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Glossary

Aircraft Any flying vehicle such as: airplane, helicopter or drone that accomplishes a mis-
sion.

Availability Indicates the number of aircraft in a fleet that are not in maintenance in each
time period.

Candidate Aircraft that has the correct type and capabilities and so can be assigned to a
particular mission.

Capabilities Set of optional aircraft characteristics that may be required by a mission in
order for aircraft to be considered candidates. An aircraft can have none or more
capabilities, a mission can have at most one.

Check A preventive maintenance operation done to an aircraft to detect and repair any
problem that may cause a malfunction on the unit. Several types of checks exist,
varying in the duration, thoroughness, frequency and parts to be maintained.

Cluster A set of missions such that each mission has exactly the same type, capabilities and,
as a result, aircraft candidates.

Fleet A set of aircraft that shares the same maintenance resources.

Flight potential Synonym to “Remaining flight time”.

Maintenance capacity The maximum number of aircraft that can be in maintenance at
each time period.

Minimum default usage Flight hours each aircraft is required to fly when not assigned to
a mission or in maintenance..

Mission A set of flights with a military objective such as training, reconnaissance, humani-
tarian or defense. They are planned usually months in advance and require a number of
aircraft with specific characteristics. A mission can last a few weeks to several months
or years.

Mission assignment The deployment of an aircraft to a mission during a set of consecutive
periods. This deployment can have a length smaller or equal to the length of the mission.
Each mission has limits on how short or long the deployment can be.

Remaining calendar time Expresses the maximum number of periods, starting at the end
of each time period, before an aircraft must undergo a check.

Remaining flight time Measures the maximum number of hours an aircraft can fly before
requiring a check, at the end of each time period.

xiii



xiv Glossary

Serviceability Indicates if an aircraft is capable at the beginning of each time period to
perform a mission (i.e., is not undergoing a check).

Special mission Mission that has a capability (around 10% of missions).

Sustainability Measures the capacity of an aircraft to continue doing missions in the future
(i.e., remaining flight time).

Type of mission and aircraft Each mission and each aircraft have one and only one type.
Only aircraft with the same type as the mission can be considered candidates.
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Introduction

Contexte industriel

Qu’il s’agisse d’une maison, d’une voiture ou d’une centrale nucléaire, la maintenance est un
élément clé lors de la construction ou de I'achat d’un actif. Par exemple, les coiits annuels
d’entretien d’une maison peuvent étre égaux a 1 a 4 % du prix d’achat [6]. Ce coiit représente
le prix a payer pour conserver l'actif acquis dans des conditions d’opération normales et
prolonger sa durée de vie aussi longtemps que cela est économiquement viable.

En ce qui concerne des caractéristiques des maintenances : coiit élevé, opacité et impor-
tance; 'entretien des aéronefs militaires n’échappe pas a la regle. Par exemple, en prenant
le coiit : linvestissement en maintenance du département de la Défense des Etats-Unis en
2019 est d’environ 78 milliards de dollars [8]. De plus, c’est souvent le méme fournisseur qui
approvisionne les actifs, I'infrastructure et leur entretien. Cela ne fait qu’augmenter I’'opacité
intrinseque des projets militaires. Enfin, 'importance de garantir le bon fonctionnement d’un
appareil chargé de la sécurité d’un pays ne peut étre sous-estimée.

Sur le plan technique, la maintenance des aéronefs militaires est similaire a celle de
I'industrie civile : Il existe plusieurs types de controles effectués sur les aéronefs, bien que la
nomenclature, les fréquences et les parties prenantes changent. En France, c’est la “Direction
de la Maintenance Aéronautique (DMA¢)” récemment créée (2018) qui est chargée de planifier
et d’organiser les contrdles des avions militaires. Les types des opérations de maintenance
pour la flotte de Mirage 2000 sont : (1) la visite de graissage (VG), réalisée tous les 6 a 8
mois calendaires; (2) la visite intermédiaire (VI), réalisée tous les 14 & 16 mois calendaires;
(3) la visite de sécurité (VS), réalisée toutes les 300 & 600 heures de vol; et (4) la grande visite
(VX), réalisée toutes les 1000 a 1200 heures de vol ou tous les 60 mois.

Les trois premiers types de maintenance sont effectués dans la base aérienne ou se situe
lavion. Les grandes visites (VX) se font a I’Atelier Industriel de 1’Aéronautique (AIA), situé
dans la région de Clermont-Ferrand (voir Figure 1).

Etant donné le coiit élevé des ressources nécessaires pour effectuer les taches de mainte-
nances et la spécialisation de ’expertise requise, I'offre est généralement limitée et peu flexible.
Par conséquent, un plan de maintenance qui ne cherche pas a profiter de cette capacité de
maniere optimale peut entrainer un grand nombre d’aéronefs immobilisés au sol en attente
d’une maintenance a certaines périodes. Ce méme plan aura, a d’autres périodes, une partie
de la capacité de maintenance inutilisée. Cette indisponibilité réduit le potentiel réel de la
flotte et demande donc d’avoir un nombre d’avions plus élevé pour satisfaire les contraintes
opérationnelles. Il est donc primordial de disposer des outils de planification performants afin
d’améliorer la disponibilité de la flotte et de réduire son cotit opératif total.

XV
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Figure 1: Une photo de l'atelier ATA de maintenance a Clermont-Ferrand ot la maintenances
de type VX est effectuée pour le Mirage 2000[1].

Le cotit réel d’un plan de maintenance dépend du nombre de maintenances nécessaires
pour respecter toutes les exigences de la mission. Bien que les coflits de ces visites ne soient
pas publics dans le cas des avions militaires, les cofits réels des visites de type D (équivalents
aux visites VX) des avions Boeing varient entre 1 million de dollars et 6 millions de dollars
selon le modele d’avion [3]. En France, le colit total annuel de la maintenance des avions
militaires est passé de 3,2 milliards d’euros en 2012 & 4 milliards d’euros en 2017 [113]. Un
plan de maintenance efficace devrait minimiser le nombre d’heures de vol restantes qui sont
“perdues” lorsque la maintenance est effectuée et que le potentiel de vol est rétabli. Ainsi, ce
plan utilisera chaque avion autant que possible avant de programmer une maintenance.

Actuellement, la planification des maintenances militaires se fait généralement manuelle-
ment (dans une feuille de calcul Excel) et prend du temps. Cela limite le nombre de scénarios
qui peuvent étre évalués avant de prendre une décision et augmente le temps de réaction lors
du traitement de nouvelles informations qui demandent de modifier le plan d’origine. Par
conséquent, ce processus de planification manque de robustesse et de flexibilité.

Ainsi, le besoin d’une planification efficace et fiable des vols et de la maintenance des avions
est clairement une priorité tant dans les contextes commerciaux que militaires. Néanmoins,
produire un plan aussi détaillé pour une flotte de taille importante, tout en planifiant sur un
long horizon et en tenant compte des multiples objectifs inhérents a la planification a long
terme n’est pas une tache facile.

Les techniques de recherche opérationnelle sont employées pour résoudre des problemes
combinatoires tels que le “Military Flight and Maintenance Planning” (MFMP) afin de pro-
duire des solutions de trés bonne qualité (voire optimales). Le succes de 'application de telles
techniques a un nouveau probleme nécessite la combinaison d’une expertise du domaine et
d’une connaissance théorique avancée. Cette derniere ne peut étre obtenue qu’en réalisant une
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étude approfondie de la structure du probleme mathématique sous-jacent et en recherchant
des approches de solutions innovantes compatibles avec le probleme. Cette theése fournit une
telle analyse.

Présentation du probléme

Le probleme MFMP décide de I'affectation d’une flotte hétérogene d’avions militaires i € Z a
un ensemble de missions j € J déja planifiées tout en décidant des opérations de maintenances
nécessaires pour chaque aéronef. Les contraintes peuvent étre classifiées en trois groupes: (1)
les besoins des missions, (2) les maintenances a effectuer pour maintenir la flotte en bon état
et (3) la capacité de la flotte a chaque période.

Un ensemble des missions existe tout au long d’un horizon divisé en périodes t € T.
Chaque mission j nécessite un nombre minimum d’aéronefs R; parmi les aéronefs “compati-
bles” i € Z; (i.e., aéronefs possédant les caractéristiques requises pour cette mission). Chaque
aéronef affecté a une mission j vole un nombre d’heures H; a chaque période pendant laquelle
il est affecté et doit rester affecté a cette mission pendant au moins M T]mm et au plus M T
périodes consécutives.

Chaque maintenance a une durée fixe de M périodes et ne peut pas étre interrompu:
pendant ce temps, l’avion ne peut étre affecté a aucune mission. La butée calendaire (rct) est
définie comme le nombre maximal de périodes apres une maintenance pendant lequel un avion
peut voler si les autres contraintes sont respectées. Méme si un avion n’a pas volé depuis sa
derniere maintenance, il devra subir une maintenance & la fin de sa butée calendaire. La butée
horaire (rft) est définie comme le nombre maximal d’heures de vol qu'un aéronef peut effectuer
avant avoir besoin d’une maintenance. La rct (rft) avant la premiere période de I’horizon de
planification pour 'avion i est Rcti["“ (Rcti["“). Apreés une visite, un avion récupere sa rct
(rft) & sa valeur maximal de E™%* (H™%). De plus, apres chaque visite, I’avion ne peut pas
rentrer en maintenance pendant au moins E™" périodes. Le nombre total de maintenances
simultanées & chaque période ne peut pas dépasser la capacité de 'atelier C™4%,

Nous appelons un avion “disponible” s’il peut étre utilisé en mission au début d’une période
donnée, i.e. I'avion n’est pas en maintenance. La “durabilité” d’un avion est défini comme le
nombre total d’heures de vol lui restantes a la fin de chaque période. Pour garantir a la fois
la durabilité et la disponibilité de la flotte a chaque période, les missions sont regroupées en
clusters. Formellement, un cluster est un ensemble de missions telles que toutes les missions
partagent le méme type, les mémes capacités et, par conséquence, les mémes avions candidats.
Pour chaque cluster, un nombre minimal d’aéronefs disponibles (A{'“s!) et une durabilité
minimale (H Igl““) sont définis comme contraintes pour chaque période. Tous les aéronefs
disponibles ont par défaut une consommation minimale & chaque période égale & U™™ heures
de vol, qu’ils sont obligés d’effectuer des qu’ils ne sont pas affectés & une mission ou a une
maintenance.

Comme cela a été mentionné, un des objectifs du plan de maintenance est de minimiser
les heures de vol perdues en programmant les maintenances vers la fin des butées calendaires.
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Un objectif complémentaire est d’équilibrer la charge de vol entre les avions de la flotte afin
que les fréquences des maintenances des avions soient similaires.

Etat de ’art

Dans la littérature, le probleme de planification de vol et de maintenance pour des avions
militaires est appelé “Military Flight and Maintenance Planning problem” ou MFMP, une
variante du probleme “Flight and Maintenance Planning” ou FMP. Le MFMP fut présenté
dans un premier temps par [153], puis de nombreuses contributions dans ce domaine ont été
réalisées [98, 48, 174, 108, 154, 116, 55, 152].

Ces travaux peuvent étre classifiés selon la taille de I'horizon de planification en trois
groupes: court, moyen et long terme. Les problemes de court terme planifient une année
maximum et divisent I’horizon en périodes d’un jour ou une demi journée [116, 48, 146].
Ceux de moyen terme construisent des plannings d’entre 6 mois et 2 années dont chaque
période a un taille hebdomadaire ou mensuelle [152, 174, 98, 85, 136]. Les maintenances sont
ordonnées toutes les 200 a 400 heures de vol, ce qui correspond a des types B et C. Finalement,
dans le long terme les tailles d’horizon varient entre 5 et 10 ans et les périodes sont mensuelles
[55]. Les maintenances concernées sont celles de type D, qui souvent prennent plusieurs mois
et dont la fréquence oscille entre 1000 et 1200 heures de vol ou 60 mois calendaires.

Le MFMP ressemble au probleme de FMP civil, ou 'on doit planifier les opérations de
maintenance des avions civils en méme temps que ’on choisit les affectations de plan de
vols. Ce deuxiéme probléme est plus présent dans la littérature [26, 161, 124, 150, 95, 148].
Cependant, les deux problémes rencontrent des différences importantes. Par exemple, les
avions militaires retournent a leur base apreés chaque mission contrairement aux avions civils
qui effectuent des rotations. Les objectifs son aussi différents: le probléeme militaire maximise
la disponibilité de la flotte et le probleme civil cherche la réduction des cofits.

Bien qu’étant un probleme lié a l’aviation, le MFMP a des similitudes avec d’autres
problemes d’optimisation de maintenances traités par des méthodes de recherche opéra-
tionnelle comme pour les chemins de fer : “rolling stock assignment and maintenance plan”
[61, 102, 109]. Nous pouvons aussi remarquer une certaine proximité entre le probléme que
nous étudions et le probléeme d’emploi du temps des infirmiéres (Nurse Rostering Problem,
NRP) ot 'on doit choisir les créneaux de travail pour chaque employé et chaque jour. D’autres
travaux sur le sujet de 'ordonnancement du personnel ont été réalisés par [38, 39, 45, 156].

La méthodologie la plus utilisée dans la littérature pour résoudre le MEMP est la Pro-
grammation Linéaire aux Nombres Entiers (PLNE) en combinaison avec des heuristiques
permettant de trouver des solutions optimales ou presque optimales. Des exemples de ces
heuristiques sont la fixation de variables ([55]) et la décomposition du probléme en plusieurs
sous-problémes par rapport a la flotte [116]. Une alternative a la PLNE, fréquemment util-
isée actuellement, est la Programmation Par Contraintes (PPC) [138], elle a été notamment
employée dans le contexte du concours Optiplan pour optimiser les maintenances de la flotte
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de Mirage 2000 de I’Armée de I’Air en France en 2018 [9].

Pour le probleme FMP, plusieurs formulation et approches de résolution existent dans la
littérature: Génération de Colonnes (CG), formulations de flux, et formulations de réseau
temps-espace. Les techniques de résolution utilisées sont des modeles PLNE [150, 95, 148],
PPC [83, 74] et des heuristiques [124].

Dans le cas de CG, le temps de résolution du sous-probléeme et particulierement impor-
tant. En conséquence, des algorithmes de Programmation Dynamique (DP) sont appliqués.
Quelques exemples sont le probleme du Plus Court Chemin (SPP) [24, 27] et le Plus Court
Chemin avec contraintes de ressources (SPPRC) [150, 148]. Ces techniques sont aussi utiles
pour résoudre des voisinages dans de Recherche a Voisinage tres Large (VLNS) [17].

Une des faiblesses des modeles exacts comme la PLNE est I'impossibilité de passer a
I’échelle pour résoudre des trés grandes instances du probléme combinatoire traité. Ces
derniéres années, des contributions de 1’Apprentissage Automatique (ML) & loptimisation
combinatoire permettent d’obtenir des informations sur les solutions optimales ou quasi-
optimales Bello et al. [28], Bengio et al. [29]. Cette information peut étre utilisée pour réduire
la taille du probléme de base, en rendant possible une résolution exacte [104, 179, 111].

L’objectif de cette thése est de réaliser une étude approfondie de la structure du prob-
léme mathématique lié a la planification de maintenances d’avions militaires dans le contexte
frangais et de développer des approches innovantes pour le résoudre et aider les décideurs.
Cette étude commence par l'analyse de la complexité du probleme étudié et 1’élaboration de
méthodes exactes de résolution.

Analyse de la complexité et méthodes exactes

Ce chapitre analyse la complexité du probleme MFMP, propose une formulation mathéma-
tique pour le résoudre de fagon exacte et présente une heuristique pour trouver des solutions
initiales. Finalement, le modele résultant et I'heuristique sont évalués avec des instances
générées avec un simulateur d’instances compatible avec les besoins de I’Armée de 1’Air
francaise.

Analyse de la complexité

Nous partons du fait que le FMP existe dans NP parce que nous pouvons vérifier en temps
polynomial si une solution est réalisable ou pas. Il reste a déterminer si le probleme FMP
se trouve dans P ou dans NP — Dif ficile. Pour arriver a ce résultat, nous avons fait la
réduction suivante.

Tout d’abord nous, prenons un probléme déja démontré NP — Dif ficile, que nous ap-
pelons le “Shift Satisfaction Personnel Task Scheduling Problem” ou SSPTSP, présenté par
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Arkin and Silverberg [20]. Deuxiémement, nous simplifions notre probleme MFMP & un cas
particulier ot nous n’avons pas de décisions de maintenance ni de fonction objectif. Nous ap-
pelons ce probleme simplifié le “Reduced Flight Planning Problem” ou RFPP. Troisiemement,
nous démontrons que n’importe quelle instance du probleme SSPTSP peut étre transformée
de facon polynomial & une instance du probleme RFPP.

