.

Let name (P(I)) the restriction of (P) on I and defined by

minimize
cœ�n

,aœRn
w(a, c)

subject to s(a, c) Æ 0
n,m

”(a, c) Æ 0
d

¯
a Æ a Æ ā

c

k

= I
k

’k œ {1, . . . , |I|}

(P(I))

This means that for all k structural elements for which c

k

is fixed, with k œ {1, . . . , |I|},
all material and shape properties are fixed according to the value of c

k

. The design space of
the problem (P(I)) counts thus n ≠ |I| categorical (free) design variables and n continuous
design variables (the areas). The number of structural elements with a fixed categorical design
variable increases with the depth (|I|) of the node in the tree. The maximum depth of the
tree is equal to the number of categorical design variables, so that |I| Æ n. The maximum
number of nodes is defined by the number of nodes in the full tree, where no node has been
pruned. Noted N

max

, it is given by

N

max

:= 1 + 3 + 9 + · · · + p

n =
nÿ

i=0
p

i = p

n+1 ≠ 1
p ≠ 1 .

At the bottom of this tree (where |I| = n), the sub-problems (P(I)) consists of optimizations
where all categorical components of c are fixed. These sub-problems correspond to a sizing
optimization, that is to say an optimization with respect to the areas only. All the structural
elements are defined in terms of cross-section profile and materials. The maximum number
of leaves in the tree is given by the total number of nodes at the bottom of this tree. Noted
N

enum

, it corresponds to the number of sizing optimizations that would be required to solve
(P) by enumeration:

N

enum

:= p

n

.

2.3.3 The bound step

As explained in Section 2.2.2, the bound step aims to compute a lower bound of a restricted
problem (P(I)) optimum. In general, the lower bound is obtained by solving a continuous
relaxation of the problem (P(I)). It consists of turning the remaining free discrete design
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variables into continuous design variables. In the case of the subproblem (P(I)), the categor-
ical design space � is unordered and non-relaxable. Therefore, the relaxation of (P(I)) is not
as straightforward as the continuous relaxation of (MINLP(y, ȳ)), where the functions are
defined over a continuous space. A specific relaxation problem is thus needed in order to be
able to provide a lower bound of each subproblem in the tree.

First, the categorical nature of � is discussed. To each categorical variable corresponds
a choice of sti�ener profile and material. The choice of a material involves latent physical
material properties. Each of these latent variables is continuous and ordered : the density,
Young modulus, Poisson modulus, stress limits, etc. Actually, the non-ordered nature of the
material choices comes from the fact that there are several material properties. There is no
straightforward norm definition to sort a list of materials, that would have a physical meaning.
However, it is interesting to remark that the computation of the internal forces depends on
(only) one specific property, that is the Young modulus (c.f. Table 1.1).

Relying on this, a specific relaxation problem is proposed. It leverages the continuous
definition of the Young modulus property. In order to address the remaining categorical part
of the design variables, the proposed relaxation problem involves an under-estimation of the
objective and constraint functions. Combined with the continuous relaxation of the Young
modulus, this ensures to provide a lower bound of (P(I)). Here is defined the design space Â�
:

Â� =
#
E

min

, E

max

$
,

that is a continuous design set bounded by the minimum and maximum Young modulus
values (E

min

and E

max

, repectively) of all the materials available through all choices in � :Y][E

min

= min{E(c) ’c œ �} (E
min

œ R)

E

max

= max{E(c) ’c œ �} (E
max

œ R).

In other words, Â� is a continuous relaxation of � over only one latent variable, that is the
Young modulus. No other description of any material nor sti�ener property is included intoÂ�n, meaning that the other missing components will need to be introduced through new
definitions of the functions involved in the optimization problem. First, the function Â

w that
computes the weight depends only on the areas a and is given by :

Â
w(a) =

Y__]__[
fl

min

q
n

k=1 a

k

L

k

, if |I| = 0q|I|
k=1 a

k

fl(I
k

)L
k

+ fl

min

q
n

k=|I|+1 a

k

L

k

, if 1 Æ |I| < nq
n

k=1 a

k

fl(I
k

)L
k

, otherwise.

with I
k

the k

(th) element of the list I. For the k structural elements for which the categorical
variable is fixed to I

k

, the density is set to fl(I
k

). The density of the other elements is fixed
to the minimum density fl

min

, in order to ensure that the weight computed by Â
w(a) is always

lower than the weight computed by w(a).
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In the stress constraints definition, similarly, the material properties and quadratic mo-
ments involved in the limit stress definitions are fixed to the most appropriate value (their
maximum value). In facts, the stress limits on undetermined structural elements are defined
so that original constraints s

kj

are always stronger than their relaxation Â
s

kj

for j œ {1, . . . , 4}.
The relaxed stress constraints definitions are given hereafter, with k œ {1, . . . , n} :

Â
s

k1(a, E) :=

Y__]__[
�

k

(a, E)
a

k

≠ ‡

t(I
k

), if k Æ |I|
�

k

(a, E)
a

k

≠ ‡

t

max

, otherwise

Â
s

k2(a, E) :=

Y__]__[
�

k

(a, E)
a

k

≠ ‡

c(I
k

), if k Æ |I|
�

k

(a, E)
a

k

≠ ‡

c

max

, otherwise

Â
s

k3(a, E) :=

Y___]___[
�

k

(a, E)
a

k

≠ fi

2
E(I

k

)I(a
k

, I
k

)
a

k

L

2
k

, if k Æ |I|

�
k

(a, E)
a

k

≠ fi

2
E

max

I

max

(a
k

)
a

k

L

2
k

, otherwise

Â
s

k4(a, E) :=

Y___]___[
�

k

(a, E)
a

k

≠ 4fi

2
E(I

k

)K2(I
k

)
12(1 ≠ ‹

2(I
k

)) , if k Æ |I|

�
k

(a, E)
a

k

≠ 4fi

2
E

max

K2
max

12(1 ≠ ‹

2
max

) , otherwise.

In the case of the constraint on displacements, the replacement of the categorical design
variable by the Young Modulus is the only change in the function ”. The constraints on
displacements are given by :

”(a, E) := P u(a, E) ≠ ū.

The relaxed optimization problem (rP(I)) of the problem (P(I)) is thus given by

minimize
EœÂ�n

,aœRn

Â
w(a, E)

subject to Â
s(a, E) Æ 0

m,n

Â
”(a, E) Æ 0

d

¯
a Æ a Æ ā,

E

k

= E(I
k

) ’k œ {1, . . . , |I|}.

(rP(I))

with |I| the number of elements in I. This optimization problem is a full continuous opti-
mization problem that yields a lower bound of the corresponding subproblem (P(I)). This
problem can be e�ciently solved by a gradient based algorithm.

Despite this advantage, the following remark concerning this relaxation formulation has
to be noted. Indeed, a solution of the problem (rP(I)) corresponding to a discrete Young
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modulus selection (not an intermediate one) is not necessary a solution of (P(I)). Indeed, this
is due to the inconsistency between the material design variables that are the Young moduli,
and the definition of the limit stresses and the densities of the free structural elements. For
example, let be (a(I)

, E

(I)) the solution of the problem (rP(I)). Let suppose that (a(I)
, E

(I))
is such that the Young modulus value of the k

th element is equal to E

k

(j) with j œ �. There
is no guarantee that the same catalog j verifies fl(j) = fl

max

, ‡

t(j) = ‡

t

max

, ‡

c(j) = ‡

c

max

,
‹(j) = ‹

max

, I(a(I)
k

, j) = I

max

(a(I)
k

), and K(j) = K
max

. As a consequence, a solution
(a(I)

, E

(I)) such that the Young moduli E

(I) of all structural elements correspond to existing
values E(c) with c œ �n, is rarely a solution of (P(I)). In other words, the chances to update
the upper bound U when a solution corresponds to discrete values of Young moduli is found
are reduced, when compared to the usual branch and bound algorithms that involve trivial
continuous relaxations (as presented in Section 2.2.5), without changing the definition of the
problem functions. However, when the categorical design space is entirely fixed (i.e., at the
bottom of the tree when |I| = n), the (fixed) categorical design variables noted c

(I) and
defined by

c

(I)
k

:= I
k

(’k œ {1, . . . , n})

are such that (a(I)
, c

(I)) is the optimum solution of (P(I)). Indeed, in this case all the
categorical design variables are fixed, and the problems (P(I)) and (rP(I)) are equivalent.

2.3.4 The search strategy

In practice, the definition of the search strategy is strongly dependent to the structure of the
problem. In the case of the mixed categorical-continuous structural optimization problem
(P), it can be noted that during the bound step all the areas are involved in each evaluation
problem (rP(I)). In practice, it has been observed that the evaluation problems almost always
admit a feasible solution, thanks to the areas. Indeed, the optimal areas tend to balance the
e�ects of a potential under-optimal categorical fixed choice, so that the optimal solution
remains feasible. This means that in practice, the pruning rule based on the evaluation
problem solution feasibility will not be useful in the case of (P). Of course, under-optimal
fixed choices are responsible of large optimal areas values, such that the resulting optimal
weight is increased as well. Hence, the remaining helpful pruning rule consists of updating
the upper bound U as often as possible. By doing so, the chances to get dominated nodes are
improved. The proposed search strategy is thus build according to these remarks. It consists of
a depth first search strategy combined with a best first search strategy as described hereafter.
The node picked in the queue is indeed chosen according to two criteria. The node is chosen
so that it has the highest level value |I| in the tree. However, due to the multiway-branching
strategy, there are at least p nodes that are on the same level. Thus, the picked node is chosen
so that its lower bound is the lowest, among all the nodes with the same highest level value.
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2.3.5 The algorithmic process

The Branch & Bound algorithm proposed process adapted to the problem (P) is described
in the Algorithm 2. It follows the main steps of the generic branch and bound algorithm
example given in Algorithm 1. However, the branch strategy has been adapted, as described
in Section 2.3.2, as well as the bound step given in Section 2.3.3 and the search strategy in
Section 2.3.4.

Let be Q the set of active nodes in the tree. Let define U an upper bound of the optimal
solution of (P). An initialization of the process consists of setting up an upper bound U of
the optimal solution of (P). Either a value is already known by experience by a designer, or
the upper bound is set to +Œ. Also, the queue is initialized such that it contains only the
root node (rP({ÿ})).

The solution tree can now be progressively built. This is first done by picking up a node
(rP(I)) in Q following the search strategy detailed in the Section 2.3.4, as long as the queue
is not empty. At the first iteration of the algorithm, the picked node is the root node where
no categorical design variable has been fixed. The algorithm proceeds then to the branching
on the picked node according to the branch strategy defined in the Section 2.3.2. It outputs
p child nodes that are (rP(I fi {1})), . . . , (rP(I fi {p})). For each of the p child nodes, the
following steps rules are applied.

The subproblem (rP(I)) is solved. The solution is noted (a(I)
, E

(I)). There are four
possible cases :

• (infeasible node) If (rP(I)) is infeasible, then any descending subproblem in the tree is
also infeasible, by design of the tree. The node can be prune, meaning that the entire
associated subspace can be discarded.

• (dominated node) If (rP(I)) is feasible and the optimal value Â
w(a(I)

, E

(I)) of (rP(I)) is
dominated by the best known solution U so far, then the node can be pruned. Indeed,
if the lower bound Â

w(a(I)
, E

(I)) of (P) is greater than the best known solution, this
means that the subspace does not worth to be explored. Every feasible solution of this
node or its descendant will be greater than the best known solution.

• (fixed node) If the node is such that all the categorical choices are fixed (if |I| = n), and
if Â

w(a(I)
, E

(I)) < U , then the node is a new incubent. The best known weight can be
updated such that U := Â

w(a(I)
, E

(I)), obtained with the following optimal areas and
choices (aú

, c

ú) := (a(I)
, c

(I)) with c

(I)
k

:= I
k

(’k œ {1, . . . , |I|}).

• (active node) If the current child does not meet any of the aforementioned conditions,
the node is still active. This means that the design sub-space covered by the child node
contains possibly the optimal solution. The node is thus added into the queue, and Q

is updated accordingly.

This ends the current iteration. The next one starts by picking another node in Q, until Q is
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empty. The result obtained at the end of the procedure is given by the current upper bound.
It is proved to be a global optimum, as soon as the relaxation problems are solved to global
optimality. The described procedure is detailed in Algorithm 2.

Algorithm 2 An example of generic Branch & Bound framework
1: initialize U := Œ or best known solution of (P)
2: initialize I := {ÿ}, Q := {rP(I)}
3: while Q ”= {ÿ} do
4: Pick a node (rP(I)) in Q Û Search strategy
5: Q Ω Q \ {rP(I)}
6: Select a variable c

b

, with b œ {|I|, . . . , n} Û Branch strategy
7: children Ω {rP(I fi {1}), . . . , rP(I fi {p})}
8: for every (rP(I)) among children do
9: Solve (rP(I)) and let its solution be (a(I)

, E

(I)) Û Bound evaluation
10: if (rP(I)) is infeasible then
11: Prune node (infeasible case)
12: else if Â

w(a(I)
, E

(I)) > U then
13: Prune node (dominated)
14: else if |I| = n then
15: Update best known solution :
16: c

(I)
k

:= I
k

(’k œ {1, . . . , |I|})
17: U Ω w(a(I)

, c

(I))
18: (xú

, c

ú) Ω (a(I)
, c

(I))
19: else
20: Q Ω Q fi {rP(I)}
21: end if
22: end for
23: end while
24: return x

ú
, y

ú
, w

ú Ω U .

2.4 Implementation details and comparison solvers

Algorithm 2 has been implemented using the Generic Engine for MDO Scenarios (GEMS)
(Gallard et al. 2018) in Python. The tool o�ers an e�cient way to implement and test multi-
level formulations, with built-in classes that facilitate optimization problems manipulations
(Gallard et al. 2019). Adapted post processing have also been implemented, including graph-
ical representations of the solution tree step by step during the optimization. The continuous
optimization problems are solved with the Method of Moving Asymptotes (MMA) (Svanberg
2002). In what comes next, the resulting implementation of Algorithm 2 will be called the
hybrid branch and bound, in reference to the fact that it can handle both categorical design
variables and continuous design variables. It will be noted h-B&B.

Two solvers will be compared to h-B&B. First, a baseline solver where we proceed an
exhaustive enumeration of continuous optimizations w.r.t. a taken at every available choice
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F = 200 kN

1 2 3

Figure 2.5: A 3-bar truss structure where a downward load F = 200 kN is applied on the
free node.

in �n, the obtained solution by this solver will be denoted as Baseline. Second, a Genetic
algorithm (Deb and Goyal 1998) using the implementation given by Distributed Evolutionary
Algorithms in Python (DEAP) (Fortin et al. 2012). This solver will be referred by Genetic in
our comparison tests. Due to the stochastic nature of Genetic, the obtained results (for this
solver) will be displayed as the average of ten runs.

In all what comes next, the computation e�ort of a given solver will be measured by
counting the number of structural analyses (noted #FEM) including those required by the
computation of the gradients (when needed). The obtained optimal weights (by each solver)
will be noted w

ú, the latter will allow us to evaluate the quality of the optima found by
each solvers. We note also that in our setting, the Baseline solution can be seen as the best
known categorical choices for the regarded problem. Thus, in this context, it is important
to evaluate how far the categorical choices (obtained by the tested solvers) from the Baseline
optimal choices are. This information will be given using the Hamming distance (noted d

h

)
where we will count the number of structural elements that has an optimal choice di�erent
to the Baseline categorical choices.

2.5 Numerical results

In the present section, the proposed methodology will be applied to two di�erent test cases,
that are the well-known 10-bar truss structure (Haftka and Gürdal 1992), and a 2D cantilever
structure (Shahabsafa et al. 2018). In order to evaluate the scalability of the methodology
with respect to the number of structural elements, the 2D cantilever structure is made scalable
by varying the number of blocks.

2.5.1 A step by step example: a 3-bar truss structure

To illustrate how the h-B&B method works, we will now describe in detail its application to a
simple 3-bar truss structure depicted in Figure 2.5. For this problem, each element can take
a value among three possible choices that respectively point to materials AL2024, AL2139,
TA6V and the same “I”-profile (see Figure 1.3). The materials properties are listed in Table
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Figure 2.6: A solution tree of the 3-bar truss categorical-continuous optimization problem
with 3 catalogs. The categorical variables are branched following the order [c1, c2, c3]. The
blue arrows follow the evaluation order of the nodes.

2.1. For this simple case, one has n = 3, p = 3, and � = {1, 2, 3}. For all elements, the lower

AL2139 AL2024 TA6V
Density (kg/mm

3) 2.8 10≠6 2.77 10≠6 4.43 10≠6

Young modulus (MPa) 7.1 104 7.4 104 11.0 104

Poisson coe�cient (≠) 0.3 0.33 0.33
Tension allow. (MPa) 1.5 102 1.6 102 11.0 102

Compression allow. (MPa) 2.0 102 2.1 102 8.6 102

Table 2.1: Numerical details on materials attributes.

and upper bounds on areas are respectively fixed to 100 mm

2 and 2000 mm

2. The initial
areas are fixed to the upper bound values, as detailed in Table 2.2. A maximum downward
displacement equal to 1 mm is allowed on the only free node of the structure.

Each node of the solution tree corresponds to a relaxation problem of the 3-bar instance
of the restriction problem (P(I)). Each relaxation problem is given by:

minimize
EœÂ�3

,aœR3
Â
w(a, E)

subject to Â
s(a, E) Æ 0

m,n

Â
”(a, E) Æ 0

d

¯
a Æ a Æ ā,

E

k

= E(I
k

) ’k œ {1, . . . , |I|}.

(r-3P(I))

with I the set of values of the fixed categorical design variables.
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(a) Lower and upper bounds w.r.t. the number
of problem evaluations

(b) Statistics on the lower bounds computed at
each tree level.

(c) Evolution of the number of nodes in the
solution tree.

(d) Number of pruned nodes in the tree that
have not been branched.

Figure 2.7: The convergence history of the branch and bound Algorithm 2, on a 3-bar truss
instance problem with 3 catalogs.

The ordered list of branching variables is set to : [c1, c2, c3], that are the categorical design
variables describing material and shape of the structural elements 1, 2 and 3 respectively. The
queue Q is initialized with the node (r-3P(I)), with I = {ÿ}. We assume that there is no prior
knowledge of a feasible solution to the problem. The upper bound is thus fixed to infinity.
The solution tree is now progressively built. It is possible to follow the tree generation in
Figure 2.6 thanks to the node creation order, given by the first number in each circle. The
optimization history is depicted on Figure 2.7.

The first iteration consists first of taking the only node in Q (Q is now empty). The first
branching variable is c1. The categorical variable is fixed successively to 1, 2 and 3, such
that I = {1}, I = {2}, I = {3}, respectively. This corresponds to the nodes 1, 2 and 3
(respectively) in the Figure 2.6. The lower bounds of these three new nodes are obtained by
solving the relaxation problem instances (rP(I)). Their values are 5.67 kg, 5.66 kg, 5.86 kg,
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¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 2.2: Bounds on areas, and initial areas
values of the 3-bar truss optimization case.

respectively. There is a feasible solution for each of these evaluation problems, and each of
these lower bound values is lower than the current upper bound (initialized to infinity). The
three nodes are thus flagged as active nodes and added in the queue.

