
 

 et discipline ou spécialité

                                             Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace 

Zoé KRUG

vendredi 20 novembre 2020

Conception stratégique des chaînes logistiques inverses
dans le contexte du développement de l'économie circulaire

EDSYS : Génie Industriel

Équipe d'accueil ISAE-ONERA CSDV

M. Michel GRABISCH Professeur Paris School of Economics - Président
M. Nabil ABSI Professeur Mines Saint-Etienne - Examinateur

Olga BATTAÏA Professeure Kedges Business School Bordeaux - Directrice de thèse
M. Van-Dat CUNG Professeur INP Grenoble - Examinateur

M. Alexandre DOLGUI Professeur IMT Atlantique, LS2N - CNRS - Rapporteur
M. Romain GUILLAUME Maître de conférences Université Toulouse 2 - Co-directeur de thèse

Mme Caroline THIERRY Professeure Université Toulouse 2 - Examinatrice
M. Farouk YALAOUI Professeur Université de Technologie de Troyes - Rapporteur

Olga BATTAÏA (directrice de thèse)
Romain GUILLAUME (co-directeur de thèse)



Remerciements

Merci à mes directeur.ice.s de recherche Olga Battaïa et Romain Guillaume pour la confi-
ance qu’il et elle m’ont accordée dès le début de la thèse, pour leurs remarques toujours
constructives, leurs contributions extrêmement précieuses sur les articles et sur la thèse, et
leur implication tout au long de ces 3 années.

Merci à la région Occitanie et l’Université de Toulouse qui ont financé le projet, ainsi
qu’à l’ISAE Supaero pour m’avoir accueillie et fourni les conditions nécessaires à la bonne
réalisation de cette thèse.

Merci à la Fondation ISAE Supaero, l’école doctorale EDSYS et l’ISAE Supaero pour
m’avoir permis l’extraordinaire opportunité d’effectuer une mobilité internationale en Aus-
tralie, et merci à Richard Oloruntoba pour m’avoir accueillie à l’Université de Newcastle et
pour sa contribution au projet.

Merci à Alexandre Dolgui et Farouk Yalaoui pour avoir accepté de relire mon manuscrit
de thèse ainsi qu’à Nabil Absi, Van-Dat Cung, Michel Grabish et Caroline Thierry pour avoir
accepté de faire partie des membres du jury de soutenance.

Merci à Claudia Oliver-Cortadellas pour son implication et le travail fourni durant son
stage.

Merci à tous mes collègues de l’ISAE Supaero et plus particulièrement du DISC pour les
précieux conseils en matière d’administration, de solveurs, ou de packages LATEX, pour les
débats absurdes à l’heure du déjeuner, pour avoir gardé le contact pendant le confinement, et
pour m’avoir rassurée dans les moments de doute. Merci à Narjes pour ses encouragements,
Franco pour toutes les fois où il m’a expliqué comment régler mes problèmes de programma-
tion, Selma toujours-motivée-pour-les-marathons, Erwan pour les kouign amanns, Guillaume
pour les balades dans les Pyrénées, Alex pour l’humour qu’on sait jamais si c’est de l’humour
ou si c’est sérieux, Anh Toan, François, Ilia, Juan José, Luca, Manu, Sophie, Valentin, vous
avez fait de ces 3 années une super expérience.

Enfin, merci à mes parents pour m’avoir soutenue et encouragée tout au long de mes
études et pour m’avoir patiemment écouté parler de ma thèse. Merci à Eva et Rémy pour la
motivation qu’ils m’ont fournis dans les moments difficiles. Merci à Prune d’avoir été là pour
moi à chaque fois que j’en ai eu besoin.

i





Contents

Table of acronyms xi

Résumé en français 1

1 Introduction 15

1.1 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Uncertainty in Reverse Supply Chain design . . . . . . . . . . . . . . . . . . . 19

1.3 Sustainability in Reverse Supply Chain design . . . . . . . . . . . . . . . . . . 20

1.3.1 Environmental dimension . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Social dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 State of the art 25

2.1 Linear and Mixed Integer Linear optimization . . . . . . . . . . . . . . . . . . 25

2.2 Optimization under uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Scenario set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Stochastic programming . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Fuzzy programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Robust programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.5 Two-stage programming . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.5.1 Average formulation . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5.2 Robust formulation . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5.3 Regret Average formulation . . . . . . . . . . . . . . . . . . . 34

2.2.6 Taking into account uncertainty in Reverse Logistics . . . . . . . . . . 35

2.2.7 Bipolarity of the DM behavior . . . . . . . . . . . . . . . . . . . . . . 37

iii



iv Contents

2.3 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Epsilon constraint method . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Multi-Criteria Decision Models (MCDM) . . . . . . . . . . . . . . . . 39

2.3.2.1 Goal programming . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2.2 Normalized objective space . . . . . . . . . . . . . . . . . . . 40

2.3.2.3 Classic aggregation functions . . . . . . . . . . . . . . . . . . 42

2.3.3 Taking into account several objectives in sustainable RSC design . . . 46

3 Reverse Supply Chain design under uncertainty: the R∗ criterion 51

3.1 Proposed solution approach: the R∗ criterion . . . . . . . . . . . . . . . . . . 52

3.1.1 Definition of the R∗ criterion . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Two-stage MIP formulation for CLSC design problem . . . . . . . . . 53

3.2 CLSC location-allocation problem . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Description of the CLSC . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Numerical investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Analysis of Results and discussion . . . . . . . . . . . . . . . . . . . . 64

3.2.4.1 Explorative study of the impact of possible contexts on the
performance of the CLSC . . . . . . . . . . . . . . . . . . . . 64

3.2.4.2 Robust model vs R∗ . . . . . . . . . . . . . . . . . . . . . . 65

3.2.4.3 Average and Regret Average models vs R∗ . . . . . . . . . 67

3.2.4.4 Variance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Reverse Supply Chain design under uncertainty: the LexiR∗ criterion 71

4.1 Proposed solution approach: the LexiR∗ criterion . . . . . . . . . . . . . . . 72

4.1.1 Lexicographic R∗ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Lexicographic R∗ MIP: approximated method . . . . . . . . . . . . . . 76



Contents v

4.2 RSC design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Description of the RSC . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Analysis of results and discussion . . . . . . . . . . . . . . . . . . . . . 83

4.2.4.1 Comparison between R∗ and robust approach . . . . . . . . . 83

4.2.4.2 Comparison between R∗ and LexiR∗ approach . . . . . . . . 84

4.2.4.3 Comparison between Leximin, LexiR∗ and Leximax criteria 85

4.2.5 Comparison of LexiR∗ algorithm and LexiR∗ MIP . . . . . . . . . . . 86

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Sustainable Closed-Loop Supply Chain Design with Equity Considerations 91

5.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Index, Parameters and Variables . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2.1 Economic Objective . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.2.2 Environmental Objective . . . . . . . . . . . . . . . . . . . . 98

5.1.2.3 Social Objective . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Proposed solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Uninorm R∗ approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Numerical investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Analysis of results and discussion . . . . . . . . . . . . . . . . . . . . . 107

5.4 Conclusion and future research directions . . . . . . . . . . . . . . . . . . . . 111

References 134





List of Figures

1 Chaine logistique en boucle fermée . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Supply Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 End-of-life treatment process [HKK07] . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Sustainability considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Ideal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Nadir Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 R∗ criterion solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 CLSC network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Resolution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Standard deviation provided by the tested models . . . . . . . . . . . . . . . 68

3.5 The value for the best case scenario provided by the tested models . . . . . . 69

3.6 The value for the worst case scenario provided by the tested models . . . . . 69

4.1 Resolution with LexiR∗ criterion . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Reverse Supply Chain under design . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Amplitude of profits for 4 scenarios depending on e . . . . . . . . . . . . . . . 86

5.1 Examples of resolution for OPTR∗
solution method . . . . . . . . . . . . . . . 105

5.2 Examples of resolution for OPTHY B solution method . . . . . . . . . . . . . . 106

vii





List of Tables

2.1 Uncertain parameters and their frequency in RL literature [GFK17] . . . . . 35

2.3 Comparison of existing criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 An overview of the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Distribution of the papers according to social and environmental considerations
and time of publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Scope for environmental and social assessment (part 1/2) . . . . . . . . . . . 49

2.6 Scope for environmental and social assessment (part 2/2) . . . . . . . . . . . 50

3.1 Nominal data of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Uncertain parameters for eight different scenarios . . . . . . . . . . . . . . . . 62

3.3 Solution time regarding models and number of scenarios . . . . . . . . . . . . 63

3.4 Total profits for all combinations of scenarios and models (reveal clusters in
the results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Compared TotalProfits between Robust and R∗ for the case of 4 scenarios . 65

3.6 Comparison of profit obtained with Robust and R∗ for the case of 2 scenarios 66

3.7 Comparison of the profits found with the two stochastic models and R∗ . . . 67

4.1 Algorithm Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 MIP Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Deterministic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Comparison of the profits obtained with R∗ and robust approaches . . . . . . 83

4.6 Comparison of the profits obtained with R∗ and LexiR∗ approaches . . . . . 84

4.7 Results obtained with Leximin, LexiR∗ and Leximax . . . . . . . . . . . . . 85

4.8 Comparison of solution times (in seconds) between LexiR∗ algorithm and
LexiR∗ MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



x List of Tables

4.9 Comparison of results LexiR∗ Algorithm versus MIP for 32 scenarios . . . . . 88

5.1 Data for the numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Payoff table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Table of acronyms

CLSC Closed-Loop Supply Chain

DEA Data Envelopment Analysis

DM Decision-Maker

EOL End-Of-Life

FL Forward Logistics

FSC Forward Supply Chain

LP Linear Program

MCDM Multi-Criteria Decision Model

PCA Principal Component Analysis

RL Reverse Logistics

RSC Reverse Supply Chain

SCM Supply Chain Management

xi





Résumé en français

Introduction

Au cours des dernières décennies, les conséquences du réchauffement climatique, de l’accumulation
des déchets et de la pollution sont devenues de plus en plus visibles. Une étude de [Bau+16]
a montré que les émissions de gaz à effet de serre ont augmenté de 64% par an en moyenne
depuis 1990. Selon [MD+18], les températures ont augmenté d’environ 1 °C depuis la révolu-
tion industrielle et sont toujours en augmentation de 0,1 °C à 0,3 °C par décennie. De plus,
l’accumulation des déchets solides atteint de nouveaux sommets et la production de plastique
a été plus élevée que jamais auparavant au cours des dernières années [Pla16]. Alors qu’une
petite proportion des déchets et du plastique est recyclée ou incinérée, la majorité est déposée
dans les décharges ou dans la nature. Par ailleurs, les matières premières sont de plus en plus
rares, ce qui affecte fortement l’économie mondiale. Les mines de minerai exploitées sont en
déclin rapide: dans les zones les plus développés du monde qui sont aussi les anciennes régions
industrielles, comme par exemple en Europe et aux États-Unis, un pourcentage important
de mines ont été fermées en raison de leur contenu minéral faible ou épuisé [Hen+16]. En
Australie, autre important pays producteur de minéraux, le nombre de mines a diminué d’un
facteur 2 à 5 depuis le début de leur exploitation [Pri+12].

Pour améliorer la situation actuelle, des actions concrètes voient le jour. Au sein de la
société, de multiples acteurs - politiques, scientifiques et entrepreneurs - travaillent à la mise
en place d’autres systèmes de production afin de pouvoir effectuer une transition du mod-
èle linéaire classique "production - consommation - abandon" vers un modèle plus vertueux
d’économie circulaire.

Le concept de logistique inverse a été introduit afin de répondre à ce défi. Il est défini
comme "le processus de planification, de mise en œuvre et de contrôle des flux efficaces et
rentables des matières premières, des stocks en cours de fabrication, des produits finis et
des informations connexes à partir du point de consommation jusqu’au point d’origine afin
de récupérer de la valeur ou d’éliminer le produit de manière appropriée"[RTL98]. Sa mise
en place permet de minimiser de manière significative la quantité de déchets ainsi que de
réaliser des économies sur la consommation de matières premières [BD03]. De plus, en raison
de la sensibilisation croissante des consommateurs aux préoccupations environnementales, le
traitement des produits en fin de vie renforce une image positive des entreprises, protégeant
ainsi leurs marchés [Tof04].

Afin de mettre en œuvre sa logistique inverse, une entreprise doit concevoir une chaîne
d’installations pour récupérer, démonter et traiter les produits usés retournés par les con-
sommateurs. Une telle chaîne comprend souvent des centres de collecte, de démantèlement
et de recyclage. Ces installations constituent la chaîne logistique inverse (CLI). Lorsque la
CLI travaille en coordination avec la chaîne de production classique (CLC) de l’entreprise,
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2 Résumé en français

l’ensemble du système est appelé chaîne logistique en boucle fermée (CLBF) [GJVW09] (voir
Figure 1).

Figure 1: Chaine logistique en boucle fermée

Plusieurs entreprises ont déjà mis en place de tels systèmes de CLBF. Apple, par exemple,
offre des rabais aux clients qui, lorsqu’ils achètent un nouveau produit, retournent l’ancien.
Apple récupère ensuite les anciens produits et les réintègre dans ses usines afin d’utiliser des
pièces des modèles précédents dans leurs nouveaux produits. H&M, le géant mondial de la
mode d’origine suédoise, récupère les vêtements d’occasion dans tous ses magasins à travers
le monde. Les vêtements retournés peuvent être dans n’importe quelle condition ou être de
n’importe quelle marque et H&M les utilisera pour créer une ligne de vêtements entièrement
recyclés. Ce type de CLI permet à tous les types de consommateurs de s’impliquer avec la
marque, même s’ils n’ont pas initialement acheté leurs vêtements auprès de H&M. Kodak
reconditionne ses appareils photo à usage unique après le développement du film. Au cours
de la dernière décennie, l’entreprise a recyclé plus de 310 millions d’appareils dans plus de 20
pays.

Les exemples sont nombreux et ce nombre augmente chaque année, mais la majorité des
systèmes de production mondiaux sont encore loin de l’économie circulaire. En parallèle,
depuis les années 1990, les études scientifiques en conception et planification de CLI et CLBF
sont de plus en plus abondantes [GSK15].

Lors de la conception d’une chaîne logistique, l’objectif est de déterminer des variables de
décision stratégiques (à long terme) comme le nombre de centres de traitement mis en place
ou le choix de leurs emplacements et capacités. Au stade de la planification, les variables de
décision les plus importantes sont les quantités de flux entre les différents centres du réseau,
appelées variables de décision à moyen terme.

La conception des CLI et des CLBF est un problème stratégique complexe en raison du
grand nombre de facteurs (économique, législatif, écologique, logistique, etc.) et du haut
niveau d’incertitude (demande, volume qualité des produits retournés, etc...) qui doivent être
intégrés dans le processus décisionnel.

Dans [AAVW18], les auteurs ont montré sur quatre études de cas d’entreprises impliquées
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dans des processus de logistique inverse que tous les aspects de la gestion de la chaîne doivent
être étudiés afin de rendre le retraitement des produits en fin de vie efficient; de la prédic-
tion du comportement du client jusqu’à la législation, en passant par le modèle commercial
de l’entreprise. Une étude de [GSK15] présente la littérature relative à ce domaine sur les
dernières années.

Le premier défi de la conception de CLI est le niveau élevé d’incertitude sur différents
paramètres [GFK17].

En effet, au moment où la CLI est conçue, les informations précises sur le flux de produits
usés qui vont être retournés par les consommateurs ne sont pas souvent disponibles [GFK17]
et ce manque d’information doit être intégré dans le processus décisionnel [Bin+16]. Cette
incertitude sur les flux en terme de quantité et de qualité, d’une plus grande variété de
sources de flux, de fonctions plus complexes en termes de coût, de services et d’impacts
environnementaux, et d’opportunités de marché inexplorées [Alm+16]; [Ara+15]; [HKK07]
génère de nouveaux risques économiques pour l’entreprise.

Pour faire face à cette incertitude, de nombreuses approches ont été proposées dans
la littérature. Les plus courantes sont l’optimisation stochastique, l’optimisation floue et
l’optimisation robuste. Cependant, ces méthodes classiques sont soit basées sur des don-
nées historiques concernant les paramètres incertains, soit basées sur le concept d’aversion au
risque et négligent la plupart du temps les opportunités qui peuvent se produire dans certains
cas [DGC15]. Par ailleurs, des études psychologiques montrent qu’un décideur se comporte
différemment lorsqu’il/elle considère l’incertitude comme un risque ou bien une opportunité
[Gra06], ce qui peut fortement influencer la conception de la CLI créée. Dans ce manuscrit,
nous proposons de nouveaux outils permettant de prendre en compte cette bipolarité du com-
portement du décideur lors de la conception de CLI dans un contexte d’ignorance totale quant
à la réalisation des paramètres incertains.

Le deuxième obstacle important lors de la conception de CLI concerne la durabilité des
systèmes mis en œuvre. Historiquement, la conception de CLI a été principalement réalisée
dans le but de maximiser le profit de l’entreprise ou de minimiser son impact environnemental,
mais si la question est abordée sous l’angle du développement durable, c’est-à-dire "répondre
aux besoins du présent sans compromettre la capacité des générations futures à répondre à
leurs propres besoins "(Rapport Bruntland pour la Commission mondiale sur l’environnement

et le développement (1992)) trois dimensions doivent être prises en compte simultanément: la
dimension économique, la dimension environnementale et la dimension sociale [Seu+08]. En-
suite, un équilibre satisfaisant doit être trouvé entre les performances de chaque dimensions.
Cette approche est connue sous le nom de "Triple Bottom Line" (TBL) [SM08]. Dans ce
contexte, le deuxième objectif de la thèse est d’apporter un soutien méthodologique aux dé-
cideurs en proposant de nouveaux modèles de décision mutli-objectifs dans le but d’améliorer
la conception durable des CLI et CLBF.

Le manuscrit est organisé de la manière suivante.

Le premier chapitre contient l’introduction et décrit en particulier le contexte dans lequel
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se placent nos recherches. Le deuxième chapitre présente un état de l’art passant en re-
vue les notions et méthodes fréquemment utilisées pour l’optimisation sous incertitude et
l’optimisation multi-critères dans la littérature. Il fournit une analyse des modèles mathéma-
tiques et des approches de résolution proposées pour la conception des CLI sous incertitude
et la conception durable des CLI. Cette analyse permet de mettre en évidence les lacunes
de la littérature pour lesquelles nous proposons des contributions dans les trois chapitres qui
suivent.

Ainsi, dans chacun des chapitres suivants, nous détaillons un problème de recherche auquel
nous répondons par une approche méthodologique et un outil d’aide à la décision. Nous
développons ensuite des expérimentations numériques démontrant la pertinence l’outil pro-
posé. Enfin, nous concluons et apportons des perspectives.

Le manuscrit se termine par une conclusion générale et un ensemble de propositions pour
de futures recherches.

Chapitre 2: État de l’art

L’état de l’art est divisé en deux grandes parties: la première partie concerne l’optimisation
sous incertitude et la deuxième l’optimisation multi-critères.

Dans la première partie, les notions de programmation linéaire et en nombres mixtes sont
rappelées. L’incertitude dans les modèles d’optimisation est introduite à travers le concept
d’ensemble de scénarios.

Plusieurs méthodes classiques permettant de prendre en compte l’incertitude dans les mod-
èles de décision sont ensuite présentées, notamment l’optimisation stochastique, l’optimisation
floue et l’optimisation robuste. Nous rappelons en particulier que l’optimisation stochastique
repose sur des distributions de probabilités sur les paramètres incertains. En optimisation
floue, la densité de probabilité des paramètres incertains n’est pas nécessairement connue.
L’incertitude de ce type de problème vient de l’ambiguïté (le choix entre plusieurs alternatives
est indéterminé) et de l’imprécision (les frontières nettes et précises pour certains domaines
d’intérêt ne sont pas délimitées) sur les paramètres. Enfin, en optimisation robuste, aucune
information n’est donnée sur les paramètres incertains: le décideur est dans l’ignorance totale
et cherche à prendre la décision la moins risquée (contexte d’aversion au risque) quelque soit
les valeurs prises par les paramètres incertains.

Les approches classiques de la littérature sont donc soit dépendantes de distributions de
probabilité, soit très conservatrices à cause d’une forte aversion au risque.

Dans le monde réel et en particulier dans le domaine de la logistique inverse, des distri-
butions de probabilités fiables sur les paramètres ne sont pas souvent disponibles ce qui rend
les méthodes de résolution stochastiques peu efficaces. Afin de rendre moins conservateurs
les modèles robustes, nous proposons de distinguer des zones de risques et d’opportunités ou
l’attitude du décideur n’est pas la même [Gra06].
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Ainsi notre première problématique est la suivante:

(1) Comment la prise en compte de la bipolarité du comportement du décideur

vis-à-vis des zones de risques ou d’opportunités impacte-t-elle la conception

de CLI? Comment modéliser cette bipolarité dans un contexte d’ignorance

totale du décideur?

Dans la deuxième partie de l’état de l’art, nous analysons les approches de la littérature
qui s’inscrivent dans la démarche du développement des chaînes logistiques durables. Pour
tenir compte des différents piliers du développement durable, une modélisation multi-critères
est nécessaire afin de prendre en compte plusieurs objectifs simultanément dans un problème
de décision. Le concept de solution optimale au sens de Pareto est ainsi introduit.

Nous présentons ensuite les méthodes qui permettent résoudre des programmes multi-
objectifs en gestion de production et qui permettent de trouver des solutions Pareto optimales.
Celles-ci peuvent être classées en 2 catégories: à savoir la méthode epsilon-contrainte et les
modèles de décision multi-critères (MDM). Les propriétés particulières de chaque méthode
sont discutées dans [Bra+08].

Une méthode epsilon-contrainte consiste à prioriser un objectif principal tout en exprimant
d’autres objectifs sous forme de contraintes. Fixer différentes valeurs de contrainte pour les
objectifs secondaires permet d’approximer le front de Pareto [Hai71]. Cette méthode est
bien adaptée à l’extension d’une approche économique à objectif unique à des modèles bi-
objectifs ou multi-objectifs intégrant des critères environnementaux et/ou sociaux. En effet,
en considérant par exemple le modèle économique comme objectif principal, cette approche
permet aux décideurs de mesurer l’impact financier des contraintes environnementales et/ou
sociales [Esk+15].

Les MDM peuvent être utilisées pour gérer un plus grand nombre de critères contradic-
toires [Esk+15] en prenant en compte le comportement du décideur dans le processus de prise
de décision afin de trouver la solution Pareto optimale qui lui plaît le plus.

Après une étude approfondie de la littérature sur la conception de CLI durables, nous
proposons d’aborder les problématiques suivantes :

(2) Quelles relations existent entre les objectifs économique, social et environ-

nemental lors de la conception d’une CLI durable ?

(3) Comment l’attitude du décideur influence-t-elle le choix de la solution finale?

(4) Comment modéliser et prendre en considération l’équité entre plusieurs ré-

gions lors de la conception de la chaîne logistique ?

Dans le chapitre 3, nous abordons la première problématique (1).
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Chapitre 3: Conception de chaînes logistiques inverses sous
incertitude avec le critère R∗

Le critère R∗ est développé et mis en application dans le cadre de la conception de la chaîne
logistique en boucle fermée sur la base d’une chaîne logistique directe existante qui comprend
des fournisseurs, des centres de production et de distribution. Nous considérons que les cen-
tres de distribution existants peuvent être transformés en centres hybrides de distribution et
de collecte (HDC) ou en centres exclusivement de collecte pour récupérer les produits en fin
de vie. De nouvelles installations peuvent également être mises en place : de nouveaux HDC
pour prendre en charge le flux des produits en fin de vie, des centres de démantèlement pour
le désassemblage des produits en fin de vie, des centres de réparation, des centres de recyclage
permettant la transformation des composants en matière première et des centres d’élimination
pour les produits ou résidus de produits qu’il est impossible de retraiter. La chaîne logistique
peut se construire progressivement. Le budget disponible pour le développement au début de
chaque période dépend des bénéfices reçus lors des périodes précédentes et des investissement
déjà réalisés. Nous considérons que les paramètres suivants sont incertains : la demande en
produits neufs et reconditionnés, la quantité de produits retournés ainsi que le temps néces-
saire pour retraiter ces produits. Pour intégrer cette incertitude dans le processus décisionnel,
un ensemble discret de scénarios est défini. Afin de prendre en compte le comportement du
décideur en matière de risques et d’opportunités, nous proposons d’utiliser le critère R∗ pour
sélectionner la solution finale. Ce critère permet au décideur de choisir un seuil de robustesse
(noté e) séparant une zone de risque et une zone d’opportunité. L’attitude du décideur ne
sera pas considérée la même dans les deux zones ainsi définies : le risque sera minimisé lorsque
l’ensemble des solutions possibles ne permet pas un profit supérieur au seuil e quelque soit le
scénario considéré, et les opportunités maximisées lorsqu’au contraire, il en existe. Ainsi, on
utilise une approche robuste dans la zone de risque (la valeur du profit obtenue dans le pire
scénario est maximisée) et une approche optimiste dans la zone d’opportunité (la valeur du
profit dans le meilleur scénario est maximisée). Pour démontrer les avantages et l’applicabilité
du modèle développé et la pertinence du critère R∗, jamais utilisé auparavant pour des prob-
lèmes de conception en logistique, nous effectuons des expérimentations numériques et faisons
une comparaison avec des critères classiques utilisés dans la littérature.

Les résultats obtenus montrent que l’utilisation du critère R∗ permet de mieux explorer
la zone d’opportunité sans perdre le contrôle de la robustesse de la solution. En effet, ce
critère donne au décideur un plus grand contrôle sur l’investissement qu’il est prêt à faire
pour ouvrir de nouveaux centres de logistique inverses, apportant plus de profit dans un bon
scénario tout en contrôlant les pertes lorsqu’un mauvais scénario se produit. En particulier,
nous montrons que dans le cas où la demande initiale est élevée, le taux de retour est élevé
et le temps de retraitement des produits usés est court (i.e. le meilleur scénario) par rapport
au cas où la demande et le retour sont faibles et le temps de retraitement est long (i.e. pire
scénario), la solution trouvée avec le critère R∗ permet de réaliser jusqu’à 36% de profit en
plus que la solution robuste pour le meilleur scénario contre seulement 3% de pertes dans le
pire scénario. Nous effectuons une analyse de la variance entre les scénarios selon la valeur
choisie pour le seuil de robustesse e et proposons des recommandations managériales.
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Cette étude révèle de nombreuses nouvelles pistes de recherche. Par exemple, l’étude du
cas ou l’incertitude est représentée par un ensemble discret de scénarios avec des probabilités
imprécises ou par un ensemble continu de scénarios. Le modèle proposé peut également être
étendu en considérant non seulement les meilleurs et les pires scénarios, mais tous les scénarios
intermédiaires. Par exemple, un critère de Leximax pourrait être appliqué afin de classer les
solutions avec les mêmes meilleurs et pires scénarios. Nous poursuivons cette dernière piste
dans le chapitre 4.

Chapitre 4: Conception de chaînes logistique inverses sous in-
certitude avec le critère LexiR∗

Dans ce chapitre, nous proposons une amélioration du critère R∗, à savoir, le critère lexi-
cographique R∗ (noté LexiR∗). Ce nouveau critère est capable de différencier les solutions
en prenant en compte tous les scénarios (et non pas uniquement le meilleur et le pire), tout
en gardant les propriétés de bipolarité du critère R∗. Deux méthodes d’implémentation pour
le LexiR∗ sont proposées, une méthode exacte sous forme d’algorithme et une méthode ap-
prochée sous forme de programme linéaire mixte. La performance des approches développées
est évaluée sur une étude numérique pour un problème de conception de CLI. Nous comparons
les résultats fournis par le critère LexiR∗ avec les résultats fournis par les critères classiques
Leximin et Leximax, ainsi qu’avec le critère R∗ proposé au chapitre précédent.

L’analyse des résultats montre que l’utilisation du critère LexiR∗ au lieu du critère R∗

permet le même contrôle du risque sur le pire scénario, et les mêmes opportunités sur le
meilleur scénario, mais en plus il devient possible de sélectionner la solution apportant le plus
de profit sur les scénarios intermédiaires. Nous montrons par ailleurs que plus la valeur choisie
pour le seuil e est pessimiste (respectivement optimiste), plus les résultats du critère LexiR∗

se rapprochent de ceux trouvés avec le critère Leximin (respectivement Leximax). Pour des
valeurs de e intermédiaires, le LexiR∗ permet de trouver des opportunités intéressantes qui
ne sont pas proposées par d’autres critères.

Nous analysons les temps de résolution pour l’algorithme LexiR∗ et le programme linéaire
mixte LexiR∗ et montrons que l’algorithme LexiR∗ a un temps de résolution beaucoup plus
long, mais permet de trouver une solution exacte, contrairement au programme linéaire mixte
LexiR∗ qui offre seulement une solution approximative, mais obtenue en un temps plus court.
Du point de vue méthodologique, les recherches futures pourraient être orientées vers la
généralisation du critère LexiR∗ à un ensemble continu de scénarios. Du point de vue de
la chaîne d’approvisionnement, les performances environnementales et sociales doivent être
évaluées en plus des performances économiques afin de trouver une solution durable pour la
CLI ou la CLBF créée. C’est sur ce dernier point que se focalise le chapitre suivant.
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Chapitre 5 : Conception de chaînes logistiques inverses durable
en considérant l’équité

Dans ce chapitre, nous considérons la mise en place d’une CLBF durable : les trois dimen-
sions de la durabilité sont modélisées, à savoir la dimension économique, la dimension envi-
ronnementale et la dimension sociale. Nous proposons un modèle multi-objectifs comprenant
un objectif pour chaque dimension.

Le modèle de CLBF étudié dans ce chapitre est basé sur le modèle présenté dans le
chapitre 3. Quelques adaptations ont été apportées pour simplifier sa formulation ainsi que
pour étudier quelques nouvelles fonctionnalités :

• Premièrement, l’incertitude sur les paramètres n’est plus prise en compte dans le pro-
cessus décisionnel. En effet, l’inclusion de deux nouvelles dimensions (environnementale
et sociale) dans le modèle apporte beaucoup de complexité dans la résolution. De ce
fait, nous avons décidé de laisser de côté l’incertitude dans un premier temps.

• Ensuite, dans le premier modèle (voir chapitre 3), chaque installation avait un emplace-
ment prédéfini sur lequel elle pouvait être installée ou non. Dans le nouveau modèle
présenté ici, plusieurs emplacements potentiels sont considérés pour chaque installation.
Cette adaptation permettra d’analyser la relation entre la répartition des différents cen-
tres et les impacts environnemental et social.