Cette transformation consiste a faire une équivalence directe entre les taches du probleme
SSPTSP et les missions du probleme RFPP et la compatibilité tache-ressource devient la
compatibilité mission-avion. Ainsi nous démontrons que si le probleme SSPTSP est NP —
Dif ficile, le probleme RFPP T’est aussi et si le probleme RFPP l’est, notre probléeme de
base MFMP l’est aussi. Apres cette conclusion, nous développons un modele PLNE pour ce
probleme afin d’étudier sa résolution exacte en pratique et les difficultés a passer a 1’échelle
lors de la résolution des instances de taille réelle.

Meéthodes exactes

Dans notre formulation du modele PLNE, nous utilisons les variables de décision suivantes :
aij¢ qui vaut 1 si 'avion i est affecté a la mission j a la période t et m;; qui vaut 1 si Iavion
1 commence une opération de maintenance au début de la période t.

Ce premier modele est développé pour deux objectifs : d’une part, pour maximiser la
disponibilité de la flotte en minimisant le nombre total de maintenances, d’autre part, pour
maximiser le potentiel en nombre d’heures de vol (durabilité) de la flotte a la fin de I’horizon
de planification.

Nous intégrons dans ce modele des nouvelles contraintes qui n’avaient pas été utilisées
dans la littérature du probleme MFMP : les contraintes des butées calendaires pour les main-
tenances et les durées minimales d’affectation pour les missions.

Heuristique pour construire des solutions initiales

Une métaheuristique constructive de type recuit simulé est implémenté pour générer rapide-
ment des solutions réalisables ou presque réalisables. L’objectif est de fournir ces solutions
au modele PLNE pour ainsi faire un démarrage a chaud et améliorer la performance de ce
dernier. A chaque itération, I’heuristique décide, dans un premier temps, les maintenances
des avions en fonction du besoin et, ensuite, elle réalise toutes les affectations possibles aux
missions en considérant les limites imposées par les maintenances déja décidées.

Toutes les affectations aux maintenances et missions se font de fagon aléatoire. A la fin
de chaque itération, un morceau de la solution et libéré. Ce morceau peut consister en (1)
toute 'information pour un avion, (2) une fenétre de temps pour un ensemble d’avions, ou (3)
une maintenance qui peut changer de position. La condition d’arrét est un temps maximal
d’exécution ou le fait de trouver une solution réalisable.
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Simulation des instances de taille réelle

Une instance comprend un ensemble de données d’entrée suffisant pour décrire completement
un cas particulier d’'un probleme MFMP. Il s’agit, entre autres, de toute 'information des
missions a réaliser, du nombre et toute l'information des avions, des caractéristiques des
opérations de maintenances a réaliser et de ’horizon de planification.

Pour pouvoir comparer et valider la performance des différentes techniques de résolution
de facon objective, un simulateur d’instances est créé. Ce simulateur prend comme entrée des
parametres qui conditionnent la taille et la difficulté d’une instance a résoudre et retourne
des instances aléatoirement générées en fonction des parametres spécifiés.

Les sources de diversification utilisées pour générer les instances différentes sont, pour les
avions : I’état initial et capacité ; et pour les missions : la durée, les heures de vol par période,
les avions requis, les capacités requises et la durée minimale et maximale d’affectation.

Expérimentation et résultats

Plusieurs expériences sont effectuées pour évaluer les performances du modele PLNE en fonc-
tion de la taille des instances et de leurs configurations, ainsi que l'impact des solutions
initiales obtenues par ’heuristique sur la performance du modeéle.

Concernant la sensibilité du modele par rapport a la taille des instances, la performance
diminue avec la longueur de I’horizon |T| et avec la taille de la flotte |Z|. D’un autre coté,
les changements en la consommation minimale d’heures de vol (U™"), la quantité minimale
d’heures de vol pour chaque cluster (HPX ) et la fréquence des maintenances en heures de vol
(H™*) sont les parametres dont les changements ont le plus d’impact sur la performance du
modele.

Finalement, les solutions fournies par ’heuristique améliorent, en moyenne, la performance
du modele, méme si cet impact reste modeste.

Nouveau modele, bornes valides et bornes apprises pour le
MFMP

Dans ce chapitre, nous proposons un approche basé sur un nouveau modele PLNE auquel nous
appliquons plusieurs types de coupes. D’une part, des coupes valides a partir des conditions
initiales et, de 'autre, des coupes apprises a partir des prédictions des caractéristiques de la
solution optimale ou quasi optimales. Ces prédictions sont obtenues en entrainant un modele
d’apprentissage automatique sur les données d’entrée et les résultats de 5000 instances.

Cette approche permet de réduire le temps de résolution avec peu de pertes d’optimalité
et de faisabilité par rapport aux méthodes matheuristiques alternatives. Les résultats expéri-
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mentaux obtenus montrent I'intérét d’une nouvelle fagon d’ajouter des coupes apprises aux
problemes en fonction de la prédiction des caractéristiques spécifiques des solutions.

Nouvelle formulation PLNE

Une nouvelle formulation PLNE est concue, ou les affectations des missions sont énumérées
explicitement ainsi que toutes les possibilités d’affectations des maintenances. Tandis que
cette formulation géneére un grand nombre de variables, elle fournit une meilleure relaxation
linéaire que la formulation initiale. Ces propriétés vont nous permettre d’implémenter des
coupes agressives et efficaces.

Les variables principales de décision sont : a;j qui vaut 1 si 'avion i est affecté a la
mission j entre les périodes t et t'; et myy qui vaut 1 si I'avion 7 commence sa premiere
maintenance au début de la période t et commence sa deuxieme maintenance au début de la
période t'.

Etudes de bornes valides

Plusieurs bornes ont été formulées et calculées pour contraindre le nombre total des main-
tenances et des missions dans une flotte d’avions. Ces bornes s’appliquent au niveau d’un
avion individuel, d’un ensemble d’avions similaires et de la flotte entiere. Ces bornes sont
construites sur les variables de décision d’affectation des missions (a;j1/) et des maintenances
(mitt’).

Par exemple, dans le cas d’un avion, nous pouvons calculer les missions qui peuvent étre
affectées a un avion au début de I’horizon en fonction de son état initial : plus la butée
horaire de I'avion est élevée au début de I'horizon, plus il pourra voler, et par conséquent,
plus il pourra étre affecté & des missions. Autrement dit, avant que ’avion ¢ puisse réaliser
sa premiere maintenance, les heures de vol des affectations aux missions ne peuvent pas étre
supérieures a sa butée horaire initiale.

En méme temps, des affectations proches du début de I’horizon peuvent étre directement
éliminées si les heures de vol demandées par ces affectations dépassent la butée horaire initiale
de I'avion.

Apprentissage des solutions optimales

Notre approche consiste a générer et résoudre un grand nombre de petites instances (5000) du
probleme MFMP. Des algorithmes d’apprentissage supervisé (régressions linéaires en quan-
tiles) sont appliqués sur I’ensemble de solutions optimales (ou proche de I'optimum) obtenues
en tenant compte de leur caractéristiques, pour construire une prédiction de certaines pro-
priétés des solutions en fonction des données d’entrée.
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Les données d’entrée validées comme statistiquement pertinentes dans cette prédiction
sont : la somme totale d’heures de vol des missions, la somme des états initiaux des avions,
la variance de la demande d’heures de vol entre les périodes, entre autres. En sortie, la
durée moyenne entre les deux maintenances et le nombre total de maintenances dans une
planification sont les deux caractéristiques les plus utiles. Pour chacune des deux, nous
estimons une borne inférieure et une borne supérieure.

Pour chaque nouvelle instance, nous appliquons le modele de prédiction entrainé pour
obtenir quatre bornes (ou coupes) pour la solution optimale (bornes maximales et minimales
pour chacune de deux caractéristiques de la solution). Ces bornes ne sont pas des bornes
valides : leur application peut théoriquement invalider une solution optimale qui ne fera
plus partie de ce nouvel espace de solutions réduit. Cependant, la probabilité de garder une
solution optimale ou proche de 'optimale est élevée et dépend de la qualité de la prédiction.

Expérimentation et résultats

Nous avons conduit des expériences numériques afin d’évaluer la performance de notre ap-
proche, les pertes d’optimalité et les pertes de faisabilité. Les méthodes comparés sont (1)
les deux modeles PLNE du Chapitre 3 et Chapitre 4; (2) plusieurs variantes des coupes ap-
prises appliquées a chacun de ces deux modeles; (3) des matheurisitiques plus traditionnelles
implémentées a partir du modele PLNE du Chapitre 4. Les criteres de comparaison sont :
la faisabilité, optimalité et la performance. Les modeéles du groupe (1) sont utilisés comme
référence.

Concernant la perte de faisabilité, les modeles du groupe (2) se trouvent beaucoup plus
proches des modeles exactes (1) que ceux du groupe (3), ou la quantité des solutions non
réalisables et des violations des contraintes souples augment significativement. Les modeles
avec les coupes apprises n’ont presque pas de solution irréalisable additionnelle et un nombre
tres bas de contraintes souples violées.

Concernant la perte d’optimalité, les modeéles du groupe (2) ont des pertes médianes
d’optimalité de 3.5% et généralement de moins de 5%.

Finalement, les approches des groupes (2) et (3) offrent des gains importants en temps de
calcul : le temps de résolution est réduit considérablement pour ’ensemble d’instances ainsi
que ’écart d’optimalité.

Ces résultats montrent donc les avantages de 'utilisation de ce type de coupes apprises
pour obtenir des meilleures performances sans pour autant perdre des solutions optimales.
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Matheuristique de descente a voisinage variable basée sur des
graphes

Tant les travaux précédents que I'analyse de la littérature du probleme de FMP indiquent
que les instances de ce probléme sont souvent suffisamment grandes pour que les méthodes
standards de résolution ont des difficultés pour passer a 1’échelle. Dans ces cas, un compromis
entre la qualité de la solution obtenue et les ressources nécessaires (dont le temps de résolution)
pour 'atteindre doit étre fait. Un exemple de ce compromis est 1'utilisation de techniques
d’apprentissage détaillées dans le Chapitre 4. Une alternative plus traditionnellement em-
ployée dans le domaine de la recherche opérationnelle est I'utilisation des métaheuristiques
ol, pour un probléme donné, on cong¢oit un algorithme qui parcourt I'espace des solutions en
suivant un paradigme de résolution existant dans la littérature. Les paradigmes métaheuris-
tiques les plus connus sont le recuit simulé, I’algorithme génétique et ’algorithme de colonies
de fourmis.

Nous proposons une métaheuristique appelée Descente & Voisinage Variable (VND) basée
sur deux voisinages différents et complémentaires : un horizon roulant et un algorithme
dynamique. Ce dernier s’appuie sur la représentation de I’espace des solutions comme un
ensemble de graphes.

Représentation en graphes

Chaque graphe représente toutes les possibilités d’états et d’affectations de missions et de
maintenances a un avion pendant tout I’horizon de planification. Cette représentation en tant
que graphe permet 'utilisation des algorithmes efficaces pour ’échantillonnage de chemins et
pour l'obtention du plus court chemin entre deux nocuds. Nous nommons pattern un choix
de chemin pour chaque avion.

Malheureusement, la taille de ces graphes augmente de fagon exponentielle en fonction
de la taille de I'horizon et ils doivent étre réduits avec des méthodes d’approximation pour
obtenir des graphes qui puissent étre stockés en mémoire.

Voisinages

Deux types de voisinage sont envisagés. Le premier exploite le graphe existant d’un avion
pour changer toutes ses affectations en résolvant un SPP entre le nceud du début et le noeud de
la fin de I’horizon de planification. Les poids donnés au graphe a chaque itération dépendent
de I’état actuel de la solution de facon a ce que la solution optimale du SPP corresponde au
voisinage optimal de la solution. Nous ’appelons “SPA”.

Le deuxieme, appelé “RH”, consiste a appliquer un voisinage RH construit sur le modele
PLNE du Chapitre 4. Le probleme initial est résolu en fixant a tour de roéle toutes les
affectations qui n’appartiennent pas a la fenétre définie par un ensemble d’avions et périodes.
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L’utilisation de ce voisinage permet d’améliorer significativement la qualité de la solution
pour certaines instances, mais au prix d’une résolution plus longue.

Solution initiale

Une solution initiale est construite avec trois méthodes : (1) le voisinage “SPA” exécuté une
fois pour chaque avion ; (2) lalgorithme “maintFirst” ; (3) le modeéle PLNE du Chapitre 4,
qui corresponde au voisinage “RH” avec une fenétre de taille |Z| x |T.

Expérimentation et résultats

Nous comparons nos approches selon les criteres suivants : la qualité de voisinages, la qualité
de la solution initiale, la performance en temps de résolution et ’écart d’optimalité.

La combinaison des voisinages “SPA” et “RH” se montre tres efficace quand elle est com-
parée avec la performance de chaque voisinage indépendant. Cette synergie est liée a la
nature différente et complémentaire de chaque voisinage et valide le choix du schéma de la
métaheuristique.

Finalement, la performance de la métaheuristique est comparée avec celle du modele PLNE
pour des instances de grande taille. Les résultats permettent de voir des gains importants en
temps de résolution et qualité des solutions démontrant ainsi le grand potentiel des techniques
de ce type.

Conclusions et perspectives

Cette these étudie le probleme de la planification de vols et de maintenance des avions mili-
taires (MFMP) et propose plusieurs nouvelles méthodes pour le résoudre efficacement. Nous
avons élaboré la premiere formulation du probleme dans le contexte frangais avec des con-
traintes et objectifs inédits, jamais considérés dans la littérature. Nous avons étudié la com-
plexité de ce nouveau probléme d’optimisation en le reliant au probleme de la planification
des emplois du temps du personnel (NRP).

La premiere méthode de résolution que nous avons développée pour ce nouveau probléme
est basée sur un modele PLNE. Ainsi les instances de petite et moyenne taille peuvent étre
résolues & l'optimalité et des solutions de bonne qualité sont fournies pour les instances de
grande taille. Nous avons conduit 'analyse de sensibilité pour ce modele afin de déterminer
quels étaient les parametres qui impactaient le plus d’efficacité de la résolution. Pour améliorer
la performance du solveur PLNE, nous avons élaboré et implémenté une métaheuristique de
recuit simulé qui fournit des solutions initiales. Les tests numériques ont démontré 1'utilité
de 'application des ces méthodes approchées pour diminuer le temps de résolution.



xXxVvi Résumé de la thése

La deuxieme méthode de résolution est basée sur un modele PLNE différent pour lequel
nous avons développée des coupes valides efficaces et une heuristique basée sur I'apprentissage
automatique (ML) afin de générer des coupes “apprises”. L’apprentissage est réalisé sur des
milliers d’instances de petite taille pour trouver des relations entre les caractéristiques des
données d’entrée et les caractéristiques spécifiques des solutions optimales. L’heuristique
utilise les informations apprises pour appliquer des coupes non valides a 1’espace de solutions,
en réduisant considérablement la taille du probléme sans pour autant exclure des solutions
de bonne qualité. Les tests numériques ont montré des améliorations considérables des per-
formances de résolution. Ce travail est 'un des premiers dans le domaine a combiner avec
succes des techniques d’apprentissage supervisé pour prédire les caractéristiques de solutions
optimales lors de la résolution d’un modele PLNE.

Enfin, une méthode de résolution alternative que nous avons développée pour le traitement
efficace des instances de tres grande taille est une matheuristique basée sur la combinaison
d’une technique de résolution de type horizon roulant (RH) et d’un algorithme de program-
mation dynamique (DP) avec une descente a voisinage variable (VND). Cette approche per-
met de générer de bons patterns pour chaque avion en résolvant un probleme du plus court
chemin. La combinaison de partitions basées sur le temps (RH) et de partitions basées sur
les avions (DP) s’avere particulierement efficace pour éviter les minimum locaux et atteindre
des solutions quasi optimales en temps de résolution trés court.

Les contributions de cette these ont donné lieu aux publications suivantes:

F. Peschiera, O. Battaia, A. Hait, and N. Dupin. Bi-objective mip formulation for the
optimization of maintenance planning on french military aircraft operations. 2018. URL
http://oatao.univ-toulouse.fr/20766/

e F. Peschiera, R. Dell, J. Royset, A. Hait, N. Dupin, and O. Battaia. A novel solution
approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem.
OR Spectrum, pages 1-30, jun 2020. ISSN 0171-6468. doi: 10.1007/s00291-020-00591-z.
URL http://link.springer.com/10.1007/s00291-020-00591-z

e F. Peschiera, A. Hait, N. Dupin, and O. Battaia. Long term planning of military aircraft
flight and maintenance operations. Technical report, ISAE-SUPAERO, UniversitAl
de Toulouse, France, 2020. URL https://arxiv.org/abs/2001.09856 (soumis pour
publication)

e F. Peschiera, N. Dupin, A. Hait, and O. Battaia. Novel graph-based matheuristic to solve
the flight and maintenance planning problem. Forthcoming (soumis pour publication)

Des résultats ont été présentés dans les communications suivantes :

e F. Peschiera, A. Hait, N. Dupin, and O. Battaia. Maintenance planning on french
military aircraft operations. In Congrés annuel de la société Francgaise de Recherche
Opérationnelle et d’Aide d la Décision (ROADEF), pages 1-2, Lorient, FR, 2018. URL
http://oatao.univ-toulouse.fr/20036/
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e F. Peschiera, A. Hait, N. Dupin, and O. Battaia. A novel mip formulation for the
optimization problem of maintenance planning of military aircraft. In XIX Latin-
Iberoamerican Conference on Operations Research, pages 1-2, Lima, PE, 2018

e F. Peschiera, N. Dupin, O. Battaia, and A. Hait. An alternative mip formulation for
the military flight and maintenance planning problem. In Congreés annuel de la société
Frangaise de Recherche Opérationnelle et d’Aide da la Décision (ROADEF), pages 1-2,
Montpellier, FR, 2020. URL https://oatao.univ-toulouse.fr/26033/

Finalement, une version adaptée de ’heuristique de recuit simulé a été testée, validée et
exploitée par Dassault Aviation sur des instances réelles des flottes des avions Mirage 2000.