The second iteration begins, we proceed to the next branching and bounding steps. Fol-
lowing the depth first and best first search strategy detailed in section 2.3.4, the best of the
three nodes of the highest level (|I| = 1) in the tree is taken from the queue. Since the best
node is the one that returned the best (lowest) lower bound, the node 2 (I = [2]) is the node
that will be explored. It is removed from Q. The second branching variable is c2. Again,
the newly fixed categorical variable c2 is fixed successively to 1, 2 and 3, while c1 = 2 : this
corresponds to the nodes 4, 5 and 6, where I = {2, 1}, I = {2, 2}, I = {2, 3} (respectively).
The corresponding computed lower bound values are 12.79 kg, 11.99 kg, 8.59 kg. There is
a feasible solution for each of these evaluation problems, and the lower bound value is lower
than the current upper bound (initialized to infinity). The three nodes are thus flagged as
active nodes and added in the queue, that counts the nodes 1,3,4,5,6.

The third iteration begins, we proceed to the next branching and bounding steps. The
best lower bound of the level 2 in the tree is returned by the node 6 (I = [2, 3]) that is the
next node to explore. The third branching variable is c3. The newly fixed categorical variable
c3 is fixed successively to 1, 2 and 3, while c1 = 2 and c2 = 3 : This corresponds to the nodes
7, 8 and 9, where I = {2, 3, 1}, I = {2, 3, 2}, I = {2, 3, 3} (respectively). Since this is the
last level in the tree, at these nodes all the categorical design variables are fixed. This means
that in the restriction problem and the evaluation problem, the areas are the only remaining
design variables. The solutions of these node are thus upper bounds of the optimal solution
of (P). The corresponding computed upper bound values are 8.635 kg, 8.627 kg, 8.82 kg. The
best known solution is thus returned by the node 9, with I = {2, 3, 2}. The (current) optimal
categorical choices are thus given by c

ú = c

I = [2, 3, 2], and the upper bound is updated such
that U = 8.627 kg. None of the newly created nodes 7, 8 and 9 are stored in Q, since it is
not possible to split their design space (|I| = 3).

A first solution has thus be found, as expected since this is the first time that all the
categorical variables are fixed, and provided that the upper bound was initialized to Œ.
However, there are still active nodes in the queue, meaning that potential better solutions
are still to be found. Among these active nodes, the nodes 4 and 5 are the next candidates.
However, since they are dominated by the current best solution, they are discarded. A new
node is picked, the node 1, and new child nodes are evaluated. The same process is repeated
over all the remaining nodes in Q until Q is empty.

At the end of the process, the optimum found is c

ú = [2, 3, 2], with an optimal weight
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that is w

ú = 8.627 kg. In the Figure 2.7a, is depicted the upper bound evolution during the
process. It can be seen that the upper bound is unchanged after the 9th problem evaluation
(root node 0 included). In the Figure 2.7c, one can see gaps in the evolution of the number
of remaining nodes to be explored, and the number of pruned nodes. This corresponds to the
removal of the dominated nodes once the upper bound has been updated. Since 7 nodes have
been discarded at a level 2 in the tree, the exploration of 3 ◊ 7 = 21 nodes was spared. This
is displayed in the Figure 2.7d, where we can see the number of pruned nodes that were not
needed to be explored. In the Figure 2.7c, it can also be seen that 19 nodes (including the
root node) were explored, meaning that 19 optimizations were needed to end the algorithm.
This has to be compared to the 28 optimizations that would be required to solve the problem
(P) by enumeration of sizing optimizations. Finally, in the Figure 2.7b one can see the value
of the lower bounds obtained per level in the tree. These values have to be compared to the
optimal weight 8.63 kg. Indeed, it indicates that the lower bounds computed at the level 2
are higher than the optimum. In our case, the level 2 corresponds to restrictions where the
design variable c2 is fixed. This provides an interesting information, because it may help at
refining the branch strategy. Indeed, it could mean that branching first on the variable c2
(instead of c1) would accelerate the convergence of the branch and bound algorithm.

For the purpose of this example, the same optimization is thus performed with the only
chance in the order of the branching variables : [c2, c1, c3]. The computation cost is indeed
reduced since the number of explored nodes falls to 13. The solution tree is smaller, as seen
in Figure 2.8. The e�ciency of this new ordering of the branching variables can be observed
in the Figure 2.9. In Figure 2.9b, it can be remarked that the lower bounds at the first level
of the tree depicted in the Figure 2.8 are such that they are above the optimal weight. Thus,
once the node 7 reached, the upper bound is updated and the 2 nodes at the first level of the
tree are pruned. This is at the origin of the step visible in Figure 2.9c, on the green curve for
example. On the Figure 2.9d, one can see that since 2 nodes have been branched and pruned
at the first level of the tree, 2 ◊ 3 nodes are discarded at the second level of the tree, and
2 ◊ 3 ◊ 3 at the bottom of the tree (among the 21 pruned nodes mentionned in the plot).

2.5.2 A 10-bar truss structure

The 10-bar truss problem is illustrated Figure 3.3. A downward load F = 200 kN is applied
vertically on the free node N

”

. A constraint on displacements is applied on the same node.
Five cases with di�erent bounds values ū on displacements are considered. For each of these
cases, the displacements constraint is applied on node N

”

. Catalogs 1 and 2 point to materials
AL2139 and TA6V, respectively. Materials properties are listed in Table 2.1. In this case,
n = 10 and p = 2, � = {1, 2}. The bounds on areas, and initial areas are fixed as detailed in
Table 2.4.

The results of the proposed methodology (h-B&B) are thus compared to the global optima
obtained with Baseline (obtained by enumeration), and with the results returned by Genetic
algorithm as shown in Table 2.3. In all these cases, the optima obtained with h-B&B and
Baseline (obtained by enumeration) are identical. This means that the h-B&B, in these
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Figure 2.8: A solution tree of the 3-bar truss categorical-continuous optimization problem
with 3 catalogs. The categorical variables are branched following the order [c2, c1, c3]. The
blue arrows follow the order of the evaluations.

Table 2.3: Results of 10-bar truss mixed optimization with 5 di�erent values of constraint on
displacements. Comparison between the the Baseline solutions obtained by enumeration of the
210 continuous optimizations, h-B&B, and the Genetic algorithm. The catalog 1 corresponds
to material AL2139 and catalog 2 to TA6V.

ū (mm)
Baseline h-B&B Genetic

c

ú
w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg)

-22 [2,2,1,1,1,2,2,1,2,1] 12.988 0 12.988 0 13.283
-20 [2,1,1,1,1,1,2,1,1,1] 13.996 0 13.996 0 14.423
-19 [2,1,1,1,1,1,2,1,1,1] 14.570 0 14.570 0 14.802
-18 [1,1,1,1,1,1,1,1,1,1] 15.175 0 15.175 2 15.642
-17 [1,1,1,1,1,1,1,1,1,1] 15.912 0 15.912 3 16.258

cases, provides the global solution. On the other hand, the weights returned by the Genetic
algorithm are greater than the optimal weight found by the h-B&B approach.

As an example, it is proposed to analyse the convergence history of the case with a bound
on displacements ū = ≠22 mm, displayed in the Figure 2.11. The maximum number of nodes
in the tree is equal to 2047 (N

max

), and the number of nodes that correspond to optimizations
with all categorical variables fixed (N

enum

) is 1024. In Figure 2.11a, one can see that the
optimum is found after 21 nodes evaluations, meaning that all the next 84 optimizations until
the h-B&B is converged only serve to prove that there is no better solution. In Figure 2.11c,
one can see that 10 nodes have been discarded at the level 4 in the tree. Nodes pruned at this
low level value in the tree highly contribute to the e�ciency of the algorithm, since it means
that a subspace of 5 ◊ (210≠4≠1 ≠ 1) = 310 solutions in �10 are automatically discarded.
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(a) Lower and upper bounds w.r.t. the number
of problem evaluations

(b) Statistics on the lower bounds computed at
each tree level.

(c) Evolution of the number of nodes in the
solution tree.

(d) Number of pruned nodes in the tree that
have not been branched.

Figure 2.9: The convergence history of the branch and bound Algorithm 2, on a 3-bar truss
instance problem with 3 catalogs.
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Figure 2.10: 10-bar truss, seen as a scalable 2D cantilever problem with 2 blocks.
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¯
a 100 mm

2

ā 1300 mm

2

aini 1300 mm

2

Table 2.4: Bounds on areas, and initial areas
values of the 10-bar truss optimization case.

¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 2.5: Bounds on areas, and initial areas values of
the 2D cantilever truss optimization case.

2.5.3 A scalable 2D cantilever problem

The objective of this test case is to describe the evolution of the computation cost with respect
to the number of structural elements. This case can be seen as a generalization of the well-
known 10-bar truss structure (Haftka and Gürdal 1992). It has been used in the literature
to demonstrate the scalability of algorithms, for example in (Shahabsafa et al. 2018). The
structure is made scalable by varying the number of blocks. Each block is composed of 4 nodes
that are linked by 5 bars. An example of scalable 2D cantilever structure with 3 blocks is
given in Figure 3.4. In Table 3.7 are presented the results obtained with structures composed
of 1 to 10 blocks. In all cases, a downward load F = 30 kN is applied on the node N

”

. The
bounds on areas, and initial areas are fixed as detailed in Table 2.5.

For each of the 10 cases, the results obtained by the h-B&B are compared to those obtained
with reference solutions (Baseline) when available, and with Genetic). When optimizations
last more than 24 hours, the solver Baseline or h-B&B is stopped and the current solution
(if exists) is marked by (*). First, for cases with 5 to 15 bars where a reference solution is
available, it can be observed the global solution is found by the h-B&B. For cases with 15 to
50 bars, the solutions obtained by h-B&B are compared to those obtained by Genetic solver
only. In these cases, all the solutions returned by h-B&B are better than those obtained by
Genetic solver. In particular, for the cases 35 to 50, even given the fact that the h-B&B was
stopped before the end of the process, the returned optimal weights are better than those
obtained by Genetic.

The trends in terms of computational cost with respect to the number of elements are
graphically represented in Figure 2.13. In terms of computational cost, one can remark that
the h-B&B requires less computational e�ort to converge to a solution for cases with 5 to 25
bars than Genetic. However, the computational cost of h-B&B for cases with more than 25
elements is dominates the computational cost of Genetic solver.



(a) Lower and upper bounds w.r.t. the number
of problem evaluations

(b) Statistics on the lower bounds computed at
each tree level.

(c) Evolution of the number of nodes in the
solution tree.

(d) Number of pruned nodes in the tree that
have not been branched.

Figure 2.11: The convergence history of the branch and bound Algorithm 2, on a 10-bar truss
instance problem with 2 catalogs.
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Figure 2.12: An example of 2D cantilever problem with 3 blocks.
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Figure 2.13: Scalability of the h-B&B w.r.t. the number of elements. The compu-
tational cost’s scaling of h-B&B with respect to the number of bars is exponential
like the Genetic solver. For cases lower than 25 elements, the computational cost of
h-B&B is lower than Genetic solver. However, the computational cost’s scaling of
the h-B&B prevents from obtaining a solution for cases greater than 25 elements.

2.6 Conclusion

The proposed methodology allows to find the optimum of the mixed categorical-continuous
structural optimization problem (P) in a finite number of steps. The methodology relies on
a general Branch & Bound framework, where specific steps of branching and bounding have
been proposed in order to tackle the non-relaxable and non-ordered nature of the categorical
design variables. The branching step consists of fixing one of the remaining free categorical
design variables to each available choice of material and sti�ening principle. This multiway
branching outputs as many nodes than there are available choices in the categorical design
space. Then the output nodes need to be evaluated (the bound step), in the sense that a
lower bound of their solution is computed. The categorical nature of the remaining free de-
sign variables prevents from using the common evaluation strategy, which is the continuous
relaxation. This is why the formulation of a relaxation problem dedicated to the problem (P)
has been proposed. The proposed relaxed problem is a full continuous optimization problem,
where the objective and constraints functions underestimate the functions of the original op-
timization problem (P). This ensures that the evaluation of a node is a lower bound of the
original problem. Furthermore, the relaxed problem can be e�ciently solved by a gradient-
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#bars Baseline h-B&B Genetic

w

ú(kg) d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM

5 2.56 0 2.56 10 1004 0 2.57 32 32300
10 6.06 0 6.06 26 3097 1 6.14 54 54500
15 10.23 0 10.23 95 10907 2 10.27 65 65200
20 † † 15.33 135 10315 † 15.59 73 73100
25 † † 21.36 1199 610347 † 22.06 98 97700
30 † † 28,30 4432 723388 † 28.84 129 128800
35 † † 36, 17(ú) 5793(ú) 1096968(ú) † 37.00 189 189400
40 † † 44, 97(ú) 5570(ú) 939726(ú) † 45.64 270 269800
45 † † 54, 70(ú) 4181(ú) 818455(ú) † 55.98 347 346800
50 † † 65, 35(ú) 4316(ú) 717627(ú) † 67.48 561 561200

Table 2.6: A comparison of the obtained solutions for 10 instances of the scalable 2D cantilever
problem are compared, with a varying number of bars (from 5 to 50 bars). We note that when
optimizations last more than 24 hours, the solver (Baseline, h-B&B) is stopped and the current
solution (if exists) is marked by (ú). When reference solutions (Baseline) are not available,
optimal weights are noted by †, as well as the distances d

h

to these solutions.

based algorithm. The solutions of the proposed Branch & Bound methodology show that,
in low-dimension cases where reference solutions exist, the optimal solution is found. The
obtained solutions are also compared to those obtained by a state-of-the-art genetic solver.
The comparison show that the optima found by the proposed methodology are equivalent
of better than those obtained by the genetic algorithm. In terms of computational cost, the
genetic algorithm requires more evaluations than the proposed algorithm in the presented
low dimension test cases. However, for structures with more than 25 structural elements, the
computational cost of the methodology is very high when compared to the genetic approach.
It is shown that the exponential trend of the computational cost prevents from using the pro-
posed methodology to solve large scale industrial optimizations. Finally, it has been remarked
that the firsts optimal solutions obtained during the optimizations by the Branch & Bound
approach are often either close to the optimal solution, or equal to the optimal solution. In
the aforementioned test cases, most of the computational e�ort of the Branch & Bound serves
at proving that one of the firsts solution is indeed the optimal one.
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In this Chapter, the following items have been discussed:

• The proposed algorithm relies on the well-known Branch & Bound framework,

• In order to handle the categorical (non-ordered non-relaxable) design variables, a
multiway branching has been proposed,

• In addition, a relaxed problem definition has been proposed, that allows to compute
the optimal weight lower bound of the original problem,

• The relaxed problem is a pure continuous optimization problem, that can be e�-
ciently solved by gradient-based optimization algorithms,

• Under the hypothesis that the objective and constraint functions of these relaxed
problems are convex, the optima obtained by the proposed Branch & Bound algo-
rithm the exact ones,

• The obtained numerical solutions are equal to the available reference solutions ob-
tained by enumeration,

• The computational cost of the proposed methodology is lower than the reference
algorithm (genetic algorithm) for low dimension problems,

• The computational cost of the algorithm prevents from solving large scale optimiza-
tion problems.
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Chapter 3

A bi-level framework using a first
order-like approximation
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Résumé

Dans le chapitre précédent a été présentée une méthode capable de résoudre le problème
d’optimisation de structure à variables catégorielles et continues. Bien que cette méthode
présente l’avantage de fournir des solutions optimales, le coût de calcul semble prohibitif
pour des applications industrielles. Il est donc proposé dans ce chapitre un algorithme
s’appuyant sur une approximation du problème d’origine de façon à limiter le temps de
calcul.

Dans ce chapitre, la méthodologie proposée est basée sur une décomposition multi-
niveau. Cette décomposition fait intervenir deux problèmes optimisation, l’un au niveau
inférieur et l’autre au niveau supérieur. Dans le problème du niveau inférieur, les variables
catégorielles sont fixées et l’optimisation est réalisée par rapport aux variables continues
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uniquement. Ce problème peut ainsi être résolu e�cacement en s’appuyant sur des algo-
rithmes basés sur le gradient. Le problème d’optimisation du niveau supérieur consiste à
minimiser le résultat de l’optimisation au niveau inférieur par rapport aux variables caté-
gorielles. Ainsi, la complexité du problème d’origine est concentrée au niveau supérieur.
Afin de casser cette complexité, il est proposé de minimiser une approximation au premier
ordre du résultat de l’optimisation du niveau inférieur, et non directement le résultat du
niveau inférieur.

Bien que cet algorithme ne soit couvert par aucune preuve d’optimalité, les expéri-
mentations numériques montrent que les solutions obtenues sont identiques à celles de
référence, lorsqu’elles sont disponibles, comme le montre la Table 3.7. De plus, on ob-
serve sur la Figure 3.5 que l’évolution du coût de calcul en fonction du nombre d’éléments
structuraux est quasiment linéaire par rapport à l’algorithme h-B&B ainsi que l’algorithme
Genetic. Un problème treillis 120 barres avec 4 catalogues est résolu grâce à cette formu-
lation.

3.1 Motivations

The main motivation of the work presented in this Chapter relies on the conclusions on the
previously described h-B&B algorithm. Indeed in Chapter 2 has been presented an algorithm
derived from the Branch & Bound theory, that can solve the mixed categorical continuous
structural optimization problem (P). The numerical tests revealed that the methodology
was competitive for low scale problems when compared to the genetic algorithm. Since the
algorithm relies on the Branch & Bound theory, it converges in a finite number of steps to the
optimum of the problem (P). However, the scaling of the computational cost prevents from
using such algorithm to solve large scale problems instances. This is why a new methodology
with a reduced computational cost is now presented.

In this Chapter, the proposed methodology is based on a multilevel decomposition. The
problem is indeed formulated using a bi-level decomposition involving master and slave prob-
lems. Like the Branch & Bound, it consists of breaking up of the original problem into smaller
sub-problems. The continuous design variables are handled by the slave problem, where the
categorical variables are driven by the master. The latter consists of solving a first order-like
approximation of the slave problem with respect to the categorical design variables. The aim
of multilevel optimization is twofold. First, it allows to overcome the complexity of the origi-
nal problem by solving smaller subproblems. Second, depending on the decomposition, these
subproblems can be solved in parallel. When implemented in the mixed optimization context
of (P), this helps to drastically reduce the combinatorial explosion raised by the categorical
variables. Furthermore, the master problem is driven by a first order like approximation in
order to reduce the computational cost.

This Chapter is organized as follows. In Section 3.2, we describe the problem formulation,
the physical model involved, and the links with the design variables. In Section 3.3, the bi-level
decomposition and the approximation at the upper level are presented. Finally, the accuracy
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of the optimum and the scalability of the proposed approach are compared with state-of-the-
art algorithms in Section 3.5. Concluding remarks will be given in the last Section.

3.2 Problem definition

The problem tackled in this Chapter is formulated as follows:

minimize
cœ�n

,aœRn
w(a, c) (P)

subject to s(a, c) Æ 0
n,m

”(a, c) Æ 0
d

¯
a Æ a Æ ā

where
¯
a œ Rn and ā œ Rn are the lower and upper bounds on areas, respectively. The

objective and constraints are continuously derivable with respect to the continuous design
variables a.

3.3 Methodology

3.3.1 Decomposition

For a given c, let �(c) be the set of feasible constraints given by

�(c) := { a œ Rn;
s(a, c) Æ 0

m,n

;
”(a, c) Æ 0

d

;

¯
a Æ a Æ ā }.

An e�cient way to solve pure continuous optimization problems is by taking advantage of
gradient based algorithms. In the problem introduced in Section 3.2, it can be seen that
by fixing (temporarily) the categorical variables in (P), the problem becomes a continuous
optimization problem, parameterized with c. This means that given c, the weight w can be
minimized with respect to the continuous design variables, that are the areas a subject to �(c).
This leads to the following slave problem, that reduces to a structural sizing optimization
problem (sP):

�(c) := min
aœ�(c)

w(a, c). (sP)

The structure of the problem is such that this remaining optimization problem becomes more
tractable. In fact, the decomposition leverages the use of the gradients (with respect to a)
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of the objective and constraints to solve (sP). This is the main motivation in handling the
continuous variables separately from the categorical ones. In our approach, the categorical
variables will be handled by a master problem (mP) of the form

min
cœ�n

�(c), (mP)

where �(c) is being the result of the slave Problem (sP).