Nous intégrons l’étude du concept de l’équité en ce qui concerne le choix des différents
lieux d’implantation de la CLBF. L’équité est définie comme "la situation dans laquelle tout
le monde est traité de manière juste et égale" (dictionnaire Cambridge). Dans notre cas,
nous nous intéressons particulièrement à la prise en compte de l’équité environnementale et
de l’équité sociale lors de l’implantation d’une CLBF : la répartition de des impacts envi-
ronnemental et social doivent être équitablement répartis dans l’ensemble des lieux. Ainsi,
les trois objectifs considérés sont les suivants: L’objectif économique est la maximisation du
profit de la CLBF. L’ objectif environnemental est d’induire le moins de dégradation possible
de l’air, du sol et de l’eau ainsi qu’utiliser le moins d’énergie possible dans les régions les plus
polluées. L’objectif de la dimension sociale est la maximisation de la création d’emplois dans
les régions avec les plus haut taux de chomage.

Peu d’études de la littérature ont abordé l’équité dans la prise de décision lors de la
conception de CLBF durables [Mot+18]; [CSC18]. De plus, nous n’avons trouvé aucun article
tenant compte de l’équité en ce qui concerne la distribution de la pollution environnementale.
Afin de mettre en œuvre un modèle où le but est la réalisation de l’équité dans les objectifs
environnementaux et sociaux, nous nous sommes basés sur l’étude de [MS94] qui analyse
les 20 mesures d’équité les plus couramment utilisées dans les problèmes de conception et
localisation d’installations. Nous avons choisi d’utiliser la mesure d’iniquité de Gini (noté
G) [DSS73]; [Erk93]. Ce coefficient satisfait le principe d’optimalité au sens de Pareto qui
implique que si sa valeur s’améliore, alors aucun des groupes évalués ne sera plus mal en
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point. Dans notre modèle, nous avons adapté le coefficient de Gini pour le considérer comme
un objectif, plutôt que comme un simple outil analytique. Afin de maximiser l’équité, nous
cherchons à minimiser le coefficient de Gini dans les objectifs environnementaux et sociaux.

Pour résoudre le modèle, nous utilisons dans un premier temps des fonctions d’agrégation
classiques utilisées en MDM : l’agrégation basée sur les normes ||.||1 et ||.||∞ et l’agrégation
Leximin. Chacune de ces approches classiques a ses avantages. Cependant, aucune d’elles
ne permet un changement de comportement du décideur vis-à-vis des valeurs des fonctions
objectives. Nous abordons ce problème en introduisant deux nouvelles approches de MDM
basées sur des opérateurs bipolaires. Une comparaison des approches dans leur ensemble est
effectuée.

La première méthode de résolution proposée est notée OPTR∗
. Elle est définie de la

manière suivante:

Soit Do l’évaluation de la déviation entre l’objectif o et la solution optimale si l’on consid-
érait que l’objectif o était le seul objectif pris en compte dans le problème, pour la solution
x,

OPTR∗
(Do, e) =

{

min maxo∈|n| Do si ∃ Do ≥ e

min mino∈|n| Do sinon
(1)

En d’autres termes, nous considérons ici que e est l’écart relatif par rapport à la solution
idéale que le décideur est prêt à accepter pour chaque objectif. Le comportement du décideur
ne sera pas pris en compte de la même manière si l’une des déviations est supérieure à e ou
si elles sont toutes plus petites.

La deuxième approche proposée (notée OPTHY B) est une approche hybride entre l’approche
Leximin et l’approche OPTR∗

. En effet, il s’agit d’une approche bipolaire dans le sens où
nous considérons que tant que le seuil acceptable d’équité environnementale et sociale est re-
specté, le décideur est satisfait et l’objectif principal est de maximiser le profit. Au contraire,
si un ou plusieurs objectifs ne satisfont pas le seuil acceptable, le décideur choisit de faire un
compromis en sélectionnant la solution avec la déviation maximale la plus basse parmi tous
les critères, et applique une méthode de résolution Leximin.

La formulation de OPTHY B est donnée comme suit :

OPTHY B(D0, e) =

{

leximino∈|n|Do si ∃ o ∈ O tel que Do ≥ e

min D1 sinon
(2)

Les résultats obtenus permettent de faire les observations suivantes:

• Les solutions trouvées avec l’approche ‖.‖1 ont la déviation moyenne la plus petite
par rapport à la solution idéale. Cependant, cette approche ne permet pas toujours
de trouver une solution satisfaisante pour tous les objectifs: un objectif très bon peut
compenser un objectif très mauvais.
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• Avec l’approche ‖.‖∞, tous les objectifs sont également satisfaisants, mais certaines
opportunités sont manquées.

• L’approche Leximin améliore les résultats de l’approche ‖.‖∞. Cependant, elle ne per-
met pas au décideur de contrôler ses préférences entre plusieurs solutions équivalentes.

• L’approche OPTR∗
offre la possibilité au décideur de choisir le niveau de réalisation

souhaité pour chaque objectif. Si ce niveau est atteint, il est alors possible d’explorer
les opportunités dans l’espace de solutions. D’un autre coté, cette méthode ne per-
met pas de choisir sur quelle fonction objectif le décideur préfère trouver de nouvelles
opportunités. Ce manque de contrôle peut être corrigé avec le critère OPTHY B.

• L’approche OPTHY B est conçue de manière à permettre de choisir un niveau acceptable
pour les objectifs environnemental et social et ensuite maximiser la valeur de l’objectif
économique uniquement. En conséquence, cette méthode fournit les meilleurs résul-
tats pour l’objectif économique. Elle peut être adaptée pour prioriser l’objectif le plus
important pour le décideur.

Pour approfondir davantage ces observations et fournir au décideur des informations man-
agériales pratiques, nous avons analysé pour chaque solution le nombre de centres ouverts
(tous types compris) et la répartition des emplacements des centres créés. Sur la base de
cette analyse, les observations complémentaires suivantes sont faites :

Le nombre de centres ouverts est lié au profit : plus le nombre centres ouverts est grand,
plus la CLBF sera en mesure de collecter et de retraiter de plus grandes quantités de produits
de fin de vie et d’en récupérer de la valeur.

Quelle que soit la méthode de résolution, les centres de collecte de produits usés sont
toujours établis dans tous les emplacements. On peut donc supposer que cette répartition
permet d’aboutir à la meilleure équité sociale et environnementale.

Ces résultats génèrent plusieurs pistes de recherche intéressantes. La principale consiste à
inclure de l’incertitude dans le modèle, car, comme nous l’avons vu dans les premiers chapitres,
toutes les informations sur les paramètres à prendre en compte lors de la mise en œuvre d’une
nouvelle CLBF ne sont pas toujours facilement prévisibles ou disponibles.

Conclusion générale

1 - Conclusion

La mise en place de CLBF est un enjeu essentiel pour passer de l’économie linéaire à l’économie
circulaire, et pour répondre aux besoins actuels de production plus propre, de réduction des
déchets, de réduction des coûts, de rentabilité, de durabilité, de réduction des changements
climatiques et de responsabilité sociale. Une conception réussie de CLBF repose sur une
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modélisation appropriée de l’incertitude en termes de risque et d’opportunités, ainsi que sur
la prise en compte des trois dimensions du développement durable.

Dans ce contexte, nous proposons dans un premier temps de nouveaux outils de prise en
compte de l’incertitude. En particulier, nous proposons une nouvelle approche de modélisa-
tion utilisant le critère R∗ pour prendre en compte l’optimisme du décideur à la fois dans les
zones de risque et d’opportunité. Cette approche est comparée à des méthodes robustes et
stochastiques dans une expérimentation numérique approfondie. Les résultats obtenus mon-
trent que son utilisation permet d’explorer de nouvelles opportunités sans perdre le contrôle
de la robustesse.

Nous proposons ensuite un raffinement du critère R∗, à savoir le critère LexiR∗ qui per-
met d’améliorer encore les résultats trouvés. Deux méthodes de résolution sont développées
pour appliquer le critère LexiR∗. La première se présente sous la forme d’un algorithme
et la deuxième sous la forme d’un programme linéaire mixte. Nous analysons les temps de
résolution pour les deux méthodes et montrons que l’algorithme LexiR∗ prend plus de temps
de calcul, mais permet de trouver une solution exacte, contrairement au programme linéaire
mixte LexiR∗ qui offre seulement une solution approximative mais obtenue en un temps plus
court.

Dans un second temps, nous étudions un problème de conception de CLBF où les trois
dimensions de la durabilité sont prises en compte simultanément dans un modèle de dé-
cision multi-objectifs. Nous étudions plusieurs méthodes prenant en compte l’attitude du
décideur dans un contexte d’optimisation multi-critères et nous les comparons. Puis nous
proposons deux nouvelles méthodes de résolution notée OPTR∗

et OPTHY B. Nous montrons
que l’utilisation de la méthode OPTR∗

permet d’explorer de nouvelles opportunités tout en
garantissant un niveau de satisfaction générale sur tous les objectifs. La méthode OPTHY B

peut être utilisée pour sélectionner un objectif prioritaire et maximiser les opportunités sur
celui-ci en gardant un niveau satisfaisant de réalisation pour les deux autres objectifs.

Une analyse de l’équité sociale et environnementale entre différents lieux d’implantation
de la CLBF est effectuée. Nous montrons que les solutions menant aux meilleurs profits sont
les solutions où le décideur prend la décision d’ouvrir plus de centres dans la partie inverse de
la CLBF. De plus, les solutions conduisant à la meilleure équité sociale sont les solutions où
les centres sont répartis dans les différentes régions en fonction du taux d’emploi de chaque
région. Enfin, le type de centre mis en place dans chaque région a un impact sur l’équité
environnementale.

2 - Perspectives

Cette étude révèle de nombreuses pistes possibles pour la recherche future.

Par rapport à la considération de l’incertitude dans les modèles de conception de CLI
et de CLBF, les critères R∗ et LexiR∗ peuvent être généralisés pour prendre en compte des
ensembles continus de scénarios. En effet, ces critères pourraient ainsi être utilisés dans
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les cas où l’incertitude ne peut pas être représentée par un ensemble de cas discrets. De
plus, le seuil de robustesse e pourrait être exprimé par une valeur floue, permettant ainsi
d’explorer de potentielles opportunités au voisinage de la valeur initiale choisie par le décideur
et ainsi permettre plus de flexibilité dans la décision. Enfin, d’autres opérateurs bipolaires avec
différentes propriétés devraient être étudiés et comparés à ceux que nous proposons. En effet,
de nombreux opérateurs bipolaires existent et permettent de représenter une grande variété
de comportements différents du décideur. L’étude de tels opérateurs pourrait donc fournir
une analyse intéressante de la relation entre différentes attitudes possibles face à l’incertitude
et les décisions prises sur la conception de CLI ou de CLBF.

Par rapport à la durabilité des CLI et CLBF, une importante piste de recherche est la
prise en compte de l’incertitude dans les modèles multi-critères. De plus, la dimension sociale
pourrait être complétée en intégrant d’autres aspects en plus de la création de l’emploi (e.g.
le développement local, la santé, la satisfaction des clients...). Les objectifs de minimisation
de l’impact environnemental et d’équité environnementale, ainsi que de maximisation de
l’impact social et d’équité sociale pourraient être étudiés simultanément dans un même modèle
afin d’analyser comment la prise en compte de l’équité influence les performances des deux
impacts. Enfin, une étude de la position des solutions trouvées avec les différentes méthodes de
décision multi-critères sur le front de Pareto pourrait être effectuée. En effet, une telle étude
permettrait de visualiser quelles parties du front de Pareto sont explorées par les différents
critères.
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1.1 Industrial Context

Climate change and pollution hit higher records every year and the situation has never been
more worrying. A study from [Bau+16] has shown that greenhouse gaz emissions increase by
64% a year in average since 1990. In France, the carbon footprint per person has raised by
20% in the last 25 years [Bau+16]. According to [MD+18] the temperatures have increased
by approximately 1°C since the industrial revolution and are still escalating of 0.1°C to 0.3°C
every decade. Accompanying this disquieting fact, the accumulation of solid waste is reaching
new heights. The production of plastic has been higher in the last decade than ever before
[Pla16]. While a small portion is recycled or incinerated, the majority is either discarded
into landfill or littered into natural environments, including the world’s oceans. As a direct
effect, we are now witnessing the apparition and development of the "7th continent": an
accumulation of waste of approximately three times the size of France [Leb+18] in the Pacific
ocean. Waste accumulation has numerous harmful effects on both land and see wild life, and
pollution is now affecting approximately 75% of land species and 66% of see species [Ric+18].

15
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Open-pit dump (photo credit: shutterstock) Benxi steel industries in 2013

Furthermore, in addition with the concerns about climate change and pollution, we are
also experimenting a crisis of scarcity of raw materials greatly affecting the world economy.
A paper by [HSH19] particularly shows that even in the best case scenario in which new
policies are put in practice to reach the sustainable development goals of the COP21, the oil
industry should know production difficulties by 2025, only 5 years from now. Apart from oil,
the exploited ore grades mines are also rapidly declining. In Europe and in the United States
of America (prior industrial regions of the world) a non negligible percentage of mines have
been shut down due to their low mineral content [Hen+16]. A study of [Pri+12] also shows
that, in Australia, another important mineral-producing country, the number of ore grades
mines has decreased by a factor of 2 to 5 from the beginning of their exploitation.

These environmental effects we are witnessing are partly due to the classic linear model
production - consumption - abandonment on which have been based the majority of our
production systems up to now.

In a classic model, the Supply Chain (SC) is defined by [CH99] as "the group of manu-
facturers, suppliers, distributors retailers and transportation, information and other logistics
management service providers that are engaged in providing goods to consumers". Thus, it
represents the entire network allowing the delivery of products or services from raw materials
to end customers (see Figure 1.1).

The organization of the different actors of the SC is referred in the following as Forward
Logistics (FL). It relies on Supply Chain Management (SCM), defined as “a set of methods
used to effectively coordinate suppliers, producers, depots, and stores, so that commodity is
produced and distributed at the correct quantities, to the correct locations, and at the correct
time, in order to reduce system costs while satisfying service level requirements" [SL+08].

As such, it doesn’t take into account the reprocessing of used products after consumption
and generates large amounts of waste.

In order to be able to improve the current situation, concrete actions have to be taken
very fast. Fruit of scientific proposals and political commitments, one of the promoted actions
is to define corporate responsibilities of manufacturers on the treatment of EOL products so
as to switch from a classic FL model to an alternative circular economy model.
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Figure 1.1: Supply Chain

In France, a first law is introduced in 1975 organizing the collection and processing of
EOL products. This law precises that EOL collection, transportation and processing must be
done in a clean way, so as to avoid "any risk to the environment and to human health". A few
years later the law of the 13st July 1992 (also known as Royal law) marks a turning point in
our waste management methods. It aims to strengthen the 1975 law and requires companies
to recycle their waste. From 1992, waste represents a source of energy and raw materials
that are no longer allowed to be wasted or destroyed. Thus the selective collection and
recycling of waste policies are imposed by the principle of Extended Producer Responsibility
of the government, also called "polluter-payer". This type of regulation is generalised in the
whole world, for instance, the Waste Electrical and Electronic Equipment (WEEE) directive
which contains mandatory requirements on collection, recycling, and recovery for all types of
electrical goods, became a European law in 2003 and was then also introduced in Canada,
Japan, China, and many states in the US [QFN+10].

Recently, abundant examples of recent initiative to go further in circular economy mod-
els implementation also include: G7 Declaration made in June 2015: “The G7 Alliance on
Resource Efficiency promotes circular economy, refurbishment and recycling strategic actions
to limit consumption of natural resources and reduce waste ”, documents “Roadmap on the
circular economy” (April 2015) and “Towards a circular economy: zero waste program for
Europe "(July 2014) written by the European Commission, the conference "Closing the loop -
Circular economy: boosting business, reducing waste ”organized by the European commission
in June 2015 as well as the public consultation on the circular economy carried out by the
European Union (EU) in August 2015.

Recent studies demonstrate the positive impact of the circular economy not only on the
environment but also on the economy. According to the McKinsey Center for Business and
Environment, the choice of a circular economy would reduce by 1.800 billion Euro (25%)
the cost of raw materials in the European economy by 2030. Furthermore, direct economic
benefits can be obtained by the reuse of materials and/or components [BD03]. In addition, the
revaluation of EOL products would allow improving the image of the company and protecting
its market, which is an indirect source of additional economic benefits [Tof04].
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A circular economy model relies on Reverse Logistics (RL) implementation. Oppositely to
FL, The American Reverse Logistics Executive council defines RL as "the process of planning,
implementing, and controlling the efficient, cost effective flow of raw materials, in-process
inventory, finished goods and related information from the point of consumption to the point
of origin for the purpose of recapturing value or proper disposal" [RTL98]. (See Figure 1.2)

Figure 1.2: End-of-life treatment process [HKK07]

In order to implement RL, a company must conceive disassembly and recovery facilities
that integrate the reverse flow of EOL products (i.e. collection centers, dismantlers, recycling
centers...). Those new facilities constitute the Reverse Supply Chain (RSC). When the RSC
works in coordination with the classic Forward Supply Chain (FSC) of the company, the
whole system is called Closed-Loop Supply Chain (CLSC) [GJVW09]

Several companies have already implemented such systems. For instance, Apple offers
discounts to costumers who, when they buy a new product, return their old one. Apple then
collects the old models and brings the products back to their factories in order to use parts
from previous models in their newer products. H&M accepts used clothing at all of their stores
worldwide. The clothes can be of any condition or brand, and H&M will use the clothing
they have collected to create an all-recycled clothing line. This type of RSC allows all types
of consumers to get involved with the brand, even if they didn’t purchase their garment from
H&M. Kodak re-manufactures its single-use cameras after the film has been developed. Over
the past decade, the company has recycled more than 310 million cameras in more than 20
countries.

Examples are numerous and their number increase every year, but the global supply
networks are still far away from circular economy. Since the 1990s, the number of academic
studies dedicated to RSC and CLSC design and planning increase as well [GSK15]. The aim
of design is to determine strategic (long-term) decision variables like the number of facilities
implemented or their locations and capacity. In the planning stage, the most important
decision variables are the quantities of flows between the different facilities of the network,
known as mid-term decision variables.
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A strategic vision of the expansion of the CLSC has been introduced through multi-period
models where facilities can be set up at any period of time [BGH17]; [DGC15]. These models
are more relevant for the context of reverse logistics. For instance in [DR+13], the authors
considered a multi-period CLSC network design problem in which facility capacities could be
increased or decreased dynamically over time for all echelons. Facility and depot locations
could be changed and the type of depots and their general size could be modified. More
examples of recent dynamic CLSC models are available in [KMF15]; [MS16].

The design of RSC and CLSC is a complex strategic problem due to the large number
of factors that must be integrated into the decision-making process (economic, legislative,
ecological, logistics, etc.) and the high level of uncertainty (product demand, volume of
returns, fractions of parts recovered for the various product recovery processes, etc.). In
[AAVW18], the authors particularly showed on four case studies of companies involved in
RL processes that all aspect of RL management have to be accurately investigated in order
to make the reprocessing of EOL products beneficial, from the prediction of the customer’s
behaviour to the legislation including the business model of the company.

A comprehensive review of [GSK15] analyses the existing studies in this area. An impor-
tant number of models have been developed for different settings. The impact of different
logistics structures on the profitability of re-manufacturing systems has been analyzed.

Several studies [Che+15]; [Fle+01]; [Üst+07] suggest that the focus on CLSC is more
relevant for OEM (Original Equipment Manufacturer) since designing the forward and reverse
flows separately results in sub-optimal solutions. Nevertheless, the production cost structure,
collection rate, product life cycle and component durability must be carefully coordinated
in order to maximize cost savings in CLSC network [GVWA07] and companies facing large
and increasing flows of EOL products should have a different RL network structure than the
ones with a low rate of returned products [GJ+06]. Furthermore, [ASVW08] show that the
profitability of RL systems is strongly dependent on the product life cycle as well as on the
competition faced by OEMs. The problem that in reality, the high level of uncertainty of the
different parameters [GFK17] makes this design of RSC or CLSC very challenging.

1.2 Uncertainty in Reverse Supply Chain design

Uncertainty relates to something which is not sure, which may or may not happen, or which
nature or shape is vague. In SCM several parameters are often considered uncertain in the
literature [GFK17]. We classify them in two main categories:

1. The system uncertainties: They relate to the uncertain parameters implied by the
implementation of the supply chain and its functioning. Thus, they are present in
both the FSC and the RSC. They include for instance delivery times, production and
transportation costs, center capacities...etc.

2. The environmental uncertainties: They relate to the parameters external to the supply
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chain, independent of the setting of the designed supply chain. In this category we can
include for example the demand of products, the reprocessing time of used product, the
return quantity and quality of products. Indeed, the products may be highly degraded
due to consumer usage or have higher quality due to modifications realized during the
usage phase.

In comparison to classic FSC, the literature acknowledges environmental uncertainty as
being a much more challenging factor in RSC design and describes more various sources of
uncertainty [GFK17]. Indeed, at the moment when the RSC is designed, precise information
about future amount of EOL products cannot be available [GFK17] and this lack of informa-
tion should be integrated in the decision making process about RSC [Bin+16]. Particularly,
new economic risks arise out of less predictable reverse flows of EOL products coming from
the customer. in terms of quantity but also quality of returned products, a wider variety of
flow sources, more complex functions in terms of cost, services and environmental impacts,
and unexplored market opportunities [Alm+16]; [Ara+15]; [HKK07].

To deal with this difficulty, many approaches have been proposed in the literature. The
most common ones are stochastic, fuzzy and robust optimization (further detailed in Section
2.2). However these classic methods are either based on data about the uncertain parameters,
or are risk oriented and neglects opportunities potentially occurring in some cases [DGC15].
Furthermore, psychological evidences show that a DM often behaves differently regarding if
he/she sees uncertainty as a risk or as an opportunity [Gra06] which may influence a lot
the choice of the final solution. In this manuscript, we propose to address this subject by
proposing new tools helping to take opportunities into account at the same time as risks when
designing RSC in a context of complete ignorance of the DM.

1.3 Sustainability in Reverse Supply Chain design

The second major challenge of RSC design regards the sustainability of the implemented sys-
tems. Historically, the implementation of RSC has mostly been done with aim to maximize
the profit of the company or to minimize its environmental impact, but if the question is
considered from the perspective of sustainable development, that is to say "meet the needs of
the present without compromising the ability of future generations to meet their own needs"
(Bruntland Report for the World Commission on Environment and Development (1992)) three
dimensions have to be accounted simultaneously: the economic dimension, the environmental
dimension and the social dimension [Seu+08](see Figure 1.3). Then, a satisfying balance has
to be found between economic performance, environmental performance and social perfor-
mance. This approach is known as Triple Bottom Line (TBL) approach [SM08].

In the last few years the area of sustainable CLSC development has sparked growing
interest among researchers. The study of [Esk+15] particularly reviews numerous papers
published in international peer-reviewed journal giving attention to this subject.
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Figure 1.3: Sustainability considerations

1.3.1 Environmental dimension

According to the literature and following the study of [PRT14], environmental factors with
the greatest impact on the environment can be divided into 4 main categories:

- Impact of transportation between facilities: according to [ZTMR17], the transportation
network of a supply chain is the largest source of environmental hazards in the logistic
system due to the high levels of emitted carbon dioxide. It is measured from the number
of trips and the distance of these, the type of transportation, as well as the amount of
product transported.

- Impact of production: it is the impact generated by the production of one product
in each facility (due to the energy consumption, the emitted carbon dioxide, the wa-
ter pollution...). As such, it includes the facility emissions, the energy and the water
consumption.

- Impact of facility establishment: it is the impact generated by the construction of a
new facility regarding the emissions and energy consumption of materials used during
the construction.

- Impact of disposing of waste: is the impact of disposal of one unit of product in the
landfill after consumption calculated in terms of emissions and/or soil pollution.

Quantifying those environmental impacts in not always an easy tasks. They are most of
the time quantified through techniques such as Life Cycle Assessment or Life Cycle Analysis
(LCA). This methodology aims at assessing environmental impacts related to a product at
each stage of its life, from the extraction of the raw material, through every steps of the
manufacturing, distribution and use of the product, to the recycling or disposal stage. For
every stages, an inventory of the energy and material used as well as GHG emissions produced
is studied. This inventory can be done through surveys and case studies, however, it requires
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accuracy and availability of data about the studied product and request full cooperation
from all actors implied in the different life stages of the product. For the last years, some
production company have published the environmental impacts of the different stages of their
production in recognized databases, making easier the process of retrieving data.

1.3.2 Social dimension

Social sustainability is the dimension the less understood and the less studied in the literature.
It has been defined as "the formal and informal processes; systems; structures; and relation-
ships actively supporting the capacity of current and future generations to create healthy
and livable communities. Socially sustainable communities are equitable, diverse, connected
and democratic and provide a good quality of life" (WACOSS). However, this definition is
still under development [Esk+15]. As such, it includes numerous aspects. The aspects the
most found in the literature and the most relevant to take into account when designing a RL
network are the following:

- Development: this aspect of the social dimension includes all impacts related to the
development, internal (for instance the job creation, the amount of wadges...) or external
to the company (for instance the regional development). However, the SCM related
literature acknowledges the job creation to be the main indicator of development.

- Health and Safety: this aspect regards the employees well-being. It is often evaluated
through indicators such as the number of sick leaves taken by the employed, the turnover
ratio. It can also include much more general concepts such as the respect of the human
rights, general labour conditions, level of education, or access to culture.

- Service level: this last aspect regard the satisfaction of costumers and costumer related
issues.

The quantification of the social dimension is often very hard for various reasons. First,
there is no recognized standard against which it can be appraised [MBS07]. Thus, the evalu-
ation of social factors is often submitted to the subjectivity of the assessor. Second, Since the
social impact is often qualitative by nature, it is difficult to build a single metric to measure
it[Esk+15]. For those reasons, the majority of social parameters are often disregarded when
designing a RSC or a CLSC. The most studied social factors are related to the development
section, and particularly to employment. For instance, in [SFFHK18], the authors study
a supplier selection-allocation problem when designing a CLSC and focus on job creation
maximization, differentiating permanent ongoing jobs and casual jobs, respectively referred
hereafter as fixed and variable jobs. Another study by [Mot+18] defined a social benefit
indicator which prefers job creation in the less developed regions.

Once identified and quantified, the environmental and social impact can be evaluated at
the same time as the economic profit in a mutli-objective optimisation model. The goal is
then to find a compromising design satisfying as much as possible each one of the objectives.
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1.4 Outline of the thesis

In this context, the objective of the thesis is to provide decision-makers with methodological
support and propose new decision models with aim to improve RSC and CLSC design.

In a first time, the objective will be to mathematically formalize the risks and opportunities
related to the uncertainty present at the strategic level of RSC and CLSC design. Once
this work accomplished, new tools helping DM to conceive their own RSC or CLSC will be
implemented. At this end, bipolar optimization methods for decision under uncertainty will
be elaborated in order to take into account the ambivalence risk/opportunity related to the
context dynamics.

In a second time, the objective will consist in proposing multi-criteria decision models,
taking into account environmental, economic and social objectives at the same time.

The manuscript is organized in the following way.

The first Chapter presents a state of the art reviewing popular notions and methods
used for optimization under uncertainty and multi-criteria optimization in the literature.
It provides an analysis of the mathematical models and solution approaches proposed in
the production literature, and particularly in RL. From this state of art, we highlight the
issues related to RSC design under uncertainty and sustainable RSC design and identify the
particular research problems later addressed in this work.

Three Chapters then follow one another corresponding to three problems solved. In each
of them, we detail the research problem, we then propose a methodological approach and a
decision support tool to respond to the problem. Finally we develop an industrial case, we
conclude and present some perspectives on the work.

The manuscript is finalized with a general conclusion and advises for future research.
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In this Chapter, we recall some general definitions from combinatorial optimisation, de-
cision making and multi-criteria optimisation that will be used in our contributions. At the
same time, we analyse the models and methods used for CLSC design and the results obtained
in the previous studies in this area.

2.1 Linear and Mixed Integer Linear optimization

In linear optimization, we seek to minimize (or maximize) a linear objective function, sub-
mitted to a set of linear constraints. This type of optimization is particularly applied to

25
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solve middle to long term decision problems (strategic and tactic level of decision). In ad-
dition, it has been proven well suited to supply chain design and transportation problems
[MG07]. Furthermore, linear problems are often easily solvable [MG07]. Compared to linear
optimization, Mixed integer optimization adds one additional condition that at least one of
the variables can only take integer values. In Supply Chain design, integer (often binary)
variables represent such strategic decisions as opening or not of a facility. The value of such
a binary variable is 1 when the facility is open and 0 otherwise. Generally, a Mixed Integer
Linear Program (MIP) can be presented in the following form (see model 2.1):

Notations

• N : the set of decisions variables,

• M : the set of constraints,

• xi: the decision variable i ∈ N ,

• ai,j : the coefficient of decision variable i ∈ N for constraints j ∈M

• pi: the profit of decision variable i ∈ N ,

• bj : the coefficient of constraints j ∈M ,

max f(x) =
∑

i∈N pixi (2.1)

s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(b) x ∈ X ⊆ R
+

X can be {0, 1} or N

2.2 Optimization under uncertainty

2.2.1 Scenario set

Depending on the considered uncertain parameters, uncertainty will be either considered on
the profit coefficient pi, on the constraint coefficient ai,j and/or bj .

To model the uncertainty we are given a scenario set S, which contains all possible vectors
of the uncertain parameters coefficients, called scenarios. We thus only know that one scenario
s ∈ S will occur, but we do not know which one until a solution is computed. Two methods
of defining scenario sets are popular in the existing literature (see, e.g, [KY13], [BBC11] and
[Min10]). The first one is discrete uncertainty representation, SD = {s1, · · · , sK} contains
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K > 1 explicitly listed scenarios. The second one is interval scenario set. In the case where
uncertainty is considered on the profit coefficient pi, an interval scenario set is described as
SI =

∏

i∈N [p
i
, pi].

Then, several methods exist to take into account uncertainty in decision processes. A first
approach consists in reducing the level of uncertainty present in the model with the use of
surveys of existing cases. A second approach is to study existing data so as to be able to
approximate as reliably as possible the uncertain parameters with probability distributions.
Finally a third approach is to take the best possible decision without knowledge on the
realization of the uncertain parameters when no reliable data is available.

According to those different approaches, the uncertain parameters can be divided into 3
groups regarding the information level of the Decision-Maker (DM) [GFK17]:

• Group 1 (G1): Random parameters for which the probability distributions are known for
the decision maker. In this case, a probability distribution is provided for the scenario
set.