Le travail réalisé ouvre plusieurs perspectives de recherche.

En ce qui concerne la modélisation du probleme, des facteurs de terrain tel que la possi-
bilité de stocker un avion non utilisé pour prolonger sa butée calendaire ou la modélisation
de la capacité de maintenance non pas comme une quantité fixe mais une variable peuvent
enrichir la formulation du probleme en ajoutant des nouvelles variables liées a ces décisions.

L’analyse de complexité peut également étre étendue. Dans cette these, seul le probleme
de planification & long terme a été étudié. Il sera intéressant de considérer les problémes
de planification & court et moyen terme, car dans ce contexte les missions sont générale-
ment représentées par des affectations continues d’heures de vol par période. Cela pourrait
également conduire a identifier des cas particuliers ou le probleme devient polynomial. C’est
probablement le cas lorsque les exigences de la mission sont des heures de vol continues et
que les opérations de maintenance sont déja planifiées (un probléme de planification de vol
sous contraintes de maintenance).

Lorsqu’il s’agit d’horizons de planification de plusieurs années, la prise en compte des
incertitudes est cruciale. En garantissant certains niveaux de disponibilité et de pérennité
a chaque période pour chaque catégorie d’avion, les solutions que nous trouvons avec les
méthodes de résolution proposées dans cette these sont déja caractérisées par un certain
niveau de robustesse. Néanmoins, en ayant plus d’informations disponibles sur les sources des
incertitudes et leur impact, la robustesse d’une solution peut étre considérablement améliorée
en utilisant une approche adaptée a la nature des informations qui peuvent étre obtenues
concernant les incertitudes.

Le potentiel de la combinaison des techniques d’apprentissage et de 'optimisation n’a pas
été pleinement exploré. Plusieurs pistes pour de futures recherches peuvent étre envisagées,
comme par exemple, I'utilisation de la régression logistique pour estimer la probabilité qu'un
pattern (i.e., une variable) participe a la solution optimale. Cette probabilité peut ensuite étre
utilisée pour échantillonner des solutions. Un autre exemple est 1'utilisation de la sélection
automatique des caractéristiques pour obtenir, plus rapidement et plus facilement, le modele
prédictif.

En ce qui concerne 'application des informations ML, une séparation claire entre la pré-
diction et 'optimisation a été maintenue : de bons patterns sont d’abord prédits pour une
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instance donnée, puis utilisés pour résoudre le probleme avec ces informations. Une alternative
consiste a appliquer la prédiction a l'intérieur du processus de résolution en échantillonnant
des patterns dans le cadre d’une technique de décomposition plus large ot I’échantillonnage est
utilisé comme premiere étape pour résoudre un sous-probleme. Dans ce cas, I’échantillonnage
peut étre adapté par de nouvelles informations provenant de la solution actuelle, telles que
des violations de contraintes ou des prix ombre.

Les techniques de décomposition qui peuvent bénéficier de ce type d’échantillonnage sont
celles ou le nombre de variables de décision croit de maniére exponentielle par rapport a la
taille du probleme. Un candidat évident est les représentations utilisées dans les décompo-
sitions CG. Un autre bon candidat potentiel est celui ot un tres grand graphe explicite est
construit pour chaque état possible de chaque avion.

Les graphes acycliques dirigés peuvent étre utilisés pour échantillonner des modeles poten-
tiellement intéressants. En attribuant des poids aux arétes et en fixant une distance maximale
K pour les motifs extraits, on peut garantir la qualité des chemins extraits. Puis, en affec-
tant soigneusement des probabilités pour choisir les voisins de chaque nceud, on obtient un
échantillonnage non biaisé de patterns qui ont une qualité meilleure que K.

Enfin, cet échantillonnage (quelle que soit sa mise en ceuvre) peut ensuite étre utilisé
de plusieurs manieres. La premiére consiste a transmettre les patterns échantillonnés a un
modele maitre du type couverture par ensembles qui est compatible avec les contraintes de
routage trouvées dans les problemes FMP et VRP. Une deuxiéme option consiste a intégrer
les patterns échantillonnés dans la phase constructive d’une heuristique GRASP afin de pro-
duire de nombreuses solutions rapides et raisonnablement bonnes qui peuvent étre améliorées
ultérieurement avec la recherche locale.
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1.1 Industrial context

1.1.1 The maintenance industry

Be it a house, a car or a nuclear power plant, maintenance is a key consideration when building
or acquiring a new asset. For example, the yearly maintenance costs for a house can equal
1-4% of the purchase price [6]. This cost represents the price to pay to keep the acquired
asset in normal operation conditions and prolong its life as long as it is economically possible.

Maintenance is important. It is an intrinsic part of property rights. Being the owner of a
product that cannot be repaired easily and cheaply reduces the value of said product. There
exist recent movements that demand a “right to repair” for acquired goods. For example,
thanks to a new law ratified by the European Commission, from 2021, manufacturers will be
forced to make appliances long-lasting and to provide spare parts easily for up to ten years
[7].

Maintenance can also be opaque. New large infrastructure projects are always in people’s
minds and, as a result, in politicians mouths. Once the project is finished, though, little
public and therefore media attention is given to the maintenance of those projects. This can,
and often does, make the maintenance operations more opaque than the actual construction
because they are done without as much society attention. As an example, after several fatal
accidents, an investigation in Indonesia in 2008 into the Adam Air airline “revealed serious
deficiencies in maintenance and safety procedures” [167], including conflicts of interest in the
inspection of aircraft and bribes in certifications.

3
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Maintenance is quite expensive. Usually, it involves several specialized labor-intensive
tasks that are hard to automatize. On top of that, in a quest for lower production costs,
companies have made products harder and harder to repair or maintain. Canada estimates
its companies spent 3.3% of GDP on repairs in 2016, more than twice as much as the country
spends on research and development [5]. Although the value of a good maintenance policy is
usually hidden behind the uneventful and correct functioning of a system, the cost of a lack
of maintenance of public infrastructures can be measured from time to time. This became all
too evident recently with the collapse of the Genoa bridge in Italy. The lack of investment in
maintenance was one of the main reasons for this tragedy that caused the death of 43 people
in August 2018.

Finally, maintenance plays an important role in sustainable development. The most cost-
effective way to reduce overall consumption, and thus the pollution associated with that
consumption, is to extend the life of goods. It is not a coincidence that the same movements
calling for easier repairs are also those that condemn “planned obsolescence”. This is the name
of a practice attributed to goods manufacturers where the end of life of a product is purposely
decided since its conception in order for customers to buy new ones, and thus increase the
demand for the product. This practice is a crime in France since 2015 [2]. The length of life
for a product is specially important for the environment when discussing infrastructure that
has a large upfront cost (be it financial, social or environmental) but a very low operation cost.
This is precisely the case for renewable energy sources such as hydroelectric, wind and solar:
their return of investment, and thus their competitiveness, is tightly tied to the duration of
their infrastructure.

With regards to previously presented characteristics of maintenances: high cost, opaque-
ness and importance; military maintenance is like the regular maintenance, only more so.
Let’s take cost. If maintenance is expensive, and military maintenance is more so: the 2019
US Department of Defense investment in maintenance is around $ 78 billion [8]. In addition
to this, it is usually the case that, by design, there is a unique supplier for the goods, in-
frastructure and their maintenance. This only increases the inherit opaqueness that military
projects tend to already have in the first place. Finally, the importance of guaranteeing the
correctly functioning of the apparatus that is in charge of the security of a country cannot be
underestimated.

1.1.2 Maintenances in the aviation industry

In the aircraft industry, maintenance is done via various types of maintenance operations also
known as checks. These checks vary in frequency, duration and thoroughness. The frequency
is usually measured in a combination of flight hours, takeoff-landing cycles, and calendar
months; the duration, in months or man-hours of labor. What follows is an extract from the
“UK Aerospace Maintenance, Repair, Overhaul (MRO) & Logistics” report in 2018 [73].

Base or Heavy maintenance for airlines and other air transport operators has a range of
‘lettered’ checks from a simple A-check through to a comprehensive D-Check. The type of
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check required depends on the number of hours the aircraft has flown since its last check, the
age of the aircraft, and the number of cycles (take-offs and landings) carried out. These checks
are labour intensive and require taking the aircraft out of service resulting in lost revenues
and aircraft availability.

These ‘letter checks’ typically include:

A-Check This check is carried out approximately every 80 to 100 flight hours, which is
every 7 to 9 days. It needs between 10 and 20 man-hours and is usually performed overnight
while the aircraft is at the gate or in a hangar.

B-Check This check is a more thorough maintenance check and is normally carried out
every two months (approximately 500 to 600 flight hours). This maintenance is carried out
in a hangar and requires approximately 100 to 300 man-hours depending on the size and
complexity of the aircraft.

C-Check This check is very thorough and comprehensive. Virtually the entire aircraft
goes through an exhaustive series of checks, inspections and overhaul work. The C-Checks
typically occur every two years and require 10,000 to 30,000 man-hours, depending on the
aircraft type and take two to four weeks to complete.

D-Check This check is the most comprehensive and occurs approximately every 6 years.
It is a check that, more or less, takes the entire airplane apart for inspection and overhaul.
Such a check can usually demand up to 50,000 man-hours and it can generally take up to 2
months to complete, depending on the aircraft and the number of technicians involved. It
must be performed at a suitable maintenance base.

There is a recent trend to include some D-Check work in each C-Check and try and
eliminate the D-Check, to improve the availability of the aircraft for commercial service. D-
checks would normally be carried out at a heavy maintenance and engineering facility such
as at British Airway’s Engineering in Cardiff and Monarch Engineering at Luton.

Table 1.1 shows an example of check frequencies per type of check for some commercial
aircraft.

In many ways, the military maintenance of aircraft is similar to the civil industry. There
are several types of checks that are done to aircraft, although the names, frequencies and
actors change. And this information closely depends on the model and manufacturer.

In France, it is the recently created (2018) “Direction de la Maintenance Aéronautique
(DMA¢)” the one in charge to plan and organize the checks for military aircraft. These checks
have the following types for the Mirage 2000 series:
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Aircraft ‘A’ Check ‘B> Check ‘C’ Check ‘D’ Check
B737-300 275 FH 825 FH 18 M 48 M
B737-400 275 FH 825 FH 18 M 48 M
B737-500 275 FH 825 FH 18 M 48 M
B737-800 500 FH n/a 4000-6000 FH 96-144 M
B757-200 500-600 FH n/a 18 M / 6000 FH / 3000 FC 72 M
B767-300ER 600 FH n/a 18 M / 6000 FH 72 M
B747-400 600 FH n/a 18 M / 7500 FH 72 M
A319 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
A320 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
A321 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
ATR42-300  300-500 FH n/a 3000-4000 FH 96 M
ATR72-200  300-500 FH n/a 3000-4000 FH 96 M

Table 1.1: Frequency of checks per aircraft and type (FH= flight hours, FC= flight cycles,
M=months) from Cook, A.J. and Tanner, G. [52]

VG Called “Visite de graissage” or Oil Check, it is carried out every 6 to 8 calendar months.
It takes about 3 days.

VI Called “Visite intermédiaire” or Intermediate Check, it is carried out every 14 to 16
calendar months. It takes about 6 days.

VS Called “Visite de securité” or Security Check, it is carried out every 300 to 600 flight
hours. It takes about 4 days.

VX Called “Grande visite” or Overhaul Check, it is carried out every 1000 to 1200 flight
hours or 60 months, whichever arrives first. It takes between 4 and 6 months. These checks
are equivalent to the D-checks.

The first three checks are done in the aircraft’s airbase. The overhaul checks (VX) are
done in the “Atelier Industriel de I’Aéronautique (AIA)”, located in the Clermont-Ferrand
region. The latter can be seen in Figure 1.1.

1.1.3 Planning maintenances

The Flight and Maintenance Planning (FMP) problem, first presented by Barnhart et al. [26],
studies how these maintenance operations are scheduled and how flight activities are assigned
to a fleet of aircraft along a planning horizon.

In the civil variant of the FMP [26, 161], by far the one that has received the most
attention, aircraft need to be routed along different destinations by assigning them flight legs
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Figure 1.1: A photo of the ATA maintenance workshop in the Clermont-Ferrand where the
VX checks are done for the Mirage 2000[1].

in order to build daily trips. Checks are done during the night and are usually limited to A
and B type checks. The planning horizon covers several days (e.g. Sriram and Haghani [161]
use 7 days). The objective is usually to reduce the overall cost or to maximize total profit for
the plan.

In the military variant, which we call the Military Flight and Maintenance Planning
(MFMP) problem, flights (which are called missions) always return to the airbase and so no
routing is performed. Checks consist of B, C and D types. The planning horizon covers a few
months or several years. The objective is usually to maximize the operational status of the
fleet while minimizing the total number of checks.

In most air forces, a derivative of the Sliding Scale Scheduling Method (SSSM) [89] is used
to plan the mission assignments for aircraft. This method consists of a simple heuristic that
attempts to distribute remaining flight hours among aircraft in a ladder-like distribution, i.e.,
there is a constant probability of finding an aircraft for each possible amount of remaining
flight hours. When an aircraft passes certain threshold of flight hours, it is sent for a check.
Figure 1.2 shows an example of using this technique. In the example, Aircraft “944” has the
most surplus remaining flight hours (bank time) with respect to the curve and thus should
fly the next mission.

This technique attempts to distribute the flight load uniformly between each aircraft and
is well suited when the future mission requirements are known and do not change over time,
the fleet is homogeneous and the initial status is more or less well distributed. As can be
expected, these hypothesis rarely apply in real life and so more sophisticated techniques are
needed if good quality maintenance plans are to be obtained for realistic situations.

Recently, improving the quality of these maintenance plans has become a priority for many
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Figure 1.2: An example showing the SSSM for 8 aircraft in a 500-flight-hour cycle.

governments [116]. In particular, the French Air Force became interested in mathematical
solutions to schedule maintenance for the Mirage 2000 fleet [4] after it was revealed that
increases in maintenance costs had not been followed by improved availability of aircraft
[113].

There are two main questions that need to be answered when improving maintenance
decisions: when is the maintenance needed (prediction) and when is the maintenance actually
done (scheduling).

Calculating maintenance needs has usually consisted of what is called preventive mainte-
nance. In preventive maintenance, a simple rule is established that ties usage and maintenance
need, e.g., an aircraft cannot fly more than 500 hours without a maintenance. In contrast,
predictive maintenance involves the analysis of historical data to estimate windows of time
when maintenance has to be done so as to guarantee a risk of failure under a certain threshold.
According to the US Air-Force tests on command-and-control planes, the use of predictive
maintenance could reduce unscheduled work by a third [8].

Regardless of how we calculate those maintenance needs, a suitable maintenance schedule
is essential in order to produce an efficient overall plan. To achieve this, those time windows
are taken together with resource capacities and future usage planning, among other infor-
mation, in order to produce an actual maintenance schedule that is feasible and satisfies the
needs of its planners.

The difference between any maintenance plan and a good one is important. As the re-
sources needed to actually perform the checks are expensive and the expertise required is
highly specialized, the capacity to provide this service is usually quite limited and inflexible.
As a result, a plan that does not allocate the capacity optimally may end with more grounded
aircraft waiting for a check in some periods while in other periods the capacity usage is not



1.1. Industrial context 9

at maximum. This unavailability reduces the actual potential of the fleet and thus requires
having even more aircraft to satisfy a certain fleet potential.

The context of long term planning is inevitably tied to uncertainties in mission require-
ments, fleet availability and maintenance capacity restrictions, .e.g., a new mission, additional
aircraft for an existing mission, an unexpected grounding of an active aircraft, a partial re-
duction in the capacity of the maintenance workshop, etc. These uncertainties require robust
plans where each period is guaranteed to have enough aircraft in good status to not only
comply with planed missions but also with changes in a set of potentially heterogeneous mis-
sions. A plan that does not take this into account explicitly, risks a scenario where there are
not enough aircraft ready for an unforeseen emergency.

The actual cost of a maintenance plan is measured by the number of checks needed to
comply with all the mission requirements: the lower that number is, the better. Although
costs for these checks are not public in the case of military aircraft, the actual costs for type D
checks in Boeing aircraft range between 1 million dollars and 6 million dollars [3] depending
on the aircraft model. In France, the total yearly cost of military aircraft maintenances rose
from 3.2 billion euro in 2012 to 4 billion euro in 2017 [113]. A good maintenance plan will
try to use each aircraft as much as possible before scheduling a check in order to minimize
the number of remaining flight hours that is “lost” when the check is done and flight hours
are reset to their maximum.