The slave Problem (sP) takes these complicating variables as parameters while optimizing
with respect to continuous design variables. This follows the generalized Benders decomposi-
tion in (Geo�rion 1972), initially designed to handle linear optimization problems in (Benders
1962). For given choices of materials and cross-sectional types for all elements, the continuous
optimization will be performed using a gradient based method. The obtained result from this
optimization can be seen as a function �(c) which is parameterized by the categorical choices.
Namely, �(c) corresponds to the optimal weight of the slave problem knowing the categorical
variables c. This function is then taken as the objective of the master optimization Problem
(sP). Although the slave problem can be easy to handle using gradient-based algorithm, the
di�cult part remains in the master problem. In fact, the (mP) problem is a large-scale cat-
egorical optimization problem, that usual metaheuritic algorithms fail to solve e�ciently. In
this work, we propose to consider, at the master level, the minimization of an approximated
model �̂(c) instead of �(c), so that the combinatorial can be reduced drastically.

For that sake, we use the following iterative scheme: given an iteration (k), the master
problem (mP) of the bi-level formulation reduces to the following :

c

(k+1) := argmin
cœ�n

�̂
k

(c) (amP)

where �̂
k

is a given approximation function of � at the iteration (k) that depends locally on
the previous iteration. Such problem will be called the approximation master mixed Problem
(mP) at iteration (k). At each iteration (k) of the algorithm, instead of �, an approximation
function �̂

k

is minimized with respect to the global variable c.

Let call a

(k) the optimal areas obtained by solving Problem (sP) for given choices c

(k) :

a

(k) := argmin
aœ�(c(k))

w(a, c

(k)).

Let also w

(k) be the optimal weight returned by the evaluation of the weight function taken
at a

(k)
, c

(k), i.e.,

w

(k) := w(a(k)
, c

(k)).

The termination criterion is based on the stationarity of the optimal weights, i.e., |w(k+1) ≠
w

(k)| Æ ‘ for a given small ‘ > 0. However, there will be no guarantee that a weight decreases
lower than ‘ during the optimization process. A possible way to ensure such decrease would
be proving that the proposed algorithm converges to a fixed point w

ú independently of the
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starting point. Proving this issue in the general case would require imposing a decrease on
the weight sequence {w

(k)} over the iterations. In Section 3.3.4, an heuristic is proposed to
handle that by further exploration of the design space.

The generic process of the proposed iterative scheme is given in Algorithm 3.

Algorithm 3 A generic Bi-level framework
1: initialize c

(0)and set k = 0
2: while a termination criteria is not reached do
3: Step 1 c

(k+1) Ω argmin �̂
k

(c) s.t c œ �n

4: Step 2 a

(k+1) Ω argmin w(a, c

(k+1)) s.t. a œ �(c(k+1))
5: Increment k

6: end while
7: return a

(k+1), c

(k+1), and w

(k+1) Ω w(a(k+1)
, c

(k+1)).

3.3.2 On the approximation �̂
k

The problem (amP3) involves a number of categorical choices combinations that increases
exponentially (pn) with the number of catalogs and structural elements. In this subsection,
we target to propose an approximation �̂

k

to the function � so that one can reduce the
resulting problem complexity. In fact, we propose to solve an approximation �̂

k

by using a
first order approximation of �. The expression of the approximation �̂

k

around the categorical
variable c

(k) is given by:

�̂
k

(c) = �(c(k)) +
nÿ

i=1

��
�c

i

-----
c

(k)

(c
i

≠ c

(k)
i

), (3.1)

where the scalar value �c

i

denotes the perturbation of the i

th component of c starting from
c

(k), ��
�c

i

----
c

(k)
œ R model the rate of the � function taken at c

(k) after a perturbation �c

i

.

The term ��
�c

i

----
c

(k)
is computed as follows :

��
�c

i

-----
c

(k)

= �(c(k) + �c

i

e

i

) ≠ �(c(k))
�c

i

, (3.2)

with e

i

a vector of size n where the i

th component is equal to 1 and 0 everywhere else.

We note that the term �c

i

has no physical meaning and, due to the categorical nature of
the set �, there is no straightforward neighborhood definition. This prevents from choosing
c

i

so that c

i

≠ c

(k) is close to the perturbation �c

i

used to compute the rate ��
�c

i

----
c

(k)
. To

overcome this issue, we propose to set the perturbation �c

i

equal to c

i

≠ c

(k)
i

. In this case,
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combining (3.1) and (3.2), one gets

�̂
k

(c) = �(c(k)) +
nÿ

i=1

3
�(c(k) + �c

i

e

i

) ≠ �(c(k))
4

. (3.3)

Equation (3.3) verifies, in the trivial case where the structure is composed of one element
(n = 1), that the approximation �̂

k

(c) is equal to �(c), for every c

(k) +�c

i

e

i

in �. Knowing
�c

i

= c

i

≠ c

(k)
i

, the term c

(k) + �c

i

e

i

is equal to c

(k) except that the i

th component which
is equal to c

i

.

Physically, the approximation (3.1) suggests that the e�ects of the couplings between the
categorical variables on the optimized weight solutions of (sP), can be neglected. The block
diagonally dominance property of the stress constraints jacobian with respect to the material
properties and quadratic moments makes this approximation relevant. This property has
been largely used in the literature in the frame of structural sizing problems, as in (Haftka
and Gürdal 1992; Haftka and Watson 2005; Haftka et al. 2006; Bettebghor 2011; Grihon 2018;
Bettebghor et al. 2018) to cite a few. However, a break down of the categorical variables as
proposed in the Quasi Separable Decomposition scheme (Haftka and Watson 2005) in the
frame of sizing variables, is not investigated here. The categorical variables are taken as
design variables in the master problem (mP) only. The same remark applies for the areas,
that are optimized in the slave problem only. In the proposed approach, the quasi-separable
property is leveraged through the result of the areas optimizations in (sP). It is worth to note
that the couplings between the elements are still partially impacting the optimizations thanks
to the optimized areas, solutions of (sP). Elements are not optimized independently, since at
each change of categorical variable, a sizing of the whole structure is performed.

3.3.3 On the minimization of �̂
k

In the previous section, it was proposed to substitute the expression of � with the approx-
imation �̂

k

when solving the master level problem (amP). Since �(c(k)) is constant, the
minimization of (3.3) according to Step 1 of the Algorithm 3 is equivalent to :

’i œ {1, ..., n}, min
ciœ�

�
1
c

(k) + (c
i

≠ c

(k)
i

)e
i

2
.

Indeed, the approximated master problem (amP) can be written as a number of n inde-
pendent categorical optimizations (sP). This reduces drastically the combinatorial explosion,
i.e., instead of minimizing over �n we get n minimizations but only over the space �. This is
a crucial point of the proposed methodology. In fact, at each iteration (k) of the algorithm,
the first order like assumption of the model �̂

k

makes the combinatorial of problem (mP)
drop from p

n to n ◊ (p ≠ 1) combinations of choices.

Namely, in Step 1 of the Algorithm 3, the current categorical choices c

(k+1) :=
Ë
c

(k+1)
1 , . . . , c

(k+1)
n

È
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is given by solving the following approximated master problem:

c

(k+1)
1 := argmin

c1œ�
�

1Ë
c1, c

(k)
2 , . . . , c

(k)
n

È2
,

for i œ {2, . . . , n ≠ 1}:

c

(k+1)
i := argmin

ciœ�
�

1Ë
. . . , c

(k)
i≠1, ci, c

(k)
i+1, . . .

È2
, (amP2)

and

c

(k+1)
n := argmin

cnœ�
�

1Ë
c

(k)
1 , . . . , c

(k)
n≠1, cn

È2
.

Each of these n optimizations is solved by enumeration of all the remaining values that
can take c

i

over �. This means that at each iteration (k) of the algorithm, � is evaluated
n ◊ (p ≠ 1) times to build a new solution c

(k+1). All these evaluations can be performed in
parallel. The results of all the optimal weights computed during this enumeration process
will be stored in a matrix W

(k), i.e.,

(’i œ {1, . . . , n}) c

(k+1)
i

= argmin
jœ�

W

(k)
ij

. (amP3)

A detailed view of the resulting Bi-level process is given in Fig. 3.1.

As described in Algorithm 3, each iteration (k) counts two main steps. Step 1 consists to
build a new solution c

(k+1). Physically, for every change of material and cross-section type of
one element in the structure, a sizing optimization is performed. The new categorical choice
of the current element is chosen such that the corresponding optimal weight (with respect
to the continuous variables) is the lowest one. This process is repeated for each of the n

elements, in parallel. In Step 2, the materials and cross-section types of every elements are
updated with the new categorical variables. A sizing optimization is then performed, leading
to a new optimal weight.

However, in practice the first order approximation (3.3) can be responsible of convergence
issues during the optimization : an increase in the optimized weight could be observed from
an iteration to the next one. For cases where this situation occurs, it is proposed to apply
a strategy that iteratively builds a new solution based on information stored in W

(k). The
proposed strategy is detailed in the next section.

3.3.4 A strategy to ensure weight decrease

As only a first order like approximation of � is used, the coupling between the structural
elements through the categorical variables are neglected. This may be responsible of conver-
gence issues as the obtained optimal weight at the current iteration w

(k+1) may be greater
than the previous optimal weight w

(k). In the context of continuous optimization, adaptive
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strategies based on step-size control are typically used (e.g., line search, trust-region methods)
(Ivanov and Zadiraka 1975). However, in the context of categorical optimization, the use of
such strategy is not straightforward anymore due to the lack of a neighborhood definition.

In order to fix this convergence issue observed on some cases, the following iterative
strategy is proposed. At a given iteration (k), the proposed process is triggered if the new
optimal weight w

(k+1) candidate is higher than the previous one w

(k). It can be seen as an
additional third step that would be introduced in Algorithm 3.

For each iteration (k) such that w

(k+1) candidate is higher than the previous one w

(k),
we activate the following iterative strategy starting form c

(k+1). Let (t
k

) denotes the outer
iteration number of the proposed strategy related to the k

th iteration of Algorithm 3. At each
iteration (t

k

) of the strategy, a new categorical solution c

(tk) will be built. The first step of
the process consists to retrieve the element number i

tk and corresponding choice j

tk of the t

th

best weight in W

(k), i.e.,
i

tk , j

tk := argmin
(i,j)œJ1,nK◊J1,pK\Ftk

W

(k)
,

where F
tk denotes the set of indices i, j of all iterations anterior to t

k

. The new candidate
solution c

(tk) is given by

c

(tk) := [c(tk≠1)
1 , . . . , c

(tk≠1)
itk

≠1 , jtk , c

(tk≠1)
itk

+1 , . . . , c

(tk≠1)
n ].

Once �(c(tk)) is evaluated, the corresponding optimal weight w is compared to w

(k) on the
following way: if the new optimal weight is found lower than w

(k), then the candidate solution
c

(tk) becomes the new c

(k+1). The process stops and goes back to the main algorithm with
the new optimal solution of iteration (k + 1). Algorithm 4 gives a detailed description of the
proposed strategy.

Note that another possible decrease strategy would consist to repeat Step 1 by changing
only one structural element. In other words, from an iteration (k) to (k + 1), one would
change only one categorical variable. In this case, equation (3.3) would lead to �(c) = �̂(c),
meaning that the weight decrease would be ensured by minimization of �̂. However, in
practice the weight decrease has shown to be lower compared to the weight decrease obtained
by Algorithm 4.

3.4 Implementation details and comparison solvers

Algorithm 3 has been implemented using the Generic Engine for MDO Scenarios (GEMS)
(Gallard et al. 2018) in Python. The tool o�ers an e�cient way to implement and test multi-
level formulations, with built-in classes that facilitate optimization problems manipulations
(Gallard et al. 2019). The continuous optimization problems (i.e., evaluations of �) are solved
with the Method of Moving Asymptotes (MMA) (Svanberg 2002). In what comes next, the
resulting implementation of Algorithm 3 will be called Bi-level.
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Algorithm 4 A proposed weight decrease strategy
1: function decrease_strategy(w(k)

, c

(k+1)
, W

(k))
2: c

(0) Ω c

(k+1) and set t

k

= 0
3: while F

tk ”= J1, nK ◊ J1, pK do
4: i

tk , j

tk Ω argmin
(i,j)œJ1,nK◊J1,pK\Ftk

W

(k)

5: c

(tk) Ω [c(tk≠1)
1 , . . . , c

(tk≠1)
itk ≠1 , j

tk , c

(tk≠1)
itk +1 , . . . , c

(tk≠1)
n

]
6: a

(tk+1) Ω argmin w(a, c

(tk+1)) s.t. a œ �(c(tk+1))
7: w

(tk+1) Ω w(a(tk+1)
, c

(tk+1))
8: F

tk+1 Ω F
tk fi {(i

tk , j

tk)}
9: if w

(tk)
< w

(k) then
10: break
11: end if
12: increment t

k

13: end while
14: c

(k+1) Ω c

(tk)

15: a

(k+1) Ω a

(tk)

16: w

(k+1) Ω w

(tk)

17: return w

(k+1)
, a

(k+1)
, c

(k+1)

18: end function

Three solvers will be compared to Bi-level. First, a baseline solver where we proceed an
exhaustive enumeration of continuous optimizations w.r.t. a (Problem sP) taken at every
available choice in �n, the obtained solution by this solver will be denoted as Baseline. Sec-
ond, a hybrid branch and bound (Algorithm 2, noted h-B&B), where one uses a relaxation
procedure combined with a branch and bound algorithm. Similarly to Bi-level,h-B&B uses
the MMA method to solve the slave problem. Under the assumption that these problems are
convex with respect to the sizing variables a, Baseline and h-B&B return the global optimum
of the overall problem. The third solver used in the comparison is a Genetic algorithm (Deb
and Goyal 1998) using the implementation given by Distributed Evolutionary Algorithms in
Python (DEAP) (Fortin et al. 2012). The latter solver will be referred by Genetic in our com-
parison tests. Due to the stochastic nature of Genetic, the obtained results (for this solver)
will be displayed as the average of ten runs.

In all what comes next, the computation e�ort of a given solver will be measured by
counting the number of structural analyses (noted #FEM) including those required by the
computation of the gradients (when needed). The obtained optimal weights (by each solver)
will be noted w

ú, the latter will allow us to evaluate the quality of the optima found by
each solvers. We note also that in our setting, the Baseline solution can be seen as the best
known categorical choices for the regarded problem. Thus, in this context, it is important
to evaluate how far the categorical choices (obtained by the tested solvers) from the Baseline
optimal choices are. This information will be given using the Hamming distance (noted d

h

)
where we will count the number of structural elements that has an optimal choice di�erent
to the Baseline categorical choices.
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3.5 Numerical results

In the present section, our proposed methodology will be applied to three di�erent test cases:
(i) the well-known 10-bar truss structure (Haftka and Gürdal 1992), (ii) a 2D cantilever
structure (Shahabsafa et al. 2018), and (iii) a 120-bar dome truss structure (Saka and Ulker
1992). In order to evaluate the scalability of the methodology with respect to large number
of structural elements, the 2D cantilever structure is made scalable by varying the number of
blocks. The third test case is included to evaluate the capability of handling more complex
structures.

3.5.1 A step by step example: a 3-bar truss structure

To illustrate how the Bi-level method works, we will now describe in detail its application to
a simple 3-bar truss structure. For this problem, each element can take a value among three
possible choices that respectively point to materials AL2139, AL2024, TA6V and the same
“I”-profile (see Fig. 1.3). The materials properties are listed in Table 3.1. For this simple

AL2139 AL2024 TA6V
Density (kg/mm

3) 2.8 10≠6 2.77 10≠6 4.43 10≠6

Young modulus (MPa) 7.1 104 7.4 104 11.0 104

Poisson coe�cient (≠) 0.3 0.33 0.33
Tension allow. (MPa) 1.5 102 1.6 102 11.0 102

Compression allow. (MPa) 2.0 102 2.1 102 8.6 102

Table 3.1: Numerical details on materials attributes.

case, one has n = 3, p = 3, and � = {1, 2, 3}. For all elements, the lower and upper bounds
on areas are respectively fixed to 100 mm

2 and 2000 mm

2. The initial areas are fixed to the
upper bound values, as detailed in Table 3.2. A maximum downward displacement equal to
1 mm is allowed on the only free node of the structure.

During the application of the Bi-level method, the initialization of c is such that :

c

(0) = [1, 2, 3] , w

(0) = 13.82 kg.

The first iteration (i.e. k = 1) of the Bi-level method can be described as follows: first, the

¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 3.2: Bounds on areas, and initial areas
values of the 3-bar truss optimization case.
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initialize c

(0) and set w

(0) = �(c(0))

Step 1

W

(k)
ij

= �
!
[. . . , c

(k)
i≠1, j, c

(k)
i+1, . . . ]

"’j œ �

W

(k)
1j

= �
!
[j, . . . , c

(k)
n≠1, c

(k)
n

]
"’j œ �

W

(k)
nj

= �
!
[c(k)

1 , . . . , c

(k)
n≠1, j]

"’j œ �

c

(k+1)
1 = argmin

jœ�
W

(k)
1j

c

(k+1)
i

= argmin
jœ�

W

(k)
ij

c

(k+1)
n

= argmin
jœ�

W

(k)
nj

w

(k+1) = �(c(k+1))

Step 2

w

(k+1)
> w

(k)

decrease strategy

yes

no

w

(k+1)
< w

(k) ≠ ‘no
increment k

c

(k+1) and w

(k+1)

yes

Figure 3.1: Illustration of the proposed methodology.

F = 200 kN

1 2 3

Figure 3.2: A 3-bar truss structure where a downward load F = 200 kN is applied on the
free node.
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j = 1 j = 2 j = 3

i = 1
c

(0) [ 2 , 2, 3] [ 3 , 2, 3]
W

(0)
11 = w

(0)
W

(0)
12 = 13.62 W

(0)
13 = 13.92

i = 2
[1, 1 , 3] c

(0) [1, 3 , 3]
W

(0)
21 = 14.85 W

(0)
22 = w

(0)
W

(0)
23 = 8.83

i = 3
[1, 2, 1 ] [1, 2, 2 ] c

(0)

W

(0)
31 = 13.74 W

(0)
32 = 13.53 W

(0)
33 = w

(0)

Table 3.3: Enumeration of the n ◊ (p ≠ 1) = 6 perturbed categorical variables (circled com-
ponents) at first iteration, with the corresponding optimal weight in (kg).

optimization problems (given by (amP2)) are solved by enumeration of the evaluation of �
for all values in �. Both categorical choices and corresponding optimal weights are given in
Table 3.3.

As described in problems (amP2), the vector of categorical variables at the first iteration
is composed of the values in � corresponding to the best weights given in Table 3.3, element
per element. For example, c

(1)
1 = argmin

jœ�
W

(0)
1j

= 2. The new optimal vector of categorical

variables c at iteration k = 1 is thus c

(1) = [2, 3, 2], leading to an optimal weight w

(1) =
8.63 kg. After this first iteration, the optimal weight drops from 13.82 kg to 8.63 kg.

According to Algorithm 3, the same steps (that are not detailed) are executed in the next
iteration k = 2. The same categorical vector solution is found, leading to the same optimal
weight. Since a stationarity of the optimal weight is reached, the method stops. Using the
Baseline method (by enumerating evaluations of (sP) over the space �3), we find that the best
solution is indeed equal to c

(1).