• Group 2 (G2): Fuzzy parameters. In general, there exist two types of uncertainties in-
cluding ambiguity and vagueness under the fuzzy decision-making environment. Ambi-
guity denotes the conditions in which the choice among multiple alternatives is undeter-
mined. However, vagueness states the situations in which sharp and precise boundaries
for some domains of interest are not delineated.

• Group 3 (G3) : Random parameters for which the decision maker has no information
about the probability distributions. In this case, all the scenarios contained in the
scenario set are equally possible to occur.

As deterministic programming is unable to handle uncertain parameters, other types of
mathematical models are used to cope with them. The most used methods which take into
account uncertainties in the literature are stochastic programming, fuzzy programming and
robust programming. In the following subsections, we detail these different programming
methods with their advantages and drawbacks.

2.2.2 Stochastic programming

In a stochastic program, it is assumed that the probability densities of the uncertain param-
eters are known or can be estimated (i.e the uncertain parameters are considered to be in
G1). The goal is then to find a feasible solution which maximizes the expected value of the
objective function (see Model 2.2).
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max Es[fs(x)] (2.2)

s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(b) x ∈ X ⊆ R
+

For example, in a case where a probability distribution ps of a discrete scenario set S =

{s1, · · · , sK} is considered, the Average criterion is often used to find a solution. It consists
in maximising the average of the evaluations of the objective overall scenarios and can be
written as:

max E[f(x)] = max
∑

s∈S

psfs(x) (2.3)

A more complete description of stochastic programming can be found in [SDR14].

While providing the best expected value for the objective, this method offers no guarantees
in the worst cases as the objective value can be very high in the best cases and compensate
for very bad values in the worst cases.

To assess and control the level of risk taken when using a stochastic solution method, the
Conditional Value at Risk (CVaR) is often used. This measure has originally been introduced
by [RU+00] for financial applications and is defined as follows:

Let X be a random variable, the Conditional Value at Risk at level of probability α

(CV aRα) of X is given by

CV aRα(X) = E(X|X ≥ V aRα(X)) (2.4)

Where V aRα(X) = inf{η ∈ R : HX(η) ≥ α}

where H represents the cumulative distribution function.

Generally speaking, the Value at Risk (VaR) is the evaluation of the potential loss in the
worst case scenario in a given time period associated with the corresponding probability for
this worst case to occur, while CVaR is more conservative and quantifies the expected losses
that occur beyond the VaR break point.

By minimizing the CVaR in the objective functions of a stochastic model, a DM can
control the level of risk taken.

The stochastic approach is the most commonly used in RL design. For example, [SG14]
proposed a two-stage stochastic programming approach in order to design an RSC. The con-
ditional value at risk (CVaR) was used as a risk estimator and the return amounts and prices
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of returned products were considered as two stochastic parameters. Other recent examples
of stochastic programming for RL can be found in [AZA17]; [AB14]; [ABA15]; [Hab+17];
[ZU16].

However, stochastic models have two main disadvantages: first, stochastic programs are
often hard to solve computationally [SN05]. Second, it can often be difficult to know the exact
distribution of probability of the uncertain parameters, and, a too broad estimation can lead
to inaccuracies in the solutions.

To overcome this difficulty, fuzzy programming is relatively frequently used [Zad99].

2.2.3 Fuzzy programming

In a fuzzy program, the probability density of the uncertain parameters are not necessarily
known (i.e the uncertain parameters are considered to be in G2). Fuzzy programming ap-
proaches are used to cope with epistemic uncertainty that deals with lack of knowledge on the
parameters. For example, a parameter representing the age of a population can characterize
people into "young", "middle age" or "old". These categories are not completely clear and can
overlap each other.

As such, the uncertain parameters are represented with fuzzy numbers. Basically, a fuzzy
number can be represented as a function whose domain is a specified set and whose range
is the interval [0, 1]. Each value in the domain is assigned to a specific level of compliance
where 0 represents the smallest level, and 1 is the largest level. To illustrate this concept let’s
consider once again the age of the population. We can assume that all people between 0 and
30 years old are young. However, they aren’t all young with the same level. Someone between
0 and 18 is definitely young, then the more the age increases, the less a person is admitted to
be young. As such, a function taking as an input the age of a person can be defined to return
as an output a level of compliance with "being young" where the ages 0 to 18 are associated
to 1 (the largest level of compliance), and where the more the age increases above 18, the
more the level of compliance decreases, until reaching 0 (the lowest level of compliance) for
instance when the age is above 30. The reader can refer to [DP78]; [DVHDL83] for more
information about fuzzy numbers.

Once the fuzzy numbers defined, a fuzzy MIP can then be written as: (see Model 2.5)

max f(x) =
∑

i p̃ixi (2.5)

s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(b) x ∈ X ⊆ R
+

Where p̃i, ãj,i and b̃j are fuzzy sets in R and ≤̃ represents the willingness of the DM to
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permit some violations in the accomplishment of the constraints.

The general model 2.5 includes the special cases where:

1. The objective function is crisp:
f(x) =

∑

i

pixi

2. Some or all constraints are crisp:

∑

i∈N

aj,ixi ≤ bj

In the literature, there are two main families of fuzzy approaches. In the first family, a
defuzzification is first performed (i.e a crisp output is obtained from the aggregated fuzzy set)
and deterministic optimization methods are then used to solve the problem. It is especially
the case in [Pei+10]; [Pau15].

In the second family, the objective is expressed in the setting of possibility theory [DP88]
and credibility theory [Liu04].

A complete description of fuzzy programming and its applications can be found in [Ful98].
This approach is commonly used in RL design, for instance [Sub+15] proposed a fuzzy pos-
sibilistic programming model for designing a forward-reverse logistics network with hybrid
facilities in the presence of uncertainty on demand quantities and quality of returns as well
as the uncertainty of variable costs and random facility disruptions. The fuzzy goal program-
ming model with different priorities was used to solve the developed model. A case study
from the lead/acid industry in Turkey was presented. For more examples of fuzzy approach,
see [FEP15]; [GPA16]; [Hat+15b]; [Hat+15a]; [NP14]; [Özc16]; [TA18].

Fuzzy programming can be generalized with robust programming (see for instance [GKZ12])
which is the most adapted approach when there is no available information about the un-
certain parameters. Indeed, it corresponds to the case where the possibility of scenario s to
occur is binary (equal to 1 if scenario s occurs and 0 otherwise).

2.2.4 Robust programming

In a robust optimization setting, no probability for the scenario set is given (i.e the uncertain
parameters are considered to be in G3). The value of each parameter may fall within a
given closed interval and the set of scenarios is either discreet, or the Cartesian product of
these intervals. Robust programming was first introduced by [Soy73]. An overview of robust
optimization and its applications can be found in [BTEGN09].

From a practical perspective, robust programming has been often successfully applied in
facility location and network design problems (see for instance [BMN11]; [Gab+14]; [ÁM+15];
[PP15]). Furthermore, implementation of RL being a relatively new field of research, there
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is no efficient probability distributions describing the behavior of the uncertain parameters
considered. Thus, in this thesis, we suppose a context of complete ignorance of the DM and
define decision models based on robust optimization.

In robust optimization, the goal is to find a reliable solution even when the worst case
scenario happens. In this context, the Wald criterion (maxmin criterion) is very popular in
the literature [Ahu85],[BBC11], and [GYH15].

Let’s consider a MIP where the profit coefficients are uncertain. We denote as ps
i the

profit of decision variable i ∈ N under scenario s ∈ S. Let f(x, s) =
∑

i∈N ps
i ∗ xi, the Wald

criterion consist in solving the following model (2.6):

maxx∈X mins∈S fs(x) (2.6)

s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(b) x ∈ X ⊆ R
+

Another popular robust criterion is the minmax regret criterion [Sav51]. Let’s consider
a given scenario s, the regret is defined as the loss of profit induced by the occurrence of s

compared to the optimal profit made in the best case scenario, i.e. it is the difference or the
ratio of the payoffs between the best solution and the chosen solution. In this context, the
minmax regret criterion minimizes the maximum regret overall scenarios. It can be formalized
as follows

minx∈X maxs∈S Fs − fs(x) (2.7)

Or minx∈X maxs∈S
fs(x)

Fs

With Fs the total profit of scenario s for the optimal solution

Using the maxmin or minmax regret criteria, the DM is considered very pessimistic as
these criteria only focuses on the worst case scenario and provide no guaranties on the better
cases. Moreover, it is necessary to meet the underlying condition that all scenarios are almost
possible (ignorance context).

In this context, a refinement of the maxmin criterion, namely Leximin criterion has been
proposed by [Yag97]. In the same way as the maxmin criterion, this criterion selects a solution
by maximizing the one with the highest minimum profit overall scenarios. However, if multiple
solutions exist with the same minimum profit, the criterion moves on to maximizing the second
minimum profit, and the third, etc... until one solution dominates the others.

The formal definition of the Leximin order is given below (see definition 1):

Definition 1 (Leximin order)
Let f(x) = (f1(x), ..., fn(x)) and f(y) = (f1(y), ..., fn(y)) be two possible outcomes. The
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Leximin order (noted >lex) is defined such as:

f(x) >lex f(y) ⇐⇒ ∃k ≤ n such as ∀i < k, fi(x) = fi(y) and fk(x) > fk(y)

f(x) =lex f(y) if fi(x) = fi(y) ∀i = 1, .., n

The Leximin criterion is still quite conservative, as a solution with the highest profit in
the worst scenario may not offer a lot of opportunities in a better case scenario.

There exist several approaches to cope with the conservatism of robust programming :

1. The scenario set is adapted.

Several methods exist to adapt scenarios sets in order to make robust solution less
conservative. Particularly, [BTN98] considered uncertain parameters that are elliptic,
thus involving to solve the robust counterparts of the nominal problem in the form of
conic quadratic problems. However, this approach leads to nonlinear models, which
demand more computational time. In order to overcome these drawbacks, the concept
of of "budget of uncertainty" also known as "price of robustness" has been introduced by
[BS04]. Using the observation that it is unlikely that all uncertain parameters deviate
to the worst case scenario at the same time, or, in other words, that the parameters’
uncertainties are not independent, they proposed a model offering a limited number of
deviating parameters for each constraint j named Γj .

2. The DM’s optimism is taken into account.

Several criteria have been proposed for this purpose [GYH15] and Hurwicz-Arrow par-
ticularly proposed a decision under ignorance theory [AH72] that specifies the properties
that a criterion must satisfy. Two of the oldest and most used criteria are the Hurwicz
criterion (H) [Hur51] and the Ordered Weighted Average (OWA) criterion [Yag04]. The
Hurwciz criterion [Hur51] consists in modeling the optimism of the DM by making a
linear aggregation with the best and the worst evaluation of the objective function
overall scenarios (see definition 2). It has often been used to model the behavior of
a decision-maker in different contexts (see [KM05],[Lau+10],[Cha+18], [SZW18] ...etc)
and has been spread to include imprecise probability theory [JS09]. The OWA criterion
is a generalization of the Hurwicz criterion where the optimism of the DM is modelled
by a linear aggregation of the ordered evaluations of the objectives overall scenarios (see
definition 3).

Definition 2 (H criterion)

H = (1− α) min
s∈S

fs(x) + α max
s∈S

fs(x)

where α ∈ [0, 1] is called the optimism-pessimism index. Clearly, if α = 1 then the

problem is solved with max-max criterion; if α = 0 then the problem is solved with max-

min criterion. Hence, α ∈ [0, 1] controls the relative importance of two extremes min

and max.
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Definition 3 (OWA criterion)

OWA =
n

∑

j=1

(wj ∗ fj,s(x))

were fj,s(x) is the jst best solution and wj the corresponding weight.

Hurwicz and OWA criteria are compensatory, it means that a good case scenario will
soften the effect of a bad case scenario and reciprocally. However, psychological evi-
dences show that a DM often behaves differently regarding if he/she sees uncertainty
as a risk or as an opportunity [Gra06] which may influence a lot the choice of the final
solution.

Robust programming, while less studied than stochastic or fuzzy programming in the
literature for RL design problems, may provide valuable results. For instance, [RBTM13]
presented a robust design model for a generic multi-product, multi-echelon CLSC. The un-
certainty in demand and the return rate was modelled by a finite set of possible scenarios.
The scenario relaxation algorithm was employed to reduce the solution time. Another robust
model was studied by [DR+13] who considered a multi-stage, multi-period, capacitated, CLSC
design problem with discrete uncertainty. More examples of the use of robust optimization
for CLSC design can be found in [PRT11].

2.2.5 Two-stage programming

In two-stage programming, the decision process is conceptually divided into two stages. In
the first one, the values for decision variables (y) are chosen before the realization of the
scenario is revealed. The values of the second stage decision variable (x) are calculated for
the known values of uncertain parameters.

Let Γ be a set of discrete scenarios with Γ = 1...S, s ∈ Γ. The general formulation of
two-stage programming in the case of maximization of profit can be written in the following
way:

maxy∈Y [f1(y) + g(Q1(y), ..., QS(y))] (2.8)

Where Qs(y) = maxx∈Xy,s f2
s (x) ∀s ∈ Γ

f1(y) is the evaluation function taking into account scenario-independent variables (or first-
stage variables), f2

s (x) is the evaluation function considering the scenario-dependent variables
(or second-stage variables) and g is an aggregation function. For more information about two-
stage programming concepts and properties, the reader can refer to [SDR14].

Two-stage programming is widely applied in the field of RL design because it faithfully
reproduces the logic of RSC implementation. Indeed, the strategic decisions (for instance fa-
cility location) are often considered as the first stage problem and the planning decision (for
instance the quantities of flows between facilities) as the second stage one. Indeed, strategic



34 Chapter 2. State of the art

decisions often represent expensive and time-consuming processes contrary to planning deci-
sions which can be easily adapted. In [KO10], the authors particularly proposed a two-stage
programming model for a facility location-allocation problem in a paper recycling RSC. Fur-
thermore, the stochastic, fuzzy and robust models presented above can all be adapted with
two-stage programming. We propose below some classic two-stage formulation the mostly
applied to RL design.

2.2.5.1 Average formulation

In a two-stage average formulation, the aggregation function g is the average of the different
profits over all scenarios. Each scenario has an equal weight in the final solution. The objective
of a two-stage average formulation can be written as follows:

maxy∈Y f1(y) + 1
S
∗

∑

s(Qs(y)) (2.9)

Where Qs(y) = maxx∈Xy,s f2
s (x) ∀s ∈ Γ

This formulation is used in stochastic programming when the probability distribution is uni-
form.

2.2.5.2 Robust formulation

In a two-stage robust formulation, the aggregation function g is the maximum and the function
Qs is the minimum. In this way, the minimum profit is maximized over all scenarios [Ram+14]:

maxy∈Y [f1(y) + mins∈Γ Qs(y)] (2.10)

Where Qs(y) = maxx∈Xy,s f2
s (x) ∀s ∈ Γ

2.2.5.3 Regret Average formulation

The two-stage regret average formulation searches for a optimal solution for each scenario
separately and then minimizes the average relative regret overall scenarios compared to the
optimal solutions. This formulation is used in [DR+13] and can be written as follows:

maxy∈Y

∑

s∈Γ
f1(y)+Qs(y)

Fs
(2.11)

Where Fs = maxy∈Y [f1(y) + Qs(y)] ∀s ∈ Γ

Here, Fs is the total profit of scenario s for the optimal solution.
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2.2.6 Taking into account uncertainty in Reverse Logistics

As mentioned in the introduction, uncertainty is one of the most challenging factors when
designing RL. Table 2.1 gives information about RL related uncertain parameters and the
frequency with which they are found in the literature.

Uncertain parameter Abbreviation frequency
Return quantities in a RL network R 85%
Cost of activities (e.g., transportation, production) C 45%
Capacity of network facilities/ transportation links CA 30%
Demand for RL outputs in a RL network DS 21%
Proportion of returned products/components for different activities in a RL network PA 18%
Disposal rate of returns in a RL network DR 11%
Availability of network facilities AF 10%
Fuzzy goals to represent aspiration levels of multiple objectives FG 9%
Buying price of returns in a RL network BP 8%
Selling price of RL outputs to customers in a RL network SP 8%
Capacity coefficients for holding products/materials in SC facilities CS 5%
Environmental parameters such as environmental impacts of SC’s activities and facilities EP 2%
Social parameters related to designing logistics networks PS 2%
Profit of recycling/remanufacturing returned products in RL network PP 2%
Processing/production time for network facilities PT 2%

Table 2.1: Uncertain parameters and their frequency in RL literature [GFK17]

When forward and reverse flows are considered at the same time, several studies strongly
suggest (see Table 2.2), the most influential factors of uncertainty in RL are admitted to
be the initial demand, the demand for reprocessed products, the quantity and the quality
of returned products. A summary of the main contributions in 2014-2020 for the CLSC
design under uncertainty is presented in Table 2.2. The anterior work was analyzed in the
review of [GFK17]. Column 2 corresponds to the uncertain parameters considered in the
model, Columns 3 to 5 correspond to the type of model they used to take into account those
uncertain parameters, Column 6 reports the solution method employed.

We propose in Table 2.3, an overview of the mots common criteria proposed in the SCM
literature to address uncertainty, their advantages and their drawbacks.

Method Advantages Drawbacks
Stochastic Best expected value in average Need for historical data
optimization Often hard to solve computationally
Maxmin No need for historical data No search for opportunities

Risk-resistant
OWA No need for historical data Compensatory

Takes into account the DM’s optimism No risk control
Hurwicz No need for historical data Compensatory

Takes into account the DM’s optimism No risk control

Table 2.3: Comparison of existing criteria
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Article Uncertainty S F R Solution method
[AZ13] R, DR, AF x MIP
[AZA17] D, R x MIP
[AB14] R x MIP
[ABA15] R, C, PA x MIP + SAA
[BGH17] D, R x MIP
[Bap+19] R,R,C x MIP
[DGC15] R, D x MIP
[FG19] All parameters x MIP
[FEP15] R, C, CA x MIP
[GNKS19] D,R,C x x heuristic
[GPA16] D, C, CA, S x improved GA
[Hab+17] D x MIP
[HR18] R, D, CT x x Bender’s decomposition
[Hat+15b] D, R, C, CA x MIP
[Hat+15a] x MIP
[JZG16] R x Bender’s decomposition
[JZG17] D, R, C x L-shaped method
[KRK16] R, C x x Bender’s decomposition
[KMF15] R x Bender’s decomposition
[NP14] R, D x MIP
[Özc16] D, CA, DR x MIP
[Pol+19] D x MIP
[Pra+20] D,C x MIP
[SSE14] R x x x Memetic based heuristic
[Sae+19] R,C,CA x MIP
[SG14] D, BP, SP x MIP
[Sub+15] D, R, C, AF x MIP
[STB15] D, R, C, AF x x MIP
[TA18] R, D, C x MIP
[TAZ20] D,R,C x x MIP
[YS20] D,R x MIP
[Zha+16] R, D, C, DS x x MIP + Meta-heuristic
[ZU16] D x MIP
[Zhe+19] D,R x MIP

Table 2.2: An overview of the state-of-the-art

Parameters. R: Product Return quality and/or quantity, D: Demand, C: Cost, CA: Capacities, DR:
Disposal Rate, PA: Proportion of returned products for different activities, SP: Selling Price, AF: Availability

of Facilities, BP: Buying Price, CT: Carbon Tax, DS: Distances, S: Social Parameters
Type of models. S: Stochastic, F: Fuzzy, R: Robust

As it can be seen in the literature, the models that take uncertainty into account either
rely on data about the uncertain parameters, or in a context of complete ignorance of the
DM, are risk-oriented and never distinguish hazard from opportunity. However, psychological
evidences show that a DM often behaves differently regarding if he/she sees uncertainty as a
risk or as an opportunity [Gra06] which may influence a lot the choice of the final solution.
We detail this concept in the next section.
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2.2.7 Bipolarity of the DM behavior

Bipolarity relates to something which is divided into two opposite sides. In decision making,
it can often help to divide positive and negative pieces of information in order to discrim-
inate solutions. Thus, the notion of bipolarity in decisions processes has been present for
centuries in our everyday life. One of the most apparent examples we can give to illustrate
this point are "pros" and "cons" lists made in order to take a decision when several factors
are to be considered. This type of list helps to distinguish the attributes of positive nature or
"pros" (representing an advantage compared to the objectives to reach) from the attributes
of negative nature or "cons" (with disadvantages, constraints in relation to the achievement
of objectives).

On the other hand, the majority of the proposed approaches to take decision under un-
certainty in the literature most of the time do not try to emphasize this duality. Indeed,
the potential of the alternatives to reach the fixed objectives is often obtained through the
evaluation of a common set of attributes all considered in the same way.

Furthermore and as aforementioned, a DM often behaves differently regarding if he/she
sees uncertainty as a risk or as an opportunity[Gra06]. We can demonstrate this point with
the following example: let’s consider a ball hidden in a box. The ball can be either red or
white. A game is proposed to a DM in order to guess to color of the ball, the choice of the
DM is to play or not to play the game. In a first case, the DM wins 10 euros if he/she guesses
correctly and looses nothing otherwise. In this case the bet only offers opportunities to the
DM as taking the bet won’t let him/her loose anything, and the DM is willing to play. In a
second case, the DM wins nothing if he/she guesses correctly but a mistake costs 10 euros.
In this case, as only risks are possible when playing the game, the DM won’t be willing to
participate.

Accounting the fact that uncertainty can be perceived either as a risk or as an opportunity
by the DM, [Gra06] studied the concept of bipolar operators. These operators include a
neutral value (here denoted as e), above and below which, scores are considered differently.
A type of bipolar operator, namely Uninorms has been defined by [YR96]. Based on the
definition of a bipolar operator offered by [Gra06], [YR11] proposed a bipolar aggregation
using the Uninorms. Originally, it has been defined on [0,1] but in the context of optimization
problems, we extend the definition on R

+ as follows:

Definition 4 (Uninorm)
A Uninorm R is a mapping R : R

+ ×R
+ → R

+ having the following properties:

1. R(a, b) = R(b, a) (Commutative)

2. R(a, b) ≤ R(c, d) if a ≤ c and b ≤ d (Monotonous)

3. R(a, R(b, c)) = R(R(a, b), c) (Associative)

4. There exists some element e ∈ R
+, called the identity element, such that for all x ∈ R

+

R(x, e) = x
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A Uninorm operates like a t-norm on [0, e], and like a t-conorm on [e, +∞[. Thus, consid-
ering all scores below e as "bad" scores and all scores above e as "good" scores, we will look
at the interval [0, e] as a risky area and the interval [e, +∞[ as an opportunistic area. The
value e will be representing the optimism level of the DM. We can thus consider that [0, e] is
an interval of hazards while [e, +∞[ is an interval of opportunities. The threshold e therefore
corresponds to the optimism level of the DM.

This type of operators is well known in fuzzy logic literature to generalize the fuzzy "and"

and fuzzy "or". More recently the theoretical properties of such criteria have been studied
for qualitative sequential decision problem were the authors focus on the qualitative aspect of
this type of aggregate function [FG20]. However, it has never been used in to solve decision
problem under uncertainty in RL, despite the fact that is a very promising concept as it makes
it possible to consider uncertainty not only as a risk but also as an opportunity.

In order to fill the gap in the literature, we propose to develop new approaches in order
to answer the following questions:

(1) How does the consideration of the bipolarity of the behavior of the DM

regarding zones of risks or opportunities impact the design of RL? How to

model this bipolarity in a context of complete ignorance of the DM?

In addition to the uncertainty, the sustainability of the designed CLSC should also be
taken into account. We remind that for a sustainable RSC, three dimensions have to be
considered at the same time, i.e. economic, environmental and social, making its design a
multi-objective optimisation problem. Therefore, multi-objective solution methods should be
used. We discuss the most frequently employed of them for SCM in the next section.

2.3 Multi-objective Optimization

As previously mentioned, when more than one objective is considered in a decision problem,
multi-objective optimization is applied in order to find a satisfying solution. In mixed integer
linear optimization, the following problem is then considered (see Model 2.12):

max f(x) (2.12)

s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(b) x ∈ X ⊆ R
+

With f = (f1, ..., fn) the set of objective functions to be maximized where fo =
∑

i∈N po,ixi,
∀o ∈ O = {0, ..., n}.
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Let an element x∗ ∈ X be a feasible solution. A vector z∗ = f(x∗) ∈ R
k is called an

objective vector or an outcome. In multi-objective optimization, there does not typically
exist a feasible solution that minimizes all objective functions simultaneously. Therefore,
attention is paid to Pareto optimal solutions (see Definition 5).

Definition 5 (Pareto Optimality)
A solution x∗ ∈ X is called Pareto optimal if and only if there does not exist another

solution x ∈ X, such that f(x) ≤ f(x∗), and fo(x) < fo(x∗) for at least one function.

More generally, Pareto optimal solutions are the solutions that cannot be improved on one
of the objective without degrading at least one of the others. Several possibilities exist to find
Pareto optimal solutions. Particularly, according to the optimization-oriented review written
by [Esk+15], the solution methods for finding Pareto optimal solutions for multi-objective pro-
grams in supply chain management can be classified into 2 categories: the epsilon-constraint
method and multi-criteria decision models. The particular properties of each method can be
found in [Bra+08].

2.3.1 Epsilon constraint method

The epsilon-constraint method consists in prioritizing a primary objective while expressing
other objectives as constraints. It was firstly proposed by [Hai71]. This method is proven
to provide Pareto-optimal solutions and so, fixing various values of constraint enables the
Pareto front to be approximated. In SCM, this method is well adapted to the extension of a
single-objective economic approach to bi-objective models integrating environmental or social
criteria. Indeed, by considering the economic model as the primary objective, this approach
enables decision makers to measure the financial impact of environmental or social constraints
[Esk+15]. Examples of studied papers which used epsilon-constraint method can be found in
[BS18]; [CSC18]; [FG18]; [FC+17]; [Mot+18]; [SRG18]; [Sol18].

2.3.2 Multi-Criteria Decision Models (MCDM)

MCDM are used to find the Pareto optimal solution [Esk+15] while considering all conflicting
objectives simultaneously. In the area of design of sustainable CLSC, the environmental
objective is often conflicting with the social and/or economic objective. Examples of usage of
MCDM can be found in [PRT14]; [THN19]. Various solutions methods have been developed in
order to solve MCDM, in this manuscript, we particularly focus on the goal programming

described here below.
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2.3.2.1 Goal programming

First, the DM has to set up a priori target values for each objective noted go,∀o ∈ O. The goal
programming aims in minimizing the weighted deviations from these values. This method
was proposed by [CC77] and is mathematically formulated as:

min
∑

o d+
o + d−

o (2.13)

s.t.

(a)
∑

i∈N po,ixi − d+
o + d−

o = go ∀o ∈ O

(b)
∑

i∈N ai,jxi ≤ bj ∀j ∈M

(c) d+
o , d−

o , xi ≥ 0 ∀i ∈ N, o ∈ O

With d+
o the positive deviational variable from the oth goal (over-achievement) defined as:

d+
0 = max(

n
∑

i=1

po,ixi − go, 0) (2.14)

and d−
o the negative deviational variable from the oth goal (underachievement) defined as:

d−
o = max(go −

n
∑

i=1

po,ixi, 0) (2.15)

It is worth mentioning that over-achievement and underachievement cannot occur simulta-
neously. These distances can be adapted depending on the problem. To consider all the
objectives in the same order of value, the DM can particularly choose to work with a normal-
ized objective space. We define this concept in the next section.

2.3.2.2 Normalized objective space

To normalize the objective space, we need two specific points namely the ideal point and the
nadir point. The ideal point is the one where each objective has its optimal value as a single
objective. Usually, this value is not attainable in the case of multi-objective optimisation. We
define it as follows:

Definition 6 (Ideal point)

f∗ = (f∗
1 , ..., f∗

n) with f∗
o = min

x∈X
(fo(x)) (2.16)

An example of ideal point is presented in Figure 2.1. Let n = 2, we thus have f1, f2 the
two objective functions considered. The red area represents the space of possible solutions.
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Figure 2.1: Ideal point

The ideal point f∗(x) is an unfeasible solution having the coordinates equal to the minimum
value of both objective functions.

The nadir point will be the point where each objective has its worst value for the optimal
solution of another of the objectives. We define it as follows:

Definition 7 (Nadir point)

fmax = (fmax
1 , ..., fmax

n ) with fmax
o = max

1≤o′≤n
(fo(x∗

o′)) (2.17)

f1(x)

f2(x)

0

•
fmax(x)

•

f∗
1 (x)

•
f∗

2 (x)

Figure 2.2: Nadir Solution

An example of nadir point is given in Figure 2.2. Let n = 2, we thus have f1, f2 the two
objective functions considered. The red area represent the space of possible solutions. The
nadir point is a feasible solution having the coordinates equal to the maximum value of each
objective functions when the other objective function is optimal.

Now we can define the normalized objectives as follow:

Definition 8 (Normalized objectives)
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D(x) = (D1(x), ..., Dn(x)) is the vector of normalized objectives of solution x, with:

Do(x) =
f∗

o (x)− fo(x)

f∗
o (x)− fmax

o (x)
(2.18)

These normalized objectives are used to consider all the objectives with the same order
of value. To consider them in an optimization problem, the vector D must be aggregated. In
the next section, we present different aggregation functions that can be used for this purpose.

2.3.2.3 Classic aggregation functions

An aggregation function is a function that serves to measure the achievement of the min-
imization of unwanted goal deviation variables in the goal programming model. It can be
applied either directly on the set of objective functions fo, o ∈ O or on the set of normalized
objectives Do, o ∈ O. Here below, we define a set of functions uo with o ∈ O representing
either fo or Do. We introduce some of the most well-known below.

Weighted sum In a Weighted Sum (WS) aggregation, each criteria is given a weight de-
pending on its importance for the DM. Let’s consider Ω = (ω1, ..., ωn) the set of weight
respectively corresponding to the set of functions u = (u1, ..., un). The objective of the multi-
objective problem to be solved can be written as:

Minimize WS(u(x)) =
∑

o=1,..,n

ωouo(x)

Aggregation based on ‖.‖1

Definition 9 (‖.‖1 norm)
Let u(x) = (u1(x), ..., un(x)) ∈ R

n. The ‖.‖1 norm is the norm defined by:

‖u(x)‖1 =
n

∑

o=1

|uo(x)|

In this approach, all objectives have the same weight, and the goal is to minimize the sum
of the distances to the "Ideal" solution. Thus, the objective becomes:

Minimize ‖u(x)‖1 =
n

∑

o=1

|uo(x)|

This approach assures the best compromising solution in average over all objectives, but
offers no guarantee regarding the deviation between the objective values of the solution as
one of the distances can be very large and compensated by a smaller one.
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Aggregation based on ‖.‖∞

Definition 10 (‖.‖∞ norm)
Let u(x) = (u1(x), ..., un(x)) ∈ R

n. The ‖.‖∞ norm is the norm defined by:

‖u(x)‖∞ = max
o=1,...,n

|uo(x)|

This approach seeks to minimize the maximum distance to the "Ideal" solution: the DM
has a risk-adverse behavior. This approach can be compared to a robust solution method
in the context of decision making under uncertainty. The new objective can be written as
follows:

Minimize ‖u(x)‖∞ = max
o=1,..,n

|uo(x)|

It is a very conservative approach in the way that it only takes into account the worst
objective and may miss opportunities on others.