Finally, the planning of maintenances is usually done manually (in an Excel spreadsheet)
and is time consuming. This limits the number of scenarios that can be evaluated before
taking a decision and increases the reaction time when dealing with new information that
requires to change the original plan. As a result, robustness and flexibility are lost as part of
the planning process.

Thus, the need for efficient and reliable flight and maintenance planning is clearly a priority
both in commercial as in military contexts. Nevertheless, producing such a detailed plan for
a sizable fleet while planning for a long-term horizon and taking into account the multiple
objectives inherent to long-term planning is not an easy task.

Operations Research techniques are specialized in solving combinatorial problems such as
the MFMP in order to produce very good quality solutions (often optimal) given a set of
constraints and an objective function. The success in applying these techniques to a new,
difficult, problem requires a combination of domain expertise and profound theoretic back-
ground. The latter consists of a deep study on the structure of the underlying mathematical
problem and the research of innovative solution approaches that are compatible with that
problem. This thesis provides such analysis.
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1.2 Problem description

In this section we describe the main characteristics of the MFMP problem studied in this thesis
and provide a small example. A formal definition of the problem is presented in Chapter 3.

Aircraft. Aircraft are identified by index i. Each aircraft starts the planning horizon with
an initial status with respect to its maintenance needs. This status consists of the number
of hours that it can fly before needing a check R ftf”it and the number of calendar periods
t{nit

before needing a check Rc . In addition, each aircraft has one type and an optional set of

capabilities, that allow it to perform missions.

Missions. Missions are identified by index j. Each mission has a start Start; and end End;
date and requires a certain amount of aircraft R; to be assigned when it is active. When an
aircraft is assigned to a mission, it is required to stay assigned for at least a certain amount of
time periods M T]mm As long as these rules are taken into account, an aircraft can be assigned
for less than the total length of the mission. Each mission has a type, which needs to be the
same as the aircraft that are assigned to it, and may require certain additional capabilities
for these aircraft. Each aircraft that is assigned to a mission needs to fly a certain amount of
hours H; each period. When an aircraft is not flying a mission and is not in maintenance, it
still flies a certain amount of default hours per period U™,

Maintenances. When an aircraft has reached its limit of flight hours H™** or its limit in
calendar periods E™* it requires a check. Each check takes a certain amount M of periods
to be performed. There is a limit to the total number of checks that can be performed
simultaneously, which corresponds to the workshop capacity C"*.

Fleet status. The missions are classified into clusters where each mission has the same
type and capabilities. Each mission belongs to one cluster but an aircraft can belong to many
clusters. Each of these clusters needs to have a minimum number of total remaining flight
hours H,glus'f and available aircraft (not in maintenance) A%“St in order to guarantee the

good status of the fleet and its resilience.

Objectives. A good flight and maintenance plan complies with all previous rules by schedul-
ing the checks as late as possible in the planning horizon and avoiding unnecessary checks. In
real cases, some of the previously defined rules will need to be violated and so these violations
need to be minimized too. Finally, the frequency of checks should not vary too much between
aircraft of the same type.

To better illustrate the problem, a small example follows. Take a fleet of 5 aircraft and 6
consecutive missions over a planning horizon of 20 periods. M = 2, H™** = 300, £™** = 15,



1.3. Thesis structure 11

MTJmm Stath Endj Hj Rj

J

0 2 1 4 24 1
1 2 5) 7T 34 3
2 3 8 11 18 3
3 3 12 15 30 3
4 2 16 18 35 3
) 2 19 20 25 1

Table 1.2: Input data for each mission j € J in the small example.

Rctilmt thilnit

—e

0 7 120
1 13 220
2 7 140
3 8 140
4 6 160

Table 1.3: Remaining flight time and remaining calendar time for each aircraft i € Z in the
small example.

Cmaz = 1, U™n" = (. The first mission (j = 0) can only use aircraft 3 or 4. All the
other missions can use any of the 5 aircraft. Two clusters are thus formed: the first contains
mission 0 and has as candidates aircraft 3 and 4, the second contains missions 1-5 and has as
candidates all five aircraft. HS™st = 300, H{Wst = 750, AGHst =1, AGHust = 4,

Table 1.2 shows the input data for the 6 missions and Table 1.3 shows the input data for
the 5 aircraft.

Figure 1.3 shows the optimal solution for the problem. Aircrafts are shown in rows, periods
in columns. Checks are in gray. Mission assignments share the color of the mission and show
the total number of hours flown.

1.3 Thesis structure

Chapter 2 presents a review on the FMP, the MFMP and related problems from the literature
in order to compare and position the problem described above with respect to previous work.
Furthermore, a comprehensive study on the techniques employed to solve these problems is
presented and a categorization of problems and solution methods for the MFMP is provided.

Chapter 3 formalizes the MFMP problem, studies its structure and solves it with exact
methods. First, a complete instance of the MFMP problem is described and a random
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1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20

Figure 1.3: Gantt showing the optimal solution for the example.

instance generator is produced. This generator will be used to produce instances for the rest
of the thesis. The structure of the long term MFMP problem is analyzed and, as a result,
its complexity is studied. In order to solve the problem, a tight Mixed Integer Programming
(MIP) formulation is proposed and complemented by a simulated annealing heuristic that
generates initial feasible solutions. The sensibility of the model is inspected with regards to
changes in size and various characteristics of instances.

Chapter 4 formulates a new MIP model and applies Machine Learning (ML) methods to
increase the solution performance. The alternative MIP model consists of a long formulation
based on explicitly enumerating all check patterns for each aircraft. This model is then
expanded by the addition of valid cuts, based on the instance input data, and invalid cuts,
based on the prediction of optimal or near-optimal solutions. These predictions are done
by a supervised learning model that matches the input data for an instance with certain
characteristics of its solution and is trained with a dataset of thousands of small instances
solved to optimality or near-optimality. The performance of this approach is compared with
previous methods as well as with other more conventional matheuristics.

Chapter 5 deals with methods to solve very large scale problems of the MFMP using a
Variable Neighborhood Descent with two complementary neighborhoods. The first one is an
Rolling Horizon solved using the MIP model from Chapter 4. For the second neighborhood, a
complete graph of all possible states for each aircraft is produced. This graph is an extension
of the pattern formulation in Chapter 4 were each node represents the state of an aircraft
with respect to the need of a check. The neighborhood is then solved by solving a Shortest
Path Problem.

Finally, Chapter 6 summarizes the main conclusions and sheds light on directions for
future research.
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In this chapter, we present a review of the work that has been done in the MFMP and its
related problems up to now. The Flight and Maintenance Problem (FMP) and its variants
are presented in Section 2.1; Section 2.2 describes several problems with the same structure
such as the Nurse Rostering problem, the Rolling Stock Assignment and Maintenance Plan-
ning problem, and the Maintenance Scheduling and Production Planning of Nuclear Plants.
Section 2.3 presents an exhaustive review of the techniques that have been successfully uti-
lized to solve these problems including exact ones such as MIP and CP; and heuristic ones
such as matheuristic, metaheuristic and hybrid methods. Finally, Section 2.4 presents recent
approaches using machine learning in combination with mathematical programming.

2.1 The Flight and Maintenance Planing problem

2.1.1 Civil Aviation

The Flight and Maintenance Planning (FMP) problem, first introduced in Barnhart et al.
[26], consists of the combination of two problems: the Tail Assignment (TA) problem and

13
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the maintenance scheduling. The former, first studied in [68], consists of assigning a series of
already scheduled flights (often named legs) to a fleet of aircraft (also referred as tails) and has
been widely studied [50, 81, 67, 83, 95]. The latter consists of the scheduling of maintenance
operations (which we call checks) to aircraft in order to comply with calendar-based and
usage-based limits mandated by safety regulation. This problem is also known as the Airline
fleet Maintenance Scheduling (AMS) [60, 148]. The resulting FMP problem is also known as
AMS with Tail Assignment [161, 148] or Aircraft Maintenance Planning (AMP) [154].

With regards to the checks in the airline industry, there exist four major types [161]: A
(every 65 flight hours or 1 week), B (every 300-600 flight hours), C and D (every 1-4 years).
As a result of the short planning horizons that are used in FMP problems, only the two
first types of checks are taken into account. The other two types are sometimes taken as
constraints: these checks are already decided for some aircraft and this unavailability needs
to be taken into account during the planning process.

From the numerous contributions to solve the FMP problem, only a few take into account
the legal required limit on the number of flight hours between checks [124, 150, 95, 148].

Murat Afsar et al. [124] present a 10-week FMP problem where a fleet of 200 identical
aircraft is assigned flights and maintenances. Flights are organized in a mono hub and spoke
structure and only the hub city has the capacity to do any check. Checks are assumed to
be done during the night so the aircraft are ready in the morning of the following day. The
maintenance capacity is modeled by the total number of aircraft in maintenance at any given
night and depends on the instance but is always between two and three aircraft per night.
Flights per week range between 2500 and 3100 2-way flights for 91 destinations. The initial
status of the fleet is randomly generated and the solution method applies a weekly heuristic
inside a rolling-horizon decomposition. The heuristic is based on modeling each aircraft as a
graph where each node is a possible flight assignment, the source is the initial status and the
sink is the assignment of a check. They then apply a longest path algorithm for each aircraft
in a specific order, then slightly modify the assignments and do swaps between aircraft to
improve the solution.

Sarac et al. [150] deal with a short-term FMP problem where a set of flights are assigned to
a fleet of aircraft while scheduling checks, respecting the flight hour regulation and considering
the maintenance constraints. Checks are assumed to be done during the night. Several types
of checks can be done in one of several overnight stations if that station is also a maintenance
station. Maintenance capacity is controlled by resources and slots: each check consumes a
certain amount of man-hours and a slot from the maintenance station where it is done. Each
maintenance station can only do certain types of checks. The objective is to minimize the
total number of unused remaining flight hours. In order to solve the problem, a network is
generated were each node i represents a flight leg and each arc (i,j) represents a feasible
sequence of flights ¢ — j (i.e. the destination of i is the same as the origin of j and the arrival
time for ¢ plus the turn time is less than or equal to the departure time of flight leg j). A
string-formulation model is proposed, where routes are assigned to aircraft and a Column
Generation technique is used to generate feasible routes. The computations experiments
include a fleet of 32 aircraft, 175 flights, 5 maintenance stations and a planning horizon of 1
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day.

Khaled et al. [95] present the Tail Assignment problem and solves it with a multi-
commodity flow formulation. Then, the problem is adapted to schedule checks. Only type A
checks are taken into account and these checks are assumed to be done during the night after
the last flight of the day. Each airport is equipped with a maintenance workshop that has a
capacity that varies according to each day. All checks are assumed to have the same calendar
and flight hour limit. The original objective function based on minimizing cost is modified
by adding a cost per each check depending on the airport, the aircraft and the day. Compu-
tational tests are done on instances of 7-30 days, 10-40 aircraft and with a check frequency
of 4-5 days and 64-72 flight hours.

Sanchez et al. [148] show two problems related to maintenance scheduling: the first sched-
ules checks with a given flight planning taken as input. The objective is to minimize the
number of violations of maintenance regulations while maximizing fleet sustainability at the
last period. The scheduling includes multiple check types in multiple maintenance workshops.
The maintenance capacity is measured as a consumption of resources at each period. Checks
have a fix duration for a given type and aircraft. The second problem is a variant of the
first that in addition to scheduling checks also reassigns part of the already scheduled flights
in order to reduce violations of maintenance regulation. Here 4 new objectives are added:
minimize the maximum resource consumption, the number of flight reassignments, the total
number of checks, and the total resource usage. Computational tests were done over a 30-day
planning horizon with 16.000 flights, 529 aircraft and 8 maintenance workshops.

Repair and recovery problems involve the re-optimization of a previously solved solution
(incumbent) under the light of a relatively small change in the original input data. This change
is usually the result of an unforeseen event: a delay, an accident that affects the provision of the
service or an external event that causes a change in demand. More specifically, the change can
be (1) an additional constraint, (2) the change of some coefficients on the constraint matrix or
(3) the change of some coefficients on the objective function. Usually, it is the combination of
all three. As a consequence, the incumbent solution may no longer be valid (feasible) or may
no longer be optimal (or, even, good). The main hypothesis of a repair / recovery solution
method is that a good candidate solution should not be too far from the incumbent, given
the small proportion of change in the input data. Repair and recovery methods for the FMP
have been proposed in [70, 97, 178, 94, 91, 148|.

2.1.2 Military Aviation

The Military Flight and Maintenance Planning (MFMP) problem was first presented in
Sgaslik [153] and the main differences with the FMP are the use of missions instead of flight
legs. Aircraft are assigned to missions for an interval of time periods. Since all aircraft re-
turn to base after each assignment, the location of the aircraft (airport) is not taken into
account. These problems also require additional availability and sustainability constraints
to guarantee a good state for the fleet at each period. In contrast to FMP problems plan-
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ning A and B checks, most contributions in the MFMP are centered in planning B checks
[152, 174, 98, 85, 136] and D checks [55].

Sgaslik [153] presents a MEMP where a fleet of 45 helicopters are planed along a planning
horizon of 12 periods of one month each. Missions are assigned to each aircraft in order
to comply with planned flight hours. Checks provide additional flight potential and must
respect the maintenance capacity. The fleet needs to meet a monthly desired number of total
remaining flight hours, guaranteeing the good status of the fleet. The objectives penalize
penalties from soft constraints. The problem is solved by using a two-model setup. First, a
medium term problem determines D-type checks and assigns continuous flight hours. Later,
this solution is fed into a short-term model where planned missions are assigned to each
aircraft in a heterogeneous fleet.

Kozanidis [98] presents a problem where a wing of 24 aircraft is organized into 3 squadrons
of 8. The planning horizon consisted on 6 periods of 1 month each. Each squadron requires
certain flight hours per period and each aircraft has a range of hours they can fly per period.
There is a demand of flight hours over the whole planning horizon. Finally, the capacity of
the maintenance workshop is measured in available working hours per period. The decision
is the continuous number of hours to fly each aircraft in each period and when to put them
into maintenance. The link between these decisions and constraints is modeled via a resource
flow balance: the first decision “consumes” the aircraft remaining flight hours and the latter
“consumes” the workshop maintenance hours. Additional accounting needs to take place to
guarantee that the hours are consumed and updated after each period. All four objectives
were targeted at maximizing the minimum of certain KPI over all planning periods, thus
improving the worst performing period in the planning horizon. Those KPI were: (1) the
total number of available aircraft, (2) the number of available aircraft for the worst squadron-
period, (3) the total remaining flight time, and (4) the remaining flight time for the worst
squadron-period. Weights are finally given to each objective in order to combine them in
one objective function. It also presents two simple heuristics that could be used for larger
instances: the first is an implementation of the “Sliding Scale Scheduling Method” [89], the
second is a rolling horizon approach. We will call this formulation the Check Flow Balance
(CFB) formulation because of the way the maintenance workshop resource is “consumed”
by each aircraft in maintenance. This CFB formulation has been the base for many future
contributions, such as [99, 100, 77, 78, 174, 116, 152]. An efficient solution method for
a particular case (maximizing overall sustainability) of this problem was presented in [77]
and expanded in [78] to deal with the multi-objective version of the problem where overall
sustainability is maximized at the same time as its variability is minimized.

Marlow and Dell [116] solve a short term problem where a squadron of up to 24 aircraft is
planned in a planning horizon of up to 30 periods of one day each. Each aircraft is assigned
a number of flight hours each day in order to meet an overall demand per period and for
the whole planning horizon. Two types of checks are included, one is calendar based, the
other is flight hour based. The capacity of the maintenance workshop is modeled with a CFB
formulation. Several objectives are modeled as soft constraints: compliance with the total
and daily demand of flight hours, the correct distribution of remaining flight hours for the
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fleet and the compliance of flight hours between checks. Piecewise linear penalties are used
as weights for these objectives.

Seif and Yu [152] propose a generalized version of the problem in [77]. The changes
consist of including several check types, each with a particular flight hour frequency; several
maintenance workshops, each with a capacity to do checks and specific check types it can
do; the demand for flight hours is given for each aircraft type. The objective stays the same:
maximize the effective remaining flight time and the procedure to solve the problem is an
adaptation of the one in [77].

Cho [48] presents a problem where missions and checks are scheduled for a fleet of 15
aircraft over a planning horizon of 520 half-day periods (two years without weekends). In
contrast with CFB, missions (also called sorties) and checks are modeled in discrete assign-
ments. Two types of missions were used, each requiring a different amount of flight hours.
Checks are modeled via assignments of a fixed duration of periods (20, representing two
weeks). Remaining flight hours are still controlled by a flow balance. Another contribution
is the fact of assigning a discrete state for each aircraft at the end of the planning horizon, in
order to guarantee the correct cycle-like status of the fleet. The objective is to minimize the
maximum number of aircraft under maintenance over all periods. We call this formulation
the Discrete Check and Mission (DCM) formulation. The DCM formulation has been the
base for other more recent contributions, such as [108, 154].