3.5.2 A 10-bar truss structure

This well-known low-dimensional 10-bar truss problem (Haftka and Gürdal 1992) allows to
solve the mixed categorical-continuous optimization problem by enumeration or hybrid branch
and bound (h-B&B) (Barjhoux et al. 2018b). As explained in subsection 3.4, these approaches
provide global solutions, that are taken as reference solutions to evaluate quality solutions of
the Bi-level algorithm.

The 10-bar truss problem is illustrated Fig. 3.3. A downward load F = 100 kN is applied
vertically on node N

”

. A constraint on displacements is applied on the same node. Five cases
with di�erent bounds values ū on displacements are considered. For each of these cases, the
displacements constraint is applied on node N

”

. Catalogs 1 and 2 points to materials AL2139
and TA6V, respectively. Materials properties are listed in Table 3.1. In this case, n = 10 and
p = 2, � = {1, 2}. The upper and lower bounds on areas, and initial areas values, are fixed
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F = 100 kN

l l

l

1 2

6

43

5
7

8

9

10

N

”

Figure 3.3: 10-bar truss, seen as a scalable 2D cantilever problem with 2 blocks.

Table 3.4: Results of 10-bar truss mixed optimization with 5 di�erent values of constraint on
displacements. Comparison between the Bi-level, the Baseline solutions obtained by enumer-
ation of the 210 continuous optimizations, h-B&B, and the Genetic algorithm. The catalog 1
corresponds to material AL2139 and catalog 2 to TA6V.

ū (mm)
Baseline h-B&B Genetic Bi-level

c

ú
w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg)

-22 [2,2,1,1,1,2,2,1,2,1] 12.988 0 12.988 0 13.283 0 12.988

-20 [2,1,1,1,1,1,2,1,1,1] 13.996 0 13.996 0 14.423 0 13.996

-19 [2,1,1,1,1,1,2,1,1,1] 14.570 0 14.570 0 14.802 0 14.570

-18 [1,1,1,1,1,1,1,1,1,1] 15.175 0 15.175 2 15.642 0 15.174

-17 [1,1,1,1,1,1,1,1,1,1] 15.912 0 15.912 3 16.258 0 15.912

as detailed in Table 3.5.

The results of the proposed methodology (Bi-level) are thus compared to the global optima,
as shown in Table 3.4. In all these cases, the optima obtained with Baseline (obtained by
enumeration), h-B&B the Bi-level approaches are identical. This means that the Bi-level, in
these cases, provides the global solution. On the other hand, the weights returned by the
Genetic algorithm are greater than the optimal weight found by the Bi-level approach.
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¯
a 100 mm

2

ā 1300 mm

2

aini 1300 mm

2

Table 3.5: Bounds on areas, and initial areas
values of the 10-bar truss optimization case.

F = 30 kN

l l l

l

1 2 3
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15
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”

Figure 3.4: An example of 2D cantilever problem with 3 blocks.

Figure 3.5: Scalability of the Bi-level w.r.t. the number of elements. The
exponential computational cost’s scaling of Bi-level with respect to the
number of bars is quasi-linear, compared to the exponential computational
cost of the h-B&B and Genetic solvers. The computation cost’s scaling of
the h-B&B prevents from obtaining a solution for cases greater than 25
elements.
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¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 3.6: Bounds on areas, and initial areas values of
the 2D cantilever truss optimization case.

3.5.3 A scalable 2D cantilever problem

The objective of this test case is to describe the evolution of the computation cost with respect
to the number of structural elements. This case can be seen as a generalization of the well-
known 10-bar truss structure (Haftka and Gürdal 1992). It has been used in the literature
to demonstrate the scalability of algorithms, for example in (Shahabsafa et al. 2018). The
structure is made scalable by varying the number of blocks. Each block is composed of 4
nodes that are linked by 5 bars. An example of scalable 2D cantilever structure with 3 blocks
is given in Figure 3.4. The bounds on areas, and initial areas are fixed as detailed in Table 3.6.
In Table 3.7 are presented the results obtained with structures composed of 1 to 10 blocks.
In all cases, a downward load F = 30 kN is applied on the node N

”

.
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#bars
Baseline h-B&B Genetic Bi-level

w

ú(kg) d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM

5 2.56 0 2.56 10 1004 0 2.57 32 32300 0 2.56 2 400
10 6.06 0 6.06 26 3097 1 6.14 54 54500 0 6.06 2 792
15 10.23 0 10.23 95 10907 2 10.27 65 65200 0 10.23 4 1955
20 † † 15.33 135 10315 † 15.59 73 73100 † 15.33 2 1659
25 † † 21.36 1199 610347 † 22.06 98 97700 † 21.36 3 3142
30 † † 28,30 4432 723388 † 28.84 129 128800 † 28.30 8 10522
35 † † 36, 17(ú) 5793(ú) 1096968(ú) † 37.00 189 189400 † 36.19 3 5830
40 † † 44, 97(ú) 5570(ú) 939726(ú) † 45.64 270 269800 † 44.97 7 13577
45 † † 54, 70(ú) 4181(ú) 818455(ú) † 55.98 347 346800 † 54.71 4 8531
50 † † 65, 35(ú) 4316(ú) 717627(ú) † 67.48 561 561200 † 65.34 6 14487

Table 3.7: A comparison of the obtained solutions for 10 instances of the scalable 2D cantilever problem are compared, with a varying
number of bars (from 5 to 50 bars). We note that when optimizations last more than 24 hours, the solver (Baseline, h-B&B) is stopped
and the current solution (if exists) is marked by (ú). When reference solutions (Baseline) are not available, optimal weights are noted
by †, as well as the distances d

h

to these solutions.



¯
a 100 mm

2

ā 1300 mm

2

aini 1300 mm

2

Table 3.8: Bounds on areas, and initial areas values of
the 120-bar truss optimization case.

For each of the 10 cases, the results obtained by the Bi-level are compared to those obtained
with reference solutions (Baseline & h-B&B) when available. First, for cases with 5 to 30
elements where a reference solution is available, it can be observed the global solution is
found by the Bi-level. For cases with more than 30 elements, the optima found by the Bi-level
are slightly better than those obtained by the Genetic algorithm. The h-B&B solutions are
noted with (*) since they are intermediate solutions : the solver has been stopped after 24
hours. The Bilevel solutions are very close (di�erence of 10≠2 kg) to those obtained by the
h-B&B. Furthermore, the number of analyses required by Bi-level is always lower than the
number of those needed by the compared approaches. The trends in terms of computational
cost with respect to the number of elements are graphically represented in Fig. (3.5). The
cost of the Genetic algorithm dominates the cost of h-B&B and Bi-level. The scaling of the
Bi-level approach is nearly linear when compared to the h-B&B and Genetic approach. The
observed e�ciency makes the proposed approach relevant for higher dimensional problems.

3.5.4 120 bars truss

In this example, the structure of a 120-bar dome truss (Saka and Ulker 1992) is considered
and described Figure (3.6). In this case, n = 120 and p = 4, � = {1, 2, 3, 4} There is no
grouping of elements, meaning that the design space counts 120 categorical design variables
and 120 continuous design variables. For each element, the categorical variable can take a
value among 4 catalogs, that point to combinations of I and C-profiles with materials AL2139
and AL2024. Materials properties are listed in Table 3.1. The structure is subjected to an
active constraint on displacements : a maximum downward displacement of 10 mm is allowed.
A downward load of 60 kN is applied on node 1, while a downward load of 30 kN is applied
on nodes 2 to 13 and 10 kN on nodes 14 to 37. The bounds on areas, and initial areas are
fixed as detailed in Table 3.8.

The graphical solution obtained by the Bi-level algorithm is displayed on Fig. (3.7). To
each categorical choice is associated a color on the structure. The continuous variables are
qualitatively illustrated by the size of each truss element. The solution found by the algorithm
shows that a number of two catalogs in � have been selected. A list of optimal choices and
areas for each element is given in Table 3.9. On elements 1 to 12 and 25 to 48, the catalog
4 is the optimal one : AL2024 with C-profile. For the other elements, the optimal choice
is the catalog 3 : AL2024 with I-profile. Thus for the entire truss, the sti�est and lightest
material has been selected. Euler buckling constraints applied to elements 49 to 96 are active.
The optimal choice for these elements is thus confirmed by the fact that the area moment
of inertia of the I-profile is higher than the C-profile. The material with the highest Young
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Figure 3.6: Top and side view a 120-bar truss structure. Downward loads with three di�erent
magnitudes are applied.

bars a [mm

2] c [≠]

1-12 4553,6 4
13-24 1800,1 3
25-48 2313,0 4
49-72 745,6 3
73-96 589,9 3
97-108 1609,0 3
109-120 1109,2 3

Table 3.9: Solution of 120-bar truss mixed categorical-continuous optimization.

modulus has been selected for the entire truss. This is in accordance with the fact that the
other active constraint is the global constraint on displacements. The Genetic algorithm has
been applied on this case with settings adapted to the problem scale. However, it was not
able to find a feasible region.
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3.6 Conclusions

The proposed methodology is an e�cient heuristic algorithm to handle large scale instances of
the categorical-continuous structural weight minimization problem (P). It consisted of using
a bi-level decomposition involving two problems: master and slave. The master problem was
driven by a first order like-approximation, this made it possible to reduce drastically the
combinatorial exploration cost raised by the categorical design space. Once the categorical
decisions are driven by the master problem, the continuous variables are handled by the
slave problem using a gradient-based approach. Using the proposed implementation, one
was able to find the exact solutions on low-dimensional cases. Furthermore, on larger test
cases, the scaling of our method revealed to be quasi-linear with respect to the number of
structural elements. Particularly, the proposed approach allowed us to solve problems that
are very hard to solve with standard algorithms. The proposed methodology o�ers thus an
interesting compromise between the quality of the results, the computational e�ort and the
ease of implementation. Compared to the Branch & Bound based algorithm presented in
Chapter 2, the main drawback of the proposed algorithm is that there is no mathematical
proof that the solution found is the exact solution.

In this Chapter, the following items have been discussed:

• The original mixed categorical-continuous optimization problem is reformulated as
a bi-level optimization problem,

• Categorical design variables are handled at the master level,

• In the proposed algorithm, the master problem consists of minimizing a first order
approximation of the slave problem result,

• The numerical tests show that the same solutions than enumeration and Branch &
Bound algorithms are found for the 10-bar truss cases,

• The scaling of the computational cost with respect to the number of structural
elements is quasi-linear,

• A 120-bar truss case with 4 catalogs is solved (4120 possible configurations),

• The numerical tests show that the algorithm o�ers an interesting compromise be-
tween the output weight value and the computational cost.
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Figure 3.7: Top view of the 120-bar truss mixed categorical-continuous optimization result.
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Chapter 4

An outer approximation framework
using post-optimal sensitivities
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Résumé

Deux nouveaux algorithmes ont été présentés dans les chapitres précédents. L’un se base
sur une approche arborescente, garantissant l’optimalité mais dont l’e�ort de calcul est
prohibitif pour des applications industrielles. L’autre s’appuie sur une décomposition bi-
niveau et une approximation au premier ordre de la masse optimale du niveau inférieur,
permettant de limiter le coût de calcul.

Dans ce chapitre, il est proposé un troisième algorithme, tirant parti des conclusions
des chapitres précédents, tout en essayant de concilier preuve d’optimalité avec coût de
calcul limité. Tout d’abord, une reformulation continue (BP) du problème d’optimisation
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d’origine est proposée:

minimiser
BœCn,p

,aœRn
Â
w(a, B)

soumis à Â
s(a, B) Æ 0

n,mÂ
”(a, B) Æ 0

d

¯
a Æ a Æ ā

B

ij

(B
ij

≠ 1) = 0 ’(i, j) œ J1, nK ◊ J1, pK.

(BP)

où B est une matrice de coe�cients continus à valeurs comprises entre 0 et 1. Chaque
ligne de la matrice décrivant un choix catégoriel, la somme des termes sur chacune de
ces lignes doit être égale à un. Naturellement, le résultat de l’optimisation doit être tel
que chacun de ces coe�cient doit être égal à 0 ou 1, dans la mesure où des valeurs in-
termédiaires n’ont aucun sens physique. Ceci est garanti par l’algorithme proposé. Les
fonctions objectifs Â

w, et contraintes Â
s et Â

”, sont des versions continues des fonctions du
problème d’origine. La même décomposition bi-niveau que celle exposée dans le chapitre
précédent a été employée, à l’exception que le niveau supérieur traite à présent les vari-
ables discrètes B remplaçant c. Le niveau supérieur est donc purement discret. On
propose ici d’employer l’algorithme Outer Approximation (OA) (Duran and Grossmann
1986; Fletcher and Ley�er 1994) dans sa version purement discrète pour résoudre ce
problème supérieur. Dans cet algorithme, les approximations au premier ordre ne sont
pas exploitées en tant que direction de descente comme dans l’algorithme du chapitre
précédent, mais utilisées pour réaliser des coupes dans l’espace de design. Sous réserve de
convexité du problème, la solution retournée par l’algorithme est optimale. Egalement,
au lieu de calculer les approximations au premier ordre par énumération, la définition
continue du problème d’optimisation permet d’o�rir un cadre su�sant couvert par la
théorie des calculs de sensibilités par pénalisation détaillée dans (Fiacco 1976).

Les expérimentations numériques montrent que les solutions obtenues sont identiques
à celles de référence, lorsqu’elles sont disponibles, comme le montre la Table 4.4. De plus,
on observe sur la Figure 4.5 que l’évolution du coût de calcul en fonction du nombre
d’éléments structuraux est quasiment linéaire par rapport à l’algorithme h-B&B ainsi
que l’algorithme Genetic. On observe également sur la Figure 4.6 que le coût de calcul
est quasiment insensible à l’évolution du nombre de catalogues disponibles par variables
catégorielles. Ainsi les performances de l’algorithme rendent possible la résolution d’un
problème treillis 120 barres avec 90 catalogues disponibles par variable catégorielle, soit
une combinatoire totale de 90120 configurations possibles de treillis en termes de choix
de matériaux et raidisseurs. Ce problème a été résolu en 58 optimisations continues, la
solution étant optimale d’après les preuves théoriques fournies. Il est également important
de noter que la solution optimale est obtenue dès la 5ème optimisation continue, et donc
que les 53 optimisations suivantes ne servent qu’à apporter la preuve que cette solution
est optimale.
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4.1 Introduction

In this chapter, a new methodology is proposed to solve the mixed categorical-continuous
optimization problem (P). This methodology relies on the conclusions of the previous two
chapters. In Chapter 2, it has been shown that the hybrid Branch & Bound based approach
(h-B&B) is costly in terms of the number of calls to the finite elements model. The exploration
cost grows exponentially with the number of elements and categorical choices, preventing from
using this algorithm to solve large scale problem instances. However, the method ensures,
under the hypothesis that the continuously relaxed subproblems are convex, that the solution
is the optimum. In Chapter 3, the computational cost of the proposed bi-level methodology
(Bi-level) is quasi-linear with respect to the number of structural elements. The computa-
tional cost is also lower than h-B&B and allows to solve medium scale problems. The Bi-level
o�ers an interesting compromise between the quality of the solution, the computational cost,
provided the simplicity of the methodology. However the Bi-level method is defined as an
heuristic. There is no proof that the solution is the optimum. Additionally, even with a
quasi-linear computational cost and a parallelization of the sub-optimizations at each outer
iteration, the method still requires large computing ressources.

The algorithms that solve mixed integer non-linear problems can be sorted into two classes.
In the first one, there are the tree-based methods like the branch and bound (Dakin 1965;
Gupta and Ravindran 1985) and branch and cut (Stubbs and Mehrotra 1999), which re-
quires to solve a large number of non-linear sub-problems. The second class of algorithms
called multi-tree algorithms decomposes the MINLP into an alternating sequence of NLP
sub-problems and MILP relaxations. At each outer iteration of a multi-tree method, a MILP
relaxation of the original problem is solved by a tree-based approach. The Outer Approxima-
tion algorithm (Duran and Grossmann 1986; Fletcher and Ley�er 1994; Bonami et al. 2008;
Grossmann 2009), generalized Benders decomposition (Geo�rion 1972), as well as extended
cutting-plane method (Westerlund and Pettersson 1995) belong to the multi-tree class. Ac-
cording to (Li and Sun 2006; Kronqvist et al. 2019; Nowak 2005), Outer Approximation is one
of the most e�cients algorithms that can solve MINLP problems. The Outer Approximation
is introduced in (Duran and Grossmann 1986), and was dedicated to solve problems where
the involved functions are separable in the continuous and discrete variables, and linear with
respect to the (relaxed) integer variables. The method has then been generalized in (Yuan et
al. 1988; Fletcher and Ley�er 1994) to a broader class of problems where the functions are not
necessarily separable in the continuous and discrete variables, neither are linear with respect
to the (relaxed) discrete variables. In what follows, the algorithm named OA will refer to
the Generalized Outer Approximation. The OA framework has been investigated in various
engineering fields. One can cite control systems (Pecci et al. 2017), chemistry (Gopinath et al.
2016), tra�c management (Asadi Bagloee and Sarvi 2018), structural optimization (Allaire
and Delgado 2015; Stolpe 2015; Stolpe and Sandal 2018).

In this Chapter, the new methodology based on the OA framework is proposed. It com-
bines the e�ciency of the branch and bound in case of linear problems, the relevance of the
first order approximation of the slave problem as shown in Chapter 3, and the use of post-
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optimal sensitivities usually involved in the frame of continuous optimization. The mixed
categorical-continuous problem is first re-formulated as a mixed integer-continuous problem
with relaxable integer design variables. The functions involved in the problem are formulated
as continuously derivable functions. The proposed algorithm can thus leverage the use of
their gradients. The new problem is then formulated using a bi-level decomposition involving
master and slave problems. The continuous design variables are handled by the slave problem,
where the integer variables are driven by the master. The latter consists of solving a mixed
integer linear problem, that is built iteratively by collecting linearizations of the slave problem
solution with respect to the integer variables. This approach is di�erent from the OA frame-
work presented in (Fletcher and Ley�er 1994) in the sense that this is the solution of the slave
problem that is linearized, not its composing objective and constraints functions. An e�cient
way to compute the gradients of the linearizations is proposed. The resulting methodology
falls within the theoretical framework of Outer Approximation. This Chapter is organized as
follows. In Section 4.2, the formulation of the mixed integer-continuous optimization problem
is presented. In Section 4.3, the bi-level decomposition and the new methodology are pre-
sented. Finally, the scalability of the approach is compared with state-of-the-art algorithms
in Section 4.4. A large scale problem is also presented.

4.2 Problem statement

As formulated in (P), the problem involves categorical non-ordered and non-relaxable design
variables. This formulation prevents from using algorithms that exploit the gradient of the
functions with respect to all the design variables. This is why a new formulation of the
problem (P), involving continuous functions as objective and constraints, is presented in this
Section.

4.2.1 A continuous design space definition

In this problem formulation we use a continuous dummy coding of the categorical variable.
Let be Cn,p, the set of matrices B of real coe�cients, such as :

Cn,p =
I

X = (x
ij

)1ÆiÆn

1ÆjÆp

O
x

ij

œ [0, 1], and
pÿ

j=1
x

ij

= 1, ’i œ J1, nK
J

.

Each line of the matrix describes the catalog choices composition of a given element. The
sum of the coe�cients, for each line, has to be equal to 1. When B takes integer values, it
corresponds to given choices of materials and shapes. However, there is no underlying physical
meaning for intermediate (real) values of B. A numerical example of equivalent values for c

and B is described in Figure 4.1.