Aggregation based on Ordered Weighted Average (OWA)

Definition 11 (OWA operator)
The OWA operator [Yag04] is defined as

OWA(u(x)) = OWA(u1(x), ..., un(x)) =
n

∑

k=1

ωk ∗ rk (2.19)

where rk is the k-est largest of the uo(x) and Ω = (ω1, ..., ωn) is a set of weight such as
∑n

k=1 ωk = 1

By selecting different manifestations for Ω, we can implement different aggregations. Pos-
sible operators are:

• Max (when ω1 = 1 and ωk = 0 ∀k 6= 1);

• Min (when ωn = 1 and ωk = 0 ∀k 6= n);

• the simple average (when ωk = 1
n
∀k = 1...n);

• Lexicographic maximization, described here below;

• Lexicographic minimization, described here below;

• Gini aggregation, described here below.

Some other aggregations can be obtained with the use of a OWA operator. We define
some of them below as they will be used in the models developed in our work.

Lexicographic maximization (Leximax) aggregation
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Definition 12 (Leximax order)
Let u(x) = (u1(x), ..., un(x)) and u(y) = (u1(y), ..., un(y)) be two possible outcomes. The

Leximax order (noted >lex) is defined such as: [Yag97]

u(x) >lex u(y) ⇐⇒ ∃k ≥ 1 such as ∀o < k, uo(x) = uo(y) and uk(x) > uk(y)

u(x) =lex u(y) if uo(x) = uo(y) ∀o = 1, .., n

Essentially this method compares two solutions with respect to their highest scores to any
of the distances to the "Ideal" solution. If they are not equal then it indicates the solution
with the lower largest score as being preferred to the other one. If they are equal it then
looks at the second largest scores and repeats the process until one is preferred to the other
or it runs out of items to compare in which case it considers the two alternatives as tied.
Consequently, this approach can be seen as a refinement of the ‖.‖∞ approach where not only
the worst distance is minimized but also the second worst, the third worst and so on [OŚ03].

This approach can be approximated with the use of a OWA aggregation operator using
the following model [Yag97]:

Leximaxk∈1...n(uk(x)) = min(
∑

k∈1...n

θk ∗ γk)

Where γk equals the k-est highest uo(x) and

θk =
ǫn−k

(1 + ǫ)n+k−1
∀k = 1, ..., n

with ǫ a very small value.

Lexicographic minimization (Leximin) aggregation

Refer to the Leximin order definition (Definition 1).

Conversely to the Leximax method, this method compares two solutions with respect to
their lowest scores to any of the distances to the "utopia" solution. If they are not equal then
it indicates the solution with the highest lowest score as being preferred to the other one. If
they are equal it then looks at the second lowest scores and repeats the process until one is
preferred to the other or it runs out of items to compare in which case it considers the two
alternatives as tied.

Once again, this approach can be approximated with the use of an OWA aggregation
operator as follows [Yag97]:
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Leximink∈1...n(uk(x)) = min(
∑

k∈1..n

θk ∗ γk)

Where γk equals the k-est lowest uo(x) and

θk =
ǫ−k+1

(1 + ǫ)−k+1
∀k = 1, ..., n

with ǫ a very small value.

Gini aggregation

Definition 13 (Gini coefficient (G))

G(u) = min

∑

o

∑

k |uo(x)− uk(x)|

2 ∗ n2 ∗ µ(uo)
(2.20)

Where uo is the value of function o, uk is the value of function k, n is the number of

functions and µ the arithmetic mean of the values of all functions. It measures the inequity

between the values on different functions.

To make this objective to be easier integrated in an exact solution method, the formulation
of [BF+17] can be used. It uses an approximation of the Gini index with the use of an OWA
with particular weights, as shown here below:

Minimize G(u) = min
n

∑

k=1

ω
′

k(k ∗ rk +
n

∑

o=1

do,k) (2.21)

Subject to

rk + do,k ≥ uo ∀o, k ∈ {1, ..., n}

do,k ≥ 0 ∀o, k ∈ {1, ..., n}
(2.22)

with
ω′

k = ωk − ωk−1

ωk = (2(n− k) + 1)/n2 ∀ k ∈ {1, ..., n}
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2.3.3 Taking into account several objectives in sustainable RSC design

As it was mentioned, the question of multi-objective optimisation often raises for the purpose
of the design of a sustainable SC. A recent survey presented in [Esk+15] discusses the models
developed for taking into account the social and environmental dimensions for RSC and
CLSC and published before 2016. We reuse the results presented and complete them with
more recent contributions in Table 2.4.

Year Environmental Social Both

1990 [MO90]
1993 [CCP93]
1999 [BSW99]
2003 [KBRVW03]
2005 [HP05],[Hug+05]
2008 [Erk+08],[GGCJ08],[Min+08]

[PVK08],[PRD08],[Net+08]
2009 [AACRC09],[Boj+09],[GGG09] [DM09]

[MGGJ09],[ZBS09]
2010 [DBPN10],[Gal+10],[GGG10]

[GGMG10],[RCP10]
2011 [CRP11],[GZB11],[Liu+11] [HG11],[TGÖ11]

[Mel+11],[PVBPN11],[WLS11]
[YW11],[Zam+11]

2012 [ASP12],[CRP12],[GZB12] [PRT12] [PF+12],[You+12]
[JGK12],[Kos+12],[PR12]
[PTR12],[Poz+12]

2013 [AZ13],[BGB13],[EZN13]
[Kan+13],[Lam+13],[Muñ+13]
[RF+13],[Sad+13],[XJP13]
[YKY13],[ZWT13]

2014 [BLAP14],[Gov+14],[MEH14] [Afs+14] [DJN14],[SA+14],[Yue+14]
[MTTM14],[SR+14],[HMN14]

2015 [SR+15],[Gar+15] [BA15] [Mot+15],[Mir+15],[TZ15]
2016 [YS16],[CM+16] [Zha+16],[Mir+16]

[Zho+16],[TK16]
2017 [Moh+17],[Zhe17],[MW17] [ZTMR17] [FC+17],[PMCB17],[JSO17]

[JS17],[Kad+17]
2018 [Bán18],[DYL18],[Ebr18] [Nem+18],[FFHKM18] [BS18],[CSC18],[EK+18]

[Far+18],[Man+18],[YS18] [FG18],[SFFHK18],[Sol18]
[GA+18a],[WTZ18],[Mem+18] [SRN18],[SRG18],[Mot+18]
[Doo+18]

2019 [Mar+19],[YG19],[TA19] [Kar+19],[Mey+19] [NKE19],[LLH19],[THN19]
[FG19],[Gao19]

2020+ [Val+20]

Table 2.4: Distribution of the papers according to social and environmental considerations
and time of publication

We can see from this table that the majority of the papers addressing the sustainable
development in the context of RSC design focus on the integration of the environmental
dimension alone. Only a few papers consider the integration of the social dimension alone.
And in the last years (from 2014) an increasing number of papers consider both dimensions
at the same time.
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Tables 2.5 and 2.6 present the scope used for the assessment of the environmental and
social impacts in the literature. We detail the content of the tables below:

• Facilities: The environmental impact of the facilities can be related to the implementa-
tion of a new facility, the GHG emissions produced by a facility, the energy consump-
tion...etc.

• Transport: One of the largest source of environmental impact in a SC are the trans-
portation flows between facilities [ZTMR17]. Therefore, numerous papers consider this
impact when considering the environmental effect of a SC.

• Product: The environmental impact is assessed as a function of the product design and
reprocessing. It also includes the processing of waste.

• Work: The employment is the main social indicator in this category. Some papers
consider also the work conditions and workers safety.

• Societal commitment: This field regroups all social impacts related to the population’s
health, education and culture. It is often evaluated with the GDP, the access to health-
care, the development policies...etc

• Customer issues: This group regards all impacts affecting the customer, they are various
depending on the papers, from the customer’s satisfaction level, to the risk of using
recycled material.

A numerous amount of the presented papers focus on the added complexity of multi-
objective optimisation problems and propose solutions based on metaheuristics to improve
their computational time. For instance, [CM+16] propose a multi-objectives simulated anneal-
ing algorithm in order to solve a supply chain design problem where the profit maximization
and environmental impact minimization are addressed at the same time. In [Mar+19], the
same objectives are taken into account (economic and environmental) and the author propose
an accelerated Benders decomposition algorithm to solve a CLSC design problem. Other
examples can be found in [YG19]; [FG19].

Other papers are specific studies of RSC or CLSC design applied to a particular case. For
instance, in [Sol18], a case study for a sustainable closed-loop supply chain specific to the
mining industry and particularly to decorative stone quarries in Iran is studied. In [Mir+15],
the case of a bio-ethanol supply chain is considered and the three dimensions of sustainability
are taken into account in the model. Other examples of case studies can be found in [Mey+19];
[Val+20]; [JSO17].

Among the generic models, only few papers deal with the environmental impact of the
facilities, transport and product design and process at the same time. Furthermore, amongst
those papers, a fewer number consider the social dimension. For instance in [Mot+18], a
multi-objective model for a CLSC design and planning problem under demand uncertainty
is presented. The first economic objective is to maximize the net present value. The second
objective is to minimize the environmental impact evaluated through LCA methodology. The
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third objective is social and maximizes the employment based on a GDP metric. However,
this model does not account for the negative social impact of layoffs. As such, it can only
be applied in cases that do not require layoffs but do require hiring. To fill the gap of
the literature, we propose in this manuscript to study a generic multi-objective model for a
sustainable CLSC design problem where all the most influential environmental impacts are
considered at the same time as the social dimension and particularly the employment. Then,
we propose to answer the following research questions:

(2) How do the economic, environmental and social objectives influence each

other?

(3) How does the attitude of the DM impact the selection of a compromising

solution between the three objectives?

Finally, few studies in the literature have addressed the equity in decision making in
the design of sustainable CLSC. In [Mot+18], the concept of "Social Benefit" is introduced
in the social objective. The "Social Benefit" allows maximization of the implementation of
facilities in the regions with lower Gross Domestic Product (GDP) with the aim to provide
more equitable distribution of facilities overall regions. In the same vein, [CSC18] studied
a comprehensive multi-objective model of a biofuel supply chain optimization from coffee
crop residues with economic, environmental and social objectives. They consider the balance
of job employment in several regions as their social objective. In spite of those studies,
equity in sustainable CLSC remains superficial. Furthermore, we found no paper with equity
consideration in regards to distribution of environmental pollution.

Therefore, we propose the last research question treated in this thesis:

(4) How the consideration of environmental and social equity between several

locations where the RL network is implemented influences the final solution?

In the next sections, we present the research realized to address the four questions raised,
starting with the first one:

(1) How does the consideration of the bipolarity of the behavior of the DM

regarding zones of risks or opportunities impact the design of RL? How to

model this bipolarity in a context of complete ignorance of the DM?
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Environmental assessment Social assessment
Paper Facilities Transport Products Work Societal commitment Customer issues

[AACRC09] x
[AZ13] x x

[BLAP14] x x x
[BA15] x

[BSW99] x
[CCP93] x x
[CRP11] x x
[DM09] x x x
[DJN14] x x x
[Erk+08] x
[EZN13] x
[Gal+10] x
[Gov+14] x x
[HG11] x x
[JGK12] x x
[Kan+13] x x

[KBRVW03] x x x
[Lam+13] x x
[Liu+11] x x
[MO90] x

[MEH14] x x
[Min+08] x

[MTTM14] x x
[Mot+15] x
[PVK08] x
[PF+12] x x
[PRT12] x
[PRD08] x
[RCP10] x x
[Sad+13] x
[SR+14] x
[SR+15] x
[SA+14] x
[TGÖ11] x x x x
[WLS11] x x
[XJP13] x
[You+12] x
[Yue+14] x
[ZWT13] x

Table 2.5: Scope for environmental and social assessment (part 1/2)
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Environmental assessment Social assessment
Paper Facilities Transport Products Work Societal commitment Customer issues

[Mot+18] x x x x x
[MW17] x x
[CM+16] x x
[Mar+19] x x x
[Zho+16] x x x
[FG19] x

[Kar+19] x
[TK16] x

[HMN14] x x
[Afs+14] x
[LLH19] x x x
[TZ15] x x

[Kad+17] x
[Far+18] x

[GA+18a] x x x
[Mem+18] x x
[Moh+17] x x x

[Zhe17] x x
[Bán18] x x
[DYL18] x

[Man+18] x x
[Ebr18] x x x

[WTZ18] x x
[YS18] x x

[ZTMR17] x x x x
[FC+17] x x x x
[SRN18] x x

[SFFHK18] x x x x
[SRG18] x x x x
[THN19] x
[BS18] x x x

[CSC18] x x x x
[EK+18] x
[FG18] x x x
[Sol18] x x x x

[PMCB17] x
[Nem+18] x

[FFHKM18] x x

Table 2.6: Scope for environmental and social assessment (part 2/2)
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The model presented in this chapter aims to help managers to better evaluate risks and
opportunities while deciding on the design of a RSC in order to manage the reverse flow of
end-of-life (EOL) products in an existing supply chain. The goal is to set up the disassembly
and recovery facilities and organize the flows between them while seeking to maximize total
network profit. We propose a two-stage mixed-integer programming model with multiple
periods where the budget available for decisions at each period depends on the outcomes of
previous periods. We consider that the demand for EOL products, the quantity of products
returned as well as the time required to reprocess these products are uncertain. To incorpo-
rate this uncertainty into the decision making process, a discrete set of scenarios is defined.
In order to take into account the decision maker’s behavior in the areas of risks and opportu-
nities, we propose to use a bipolar criterion to select the final solution. To demonstrate the
significance and applicability of the developed model and the relevance of the new criterion,
never used before for design problems in logistics, we conduct numerical investigations and
do a comparison with classic well-known criteria. The work proposed in this chapter has
provided the following publications:
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• Zoé Krug, Romain Guillaume, Olga Battaïa "Résolution d’un programme linéaire sous
incertitude avec l’Uninorme R∗", ROADEF 2018. National conference with proceedings

• Zoé Krug, Olga Battaïa, Romain Guillaume "The use of two-stage approach with R∗

criterion to solve a multi-period closed loop supply chain design problem", Logistics
Analytic 2018. International conference without proceedings

• Romain Guillaume, Olga Battaïa, Zoé Krug "Decision under ignorance: a comparison of
existing criteria in a context of linear programming", EDSI 2019. International conference

without proceedings

• Zoé Krug, Romain Guillaume, Olga Battaïa "A comparison of criteria for decision under
ignorance in context of linear programming", IPMU 2020. International conference with

proceedings

• Zoé Krug, Olga Battaïa, Romain Guillaume "Exploring opportunities in establishing
a closed loop supply under uncertainty", International Journal of Production Research
2020

3.1 Proposed solution approach: the R∗ criterion

3.1.1 Definition of the R∗ criterion

To take the DM perception of risks and opportunities into account, we propose to use a
uninorm operator (see definition 4) as an aggregate function to select the final solution. To
answer the particular challenges of decision making for RSC design, and consistently with the
objective to minimize risks and maximize opportunities, we decided to focus especially on the
R∗ uninorm which uses a minimum operator for t-norm in the risky area and a maximum for
t-conorm in the opportunity area. The formal definition of this criterion is given below:

Let fs(x) be the evaluation of the objective function for solution x over a scenario s ∈ S,

R∗((fs(x))s∈S , e) =

{

mins∈S fs(x) if ∃ fs(x) ≤ e

maxs∈S fs(x) otherwise
(3.1)

R∗ specifies that if one of the values of fs(x) is lower than or equal to e (zone of risk) then
the min operator is applied, otherwise the max is applied (zone of opportunity). To provide
a better understanding of how this operator aggregates possible solutions, a simple example
of resolution is presented. (see Example 1)

Example 1

Let s1, s2 ∈ S be two possible return amount scenarios. Let f be the function of profit that

we aim to maximize. We denote fs1
(x) (resp fs2

(x)) the profit gained with solution x when

s1 (resp s2) occurs. The solution space of the problem is shown in Fig.3.1.
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Figure 3.1: R∗ criterion solution space

Two solutions x1 and x2 are presented in this example, their coordinates give the profit

obtained for scenario s1 and s2 respectively, e defines the profit expected by the decision maker

from the created RSC. Based on this value, the risky area is colored in red oppositely to the

opportunistic area kept in white. In the fist case (left figure), both solutions are in the risky

area. The R∗ operator therefore selects the solution with the highest minimum profit regarding

the two scenarios (or robust solution). Here, we have fs1
(x1) < fs2

(x2), thus, solution x2 is

selected. In the second case (right figure), both solutions are in the opportunistic area. Hence,

the R∗ operator selects the highest maximum profit over the two scenarios (or optimistic

solution). Here, we have fs1
(x1) > fs2

(x2): solution x1 is selected.

Through its characteristics, R∗ criterion allows the DM to choose a threshold of robustness
while still letting the possibility for opportunities to be found.

3.1.2 Two-stage MIP formulation for CLSC design problem

In order to integrate R∗ criterion in MIP formulation for CLSC design problem, we introduce
a new two-stage MIP formulation defined in this section. The uncertainty of reverse flows is
modeled with a discrete set of scenarios representing all possible and equally probable cases.
Let Γ = 1...S be the set of scenarios with s ∈ Γ. A two-stage model integrating R∗ criterion
is defined in the following way. Let y = y1, ..., yn be the scenario-independent variables, and
x = x1, ..., xn the scenario-dependent variables. f1(y) is thus the evaluation function for the
first stage variables and f2

s (x) for the second stage variables. We apply R∗ criterion on both
first and second stage variables resulting in the following objective function G for the profit
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maximization:
G = max

y∈Y
R∗[f1(y) + Qs(y), e] (3.2)

The MIP formulation corresponding to this objective is then as follows: let e be a risk
threshold, let Z and z be two continuous variables, let Ys and δs be two binary variables.

max Z + z (3.3)

S.t

(a) Z ≤ f1(y) + Qs(y) ∀s ∈ Γ

(b) Z ≤ e

(c) f1(y) + Qs(y) ≥ −B ∗ Ys + e(1− Ys) ∀s ∈ Γ

(d) f1(y) + Qs(y) ≤ e ∗ Ys + (1− Ys) ∗B ∀s ∈ Γ

(e) z ≤ (1− Ys) ∗B ∀s ∈ Γ

(f)
∑S

s=1 δs = 1

(g) z ≤ f1(y) + Qs(y) + (1− δs) ∗B ∀s ∈ Γ

Model (3.3) implies that if the sum of the profit for the first and second stage (or total profit)
is lower than or equal to e in any scenario then the min operator is applied, otherwise the
max operator is applied. Thus, Z corresponds to a linearization variable for the min operator
and z to a linearization variable for the max operator. Constraints (a) and (b) imply that
Z is the minimum total profit over all scenarios unless the total profit is higher than e on
all scenarios. In that case, the Z value is set to e: the value of the objective will therefore
be too high with the value e, but this is irrelevant on the selection of the best solution (as
this will then be performed in the opportunistic manner). Constraints (c) and (d) define
the value of Ys as: Ys = 1 if the total profit is lower than e for scenario s and Ys = 0

otherwise. Constraint (e) sets z = 0 if the total profit is lower than or equal to e in any
scenario. Constraint (f) translates the fact that the best case scenario can only happen once.
Constraint (g) implies that if there is no scenario for which the sum of evaluation functions
for the first and second stage variables is lower than or equal to e then z is the maximum
total profit over all scenarios.

3.2 CLSC location-allocation problem

3.2.1 Description of the CLSC

We consider the case of a Supply Chain for an OEM: it comprises suppliers, production and
distribution centers. To establish a CLSC, OEM can turn its distribution centers into Hybrid
Distribution/Collection centers (HDC) or fully collection centers to gather EOL products.
New facilities may also be implemented: new HDCs to take charge of the flow of EOL prod-
ucts, dismantling centers for deconstruction of EOL products, repair centers, recycling centers
for procurement of raw materials and disposal (see Figure 3.2).
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Figure 3.2: CLSC network

To provide a clearer understanding of the different possibilities for the treatment of a
EOL product, let consider here an example of an item and the way it can move around the
CLSC. After being used by a costumer, a product is returned to a collection center. In the
collection center, the quality of the product is assessed to see if it is of good enough quality
to be repaired or recycled. If it is, the product is brought to a dismantling center (we assume
a predefined percentage of EOL products to be dismantled). Otherwise, the product is put
in disposal. Once in the dismantling center, the product is disassembled and another quality
assessment is done. The better quality products with potential to be repaired move on to a
repair center, and the un-repairable products are brought to a recycling center (here again we
assume predefined rates of EOL products to be repaired and recycled). After reprocessing in
the repair center, the product can either be sold in the form of spare part, or can be re-used
in the plant to be re-manufactured. If reprocessed in the recycling center, extracted recycled
material is sold to the supplier while residual material is disposed.

We consider a multi-period horizon where the CLSC can be expanded progressively. The
budget for expansion at each period depends on the decisions taken in previous periods. Un-
certainty concerns primary and secondary market demand, the quantity of returned products
and their reprocessing time are also uncertain. We assume that the quantity of returned
products depends on primary market demand: the higher the demand, the higher the quan-
tity of EOL products collected. Thus, a discrete set of scenarios with all equally probable
cases is created. To support the DM in selecting the solution corresponding to his/her level
of optimism, we use R∗ criterion with the two-stage MIP formulation defined in Section 4.

3.2.2 Mathematical Model

Indexes

i = 1..I Index of suppliers
j = 1..J Index of plants
l = 1..L Index of customers
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c = 1..C Index of HDC
p = 1..P Index of dismantlers
q = 1..Q Index of repair centers
m = 1..M Index of spare market customers
f = 1..F Index of disposal sites
d = 1..D Index of recycling centers
t = 1..T Index of time periods
s = 1..S Index of scenarios

Demand parameters

Dl,t,s of consumers l for period t and scenario s

Dsmm,t,s of spare market consumers m for period t and scenario s

Dsi,t,s of suppliers i for period t and scenario s

Capacity parameters

CapP lantj Production capacity of plant j

CapHCc Capacity of HDC c

Capdp Production capacity of dismantler p

CapRq Production capacity of repair center q

CapDecd Production capacity of recycling center d

Distance parameters

DisSPi,j Between supplier i and plant j

DisPHj,c Between plant j and HDC c

DisCHl,c Between costumer l and HDC c

DisCoDic,p Between HDC c and dismantler p

DisCoFc,f Between HDC c and disposal f

DisDiDep,d Between dismantler p and recycling center d

DisDeDisd,f Between recycling center d and disposal f

DisDeSd,i Between recycling center d and supplier i

DisDiRp,q Between dismantler p and repair center q

DisRSMq,m Between repair center q and spare market customer m

DisRPPq,j Between repair center q and plant j

Time parameters

T dismantlers Unit dismantling time
T recycles Unit recycling time
T repairs Unit repair time

Variable cost parameters

Cai Unit cost of buying product at supplier i

Cpj Unit production cost at plant j

Cassj Unit assembling cost at plant j

Cophc Unit operational cost at HDC c

Cdisp Unit dismantling cost at dismantling center p

Crepq Unit repair cost at repair center q

Cdecrd Unit production cost of raw material at recycling center d

Cecoc Unit environmental tax for non-reprocessed products
TC Unit transportation cost for 1 kilometer

Rate parameters

Rt,s Rate of return for period t and scenario s

Re Repairing rate after dismantling
Rr Recycling ratio after decomposition

Unit selling price parameters

SPl of product at market zone l

RSPm of product at spare market m

Revi of recycled product to the supplier i

Fixed opening cost parameters

Cohybc for HDC c

CoDismp for dismantling center p

CoRecyd for recycling center d

CoDispf for disposal f

CoRepq for repair center q
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Fixed operational cost parameters

CF hybc,t for HDC c in period t

CFDismp,t for dismantling center p in period t

CFRecyd,t for recycling center d in period t

CFDispf,t for disposal f in period t

CF Repq,t for repair center q in period t

Ct Budget for opening centers in period t

Positives variables (Flow from . to . at period t and scenario s)

XSPi,j,t,s from supplier i to plant j

XPHj,c,t,s from plant j to hybrid center c

XCHDc,l,t,s from HDC c to customer l

XCHCl,c,t,s from customer l to HDC c

XCODIc,p,t,s from HDC c to dismantler p

XCOFc,f,t,s from HDC c to disposal f

XDIRp,q,t,s from dismantler p to repair center q

XRSMq,m,t,s from repair center q to spare market costumer m

XDIREp,d,t,s from dismantler p to recycling center d

XREDISd,f,t,s from recycling center d to disposal f

XPSd,i,t,s from recycling center d to supplier i

XRPPq,j,t,s from repair center q to plant j

hc,l,t,s maximum flow between forward and return from costumer l to HDC center c

Binary variables

YCHc,t HDC c is opened or not at period t

YPp,t Dismantler p is opened or not at period t

YDd,t Recycling center d is opened or not at period t

YFf,t Disposal f is opened or not at period t

YQq,t Repair center q is opened or not at period t

ZYCHc 1 if HDC c has been opened, 0 otherwise
ZYPp 1 if Dismantler p has been opened, 0 otherwise
ZYDd 1 if Recycling center d has been opened, 0 otherwise
ZYFf 1 if Disposal f has been opened, 0 otherwise
ZYQq 1 if Repair center q has been opened, 0 otherwise

Additional parameters corresponding to the MIP formulation

B A big enough value
e1 Risk threshold

Additional Variables corresponding to the MIP formulation

δs 1 if the best case scenario s occurs, 0 otherwise
z, Z Variables for the linearization of Model (3.3)

In order to simplify the presentation of the model, we introduce the following expressions:

- The total income: it includes all sales revenues over all periods. It is scenario dependent
and noted as Incomes.

Incomes =
∑T

t=1(
∑L

l=1(
∑C

c=1(SPl ∗XCHDc,l,t,s)))

+
∑T

t=1(
∑M

m=1(
∑Q

q=1(RSPm ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(Revi ∗XPSd,i,t,s)))

(3.4)

- The total operational cost: it includes all production costs, assembling costs, buying
costs, dismantling costs and distribution costs of all centers of the chain. It is scenario
dependent and noted as OpCosts.
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OpCosts =
∑T

t=1(
∑J

j=1(
∑I

i=1(Cai ∗XSPi,j,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(Cpj ∗XPHj,c,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(Cassj ∗XPHj,c,t,s)))

+
∑T

t=1(
∑L

l=1(
∑C

c=1(Cophc ∗ (XCHDc,l,t,s + XCHCl,c,t,s))))

+
∑T

t=1(
∑P

p=1(
∑C

c=1(Cdisp ∗XCODIc,p,t,s)))

+
∑T

t=1(
∑M

m=1(
∑Q

q=1(Crepq ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑J

j=1(
∑Q

q=1(Crepq ∗XRRPq,j,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(Cdecrd ∗XPSd,i,t,s)))

+
∑T

t=1(
∑F

f=1(
∑C

c=1(Cecoc ∗XCOFc,f,t,s)))

(3.5)

- The total fixed cost: it is the sum of the opening costs of facilities and operational fixed
costs for all facilities opened in each period. It is scenario independent and noted as
FixedCost.

FixedCost =
∑C

c=1(Cohybc ∗ ZYCHc)

+
∑P

p=1(CoDismp ∗ ZYPp)

+
∑D

d=1(CoRecyd ∗ ZYDd)

+
∑F

f=1(CoDispf ∗ ZYFf )

+
∑Q

q=1(CoRepq ∗ ZYQq)

+
∑T

t=1(
∑C

c=1(CFhybc,t ∗ YCHc,t))

+
∑T

t=1(
∑P

p=1(CFDismp,t ∗ YPp,t))

+
∑T

t=1(
∑D

d=1(CFRecyd,t ∗ YDd,t))

+
∑T

t=1(
∑F

f=1(CFDispf,t ∗ YFf,t))

+
∑T

t=1(
∑Q

q=1(CFRepq,t ∗ YQq,t))

(3.6)

- The total transportation cost: it is the sum of travel costs between connected points of
the Supply Chain. It is scenario dependent and noted as TrtCosts.

TrtCosts =
∑T

t=1(
∑J

j=1(
∑I

i=1(TC ∗DisSPi,j ∗XSPi,j,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(TC ∗DisPHj,c ∗XPHj,c,t,s)))

+
∑T

t=1(
∑L

l=1(
∑C

c=1(TC ∗DisCHl,c ∗ hl,c,t,s)))

+
∑T

t=1(
∑P

p=1(
∑C

c=1(TC ∗DisCoDic,p ∗XCODIc,p,t,s)))

+
∑T

t=1(
∑Q

q=1(
∑P

p=1(TC ∗DisDiRp,q ∗XDIRp,q,t,s)))

+
∑T

t=1(
∑M

m=1(
∑Q

q=1(TC ∗DisRSMq,m ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑D

d=1(
∑P

p=1(TC ∗DisDiDep,d ∗XDIREp,d,t,s)))

+
∑T

t=1(
∑F

f=1(
∑D

D=1(TC ∗DisDeDisd,f ∗XREDISd,f,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(TC ∗DisDeSd,i ∗XPSd,i,t,s)))

+
∑T

t=1(
∑J

j=1(
∑Q

q=1(TC ∗DisRPPq,j ∗XRPPq,j,t,s)))

+
∑T

t=1(
∑F

f=1(
∑C

c=1(TC ∗DisCoFc,f ∗XCOFc,f,t,s)))

(3.7)
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Constraints (1) to (6) verify that the different capacities of all centers are respected.

(1)
∑I

i=1 XSPi,j,t,s +
∑Q

q=1 XRPPq,j,t,s ≤ CapP lantj ∀s ∈ S, t ∈ T, j ∈ J

(2)
∑J

j=1 XPHj,c,t,s + XCHCj,c,t,s ≤ CapHCc ∗ YCHc,t ∀s ∈ S, t ∈ T, c ∈ C

(3)
∑C

c=1 XCODIc,p,t,s ∗ Tdismantlers ≤ Capdp ∗ YPp,t ∀s ∈ S, t ∈ T, p ∈ P

(4)
∑P

p=1 XDIRp,q,t,s ∗ Trepairs ≤ CapRq ∗ YQq,t ∀s ∈ S, t ∈ T, q ∈ Q

(5)
∑P

p=1 XDIREp,d,t,s ∗ Trecycles ≤ CapDecd ∗ YDd,t ∀s ∈ S, t ∈ T, d ∈ D

(6)
∑D

d=1 XREDISd,f,t,s ≤ B ∗ YFf ∀s ∈ S, t ∈ T, f ∈ F

Constraints (7) to (9) are used to verify that the demand is never over-satisfied. However,
the demand can remain unsatisfied and considered lost in this case.