Shah et al. [154] add two variants to the DCM formulation: (1) missions are relaxed into
continuous flight hours, just like in [98] and (2) the objective is the minimization of the total
number of checks in the whole planning period. The maintenance capacity is modeled as a
constraint. The plan is a fleet of 7 aircraft, during 52 periods. Li et al. [108] incorporated the
use of random simulated initial states for aircraft and random simulated durations for checks.
The values followed uniform distributions and were known in advance of the solution process.

Hahn and Newman [85] presents a problem where checks and missions (deployments) are
scheduled for a fleet of 10 helicopters over a planning horizon of 12 weekly periods. The
model uses mostly a DCM formulation where aircraft are deployed into missions where they
fly a fixed amount of hours per period. In addition to these considerations, aircraft that
are not deployed are considered “in base”, where they fly a variable but bounded amount of
hours. The base has a range for the total flight hours per period and each aircraft has a range
of flight hours for the planning horizon. Checks, which are done in base, can only be done
when the amount of remaining flight hours reaches some value close to zero. The number
of concurrent checks is limited by the base capacity. Initial conditions regarding current
deployment, maintenance status and remaining flight hours are taken into account. End
conditions are also taken into account to guarantee continuity. The objective is to penalize
not reaching flight hours goals in the base and changing location too often without the need
for a check. Winata [177] uses this same benchmark problem with slight variations (no “in
base” flying) and a larger fleet (10 - 40 aircraft).

As can be interpreted from the use of less frequent checks, the MFMP deals with longer
terms than the FMP. Still, we can differentiate between be short-, medium- and long-term
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planning horizons. The short term has a time horizon of at most 1 year and is usually divided
into periods of one day [116, 48, 146].

Medium term planning is concerned with a weekly or monthly schedule over 6 months to
2 years [152, 174, 98, 85, 136]. Here, checks are assigned every 200 to 400 flight hours, which
correspond to type B and C checks. The capacity for these check types is seen as the number
of available man-hours at each period of time.

Long term planning covers time horizons between five and ten years and mostly addresses
scheduling of D checks [55]. These operations are particular in that they last several months.
Checks are scheduled every 1000 - 1200 flight hours or at most 5 years after the last overhaul
maintenance.

A common hypothesis considers an homogeneous fleet, i.e. each aircraft being capable
of performing any of the existing missions. One exception is where an heterogeneous fleet is
used is Seif and Yu [152].

One can easily imagine that long term military operations are subject to uncertainty
regarding missions, destinations and flight hours. However, contributions incorporating un-
certain parameters are quite rare. One of the first attempts to take into account the stochastic
nature of maintenance requirements and durations was presented by Mattila et al. [119], where
a simulation model was built in order to find good maintenance policies. Kessler [93] devel-
oped a model based on a multi-armed bandit superprocess to choose between two different
heuristics or policies in order to maximize the availability of the fleet.

The planning of missions and maintenance for military aircraft shares some similarities
with the planning of the procurement and retirement of said aircraft [125, 75]. For example,
the decision on how to distribute the remaining flight hours among the fleet by choosing a
good policy of mission assignment under a certain budget.

We present a classification of existing MFMP formulations by grouping features in three
categories: maintenance, mission and aircraft-related. These features consist represent differ-
ences in objective functions and constraints.

Maintenance related features

FP Flight potential: frequency of checks constrained by flight hours.

CP Calendar potential: frequency of checks constrained by calendar periods.

FD Fixed duration: each check has constant duration that depends on the type of check.
CA Capacity: maximum number of aircraft undergoing a check in any given period.

MS Multiple stations: each maintenance station has its own capacity and serves a subset of
aircraft or a subset of check types.
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RC Relaxed capacity: the maintenance capacity is measured in man-hours and each check
requires a certain amount. If a check is not finished at the end of a period, the remaining
man-hours can be covered in the next period.

MT Multiple types: aircraft may have more than one type of check. Each type has a
frequency, duration and capacity usage.

Mission related features

DA Discrete assignment: missions require a certain number of aircraft to be assigned each
period. These aircraft need to fly a fixed amount of flight hours.

HD Hour demand: a demand of flight hours is required in each period per group of aircraft.
HF Heterogeneous fleet: only compatible aircraft can be assigned to each mission.

MD Min duration: if an aircraft is assigned to a mission, there is a minimum amount of
calendar periods it has to remain assigned to this mission.

HT Hours in total: the total number of flight hours in the horizon needs to fall within a
given range. Sometimes, each aircraft or group of aircraft has its own range.

Aircraft related features

IS Initial state: mission assignments and checks that start before the beginning of the
planning horizon are fixed.

AV Availability: the total amount of checks per group of aircraft is limited:

(a) at all periods, minimize the sum.
(b) at each period during the planning horizon, upper bound.

(c) at all periods, minimize the maximum.
SU Sustainability: limit the amount of remaining flight hours per group of aircraft:

(a) at the last period of the planning horizon, lower bound.
(b
(c

) at some periods, lower bound.
)

(d) at all periods, maximize the minimum.
)
)

at each period during the planning horizon, lower bound.

at all periods, maximize the sum.

(e

(f) at all periods, minimize the variance.

Table 2.1 shows the problem formulations used in the previous work and available infor-
mation about solved instances of the problem.

Table 2.2 shows the constraints implemented in existing problem formulations for the
MFMP.



20 Chapter 2. State of the Art

Reference |Z| 7| Unit H™™® Method
Kozanidis [98] 24 6 m 300 MIP
Hahn and Newman [85] 10 12w 200 MIP
Winata [177] 40 12 w200 MIP, VNS, TS, SA
Cho [48] 15 520 0.5d 300 MIP
Verhoeff et al. [174] 20 52w 400 MIP

Li et al. [108] 20 50 0.5d 200 MIP
Gavranis and Kozanidis [78] 50-100 6 m 300 MIP
Marlow and Dell [116] 12-24 30 d 200 MIP
Shah et al. [154] 7 52 m 25 MIP
Seif and Yu [152] 100 6 m 125-500  MIP
Chapters 3 and 4 15-60 90 m 800-1200 MIP
Chapter 5 45-120 90 m 800-1200 MIP, DP

Table 2.1: Previous work: solved instances. Units: m=month, d=day, w=week. |Z|=fleet’s
size, |T|=horizon’s length, H™**=check flight-hour frequency.
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Reference Maintenance Missions Fleet

FP CP FD CA MS RC MT DA HD HF MD HT IS AV SU
Kozanidis [98] C C C C C O Oq
Hahn and Newman [85] C C C C C 0] C C Cq
Winata [177] C C C C C 0] C
Cho [48] C C 0] C C C,
Verhoeff et al. [174] C C C C C C G Oq
Li et al. [108] C C @) C C
Shah et al. [154] C C C C C O, Cq
Gavranis and Kozanidis [78] C C C C C O.,0¢
Marlow and Dell [116] 0) C C C 0) C Oy
Seif and Yu [152] C C C C C C O
This thesis c cC C 0) C C C C 040, O

Table 2.2: Constraints taken into account in the existing formulations: “O” means an objective or a soft constraint, “C” means a hard

constraint.
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As can be seen from this comparison, the majority of existing formulations were developed
for an homogeneous fleet that needs to comply with general flight-hour demands under flight-
hour constraints to control checks and maintenance capacity constraints (flexible or not).

2.2 Related problems

We understand related problems as problems that have a similar structure and thus may be
solved with similar techniques, regardless of the end application. In the case of the MFMP,
this structure involves the presence of a set of resources, a set of planned tasks, and the
existence of maintenance operations (or resting periods) linked to the usage of said resources.

This section presents three related problems that share many similarities with the MFMP.
Section 2.2.1 presents the Nurse Rostering Problem (NRP). Section 2.2.2 describes the Rolling
Stock Assignment and Maintenance Planning (RSAMP) problem. Finally, Section 2.2.3 dis-
cusses the Maintenance Scheduling and Production Planning of Nuclear Plants (MSPPNP).

2.2.1 The Nurse Rostering problem

The Nurse Rostering Problem or Personnel Scheduling Problem decides shifts for a set of
workers over a sequence of consecutive periods along a planning horizon. The result of this
planning process is called a roster. This roster consists of the assignment of one shift (includ-
ing a rest shift) to each worker (or nurse) on each day. Three types are enumerated by Baker
[23]: shift scheduling (time-of-day scheduling), days off scheduling (day-of-week scheduling)
and tour scheduling (a combination of both). The MFMP problem fits well with the sec-
ond category: daily shifts (missions) are scheduled for an heterogeneous workforce (aircraft
fleet) whose working periodicity (check frequency) does not match the operating frequency
(planning horizon or missions).

Several surveys of the NRP have been done. For classification of the different problems
according to the types of constraints imposed, see [173, 54]. De Causmaecker and Vanden
Berghe [54] presented a naming convention following the «|f|y convention in the scheduling
domain. For the state of the art on solving techniques, see [47, 41]. More recently, [170] pro-
vides an up-to-date summary of the contributions to the problem according to the technique
used.

As the literature shows, the NRP is more a large family of problems that share certain
characteristics than a single problem. This has not impeded the study of the structure and
the complexity of each of its variants. Some examples of these studies can be found in
[105, 45, 38, 39, 156, 59, 172].

Caprara et al. [45] presents a staff scheduling problem where a set of workers must comply
with a set of duties, each duty requires a certain amount of workers on each day. Workers need
to have assigned a rest block. There are several rest types, each with a different duration in
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number periods. Each worker needs a certain amount of rests of each type during the planning
horizon. The complexity is proven to be NP-Hard via the Three Partitioning Problem.

In Brunner et al. [39], the flexible days-on and days-off scheduling problem is shown.
This problem deals with the assignment of a minimum and maximum number of consecutive
working (days on) and non-working days (days off) to each worker over a planning horizon
while guaranteeing a total number of workers per day. The problem is proven NP-complete
by reducing it to the the circulant problem.

Smet [156] presents many cases of the NRP, some of which can be solved in polynomial
time. In particular, a cost-minimization problem Ps is presented where each nurse is required
a constant number of days to work, a range of nurses is required at each day per shift
type, and a set of unavailable days for each nurse is taken into account. The objective is to
minimize the sum of costs for assigning each shift to each nurse on each day. The problem is
proven to be solvable by a minimum cost network flow problem. Smet [156] also presents the
shift minimization personnel task scheduling problem (SMPTSP), where an heterogeneous
workforce is assigned a set of scheduled tasks with a given start time and end time. The
objective is to minimize the required number of workers needed to perform all the tasks.

2.2.2 The Rolling Stock Assignment and Maintenance Planning problem

A problem that is closely related to the FMP in nature and structure but is less studied is the
Rolling Stock Assignment and Maintenance Plan (RSAMP) problem, applied to the railroad
industry to plan the maintenances of trains units, also called rolling stock. Here, a timetable
of predefined tasks is taken as input data, each task being a trip between two stations. The
problem consists of assigning tasks to rolling stock (the train units that will actually do the
trip) while also scheduling the checks operations with their respective frequencies. Sometimes,
the solutions need to take into account complex shunting operations inside the stations to
guarantee feasibility.

According to Lai et al. [102], trains in Taiwan Railways Administration regular inspections
can generally be divided into four levels: daily inspection (every 1800 km or 3 days), monthly
inspection (every 90,000 km or 3 months), bogie inspection (every 500,000-1,000,000 km or
1.5-3 years), and general inspection (2,000,000-4,000,000 km or 6-9 years). The former two
types are done in the train depot while the two latter are done in a dedicated workshop.

In Doganay and Bohlin [61], checks are scheduled over a 2 year horizon in weekly periods
by taking into account the availability of spare parts by minimizing the total number of
checks, storage of spare parts and the time the trains are in maintenance. Each check has a
different frequency and use of spare parts. In Lai et al. [102], daily and monthly checks are
scheduled in an heterogeneous fleet of rolling stock. In Lin et al. [109] preventive checks are
planned every 1.5 years or 600,000 km for a high-speed train network are decided over a one
year horizon with a simulated annealing technique. The number of checks at each period is
limited to capacity and to availability objectives at each period (because of seasonality).
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Mar6ti and Kroon [117] show the re-routing of an existing rolling stock schedule in order
for “urgent” train units, that require a maintenance inside the planning horizon, be routed
in time to a maintenance facility. The original rolling stock schedule includes a sequence of
tasks for each train unit. Each urgent train unit has a set of maintenances that it needs to
accomplish during the new plan and each maintenance requires an additional “buffer time”
in order to take place. Maintenance capacity is not explicitly incorporated but there are
variable costs associated with the actual changes to the plan, e.g. the time and station of
these changes, the distance between arrival and departure tracks, the time between tasks, etc.
The planning horizon is around three days.

Tréfond et al. [168] proposes robust plans for the rolling stock routing problem by assigning
sequences of tasks to train units while scheduling maintenance operations after some of the
tasks with calendar-based constraints. A maintenance task can be fitted in between two
consecutive assignments, if enough time exists from the end of the first task and the start
of the second one to cover its duration. The number of maintenances that each train has to
do is known and the maintenances do not depend on the usage of the train unit. Mira et al.
[121] expands on this work by including a constraint on maintenance capacity measured in
man-hours that is consumed by each maintenance task’s work load.

2.2.3 The Maintenance Scheduling and Production Planning of Nuclear
Plants

The 2010 ROADEF /EURO Challenge [137] consisted on the production planning and main-
tenance scheduling of nuclear plants. It was sponsored by EDF, France’s electricity company.

The MSPPNP problem consists of deciding when to stop each nuclear plant for refueling
and maintenance operations, as well as its production plan in order to satisfy a series of
constraints. In relation to the MFMP problem, each nuclear plant can be seen as an aircraft,
the electricity demand can be viewed as the missions’ needs and the production plan like the
mission assignments.

Checks behave similarly as in the MFMP. They replenish the production potential, and
thus define production cycles. During the check, the unit becomes unavailable. Each check
lasts a fixed amount of time and there is a limit on the amount of simultaneous checks that
can be carried. One difference is that in the MSPPNP there are additional decisions to take
during the check, such as the quantity of refueling for the plant.

The production plan needs to satisfy technical limitations on capacity and changes on the
quantity of production. Just as with the heterogeneous fleet of aircraft, there are two types
of nuclear plants and each type has specific constraints.

There are many sources of uncertainty, mainly related to the demand of electricity: the
price, the demand and the quantities that can be supplied. This is why a multi-scenario
stochastic problem is formulated.
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The instances used in this challenge have a planning horizon of 260 weeks (5 years), with
7 to 21 time-steps per week. The number of power plants rises up to 100 or 70, depending
on the type. In order to model the uncertainty of the input data, up to 120 scenarios are
presented. Several (less than six) checks are conceived for each power plant in this planning
horizon.

2.3 Solution approaches for the FMP and related problems

This section is organized as follows. Section 2.3.1 presents Mathematical Programming (MP)
approaches, including MIP models, graph algorithms, and (heuristic) decompositions based
on MIP or LP models: rolling horizon, column generation among others. Section 2.3.2 lists
Constraint Programming (CP) implementations applied to relevant problems. Section 2.3.3
shows relevant metaheuristics (MH) methods. Finally, Section 2.3.4 presents the hybrid
implementations where two or more of the previous three groups are combined.

2.3.1 Mathematical programming

MP-based approaches have been by far the most common techniques used to solve the MFMP
and similar problems. Most of MP approaches are based on modeling the problem as a
linear programming model consisting on a set of continuous and binary variables related by
linear equations (named constraints) which constitute the valid solution space of any solution.
Finally, a linear objective function on the set of variables is used to distinguish the quality of
each solution and be able to determine the best one. These models are called Linear Programs
(LP) if all variables are real, Integer Programs (IP) if all variables are binary or Mixed Integer
Programs (MIP) in case a combination of real and binary variables exist. In this thesis we
will use MIP to refer to any of the latter two.

For each MIP model, there exist a counterpart LP model, where the only difference is
each binary variable is assumed real. We call this LP model the LP relaxation of the MIP
model. There exist efficient algorithms to find the optimal solution to an LP problem, the
most commonly used is the simplex method. Many techniques build on top of this method
to develop sophisticated solution approaches. The most common approach is the Branch and
Bound (B&B) method, where the binary variables are fixed one at a time in a tree-shape
graph that results in an exponential exploration of the solution space (branching), solving
an LP at each node until an integer solution is found. The efficiency of this exploration is
greatly improved by being able to prune the tree with information from the best valid solution
(integer solution) yet, which imposes an upper bound for the optimal solution (bounding).

Several additional techniques are used to help prune branches of the tree in order to
improve performance. Exact methods, such as probing [151], preprocessing [12] and valid
cuts [84] can achieve reductions of the solution space without taking out any feasible integer
solution (i.e., without loss of optimality). Also, most solvers use a number of primal heuristics
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to efficiently find new integer solutions through the use of the Linear Programming (LP)
relaxation of the problem and incumbents solutions (e.g., RINS, Diving Heuristics, Local
Branching, Feasibility Pump [11, 151, 51, 72]). In Diving Heuristics, a subset of variables is
fixed (usually inspired by the LP relaxation), see [64, 15] for examples of this.