The definitions of � and Cn,p are such that, if the values c œ � and B œ Cn,p fl {0, 1}
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c =

Qccccca
4
2
1
3
2

Rdddddb
(a) Categorical variables : c œ �5

B =

Qccccca
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0

Rdddddb
(b) Dummy coding of categorical variable
c, with B œ C5,4

Figure 4.1: An example of categorical design variable equivalence between direct coding (a)
and dummy coding (b), in the case of a 5 elements structure : n = 4. In this case � is a set
of 4 catalogs : p = 4.

describe the same choices of materials and shapes, B and c verify the following relation :

c = B“ (4.1)

with “ œ Zp a vector of all the catalogs in �, such that

“ = [1, . . . , p]€ . (4.2)

4.2.2 Objective and constraints definition

This continuous representation B of the categorical design variable will weight the the Young
modulus, densities and the functions of the optimization problem. It will thus allow continuous
definitions of the objective and the constraints, as presented in this Section.

The Young modulus and densities associated to the i

th element, noted Â
E

i

, are computed
as follows, respectively and ’i œ J1, nK :

Â
E

i

(B) =
pÿ

k=1
B

ik

E(“
k

)

Â
fl

i

(B) =
pÿ

k=1
B

ik

fl(“
k

)

with “ œ Zp a vector of all the catalogs in � (equation 4.2).

In the following reformulations, the functions are continuous with respect to (a, B) œ
Rn ◊Cn,p. The stress constraints Â

s

ij

are defined as a linear combination of s

ij

where the limit
stresses are taken at integer values “ œ Zp, a vector of all the catalogs in � (equation 4.2).
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Each stress constraint (1.3) is thus rewritten as, ’(i, j) œ J1, nK ◊ J1, 4K :

Â
s

ij

: Rn ◊ Cn,p æ R

Â
s

ij

(a, B) ‘æ
pÿ

k=1
B

ik

s

ij

(a
i

, “

k

, �
i

(a, B))
(4.3)

where � denotes the internal forces.

The constraints on displacements remain unchanged, at the exception of the categorical
variable c œ � replaced by B œ ÂCn,p :

Â
” : Rn ◊ Cn,p æ Rd

(a, B) ‘æ P u(a, B) ≠ ū.

Finally, the weight function can be written as follows :

Â
w : Rn ◊ Cn,p æ R

Â
w(a, B) ‘æ

nÿ
i=1

Â
fl

i

(B)a
i

L

i

The previous definitions of the continuous functions involved in (P) are such that for any
c œ �n and B œ Cn,p fl {0, 1} that verify the equation (4.1), we have :

Â
s(a, B) = s(a, c)Â
”(a, B) = ”(a, c)Â
w(a, B) = w(a, c).

In other terms, if c œ � and B œ Cn,p describe the same categorical choices (in this case B

takes only integer values), then the output values of stress constraints, displacements con-
straints and weight function are strictly equivalent whether their expression depends on (a, c)
or (a, B). Another important remark can be formulated regarding the computational cost
induced by the new formulation. Indeed, the computational cost induced by both formula-
tions is equivalent in terms of the number sti�ness matrices inversions. This remark applies
to the functions as well as their gradients.

However, it is worth to note that an evaluation of Â
s, Â

”, or Â
w at non integer values of

B œ Cn,p has no physical meaning. The important advantage of the definitions of functionsÂ
s, Â

”, and Â
w lies in the fact that they are continuous and derivable with respect to each of

their design variables a and B œ Cn,p. The functions that were depending on the categorical
design variables c have now new definitions, making them continuously derivable, and strictly
equivalent to their original definition when evaluated at integer values.
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4.2.2.1 Optimization problem statement

Since the objective and constraints have been re-formulated in a continuous way by relying
on the continuous design variables B, the new mixed categorical continuous optimization
Problem (BP) can be defined as follows :

min
BœCn,p

,aœRn
Â
w(a, B)

subject to Â
s(a, B) Æ 0

n,m

Â
”(a, B) Æ 0

d

¯
a Æ a Æ ā

B

ij

(B
ij

≠ 1) = 0 ’(i, j) œ J1, nK ◊ J1, pK.

(BP)

where, for sake of clarity of the notations, B and Â
s are vectors instead of matrices. They

are obtained by applying the same transformation, written here when applied to a matrix
A œ M

n,p

(R) :

vec(A) = [A11, . . . , A1p

, A21, . . . , A2p

, . . . , A

n1, . . . , A

np

]€.

The problems (BP) and (P) are strictly equivalent. However, unlike in the problem (P),
all the functions can be evaluated at intermediate values of B. The optimization algorithm
employed to solve the problem (BP) can also benefit from their derivatives. Since integrity
constraints force the optimal solution B

ú to be a vector of 0-1 integers while a

ú remains
continuous, the algorithm will have to deal with mixed integer-continuous design variables.
This makes the problem (BP) belong to the class of mixed integer-continuous relaxable prob-
lems. It is worth to note that there is still no ordering of the integer values, and no physical
definition of a neighborhood in terms of integer variables. The main di�erence with (BP) lies
in the fact that the functions are defined at intermediate binary values, and are derivable.

4.3 Methodology

4.3.1 Decomposition

For a given B, let Â�(B) be the set of feasible constraints of the problem (BP) given by

Â�(B) := { a œ Rn;Â
s(a, B) Æ 0

m◊n

;Â
”(a, B) Æ 0

d

;

¯
a Æ a Æ ā}.

(4.4)
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An e�cient way to solve pure continuous optimization problems is by taking advantage of
gradient based algorithms. In the problem introduced in Section 4.2, it can be seen that by
fixing (temporarily) design variables B in (BP) at integer values, the optimization problem
becomes a continuous one parameterized with B, and where integrity constraints can be
removed. This means that at a given B, the weight Â

w can be minimized with respect to the
remaining continuous design variables that are the areas a œ Â�(B). This leads to the following
slave binary problem (sBP), that reduces to a structural sizing optimization problem:

Â�(B) := min
aœÂ�(B)

Â
w(a, B). (sBP)

The structure of the problem is such that this remaining optimization problem becomes more
tractable. In fact, the decomposition leverages the use of the gradients (with respect to a)
of the objective and constraints to solve the problem (sBP). This is the main motivation in
handling the continuous variables separately from the integer ones. In this approach, the
integer (binary) variables will be handled by a master problem (mBP) of the form

min
BœCn,p

Â�(B) (mBP)

B ¶ (B ≠ 1) = 0
np

with ¶ the entry-wise multiplication, or Hadamard product, of two vectors. Â�(B) is the result
of the slave Problem (sBP). The slave problem (sBP) takes these complicating variables B

as parameters while optimizing with respect to continuous design variables. This means
that during the slave optimization, the choices of materials and cross-section types for all
elements remain fixed. This slave problem will be solved using a gradient based method. The
obtained solution can be seen as a function Â�(B) which is parameterized by the categorical
choices through the continuous coding B. Namely, Â�(B) corresponds to the optimal weight
of the slave problem knowing the variables B. This function is then taken as the objective of
the master optimization problem (sBP). Although the slave problem can be easy to handle
using gradient-based algorithms, the di�cult part remains in the master problem. In fact,
the problem (mBP) is still a large-scale pure integer non-linear optimization problem, that
usual combinatorial optimization solvers fail to solve e�ciently. However, unlike the problem
presented in Chapter 3, the integer variable B is relaxable and the functions are defined at
intermediate non 0-1 values of B. Moreover, all the functions of the optimization problem
are continuously di�erentiable. This is a basic requirement to compute the sensitivity of the
slave problem solution parametererized in B.

4.3.2 On the minimization of Â�
It is proposed to solve the master problem (mBP) by means of outer approximation cuts,
by taking advantage of the gradient of Â�. The resulting generic framework is an iterative
process, where the master problem is replaced by an approximated problem. The generic
framework is presented in Section 4.3.2.1. An e�cient procedure to compute the sensitivity
of the slave problem (gradient of Â�) is presented in Section 4.3.2.2. Finally, the resulting outer
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approximation framework using post-optimal sensitivities is described in Section 4.3.2.3.

4.3.2.1 Framework

In this work, it is proposed to consider, at the master level, the minimization of an ap-
proximated problem P instead of (mBP), so that the complexity of the master problem is
significantly reduced. For that, the following iterative scheme is implemented. Given an it-
eration (k), the master problem (mBP) of the bi-level formulation is reduced to a problem
P(k) easier to solve. The definition of P(k) is recursive and depends on its own formulation
at the previous iteration. It also involves the value of the function Â� and its derivative taken
at B

(k). At each iteration (k) of the algorithm, instead of (mBP), the problem P(k) is solved
and outputs a new candidate B

(k+1).

The slave optimization problem, or primal, is defined by fixing the binary variables B

(k) in
the problem (mBP). Since the problem (mBP) is a full integer optimization problem, solving
(mBP) at a fixed B

(k) reduces to an evaluation of the involved objective Â� and constraints
functions. Among these involved functions, the equality constraints are constraints that force
the optimal solution to be an integer one. Since the primal optimization problem is defined
by fixing the variables to binary values, the evaluation of this function is not needed. The
optimal solution integrity will indeed be guaranteed by the algorithm. In other terms, the
primal problem reduces to an evaluation of the objective Â�(B(k)). This is also the optimal
weight solution of (sP), where the categorical choices are fixed to B

(k). The optimal objective
value of the primal problem is an upper bound of the solution to (BP), assuming that there
is at least one feasible solution depending on the fixed point B

(k).

The generic process of the proposed iterative scheme is given in Algorithm 5.

Algorithm 5 A generic bi-level framework with post-optimal sensitivities
1: initialize B

(0)
, set k = 0

2: while a termination criteria is not reached do
3: Step 1 a

(k) Ω argmin Â
w(a, B

(k)) s.t. a œ Â�(B(k))
4: Step 2 B

(k+1) Ω solve P(k)
3

P(k≠1)
,

Â�(B(k)), d

Â�
dB

---
B

(k)

4
5: Increment k

6: end while
7: return a

(j), B

(j), Â
w

(j) such that j = argmin Â
w

(l) s.t. l Æ k.

4.3.2.2 On the computation of d

Â�
dB

at B

(k)

In optimization, many e�cient algorithms rely on the gradient of the functions involved in the
optimization problem. This is the case of the proposed algorithm, that requires the gradient
of Â� with respect to the parameters B. This gradient gives information on the behavior of
the optimal weight, solution of (sBP), after a small perturbation of B

(k). The gradient of Â�
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is also called post-optimal sensitivity (Fiacco 1976). It can be noted that the perturbation
has no physical meaning since B describes categorical choices.

The e�cient computation of the gradient of Â� at a given B

(k) is a key feature of the
proposed methodology. Indeed, if computed by finite di�erences, the gradient computation
cost of the output of an optimization grows with the number of parameters B. In this
case, there are roughly as many optimization problems instances to solve than the number
of parameters. The computational burden prevents from using this approach to compute the
gradient of an optimization problem output with respect to a large number of parameters.
It is then proposed to take advantage of the post-optimal sensitivity theory using penalty
methods detailed in (Fiacco 1976) in order to compute these sensitivities e�ciently. In the
following Sections, post-optimal sensitivities refer to the sensitivities of Â� obtained by penalty
methods, not by finite di�erences.

• Computation of the Lagrange multipliers

First, let be ⁄, µ, ›

¯
a

, ›

ā

the Lagrange multipliers (column vectors) associated to
the constraints s, ”, the lower and upper bounds on the areas a, respectively. The
Lagrangian of the problem (sBP) is defined as follows :

L(a, B) := Â
w(a, B) + ⁄

€
s(a, B) + µ

€
”(a, B) + ›

€
¯
a

(
¯
a ≠ a) + ›

€
ā

(a ≠ ā)

Let be a

ú a local minimizer of problem (sBP(B(k))). Let be AÂs, AÂ
”

, A
¯
a

, A
ā

the sets
of active constraints Â

s, Â
”, and bounds constraints on a, respectively, such that

AÂs :=
Ó

’i | Â
s

i

1
a

ú(B(k))
2

= 0
Ô

,

AÂ
”

:=
Ó

’i | Â
”

i

1
a

ú(B(k))
2

= 0
Ô

,

A
¯
a

:=
Ó

’i | a

ú
i

(B(k)) =
¯
a

i

Ô
,

A
ā

:=
Ó

’i | a

ú
i

(B(k)) = ā

i

Ô
.

(4.5)

The active components of the constraints s, ”, are noted, respectively, by sAs and ”A” .
The components of a and

¯
a that belong to A

¯
a

are noted by aA
¯
a and

¯
aA

¯
a , respectively.

The components of a and ā that belong to A
ā

are noted by aAā and āAā , respectively.
The components of the optimal Lagrange multipliers ⁄

ú
, µ

ú
, ›

ú
¯
a

, ›

ú
ā

of the active
constraints of Â

s, Â
”, and bounds constraints on a, are noted ⁄

ú
Ag

, µ

ú
A”

, ›

ú
A

¯
a
, ›

ú
Aā

,
respectively. Let be IA

¯
a œ M|A

¯
a|,n(R) and IAā œ M|Aā|,n(R) the gradients of the lower

and upper bound constraints, respectively. They are identity matrices where the lines
corresponding to non active constraints indices are removed, ’j œ J1, nK:1

IA
¯
a

2
ij

= ”

ij

’i œ A
¯
a

(4.6)

(IAā)
ij

= ”

ij

’i œ A
ā

(4.7)

Proposition 4.3.1

82



Consider a

ú a local optimum of (sBP(B(k))). If the objective and constraints func-
tions of (sBP(B(k))) are continuously di�erentiable, and the constraints are linearly
independent, then (aú

, ⁄

ú
, µ

ú
, ›

ú
¯
a

, ›

ú
ā

) is a stationary point of the Lagrangian :

ˆw

ˆa

-----
a

ú
,B

(k)

+ ⁄

ú
AÂs(B(k))€ ˆ

Â
sAs

ˆa

-----
a

ú
,B

(k)

+ µ

ú
AÂ”(B(k))€

ˆ

Â
”AÂ”
ˆa

-----
a

ú
,B

(k)

≠ ›

ú
A

¯
a
(B(k))€

IA
¯
a + ›

ú
Aā

(B(k))€
IAā = 0

n

. (4.8)

Proof. This is one of the Karush-Kuhn-Tucker (KKT) optimality conditions, detailed
in Section A in the Theorem A.1. The Karush–Kuhn–Tucker conditions are first deriva-
tive tests (sometimes called first-order) necessary conditions for a solution in nonlinear
programming to be optimal, provided that some regularity conditions are satisfied.

Once the problem (sBP(B(k))) is solved, the Lagrange multipliers corresponding to
active constraints are thus obtained by solving the linear system in equation 4.8. Ac-
cording to the KKT conditions, the computed values of the Lagrange multipliers have
to be non-negative.

• Expression of d

Â�
dB

-----
B

(k)

The expression of the post-optimal sensitivity d

Â�
dB

-----
B

(k)

is given in the Proposition 4.3.2.

Proposition 4.3.2
Consider a

ú a local optimum of (sBP(B(k))). If,

– the functions Â
w, Â

s, and Â
” are twice continuously di�erentiable w.r.t. a, and ˆ

Â
w

ˆa

,
ˆ

Â
s

ˆa

, ˆ

Â
”

ˆa

are once continuously di�erentiable w.r.t. B in a neighborhood of (aú
, B),

– the second order su�cient conditions (SOSC 1), detailed in Section A, hold at a

ú,
with ⁄

ú, µ

ú, ›

ú
¯
a

and ›

ú
ā

the Lagrange multipliers associated to constraints Â
s, Â

”, and
the bounds on the areas, respectively,

– the constraints are linearly independent at a

ú,
– strict complementary slackness conditions (SCSC 2), detailed in Section A, holds

at a

ú,

then, Â� is continuously di�erentiable, and its derivative taken in B

(k), in a neighborhood
of B, is given by

d

Â�
dB

-----
B

(k)

= ˆ

Â
w

ˆB

-----
a

ú
,B

(k)

+⁄

ú
As

(B(k))€
ˆ

Â
sAÂs
ˆB

-----
a

ú
,B

(k)

+ µ

ú
A”

(B(k))€
ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(k)

. (4.9)

1
Refer to Theorem A.2 in Annex A.

2
Refer to Equation (SCSC) in Annex A.
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Proof. The continuous di�erentiable property of Â� comes from the Theorem A.3 applied
to (sBP(B(k))). The first-order derivative formula of the optimal value function is a
result of the Theorem A.4 :

d

Â�
dB

-----
B

(k)

= ˆ

Â
w

ˆB

-----
a

ú
,B

(k)

+ ⁄

ú
AÂs(B(k))€

ˆ

Â
sAÂs
ˆB

-----
a

ú
,B

(k)

+ µ

ú
AÂ”(B(k))€

ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(k)

+ ›

ú
A

¯
a
(B(k))€ ˆ

ˆB

1
¯
aA

¯
a ≠ a

ú
A

¯
a
(B(k))

2
+ ›

ú
Aā

(B(k))€ ˆ

ˆB

1
a

ú
Aā

(B(k)) ≠ āAā

2
.

Since the bound constraints on the areas do not depend on B, the derivative of Â� is
given by :

d

Â�
dB

-----
B

(k)

= ˆ

Â
w

ˆB

-----
a

ú
,B

(k)

+⁄

ú
AÂs(B(k))€

ˆ

Â
sAÂs
ˆB

-----
a

ú
,B

(k)

+ µ

ú
AÂ”(B(k))€

ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(k)

Both aforementioned theorems are detailed in Appendix A, and have been introduced
in (Fiacco 1976).

The value d

Â�
dB

-----
B

(k)

is thus obtained by introducing into equation 4.9 the gradients of the

objective and the active constraints w.r.t. the parameters B and taken in (aú
, B

(k)).
The Lagrange multipliers have been computed previously thanks to the equation 4.8.
In terms of computational cost, the computation of the gradient of Â� does only require
one evaluation of Â�(B(k)). This evaluation would have been required anyway for the
definition of P(k). Under the conditions given by the Theorem A.3, the number of
evaluations of Â� needed into the expression of the post-optimal sensitivity (4.9) is thus
independent from the number of parameters B, unlike the finite di�erences approach
(4.10).

Note on post-optimal sensitivities computation by finite di�erences
The gradient of the function Â� taken at B

(k) œ Cn,p can also be obtained by finite
di�erences. Let be B

(k) + h

i

e

i

a perturbation of the i

th component of B

(k), with h

i

a scalar being the (small enough) step size of the perturbation, and e

i

a vector of the
canonical basis. The gradient of Â�, if computed by finite di�erences, is given by :

d

Â�
dB

-----
B

(k)

=
A

��(1)
h1

, . . . ,

��(i)
h

i

, . . . ,

��(np)
h

np

B
, (4.10)

with
�Â�(i) = Â�(B(k) + h

i

e

i

) ≠ Â�(B(k)).

This means that the computation of d

Â�
dB

by finite di�erences requires np + 1 evaluations
of Â�, i.e., at B

(k) and at every perturbed value B

(k) + h

i

e

i

(’i œ {1, . . . , np}). The
computation cost, in terms of evaluations of Â�, is linear with respect to the number
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of parameters. An evaluation of d

Â�
dB

computed by finite di�erences using (4.10) would
indeed cost np + 1 continuous optimizations. This can be computationally expensive,
in particular in the case of a large number of parameters B

(k). This often the case in
an industrial context where Â� is a heavy nested function that wraps an optimization
involving multiple calls to physical models. This is why it is preferred to rely on the
previous theoretical framework for the computation of the gradient of Â�.

4.3.2.3 On the construction of P(k)

In this Section, a definition of the dual problem is given. Provided that B

(k) is a solution
of (mBP), and under the assumption that Â

Psi is convex, then the linearization of Â
Psi about

B

(k) and given by

÷ Ø Â�(B(k)) + d

Â�
dB

-----
€

B

(k)

(B ≠ B

(k))

is an outer approximation of the feasible set of the original problem (BP). This helps in
the definition of a new problem (4.11) that has an identical solution to (BP), under the
conditions detailed in the Theorem 4.3.3. In the problem (4.11), the function Â� is replaced
by an hyperplane that is also its linear support at B

(k).