(7)
∑C

c=1(XCHDc,l,t,s) ≤ Dl,t,s ∀s ∈ S, t ∈ T, l ∈ L

(8)
∑Q

q=1(XRSMq,m,t,s) ≤ Dsmm,t,s ∀s ∈ S, t ∈ T, m ∈M

(9)
∑D

d=1(XPSd,i,t,s) ≤ Dsi,t,s ∀s ∈ S, t ∈ T, i ∈ I

Constraint (10) calculate the quantity of collected EOL products.

(10)
∑C

c=1(XCHCl,c,t,s) = Rt,s ∗Dl,t,s ∀s ∈ S, t ∈ T, l ∈ L

Constraints (11) and (12) calculate the quantity of the dismantled, repaired and recycled
products.

(11)
∑C

c=1 XCODIc,p,t,s ∗Re =
∑Q

q=1 XDIRp,q,t,s ∀p ∈ P, s ∈ S, t ∈ T

(12)
∑P

p=1 XDIREp,d,t,s ∗Rr =
∑I

i=1 XPSd,i,t,s ∀d ∈ D, s ∈ S, t ∈ T

Constraints (13) to (18) are the flow balance constraints.

(13)
∑I

i=1(XSPi,j,t,s) +
∑Q

q=1(XRPPq,j,t,s) =
∑C

c=1(XPHj,c,t,s)

∀s ∈ S, t ∈ T, j ∈ J

(14)
∑J

j=1(XPHj,c,t,s) =
∑L

l=1(XCHDc,l,t,s)

∀s ∈ S, t ∈ T, c ∈ C

(15)
∑L

l=1(XCHCl,c,t,s) =
∑P

p=1(XCODIc,p,t,s) +
∑F

f=1(XCOFc,f,t,s)

∀s ∈ S, t ∈ T, c ∈ C

(16)
∑C

c=1(XCODIc,p,t,s) =
∑Q

q=1(XDIRp,q,t,s) +
∑D

d=1(XDIREp,d,t,s)

∀s ∈ S, t ∈ T, p ∈ P

(17)
∑P

p=1(XDIRp,q,t,s) =
∑M

m=1(XRSMq,m,t,s) +
∑J

j=1(XRPPq,j,t,s)

∀s ∈ S, t ∈ T, q ∈ Q

(18)
∑P

p=1(XDIREp,d,t,s) =
∑F

f=1(XREDISd,f,t,s) +
∑I

i=1(XPSd,i,t,s)

∀s ∈ S, t ∈ T, d ∈ D

Constraint (19) restricts the maximum number of opened centers for a period depending
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on the available budget.

(19)
∑C

c=1((YCHc,t − YCHc,t−1) ∗ Cohybc) +
∑P

p=1((YPp,t − YPp,t−1) ∗ CoDismp)

+
∑D

d=1((YDd,t − YDd,t−1) ∗ CoRecyd) +
∑F

f=1((YFf,t − YFf,t−1) ∗ CoDispf )

+
∑Q

q=1((YQq,t − YQq,t−1) ∗ CoRepq) ≤ Ct∀t ∈ T

Constraint (20) updates the budget regarding the number of opened centers in the previous
period.

(20) Ct = C1 −
∑C

c=1(YCHc,t−1 ∗ Cohybc)

−
∑P

p=1(YPp,t−1 ∗ CoDismp)−
∑D

d=1(YDd,t−1 ∗ CoRecyd)

+
∑F

f=1(YFf,t−1 ∗ CoDispf )−
∑Q

q=1(YQq,t−1 ∗ CoRepq) ∀t ∈ T

Constraints (21) to (25) calculate the fixed opening costs.

(21) ZYCHc ≥ (1/T ) ∗
∑T

t=1 YCHc,t ∀c ∈ C

(22) ZYQq ≥ (1/T ) ∗
∑T

t=1 YQq,t ∀q ∈ Q

(23) ZYDd ≥ (1/T ) ∗
∑T

t=1 YDd,t ∀d ∈ D

(24) ZYPp ≥ (1/T ) ∗
∑T

t=1 YPp,t ∀p ∈ P

(25) ZYFf ≥ (1/T ) ∗
∑T

t=1 YFf,t ∀f ∈ F

Constraints (26) to (30) forbid to close opened centers.

(26) YCHc,t+1 ≥ YCHc,t ∀c ∈ C, t ∈ T

(27) YQq,t+1 ≥ YQq,t ∀q ∈ Q, t ∈ T

(28) YDd,t+1 ≥ YDd,t ∀d ∈ D, t ∈ T

(29) YPp,t+1 ≥ YPp,t ∀p ∈ P, t ∈ T

(30) YFf,t+1 ≥ YFf,t ∀f ∈ F, t ∈ T

Constraints (31) and (32) are used in order to limit the transportation costs to unidi-
rectional among forward and reverse flows depending on the maximum number of products
transported between.

(31) hc,l,t,s ≥ XCHDc,l,t,s ∀c ∈ C, l ∈ L, s ∈ S, t ∈ T

(32) hc,l,t,s ≥ XCHCl,c,t,s ∀c ∈ C, l ∈ L, s ∈ S, t ∈ T

Finally, the additional constraints corresponding to the expression of model 3.3 are taken
into account in (A) to (G).
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(A) Z ≤ TotalProfits ∀s ∈ S

(B) Z ≤ e1

(C) TotalProfits ≥ −B ∗ Ys + e1(1− Ys) ∀s ∈ S

(D) TotalProfits ≤ e1 ∗ Ys + (1− Ys) ∗B ∀s ∈ S

(E) z ≤ (1− Ys) ∗B ∀s ∈ S

(F )
∑S

s=1 δs = 1

(G) z ≤ TotalProfits + (1− δs) ∗B ∀s ∈ S

3.2.3 Numerical investigation

To illustrate the behaviour of the model and the usefulness of the proposed solution method-
ology, an explicatory numerical investigation has been performed. The obtained results are
reported in this section. The data used was adapted from the study presented in [Sub+15]
where a lead/acid battery CLSC network design under uncertainty was considered for a Turk-
ish industry. The model of [Sub+15] differs from ours since it does not include dismantling
centers and only considers one type of center for both recycling and repair, they also only
consider three outcomes for the reprocessed EOL products: 1) re-selling them as spare parts,
2) re-manufacturing them in the plant, 3) putting them in disposal. They do not consider the
re-selling of recycled material to the supplier. Apart from those points, both models consider
the flows of products in forward and reverse directions. We adapted the data by adding the
lacking distances and costs for the dismantlers and repair centers with the same order of value
as those used for the other centers. 10 time periods were considered with 10 suppliers and
plants, 10 potential locations for establishing the HDC centers and 10 customers and spare
market customers. The number of potential locations for establishing repair centers, or recy-
cling centers, or disposal centers is 10. The maximum number of opened centers is limited by
the available budget. Other parameters are reported in Table 3.1. The transportation costs
are defined per product and per 1 kilometer.

Parameters Range of value Parameters Range of value
CapPlant [28000,56000] Ca [0.5,4]
CapHC [5250,20000] Cp [25,65]
Capd [28000,56000] Cass [0.3,0.8]
CapR [28000,56000] Coph [2,5]
CapDec [28000,56000] Cdis [10,12]
Distances [0,500] Crep [7,9]
SP [40,60] Cdecr [0.47,1]
RSP [5,15] TC 0.003
Rev [5,7] Cohyb [6000,23000]
Re 70% Codism [40000,60000]
Rr 90% CoRecy [40000,60000]
CFRep 100 CoDisp [40000,60000]
CFDisp 100 CoRep [40000,60000]
CFRecy 100 CFhyb 100
CFDism 100

Table 3.1: Nominal data of the model
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In the study of [Sub+15], 3 uncertain parameters (initial demand, returned fraction of
demand and disposal rate) were considered, while we consider 7 uncertain parameters (inital
demand, spare market demand, demand for recycled products, return rate, reprocessing time
of EOL products at dismantler, repair center and recycling center). Indeed, we felt like
these 7 parameters better represent the variety of uncertainties that are often present in
reverse logistics decision. For each uncertain parameter, we consider two possible scenarios
of realization given as follows: for uncertain demand of customers at primary D: low level
([1500,1800]) or high level ([2200, 2500]) and secondary markets, spare market Dsm: low level
([350,500]) or high level ([1200,1750]), supplier secondary demand Ds: low level ([250, 400]),
high level ([1000,1250]) and for the uncertain return rate of products from consumers R: low
level (10% in the first period + 2% per period), high level (40% in the first period + 5% per
period) as well as for the uncertain reprocessing time of products Tdismantler, Trecycle,
Trepair: long time ([5,6]) or short time ([1,2]). We selected the "low" and "high" level of each
uncertain parameter in accordance to the study of [Sub+15], the "high" level corresponding to
a high range of the values used in their work and the "low" level corresponding to a low range
of the values used in their work. We consider the uncertain parameters to be independent
and we create eight different scenarios (s1-s8), each of them is presented in Table 3.2. Then,
for each scenario, one value for each parameter is randomly selected with the use of a uniform
distribution 1 from the intervals presented above. The scenario remains unchanged for the 10
considered periods, i.e. for 10 periods in a scenario with a high demand, 10 values drawn from
the high demand range are selected. In total, 50 different problem instances were generated.
Each problem instance was solved through the process presented in Figure 3.3.

Γ DE Dsm Ds R Tdismantler Trecycle Trepair
s1 low low low low long long long
s2 low low low low short short short
s3 low low low high long long long
s4 high high high low long long long
s5 low low low high short short short
s6 high high high low short short short
s7 high high high high long long long
s8 high high high high short short short

Table 3.2: Uncertain parameters for eight different scenarios

At the first step, the problem is solved as described in Section 3.2.2. Then, the values of
the scenario independent variables are recorded. The model is then solved for each scenario
separately considering the defined scenario independent variables, in order to find the values
of the scenario dependent variables for the maximization of the profit.

The numerical investigation was conducted with IBM-ILOG CPLEX 12.6.3 on an In-
tel Core 2.60 gigahertz machine with 15 gigabyte RAM. The objective was to compare R∗

criterion with the three approaches mentioned in Section 2.2:

1. The robust approach with the objective to maximize the worst-case scenario.
1The uniform distribution was selected over a normal distribution or a mean value because it better illus-

trates the lack of information of the decision maker about the behavior of the uncertain parameters.
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Figure 3.3: Resolution process

2. The average approach with the objective to maximize the average over all scenarios
with a uniform probability distribution.

3. The average regret approach with the objective to maximize the average of the regret
over all scenarios with a uniform probability distribution.

The average solution times for the models tested for the case of 2 (s1 and s8) and 8
scenarios are reported in Table 3.3. The results show that while for 2 scenarios the solution
times for robust and R∗ models are quite similar, for 8 scenarios it is approximately twice
longer for R∗.

Model Number of scenarios Average solution time(s)
Robust 2 1 623
Average 2 177
R∗ 2 1 714
Robust 8 15 900
Average 8 2 077
R∗ 8 33 217

Table 3.3: Solution time regarding models and number of scenarios
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3.2.4 Analysis of Results and discussion

3.2.4.1 Explorative study of the impact of possible contexts on the performance

of the CLSC

The results obtained for 8 scenarios (reported in Table 3.4) showed the existence of clusters
of similar scenarios. The scenarios belonging to the same cluster are indicated by the same
colour in Table 3.4. The values of e are calculated as a percentage of the value of the "MaxMin"
solution. The payoff values reported are the TotalProfit made by the CLSC when scenario
s1 to s8 occur. The following observations can be made.

Model s1(e) s2(e) s3(e) s4(e) s5(e) s6(e) s7(e) s8(e)
Robust 3 319 100 3 404 364 1 363 587 5 315 179 3 063 511 5 479 111 1 125 648 6 453 565
Average 3 418 763 3 508 855 1 320 371 5 368 389 3 167 903 5 596 203 879 353 6 524 019
R∗, e=99% 3 351 986 3 412 147 1 316 274 5 327 129 3 101 006 5 492 417 1 125 453 6 496 221
R∗, e=85% 3 349 895 3 418 813 1 331 187 5 296 488 3 084 977 5 526 364 962 056 6 506 497

Table 3.4: Total profits for all combinations of scenarios and models (reveal clusters in the
results)

Observation 1. Scenario s8 (in green) is the best case scenario with maximal TotalProfits.
It corresponds to the scenario where demands (DE, Dsm and DS) and return rate of EOL
products (R) are high and the reprocessing times of products (Tdismantler, Trepair and
Trecycle) are short. In this situation, we can assume that the company is able to respond to
the high demands due to the high flow of EOL products coming back from the consumers in
addition with a high reprocessing capacity due to the short times of reprocessing EOL prod-
ucts. Therefore, the number of reprocessed products sold is high and generates considerable
profit for the company.

Observation 2. Scenario s3 and s7 (in red) are the worst case scenarios with minimal
TotalProfits. They correspond to the cases where the rate of return (R) is high, but the
reprocessing times of EOL products (Tdismantler, Trepair and Trecycle) are long. The
number of reprocessed products sold is low and thus generates less profit than in the other
cases.

Observation 3. Scenario s4 and s6 (in blue) are "medium high" scenarios, and correspond
to the situation where demands (DE, Dsm and Ds) are high, but return rate (R) is low. In
this case, because of the low rate of return, the company doesn’t need a lot of reprocessing
facilities to process all the EOL product, thus, the reprocessing times have no impact on the
profit. All the reprocessed product are sold, creating profit, but a part of the demand is lost
as the flow of reprocessed product is not high enough to respond to the high demand.

Observation 4. Scenario s1, s2 and s5 (in orange) are "medium low" scenarios. They
represent the case where the demand is low, and where either the return rate is high and the
reprocessing time of EOL products is short, or the return rate is low and the reprocessing
time of EOL products is long, or the return rate is low and the reprocessing time of EOL
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products is short. In those cases, the company is able to reprocess all the returned EOL
products without additional costs generated from products put in disposal. However, at the
same time, the company is unable to resell all the reprocessed products as the demand is low,
and so no considerable profit is possible.

On the basis of these results, the set of scenarios was reduced to 4, keeping only one
scenario of each group (i.e. s1, s6, s7 and s8). This setting requires less computational time
and provides the same level of managerial insights. In the next sections, we compare the
performances of three models (robust, average, R∗) for these 4 scenarios and for all possible
pairs of them.

3.2.4.2 Robust model vs R∗

The robust model is the one conceptually closest to R∗ since it considers a set of equally
possible scenarios. In order to compare their behaviour, the value of risk threshold e was set
up to the value of "MaxMin" criterion minus 1% or 3%. The obtained results for 4 scenarios
are presented in Table 3.5, where column 1 shows the model used, the values reported are
the TotalProfit made by the CLSC when scenario s1 to s8 occur. They are colored in green
when the R∗ solution brings an improvement compared to the Robust solution and in red
otherwise. The standard deviation σ (i.e the square root of the variance) among the scenarios
is given in the last column.

Model s1 s6 s7 s8 σ

Robust 3 334 384 5 244 279 1 253 605 6 218 444 1 903 483
R∗, e=99% 3 330 883 5 239 336 1 250 748 6 231 859 1 905 423
R∗, e=97% 3 331 035 5 238 529 1 229 414 6 248 992 1 918 007

Table 3.5: Compared TotalProfits between Robust and R∗ for the case of 4 scenarios

The obtained results show that R∗ may provide better opportunities to the decision maker
at price of low risks, especially for the case of e = 99% of the robust value.

When taking more risks (lowering the value of e) the DM invests more in the implemen-
tation of new centers at each period. Thus, if a good case scenario happens (for instance
high demand, high returns and short reprocessing time of OEL products), the CLSC is able
to collect and reprocess more products resulting in better total profit. Contrariwise, if a bad
case scenario happens, the additional investment made by the DM won’t be profitable.

To deepen the analysis, we compare the results obtained for each pair of 4 scenarios
reported in Table 3.6. The values reported are the relative percentage of the best TotalProfit

made by the CLSC in each scenario, depending on the solution method.

The following observations can be made on the obtained results.

Observation 1. The R∗ model is efficient in comparison to the robust model where both
scenarios are not too pessimistic, i.e. opportunities are possible on at least one of the scenarios
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Model s1 s8 σ

Robust 100% 73,36% 475 179
R∗, e= 99% 98,96% 90,97% 1 047 111
R∗, e= 97% 97,05% 100% 1 365 222
Model s6 s8 σ

Robust 100% 88,52% 2 619
R∗, e=99% 99,08% 95,93% 261 659
R∗, e=97% 97,28% 100% 440 992
Model s1 s6 σ

Robust 100% 98,10% 974 108
R∗, e=99% 98,97% 99,63% 1031 542
R∗, e=97% 97,13% 100% 1 080 937
Model s8 s7 σ

Robust 99,43% 100% 2 402 857
R∗, e= 99% 99,84% 99,07% 2 421 540
R∗, e= 97% 100% 97,47% 2 436 837
Model s1 s7 σ

Robust 99,68% 100% 1 042 445
R∗, e=99% 99,83% 99,13% 1 050 470
R∗, e=97% 100% 97,19% 1 065 418
Model s6 s7 σ

Robust 99,51% 100% 2 011 897
R∗, e=99% 99,85% 98,58% 2 024 368
R∗, e=97% 100% 96,63% 2 040 881

Table 3.6: Comparison of profit obtained with Robust and R∗ for the case of 2 scenarios

(see for instance s1 versus s8 or s6 versus s8.) By allowing a relatively low degradation for the
worst case scenario, a significant improvement can be found for the best case. Decreasing e

leads to better opportunities, but also to more important losses, however, the gain is superior
to the loss in the considered setting. From a practical point of view, when taking more
risks, the DM invests more in the implementation of new centers, therefore when scenario s8

happens, the CLSC is able to reprocess more EOL products and thus to better respond to
the demand which brings more profit to the company. At the contrary, when scenario s1 or s6

happens, either the demand is low, or the flow of returned products is low, or the reprocessing
capacity of the CLSC is low. In all these cases, the CLSC is unable to make a considerable
profit. Nevertheless, taking a little risk and implementing more new centers helps to keep a
satisfying level of profit compared to a robust approach.

Observation 2. When the models are compared on the best case scenario (s8) with the
worst case one (s7), or on two middle case scenarios (s1 and s6), the opportunities are still
possible but the DM has to be very careful about the level of risk to take. Indeed, when
we consider the case where the best case scenario (s8) is faced with the worst case one (s7),
taking more risks in the investment of new centers may bring more profit if s8 happens, as
the CLSC will be able to better respond to the demand. However, this profit is not always
compensated by the loss occurred if s7 happens. When we consider the situation where the
two middle cases (s1 and s6) are confronted to each other, the room for opportunities is thin
in both scenario, as the CLSC may encounter difficulties to respond to the demand. Thus,
implementing new centers may lead to better opportunities in one of the two cases but does
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not necessarily worth the risk in the other case.

Observation 3. Finally, R∗ model cannot help to find new opportunities unless by taking
much higher risks where both scenarios are not optimistic (the worst case scenario (s7) and
either s1 or s6). For such a situation, the robustness should be preferred in order to limit the
losses. Here, from a production perspective, taking more risks and thus implementing new
centers will probably not lead to more opportunities. Indeed, when the worst case scenario
(s7) happens, the costs generated by the implementation of new centers are not compensated
by the reprocessing more EOL products. When one of the middle case scenarios happens (s1

or s6) the CLSC is unable to make a considerable profit because of either low demand, a low
flow of returned products, or a low reprocessing capacity. Thus, taking risk and implementing
more centers than with a robust solution will not provide substantially better profit in this
case.

In conclusion, the solutions found with R∗ criterion show a greater number of implemented
reverse centers compared to the robust solution. Taking more risk is synonym to investing
more for the implementation of new centers at the beginning of each period, and thus being
able to reprocess and sell more products when a good case scenario happens. When the two
scenarios are not too pessimistic, a good case scenario is very likely to occur. Consequently,
choosing a solution where more reverse centers are opened will lead to a good probability of
increased profit compared to a safer solution where less centers are opened. On the contrary, if
all possible scenarios are quite pessimistic, the risk taken by the investment for implementation
of additional centers compared to the robust solution will probably not result in a better profit.

3.2.4.3 Average and Regret Average models vs R∗

Since the stochastic models are the most used in the literature for the CLSC problem, it seems
legitimate to compare them with our model even if they do not take uncertain parameters
into account in the same way (a stochastic model considers a distribution of probability (here
uniform) for the scenarios. The results obtained for the case of 4 scenarios are presented
in Table 3.7. The comparison of scenarios two by two showed the same results, we do not
present them here. The table is organized in the same way as previously, with a new column
"Av" for the mean value over all scenarios. There is also new Column "Reg" corresponding
to the value of the sum of regret over all scenarios. The risk threshold e is still equal to the
value of "MaxMin" criterion minus 0% (i.e. the robust solution), or -1% and -3%.

Model s1 s6 s7 s8 Av Reg σ

Average 3 374 146 5 287 225 1 190 523 6 262 269 4 028 541 1 102 861 1 940 129
Regret 3 374 215 5 287 219 1 190 381 6 262 349 4 028 541 1 102 861 1 942 797
R∗, e=100% 3 334 384 5 244 279 1 253 605 6 218 444 4 012 678 1 166 311 1 903 483
R∗, e=99% 3 330 883 5 239 336 1 250 748 6 231 859 4 013 207 1 164 197 1 905 423
R∗, e=97% 3 331 035 5 238 539 1 229 414 6 248 992 4 011 992 1 169 054 1 918 007

Table 3.7: Comparison of the profits found with the two stochastic models and R∗
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It can be observed that the solutions given by the two stochastic models are almost
equivalent. For this reason, only gaps between R∗ model and average model are reported.
Positive gaps are in green and negative ones are in red. The solutions given by R∗ are more
robust than the stochastic solutions and opportunities can still be found, even if they are
less important than in comparison with the robust model. The mean of TotalProfits over all
scenarios is in the same order of values for all models. Regarding the regret value for each
scenario and for each model, the two stochastic models have both the lowest regret. The
value of the regret seems to increase while the value of e decreases. However, the regret stays
in the same magnitude for all models.

These results show that R∗ model allows more robustness by controlling the worst case
scenario and still considering opportunities as the best case is comparable with stochastic solu-
tions. Thus, R∗ offers a compromise between the "MaxMin" solution which is too conservative
and a stochastic solution which is not robust enough.

3.2.4.4 Variance analysis

Figure 3.4 reports the standard deviation for all tested 50 problem instances of the case of 4
scenarios for average model, robust model and R∗ model for two values of e. The deviation
of the regret average model is not reported because of its quasi equivalence to the average
model.

Figure 3.4: Standard deviation provided by the tested models

It can be seen that the variances of robust and R∗ models are very close while the deviation
of the average model is relatively dispersed.

Figure 3.5 shows the value obtained for the best case scenario by the tested models for
all 50 problem instances. Robust model provides the minimal value. R∗ model is sensible to
the value of e: while it decreases, the value for the best case scenario improves. The values
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Figure 3.5: The value for the best case scenario provided by the tested models

returned by R∗ criterion are always higher than with the Robust model, confirming the fact
that R∗ criterion allows to better explore opportunities. Finally, average model is not constant
in providing a good value, thus, it does not guarantee the maximization of opportunities, but
it is largely the best one for 18 instances from 50 (i.e. in about 36% of the cases).

Figure 3.6: The value for the worst case scenario provided by the tested models

Figure 3.6 shows the value obtained for the worst case scenario by the tested models for
all 50 problem instances. Here, unsurprisingly, the robust model provides the best value. R∗

model is again sensible to the value of e: the profit decreases when the value of e decreases,
nevertheless it remains very close to the value found with the Robust criterion. Average model
is again inconstant, it could provide a value as good as the robust model or to be largely worse
(16 instances from 50 i.e. about 32%). Thus, it does not allow the control of the risk taken
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by the DM.

When the two figures are considered at the same time, we can see that the R∗ criterion
offers a compromise between a robust solution with no opportunities or an average solution
with no control over the robustness.

From the realized analysis we can conclude the following.

If e is superior or equal to the value of the robust solution, model R∗ will give the equivalent
solution. The closer the value of e to the value of the robust model, the closer the solution
obtained with R∗ is to the robust solution and the smaller is the standard deviation of the
profits for different scenarios as well as the gap between the solution’s best and worst scenarios.
The average and regret average models are the ones with the greatest average over scenarios,
but have the worst "worst case scenarios".

3.3 Conclusion

Establishing CLSC is an essential challenge when shifting from linear to circular economy. A
successful CLSC design relies on appropriate modeling of uncertainty in terms of risk, but
also opportunities. In this study, we suggest a new modeling approach using R∗ to take DM
optimism into account in both hazard and opportunity zones. This approach can be used to
set up reverse facilities and connect them to an existing forward supply chain. The CLSC can
be expanded gradually on the basis of the decisions made in previous periods. The proposed
approach is compared to robust and stochastic models in an extensive numerical investigation.
The results obtained show that the use of R∗ criterion makes it possible to better explore the
opportunity zone without loosing control over robustness.

Indeed, it provides the DM with greater control on the investment she/he is willing to
make to open new reverse centers, bringing more profit in a good case scenario while still
controlling the losses when a bad case scenario occurs. Particularly, we show that in the
case where the initial demand is high, the rate of return is high and the reprocessing time of
EOL products is short (s8) versus the case where the demand and the return are low and the
reprocessing time is long (s1), the solution found with R∗ criterion allows up to 36% more
profit that the robust solution in the fist case for only 3% of losses in the second case.

This study reveals many new research paths. One of those research path lies in examining
the case of a discrete set of scenarios with imprecise probabilities or of a continuous set of
scenarios. The proposed model can also be extended by considering not only the best and
worst case scenarios but all scenarios in between. For instance, a Leximax criterion can be
applied in order to rank solutions with the same best and worst case scenarios. We propose
to study this last point in the next chapter.
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In this chapter, we propose to improve the R∗ criterion presented in the previous chapter
and we develop a lexicographic approach for the consideration of existing scenarios. We
propose two methods to compute the optimal solution for lexicographic R∗ criterion: the
first method is in the form of an algorithm, the second one is in the form of a Mixed-Integer
Program (MIP). The performance of the developed approaches is demonstrated for a reverse
facility location problem. The work proposed in this chapter has provided the following
publications:

• Zoé Krug, Romain Guillaume, Olga Battaïa "Lexicographic R∗ Criterion For Decision
Making Under Uncertainty in Reverse Logistics", MIM 2019. International conference

with proceedings

• Zoé Krug, Olga Battaïa, Romain Guillaume "Résolution d’un problème de décision sous
incertitude avec le lexiR∗", ROADEF 2020. National conference with proceedings

71



72
Chapter 4. Reverse Supply Chain design under uncertainty: the LexiR∗

criterion

• Zoé Krug, Romain Guillaume, Olga Battaïa "Design of Reverse Supply Chains under
Uncertainty: the Lexicographic R∗ criterion for exploring opportunities", submitted to an

international peer-review journal

4.1 Proposed solution approach: the LexiR∗ criterion

Originally, R∗ only pays attention to the best and worst cases profits and oversees all cases
in between: two solutions with the same best case profit and the same worst case profit are
considered equivalent even if they give different profits for other scenarios. This comparison
scenario by scenario can be realized with LexiR∗ criterion which uses a lexicographic minimum
(leximin) in the risky area and a lexicographic maximum (leximax) in the opportunistic area.
Leximin operator selects a solution by maximizing the one with the highest minimum profit
overall scenarios. If multiple solutions exist with the same minimum profit, the criterion is
applied to maximize the second minimum profit, then the third, etc... until one solution
dominates the others. Leximax operator works in the same manner but maximizing the
highest profit, then the second highest profit, then the third, etc...([Ogr97]; [OŚ03]).

Refer to the formal definitions of leximax (see definition 12) and leximin (see definition
1).

The LexiR∗ criterion can be written formally as:
Be S− = {s ∈ S|fs(x) ≤ e} and S+ = S \ S−:

LexiR∗((fs(x))s∈S , e) =











Leximins∈S−fs(x)

Then

Leximaxs∈S+fs(x)

(4.1)

An example of resolution with LexiR∗ criterion is presented in Example 2.

Example 2

Let S = {s1, s2, s3, s4} be a discrete set of scenarios and f represent the profit obtained for

each scenario. Let us consider two solutions x and y which provide the following profits for

4 considered scenarios: fx
s = (2, 3, 8, 10) and fy

s = (2, 5, 7, 10). We can observe that solutions

x and y are considered equal by the R∗ criterion since they offer the same best case profit

and worst case profit. However, they are distinguished with LexiR∗ criterion. We consider 3

different cases of the DM optimism reflected by the risk threshold e.

1. Case 1: The DM expects the profit e = 12 (see Fig.4.1 (a)). All possible profit values for



4.1. Proposed solution approach: the LexiR∗ criterion 73

Profit

0 s1 s2 s3 s4

e

fx
s1/fy

s1

fx
s2

fx
s3

fx
s4/fy

s4

fy
s2

fy
s3

.
.

.

.

.

.

.

.

Profit

0 s1 s2 s3 s4

e fx
s1/fy

s1

fx
s2

fx
s3

fx
s4/fy

s4

fy
s2

fy
s3

.
.

.

.

.

.

.

.

Profit

0 s1 s2 s3 s4

e

fx
s1/fy

s1

fx
s2

fx
s3

fx
s4/fy

s4

fy
s2

fy
s3

.
.

.

.

.

.

.

.

(a) Case 1: e = 12 (b) Case 2: e = 1 (c) Case 3: e = 6

Figure 4.1: Resolution with LexiR∗ criterion

considered scenarios are in the risky area for both solutions. Based on this observation

and in accordance with the definition of LexiR∗ approach, leximin criterion is applied

to select the best solution. First, the worst case scenario (here s1) is considered. We

have fx
s1 = fy

s2, therefore x and y are not differentiated. Then the second worst case

scenario is considered (here s2). We have fy
s2 > fx

s2, therefore solution y is preferred to

x by leximin.

2. Case 2: The DM expects the profit equal to e = 1 (see Fig.4.1 (b)). All possible profit

values for considered scenarios are in the opportunistic area for both solutions. Based

on this observation and in accordance with the definition of LexiR∗ approach, leximax

criterion is thus applied to select the final solution. For the best case scenario (here s4),

we have fx
s4 = fy

s4, therefore x and y are not differentiated. For the second best case

scenario (here s3), we have fx
s3 > fy

s3, therefore solution x is preferred to y.