Finally, “a priori” heuristic decisions can be incorporated to guide the whole solution pro-
cess. These heuristics are guided by external information about the problem and correspond
to the fixing of variables and the incorporation of heuristic-cuts (also known as pseudo-cuts,
see [106]) more generally.

The advancements of MIP solvers, both open-sourced and commercial, over the last two
decades [34, 35] make them a very powerful tool for solving a wide range of combinatorial
optimization problems, when the appropriate model is built using the best practices [176, 180].

In the case of the MFMP, techniques employed have usually been a mix of MIP models
and heuristics built on top of those MIP models [153, 85, 98, 99, 100, 77, 78, 174, 116, 152,
48, 146, 55]. More details on hybrid formulations based on MIP are found in Section 2.3.4.

MIP formulations used to solve the FMP problem and the TA problem are grouped in
three categories: String-based models solved by Column Generation (CG) techniques [150],
multi-commodity flow formulations (MCNF) [95] and time-space network (TSN) models [86].
In CG and MCNF, a graph is constructed where each node represents a flight and each arc
represents a feasible sequence of two consecutive flights. A path in this graph constitutes a
feasible schedule for one aircraft for the whole planning horizon. String-based models assign
one path to each aircraft. MCNF assign a set of arcs to each aircraft.

In time-space network models, each node represents the event at which an aircraft arrives
or departs from a flight. Each arc corresponds to a flight leg (where an aircraft changes
airport and the length corresponds to the duration of the flight) or a waiting arc (where the
aircraft remains in the same airport and the length corresponds to the lapsed time before the
next available flight).

In CG techniques, each variable represents a feasible sequence of assignments to an aircraft.
This creates a non-polynomial number of variables with respect with the problem size and
becomes impossible to store in memory for medium to large instances. As a result, a CG
algorithm is used to solve the Linear Programming (LP) relaxation of such MIP. This LP
relaxation is the basis for CG heuristics or exact Branch and Price (B&P) implementations|24,
27].

A key point in the efficiency of a CG scheme is the ability to solve quickly integer sub-
problems, using Dynamic Programming (DP) algorithms such as the Shortest Path Problem
(SPP) [24, 27] and the Shortest Path Problem with Resource Constraints (SPPRC) [150, 148].
These algorithms are also used to solve neighborhoods in hybrid techniques [17] and the
corridor method [158]. The particular appeal of using DP algorithms resides in that they
explore the exponentially large neighborhoods in polynomial time and obtain better local
optimum compared to using traditional local search heuristics with small neighborhoods.
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Other DP algorithms, such as A*, can also be used directly to solve the problem in
question. Deng et al. [60] uses a Dynamic Programming-inspired heuristic to solve the AMS
problem.

Matheuristics that apply heuristics on top of MIP models are used to solve MEMP prob-
lems by variable fixing [55] and splitting the problem by fleet and recombining [116]. Cho
[48] proposes a two-stage MIP matheuristic for the complete problem where the first phase
decides maintenances and relaxes the missions requirements. The second phase decides the
final, discrete, mission assignments.

In large planning problems, where the horizon is divided in discrete periods, rolling horizon
(RH) heuristics are commonly used as a constructive decomposition heuristic, as in [30]. The
FMP problem is no exception, as presented in [124]. A RH heuristic slices a problem into
two or more smaller subproblems with, typically, the same number of periods (time windows
size). The subproblems are ordered according to their time windows. Each iteration solves
one of the newly created subproblems while using the solution of the previous subproblem as
additional constraints in order to guarantee a feasible solution when the last subproblem is
solved. This technique shares several similarities with repair / recovery formulations, which
are common in the planning of flights [70, 97, 91, 178, 94].

The most common traditional methods to solve the NRP have been exact methods, spe-
cially MIP models. MIP-based approaches, including decompositions such as CG and B&P,
are used in [22, 31, 40, 80, 90, 115, 149]. Several heuristic approaches based on CG are also
proposed [25, 163].

With respect to the RSAMP problem, MIP models based on network-flow formulations
are quite common [61, 102, 121, 117, 168]. Lai et al. [102] uses a four-phase matheuristic
based on a network-flow MIP model to solve the RSAMP problem.

In the MSPPNP problem, Lusby et al. [114] constructs a two-phase MP approach where
the first phase consists of a large MIP model that relaxes some constraints; and the second
phase repairs the solution with respect to those relaxed constraints. Jost and Savourey [92]
proposed a three-step matheuristic where the first and second phases decided the mainte-
nances and the third assigned the production planning.

2.3.2 Constraint Programming

CP is a technique born from the artificial intelligence domain, initially conceived to solve
decision problems where a feasible solution is needed. Nowadays, it also permits to model
and solve combinatorial optimization problems. Its main modeling concepts are not too
different from the ones in MP. A set of variables represents decisions and a set of constraints
relate those variables by limiting certain combinations of values. Nevertheless, the similarities
stop here. Each variable is defined by a set of discrete finite possible values, called a domain.
Constraints are not limited to linear equations: they apply any function to a subset of variables
that limits the product of the domains of those variables.
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CP uses deduction (called Constraint Propagation) and induction (called search and back-
tracking) to reduce the non-valid solution space as much as possible by adding constraints
and restricting the domains of each variable. During Constraint Propagation, infeasible values
of a variable domain are detected by combining information from other variables’ domains
and constraints. During search and backtracking, a tree-search is done by temporarily fixing
the value of one or more variables in order to find a solution or prove an infeasible solution.
This search is similar to the branching present in MIP models. When an infeasible value for
a variable is proven, its domain can be reduced, which in turn leads to better propagation.
When a domain of a variable reaches a size of 1, the variable can be fixed to that value. If the
domain of a variable is empty, an infeasible problem is proven. In order to guide the search
towards better solutions, each time a feasible solution is found it is stored and used as an
upper bound to constraint the problem even further.

CP approaches usually perform at its best in highly constrained formulations where the
valid solution space is relatively small. More detail on CP can be found in Marriott et al.
[118], Apt [19], Dechter and Others [56]. In recent years, attempts have done to integrate
CP and MIP under the same discipline. In particular Achterberg [10] presents Constraint
Integer Programming (CIP) as a new paradigm that includes MIP, CP and SAT modeling
and solving techniques combined in a low-level search tree. Combined usage of CP and MP
to solve specific relevant problems is detailed in Section 2.3.4.

In the MEMP problem, there is limited evidence of CP models being used. In the case of
the French Air Force, there is an ongoing collaboration with Airbus Defense and Cosling, the
latter developers of the open source CP solver Choco [138]. The result of this collaboration
is the tool called “OptaForce” [9].

Gronkvist [83] proposes several CP models to solve the TA problem. Gronkvist [82] shows
how CP can used to pre-process and eliminate impossible flight patterns in a CG technique
to solve the TA problem. Gabteni and Gronkvist [74] combines CG and CP to produce
near-optimal solutions for long and mid term planning horizons.

CP models have been particularly prominent in the NRP or personnel scheduling appli-
cations [36, 46, 103, 120, 126, 160, 169].

2.3.3 Metaheuristics

The world of MH is vast, with as many algorithms as species exist in the animal kingdom
[159]. Talbi [164] does a comprehensive study on their nomenclature. In particular, local
search and simulated annealing are cataloged as single-solution based MH (S-metaheuristics)
in contrast with population based MH (P-metaheuristics) such as evolutionary algorithms
and ant colony optimization.

The S-metaheuristics are the most common implementations used to solve the MFMP,
FMP and similar problems and so we will focus on this type. Most search-based MH have a
similar structure: (1) a choice of one or more types of neighborhood to modify a solution, (2)
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a descent step where small changes are explored greedily, (3) an exploration step where local
minima is avoided by expanding the range of the search, and lastly (4) a memory of previous
visited solutions or changes.

Simulated Annealing (SA) first presented in [96], is a technique based on local search
where, at each iteration, a neighbor solution candidate is selected by applying a small change
(or move) to the current solution. The candidate is then compared with the current solution
and accepted to replace the current solution with a certain probability. The probability
depends on several factors such as: the difference in quality between the two solutions; the
temperature, which is a function of the iteration number; and configuration parameters.

Variable Neighborhood Search (VNS), first introduced in [123], combines three steps in
each iteration: first a shaking phase introduces random changes to a solution to produce a
distant neighbor incumbent solution; then a local search step is applied to this new incum-
bent solution; finally, the new incumbent solution becomes the current solution if a certain
condition is reached, e.g., it improves the objective function.

Greedy Randomized Adaptive Search Procedure (GRASP) first presented in Feo and
Resende [69] is a technique based on local search were, at each iteration, a new solution is
build, then locally improved and finally kept or not. The solution creation process involves
applying, at each iteration, a greedy function that varies according to the state of the solution
to select the best N candidates moves and then choses one randomly to apply to the function.
This is repeated until a solution is obtained. The local improvement is done with a greedy
local neighborhood search and stops when the solution can no longer be improved.

In the MFMP problem, Winata [177] uses SA, Tabu Search (T'S) and VNS to generate
fast solutions and compares them with an exact MIP formulation. In the FMP problem,
Murat Afsar et al. [124] use a rolling horizon heuristic solution method where each problem
was solved heuristically by exploring a network representation of the possible flights and
maintenances for each aircraft. In [63], a heuristic VNS approach was used to solve the TA
problem in order to minimize the size of the fleet. For the RSAMP problem, Lin et al. [109]
use Simulated Annealing to plan the long term maintenances of high-speed trains. For the
NRP, S-metaheuristics are the most common techniques used in the last years, namely VNS
[162, 166, 175, 33] and SA [110]. Other techniques used in recent contributions are a hybrid
artificial bee colony [21] and a scatter search approach [42]. Heuristic VNS approaches for
the NRP are found in [127]. For the MSPPNP problem, Gardi et al. [76] provided one of the
best results in the challenge with a pure local search approach.

2.3.4 Hybrid methods

In recent years a growing interest on hybrid MH has motivated the mix of techniques from
different domains in order to achieve performance. Usually, these combinations take advantage
of the strengths of each of the individual techniques and produce a more robust solution
method. Talbi [165] classifies hybrid MH hierarchically according to the level (low-level, high-
level) and the mode (relay, teamwork), resulting in 4 types: LRH (low-level relay hybrid),
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HRH, LTH, HTH (high-level teamwork hybrid).

In the LRH, one possibility described in Talbi [165] is to have an S-metaheuristic call
mathematical programming techniques as very large neighborhood searches (VLNS). These
techniques can be branch and bound, dynamic programming or network flow algorithms. In
Raidl [142], large neighborhood searches (first presented in Shaw [155] with Constraint Pro-
gramming) are described as a frequent choice when combining MH and MIP models. In these
cases, a compact model together with intelligent variable fixing permits an efficient explo-
ration of the neighborhood: MIP models usually perform well with medium-size instances
of problems but often perform poorly on very large ones. Ahuja et al. [16] illustrate differ-
ent ways to use VLNS with exact methods, including mathematical programming, network
flow (i.e., shortest path) and assignment problems specially applied for the TSP. For other
applications of MIP on VLNS, see Lopes et al. [112].

Hybridizing several types of neighborhoods in a VNS approach [87] makes the result more
robust to local optima: a local optimum for the resulting VNS will be the intersection of the
local optimum of all its neighborhoods. The Hill Climbing (HC) version of VNS, known as
Variable Neighborhood Descent (VND), is naturally used to solve MIP problems with a B&B
exploration of neighborhoods defined by MIP variable fixing.

Many hybrid matheuristics are applied to the NRP by combining MP and search-based
MH. Dowsland and Thompson [62] propose a matheuristic based on solving a knapsack model
for a feasible problem and then a combination of Tabu Search (TS) and several graph-
based neighborhoods modeled in DP are used. Smet and Berghe [157] use a MIP-based
VNS matheuristic approach by random fix-and-repair. Other examples of VNS using MIP
computations are [140, 43, 175, 57, 170].

For the MSPPNP problem, several hybrid matheuristics are used. Rozenknop et al. [147]
builds a CG-based two-phase heuristic hybrid algorithm. Dupin and Talbi [65] present a VND
that uses several neighborhoods: time windows, subsets of plants, LP-based variable fixing,
among others. Anghinolfi et al. [18] use a three-phase approach where the first phase finds a
good initial solution for the maintenance decisions with a MIP model, the second improves
the solution with SA and the third phase decides the production planning.

Cakirgil et al. [44] presents a two-phase hybrid heuristic for the NRP. The first phase
is a matheuristic build by four phases: clustering, assignment models, routing models and
re-assignment models. The second phase is a multi-objective reduced VNS matheuristic to
explore non-dominated solutions of the solution of phase one.

In the case of VNS with a CP subproblem applied, examples for the NRP are found in
[141, 139]. In Cipriano et al. [49] a CP model was complemented by local search routines and
Li and Womer [107] use CP in combination with T'S.

For the MSPPNP problem, Gavranovi¢ and Buljubassié [79] iteratively schedule checks
using a CP subproblem, and plans production using a greedy heuristic; then improve the plan
by local search. Likewise, Brandt et al. [37] device a two-phase heuristic where the first phase
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uses a CP subproblem for scheduling checks and the second one a greedy heuristic to produce
a production planning.

Hybrids methods including CP and MIP have been specially present in solving NRP. In
some cases, CP is used in combination with a CG or B&P approach [181, 58, 88], usually as
a subproblem to generate columns. Bertels and Fahle [32] combine CP, MIP and MH and
Coté et al. [53] use CP to inspire alternative MIP formulations.

2.4 Machine Learning applied to Mathematical Programming

Given the success of Mathematical Programming (MP)-based approaches to solve the MEMP
[48, 108, 116, 55, 154], a natural step forward is to explore new ways of improving the perfor-
mance of said MP approaches. New advances in Machine Learning (ML) promise to provide
such improvements.

The application of ML is a recent complement to existing techniques for solving large-scale
CO problems, such as matheuristics and MH [13, 14, 165]. ML models are an heterogeneous
group of techniques that were previously known for predicting results based on past infor-
mation. More recently, though, the surge in popularity of Reinforcement Learning (RL) has
made more explicit the link between the CO and ML worlds [28]. Bengio et al. [29] provide
several definitions and classifications for the implementations of ML that can be applied to the
CO domain. In terms of ML techniques applied to CO the two most common frameworks are
supervised learning and reinforcement learning. With respect to the goal on the application
of ML, Bengio et al. [29] cite three scenarios: end to end learning, learning meaningful proper-
ties of optimization problems, and machine learning alongside optimization algorithms. Talbi
[165] offers an overview of hybrid algorithms by combining MH, MP and ML. More related
to our case, there exists some previous work on applications of ML on MIP formulations.
Following [29], these techniques fall under the category “Learning meaningful properties of
optimization problems” by using “demonstration” (or “imitation learning”). In other words,
supervised learning models are trained with the help of a set of several instances solved (of-
fline) up to or near to optimality by some exact method. This method is sometimes called
“oracle” and usually consists of the original mathematical model solved over a long time and/
or over small instances. The objective is to gain insights on the possible solution of a new
unseen problem. This information can be used directly to guide decision making (as in [71])
or can be used to increase the performance of the existing model (as in [104, 179, 111]).

Xavier et al. [179] show it is possible to learn from the resolution of an offline set of
problems similar to a yet unknown one in order to improve performance by learning features
of the solution. For their CO case, solving large-scale security-constrained unit commitment
problems, three oracles were constructed: one chooses a subset of computationally heavy con-
straints that will probably not be needed; the second selects good candidate initial solutions;
the third one discards part of the solution space without (much) loss of optimality. Here, the
experimentation is done in a training set that corresponds to 300 random variations for each
one of eight existing instances from the literature. The ML techniques used are the polling
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of the training optimal solutions and Support Vector Machines depending on the oracle.

Fischetti and Fraccaro [71] use ML to predict the value of the objective function on
several hard-to-solve instances in order to take strategic decisions without solving the complete
tactical CO problem. The application studied is the choice of the optimal location (strategic)
and design (tactical) distribution of offshore wind parks. The techniques used are a Support
Vector Regression model applied on four features of the input data as well as the optimal
objective function for a relaxed problem. The training set consists of 3000 instances of near-
optimal solutions solved by heuristic means.

In a similar fashion, Larsen et al. [104] use ML to predict the optimal tactical solution for
an operational CO problem. The application studied consists of deciding the configuration
and number of railcars (tactical) and container-slot-railcar assignments (operational) in a
double-stack intermodal railcar load planning problem. In particular, the tactical decision in
question needs to be taken with incomplete information on the instance (namely, the weights of
containers). The method used is a regression feedforward neural network, applied on datasets
of 100k, 200k and 20M instances solved to under 5% of optimality using a commercial solver.

Lodi et al. [111] use ML to predict the similarity of two given instances. The application
studied is a Facility Location Problem. Learning constraints are added in order to force a
new instance to have a minimum number of opened facilities. This number depends on the
number of facilities that were opened in a reference instance (solved to optimality) and how
similar the two instances are.