Proposition 4.3.3 (optimum equivalence of problem (4.11) and (sBP))
If the assumptions in Proposition 4.3.2 hold, and if Â� is convex, then the problem (mBP) and
the mixed integer linear program (MILP) named problem (4.11) defined as follows :

min
BœCn,p

,÷œR
÷

subject to ÷ Ø Â�(B(k)) + d

Â�
dB

-----
€

B

(k)

(B ≠ B

(k)) ’B

(k) œ Cn,p fl {0, 1}

B ¶ (B ≠ 1) = 0
np

(4.11)

have the same optimal solution (Bú).

Proof. If the assumptions in Proposition 4.3.2 hold, then Â� is continuously di�erentiable (P1).
Furthermore, the constraints qualification (LICQ) holds (P2).
Finally, is assumed that Â� is convex (P3). Thus, since the properties (P1), (P2) and (P3)
are verified, and according to the Theorem 1 in (Fletcher and Ley�er 1994), the equivalence
between the problems (4.11) and (mBP) is proved.

The problem (4.11) is not a MINLP problem but a MILP problem, meaning that in theory,
e�cient MILP solvers can solve (4.11). However, solving problem (4.11) directly is impractical
since this would require p

n evaluations of Â� corresponding to all integer vectors B

(k) in Cn,p.
This means that it would necessitate evaluations of the sizing problem (sBP) taken at every p

n

combinations of materials and cross-section shapes available in �n. In other words, once the
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problem (4.11) is set up, the solution to the problem (BP) is known. Furthermore, another
drawback is that (4.11) contains a large number of constraints, proportional to the number
of elements in �n. This is why, instead of considering the problem (4.11), the OA algorithm
involves a relaxation of the problem (4.11), relying on the solutions of only k evaluations ofÂ� :

min
÷œR,BœCn,p

÷

subject to ÷ Ø Â�(B(l)) + d

Â�
dB

-----
€

B

(k)

(B ≠ B

(l)) ’B

(l) œ K

(k)

B ¶ (B ≠ 1) = 0
np

(4.12)

with K

(k) a set of k elements in Cn,p, such that :

K

(k) µ Cn,p fl {0, 1}.

Thanks to the convexity of Â� and the definition of K

(k), the problem (4.12) yields a lower
bound to the solution of the Problem (BP). The problem (4.12) can be geometrically inter-
preted as an exploration of the e�ects of the outer approximations (i.e., the linear supports)
on the objective Â�. Furthermore, it underestimates the objective while overestimating the
feasible region. Therefore, the problem (4.12) yields a lower bound of the Problem (MINLP).
In the case where K

(k) is equal to Cn,p, the problem (4.12) is strictly equivalent to (MINLP),
according to the Proposition 4.3.3.

4.3.2.4 A bi-level framework with post-optimal sensitivities

The proposed algorithm consists of solving an alternating sequence of primal and dual prob-
lems, as defined previously. The post-optimal sensitivities of the slave problem (sizing) are
involved in the definition of the dual problem. Let be (k) the current outer iteration of the
algorithm.

First, the primal problem, reduced to an evaluation of Â�, is solved at B

(k). This means
that as a first step, the slave continuous optimization problem (sBP) aiming at minimiz-
ing the weight while satisfying stress and displacements constraints is solved. The problem
(sBP(B(k))) is solved and yields a solution a

(k) such that :

a

(k) := argmin
aœÂ�(B(k))

Â
w(a, B

(k)). (4.13)

The upper bound U

(k) to the solution of (BP) is defined by :

U

(k) := Â
w(a(k)

, B

(k)),

that is also equal to Â�(B(k)). The best current solution of the original problem (BP) is thus
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given by the best upper bound returned during the (k) outer iterations :

U := min{U

(1)
, . . . , U

(k)}. (4.14)

Second, the relaxed MILP problem (4.12) can be set up. Its definition relies on the
linearizations of Â� taken at the solutions yielded during the (k) previous iterations. While
the linearizations from the previous iterates (l) < (k) remain unchanged, the linearization ofÂ� at the current iteration (k) has to be computed. More precisely, the gradient of Â� taken
at B

(k) has to be evaluated. Following the theoretical steps given in Section 4.3.2.2, the
computation of the post-optimal sensitivities is decomposed in 5 main steps :

- Build the set of active constraints AÂs, AÂ
”

, A
¯
a

, A
ā

defined by equations (4.5),
- Compute the gradients of the objective and active constraints w.r.t. a, at (aú

, B

(k)),
- Compute the Lagrange multipliers ⁄

ú
Ag

, µ

ú
A”

by solving the equation (4.8),
- Compute the gradients of the objective and active constraints w.r.t. B, at (aú

, B

(k)),
- Compute the post-optimal sensitivity d

Â�
dB

at B

(k) using equation (4.9).

Once the linearization of Â� has been computed, it is added as constraint in the problem (4.12).
Furthermore, since in practice the problem (BP) does not need to be solved to optimality, it
is su�cient to generate the new (B(k+1)) by adding a tolerance ‘ on the upper bound U as a
constraint in the MILP master problem. The resulting mixed integer linear integer problem
(MILP(K(k))), is thus given by:

min
BœCn,p

÷

(k)

subject to ÷ Æ U ≠ ‘

÷ Ø Â�(B(k)) + d

Â�
dB

-----
€

B

(k)

(B ≠ B

(k))

÷ Ø Â�(B(l)) + d

Â�
dB

-----
€

B

(l)

(B ≠ B

(l)) ’B

(l) œ K

(k≠1)

B ¶ (B ≠ 1) = 0
np

(MILP(K(k)))

with K

(k) such that

K

(k) = K

(k≠1) fi {B

(k)},

and K

(k≠1) the set of the k ≠ 1 previous B

(k≠1), such that

K

(k≠1) µ Cn,p fl {0, 1}.

The problem (MILP(K(k))) is built iteration per iteration by adding, as constraints, lineariza-
tions of the functions Â� taken at the current solution (B(k)). The optimality of the algorithm
relies on the convexity of Â�, ensuring that the linearizations are underestimators of Â�. Once
built, the problem (MILP(K(k))) is solved and provides a lower bound of (BP). While there
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is no guarantee that the upper bounds U

(k) will decrease along the overall iterations, the
definition of the problem (MILP(K(k))) ensures the increase of the lower bound, iteration per
iteration. The process of the proposed iterative scheme is given in Algorithm 6.

Algorithm 6 Bi-level algorithm with outer approximation cuts
1: initialize B

(0) and ‘, set k = 0, K

(≠1) = {ÿ}, U

(≠1) = +Œ
2: while problem (MILP(K(k))) is feasible do
3: Evaluate �(B(k)), let be a

(k) the solution to the problem (sBP)
4: if (sBP) is feasible and Â�(B(k)) < U

(k) then
5: a

ú Ω a

(k)

6: B

ú Ω B

(k)

7: U

(k) Ω �(B(k))
8: else
9: U

(k) Ω U

(k≠1)

10: end if
11: K

(k) Ω K

(k≠1) t
{B

(k)}
12: Compute d

Â�
dB

at B

(k) using equation (4.9)
13: Solve (MILP(K(k))), let the solution be B

(k+1)

14: k Ω k + 1
15: end while
16: return a

ú, B

ú, and Â
w

ú Ω U

(k≠1).

The proposed algorithm leverages the use of post-optimal sensitivities by using them to
define supporting hyperplanes of Â�. These hyperplanes bound the convex hull of the slave
problem (sP) solutions. It is worth to note that the number of contraints involved in the
master problem (mBP) reduces to the k linearizations of Â� from the (k) outer iterations, in
addition to the (k) linear equality constraints involved in the definition of C(n,p). Indeed, the
OA algorithm is used to solve the master problem (mBP), so that all the structural sizing
constraints are handled by the slave problem (sBP). Hence, the MILP problem (MILP(K(k)))
counts only k + n linear constraints (including equality constraints from C(n,p)), compared to
the k ◊ (n ◊ m + d + n) (constraints s, ” and equality constraints from C(n,p)). In industrial
cases where the number of structural elements n can reach 5000 elements (e.g., for a fuselage),
and the number of constraints m per structural element is about 10 (after screening). The
problem (MILP(K(k))) can thus involve several millions of constraints. This could induce high
computation time (Benson and Horst 1991; Stolpe and Sandal 2018) when solving the problem
(MILP(K(k))). In the proposed algorithm, the number of constraints in (MILP(K(k))) is
limited without dropping the proof of optimality, thanks to the bi-level decomposition scheme.

Furthermore, two interesting properties about the OA algorithm e�ciency have been
introduced in (Fletcher and Ley�er 1994). These properties also apply to the proposed
methodology, that falls in the theoretical frame of the OA algorithm. First, under assumptions
given in Theorem 4.3.4, the authors prove that the OA ends in a finite number of steps :

Proposition 4.3.4
If Â� is convex, then the Algorithm 6 terminates in a finite number of steps at an optimal
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solution of (mBP).

Proof. The objective Â� of the problem (mBP) is convex (P1), by assumption. The objectiveÂ� of the problem (mBP) is continuously di�erentiable according to Proposition 4.3.2, and so
are the linear equality constraints (P2). The set Cn,p is finite, and the continuous variables a

belong to a nonempty compact convex set (P3). The problem (mBP) has no set of constraints
that can be linearly dependent (P4). Thus, according to the properties (P1), (P2), (P3) and
(P4), the Theorem 2 of (Fletcher and Ley�er 1994) states that the Algorithm 6 terminates
in a finite number of steps at an optimal solution of (mBP).

Second, according to (Grossmann 2009) the OA method generally works e�ciently. This
means that relatively few overall iterations are required. According to the authors, one reason
to this behavior is related to the Property 4.3.5.

Proposition 4.3.5 (Trivial convergence when Â� is linear (Grossmann 2009))

If Â� is linear, then the OA algorithm trivially converges to the solution of (mBP) in one
iteration.

Proof. The constraints of the problem (mBP) are linear. If the objective is, by assumption,
also linear, then the problem (MILP(K(k))) is identical to the original problem (BP).

4.4 Numerical results

In the present section, our proposed methodology will be applied to three di�erent test cases:
(i) the well-known 10-bar truss structure (Haftka and Gürdal 1992) adapted in (Merval 2008),
(ii) a 2D cantilever structure (Shahabsafa et al. 2018), and (iii) a 120-bar dome truss structure
(Saka and Ulker 1992). In order to evaluate the scalability of the methodology with respect to
large number of structural elements, the 2D cantilever structure is made scalable by varying
the number of blocks. The third test case is included to evaluate the capability of handling
more complex structures, with large number of categorical values.

4.4.1 Implementation details and comparison solvers

Algorithm 6 was implemented using the Generic Engine for MDO Scenarios (GEMS) (Gallard
et al. 2018) in Python. The tool o�ers an e�cient way to implement and test multi-level for-
mulations, with built-in classes that facilitate optimization problems manipulations (Gallard
et al. 2019). The continuous non-linear optimization problems (i.e., evaluations of Â�) are
solved with the Method of Moving Asymptotes (MMA) (Svanberg 2002) as implemented in
the nonlinear-optimization (NLOPT) package (Johnson 2008). The MMA solver is capable
of handling non-linear continuous optimization problems with inequality constraints. It is
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worth to note that other available solvers could also be relevant to solve the continuous prob-
lems. As soon as the same continuous optimization solver is used to benchmark the proposed
approaches, the consistency of the result analyses is preserved. The mixed integer linear opti-
mization problems are solved with a branch and cut implemented as the Coin-or Branch and
Cut (coin-or/Cbc) in (Forrest et al. 2018). The algorithm is launched through the Google
ortools suite for optimization (Perron and Furnon 2019). All the default parameters are kept
unchanged except the tolerance on the objective function which is set to 10≠6

kg. In what
comes next, the resulting implementation of Algorithm 6 will be called Bi-level OA.

Four solvers will be compared to Bi-level OA. First, a baseline solver where we proceed
with an exhaustive enumeration of continuous optimizations w.r.t. a (Problem (sBP)) taken
at every available choice in C(n,p), the solution resulting with this solver will be denoted as
Baseline. Second, a hybrid branch and bound (Algorithm 2, noted h-B&B), where one uses a
relaxation procedure combined with a branch and bound algorithm. Under the assumption
that these problems are convex with respect to the sizing variables a, Baseline and h-B&B
return the global optimum of the overall problem. The third solver used in the comparison
is a Genetic algorithm (Deb and Goyal 1998) using the implementation given by Distributed
Evolutionary Algorithms in Python (DEAP) (Fortin et al. 2012). The latter solver will be
referred by Genetic in our comparison tests. Due to the stochastic nature of Genetic, the
obtained results (for this solver) will be displayed as the average of ten runs. Finally, the
bi-level Algorithm 3, noted Bi-level uses a first order-like approximation of the slave problem
output with respect to the categorical variables. Similarly to Bi-level and h-B&B, Bi-level OA
uses the MMA method from NLOPT to solve the slave problem.

In all what comes next, the computation e�ort of a given solver will be measured by
counting the number of structural analyses (noted #FEM) including those required by the
computation of the gradients (when needed). The obtained optimal weights (by each solver)
will be noted w

ú, the latter will allow us to evaluate the quality of the optima found by
each solver. We note also that in our setting, the Baseline solution can be seen as the best
known categorical choices for the corresponding problem instance. Thus, in this context, it
is important to evaluate how far the categorical choices (obtained by the tested solvers) are
from the Baseline optimal choices. This information will be given using the Hamming distance
(noted d

h

) where we will count the number of structural elements that have an optimal choice
di�erent to the Baseline categorical choices.

4.4.2 A step by step example: a 3-bar truss structure

To illustrate how the Bi-level method works, we will now describe in detail its application to
a simple 3-bar truss structure (Figure 4.2). For this problem, each element can take a value
among three possible choices that respectively point to materials AL2139, AL2024, TA6V
and the same “I”-profile (see Figure 1.3). The materials properties are listed in Table 4.1.
For this simple case, one has n = 3, p = 3, and B œ C3,3. In its direct coding version, C

3,3

corresponds to �3 = {1, 2, 3}3. For all elements, the lower and upper bounds on areas are
respectively fixed to 100 mm

2 and 2000 mm

2. The bounds on areas, and initial areas are
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AL2139 AL2024 TA6V
Density (kg/mm

3) 2.8 10≠6 2.77 10≠6 4.43 10≠6

Young modulus (MPa) 7.1 104 7.4 104 11.0 104

Poisson coe�cient (≠) 0.3 0.33 0.33
Tension allow. (MPa) 1.5 102 1.6 102 11.0 102

Compression allow. (MPa) 2.0 102 2.1 102 8.6 102

Table 4.1: Numerical details on materials attributes.

¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 4.2: Bounds on areas, and initial areas
values of the 3-bar truss optimization case.

fixed as detailed in Table 4.2. A maximum downward displacement equal to ū = 1 mm is
allowed on the only free node of the structure:

Â
” : R3 ◊ C3,3 æ R

(a, B) ‘æ P u(a,

Â
E(B)) ≠ ū.

During application of the Bi-level OA method, the initialization is such that :

B

(0) = vec

Qca1 0 0
0 1 0
0 0 1

Rdb , ‘ = 1.e

≠3
kg, k = 0, K

(≠1) = {ÿ}, U

(≠1) = +Œ.

• First iteration (k = 0)

The first iteration k = 0 starts by solving primal problem, that reduces to an evaluation

F = 200 kN

1 2 3

Figure 4.2: A 3-bar truss structure where a downward load F = 200 kN is applied on the
free node.
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of Â� (by solving (sBP)) at the current guess B

(0):

U

(0) = 13.82 kg, a

(0) = [1041.29, 2000.0, 664.39] mm

2

Then, the gradient d

Â�
dB

---
B

(0)
is computed. To that purpose the active constraints of the

problem sBP) at (a(0)
, B

(0)) are identified. At this first iteration, the active constraints
are the upper bound constraint on the area of structural element 2, and the constraint
on displacements, such that

ā2 ≠ a

(0)
2 = 0, ”(a(0)

, B

(0)) = 0.

and then the sets of active constraints indices are

A
ā

= {2}, AÂ
”

= {1}, A
¯
a

= AÂs = {ÿ}.

The gradients of the weight and active constraints w.r.t. a are computed, respectively:

ˆ

Â
w

ˆa

-----
a

ú
,B

(0)

=

Qca3.96e

≠3

2.77e

≠3

6.26e

≠3

Rdb
€

,

ˆ

Â
”AÂ”
ˆa

-----
a

ú
,B

(0)

=

Qca≠1.24e

≠4

≠3.70e

≠4

≠1.97e

≠4

Rdb
€

, IAā =

Qca0
1
0

Rdb
€

.

One can verify that the gradients of the active constraints are linearly independent, and
thus (LICQ) holds. The stationarity of the Lagragian at (a(0)

, B

(0)), as in Equation
(4.8), leads to the following overdetermined linear system (3 equations, 2 unknown
Lagrange multipliers):

ˆw

ˆa

-----
a

ú
,B

(0)

+ µ

ú
AÂ”(B(0))€

ˆ

Â
”AÂ”
ˆa

-----
a

ú
,B

(0)

+ ›

ú
Aā

(B(0))€
IAā = 0.

where the gradients are replaced by their value in order to compute the Lagrange mul-
tipliers, that are:

µ

ú
A”

(B(0)) = 31.86 kg/mm,

›

ú
Aā

(B(0)) = 9.02e

≠3
kg/mm

2
.

As a remark, these multipliers illustrate the optimal weight (of the slave problem (sBP))
sensitivity with respect to a perturbation of the constraint on the upper bound or
displacements, respectively. The values show that the problem optimum is much more
sensitive to the constraint on displacements than the bound constraint.

The gradients of the weight and the displacement constraints w.r.t. B are computed,
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respectively:

ˆ

Â
w

ˆB

-----
a

ú
,B

(0)

= [4.12, 4.08, 6.52, 5.6, 5.54, 8.86, 2.63, 2.6, 4.16] ,

ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(0)

=
Ë
≠0.13, ≠0.13, ≠0.2, ≠0.71, ≠0.74, ≠1.1, ≠8.4e

≠2
, ≠8.8e

≠2
, ≠0.13

È
.

These values are replaced in the following equation (adapted from equation 4.9) in order
to compute the gradient of Â�:

d

Â�
dB

-----
B

(0)

= ˆ

Â
w

ˆB

-----
a

ú
,B

(0)

+ µ

ú
A”

(B(0))€
ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(0)

. (4.15)

Its numeric value is:

d

Â�
dB

-----
B

(0)

=
Ë
6.2e

≠3
, ≠0.21, 0.14, ≠17.0 ≠ 18.0, ≠26.2, ≠5.7e

≠2
, ≠0.2, ≠2.5e

≠3
È

.

Physically, the values seem to indicate that the optimal weight (of the slave problem
(sBP)) is very sensitive to the choices of materials and shapes on the second structural
element, when compared to the others. This could be explained by the fact that the
load case has a vertical component only, in line with the second element. Furthermore,
one can see that excepted the first choice (AL2139) of the first element, all the choices
are expected to make the optimal weight decrease. However, generally these values
have to be interpreted with caution. Indeed, these sensitivities are only valid in a (close
enough) neighborhood of B

(0), according to the hypothesis of the proposition 4.3.2. A
change in the active constraint set could occur at intermediate values of B.

The history of the previous iterations is updated with B

(0) such that:

K

(0) = {B

(0)}.