3. Case 3: The DM expects the profit e = 6 (see Fig.4.1 (c)). Two profit values are in the

opportunistic area and two in the risky area for both solutions. Based on this observation

and in accordance with the definition of LexiR∗ approach, firstly, the risky values are

compared with leximin criterion, as in Case 1. Therefore, solution y is selected.

We propose two methods to compute the optimal solution for lexicographic R∗ criterion :
the first method is in the form of an algorithm, the second one is in the form of a Mixed-Integer
Program (MIP).

4.1.1 Lexicographic R∗ Algorithm

In this section, we present the formal mathematical formulation for LexiR∗ approach for RSC
design according to its definition in the previous section.

First, LexiR∗ criterion is applied taking into account all possible scenarios. The obtained
values of profit found at this step for all scenarios are compared to the threshold e. If all of
them are above the threshold, then the algorithm continues with the application of leximax
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Notation Description Notation Description
Rk Linearization of min Ys Binary variable
rk Linearization of max δk

s Binary variable
k Number of iteration γk

s Binary variable
e Risk threshold M Big value

Table 4.1: Algorithm Notations

criterion to select the final solution. Otherwise, if for some scenarios, the objective value
found is below e, the worst case scenario is expressed as a constraint for further resolution.
The R∗ criterion is then re-applied on the reduced set of scenarios taking into account a new
constraint for the worst case. It means that among all solutions having this value of the profit
in the worst case, we are looking for solutions providing the best opportunities in all other
cases. As before, if the objective value found is above e, a leximax criterion is applied to
select the final solution and on the contrary if it is below e, it is recorded and then the second
worst case scenario is expressed as a constraint. This process continues until all scenarios
have been treated.

Algorithm 1.

• Step.0

k ← 0

k′ ← 0

N ← {s1, ..., sn}

• Step.1
Solve Model (4.2)

max Rk + rk (4.2)

S.t

(a) Rk ≤ fs((x, y)) ∀s ∈ N,

(b) Rk ≤ e

(c) fs((x, y)) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N

(d) fs((x, y)) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N

(e) rk ≤ (1− Ys)M ∀s ∈ N

(f)
∑S

s=1
δk

s = 1

(g) rk ≤ fs((x, y)) + (1− δk
s )M ∀s ∈ N

• Step.2

If Rk + rk ≤ e

then Rk = R∗
k, k=k+1 and go to Step.3.

Otherwise,
define Rk = e, r1 = r∗

k, k′ = 2 and go to Step.5
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• Step.3:
Solve Model (4.3)

max Rk + rk (4.3)

S.t

(a) Ri ≤ fs((x, y)) + M(1− γi
s) ∀s ∈ N, i ∈ 1..k

(b)
∑S

s=1
γi

s = S − i ∀i ∈ 1..k

(c) Rk ≤ e

(d) fs((x, y)) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N

(e) fs((x, y)) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N

(f) rk ≤ (1− Ys)M ∀s ∈ N

(g)
∑S

s=1
δk

s = 1

(h) rk ≤ fs((x, y)) + (1− δk
s ) ∗M ∀s ∈ N

• Step.4:

If S − k = 0 then go to Step.7
Otherwise:
If Rk ≤ e, then Rk = R∗

k, k = k + 1 and return to Step.3
If Rk + rk > e, then Rk = e, r1 = r∗

k define k′ = 2 and go to Step.5

• Step.5:
Solve Model (4.4)

max rk′ (4.4)

S.t

(a) Ri ≤ fs((x, y)) + M(1− γi
s) ∀s ∈ N, ∀i ∈ 1..k

(b)
∑S

s=1
γi

s = S − i, ∀i ∈ 1..k

(c) ri ≤ fs((x, y)) + M(1− δi
s) ∀s ∈ N, ∀i ∈ 1..k′

(d)
∑S

s=1
δk′

s = k′

• Step.6:

If S − k − k′ − 1 = 0 then go to Step.7
Otherwise rk′ = r∗

k′ , k′ = k′ + 1, and go to Step.5

• Step.7:

Stop.

The steps of Algorithm 1 can be detailed in the following manner:

Step 0: We define k as the number of iterations performed in the risky area, k′ as the
number of iterations performed in the opportunistic area and N = s1, ..., sn is the discrete set
of scenarios considered. At the start of the algorithm, k and k′ are initialized by 0.
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Step 1: The decision problem is solved using R∗ criterion through the resolution of Model
4.2 (only the best and worst case scenario are taken into account). This model is a MIP.
Constraints (b) to (e) differentiate the case where the robust solution is selected (i.e there
exist no possible solution for which all objective values are above e overall scenarios) and the
case where the opportunistic solution is selected (otherwise). In the former case, constraints
(a) help to maximize the minimum objective value. In the latter case, constraints (f) and (g)
help to maximize the maximum objective value.

Step 2: The objective value found at Step 1 is analysed if it lower than e, then k is
implemented and the process goes to Step 3. If it is higher than e, then k′ is implemented
and the process goes to Step 5.

Step 3: Model 4.3 is used in order to maximize the second worst profit, then the third
and so on depending of the number k of iterations previously solved.

Step 4: This step checks if the value of the objective found through Model 4.3 is lower
or higher than e. If this objective value is lower, and if the number k of iteration is lower
than the number of scenario (namely S), then k is implemented and Model 4.3 is solved one
more time. If S = k, then all scenarios have been treated and Algorithm proceeds to Step 7.
Otherwise, if the objective value is higher than e, k′ is implemented and Algorithm goes to
Step 5.

Step 5: Model 4.4 is used to maximize the maximum profit, then the second one and so
on depending on the number of iterations k′ previously performed.

Step 6: This Step checks if all scenarios have been treated, if not, Step 5 is repeated.
Otherwise, the algorithm goes to Step 7.

Step 7: The algorithm stops.

4.1.2 Lexicographic R∗ MIP: approximated method

Algorithm 1 offers an exact resolution for the application of LexiR∗ approach. However, it
includes the resolution of 3 different MIP that can require relatively long solution time. If the
solution time is relatively limited, the following approximate compact method in the form of a
single MIP can be used instead to implement LexiR∗ approach. We denote it as MIP-LexiR∗.
Its resolution provides an approximated solution and cannot guarantee the optimum, but the
solution time is reduced significantly.

All notations needed for the description of MIP-LexiR∗ are defined in Table 4.2.

Let ωk = (ω1, ..., ωn) be a vector of weights with ω1 > ω2 > .... > ωn. We denote s,s′

two indexes representing scenarios ∈ N with s 6= s′. K is a vector of the same size of N and
k ∈ K is an index helping to browse all scenarios, S is the number of scenarios.

The proposed MIP is detailed in Model 4.5.
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Notation Description Notation Description
Rk Linearization of min Ys Binary variable
rk Linearization of max δs,s′ Binary variable
k Number of iteration γk

s Binary variable
Ak Binary variable µk Binary variable
Cs,k Binary variable Ds,k Binary variable
e Risk threshold M Big value

Table 4.2: MIP Notations

max
∑

k(ωk ∗ (Rk + rk)) (4.5)

S.t

(a) Rk ≤ fs((x, y)) + M ∗ (1− γk
s ) ∀s ∈ N, k ∈ K

(b) Rk ≤ e ∀k ∈ K

(c)
∑S

s=1
γk

s = S − k + 1 ∀k ∈ K

(d) fs((x, y)) ≥ −M ∗ (1− Ys) + e ∗ Ys ∀s ∈ N

(e) fs((x, y)) ≤ e ∗ (1− Ys) + Ys ∗M ∀s ∈ N

(f) fs((x, y)) ≤ f ′

s((x, y)) + M ∗ δs,s′ ∀s, s′ ∈ N

(g) f ′

s((x, y))−M ∗ (1− δs,s′) ≤ fs((x, y)) ∀s, s′ ∈ N

(h) rk ≤ Ak ∗M ∀k ∈ K

(i)
∑S

s′=1
δs,s′ ≤ k + (1− Cs,k) ∗M ∀s ∈ N, k ∈ K

(j)
∑S

s′=1
δs,s′ ≥ k − (1− Cs,k) ∗M ∀s ∈ N, k ∈ K

(k) Ds,k ≤ Ys ∀s ∈ N, k ∈ K

(l) Ds,k ≤ Cs,k ∀s ∈ N, k ∈ K

(m) Ak ≤
∑S

s=1
Ds,k ∀k ∈ K

(n)
∑

s µs,k =
∑k

i=1
Ai ∀k ∈ K

(o) rk ≤ fs((x, y)) + (1− µs,k) ∗M ∀s ∈ N, k ∈ K

Constraints (a), complementary with constraint (c) are the linearization of the minimum
profit, then second minimum profit, then third and so on as long as the minimum profit is
lower than e. Otherwise, the value for Rk is set to e in constraint (b).

Constraints (d) and (e) define the following:

Ys =

{

0 if fs(x) ≤ e

1 if fs(x) > e
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Constraints (f) and (g) define the following:

δs,s′ =

{

0 if fs(x) ≤ f ′

s(x)

1 Otherwise

The sum on s of variable δs,s′ represents the number of scenarios above and below fs(x)
for each k. This helps us to define constraints (i) and (j) in order to give the following
information:

Cs,k =

{

1 if
∑

s δs,s′ = k

0 Otherwise

Constraint (k) and (l) are then used to define:

Ds,k =

{

1 if Ys = 1 and Cs,k = 1

0 Otherwise

It should be noted that Ds,k is only activated if k − st profit fs(x) is higher than e.

Constraint (m) defines

Ak =

{

1 if
∑

s Ds,k = 1

0 Otherwise

It should be noted that Ak is only activated is k − st profit F (x, s) is higher than e. This is
used to set the value of rk to 0 is profit F (x, s) is lower than e in constraint (h).

Then constraint (n) is used to count how many times variable Ak has been activated: the
number of times where profit fs(x) has been higher than e using variable µs,k.

Constraint (o) is the linearization of the maximum profit, then second maximum profit
and so on as long as it is higher than e due to variable µs,k

4.2 RSC design problem

In this section, we present the framework used in order to study the developed LexiR∗

approach to a design problem of RSC. This framework has been chosen as very generic in
order to cover various situations that can appear in different industrial contexts. In order to
facilitate the understanding of the solution approaches, the structure of the RSC has been
simplified. Therefore, the attention is given to the decision making process and not to the
organizational details of the RSC. This simplification is only made for seek of illustration,
the proposed approach can be applied to the design problem of any RSC independently of
the industrial context and its complexity. The only mandatory condition is to be able to
collect enough information about the RSC in order to define the corresponding optimization
problem. Another limitation is the centralized decision making process: all decisions about
all facilities are taken by a centralized decision maker who is a single person or a group of
persons capable of reaching a consensus and acting for the common objective of maximizing
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the total profit.

4.2.1 Description of the RSC

The context of the decision making is the following. A third party logistic company is will-
ing to design a new RSC. The goal is to decide which new facilities (collection centers, re-
manufacturing centers and disposal centers) have to be installed and where as well as the
organization of the transportation flows between them in order to maximize the total profit
gained from the RSC. Figure 4.2 shows the structure of the RSC under design. Three pa-
rameters are considered uncertain, namely the quantity of returned EOL products by the
customers, the quantity of demand for re-manufactured products and the reprocessing time
of EOL products.

Figure 4.2: Reverse Supply Chain under design

4.2.2 Mathematical Model

This optimization problem is formulated through the following mathematical model. The
indexes, parameters and variables of the problem are defined as follows:

Indexes

k = 1..K Index of customers
m = 1..M Index of spare markets
c = 1..C Index of collection centers
r = 1..R Index of re-manufacturing centers
d = 1..D Index of disposal sites
s = 1..S Index of scenarios
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Demand

Dm,s of spare market m for scenario s

Capacity

CapCc of collection center c

CapRr of re-manufacturing center r

Distance between...

DKCk,c customer k and collection center c

DCRc,r collection center c and re-manufacturing center r

DCDc,d collection center c and disposal d

DRDr,d re-manufacturing center r and disposal d

DRMr,m re-manufacturing center r and spare market m

Time parameters

T remanus Unit dismantling time
Unit operational cost

Cophc at collection center c

Cdisp at re-manufacturing center p

Ceco tax for non-reprocessed products
T C transportation cost for 1 kilometer

Rate parameters

Rk,s Quantity of return for scenario s and costumer k

Rr Re-manufacturing rate after collection
Rd Disposal rate after re-manufacturing

Unit selling price parameters

RSPm of product at spare market m

Fixed opening cost parameters

CF Cc for collection center c

CF Rr for re-manufacturing center r

CF Dd for disposal d

Positives variables (Flow from . to . for s)

XKCk,c,s customer k to collection center c

XCRc,r,s collection center c to re-manufacturing center r

XCDc,d,s collection center c to disposal d

XRDr,d,s re-manufacturing center r to disposal d

XRMr,m,s re-manufacturing center r to spare market m

Binary variables

Y Cc collection center c is opened or not
Y Rr re-manufacturing center r is opened or not
Y Dd Disposal d is opened or not

To make the model more readable, some expressions are defined below.

The total income: it includes all sales revenues. It is scenario dependent and can be
formulated as:

Incomes =
∑M

m=1(
∑R

r=1(RSPm ∗XRMr,m,s))) (4.6)

The total operational cost: it includes all production costs, assembling costs, buying costs,
dismantling costs or distribution costs from/to all centers of the chain. It is scenario dependent
and can be defined as follows:

OpCosts =
∑K

k=1(
∑C

c=1(Cophc ∗XKCk,c,s))

+
∑C

c=1(
∑R

r=1(Cdisr ∗XCRc,r,s))

+
∑F

f=1(
∑C

c=1(Ceco ∗ (XRDr,d,s + XCDc,d,s))))

(4.7)
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The total fixed cost: it is the sum of the set-up costs of facilities:

FixedCost =
∑C

c=1(CFCc ∗ Y Cc)

+
∑P

p=1(CFRr ∗ Y Rr)

+
∑D

d=1(CFDd ∗ Y Dd)

(4.8)

The total transportation costs: it is the sum of travel costs between connected points of
the Supply Chain. It is scenario dependent and can be written as:

TrtCosts =
∑K

k=1(
∑C

c=1(TC ∗DKCk,c ∗XKCk,c,s))

+
∑R

r=1(
∑C

c=1(TC ∗DCRc,r ∗XCRc,r,s))

+
∑D

d=1(
∑C

c=1(TC ∗DCDc,d ∗XCDc,d,s))

+
∑R

r=1(
∑D

d=1(TC ∗DRDr,d ∗XRDr,d,s))

+
∑R

r=1(
∑D

d=1(TC ∗DRSMr,m ∗XRMr,m,s))

(4.9)

The objective is to maximize the total profit calculated as:

TotalProfits = Incomes −OpCosts − FixedCost− TrtCosts (4.10)

The constraints are given by:

(1)
∑K

k=1 XKCk,c,s ≤ CapCc ∗ Y Cc ∀c ∈ C, s ∈ S

(2)
∑C

c=1 XCRc,r,s ∗ Tremanus ≤ CapRr ∗ Y Rr ∀r ∈ R, s ∈ S

(3)
∑C

c=1 XCDc,d,s +
∑R

r=1 XRDr,d,s ≤ B ∗ Y Ff ∀d ∈ D, s ∈ S

(4)
∑R

r=1 XRMr,m,s ≤ Dm,s ∀m ∈M, s ∈ S

(5)
∑C

c=1 XKCk,c,s ≤ Rk,s ∀k ∈ K, s ∈ S

(6)
∑K

k=1 XKCk,c,s ∗Rr =
∑R

r=1 XCRc,r,s ∀c ∈ C, s ∈ S

(7)
∑C

c=1 XCRc,r,s ∗Rd =
∑D

d=1 XRDr,d,t,s ∀r ∈ R, s ∈ S

(8)
∑K

k=1 XKCk,c,s =
∑R

r=1 XCRc,r,s +
∑D

d=1 XCDc,d,s ∀c ∈ C, s ∈ S

(9)
∑C

c=1 XCRc,r,s =
∑D

d=1 XRDr,d,s +
∑M

m=1 XRMr,m,s ∀r ∈ R, s ∈ S

Constraints (1) to (3) are capacity constraints characterizing the number of product each
center is able to process a each period. Constraint (4) certifies that the production do not
exceed the demand. Unsatisfied demand is considered lost. Constraint (5) confirms that the
quantity of collected EOL products cannot be superior to the quantity of returned products
from the consumer. Constraints (6) and (7) calculate the quantity of dismantled, repaired
and recycled products according to the predefined rates Rr and Rd. Constraints (8) and (9)
check the balance of the flows between centers.
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4.2.3 Numerical Investigation

For our numerical experiments, this model has been initiated with the following data. We
consider 10 possible locations for each type of center (collection, re-manufacturing and dis-
posal), 10 first market consumers and 10 spare market consumers. The distances between
centers are comprised between 1 and 500 kilometers. The related parameters are defined in
Table 4.3. Other parameters used: Ceco=1, TC=1, Rd=80%, Rr=80%.

Parameter Value
CapC [55000, 107000, 190000, 58000, 100000, 200000, 90000, 150000, 170000, 121200]
CapR [56100, 50500, 47060, 28000, 29100, 53500, 31000, 56100, 38000, 42100]
Coph [3, 2, 5, 2, 1, 4, 5, 6, 1, 3]
Cdis [2, 2, 6, 8, 7, 4, 5, 3, 1, 2]
RSP [100, 150, 200, 320, 140, 210, 220, 110, 100, 150]
CF C [10000, 20000, 60000, 90000, 70000, 80000, 15000, 12000, 17000, 18000]
CF R [40000, 60000, 50000, 45000, 55000, 47000, 57000, 42000, 52000, 40000]
CF D [42000, 52000, 40000, 50500, 40000, 60000, 50000, 40000, 55000, 40000]

Table 4.3: Deterministic Parameters

Three parameters are considered uncertain, namely the quantity of returned EOL products
by the customers, the quantity of demand for re-manufactured products and the reprocessing
time of EOL products. Their values are not known at the moment of the decision making and
are estimated by experts. Each parameter has its "high" and "low" estimation. For example,
the quantity of returned EOL products R by each of 10 customers is within the interval of
[12000,17500] if the level of return is low and this returned quantity is considered within the
interval [22000, 27500] if the return is high. The same is for the demand for re-manufactured
products D for second market actors: it is within the interval [12000,17500] if the demand is
low or within the interval [55000, 65500] if the demand is high, finally the remanufacturing
time depends on the quality of the returned products, it is long if the quality is low, i.e.
Tremanu is within the interval [7,8] and short if the quality is high, i.e. within the interval
[1,2]. According to those levels, four scenarios are defined and presented in Table 4.4.

Parameter s1 s2 s3 s4

D high low high high
R low low high high
T remanu short long long short

Table 4.4: Scenarios

Then, one value for each parameter is randomly selected from the intervals presented
above. In this way, 20 different problem instances have been generated. Their resolution was
conducted with IBM-ILOG CPLEX 12.6.3 on an Intel Core 2.60 gigahertz machine with 15
gigabyte RAM.
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4.2.4 Analysis of results and discussion

The analysis of the results of the resolution of 20 problem instances is presented in four parts.
First, we compare the results obtained with R∗ and robust optimization. The former one
has never been used before for design of RSC, and the latter one is the approach the most
frequently used in the literature for design of RSC when historical data is not available to
build future scenarios. Second, we compare the results obtained with R∗ and LexiR∗ criteria
in order to show how LexiR∗ criterion improves the results. Third, the results obtained with
Leximin, LexiR∗ and Leximax criteria are compared. Finally, the performances of exact
and approximate algorithms for LexiR∗ are discussed.

4.2.4.1 Comparison between R∗ and robust approach

Table 4.5 reports the average values obtained from 20 solved problem instances.The first
column indicates the approach used for resolution. The second column provides the value of
e for R∗ criterion as a maximal percentage of losses in comparison to the value provided by
the robust method in the worst case. This method allows us to analyze which percentage
of the profit the decision maker must accept to loose in order to access some opportunities.
For example, e = −1% means that the decision maker expects a profit equal at least to
2765524*0.99, i.e. she/he accepts to loose 1% of the value in the worst case to gain 44% of
the robust value in the best case. The results of the profit for each scenario are presented
in Columns 3 to 6. They are in relative percentage of the robust solution and are colored
in green when R∗ criterion brings an improvement compared to the robust model and in red
when it brings a deterioration.

Model e s1(e) s2(e) s3(e) s4(e)
Robust - 2920516 2765524 2987654 3206202
R∗ 0% 2920516 2765524 2987654 3206202
R∗ -1% +4.31% -0.98% +19.16% +44.17%
R∗ -2% +0.15% -1.82% -3.43% +70.17%
R∗ -3% +11.67% -2.92% +16.95% +85.97%
R∗ -4% +6.87% -3.70% +3.84% +110.35%
R∗ -5% +5.51% -4.78% +21.74% +135.72%
R∗ -20% +5.73% -14.94% +38.25% +160.94%

Table 4.5: Comparison of the profits obtained with R∗ and robust approaches

Table 4.5 shows that R∗ criterion returns the robust solution if the value e is equal to the
"MinMax" solution or above. It illustrates that R∗ is a generalization of the robust criterion
since it behaves in the same way when e is equal to the value of the robust solution. However,
if some losses in the worst case can be accepted by the decision maker, better opportunities
can be found for other scenarios. At the same time, as the level of losses can be chosen by the
decision maker, this approach is able to protect the DM from taking high risks. The more
the value of e decreases, i.e. the more the DM is willing to take risks, the more the profit in
the worst case scenario declines, but the profit in the best case scenario shows a considerable
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improvement and the payoff is much more important than the losses. The two middle case
scenarios can either be improved or degraded depending on the case. This is observed since
the final solution is chosen on the best case value if the opportunities are available. With
LexiR∗ approach the decision maker can choose a solution taking into account its performance
for all scenarios. This is shown in the next section.

These results show that with the choice of value for e, the DM can control the robustness
of the solution while exploring the zone of opportunities. In the case of the design of RSC, the
readiness for opportunities follows to opening more collection and recycling centers, i.e. more
returned products can be treated if the return level is high and remanufacturing is profitable.
If the decision is made with the use of a robust approach, the RSC can be under-sized inducing
a loss of opportunities.

4.2.4.2 Comparison between R∗ and LexiR∗ approach

Table 4.6 presents the average results obtained for the same 20 problem instances as in the
previous section and is built in the same way as Table 4.5. The presented results still provide
relative percentage of difference from the robust solution.

Model e s1(e) s2(e) s3(e) s4(e)
Robust - 2920516 2765524 2987654 3206202
R∗ 0% 2920516 2765524 2987654 3206202
LexiR∗ 0% +69.50% 0% +149.16% +133.84%
R∗ -5% +5.51% -4.78% +21.74% +135.72%
LexiR∗ -5% +61.57% -4.78% +150.66% +135.72%
R∗ -20% +5.73% -14.94% +38.25% +160.94%
LexiR∗ -20% +51.87% -14.94% +177.18% +160.94%

Table 4.6: Comparison of the profits obtained with R∗ and LexiR∗ approaches

When e = 0%, the profit found with LexiR∗ and R∗ criteria in the worst case scenario
is the same (i.e. the "MinMax" solution). However, it is improved substantially on all other
cases with LexiR∗ criterion. Then, when e decreases, the values of the profit in the worst case
scenario (s2) and in the best case scenario (s4) are the same with R∗ and LexiR∗ criteria, but
are greatly improved with LexiR∗ criterion on the two middle cases scenarios (s1 and s3).

These results show that, when using the LexiR∗ approach, the DM can find new oppor-
tunities even if he doesn’t take more risks compared to the robust approach. Furthermore, if
he is willing to take some risks, he still has the same control over these risks as when using
the R∗ criterion, and the opportunities are better explored, particularly on the middle cases
scenarios.
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4.2.4.3 Comparison between Leximin, LexiR∗ and Leximax criteria

Table 4.7 presents the average results obtained for the same 20 problem instances as in
previous section with the use of Leximin, LexiR∗ and Leximax. The table is built in the
same way as Table 4.5 and 4.6. The presented results provide relative percentage of difference
from the Leximin solution. They are colored in green when LexiR∗ or Leximax criteria bring
an improvement in comparison with the Leximin solution for each scenario and in red when
they bring a deterioration.

Model e s1(e) s2(e) s3(e) s4(e)
Leximin - 5345165 2765524 6922933 6969008
LexiR∗ +20% -1.86% 0% +0.07% 0%
LexiR∗ +5% -3.67% 0% +0.96% +1.04%
LexiR∗ 0% -7.39% 0% +7.53% +7.58%
LexiR∗ -5% -11.28% -4.78% +8.17% +8.45%
LexiR∗ -20% -16.24% -14.94% +19.62% +20.05%
Leximax - -18.58% -66.07% +19.62% +20.05%

Table 4.7: Results obtained with Leximin, LexiR∗ and Leximax

The following observations can be made:

- The higher the value of e, the closer the results obtained with the corresponding LexiR∗

to the results obtained with Leximin.

- If e decreases, but is still equal to or above the robust "MinMax" solution, the LexiR∗

model improves the three best case scenarios compared to the robust solution and the
two best case scenarios compared to Leximin criterion. In this case, applying the
LexiR∗ helps the DM to find new opportunities without taking any risks compared to
the robust method. It also allows to find new opportunities in comparison to Leximin

criterion, but in this case, some risks must be taken on the third best case scenario.

- The more e decreases in comparison to the "MinMax" solution, the worse are the results
for the worst case scenario, however, more opportunities are revealed in the two best
case scenarios. The use of LexiR∗ provides more opportunities in every case than the
use of R∗ criterion.

- When the value of e is very low (close to 0), i.e. the DM is very opportunistic and
ready to take really high risks to find the best opportunities, the results obtained with
LexiR∗ criterion are very close to the results obtained with Leximax criterion.

- The use of LexiR∗ approach follows to better results for the two middle case scenarios
compared to the use of R∗. Therefore, the risks taken by the DM are better controlled.

To give a better view of the amplitude of the solutions, we present in Fig 4.3 the values
of the profit for each scenario depending on the value of e. Each color represents a scenario:
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Figure 4.3: Amplitude of profits for 4 scenarios depending on e

the worst case scenario (s2) is colored in red while the best case scenario (s3) is colored in
yellow.

We can see from this figure that Leximin criterion has the smallest amplitude between
the scenarios contrary to Leximax criterion which has the highest one. LexiR∗ criterion’s
amplitude depends on the value of e: the higher the value of e the less important is the
amplitude between the scenarios. It shows that the use of e offers to the decsion maker the
possibility to control the level of the taken risks, to not worsten too much the results in the
worst case scenario and at the same time improve the profits due to the opportunities found
for the best case scenario.

4.2.5 Comparison of LexiR∗ algorithm and LexiR∗ MIP

In this section, the advantages and drawbacks of the two proposed methods are discussed.
The criteria of comparison are: the solution time required and the quality of the obtained
solution. Table 4.8 shows the solution times for both LexiR∗ algorithm and LexiR∗ MIP for
different numbers of scenarios. The scenarios have been randomly generated for the purpose
of the experiment. Each instance has been solved with both methods for 10 different values
of e (also randomly generated).

When four scenarios are considered, the two methods are able to solve the problem quite
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Number of scenarios LexiR∗ Algorithm LexiR∗ MIP
4 5.28 4.54
8 547.29 35.35
16 2222.19 300.40
32 17000.28 1454.73
64 85271.36 12839.46

Table 4.8: Comparison of solution times (in seconds) between LexiR∗ algorithm and LexiR∗

MIP

fast and in comparable amount of time (see Table 4.8). Then, if we increase the number
of scenarios, the solution time extends. The solution time of the LexiR∗ MIP increases
significantly slower than the one of the LexiR∗ algorithm. On the other hand, the LexiR∗ MIP
being an approximate solution method, it does not always allow to find the exact optimum.
Furthermore, the LexiR∗ algorithm is solved by iterations, and the number of iterations is
the same than the number of scenarios considered. Each iteration takes approximately the
same time to solve. For instance, when 32 scenario are solved, the total solution time of the
algorithm is 17000.28 seconds. Therefore, it is approximately 17000.26 ÷ 32 ≈ 531 seconds
for each iteration. The DM can choose to stop the resolution at any iteration. In this case,
the found solution will be optimized for the first x considered scenarios and approximate the
other ones.

To illustrate this point, we compared the results found for the optimal solution when 32
scenarios are considered with the results obtained when the Algorithm is stopped at the 4th,
8th, 16th and 24th iterations. We analyzed the deviation from the optimal solution depending
on the number of iteration solved. We also compared with the results found with the LexiR∗

MIP.

The results are presented in Table 4.9, they show that the MIP gives a very good approx-
imation of the optimal solution: only 2 scenarios deviates slightly from the optimum. When
the model is solved with the algorithm stopped at the 24th, 16th, 8th, or 4th iterations, the
following observations can be made:

• The more the number of iterations solved is high, the more the found solution is close
to the optimal

• As previously explained in Section 4.1.1, the LexiR∗ algorithm first optimizes the worst
cases scenarios with a Leximin before moving on to the best cases scenarios with a
Leximax. Thus, as long as the value of e is higher than the profit of the scenario
considered, the DM is risk adverse and opportunities are not revealed. As so, if the
number of iterations solved is lower than the number of scenarios in the risky area,
opportunities cannot be found. We can see this effect in our case, when the algorithm
is stopped at 4 or 8 iterations: only the worst cases scenarios are optimized and the
better cases scenarios can deviate up to 27% from the optimum.

• If the number of iterations solved is high enough for scenarios in the opportunity area
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to be considered, then opportunities are revealed on the best cases.