Dupin and Talbi [66] apply ML to predict if two scenarios will have similar solutions
and applies it to the MSPPNP problem. In the stochastic optimization formulation of this
problem, scenarios are first clustered so that each group has as set of scenarios as diverse as
possible. Then, each cluster is solved independently in order to provide good lower bounds.
The similarity of two scenarios is measured by the sum of absolute differences in their demand
profiles.

In order to predict characteristics of solutions, certain care needs to be taken when dealing
with the possible error in prediction. Most supervised learning methods use a least-squares-
minimization technique (or similar) to calculate the expected value of a function. These
techniques give no information about the distribution of the variance and they can be specially
susceptible to outliers. A more robust technique to predict bounds of dependent variables is
to use “superquantiles” or quantile regressions, which are based in the Conditional Value at
Risk (CVaR). Rockafellar and Uryasev [145] first introduced the term conditional value at
risk in optimization and work by [143, 171, 144] further developed the idea, coining the name
“superquantiles”, and applying it to engineering and reliability decision making.
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2.5 Conclusions

This chapter presented a review of previous work done to solve the FMP, MFMP, related
problems as well as the solution approaches used.

With respect to the civil FMP problem, most work focuses either on the TA problem,
where flights are routed by taking into account maintenance constraints, or the AMS problem,
where maintenances are scheduled with some or all flights remaining fixed. Only a few
actually combine the maintenance scheduling with the flight routing by taking into account
the maintenance capacity and the usage-based maintenance needs. Also, short term instances
are planned with A-type checks and planning horizons of several days.

With respect to the MFMP problem, the common thread between contributions is the
usage-based maintenance scheduling. Missions are sometimes assigned discretely to aircraft
and other times are flight hours that need to be distributed among the fleet. An homogeneous
fleet is usually assumed. Medium term instances are planned with B or C-type checks and
planning horizons of several months.

MP is by far the most common technique to solve the FMP, the MFMP as well as similar
problems. In order to solve large instances, the problem is often split into smaller parts (by
fleet or by calendar) or decomposed into two or more phases. CG and CG-based heuristics
offer an advantage over other types of decompositions by not relaxing the low-level relationship
between flights and checks and thus are usually well-suited to solve many of these types of
problems.

Recently, hybrid methods that combine optimization approaches from different domains
are gaining ground. In particular, MP is currently merged successfully with MH and with ML.
These matheuristics take advantage of the good performance and optimality guarantees of
MP in small and medium-sized problems and the efficiency with which MH and ML represent
and explore the whole solution space.

In the following chapter, we will present a new, long term variant of the MFMP that
includes new features not previously seen in the literature, such as calendar-based checks, the
minimum durations for mission assignments and the extended size of the planning horizon.
Several methods based on MP are conceived that include traditional decompositions, ML-
based learned cuts and hybrid matheuristics.
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In this chapter, the complexity for the long term MFMP is studied. The instance of
a MFMP problem is formalized and then applied in the design of a configurable dataset
generator inspired by the real needs of the French Air Force. An exact MIP model for the
MFMP problem is formulated and used to test scenarios that vary in fleet size, planning
horizon length and mission size in order to obtain insights on the sensitivity of the model to
changes in the problem size. Also, additional scenarios are solved in order to test the changes
in performance of the model because of changes in individual parameters of the MFMP.
Finally, a heuristic is built to generate fast feasible solutions, that in some cases are shown
to help warm-start the model.

The chapter is structured as follows. Section 3.1 formally presents the MFMP problem
and Section 3.2 studies its complexity. Section 3.3 explains all the input data used in this
chapter and the following chapters. Section 3.4 formulates an exact MIP model and Section
3.5 describes a heuristic to generate initial solutions. A description of the instance generation
is done in Section 3.6 and the experimentation and results are presented in Section 3.7.
Finally, Section 3.8 offers conclusions.

The contributions of this chapter were presented in the following communications: F. Peschiera,

A. Hait, N. Dupin, and O. Battaia. A novel mip formulation for the optimization problem of
maintenance planning of military aircraft. In XIX Latin-Iberoamerican Conference on Opera-
tions Research, pages 1-2, Lima, PE, 2018, F. Peschiera, O. Battaia, A. Hait, and N. Dupin.
Bi-objective mip formulation for the optimization of maintenance planning on french mili-
tary aircraft operations. 2018. URL http://oatao.univ-toulouse.fr/20766/. An article
has been submitted for publication: F. Peschiera, A. Hait, N. Dupin, and O. Battaia. Long
term planning of military aircraft flight and maintenance operations. Technical report, ISAE-
SUPAERO, UniversitAl de Toulouse, France, 2020. URL https://arxiv.org/abs/2001.
09856. Finally, a modified version of the heuristic presented Section 3.5 has been tested,
validated and successfully exploited by the company Dassault Aviation on real-life instances
of Mirage 2000 fleets.

3.1 The long term military flight and maintenance planning
problem

Section 3.1.1 formally presents the MFMP problem, including the nomenclature that will
be used for the rest of this thesis. These requirements are the result of several meetings
with specialists in charge of the planning of maintenances in the Mirage 2000 fleet in the
French Air Force as well as maintenance specialists from Dassault Aviation, the company
that manufactures the Mirage 2000. During these meetings, the problem was first described
in detail, then formalized by us, and finally the requirements were validated together. Section
3.1.2 details the realistic assumptions we take based on these exchanges.


http://oatao.univ-toulouse.fr/20766/
https://arxiv.org/abs/2001.09856
https://arxiv.org/abs/2001.09856

3.1. The long term military flight and maintenance planning problem 37

3.1.1 Problem statement

The MFMP problem in question consists of assigning an heterogeneous fleet of military aircraft
i € T to a given set of scheduled missions j € J over a fixed time horizon while also planning
when each aircraft will be conducting checks. Constraints can be classified into three groups:
(1) the missions requirements, (2) the checks that are needed to keep the fleet in good status
and (3) the fleet and its status at any given period.

A series of missions exist along a horizon divided into ¢ € T periods. Each mission j € J
requires a minimum number of aircraft (R;) among the aircraft that can be assigned to it
(¢ € Z;). Each assigned aircraft flies H; hours for each period it is assigned to the mission.
An aircraft assigned to a mission j must be assigned for at least M ijm and at most MT}"**
consecutive periods.

Each check has a fixed duration of M periods and cannot be interrupted: during this time
the aircraft cannot be assigned to any mission. Let Remaining calendar time (rct) express
the maximum number of periods, starting at the beginning of a given time period, before
an aircraft must undergo a check; and Remaining flight time (rft), the maximum number
of flight hours an aircraft can be flown before requiring a check, at the end of a given time
period. The rct (rft) of aircraft i before the first period is Ret!™ (RetI™). After a check, an
aircraft restores its remaining calendar and flight time to their maximum values of E™%* and
H™ respectively. Also after a check, the aircraft cannot undergo another check for at least
E™™ periods. The total number of simultaneous checks during each period cannot surpass
the workshop capacity C™%*.

Let serviceability indicate if an aircraft is capable, at the beginning of a given time period,
to perform a mission (i.e., is not undergoing a check) and let sustainability be the number of
total remaining flight hours for each aircraft at the end of each period. To guarantee both
serviceability and sustainability at each time period, missions are grouped into clusters. For
each cluster k, a minimal number of serviceable aircraft (Agf““)’t) and a minimal sustainability
(HSMst) is set as a constraint for each period t. All serviceable aircraft have a minimum
default usage for each period equal to U™™" flight hours, which they are required to fly when
not assigned to a mission or in a maintenance.

Finally, the main objective is to schedule the checks for all aircraft as late as possible and
to minimize the deviations from all elastic constraints. A secondary objective is to balance
the flying load among aircraft in the fleet so that the variance of the frequency of checks of
each aircraft in the fleet is minimized.

3.1.2 Assumptions

There are constraints that can be violated at a cost per unit of violation. For such elastic
constraints, the violation is bounded within intervals where the cost per unit of violation
within the interval is constant. Multiple bounded intervals permit increasing the cost per
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unit of violation.

Each mission is considered active only during a determined contiguous set of periods.
Missions are assumed to require a constant amount of flight hours per period for each aircraft
and a constant amount of aircraft per period, when active. Each mission j and each aircraft
i have one and only one type Y; and Y;, respectively. We assume a capability to be a set of
optional aircraft characteristics that may be required by a mission. An aircraft can have none
or more capabilities (Q;), a mission can have at most one (Q;) and if it does it is called a
Special mission. An aircraft i is considered suitable for a mission j (i.e., a candidate i € Z;)
if it shares the same type (i.e., Y; =Y;) and has the capability required by the mission (i.e.,
Q; € Qi). A cluster is a set of missions such that each mission has exactly the same type,
capabilities and, as a result, aircraft candidates.

We assume (realistically for our data) a maximum number of two checks for each aircraft
and a minimum of one. Maintenance capacity is constant over the planning horizon. All
checks have the same duration and frequency conditions.

We assume some aircraft (N/™!) are already in maintenance in period ¢ at the beginning
of the planning horizon. Other aircraft are conducting missions that started before the start
of the planning horizon and their continued assignment extends into the planning horizon by
Afjmt (the fixed set of periods aircraft i extends assignment for mission j at the start of the
planning horizon).

3.2 Complexity analysis

In the current Section, a proof of complexity for the MEMP problem is provided. The proof is
organized as follows: Section 3.2.1 presents the Shift Satisfaction Personnel Task Scheduling
Problem (SSPTSP), Section 3.2.2 presents the Reduced Flight Planning Problem (RFPP)
as a special case of the MFMP. Finally, Section 3.2.3 uses the RFPP to solve the decision
problem in the SSPTSP, thus concluding the proof.

3.2.1 Shift Satisfaction Personnel Task Scheduling Problem

The SSPTSP is a NP-Complete problem presented by Arkin and Silverberg [20]. It is a special
case of the Shift Minimization Personnel Task Scheduling Problem (SMPTSP) [101, 156]
where there is no objective function and thus, only the satisfaction of constraints is required.

A description of the problem, input data and model follow, using the notation in Smet
[156]:

Let P = 1,....,n be the set of tasks to be assigned and £ = 1,...,m the set of employees.
Each task p € P has a duration u,, a start time s, and an end time f, = s, + u, . Each
employee e has a set of tasks P, C P that he/she can perform. Similarly, for each task p, a
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set £, C &£ exists, which contains all employees that can perform task p. Both P, and &, are
defined based on qualifications, time windows of tasks and the availability of employees. In a
feasible solution, all tasks in P are assigned to qualified employees from £ in a non-preemptive
manner.

The SSPTSP consists in answering the question: is a planning covering all tasks feasible?

Let Nssprsp be the set of all instances for the SSPTSP. Any instance n € Ngsprsp can
then be expressed by the following notation:

£  employees.

P tasks.

u,  duration of task p.

sp  start time of task p.

fp  end time of task p.

P. set of tasks employee e can perform.

&y set of employees that can perform task p.

Decision variables and model Let binary variable x. take the value 1 if task p is assigned
to employee e and 0 otherwise.

Two tasks p and p’ overlap if their time intervals [s,, fp] and [s,, fyy] overlap. Let a clique
K be defined as a set of tasks that overlap in time and thus cannot be scheduled to the same
employee. K is said to be a maximal clique if there is no other clique K’ that includes K as
a smaller subset, i.e., if there is no other K’ such that K € K’. Let K € C. be the set of
maximal cliques among the tasks P, that the employee e can be assigned to.

The model to solve the SSPTSP is then:

feasibility (3.1)
subject to:
> wpe=1 peEP (3.2)
ecép
> ape <1 ec & K el (3.3)
peK
Tpe € B peEP,ecé, (3.4)

Constraints (3.3) set the number of employees assigned to each task to 1. Constraints
(3.3) guarantee that no overlapping tasks are assigned to the same employee. Constraints
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(3.4) set the bounds for the decision variables.

3.2.2 Reduced Flight Planning Problem

A simplified description of our original problem, that we call Reduced Flight Planning Problem
(RFPP) is drafted so that it complies with the formulation of the SSPTSP.

The RFPP is a MFMP problem with the following characteristics: (1) each mission j €
J requires one aircraft, i.e. R; = 1; (2) missions do not require any flight hours when
assigned and there are no minimum flight hours per period, ie., H; = 0,U™n = 0; (3)
each aircraft has just exited a maintenance before the beginning of the first period and
thus have sufficient initial rct and rft to not need any check during the planning horizon,
i.e., Ret!™t = |T| + 1, RftInt = H™; (4) because of points 2 and 3, there is no need of
scheduling checks and no need of constraining the sustainability and serviceability of each
cluster, i.e., AGst = |Z|, HGMst = 0; (5) aircrafts have no previous fixed assignments, i.e.,
N,gl““ =0, N/™t = O,AZ-I]”“ = (). The objective function of the RFPP is a constant. Any
RFPP instance is thus a particular case of the MFMP problem and so, if the RFPP is NP-
complete, the MFMP problem is also NP-complete.

The RFPP consists then in the following decision problem. Let j7 € J be the set of
missions planned along a horizon of t € T planning periods. Let ¢ € Z the set of aircraft.
Each mission j is active during periods 7; C 7 and requires one aircraft to be assigned at each
period t € 7;. Each assignment of an aircraft ¢ to a mission j has a minimum (maximum)
duration of M ijm (MTj"*) periods. Each aircraft i has a set of missions J; C J that it can
be assigned to. Similarly, for each mission j, a set Z; C 7 exists, which contains all aircraft
that can be assigned to mission j.

The RFPP answers the question: is a planning covering all missions feasible?

Decision variables and model Let binary variable aj; take the value 1 if mission j is

assigned during period ¢ to aircraft ¢ and 0 otherwise. Let binary variable aj;,; take the value

1 if aircraft ¢ starts a new assignment to mission j in period j, i.e., if aj;; =1 and a;;_1); =0
and 0 otherwise.

The model to solve the RFPP is then:

feasibility (3.5)

subject to:
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> aj=1 JjeJ,teT; (3.6)
1€Z;
Afyi = Qjti — (1) t=2,.,T,j € TJpi €L (3.7)
aj-m-Zajti tzl,jG’E,iGIj

> @S < aju je T, t€T;icT (3.9)
tIE«E_JyT
aj,; €B jeTteTiel; (3.10)
aji € B jeJ.teTiel (3.11)

Constraints (3.6) set the number of aircraft assigned to each task j at each period ¢ to 1.
Constraints (3.7-3.8) guarantee that the variable starts are correctly modeled. Constraints
(3.18-3.19) force an assignment to start at period ¢ if aircraft ¢ is firstly assigned to mission
j i.e. aircraft ¢ is not assigned to mission j in period (¢ — 1). Constraints (3.20) control
the minimum duration of a consecutive mission assignment. If aircraft ¢ is firstly assigned
to mission j in period ¢, it has to be assigned to it during the following ¢’ € '7;?/” periods.
Constraints (3.11-3.10) set the bounds for the decision variables.

3.2.3 Reduction

Theorem 1
Finding a feasible solution to the RFPP is equivalent to solving the SSPTSP.

Proof. For each employee e € £ in SSPTSP, we create an analogous aircraft ¢ € Z in RFPP,
we will use e and 4 indistinctly. For each task p € P in SSPTSP, we create a j € J
mission in RFPP, we will use p and j indistinctly. The compatibility between missions and
aircraft is equivalent to that of tasks and employees: J; = P; and Z; = &;. The minimal
and maximal assignment duration time of each mission are equal to the duration of the task
M ijm = MT;"*" = u;. Start times and end times define the moment when the mission is
active: T; =t € {s;...f;}.

Let n € Nrrpp be the set of all instances of problem RFPP. For each instance n €
Nssprsp, an instance n’ = f(n) is created. The details of transformation f are shown in
Table 3.1.

Let:
Qssprsp: for an instance n € Nggprgp: 3 a feasible solution?
Qrrpp: for an instance n’ = f(n): 3 a feasible solution?

Given that an answer to Qrprpp is also an answer to Qgsprsp for each n € Nssprsp
and that SSPTSP is NP-complete, this proves that the RFPP is NP-complete. This, in turn,
proves that the MFMP problem is NP-complete.
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RFPP | Meaning f(n)
teT planning horizon. {min,(sp)... max,(f,)}
1€ aircraft. £
1€ J missions. P
teT; time periods in which task j = p is active. te{sj...fj}
j€J; | missions j € J to be realized in period ¢. jlte{s;...f;}
1 €1; aircraft that can be assigned to mission j = p. &;
jeJd missions for which aircraft ¢ = e can be used. Pi
M ijm minimum number of consecutive periods for task j = p. | u;
MT™** | maximum number of consecutive periods for task j = p. | u;

Table 3.1: Interval scheduling set translation

3.3 Input data

In this Section we explicitly present all sets, parameters as well as many derived sets and
parameters for the MEFMP problem. These same definitions and nomenclature will be shared

among all chapters.