The MILP problem (MILP(K(k))) can now be set up, as follows:

min
BœC3,3

÷

subject to ÷ Æ U

(0) ≠ ‘

÷ Ø Â�(B(0)) + d

Â�
dB

-----
€

B

(0)

(B ≠ B

(0))

B ¶ (B ≠ 1) = 09.

(MILP(K(0)))
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The solution of this problem provides the new integer candidate solution B

(1):

B

(1) = vec

Qca0 1 0
0 0 1
0 1 0

Rdb .

• Second iteration (k = 1)

The second iteration k = 1 starts by solving primal problem, that reduces to an evalu-
ation of Â� (by solving (sBP)) at the current guess B

(1):

U

(1) = 8.63 kg, a

(1) = [100, 1770.61, 100] mm

2

Then, the gradient d

Â�
dB

---
B

(1)
is computed. To that purpose the active constraints of the

problem sBP) at (a(1)
, B

(1)) are identified. At this first iteration, the active constraints
are the lower bound constraint on the areas of structural elements 1 and 3, and the
constraint on displacements, such that

¯
a1 ≠ a

(1)
1 = 0,

¯
a3 ≠ a

(1)
3 = 0, ”(a(1)

, B

(1)) = 0.

and then the sets of active constraints indices are

A
¯
a

= {1, 3}, AÂ
”

= {1}, A
ā

= AÂs = {ÿ}.

The gradients of the weight and active constraints w.r.t. a are computed, respectively:

ˆ

Â
w

ˆa

-----
a

ú
,B

(1)

=

Qca3.9e

≠3

4.4e

≠3

3.9e

≠3

Rdb
€

,

ˆ

Â
”AÂ”
ˆa

-----
a

ú
,B

(1)

=

Qca≠1.3e

≠4

≠5.5e

≠4

≠1.3e

≠4

Rdb
€

, IA
¯
a =

Qca0 1
0 0
1 0

Rdb
€

.

One can verify that the gradients of the active constraints are linearly independent, and
thus (LICQ) holds. The stationarity of the Lagragian at (aú

, B

(1)), as in Equation
(4.8), leads to the following full rank linear system (3 equations, 3 unknown Lagrange
multipliers):

ˆw

ˆa

-----
a

ú
,B

(1)

+ µ

ú
AÂ”(B(1))€

ˆ

Â
”AÂ”
ˆa

-----
a

ú
,B

(1)

≠ ›

ú
A

¯
a
(B(1))€

IA
¯
a = 0.

where the gradients are replaced by their value in order to compute the Lagrange mul-
tipliers, that are:

µ

ú
A”

(B(1)) = 8.05 kg/mm,

›

ú
A

¯
a
(B(1)) =

A
2.86e

≠3

2.86e

≠3

B
kg/mm

2
.

Again, the values show that the problem optimum is much more sensitive to the con-
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straint on displacements than the bound constraints. The gradients of the weight and
the displacement constraints w.r.t. B are computed, respectively:

ˆ

Â
w

ˆB

-----
a

ú
,B

(1)

= [0.4, 0.39, 0.63, 4.96, 4.9, 7.8, 0.4, 0.39, 0.63] ,

ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(1)

=
Ë
≠1.2e

≠2
, ≠1.3e

≠2
, ≠1.9e

≠2
, ≠0.63, ≠0.66, ≠0.97, ≠1.2e

≠2
, ≠1.3e

≠2
, ≠1.9e

≠2
È

.

These values are replaced in the following equation (adapted from equation 4.9) in order
to compute the gradient of Â�:

d

Â�
dB

-----
B

(1)

= ˆ

Â
w

ˆB

-----
a

ú
,B

(1)

+ µ

ú
A”

(B(1))€
ˆ

Â
”AÂ”
ˆB

-----
a

ú
,B

(1)

.

Its numeric value is:

d

Â�
dB

-----
B

(1)

= [0.29, 0.29, 0.47, ≠0.1, ≠0.37, 0., 0.29, 0.29, 0.47] .

The history of the previous iterations is updated with B

(1) such that:

K

(1) = K

(0) fi {B

(1)}.

The MILP problem (MILP(K(k))) can now be set up, as follows:

min
BœC3,3

÷

subject to ÷ Æ U

(1) ≠ ‘

÷ Ø Â�(B(1)) + d

Â�
dB

-----
€

B

(1)

(B ≠ B

(1))

÷ Ø Â�(B(0)) + d

Â�
dB

-----
€

B

(0)

(B ≠ B

(0))

B ¶ (B ≠ 1) = 09

(MILP(K(1)))

The problem (MILP(K(1))) does not admit feasible solutions.
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F = 100 kN

l l

l

1 2

6

43

5
7

8

9

10

N

”

Figure 4.3: 10-bar truss, seen as a scalable 2D cantilever problem with 2 blocks.

The algorithm stops, and the optimum is such that:

Â
w

ú = U

(1) = 8.63 kg (4.16)
a

ú = a

(1) = [100, 1770.61, 100] mm

2
,

B

ú = B

(1) = vec

Qca0 1 0
0 0 1
0 1 0

Rdb
corresponding to the following optimal catalogs selection, with “ = [1, 2, 3]€ œ �3:

c

ú = B

ú
“

€ = [2, 3, 2]€, (4.17)

in other terms the optimal material for elements 1 and 3 is AL2139 and TA6V.

It can be remarked that after the first outer iteration, that costs 1 NLP and 1 MILP, the
optimum is found. During the entire process, 2 NLP have been solved, and 2 MILP. Solving
this problem by enumeration (Baseline) would have necessitate 33 NLP optimizations, while
the Bi-level algorithm required 17 NLP optimizations. The optimum found by Bi-level OA is
the same than the one obtained by Baseline and Bi-level algorithms.

4.4.3 A 10-bar truss structure

This well-known low-dimensional 10-bar truss problem (Haftka and Gürdal 1992) is used
to solve the mixed categorical-continuous optimization problem by enumeration, Bi-level or
hybrid branch and bound (h-B&B) (Barjhoux et al. 2018b). As explained in subsection 4.4.1,
these approaches provide global solutions, that are taken as reference solutions to evaluate
quality solutions of the Bi-level OA algorithm.
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¯
a 100 mm

2

ā 1300 mm

2

aini 1300 mm

2

Table 4.3: Bounds on areas, and initial areas
values of the 10-bar truss optimization case.

Table 4.4: Results of 10-bar truss mixed optimization with 5 di�erent values of constraint on
displacements. Comparison between the Bi-level OA, Bi-level, the Baseline solutions obtained
by enumeration of the 210 continuous optimizations, h-B&B, and the Genetic algorithm. The
catalog 1 corresponds to material AL2139 and catalog 2 to TA6V.

ū (mm)
Baseline h-B&B Genetic Bi-level Bi-level OA

c

ú = B“ w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg) d

h

w

ú(kg)

-22 [2,2,1,1,1,2,2,1,2,1] 12.988 0 12.988 0 13.283 0 12.988 0 12.988

-20 [2,1,1,1,1,1,2,1,1,1] 13.996 0 13.996 0 14.423 0 13.996 0 13.996

-19 [2,1,1,1,1,1,2,1,1,1] 14.570 0 14.570 0 14.802 0 14.570 0 14.570

-18 [1,1,1,1,1,1,1,1,1,1] 15.175 0 15.175 2 15.642 0 15.174 0 15.174

-17 [1,1,1,1,1,1,1,1,1,1] 15.912 0 15.912 3 16.258 0 15.912 0 15.912

The 10-bar truss problem is illustrated Figure 4.3. A downward load F = 100 kN is
applied vertically on node N

”

. A constraint on displacements is applied on the same node.
Five cases with di�erent bounds values ū on displacements are considered. For each of these
cases, the displacements constraint is applied on node N

”

. The upper and lower bounds, and
initial areas, are fixed as detailed in Table 4.3. Catalogs 1 and 2 point to materials AL2139
and TA6V, respectively. Materials properties are listed in Table 4.1. For this simple case,
one has n = 10, p = 2, and B œ C10,2. In its direct coding version, C

10,2 corresponds to
�10 = {1, 2}10.

The results of the proposed methodology (Bi-level OA) are thus compared to the global
optima, as shown in Table 4.4. In all these cases, the optima obtained with Baseline (ob-
tained by enumeration), h-B&B, Bi-level and the Bi-level OA approaches are identical. This
means that the Bi-level OA, in these cases, provides the global solution. On the other hand,
the weights returned by the Genetic algorithm are greater than the optimal weight found by
the Bi-level approach. Finally, it is shown that when the displacement constraint becomes
more stringent, the material choice goes to the sti�est one despite of its high density. The
optimal solutions of cases with displacements lower than 18mm and 17mm contain indeed
only TA6V.
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Figure 4.4: An example of 2D cantilever problem with 3 blocks.

4.4.4 On the scalability of the proposed methodology

4.4.4.1 Scalability with respect to the number of elements

The objective of this test case is to describe the evolution of the computational cost with
respect to the number of structural elements. This case can be seen as a generalization of the
well-known 10-bar truss structure (Haftka and Gürdal 1992). It has been used in the literature
to demonstrate the scalability of algorithms, for example in (Shahabsafa et al. 2018). The
structure is made scalable by varying the number of blocks. Each block is composed of 4
nodes that are linked by 5 bars. An example of a scalable 2D cantilever structure with 3
blocks is given in Figure 4.4. In Table 4.5 are presented the results obtained with structures
composed of 1 to 10 blocks. In all cases, a downward load F = 30 kN is applied on the node
N

”

. The bounds on areas, and initial areas are fixed as detailed in Table 4.6.
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#bars
Baseline h-B&B Genetic Bi-level Bi-level OA

w

ú(kg) d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM d

h

w

ú(kg) #iter #FEM

5 2.56 0 2.56 10 1004 0 2.57 32 32300 0 2.56 2 400 0 2.56 2 96
10 6.06 0 6.06 26 3097 1 6.14 54 54500 0 6.06 2 792 0 6.06 2 181
15 10.23 0 10.23 95 10907 2 10.27 65 65200 0 10.23 4 1955 0 10.23 6 967
20 † † 15.33 135 10315 † 15.59 73 73100 † 15.33 2 1659 † 15.33 7 1023
25 † † 21.36 1199 610347 † 22.06 98 97700 † 21.36 3 3142 † 21.36 13 2312
30 † † 28,30 4432 723388 † 28.84 129 128800 † 28.30 8 10522 † 28.30 13 2991
35 † † 36, 17(ú) 5793(ú) 1096968(ú) † 37.00 189 189400 † 36.19 3 5830 † 36.19 6 1496
40 † † 44, 97(ú) 5570(ú) 939726(ú) † 45.64 270 269800 † 44.97 7 13577 † 44.96 40 11578
45 † † 54, 70(ú) 4181(ú) 818455(ú) † 55.98 347 346800 † 54.71 4 8531 † 54.67 20 6789
50 † † 65, 35(ú) 4316(ú) 717627(ú) † 67.48 561 561200 † 65.34 6 14487 † 65.34 42 13290

Table 4.5: A comparison of the obtained solutions for 10 instances of the scalable 2D cantilever problem are compared, with a varying
number of bars (from 5 to 50 bars). We note that when optimizations last more than 24 hours, the solver (Baseline, h-B&B) is stopped
and the current solution (if exists) is marked by (ú). When reference solutions (Baseline) are not available, optimal weights are noted
by †, as well as the distances d

h

to these solutions.

¯
a 100 mm

2

ā 2000 mm

2

aini 2000 mm

2

Table 4.6: Bounds on areas, and initial areas values of the 2D cantilever truss
optimization case.



For each of the 10 cases, the results obtained by the Bi-level OA are compared to those
obtained with reference solutions (Baseline, h-B&B) & Bi-level when available. First, for cases
with 5 to 30 elements where a reference solution is available, it can be observed the global
solution is found by the Bi-level OA. For cases with more than 30 elements, the optima found
by the Bi-level OA are slightly better than those obtained by the Genetic algorithm. The
h-B&B solutions are noted with (*) since they are intermediate solutions : the solver was
stopped after 24 hours. The Bilevel OA solutions are very close (di�erence of 10≠2 kg) to
those obtained by the h-B&B. For cases with 40 and 45 elements, the Bilevel OA solutions
are slightly lighter than the Bilevel. Furthermore, the number of analyses required by Bi-
level OA is always lower than the number needed by the compared approaches, including
Bi-level. The trends in terms of computational cost with respect to the number of elements
are graphically represented in Figure 4.5. The cost of the Genetic algorithm dominates the
cost of h-B&B and Bi-level. As with the Bilevel, the scaling of the Bi-level OA approach is
nearly linear when compared to the h-B&B and Genetic approach. The trends in terms of
Bi-level OA computational cost with respect to the number of elements are similar to the
Bi-level computation cost. The observed e�ciency makes the proposed approach relevant for
higher dimensional problems.

4.4.4.2 Scalability with respect to the number of catalogs

The objective of this test case is to describe the evolution of the computational cost with
respect to the number of categorical choices. The test case is the same 10-bar truss case
presented in Section 4.4.3, with a constraint on displacements such that ū = 22mm. For this
simple case, one has n = 10, but p is varying from 5 to 90 catalogs. The number of available
categorical choices combinations ranges thus from 104 to 1090.

In Table 4.7 are presented the results obtained by Bi-level OA and Bi-level. The optimal
weight, the number of iterations (#ite), non-linear problems (#NLP) solved, and the number
of individual calls to the structural solver (#FEM) are compared. First, in terms of #FEM
and #NLP, the computational cost of Bi-level OA reveals to be quasi-independent from the
number of categorical values when compared to Bi-level. Furthermore, it is shown that for
each case, the optimal weights obtained by both solvers are identical (< 10≠3

kg). Provided
that there is an optimality proof of the result returned by Bi-level OA (under the convexity
assumption of Â�), this shows that the Bi-level also returns good quality solutions even in cases
with a large categorical design space. Independently from the solver, it can be remarked that
the optimal weights are identical from cases 4 to 36, and 45 to 90. This is due to the fact that
the categorical values introduced in the categorical design space from case 4 to 36 (or from
45 to 90) do not significantly improve the optimal weight. An improvement is observed from
case 45 to case 72. The trends in terms of computational cost with respect to the number of
catalogs are depicted in Figure 4.6.
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Figure 4.5: Scalability of the Bi-level OA w.r.t. the number of structural
elements. The computational cost’s scaling of Bi-level OA and Bi-level with
respect to the number of bars is quasi-linear, compared to the exponential
computational cost of the h-B&B and Genetic solvers. The computational
cost’s scaling of the h-B&B prevents from obtaining a solution for cases
greater than 25 elements.

4.4.5 120-bar truss

In this example, the structure of a 120-bar dome truss (Saka and Ulker 1992) is considered
and described in Figure 4.7. In this case, n = 120 and p = 90, �120 = {1, ..., 90}120 such that
C120,90. There is no grouping of elements, meaning that the design space counts 120 categor-
ical design variables and 120 continuous design variables. For each element, the categorical
variable can take a value among 90 catalogs, that point to combinations of materials AL2139,
AL2024 and TA6V, and I, T and C-profiles (10 di�erent sizes each). Materials properties
are listed in Table 4.1. The structure is subjected to an active constraint on displacements
: a maximum downward displacement of 10 mm is allowed. A downward load of 60 kN is
applied on node 1, while a downward load of 30 kN is applied on nodes 2 to 13 and 10 kN

on nodes 14 to 37. The number of available categorical choices is thus equal to 90120. The
bounds on areas, and initial areas are fixed as detailed in Table 4.8.

The optimal weight returned by Bi-level OA is 2501 kg. The convergence history is depicted
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#catalogs
Bi-level Bi-level OA

w

ú(kg) #iter #NLP #FEM w

ú(kg) #iter #NLP #FEM

4 12.99 3 98 29245 12.99 84 84 8400
9 12.39 4 334 98871 12.39 89 89 3772
12 12.39 4 445 131358 12.39 61 61 2583
15 12.39 4 573 170407 12.39 45 45 1955
18 12.39 4 708 209201 12.39 65 65 2877
36 12.39 4 1404 416662 12.39 57 57 2232
45 12.15 3 1348 399172 12.15 69 69 2489
72 12.15 3 1864 551042 12.15 64 64 2898
90 12.15 3 2704 799166 12.15 86 86 3952

Table 4.7: A comparison of the obtained solutions for 9 instances of the 10-bar truss problem
are compared, with a varying number of catalogs (from 4 to 90 catalogs).

¯
a 100 mm

2

ā 6000 mm

2

aini 6000 mm

2

Table 4.8: Bounds on areas, and initial areas values of
the 120-bar truss optimization case.

Figure 4.8. The optimization is converged after 58 iterations. This means that it required
to solve 58 NLP (primal problems), with a total of 33957 calls to FEM. It can be observed
that the optimum is reached at the end of the 5th iteration. In other terms, the remaining 53
iterations serve to prove that the best known solution so far is the optimum. This result can
be compared with the theoretical computational cost of the Bi-level in Chapter 3. Solving this
120-bar truss test case with Bi-level would have required to solve a minium of 1+120◊(90≠1) =
10680 NLPs, equivalent to the computational cost of one iteration of Bi-level. It is also worth
to note that in an industrial context, it is not always necessary to wait for the end of the
optimization. The gap between the upper and lower bound provides indeed information, at
each iteration, on what would be the best expected gain in weight. If the expected gain does
not worth to wait for the end of the optimization, the optimization can be stopped. If this
threshold is known beforehand, it can be assigned to ‘ in Algorithm 6.

4.5 Conclusion

The optimization problem tackled by the proposed algorithm is a large scale mixed categorical-
continuous optimization problem (P), where the categorical variables are non-relaxable and
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Figure 4.6: Scalability of the Bi-level OA w.r.t. the number of catalogs. The
computational cost’s scaling of Bi-level OA with respect to the number of
catalogs is nearly independent from the number of catalogs, compared to
the quasi-linear computational cost of the Bi-level.

non-ordered. It is first formulated as a mixed large scale integer-continuous optimization
problem (BP), where the integer variables are relaxable and non-ordered. The objective and
constraints functions of (P) are also reformulated such that it is possible to compute their
gradients with respect to all the design variables. The proposed algorithm uses a bi-level
decomposition of (BP), and solves an iterative sequence of master and slave problems. The
discrete decisions are driven by the master problem, that involves linearizations of the slave
problem result. However, unlike in Chapter 3, the linearizations are not treated as gradients
that provide a search direction. In the proposed algorithm, they serve to bound iteratively
the convex hull of the slave problem solution parameterized in the integer variables. They
are involved as supporting hyperplanes of the slave problem. They are e�ciently computed
thanks to a post-optimal sensitivity analysis. The resulting algorithm relies on the theory of
the OA algorithm (Fletcher and Ley�er 1994; Bonami et al. 2008; Grossmann 2009). Under
the convexity assumption of the slave problem result w.r.t. the integer variables, the solution
found is proved to be the optimum. The numerical tests show that Bi-level OA is capable of
handling large scale instances of the mixed categorical-continuous problem (P). For example
a problem with 120 structural elements is presented, involving 120 categorical variables as
well as 120 continuous ones, and a categorical design space with 90 values per variable. The
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Figure 4.7: Top and side view a 120-bar truss structure. Downward loads with three di�erent
magnitudes are applied.

optimal solution is obtained after 58 iterations, where 58 NLP are solved. The scalability of
the algorithm, in terms of computational cost, has been tested with respect to the number of
elements and number of categorical variables. In the test cases investigated in this work, the
computational cost is quasi-linear with respect to the number of structural elements. It is also
nearly independent to the available number of values in the categorical design space. Finally,
the quality of the optimum has been evaluated, for low dimensional cases where a reference
solution exists. It has been shown that the solutions returned by the proposed algorithm are
identical to the available reference solutions. Compared to the OA applied to a mono-level
optimization problem formulation, the proposed algorithm generates MILP problems where
only one constraint (hyperplane of lower level solution) is added iteration per iteration. In an
industrial application where the original problem counts thousands of constraints, the MILP
problem generated by the OA would rapidly count a huge number of constraints (number of
iterations times the number of linearized objectives and constraints functions of the original
problem). This is one drawback of the OA algorithm according to (Benson and Horst 1991;
Stolpe and Sandal 2018). The proposed methodology alows to overcome this issue, thanks to
the bi-level formulation of the origial problem, and the e�ciency of the post-optimal sensitivity
analysis to set up the linearizations. Despite the aforementioned encouraging results, it is
also worth to note that there is no proof of the proposed algorithm complexity. This is one
drawback shared by the algorithms that belong to the family of the tree-based solvers. In
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Figure 4.8: History of the convergence of Bi-level OA when solving a 120-bar truss
problem instance with 90 possible choices per structural element, so that B œ C120,90.

the other hand, the optimality proof relies on the assumption of the slave problem solution
convexity with respect to the design variables. Although no non-convex cases have been
encountered so far, a further work could consist to implement a strategy when such cases
occur.
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In this Chapter, the following items have been discussed:

• The original mixed categorical-continuous optimization problem is reformulated
as a mixed integer-continuous optimization problem, with continuously derivable
functions,

• The mixed integer-continuous optimization problem is then reformulated as a bi-
level optimization problem, where the integer design variables are handled at the
master level

• Linearizations of the slave problem results are involved in the master problem as
outer approximation cuts,

• Under convexity assumptions, the proposed algorithm returns the exact optimum,

• The numerical tests show that the algorithm computational cost is quasi-linear
with respect to the number of structural elements, and nearly independent from
the number of categorical values,

• A 120-bar optimization case with 90 available combinations of material and sti�-
ening principle per structural element has been solved, and required to solve 58
non-linear optimizations.
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Chapter 5

Conclusions and perspectives

In this work, large scale structural optimization problems involving both non-ordinal categor-
ical and continuous design variables were investigated. The aim was to minimize the weight of
a truss structure with respect to the cross-section areas, with optimal materials and sti�ening
principles selection. The targeted industrial structure counts hundreds if not thousands of
structural elements, with dozens of possible choices of materials and cross-section types. In
order to handle this kind of problems, three methodologies have been proposed.