Model LexiR∗ Algorithm LexiR∗ MIP

Number of iterations 32 24 16 8 4 -

Scenario Profit(e) Deviation Deviation Deviation Deviation Deviation
s1 2427710 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%

s2 2610029 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%

s3 2651913 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%

s4 2683295 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%

s5 2700265 0, 00% 0, 00% 0, 00% −0, 01% 0, 00%

s6 2782584 0, 00% 0, 00% 0, 00% −2, 96% 0, 00%

s7 2787666 0, 00% 0, 00% 0, 00% −3, 14% 0, 00%

s8 2845463 0, 00% 0, 00% 0, 00% −5, 11% 0, 00%

s9 2948545 0, 00% 0, 00% 0, 00% −8, 42% 0, 00%

s10 2950168 0, 00% 0, 00% −0, 05% −8, 47% −0, 05%

s11 2950906 0, 00% 0, 00% −0, 08% −8, 50% 0, 00%

s12 3013577 0, 00% 0, 00% −2, 16% −10, 40% 0, 00%

s13 3077298 0, 00% 0, 00% −4, 18% −9, 58% −0, 63%

s14 3120285 0, 00% 0, 00% −5, 50% −10, 66% 0, 00%

s15 3175696 0, 00% 0, 00% −7, 15% −10, 40% 0, 00%

s16 3265788 0, 00% 0, 00% −9, 71% −10, 12% 0, 00%

s17 3297803 0, 00% 0, 00% −10, 59% −10, 69% 0, 00%

s18 3395708 0, 00% 0, 00% −13, 16% −13, 10% 0, 00%

s19 3398593 0, 00% 0, 00% −13, 17% −11, 33% 0, 00%

s20 3519252 0, 00% 0, 00% −14, 51% −14, 06% 0, 00%

s21 3533295 0, 00% 0, 00% −13, 12% −12, 66% 0, 00%

s22 3582553 0, 00% 0, 00% −12, 90% −13, 50% 0, 00%

s23 3764976 0, 00% 0, 00% −16, 46% −17, 12% 0, 00%

s24 4080441 0, 00% −4, 70% −22, 17% −23, 44% 0, 00%

s25 4335246 0, 00% −5, 88% −23, 93% −27, 77% 0, 00%

s26 4427709 −0, 12% −1, 87% −25, 49% −26, 32% 0, 00%

s27 4427710 −0, 10% −0, 21% −24, 65% −25, 52% 0, 00%

s28 4427710 −0, 09% −0, 21% −24, 50% −25, 12% 0, 00%

s29 4427714 −0, 08% −0, 01% −23, 49% −20, 66% 0, 00%

s30 4472278 0, 00% 0, 00% −22, 59% −21, 16% 0, 00%

s31 4487614 0, 00% 0, 00% −20, 93% −14, 11% 0, 00%

s32 4518240 0, 00% 0, 00% −14, 32% −12, 66% 0, 00%

Table 4.9: Comparison of results LexiR∗ Algorithm versus MIP for 32 scenarios

Therefore, we can conclude that: if the DM is willing to solve the problem with an exact
method and if the budget of the computational time is not an issue, he/she should use the
LexiR∗ algorithm to solve it. If the DM would prefer a more rapid solution, even if this one
is not optimal, he/she can either use the LexiR∗ MIP or the LexiR∗ Algorithm and interrupt
it at a satisfying number of iterations.

4.3 Conclusion

In order to help the decision makers to design a successful RSC under uncertainty, we suggest
a new bipolar criterion, namely LexiR∗, able to differentiate risks from opportunities depend-
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ing on the optimism of the decision maker. We compare this criterion with classic criteria
from the literature to show its advantages and how it helps the decision maker to seize new
opportunities when creating a RSC. In particular, we show that the LexiR∗ criterion better
explores opportunities compared to a classic robust solution approach, while still allowing the
decision makers to control the level of risk to be taken.

We develop two solution methods to apply this criterion. The first one is in the form of
an algorithm and another is in the form of a MIP. We analyse the solution time for both
LexiR∗ algotithm and LexiR∗ MIP and show that the LexiR∗ algotithm takes a significantly
longer time, but allows to find an exact solution, contrary to LexiR∗ MIP that offers only an
approximate solution but obtained in shorter time.

From the methodological point of view, the further research will be oriented to the gener-
alization of LexiR∗ criterion to a continuous set of scenarios. From Supply Chain perspective,
a generalized study aiming to connect forward and reverse supply chains will be performed
in the context of design of a Closed-Loop Supply Chain. In addition to the economic perfor-
mance of such supply chains, their environmental and social performances should be evaluated
as well, in order to reach a sustainable solution for the created CLSC. Furthermore, we would
like to address the concept of equity between several locations where the CLSC is imple-
mented, and particularly the social equity and environmental equity in order to fairly split
the employment and pollution emissions between the regions concerned. The last Chapter
focuses on these two last points, but at first, we consider this problem in the deterministic
context in order to increase progressively the complexity of the analysis.
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In this chapter, we study the design of a sustainable CLSC where the economic, environ-
mental and social dimensions are taken into account. We propose a multi-objective model
including one objective for each dimension.

The studied CLSC design problem is based on the framework presented in Section 3.2.
Some adaptations have been made to simplify its formulation as well as study some new
features:

• First, the uncertainty on the parameters is not considered anymore in the decision
making process. Indeed, for simplification purpose, and because of the inclusion of
two new dimensions (environmental and social) and induced complexity, we decided to
consider the deterministic setting first.
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• The second adaptation regards the capacity of the implemented facilities. In the previ-
ous model (Section 3.2), each facility had a predefined capacity. In the new model, the
capacities of the implemented centers can be of three types: small, medium or large.
Therefore, each time the DM makes the decision of implementing a new facility, she/he
can choose the type of capacity the most suited to the situation. Naturally, the cost for
implementing a facility will vary depending on its size.

• The last adaptation concerns the locations of the implemented centers. In the first
model (See Section 3.2), each facility had a predefined location on which it could be
implemented or not. In the new model presented here, there is a choice of different
potential regions for implementing new recovery facilities with each region having an
initial level of pollution and unemployment. Facility location decisions impact on the
final level of pollution and unemployment in each region. This adaptation will help to
analyze the relation between the distribution of the centers on the different locations
and the scores of the environmental and social impacts.

To provide sustainability in the considered locations, we seek to deliver overall environ-
mental and social equity in all locations, so that no area is left out. Equity is defined in the
Cambridge Dictionary as "the situation in which everyone is treated fairly and equally". In
our case, we are particularly interested in considering environmental equity and social equity:
we minimize the environmental impact in the more polluted areas and maximize the social
impact in the areas with the highest unemployment rate. Few studies in the literature have
addressed the equity in decision making in the design of sustainable CLSC. For instance,
[Mot+18] presented a generic model of sustainable CLSC with a TBL approach in the form
a multi-objective MIP. They introduced the concept of "Social Benefit" as their social ob-
jective. The "Social Benefit" allows maximization of the implementation of facilities in the
regions with lower Gross Domestic Product (GDP) with the aim to provide more equitable
distribution of facilities over all regions. In the same vein, [CSC18] studied a comprehensive
multi-objective model of a biofuel supply chain optimization from coffee crop residues with
economic, environmental and social objectives. They consider the balance of job employment
in several regions as their social objective. In spite of those studies, equity in sustainable
CLSC remains superficial. Furthermore, we found no paper with equity consideration in
regards to distribution of environmental pollution.

In order to choose the model for equity in both environmental and social objectives, we
used the results of the study of [MS94] which reported on the 20 equity measures most
commonly used to analyze equity in facility location problems. We chose to use the Gini
coefficient (noted G).

The Gini coefficient satisfies the principle of Pareto-optimality which implies that if the
coefficient improves, then none of the groups being affected will be worsen. In our model, we
propose to use the Gini coefficient as an objective, rather than as a simple analytic tool (see
Section 2.3.2.3). In order to maximize the equity, we seek to minimize the Gini coefficient for
both environmental and social impacts.

We afterwards solve the model using a goal programming method to analyze the impact
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of equity on the profitability of the CLSC and find the best compromise between the three
objectives.

Therefore the following research questions are answered in this chapter:

(2) How do the economic, environmental and social objectives influence each

other?

(3) How does the attitude of the DM impact the selection of a compromising

solution between the three objectives?

(4) How the consideration of equity between several locations influences the

final solution?

5.1 Mathematical model

The mathematical modelling of the problem stated above is given in this section:

5.1.1 Index, Parameters and Variables

The list of all index, parameters and variables is given below:

Indexes

i = 1..I Index of suppliers
j = 1..J Index of plants
l = 1..L Index of customers
c = 1..C Index of HDC
p = 1..P Index of dismantlers
q = 1..Q Index of repair centers
m = 1..M Index of spare market customers
f = 1..F Index of disposal sites
d = 1..D Index of recycling centers
t = 1..T Index of time periods
loc = 1...LOC Index of regions
cap = 1...CAP Index of capacities

Demand of ... at period t

Dl,t consumers l

Dsmm,t spare market m

Dsi,t suppliers i

Capacities

Capcap of new center
CapP lantj of plant j

V CAPt brough by the creation of one variable job at period t

Distance between ... and ...

DisSPi,j supplier i and plant j

DisP Hj,c plant j and HDC c

DisCHl,c costumer l and HDC c

DisCoDic,p HDC c and dismantler p
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DisCoFc,f HDC c and disposal f

DisDiDep,d dismantler p and recycler d

DisDeDisd,f recycler d and disposal f

DisDeSd,i recycler d and supplier i

DisDiRp,q dismantler p and repair q

DisRSMq,m repair q and spare market m

DisRP Pq,j repair q and plant j

Time parameters

T dismantler Unit dismantling time
T recycle Unit recycling time
T repair Unit repair time

Unit cost of ...

Cai Buying at supplier i

Cpj Production at plant j

Cassj Assembling at plant j

Cophc Operation at HDC c

Cdisp Dismantling at dismantler p

Crepq Repair at repair center q

Cdecrd Recycling at recycler d

Cecoc disposed EOL
T C Transportation for 1 kilometer

Rate of ...

Rt Returned EOL at period t

Re Repairing after dismantling
Rr Recycling after decomposition
Ploc Pollution at location loc

Uloc Unemployment at location loc

Unit selling price of ...

SPl product at market zone l

RSPm product at spare market m

Revi recycled product to supplier i

Opening cost at location loc, capacity cap

Cohybc,loc,cap for HDC c

CoDismp,loc,cap for dismantling center p

CoRecyd,loc,cap for recycling center d

CoDispf,loc,cap for disposal f

CoRepq,loc,cap for repair center q

EI of ... at location loc, capacity cap

EIHDCc,loc,cap establishing HDC c

EIDisp,loc,cap establishing dismantler p

EIRepq,loc,cap establishing repair centre q

EIRecd,loc,cap establishing recycler d

EIDispf,loc,cap establishing disposal f

T E EI of transporting 1 product for 1 km
EI of processing at location loc, capacity cap

P ICHDc,l in HDC c in the forward way
P IP Hj,c in plant j to be distributed in HDC c

P ICODIc,p at HDC c to be dismantled a p
P IRSMq,m at repair center q to be resold a m

P IRP Pq,j at repair center q to be utilized at j

P IP Sd,i at recycling center d to be resold at i

P IDIRp,q at dismantling center p to be repaired at q

P IDIREp,d at dismantling center p to be recycled at d

DI EI of disposing of 1 unit of product
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Fixed cost at location loc, capacity cap

CF hybc,t,loc,cap for HDC c in period t

CF Dismp,t,loc,cap for dismantling center p in period t

CF Recyd,t,loc,cap for recycling center d in period t

CF Dispf,t,loc,cap for disposal f in period t

CF Repq,t,loc,cap for repair center q in period t

Ct Budget for opening centers in period t

Salaries at period t and location loc

F JSt,loc for one fixed job
V JSt,loc for one variable job

Number of fixed jobs at... at location loc

F JCHc,t,loc,cap HCD center c of capacity cap

F JPp,t,loc,cap dismantler p of capacity cap

F JDd,t,loc,cap recycler d of capacity cap

F JFf,t,loc,cap disposal f of capacity cap

F JQq,t,loc,cap repair center q of capacity cap

Number of variable jobs at . at period t

V JCHc,t,loc HDC c at location loc

V JPp,t,loc Dismantler p at location loc

V JDd,t,loc Recycling center d at location loc

V JQq,t,loc Repair center q at location loc

Positives variables (Flow from . to . at period t)

XSPi,j,t from supplier i to plant j

XP Hj,c,t from plant j to HDC c

XCHDc,l,t from HDC c to customer l

XCHCl,c,t from customer l to HDC c

XCODIc,p,t from HDC c to dismantler p

XCOFc,f,t from HDC c to disposal f

XDIRp,q,t from dismantler p to repair center q

XRSMq,m,t from repair center q to spare market costumer m

XDIREp,d,t from dismantler p to recycling center d

XREDISd,f,t from recycling center d to disposal f

XP Sd,i,t from recycling center d to supplier i

XRP Pq,j,t from repair center q to plant j

hc,l,t Variable helping to linearize the objective function
Binary variables

Y CHc,t,loc,cap HDC c is opened or not at period t at location loc and capacity cap

Y Pp,t,loc,cap Dismantler p is opened or not at period t at location loc and capacity cap

Y Dd,t,loc,cap Recycling center d is opened or not at period t at location loc and capacity cap

Y Ff,t,loc Disposal f is opened or not at period t at location loc

Y Qq,t,loc,cap Repair center q is opened or not at period t at location loc and capacity cap

ZY CHc,loc,cap 1 if HDC c has been opened at location loc, 0 otherwise
ZY Pp,loc,cap 1 if Dismantler p has been opened at location loc and capacity cap, 0 otherwise
ZY Dd,loc,cap 1 if Recycling center d has been opened at location loc and capacity cap, 0 otherwise
ZY Ff,loc,cap 1 if Disposal f has been opened at location loc and capacity cap, 0 otherwise
ZY Qq,loc,cap 1 if Repair center q has been opened at location loc and capacity cap, 0 otherwise

5.1.2 Objectives

In this section we detail the mathematical formulation of the three objectives related to the
three dimensions of sustainability.
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5.1.2.1 Economic Objective

In the same way as in in Section 3.2, the profit is given by the incomes of the CLSC minus
its costs.

The revenues are simply calculated by all the benefits from the sales of products (equation
5.1):

Income =
∑T

t=1

∑L
l=1

∑C
c=1(SPl ∗XCHDc,l,t)

+
∑T

t=1

∑M
m=1

∑Q
q=1(RSPm ∗XRSMq,m,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(Revi ∗XPSd,i,t)

(5.1)

The costs comes from several sources:

• The costs from the implementation and maintenance of new facilities namely FixedCosts

(equation 5.2).

FixedCost =
∑LOC

loc=1

∑CAP
cap=1

∑C
c=1(Cohybc ∗ ZY CHc,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑P
p=1(CoDismp,loc,cap ∗ ZY Pp,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑D
d=1(CoRecyd,loc,cap ∗ ZY Dd,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑F
f=1(CoDispf,loc,cap ∗ ZY Ff,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑Q
q=1(CoRepq,loc,cap ∗ ZY Qq,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑T
t=1

∑C
c=1(CFhybc,t,loc,cap ∗ Y CHc,t,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑T
t=1

∑P
p=1(CFDismp,t,loc,cap ∗ Y Pp,t,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑T
t=1

∑D
d=1(CFRecyd,t,loc,cap ∗ Y Dd,t,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑T
t=1

∑F
f=1(CFDispf,t,loc,cap ∗ Y Ff,t,loc,cap)

+
∑LOC

loc=1

∑CAP
cap=1

∑T
t=1

∑Q
q=1(CFRepq,t,loc,cap ∗ Y Qq,t,loc,cap)

(5.2)

• The operational costs from the production in each facility, the eco-tax from products
put in disposal and the salaries of the employees namely OpCost (equation 5.3).
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OpCost =
∑T

t=1

∑J
j=1

∑I
i=1(Cai ∗XSPi,j,t)

+
∑T

t=1

∑C
c=1

∑J
j=1(Cpj ∗XPHj,c,t)

+
∑T

t=1

∑C
c=1

∑J
j=1(Cassj ∗XPHj,c,t)

+
∑T

t=1

∑L
l=1

∑C
c=1(Cophc ∗ (XCHDc,l,t + XCHCl,c,t))

+
∑T

t=1

∑P
p=1

∑C
c=1(Cdisp ∗XCODIc,p,t)

+
∑T

t=1

∑M
m=1

∑Q
q=1(Crepq ∗XRSMq,m,t)

+
∑T

t=1

∑J
j=1

∑Q
q=1(Crepq ∗XRRPq,j,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(Cdecrd ∗XPSd,i,t)

+
∑T

t=1

∑F
f=1

∑C
c=1(Cecoc ∗XCOFc,f,t)

+
∑T

t=1

∑LOC
loc=1

∑CAP
cap=1

∑C
c=1(FJSt,loc ∗ FJCHc,t,loc,cap)

+
∑T

t=1

∑LOC
loc=1

∑CAP
cap=1

∑P
p=1(FJSt,loc ∗ FJPp,t,loc,cap)

+
∑T

t=1

∑LOC
loc=1

∑CAP
cap=1

∑D
d=1(FJSt,loc ∗ FJDd,t,loc,cap)

+
∑T

t=1

∑LOC
loc=1

∑CAP
cap=1

∑F
f=1(FJSt,loc ∗ FJFf,t,loc,cap)

+
∑T

t=1

∑LOC
loc=1

∑CAP
cap=1

∑Q
q=1(FJSt,loc ∗ FJQq,t,loc,cap)

+
∑T

t=1

∑LOC
loc=1

∑C
c=1(V JSt,loc ∗ V JCHc,t,loc)

+
∑T

t=1

∑LOC
loc=1

∑P
p=1(V JSt,loc ∗ V JPp,t,loc)

+
∑T

t=1

∑LOC
loc=1

∑D
d=1(V JSt,loc ∗ V JDd,t,loc)

+
∑T

t=1

∑LOC
loc=1

∑Q
q=1(V JSt,loc ∗ V JQq,t,loc)

(5.3)

• The costs from transportation namely TrtCosts (equation 5.4).

TrtCost = TC∗ [
∑T

t=1

∑J
j=1

∑I
i=1(DisSPi,j ∗XSPi,j,t)

+
∑T

t=1

∑C
c=1

∑J
j=1(DisPHj,c ∗XPHj,c,t)

+
∑T

t=1

∑L
l=1

∑C
c=1(DisCHl,c ∗ hl,c,t)

+
∑T

t=1

∑P
p=1

∑C
c=1(DisCoDic,p ∗XCODIc,p,t)

+
∑T

t=1

∑Q
q=1

∑P
p=1(DisDiRp,q ∗XDIRp,q,t)

+
∑T

t=1

∑M
m=1

∑Q
q=1(DisRSMq,m ∗XRSMq,m,t)

+
∑T

t=1

∑D
d=1

∑P
p=1(DisDiDep,d ∗XDIREp,d,t)

+
∑T

t=1

∑F
f=1

∑D
D=1(DisDeDisd,f ∗XREDISd,f,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(DisDeSd,i ∗XPSd,i,t)

+
∑T

t=1

∑J
j=1

∑Q
q=1(DisRPPq,j ∗XRPPq,j,t)

+
∑T

t=1

∑F
f=1

∑C
c=1(DisCoFc,f ∗XCOFc,f,t)]

(5.4)

In the rest of the paper, we will refer to the sum of all costs as TotalCosts defined as
TotalProfit = Income− TotalCosts.

The economic objective noted hereafter as Z1 is defined as follows:

Z1 = Maximize(TotalProfit) (5.5)
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5.1.2.2 Environmental Objective

The environmental objective is to establish new facilities with equitable environmental impact
over all regions. The environmental impact, denoted hereafter as EI, is calculated taking
into account the facilities location, processing of products in each facility, transportation, and
impact of creating waste (see Section 1.3.1):

EIloc = FacilitiesLocationloc + OpImpact + TrtEmission + DisposalImpact (5.6)

With:

• FacilitiesLocation: it is the impact of facility establishment, i.e. the impact generated by
the construction of a new facility calculated with the emissions and energy consumption
of materials used during the construction. It depends on the regions where facilities are
built, as we consider that establishing a facility in different regions can lead to different
impacts (equation 5.7).

FacilitiesLocationloc =
∑CAP

cap=1

∑C
c=1(ZY CHc,loc,cap ∗ EIHDCc,loc,cap)

+
∑CAP

cap=1

∑P
p=1(ZY Pp,loc,cap ∗ EIDisp,loc,cap)

+
∑CAP

cap=1

∑D
d=1(ZY Dd,loc,cap ∗ EIRepd,loc,cap)

+
∑CAP

cap=1

∑F
f=1(ZY Ff,loc,cap ∗ EIRecf,loc,cap)

+
∑CAP

cap=1

∑Q
q=1(ZY Qq,loc,cap ∗ EIDispq,loc,cap)

(5.7)

• OpImpact: It is the impact generated by the production of one product in each facility
and includes various factors such as the energy consumption, the emitted carbon dioxide,
the water and soil pollution...etc (equation 5.8).

OpImpact =
∑T

t=1

∑J
j=1

∑I
i=1(PIPi,j ∗XSPi,j,t)

+
∑T

t=1

∑C
c=1

∑J
j=1(PIPHj,c ∗XPHj,c,t)

+
∑T

t=1

∑L
l=1

∑C
c=1(PICHDc,l ∗XCHDc,l,t)

+
∑T

t=1

∑P
p=1

∑C
c=1(PICODIc,p ∗XCODIc,p,t)

+
∑T

t=1

∑M
m=1

∑Q
q=1(PIRSMq,m ∗XRSMq,m,t)

+
∑T

t=1

∑J
j=1

∑Q
q=1(PIRPPq,j ∗XRRPq,j,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(PIPSd,i ∗XPSd,i,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(PIDIRp,q ∗XDIRp,q,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(PIDIREp,d ∗XDIREp,d,t)

(5.8)

• TrtEmission: it is the impact of transportation between facilities. We remind that this
impact integrates all emissions of carbon dioxide related to the transportation network
and is inherent to the number and length of the trips, the type of transportation as well
as the amount of products transported. It is considered in the literature as the most
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influential environmental impact(equation 5.9).

TrtEmission = TE∗ [
∑T

t=1

∑J
j=1

∑I
i=1(DisSPi,j ∗XSPi,j,t)

+
∑T

t=1

∑C
c=1

∑J
j=1(DisPHj,c ∗XPHj,c,t)

+
∑T

t=1

∑L
l=1

∑C
c=1(DisCHl,c ∗ hl,c,t)

+
∑T

t=1

∑P
p=1

∑C
c=1(DisCoDic,p ∗XCODIc,p,t)

+
∑T

t=1

∑Q
q=1

∑P
p=1(DisDiRp,q ∗XDIRp,q,t)

+
∑T

t=1

∑M
m=1

∑Q
q=1(DisRSMq,m ∗XRSMq,m,t)

+
∑T

t=1

∑D
d=1

∑P
p=1(DisDiDep,d ∗XDIREp,d,t)

+
∑T

t=1

∑F
f=1

∑D
D=1(DisDeDisd,f ∗XREDISd,f,t)

+
∑T

t=1

∑I
i=1

∑D
d=1(DisDeSd,i ∗XPSd,i,t)

+
∑T

t=1

∑J
j=1

∑Q
q=1(DisRPPq,j ∗XRPPq,j,t)

+
∑T

t=1

∑F
f=1

∑C
c=1(DisCoFc,f ∗XCOFc,f,t)]

(5.9)

• DisposalImpact: it is the impact of disposing of waste, calculated for one unit of product
in terms of emissions and soil pollution. (equation 5.10)

DisposalImpact = DI ∗
∑T

t=1

∑F
f=1

∑D
d=1(XREDISd,f,t)

+DI ∗
∑T

t=1

∑F
f=1

∑C
c=1(XCOFc,f,t)

(5.10)

To maximize the environmental equity among regions, we use the Gini index in the objec-
tive function. As all regions do not have the same initial rate of pollution, the pollution rate
P in each location before the implementation of the CLSC is modelled. The mathematical
expression of the environmental objective noted Z2 considering Gini Index is as follows:

Z2 = min

∑

loc

∑

loc2 |P ∗ EIloc − P ∗ EIloc2|

2 ∗ LOC2 ∗ µ(P ∗ EIloc)
(5.11)

where µ represents the mean. To make Z2 easier to solve computationally, we use the
formulation of [BF+17] which proposed a linear program for the formulation of Gini Index
as follows:

Z2 = min
LOC
∑

loc=1

ω
′

loc(loc ∗ r2loc +
LOC
∑

loc2=1

b2loc2,loc) (5.12)

Subject to

r2loc + b2loc2,loc ≥ P ∗ EIloc2 ∀loc, loc2 ∈ LOC

b2loc2,loc ≥ 0 ∀loc, loc2 ∈ LOC
(5.13)
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with
ω′

loc = ωloc − ωloc−1

ωloc = (2(LOC − loc) + 1)/LOC2 ∀ loc ∈ LOC

5.1.2.3 Social Objective

In the same spirit as for the environmental objective, we seek to provide equitable distribu-
tion of social benefits between the regions with regard to the social impact of the CLSC. As
previously mentioned, the literature acknowledges the difficulty to quantify the social impact
of a CLSC. In this context, we choose to follow the literature and consider the job creation
as a social impact. More particularly, and in the same way as [SFFHK18], we differenti-
ate permanent ongoing jobs and casual jobs, respectively referred to hereafter as fixed and
variable jobs. As stated by [SFFHK18], fixed jobs are represented by the establishment of a
facility while variable jobs are represented by a short term fluctuation in quantity of products
processed in the facility in each time period. An increasing quantity of products represents
increased employment of casual workers and vice-versa. We consider that the social impact
of the fixed jobs is more important important than (casual) variable jobs as fixed jobs pro-
vide more sustainable and secure long-term employment. Each region starts with a certain
unemployment rate U . We denote the social impact with SIloc and we define it as:

SIloc =
∑T

t=1

∑CAP
cap=1

∑C
c=1(FJCHc,t,loc,cap ∗ Y CHc,t,loc,cap)

+
∑T

t=1

∑CAP
cap=1

∑P
p=1(FJPp,t,loc,cap ∗ Y Pp,t,loc,cap)

+
∑T

t=1

∑CAP
cap=1

∑D
d=1(FJDd,t,loc,cap ∗ Y Dd,t,loc,cap)

+
∑T

t=1

∑CAP
cap=1

∑F
f=1(FJFf,t,loc,cap ∗ Y Ff,t,loc,cap)

+
∑T

t=1

∑CAP
cap=1

∑Q
q=1(FJQq,t,loc,cap ∗ Y Qq,t,loc,cap)

+
∑T

t=2

∑CAP
cap=1

∑C
c=1

∑L
l=1

∑P
p=1(V JCHc,t,loc ∗ (∆XCHDc,l,t + ∆XCODIc,p,t))

+
∑T

t=2

∑CAP
cap=1

∑P
p=1

∑Q
q=1

∑D
d=1(V JPp,t,loc ∗ (∆XDIRp,q,t + ∆XDIREp,d,t))

+
∑T

t=2

∑CAP
cap=1

∑D
d=1

∑F
f=1

∑I
i=1(V JDd,t,loc ∗ (∆XREDISd,f,t + ∆XPSd,i,t))

+
∑T

t=2

∑CAP
cap=1

∑Q
q=1

∑M
m=1

∑J
j=1(V JQq,t,loc ∗ (∆XRSMq,m,t + ∆XRPPq,j,t))

(5.14)

With:
∆XCHDc,l,t = XCHDc,l,t −XCHDc,l,t−1

∆XCODIc,p,t = XCODIc,p,t −XCODIc,p,t−1

∆XDIRp,q,t = XDIRp,q,t −XDIRp,q,t−1

∆XDIREp,d,t = XDIREp,d,t −XDIREp,d,t−1

∆XREDISd,f,t = XREDISd,f,t −XREDISd,f,t−1

∆XPSd,i,t = XPSd,i,t −XPSd,i,t−1

∆XRSMq,m,t = XRSMq,m,t −XRSMq,m,t−1

∆XRPPq,j,t = XRPPq,j,t −XRPPq,j,t−1

(5.15)

The expression of the social objective with Gini Index is noted Z3 and defined as follows:
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Z3 = min

∑

loc

∑

loc2 |U ∗ SIloc − U ∗ SIloc2|

2 ∗ LOC2 ∗ µ(U ∗ SIloc)
(5.16)

where µ represents the mean. In the same way as for the second objective, we use the
linear formulation of [BF+17]:

Z3 = min
LOC
∑

loc=1

ω
′

loc(loc ∗ r3loc +
LOC
∑

loc2=1

b3loc2,loc) (5.17)

Subject to

r3loc + b3loc2,loc ≥ U ∗ SIloc2 ∀loc, loc2 ∈ [LOC]

b3loc2,loc ≥ 0 ∀loc, loc2 ∈ [LOC]
(5.18)

with
ω′

loc = ωloc − ωloc−1

ωloc = (2(LOC − loc) + 1)/LOC2 ∀ loc ∈ LOC

5.1.3 Constraints

Constraints (1) to (6) verify that the different capacities of all centers are respected.

(1)
∑I

i=1
XSPi,j,t +

∑Q

q=1
XRPPq,j,t ≤ CapP lantj ∀ t, j

(2)
∑J

j=1
XPHj,c,t + XCHCj,c,t ≤ Capcap ∗ Y CHc,t,loc,cap ∀ loc, cap, t, c

(3)
∑C

c=1
XCODIc,p,t ∗ Tdismantler ≤ Capcap ∗ Y Pp,t,loc,cap ∀ loc, cap, t, p

(4)
∑P

p=1
XDIRp,q,t ∗ Trepair ≤ Capcap ∗ Y Qq,t,loc,cap ∀ loc, cap, t, q

(5)
∑P

p=1
XDIREp,d,t ∗ Trecycle ≤ Capcap ∗ Y Dd,t,loc,cap ∀ loc, cap, t, d

(6)
∑D

d=1
XREDISd,f,t ≤ B ∗ Y Ff,t,loc ∀ loc, t, f

Constraints (7) to (9) are used to verify that the demand is never over-satisfied. However,
the demand can remain unsatisfied and is considered lost in this case.

(7)
∑C

c=1
(XCHDc,l,t) ≤ Dl,t ∀t ∈ T, l ∈ L

(8)
∑Q

q=1
(XRSMq,m,t) ≤ Dsmm,t ∀t ∈ T, m ∈M

(9)
∑D

d=1
(XPSd,i,t) ≤ Dsi,t ∀t ∈ T, i ∈ I

Constraint (10) calculates the quantity of collected EOL products.

(10)
∑C

c=1
(XCHCl,c,t) = Rt ∗Dl,t ∀t ∈ T, l ∈ L
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Constraints (11) and (12) calculate the quantity of dismantled, repaired and recycled
products.

(11)
∑C

c=1
XCODIc,p,t ∗Re =

∑Q

q=1
XDIRp,q,t ∀p ∈ P, t ∈ T

(12)
∑P

p=1
XDIREp,d,t ∗Rr =

∑I

i=1
XPSd,i,t ∀d ∈ D, t ∈ T

Constraints (13) to (18) are the flow balance constraints.