In the first Chapter, an algorithm based on the Branch & Bound framework was presented.
It has to be noted that categorical optimization is usually not within the scope of Branch &
Bound algorithms. The novelty of the proposed methodology mainly lied in the formulation of
an original problem specific relaxation. The relaxation consisted of a full continuous problem
definition where the involved functions are underestimators of the original problem objective
and constraints. This bounding technique also came with a specific multiway branching.
Pieced together into the Branch & Bound framework, these strategies allowed to solve the
original problem to optimality in a finite number of steps, despite the categorical nature of
the discrete variables. The numerical experiments confirmed that the computed optima are
the exact ones, for reference (low dimensional) cases. The main drawback of the proposed
methodology was its poor scalability with respect to the dimension of the design space. In fact,
although the computational cost of the proposed method remained attractive for small test
cases, its scalability with respect to the dimension is exponential and hence not compatible
with large scale optimization problems.

In the second Chapter, the methodology relies on the same general idea when it comes
to solve combinatorial optimization problems. Similarly to the proposed B&B, we proposed
to simplify the optimization problems on a sequence of easy-to-solve sub-problems. However,
this second methodology did not build a solution tree of non-linear sub-problems (whose
exploration has proved to be computationally expensive). No relaxation problem was neither
needed. In fact, the problem was reformulated using a bi-level decomposition involving master
and slave problems. The continuous design variables were handled by the slave problem, while
the categorical variables were driven by the master. Such decomposition allowed to leverage
the e�ciency of gradient-based optimization to solve the slave (sizing) problems. In the master
problem, a first order-like approximation of the slave problem, with respect to the categorical
design variables, allowed to overcome the combinatorial explosion of the computational cost
required to get the candidate solutions. The numerical results demonstrated the relevance of
such approximation. The approach revealed to be very competitive in terms of both results
quality and computational cost. The scaling of the computational cost was indeed quasi-
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linear with respect to the number of structural elements. Particularly, this second approach
allowed to solve problems that are very hard to solve with standard algorithms, typically
test cases with more than one hundred categorical design variables. However in the frame of
industrial design problems, this competitive methodology would still require a large number of
sizing optimizations. Furthermore, there was no optimality proof. It was then still needed to
improve the computational e�ciency, while preserving the result quality as much as possible.

In the third Chapter, the proposed methodology is based on the conclusions of the two
aforementioned frameworks. The first conclusion is related with the single tree based ap-
proaches (such as B&B) where one can not handle nonlinear problems with a large number
of design variables. The second conclusion is that the first order approximation involved in
the bi-level approach allows to solve e�ciently medium to large scale instances of the orig-
inal problem. However, this first order approximation was used to build a search direction,
although there is no proof that it will lead to a weight decrease. This search direction was
also at the origin of most of the computational e�ort. Thus in this third methodology, first
order approximations were involved as linear cuts (instead of search directions). Furthermore,
they are e�ciently built based on post-optimal sensitivity analyses, that are usually part of
continuous multi-level optimization schemes. The master problem turned out to be a mixed
integer linear problem, that was e�ciently solved by branch and cut algorithms. The resulting
algorithm can be seen as a specific instance of the well-known outer approximation algorithm,
hence the solutions obtained by our algorithm are provably optimal. The numerical results
confirmed the interest of combining bi-level optimization with post-optimal analysis and lin-
earizations of the slave problem. The scaling of the methodology was quasi-linear with respect
to the number of structural elements, and quasi-independent from the number of categorical
values. This third algorithm outperforms the two aforementioned approaches. The main
drawback of this method lies in the fact that there is no exact estimation of the algorithm
complexity. It is not possible to get a prior assessment of the computational cost before solv-
ing a problem. However, the approach was proved to be competitive in the considered set of
large scale problems.

Perspectives

The presented work o�ers many perspectives, for example in terms of improvements of
the proposed methodologies with the aim of solving the same initial problem more e�ciently.
Indeed, the bi-level methodology with the first-order approximation has shown that the con-
vergence is reached after a very few number of outer iterations. However, the computational
cost of each of these iterations can be prohibitive in large scale problems. If it is reduced,
this would result in an algorithm that could be competitive when compared to the outer
approximation based bi-level approach. To that purpose, it could be interesting to find a
way to leverage the post-optimal sensitivities computation e�ciency (as in the outer approx-
imation based formulation) in the frame of this algorithm. Also, the outer approximation
based bi-level could benefit from multiple improvements. Indeed, it has been shown that the
master problem does not always ensure a decrease of the slave problem optimal weight. This
is due to the fact that the accuracy of post-optimal sensitivities is impacted (especially in
the context of integer variables) by changes in the set of active constraints. This is why the
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proposed algorithm could be even more e�cient if for example quadratic information on the
result of the lower problem could be added to the linearization. Another solution could con-
sist of replacing erroneous post-optimal sensitivities components by values obtained by finite
di�erences, as in the bi-level methodology proposed in the second Chapter. These coe�cients
could be computed in parallel, and may improve the algorithm e�ciency.

Also, even if the conclusions of the outer approximation based bi-level framework are
promising, the numerical tests involved bar elements (tension-compression) that do not embed
the complexity of a full finite element model as used in the industry. First, there is no influence
of the cross-section sti�ening principles in the bar. This means that the Young modulus was
the only categorical-related (relaxable and ordered) physical feature involved by the internal
loads computation. In the full FEM industrial model, the methodology will need to deal with
the cross-section sti�ening principle choices as well. Second, one of the the requirements of
the outer approximation bi-level framework optimality proof is the convexity of the result of
the slave problem. A special attention shall be paid to the fulfillment of that assumption in
the industrial case, if the problem needs to be solved to optimality. The use of convexification
(e.g., by means of convex under-estimators) approaches could be part of a further work, with
a view to handle non-convex cases.

In addition, the results of the outer approximation based framework are a motivation
for extending the scope of the initial problem. One first perspective is to add composite
blending constraints and manufacturing constraints to the structural optimization problem.
For example, it could consist of defining inter-element constraints that maintain continuity
of some ply orientation angles across adjacent structural elements. The proposed framework
can indeed natively handle this kind of constraints on the categorical design variables at the
upper level of the bi-level decomposition. Furthermore, if formulated as linear functions, these
constraints will be treated exactly by the outer approximation framework. In other terms,
this will not a�ect the convergence of the algorithm. In the other hand, it could be interesting
to draw a path between the initial optimization problem and topology optimization. Since
a categorical design variable could also encode the absence or presence of an element among
those of a ground structure, an extension of the proposed methodology to solve a larger
structural optimization problem (including multi-material, shape and topology optimization)
could be considered. It could also be possible to add the manufacturing cost of a structure
in the objective of the optimization problem. Finally, the outer approximation based bi-
level derived in this work could be applied to di�erent mixed optimization problems arising
in engineering optimization, including other fields than structural optimization, e.g., control
systems, chemistry, route planning, aerodynamics, or multidisciplinary design optimization.
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Appendix A

Di�erentiable optimization theory

This Chapter aims to recall bases of continuous optimization on which the presented method-
ologies will rely on. For this purpose, let define a generic problem (P) that is parameterized
in p, a real-valued vector :

�(p) := minimize
xœS

f(x, p)

subject to g(x, p) Æ 0

h(x, p) = 0

(P)

In this problem, objective and constraints are depending on both x and p, but the opti-
mization is performed w.r.t. the design variables x, while p remains unchanged during the
optimization. � is a nested function, since its evaluation triggers a continuous optimization.

First, define the Lagrange multipliers as ⁄ and µ associated to inequality and equality
constraints g and h, respectxively. The Lagrangian of the problem (P(p)) is defined as follows
:

L(x, p) := f(x, p) + ⁄

€
g(x, p) + µ

€
g(x, p)

A.0.0.1 Optimality conditions

For sake of brevity, in this Section the dependance of the functions w.r.t. p in problem (P)
is skipped.

Let introduce the constraints regularity conditions, also called constraint qualifications.
Given a point x œ S, let name A

g

(x), A
h

(x) the sets of active constraints g and h, re-
spectively. The constraints satisfy the Linear Independence Constraints Qualification, named
(LICQ), if given a point x, the active constraints gradients is linearly independent, if there
exists – such that : ÿ

iœAg

–

i

Òg

i

(x) = 0 =∆ –

i

= 0, ’i œ A
g

(x),

ÿ
jœAh

–

j

Òh

j

(x) = 0 =∆ –

j

= 0, ’j œ A
h

(x)
(LICQ)
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The Karush–Kuhn–Tucker (KKT) conditions are first order necessary conditions that
guarantee a solution x

ú to be a local optimum of a non-linear problem (P).

Theorem A.1 (KKT necessary optimality conditions (Karush 1939; Kuhn and Tucker 1951))
Suppose that f , g and h are continuously di�erentiable at a point x

ú. If x

ú is a local optimum,
and g and h verify the constraints qualifications (LICQ), then there exists ⁄

ú and µ

ú called
Lagrange multipliers, such that :

• (Stationarity) (xú
, ⁄

ú
, µ

ú) is a stationary point of the Lagrangian w.r.t. x :

ˆf

ˆx

-----
x

ú

+ ⁄

ú€ ˆg

ˆx

-----
x

ú

+ µ

ú€ ˆh

ˆx

-----
x

ú

= 0 (A.1)

• (Primal feasibility) Constraints are satisfied at x

ú

g(xú) Æ 0, h(xú) = 0 (A.2)

• (Dual feasibility) The Lagrange multipliers related to the inequality constraints are
null or positive :

⁄

ú Ø 0 (A.3)

• (Complementary slackness conditions) The Lagrange multipliers related to the
inequality constraints satisfy :

⁄

ú€
g(xú) = 0 (A.4)

In general, these first order necessary conditions are not su�cient for optimality. Other
conditions have to be statisfied, such as the Second Order Su�cient Conditions (SOSC) given
by the Theorem (A.2).

Theorem A.2 (Second order su�cient optimality conditions (McCormick 1967))
If the following Second Order Su�cient Conditions, named (SOSC), hold :

• there exist ⁄

ú and µ

ú such that KKT conditions (A.1, A.2, A.3, A.4) hold,

• ’z ”= 0 such that :

z

€ ˆL
ˆx

-----
x

ú
,⁄

ú
,µ

ú

z > 0

SUˆg

i

ˆx

-----
x

ú

,

ˆh

j

ˆx

-----
x

ú

TV€

z = 0, s.t. ⁄

i

> 0 (’i œ A
g

)

(SOSC)

then x

ú is an isolated local (unique locally) optimum of problem (P).
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A.0.0.2 Post-optimal sensitivities of continuous problems

In continuous optimization, many e�cient algorithms rely on the gradient of the functions
involved in the optimization problem. Suppose that a gradient-based algorithm is used to
minimize � with respect to the real-valued vector p œ Rn. The gradient of � with respect
to the parameters p at p

Õ œ Rn has thus to be provided to the optimization algorithm. This
gradient gives information on the behavior of the optimal objective value, solution of (P),
after a small perturbation of p

Õ. This is why the gradient of � is also called post-optimal
sensitivity.

Let be x

ú(p) the optimal solution of (P). Let define A
g

the set of active inequality con-
straints, such that

A
g

:= {’i | g

i

(xú(p), p) = 0},

gAg the vector of active inequality constraints and ⁄Ag the corresponding Lagrange multipli-
ers. Let define the strict complementary slackness condition (SCSC), whenever

⁄

i

= 0 ≈∆ g

i

(xú
, p) < 0 ’i œ A

g

, (SCSC)

holds.

Theorem A.3 (Basic sensitivity theorem (Fiacco 1976))
Let be x

ú a local optimum of (P(p)),

• f, g and h are twice continuously di�erentiable w.r.t. x, and Ò
x

f , Ò
x

g, Ò
x

h are once
continuously di�erentiable w.r.t. p in a neighborhood of (xú, p),

• second order su�cient conditions (SOSC) hold at x

ú, with ⁄

ú and µ

ú the Lagrange
multipliers associated to constraints g and h, respectively,

• linear independence constraint qualification (LICQ) holds at x

ú,

• strict complementary slackness condition (SCSC) hold,

then, with p

Õ in a neighborhood of p,

• x

ú is a local isolated minimizer and the associated Lagrange multipliers are unique,

• there exist unique, once continuously di�erentiable functions x

ú(pÕ), ⁄

ú(pÕ), µ

ú(pÕ) that
satisfy (SCSC) for problem (P(p)) such that (xú(p), ⁄

ú(p), µ

ú(p)) = (xú
, ⁄

ú
, µ

ú).
x

ú(pÕ) is also locally unique and the associated Lagrange multipliers are ⁄

ú(pÕ), µ

ú(pÕ),

• the set of active inequalities in (P(pÕ)) remains unchanged w.r.t. the ones in (P(p)),
(SCSC) also hold and satisfy (LICQ).
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Based on Theorem A.3, let define the local optimal value functions �ú and Lú as :

�ú(p) = f(xú(p), p)

Lú(p) = L(xú(p), ⁄

ú(p), µ

ú(p), p)

The expression of the sensitivity of �ú is given in the Theorem A.4.

Theorem A.4 (First-order derivative of the optimal value function (Fiacco 1976))
If assumptions of Theorem A.3 hold for problem P(p), then for any p

Õ in the neighborhood of
p :

• The optimal value function is equal to the Lagrangian optimal value :

�ú(pÕ) = �ú(pÕ) = Lú(pÕ) (A.5)

• The derivative of �ú w.r.t. p is :

d�ú

dp

-----
p

Õ

= ˆf

ˆp

-----
x

ú
,p

Õ

+ ⁄

ú€
Ag

(pÕ)ˆg

ˆp

-----
x

ú
,p

Õ

+ µ

ú€(pÕ)ˆh

ˆp

-----
x

ú
,p

Õ

(A.6)

The Theorem A.4 o�ers thus an analytical expression of the gradient of �, with respect
to the parameters p and for any p

Õ, that depends on :

• a local isolated minimizer x

ú of the Problem (P), obtained after one evaluation of �(pÕ),

• the gradient of the objective function f of Problem (P) with respect to the parameters,
and taken at p and x

ú,

• the gradient of the inequality and equality constraints f and g of Problem (P) with
respect to the parameters, and taken at p and x

ú,

• the Lagrange multipliers ⁄ and µ associated to the constraints g and h.

Numerically, taking advantage of expression (A.6), the computation of the gradient of
� does only require one evaluation of �. In addition, the system given by the stationarity
condition (A.1) has to be solved to get the values of the Lagrange multipliers. Under the con-
ditions given by the Theorem A.3, the number of evaluations of � needed into the expression
of the post-optimal sensitivity (A.1) is thus independent from the number of parameters p,
unlike the finite di�erences approach (4.10).
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Résumé — Dans l’industrie aéronautique, les problèmes d’optimisation de struc-
ture peuvent impliquer des changements de matériaux, de types de raidisseurs, et de
tailles d’éléments. Dans ce travail, il est ainsi proposé de résoudre des problèmes de
grande taille (minimisation de masse) par rapport à des variables catégorielles et con-
tinues, sujets à des contraintes de stress et de déplacements. Trois algorithmes sont
présentés, discutés dans le manuscrit au regard de cas tests de plus en plus complexes.
En tout premier lieu, un algorithme basé sur le "branch and bound" a été mis en place.
Une formulation d’un problème dédié au calcul de minorants de la masse optimale est
proposée. Bien que l’algorithme permette de trouver des solutions optimales, la tendance
du coût de calcul en fonction de l’augmentation du nombre d’éléments est exponentielle.
Le second algorithme s’appuie sur une formulation bi-niveau du problème d’origine, où
le problème supérieur consiste à minimiser une approximation au premier ordre du résul-
tat du niveau inférieur. L’évolution du coût de calcul par rapport à l’augmentation du
nombre d’éléments et de valeurs catégorielles est quasiment linéaire. Enfin, un troisième
algorithme tire partie d’une reformulation du problème mixte catégoriel continu en un
problème bi-niveau mixte avec variables entières continûment relâchables. Les cas tests
numériques montrent la résolution d’un problème avec plus d’une centaine d’éléments.
Egalement, le coût de calcul est quasi-indépendant du nombre de valeurs de variables
catégorielles disponibles par élément.

Mots clés : programmation mixte, variables de design catégorielles, formulations
multiniveaux, problèmes de grande dimension, optimisation de structure, multimatériau

Abstract — Nowadays in the aircraft industry, structural optimization prob-
lems can be really complex and combine changes in choices of materials, sti�eners, or
sizes/types of elements. In this work, it is proposed to solve large scale structural weight
minimization problems with both categorical and continuous variables, subject to stress
and displacements constraints. Three algorithms have been proposed. As a first attempt,
an algorithm based on the branch and bound generic framework has been implemented.
A specific formulation to compute lower bounds has been proposed. According to the
numerical tests, the algorithm returned the exact optima. However, the exponential
scalability of the computational cost with respect to the number of structural elements
prevents from an industrial application. The second algorithm relies on a bi-level formu-
lation of the mixed categorical problem. The master full categorical problem consists of
minimizing a first order like approximation of the slave problem with respect to the cat-
egorical design variables. The method o�ers a quasi-linear scaling of the computational
cost with respect to the number of elements and categorical values. Finally, in the third
approach the optimization problem is formulated as a bi-level mixed integer non-linear
program with relaxable design variables. Numerical tests include an optimization case
with more than one hundred structural elements. Also, the computational cost scaling
is quasi-independent from the number of available categorical values per element.

Keywords: mixed integer programming, categorical design variables, multilevel
formulation, large scale optimization, structural optimization, multimaterial
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