(13)
∑I

i=1
XSPi,j,t +

∑Q

q=1
XRPPq,j,t =

∑C

c=1
XPHj,c,t ∀t ∈ T, j ∈ J

(14)
∑J

j=1
XPHj,c,t =

∑L

l=1
XCHDc,l,t ∀t ∈ T, c ∈ C

(15)
∑L

l=1
XCHCl,c,t =

∑P

p=1
XCODIc,p,t +

∑F

f=1
XCOFc,f,t ∀t ∈ T, c ∈ C

(16)
∑C

c=1
XCODIc,p,t =

∑Q

q=1
XDIRp,q,t +

∑D

d=1
XDIREp,d,t ∀t ∈ T, p ∈ P

(17)
∑P

p=1
XDIRp,q,t =

∑M

m=1
XRSMq,m,t +

∑J

j=1
XRPPq,j,t ∀t ∈ T, q ∈ Q

(18)
∑P

p=1
XDIREp,d,t =

∑F

f=1
XREDISd,f,t +

∑I

i=1
XPSd,i,t ∀t ∈ T, d ∈ D

Constraint (19) restricts the maximum number of opened centers for a period depending
on the available budget.

(19)
∑LOC

loc=1

∑CAP

cap=1

∑C

c=1
((Y CHc,t,loc,cap − Y CHc,t−1,loc,cap) ∗ Cohybc,cap)

+
∑LOC

loc=1

∑CAP

cap=1

∑P

p=1
((Y Pp,t,loc,cap − Y Pp,t−1,loc,cap) ∗ CoDismp,cap)

+
∑LOC

loc=1

∑CAP

cap=1

∑D

d=1
((Y Dd,t,loc,cap − Y Dd,t−1,loc,cap) ∗ CoRecyd,cap)

+
∑LOC

loc=1

∑CAP

cap=1

∑F

f=1
((Y Ff,t,loc,cap − Y Ff,t−1,loc,cap) ∗ CoDispf,cap)

+
∑LOC

loc=1

∑CAP

cap=1

∑Q

q=1
((Y Qq,t,loc,cap − Y Qq,t−1,loc,cap) ∗ CoRepq,cap) ≤ Ct ∀t ∈ T

Constraint (20) updates the budget regarding the number of opened centers in the previous
period.

(20) Ct = C1 −
∑CAP

cap=1

∑LOC

loc=1

∑C

c=1
(Y CHc,t−1,loc,cap ∗ Cohybc,cap)

−
∑CAP

cap=1

∑LOC

loc=1

∑P

p=1
(Y Pp,t−1,loc,cap ∗ CoDismp,cap)

−
∑CAP

cap=1

∑LOC

loc=1

∑D

d=1
(Y Dd,t−1,loc,cap ∗ CoRecyd,cap)

−
∑CAP

cap=1

∑LOC

loc=1

∑F

f=1
(Y Ff,t−1,loc,cap ∗ CoDispf,cap)

−
∑CAP

cap=1

∑LOC

loc=1

∑Q

q=1
(Y Qq,t−1,loc,cap ∗ CoRepq,cap) ∀t ∈ T

Constraints (21) to (25) calculate the fixed opening costs.

(21) ZY CHc,loc,cap ≥ (1/T ) ∗
∑T

t=1
Y CHc,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, c ∈ C

(22) ZY Qq,loc,cap ≥ (1/T ) ∗
∑T

t=1
Y Qq,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, q ∈ Q

(23) ZY Dd,loc,cap ≥ (1/T ) ∗
∑T

t=1
Y Dd,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, d ∈ D

(24) ZY Pp,loc,cap ≥ (1/T ) ∗
∑T

t=1
Y Pp,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, p ∈ P

(25) ZY Ff,loc,cap ≥ (1/T ) ∗
∑T

t=1
Y Ff,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, f ∈ F
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Constraints (26) to (30) forbid to close opened centers.

(26) Y CHc,t+1,loc,cap ≥ Y CHc,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, c ∈ C, t ∈ T

(27) Y Qq,t+1,loc,cap ≥ Y Qq,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, q ∈ Q, t ∈ T

(28) Y Dd,t+1,loc,cap ≥ Y Dd,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, d ∈ D, t ∈ T

(29) Y Pp,t+1,loc,cap ≥ Y Pp,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, p ∈ P, t ∈ T

(30) Y Ff,t+1,loc,cap ≥ Y Ff,t,loc,cap ∀cap ∈ CAP, loc ∈ LOC, f ∈ F, t ∈ T

Constraints (31) and (32) are used in order to limit the transportation costs to unidi-
rectional among forward and reverse flows depending on the maximum number of products
transported between.

(31) hc,l,t ≥ XCHDc,l,t ∀c ∈ C, l ∈ L, t ∈ T

(32) hc,l,t ≥ XCHCl,c,t ∀c ∈ C, l ∈ L, t ∈ T

5.2 Proposed solution approaches

We focus on a Multi-Criteria Decision Model (MCDA) for the resolution of the problem in
order to search for the Pareto optimal solutions.In particular, we used a goal programming
solution method which consists of setting a priori target values for each objective, and mini-
mizing weighted deviations from these values.

According to definitions 2.16, 2.17 and 2.18, we denote Z∗ = (Z∗
1 , Z∗

2 , Z∗
3 ) the ideal solution

and Zmax = (Zmax
1 , Zmax

2 , Zmax
3 ) the nadir solution. The deviation from solution x to the

ideal solution is thus defined as D = (D1, D2, D3) with:

D1 =
Z∗

1 − Z1

Z∗
1 − Zmax

1

D2 =
Z∗

2 − Z2

Z∗
2 − Zmax

2

D3 =
Z∗

3 − Z3

Z∗
3 − Zmax

3

In order to find a satisfying compromising solution for all objectives, we seek to minimize the
three deviations.

At this end, we first use classic aggregation functions defined in 2.3.2.3 to solve the prob-
lem: in particular, the aggregation based on the ||.||1 norm, the aggregation based on the
||.||∞ norm and the Leximin aggregation.

Each approach has its particular benefits. However, none of them integrates the sensi-
bility of the DM to the risk aversion in decision making process. We address this issue by
introducing two new goal programming approaches based on bipolar aggregation operators
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and particularly Uninorms and conduct a comparison of all approaches.

5.2.1 Uninorm R∗ approach

In the first proposed solution method, we apply R∗ uninorm as it has been defined in previous
chapters. This results in OPTR∗

solution method defined as follows:

Let Do be the evaluation of the deviation o for solution x,

OPTR∗
(Do, e) =

{

min maxo∈|n| Do if ∃ Do ≥ e

min mino∈|n| Do otherwise
(5.19)

In other words, we consider here that e is the relative deviation from the utopia value
that the DM is ready to accept for each objective. The behavior of the DM will not result
in the same chosen final solution if one of the deviations is larger than e or if all of them are
smaller. The solution method works in the following way:

• if Do ≤ e ∀ o ∈ O then the DM’s acceptance threshold is satisfied. Thus, the DM will
look for the solution that brings the greatest opportunity, that is to say the solution for
which the minimum deviation over all objectives is minimal.

• if ∃ o such as Do ≥ e then the DM’s acceptance threshold is not satisfied. Thus, the DM
will select the solution that offers the lowest maximum deviation among all objectives.

It can be written in a form of a MIP [KGB18] of the following form:

min Z + z (5.20)

S.t

(a) Z ≥ Do ∀o ∈ O

(b) Z ≥ e

(c) Do ≤ −B ∗ Yo + e(1− Yo) ∀o ∈ O

(d) Do ≤ e ∗ Yo + (1− Yo) ∗B ∀o ∈ O

(e) z ≥ (1− Yo) ∗B ∀o ∈ O

(f)
∑S

s=1 δo = 1

(g) z ≥ Do + (1− δo) ∗B ∀o ∈ O

With

Yo, δo ∈ {0, 1} and B a very large number

To provide further understanding of the method we present an example below: (see Figure
5.1). Let X and Y be two possible solutions of the multi-objective problem. X1 (resp X2,
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X3) is the value of deviation D1 (resp D2, D3) for solution X, and the same goes for Y . In
the first case (i.e. the figure on the left - Figure 5.1), the value of e is set to 0.3. None of the
solutions observe the DM threshold (i.e. the values of the deviations D2 and D3 are higher
than e). In that case, a minmax is applied and solution Y is chosen. In the second case (the
figure in the middle, Figure 5.1), the value of e is set to 0.8. Solution Y observes the DM
threshold (D1,D2 and D3 values are all below e) contrary to solution X for which the value
of D3 is above e. In this case, solution Y is chosen. In the last case (the figure on the right in
Figure 5.1), the value of e is set to 0.9 and thus both solutions are in the opportunity area. In
that case, the final solution is the one with the minimum deviation over all deviations. This
is solution X.

D1 D2 D3

e
•

•

•

X1

X2

X3

•

•

•

Y1

Y2
Y3

D1 D2 D3

e

•

•

•

X1

X2

X3

•

•

•

Y1

Y2
Y3

D1 D2 D3

e

•

•

•

X1

X2

X3

•

•

•

Y1

Y2
Y3

Figure 5.1: Examples of resolution for OPTR∗
solution method

5.2.2 Hybrid approach

The second proposed approach (noted OPTHY B) is an hybrid one between the Leximin

approach (see definition 1) and the R∗ approach. Indeed, it is a bipolar approach in the sense
that we consider that, as long as the acceptable threshold for environmental equity and social
equity is observed, the DM is satisfied and the main goal is to maximize the profit. On the
contrary, if one or several objectives do not satisfy the acceptable threshold, the DM chooses
a compromise by selecting the solution with the lowest maximum deviation among all criteria,
and applies a Leximin solution method. The formulation of OPTHY B is given as:

OPTHY B(D0, e) =

{

leximino∈|n|Do if ∃ o ∈ O such as Do ≥ e

min D1 otherwise
(5.21)

Here again, we present an example of resolution in Figure 5.2). Let X and Y be two
possible solutions of the multi-objective problem. X1 (resp X2, X3) is the value of deviation
D1 (resp D2, D3) for solution X, and the same goes for Y . In the first case (i.e. the figure
on the left - Figure 5.2), the value of e is set to 0.3. None of the solutions observe the DM
threshold (i.e. the values of the deviations D2 and D3 are higher than e). In that case, a
Leximin solution method is applied and solution Y is chosen. In the second case (the figure
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in the middle, Fugure 5.2), the value of e is set to 0.6. Y2 and Y3 are lower than e, thus
solution Y is considered to be in the opportunity area. As for solution X, it still does not
observe the DM threshold. In that case, solution Y is chosen. In the last case (the figure
on the right in Figure 5.2), the value of e is set to 0.9 and thus both solutions are in the
opportunity area. In that case, the final solution is the one with the maximum profit (i.e.
minimum deviation for D1). This is solution X.

D1 D2 D3

e
•

•

•

X1

X2

X3
•

•

•

Y1

Y2
Y3

D1 D2 D3

e

•

•

•

X1

X2

X3
•

•

•

Y1

Y2
Y3

D1 D2 D3

e

•

•

•

X1

X2

X3
•

•

•

Y1

Y2
Y3

Figure 5.2: Examples of resolution for OPTHY B solution method

This multi-criteria optimization approach makes it possible to define the most important
criterion for the DM (in this case, profit). Then, as long as the other criteria have satisfying
values, the mutli-objective problem becomes a single objective problem with constraints on
the values of the less important criteria. On the contrary, if the secondary criteria do not have
satisfying values, we keep the three dimensional problem and choose a satisfactory compromise
solution for all criteria (primary and secondary).

5.3 Numerical investigation

As mentioned in the introduction, the quantification of the several environmental and so-
cial impacts is a complex process. In this study, we particularly used three types of recog-
nized sources: public databases (www.bilans-ges.ademe.fr, air.plumelabs.com, www.insee.fr,
data.oecd.org, co2.myclimate.org), official reports and cases study of CLSC from the litera-
ture (see Table 2.4). The final data adapted for the numerical study is presented in Table
5.1.

We consider 10 possible locations for each new center. Each new center has three possibil-
ities of capacity sizes (small, medium, or large). We generate 10 different problem instances
based on the presented data in Table 5.1 and the analysis of the results is made on the average
values of 10 instances.

The model is solved with Gurobi 7.5.1 on a Intel(R) Xeon(R) CPU E5-2698 server with
500 Go RAM. Considering the long solution time, we decided to stop the resolution when the

www.bilans-ges.ademe.fr
air.plumelabs.com
www.insee.fr
data.oecd.org
co2.myclimate.org
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Parameter Value Parameter Value
Dl,t U(40,300) EIDisp,loc,cap U(10,50)
Dsmm,t U(32,240) EIRepq,loc,cap U(10,50)
Dsi,t U(24,180) EIRecd,loc,cap U(10,50)
Capcap U(680000,840000) EIDispf,loc,cap U(10,50)
CapP lantj U(400000,480000) TE 0.0148
Distances U(5,1500) PIPHj,c U(2.1,2.3)
Tdismantler U(1,5) PICODIc,p U(0.7,1.3)
Trecycle U(1,5) PIRSMq,m U(0.7,1.1)
Trepair U(1,5) PIRPPq,j U(0.7,1.1)
Cai U(1.1,1.3) PIPSd,i U(0.7,1.1)
Cpj U(2.1,2.4) PIDIRp,q U(0.7,1.1)
Cassj U(0.7,0.9) PIDIREp,d U(0.7,1.1)
Cophc U(0.06,0.09) Ploc (0.2,0.38)
Cdisp U(0.07,0.09) DI U(0.5,0.8)
Crepq U(0.07,0.09) CFhybc,t,loc,cap 50,100,150
Cdecrd U(0.07,0.09) CFDismp,t,loc,cap 50,100,150
Cecoc U(0.2,0.4) CFRecyd,t,loc,cap 50,100,150
TC 0.0120 CFDispf,t,loc,cap 50,100,150
Rt 0.8 CFRepq,t,loc,cap 50,100,150
Re 0.8 FJSt,loc U(15,16)
Rr 0.4 V JSt,loc U(16.5,17.5)
Uloc (0,2) FJCHc,t,loc,cap U(0.2,3)
SPl U(500,900) FJPp,t,loc,cap U(0.2,3)
RSPm U(400,720) FJDd,t,loc,cap U(0.2,3)
Revi U(300,540) FJFf,t,loc,cap U(0.2,3)
Cohybc,loc,cap U(125,170) FJQq,t,loc,cap U(0.2,3)
CoDismp,loc,cap U(30,60) V JCHc,t,loc U(0.04,2)
CoRecyd,loc,cap U(4000,6000) V JPp,t,loc U(0.04,2)
CoDispf,loc,cap U(100,150) V JDd,t,loc U(0.04,2)
CoRepq,loc,cap U(30,60) V JQq,t,loc U(0.04,2)
EIHDCc,loc,cap U(10,50)

Table 5.1: Data for the numerical experiment

reached GAP is equal to 10%. Accounting this accommodation, the average solution time for
obtaining the payoff table values is of 2.5 hours.

5.3.1 Analysis of results and discussion

The results were obtained through the following process / steps :

1. Firstly, the model is solved in a mono-objective mode for each of the three considered
objectives. Each time one objective is optimized, the value of other 2 objectives are
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recorded.

2. The mono-objective resolution is used to build a payoff table presented in Table 5.2
where the Ideal solution is in green coloured font and the Nadir solution is in red
coloured font.

max Z1 min Z2 min Z3

Z1 10 952 201 75 679 380
Z2 90 006 23 092 2 916
Z3 3 464 054 31 650 0

90 006 75 679 2 916

Table 5.2: Payoff table

From these results, we can make the following assumptions:

• The total profit seems negatively correlated with the environmental equity: Indeed, the
more the environmental equity is satisfied, the less the CLSC has opportunities to make
profit.

• The total profit does not seem to be correlated with the social equity: When the profit
is optimal from the economic point of view, social equity has a good score. But if social
equity is optimal, then the total profit is significantly reduced.

• The environmental equity and the social equity do not seem to be correlated: the worst
value for the social equity corresponds to the best value for the environmental equity,
but on the other hand the worst value for the environmental equity allows to have a
good score as regards social equity.

On the basis of the obtained results (Table 5.2), the following values are given to the
deviations D1, D2 and D3:

D1 =
10952201− Z1

10952201− 90006
=

10952201− Z1

10862195

D2 =
23092− Z2

23092− 75679
=

23092− Z2

−52587

D3 =
0− Z3

0− 2916
=
−Z3

−2916

These deviations are used in the computational experiment. Table 5.3 summaries the
results obtained with the developed goal programming approaches. Here again, we used
Gurobi 7.5.1 on a Intel(R) Xeon(R) CPU E5-2698 server with 500 Go RAM to solve the model.
The average solution time for the goal programming methods is of 30 minutes. Column 1
indicates the solution approach. Column 2 gives the values of e when OPTR∗

or OPTHY B
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methods are used. Columns 3 to 5 respectively provide the values for the 3 objectives Z1,
Z2 and Z3. Columns 6 to 8 indicate the values for Do∀o ∈ O i.e., the deviation from the
"utopia" solution for each objective. Finally, Columns 9 to 11 give information about the total
sum of the deviations, including the minimum deviation and the maximum deviation for all
objectives.

Approach e Z1 Z2 Z3 D1 D2 D3
∑

o Do maxo Do mino Do

‖.‖1 - 8 087 811 48936 0 0.26 0.49 0.07 0.957 0.49 0.07
‖.‖∞ - 6 901 363 42703 1087 0.37 0.37
Leximin - 6 900 260 42708 874 0.37 0.37 0.3 1.04 0.37 0.3
OPTR∗

0.4 7 715 718 44126 1166 0.29 0.4 0.4 1.09 0.4 0.29
OPTR∗

0.5 5 423 986 49384 84 0.5 0.5 0 1 0.5 0
OPTR∗

0.6 4 458 632 54687 0 0.59 0.6 0 1.19 0.6 0
OPTHY B 0.3 6 900 260 42708 874 0.37 0.37 0.3 1.04 0.37 0.3
OPTHY B 0.4 7 320 971 44126 1166 0.33 0.4 0.4 1.13 0.4 0.33
OPTHY B 0.5 8 720 668 49385 1456 0.2 0.5 0.5 1.2 0.5 0.2
OPTHY B 0.6 9 788 484 54644 1613 0.1 0.6 0.55 1.25 0.6 0.1

Table 5.3: Results

These results make possible the following observations:

• As expected, Approach ‖.‖1 leads to the minimum total deviation for all objectives. On
the other hand, the maximum deviation value is 0.49 for environmental equity which is
significantly far from the best value obtained with other approaches i.e. 0.3. Thus the
final solution may not be equally satisfactory for all objectives.

• Approach ‖.‖∞ leads both to the smallest highest deviation and to the highest minimum
deviation. This means that the results obtained for all objectives are not very far from
the optimum but not very close at the same time. All objectives are equally satisfactory,
but some opportunities are missed.

• Leximin approach improves the results of ‖.‖∞ approach, particularly on the social
equity. For almost the same profit and almost the same environmental impact as for
‖.‖∞, the social objective is improved by 14%. However, since several different solu-
tions are possible with comparable values of objectives, the DM cannot control her/his
preferences between such solutions.

• OPTR∗
approach provides the possibility to the DM to choose the desired level of

fulfilment for each objective. If this level is met, then it is possible to explore the
opportunities in the solution space. The impact of value of e can be seen in comparison
to the values of Do obtained with other methods. Since the maximum of the minimum
deviations is 0.37, if e is smaller than 0.37, the same solution as with ‖.‖∞ method will be
obtained, since the desired level of fulfillment is not attainable for one of the objectives,
in our case the environmental one. However, if e is higher than 0.37, new opportunities
can be found. For instance, when e is equal to 0.5, the values of environmental and
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economic objectives are slightly worsened in comparison to the ‖.‖∞ solution, but new
opportunities are found on the social aspect as it achieves its optimal value in this case.

However, this method does not allow a choice of which objective function the DM would
prefer in finding new opportunities. Here, we can illustrate this effect by looking at the
results when e = 0.4 and e = 0.5, as opportunities are not found for the same objectives
for the two values. Indeed, when e = 0.4 opportunities are found for objective Z1 and
when e = 0.5 opportunities are found for objective Z3. This lack of control can be fixed
with OPTHY B criterion.

• Indeed, considering the fact that the DM is mostly willing to explore the opportunities
for the economic objective, i.e. the total profit, the OPTHY B approach is designed in
a way to make it possible to choose an acceptable level for the other two objectives
and then maximize the value of the economic objective only. As a consequence, this
method provides the best results for objective Z1. Then, the more the value of e

increases, the more the total profit is improved. When e is equal to 0.6, the total profit
is almost optimal compared to the "Ideal" solution. The hybrid method can be adapted
to prioritize any of the objectives that is the most important for the DM.

To further deepen these observations and provide the DM with practical managerial in-
sights, we analyzed for each solution the number of opened centers (all types included) and
the distribution of the implemented centers over all locations. On the basis of this analysis,
the following additional observations can be made:

The solution showing the highest number of new centers implemented was obtained with
the OPTHY B method and e ≥ 0.5. On the other hand, the solution with the lowest number
of opened centers is that obtained with ‖.‖∞. More generally, to obtain a higher profit it is
necessary to open more centers. Indeed, it seems consistent to expect that if more centers
are opened, the CLSC will be able to collect and reprocess larger quantities of EOL products
for the purpose of recapturing or creating value. Larger quantities of retrieved raw materials
from EOL products reduce the need in raw materials and increase the efficiency of resource
consumption (e.g. metals, ores, copper).

On the contrary, the opening of dismantling, recycling, repair and disposal centers im-
plementations seems to be related to environmental equity. Indeed, in the solution achieving
the highest environmental equity (namely ‖.‖∞, Leximin and OPTHY B when e = 0.3), not
all types of centers are implemented in every location. The most polluted regions are only
provided with HDC centers and other types of centers are implemented in the less polluted
regions. On the contrary, in the solutions with the lowest environmental equity (OPTR∗

when
e = 0.6 and OPTHY B when e = 0.6), all types of centers are implemented in every locations.
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5.4 Conclusion and future research directions

Establishing CLSC is an essential challenge to meet the current need for cleaner production,
waste reduction, cost-savings, profitability, sustainability, reduction in climate change, and
social responsibility. In order to be sustainable, a CLSC must consider at the same time
three dimensions: economy (e.g.profits, waste reduction), environment (e.g. reduced natu-
ral resource consumption and environmental protection) and society (e.g. corporate social
responsibility and fairness and social equity).

In this chapter, we propose several criteria to take into account the DM’s attitude, per-
spective and behavior and compare them through a numerical experiment. The results show
that the use of OPTR∗

criterion makes it possible to better explore the opportunity zone
without losing control over the level of fulfilment of other criteria. OPTHY B criterion can be
further used in order to select a priority objective and maximize the opportunities for this
one while keeping a satisfactory level of fulfilment of the other two objectives.

We also show that the solutions leading to the best profits are the solutions where the DM
makes the decision of opening more centers in the reverse part of the CLSC. In addition, the
solutions leading to the best social equity are the solutions where the centers are distributed
in the different regions regarding the employment rate of each region. Finally, the type of
center implemented in each region has an impact on the environmental equity.

This study reveals many possible future research directions. The main one lies in including
uncertainty in the model as all the information about the parameters to be taken into account
when implementing a new CLSC is not always easily predictable or available.





Conclusion and perspectives

In the current context of climate and environmental crisis (60% decrease in wildlife over
the last 40 years and 90% of land impacted by human activity in 2050 if nothing changes
[GA+18b]), many institutional actors (e.g. G7, European commission, IPCC ...) promote the
development of circular economy. The goal is to reduce the waste accumulated in landfills and
to save raw materials due to the reprocessing of the end-of-life products. New types of produc-
tion chains must be designed in order to be able to implement this new type of organization,
in the form of RSC or CLSC. The design of such systems is complex for many reasons, two
of them were addressed in this thesis [AAVW18]: 1. Many factors of uncertainty are involved
in the decision making process. 2. Several objectives must be considered simultaneously (in
addition to profit maximization) in order to make these systems sustainable.

In the first part of the manuscript (i.e chapter 3 and 4), we focus on the first challenge.
The uncertainty involved in the decision-making when designing RSC or CLSC comes from
various sources (product demand, volume of returns, fractions of parts recovered for the
various product recovery processes, etc.). Mathematical models of decision-making under
uncertainty have already been proposed in the literature but they are most of the time based
on probability distributions about the uncertain parameters (stochastic models). However,
given the relative recentness of the RSC and CLSC in practice, such an approach seems to
be not reliable and compromised. Other existing models often propose a conservative risk
aversion approach (robust models) which only takes into account the worst possible case and
neglects the opportunities present in the others cases. To the best of our knowledge, none
of the existing approaches take into account the psychological fact that a decision maker
subjected to uncertainty does not necessarily make the same decision depending on whether
he considers the uncertainty as a risk or as an opportunity. In this manuscript, we propose to
use two new criteria (namely R∗ and lexiR∗) allowing to take into account the bipolarity of
the behavior of the DM in a context of complete ignorance about the uncertain parameters
of the designed RSC or CLSC. These criteria are based on the concept of uninorms and use
a risk threshold chosen by the DM. Below this threshold, the DM is careful about taken risks
and above this threshold, the DM is open for searching opportunities. We study how such an
approach impacts the design of a CLSC for an OEM where reverse facilities are connected to
an existing forward supply chain gradually over several time periods and the design of a RSC
for a third party logistic company.

We compare R∗ and LexiR∗ criteria with classic criteria from the literature in order to
show their advantages and their ability to help the decision maker better explore opportuni-
ties. In particular, we show that they better explore the opportunities compared to a classic
robust approach, while allowing decision-makers to control the level of risk to be taken. We
propose two methods of implementation for the lexiR∗ criterion, one in the form of an algo-
rithm and the other in the form of a MIP and we analyse the solution times for both methods.
We show that the lexiR∗ algorithm takes a much longer time to solve but allows to find an
exact solution. At the contrary, the lexiR∗ MIP only offers an approximation of the optimal
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solution but in a much shorter time.

In the second part of the manuscript (i.e chapter 5), we focus on the sustainability of
CLSC where three dimensions should be taken into account at the same time: economic (e.g.
benefits), environmental (e.g reduced consumption of natural resources and environmental
protection) and social (e.g. corporate social responsibility). We propose several mathematical
models (namely OPTR∗

and OPTHY B) to take into account the DM’s attitude, perspective
and behavior and compare them through a numerical experiment. Furthermore, we propose a
CLSC design model where equity is considered in both the environmental and social objectives.
The results show that the use of OPTR∗

criterion makes it possible to better explore the
opportunity zone without losing control over the level of fulfilment of other criteria compared
to other classic aggregation functions. Furthermore, we show that OPTHY B criterion can
be used in order to select a priority objective and maximize the opportunities according to
it while keeping a satisfactory level of fulfilment for other two objectives. The results also
show that the solutions leading to the best profits are the solutions where the DM make the
decision of opening more centers in the reverse part of the CLSC.

These studies reveals many possible futures research directions.

First, it will be interesting to generalize R∗ and LexiR∗ criteria to a discrete set of sce-
narios with imprecise probabilities or to a continuous set of scenarios. Indeed, it could allow
the use of the two criteria in cases where uncertain parameters cannot be expressed in the
form of a discrete set of scenarios. Furthermore, the risk threshold e could be represented
by a fuzzy number in order to better explore potential opportunities around the initial value
chosen by the DM and thus allow more flexibility in the decision. Finally, other uninorms
with different properties should be examined and compared to the one studied in our work.
Indeed, numerous uninorms representing a large spectrum of ways to consider the DM be-
havior differently in areas of hazard or opportunity exist and the results returned by such
operators in the context of RSC or CLSC design could provide an interesting analysis of the
relation between different attitudes of DM for RSC or CLSC design decisions.

Another important research path is to generalize R∗ and LexiR∗ criteria to the design
model for sustainable CLSC. In addition, the social dimension could be completed by in-
tegrating other aspects besides job creation (e.g. regional development, health, customer
satisfaction, etc). Furthermore, the objectives of minimizing the negative environmental im-
pact and maximizing the positive social impact could be analyzed in the same model in
parallel with environmental and social equity in order to evaluate the price of equity. Finally,
a study of the distribution of the solutions found with the different MDM approaches on the
Pareto front could be carried out. Such an investigation would allow to visualize which parts
of the Pareto front are explored by the different criteria.
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Résumé — Afin de répondre aux enjeux environnementaux, économiques et sociaux actuels, de nom-

breux acteurs institutionnels encouragent la conception de Chaînes Logistiques Inverses (CLI). Celles-ci per-

mettent notamment de minimiser les quantités de déchets produites et de réaliser des économies de matières

premières. Deux difficultés principales apparaissent lors de la conception de tels systèmes. Le premier est

la présence de nombreux facteurs d’incertitude lors de la prise de décision. Le deuxième concerne la prise

en compte simultanée d’objectifs à la fois économiques, environnementaux et sociaux dans le but de perme-

ttre la durabilité de la CLI créée. Dans ce contexte, nous développons dans un premier temps des outils

méthodologiques basés sur des nouveaux modèles de prise en compte de l’incertitude. Nous proposons en

particulier deux critères (R∗ et LexiR∗) qui permettent de différencier des zones de risque et d’opportunité où

l’attitude du décideur ne sera pas considérée de la même manière. Nous comparons ces nouveaux critères avec

des critères classiques de la littérature dans des expérimentations numériques approfondies et nous montrons

qu’ils permettent d’explorer de nouvelles opportunités, tout en gardant le contrôle sur le niveau de risque

pris. Dans un second temps, nous proposons de nouveaux modèles d’optimisation multi-objectifs prenant en

compte les trois objectifs du développement durable simultanément. Nous mettons en évidence l’existence de

nombreuses solutions de compromis, permettant au décideur de choisir la solution qui lui est le plus adapté en

fonction de ses priorités. Enfin, nous réalisons une étude du concept d’équité sociale et environnementale lors

du choix entre différents lieux d’implantation de la CLI.

Mots clés : Logistique Inverse, Optimisation sous incertitude, Optimisation multi-objectifs

Abstract — In order to respond to current environmental, economic and social challenges, many institu-

tional actors promote the design of Reverse Supply Chains (RSC). These ones particularly allow to minimize

waste and maximize savings in raw materials. Two main difficulties appear when designing such systems. The

first one is the presence of many factors of uncertainty in the decision making process. The second one is the

simultaneous consideration of economic, environmental and social objectives in order to enable the sustain-

ability of the created RSC. In this context, firstly, we provide methodological tools based on new models for

taking into account uncertainty. We particularly propose two criteria (R∗ and LexiR∗) which make it possible

to differentiate areas of risk and opportunity where the attitude of the decision-maker will not be considered

in the same way. We compare these new criteria with classic criteria from the literature through extended

numerical experiments and we show that they make it possible to explore new opportunities, while keeping

control over the level of taken risk. Secondly, we propose new multi-objectives optimization models taking into

account the three objectives of sustainable development simultaneously. We highlight the existence of many

compromise solutions, allowing the decision-maker to choose the solution that is the most suitable for him/her

according to his/her priorities. Finally, we propose a study of the concept of social and environmental equity

between different locations where the RSC is implemented.

Keywords: Reverse Logistics, Optimization under uncertainty, Multi-objectives optimization
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