3.3.1 Sets and parameters

Basic sets

=
teT

jieJ

Auxiliary

yey
ke K
ceC

aircraft.

time periods included in the planning horizon. We use t = 0 for starting

conditions and ¢ = T for the last period.
missions.

sets

type of aircraft.
cluster of missions that require the same functionality.
capabilities for missions.
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Mission parameters [units]

flight hours required per period and aircraft for mission j.
number of aircraft required per period for mission j.
minimum number of consecutive periods required for an aircraft
to be assigned to mission j.

maximum number of consecutive periods an aircraft can be
assigned to mission j.

flight hours required per period and aircraft when not assigned
to any mission nor in maintenance.

type of mission j.

optional capability required for mission j.

Maintenance parameters [units]

M

¢max
Emin
Emaz

Hmaa:

number of periods for a check.

maximum number of simultaneous aircraft checks.

minimum number of periods between two consecutive checks
for each aircraft.

maximum number of periods between two consecutive checks
for each aircraft.

maximum number of flight hours between two consecutive
checks for each aircraft.

Fleet parameters [units]

Init
Nt

Clust
th

Clust
Akzt

Clust
Hkt )
thiIMt

Init
Ret;

Y;

number of aircraft pre-assigned to a maintenance check at the
start of period ¢.

number of aircraft in cluster k pre-assigned to a maintenance
check at the start of period t.

maximum number of cluster k aircraft that can be simultane-
ously in maintenance at start of period ¢.

required remaining flight hours for cluster k at end of period t.
remaining flight time for aircraft ¢ from the start of the planning
horizon.

remaining calendar time until aircraft ¢ reaches E™** from the
start of the planning horizon.

type of aircraft i.

[hours]

[aircraft]
[periods]
[periods]

[hours]

[type]
[capability]

[periods]
[aircraft]
[periods]
[periods]

[hours]

[aircraft]
[aircraft]
[aircraft)

[hours]
[hours]

[periods]

[type]
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Index sets

1 €1y aircraft ¢ € Z belonging to type y. One aircraft can belong to
only one type.

jeJy missions j € J belonging to type y. One mission can belong
to only one type.

ce Q; capabilities ¢ € C belonging to aircraft i.

1€ T missions j € J where aircraft ¢ is suitable.

i €1; aircraft ¢ € Z suitable for mission j.

teT; time periods ¢ € T when mission j is active.

je T missions j € J that are active in period t.

1€ Ty aircraft ¢ € Z belonging to cluster k. One aircraft can belong

to more than one cluster.
i€ AZ-IJ”” periods t € T where aircraft i is pre-assigned to mission j.

Note J; and Z; are calculated based on Z,, J,, Q; and @;. For an aircraft 7 to be able
to be assigned to a mission j it needs to share the same type y as the mission and have the
required capability (Q; € Q;).

3.3.2 Time-related index sets

We define several sets based on the input data to simplify the constraint formulation of all
models in this thesis. The equations related to these sets, together with an example, are given
in Appendix A.



3.3. Input data

45

te 7;M1nit
t e ﬁnlnit

teT;
te T

te MM

teTM

te T Mt
(t1,t2) € TTT;
te Ty
(t,t")eTT;
(t1,t2) € TT Tju

(j') ta t/) S \77-72151152

time period options t € T for aircraft ¢ to start its first check.
time periods t € 7 when aircraft ¢ € Z cannot start its first
check.

time periods ¢t € T required for a check that ends in #'.

time periods t € T when a second check cannot start if the first
check starts in period t'.

time period options t € 7 when a second check must start if
the first check starts in period #'.

time periods t < T permitted for a second check to start, given
the first check started in ¢’ and excluding the need for a third
check.

time periods permitted for a second check to start, including
the possibility t = T for not doing a second maintenance.
pairs of time periods t1 € T, 19 € 7;{\4 when a first and second
check can start and the aircraft is in maintenance in period t.
time periods ¢ € T when, if a mission assignment starts, the
assignment continues in ¢'.

set of all possible start ¢ and finish ¢’ combinations for assign-
ment of mission.

allowed assignments for mission j that start (end) at period t;
(t2) and contain period ¢.

allowed mission assignments that start (end) at period ¢ (¢')
for each aircraft ¢ and for each mission j € J; between checks
starting at t; and to.

3.3.3 Auxiliary parameters

To condense notation, we define parameters that aggregate flight hour usage and initial status.

U}, is the flight hour usage for each aircraft between ¢ and ¢’ without taking into consideration
any mission or check assignment. H ]’-tt, is the additional flight hour usage for each aircraft

when assigned to mission j between periods ¢ and t'. AT,

t e Al

Init

it is a binary representation of

Uy =U™"(t —t41)
= (Hy =U™M)(t' =t + 1)
ATInit _ 0t g AZI]mt
gt Init
1 te A

(3.12)
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Total penalty
W

UH,
2 PHy =2
UH,
PHy =1
1 2 3 4

Deviation

Figure 3.1: Example interval deviation for sustainability constraint with |S| = 3.

3.3.4 Interval deviation and objective function parameters

The following parameters are used to penalize the objective function in the model in Chapter
4. The weights are piece-wise linear and non-decreasing. An example of the usage of these
weights is shown in Figure 3.1 where the relationship between the penalty cost PH, and the
maximum deviation UH; is shown. The last interval, i.e., s = 3, has no upper bound.

seS
UA,

PA,
UH,

PH|
UCs

PCy
P2M

interval for constraint violation.
maximum deviation for violating the serviceability limit in in-

terval s.
penalty cost for violating serviceability constraint in interval s.

maximum deviation for violating the sustainability limit in in-

terval s.
penalty cost for violating sustainability constraint in interval s.

maximum deviation for violating the maintenance capacity
limit in interval s.
penalty cost for violating capacity constraint in interval s.

reward per period for the start of the second check.

3.4 Mathematical formulation

[aircraft]
[_penalty 1
aircraft—period

[hours]

[ penalty ]
hour—period
[aircraft]

[ penalty ]

aircraft—period

[ penalty ]
aircraft—period

The following model provides a tight MIP formulation that solves the Military Flight and
Maintenance Problem described in Chapter 3.1. Decision variables for assigning missions and
maintenances are similar to the DCM formulation presented in [48].
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3.4.1 Variables

The following decision variables control the assignment of missions and checks to aircraft.

aj; =1 if mission j € J is assigned to aircraft ¢ € Z; in period ¢t € T, 0
otherwise.
aj,; =1 1if aircraft i starts a new assignment to mission j in period ¢. If

Qjti = 1 and aj(t,l)i =0.
Mt =1 if aircraft ¢ € I starts a check in period ¢t € T, 0 otherwise.

The following decision variables control the used and remaining flight time in aircraft.

(o flight hours (continuous) of aircraft i € I during period t € T.
rfti; remaining flight time (continuous) for aircraft ¢ € I at the end of
period t € T.

Fixed values Note that aj; and m; are initially set up to 0 for all aircraft already in
maintenance at the beginning of the planning horizon for the remaining time periods of the
check. N, is calculated based on this information. Similarly, for aircraft that have not yet
complied with their minimum mission assignment duration at the beginning of the planning
horizon, aji; is fixed to comply with the constraints.

3.4.2 Objective function and constraints

Two objectives have been studied. Objective (3.13) minimizes the number of checks. (3.14)
combines the first one with the goal of maximizing the final total flight hours potential of the
fleet. These objectives do not take into account the balancing of the flight load for the fleet.

Min > ma (3.13)
teT i€l

Min Z mit X H™ — Z TftiT (314)
teT i€l €L

The first term counts all the flight hours given to aircraft following checks and the second
term quantifies the amount of remaining flight hours for all aircraft at the end of the planning
horizon. These two objectives have the same units, can be easily compared and ensure the
aircraft are used in the most efficient way.
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The following constraints are used in the model:

DY mp 4+ N < Cm teT (3.15)
Y eTs i€l

> aji > R; jed,teT, (3.16)
iEIj

domp+ Y ap <1 teT,iel (3.17)
= JETNT:

Maintenance capacity is controlled by (3.15). The aircraft requirements of missions are
defined by (3.16). Constraints (3.17) ensure that an aircraft can only be used for one mission
or undergo check in the same period.

a;ti Z ajti — a’j(t—l)i t = 27 ...7T,j 6 %,'l 6 I] (318)
aSy; > ajei — AT t=1,jeT,icl; (3.19)

> @S < aji jeJ,teT,iel; (3.20)
tIE«E_JyT

Constraints (3.18) captures period ¢ where aircraft i is firstly assigned to mission j i.e. it
is not assigned to it in period (¢ — 1). Constraints (3.19) are introduced for the first period
in the planning horizon.

Constraints (3.20) control the minimum duration of a consecutive mission assignment. If
aircraft ¢ is firstly assigned to mission j in period t, it has to be assigned to it during the

following t' € 7;@4 T periods. This is a stronger version of the constraint a®

i S Giti-

To our knowledge, Constraints (3.18-3.20) have not been taken into account in previous
military MFMP problems.

DT> my + Ny < Agst keKteT (3.21)
YETS i€y

> orfty > Hg™ kekK,teT (3.22)
1€Ty

Constraints (3.21) guarantee a minimum serviceability of aircraft for each cluster k. A
cluster is defined by the largest group of aircraft that is required exclusively for at least one
mission. Constraints (3.22) ensure there is a minimum amount of remaining flight time for
each cluster k.
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uir > Y ajiH, t=1,..,T,iel (3.23)
JETNT;
wig > U™ (1= > my) t=1,...T,ieT (3.24)
tlE']’ts
Uit € [O,mfx{H]}] t=1,...T,iel (325)
Tftit S Tfti(t—l) + Hmaxmit — Ut t= 1, ceey T,i S v (326)
rftio = Rft{™ i€l (3.27)
rfti > H™ mgy teT, V' eTricl (3.28)
rftie € [0, H™] teT,icT (3.29)

The flight time per aircraft and period is calculated in (3.23)-(3.25). The remaining flight
time is defined by (3.26)-(3.27) and its limits by (3.28)-(3.29).

miy +mi <1 teT, ' eT"iel (3.30)
Z My 2> Mt teT,iel (3.31)

t’E'EM]M

mit =0 te Tt ieT (3.32)
> omg>1 icl (3.33)

tefTiMInit

The minimum and maximum calendar times are defined by (3.30) and (3.31) respectively.
Constraints (3.30) guarantee that if a check is done in some period ¢, we know that another
one cannot be done in the immediately consecutive t’ € 7, periods. Constraints (3.31) ensure
that if a check is planned in period ¢, we need to start at least one check in periods t' € T,M.
Constraints (3.32) and (3.33) control the minimum and maximum remaining calendar times
respectively at the beginning of the planning period. They follow the same logic as constraints
(3.30) and (3.31), respectively.

To our knowledge, calendar based constraints such as Constraints (3.30-3.33) have not
been taken into account in previous MFMP problems.

This model will be used in the experimentation done in Section 3.7.

3.5 Heuristic initial solution

In order to improve the performance of the model presented in Section 3.4, a heuristic that
produces fast feasible or near-feasible solutions is devised. These solutions will be used to
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warm-start the MIP solver.

The heuristic consists in a Simulated Annealing heuristic detailed in Algorithm 1. The
stop criteria are two: getting a solution with O errors or an iteration limit. Given the structure
of the constraints and the design of the algorithm, the heuristic does not guarantee a feasible
solution to the problem.

The first iteration ¢ = 1 generates an initial solution by first scheduling random mandatory
checks (see Line 6) and, then, randomly assigning missions as needed (see Line 7). Both
functions are explained in detail in Algorithms 2 and 3, respectively. At each subsequent
iteration ¢ > 2, the solution is first perturbed by removing or moving maintenances and
mission assignments (see Lines 15 and 16), in order to randomly re-schedule checks and then
re-assign missions.

Each candidate selected for releasing in Line 15 consists of a couple (aircraft, period).
These candidates are selected based on the location of errors in the incumbent solution. The
perturbations in Line 16 release a slice of the Z x 7 matrix of mission assignments and checks
schedules. This slice can be a whole row, i.e., free all assignments and checks for aircraft i; a
group of columns, i.e., free all assignments and checks for all aircraft between periods ¢ and
t’; or a combination of the two, i.e., free assignments and checks for subset of aircraft between
periods t and ¢'. The type of release is randomly generated.

After each cycle, the solution is compared with the previous one (see line 9) and is accepted
depending on the difference in quality, a decreasing temperature and a random factor. The
greater the temperature, the greater the probability to accept a new solution that has more
errors than the incumbent.

3.6 Dataset generation

The data set for the numerical experiments is generated on the basis of possible data structures
used by Air Forces. The methodology used in this section is employed to generate all instances
studied in this thesis, although the scenario configuration will vary depending on each study.

In order to generate the data, a formal specification of an instance is done. This specifica-
tion is more general than the standard defined in 3.3 and can be viewed in detail in Appendix
B.

The notation used is the following. A discrete choice of values is indicated by values
separated by commas. Intervals indicate that a value is chosen in a “uniform random way”
from the intervals for continuous values or through random sampling with replacement for
integer values. Values with a * are deterministic control parameters.

The rest of the Section is structured as follows: Section 3.6.1 describes the main parameters
used to generate instances: the length of the planning horizon, the number of active missions
per period and the size of the fleet. Section 3.6.2 covers the maintenance parameter generation,
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Algorithm 1: maintFirst

Data:

z: incumbent solution, err its errors.
z': new candidate solution.

z*: best solution found.

T temperature.

C': maximum iterations.

R: cooldown rate.

1 begin

2 x < Initialize EmptySolution()
3 err < err* < GetErrors(zx)
4 ' —x

5 for c+1to C do
6

7

8

9

x’ « AssignChecks(z")
x' « AssignMissions(x')
err’ < GetErrors(z')
if AcceptanceFunc(err,err’,T) then
10 x,err «— 2’ err’
11 if Y err’ <Y err* then
12 L x* err* «— 2 err’
13 T+ RxT
14 if |err*| = 0 then break
15 C + GetCandidatesReassign(err)
16 a' « Partial Release(x,C)

Algorithm 2: AssignChecks()

1 Data:
x: the current solution

2 begin

3 fori€Z do

4 needs + GetMaintenanceNeeds(x, )

5 T¢ < GetMaintenanceCandidates(x, i, needs)
6 if |[7¢| > 0 then

7 L t < choice(T°)

8

SetMaintenance(x,i,t);
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Algorithm 3: AssignMissions()

1 Data:
x: the current solution

2 begin

3 for j € shuffle(J) do

4 needs <— CheckMissionNeeds(z, j)

5 Z°¢ + GetMissionCandidates(j)

6 while |Z¢| > 0 A |needs| > 0 do

7 i < choice(Z°)

8 T¢ < GetCandidatePeriods(needs, i)
9 if |7¢| =0 then

10 L Z¢.pop(i)

11 for t € shuf fle(T¢) do

12 success < SetMissionAssignment(z,i,t,j)
13 if success then

14 L needs|t] < needs[t] — 1

Section 3.6.3 cover mission parameters and Section 3.6.4 describe the aircraft parameters.
Sections 3.6.5 and 3.6.6 explain the aircraft-mission compatibility, cluster creation and service
levels for availability and sustainability.

3.6.1 Sets

Code Parameter Value

|7F|  Total number of parallel missions* 1, 2, 3, 4
|Z| Number of aircraft™® 15, 30, 45, 60
[T Number of periods* 90, 120, 140

3.6.2 Maintenances

Code  Parameter Value

CPe™¢  Maintenance capacity (percentage)* 0.10, 0.15, 0.2

C™e*  Maintenance capacity [CPeTe x |T]]
E™a%  Time limit in periods* 40, 60, 80
Es*¢  Time limit window* 20, 30, 40
H™*  Flight hours limit* 800, 1000, 1200
E™™  Time limit in periods (Emar — psize)

M Check duration* 4,6, 8
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3.6.3 Missions and flight hours

The total number of types of missions corresponds to the number of parallel missions one
can allow in order to guarantee that, at any moment in time there is only one active mission
for each type. The flight hours are generated using a triangular distribution between 30 and
80 with a mode of 50 and rounded down to the closest integer value. Regarding types and
standards, see Section 3.6.5.

The following logic has been used to generate the missions, assuming N = |JF| active
missions in each period. We create N missions with a random duration that start at period
t = 1. Every time a mission ends, we create a new mission with new random parameters. If
the newly created mission ends after period 7', we make that mission end at period T and
we do not create a new mission. Algorithm 4 shows the logic for the mission generation that
guarantees there are always N active missions at any given time.

Algorithm 4: Mission generation logic
Data:
start: start date for mission.
m: created mission.

1 begin

2 for 1 to N do

3 start < 1

4 repeat

5 m < create_random_mission__at(start)
6 if end(m) > T then

7 L end(m) < T

8 start < end(m) + 1

9 until end(m) =T

Code Parameter Value

|71 Duration (periods) 6-12

MT;™"  Minimum assignment (periods) 2, 3, 6

MT"e®  Maximum assignment (periods)  |7j]

R; Number of required aircraft 2-5

H; Number of required hours triangular(30, 50, 80)
ymin Default assignment flight hours* 0, 5, 15, 20

Y; Type choice 1

Q; Standard 10% chance

3.6.4 Aircraft

Each aircraft has specific characteristics that allow it to accomplish missions. These charac-
teristics are represented by a type and a standard. More detail on types and standards is
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discussed in 3.6.5.

Code Parameter Value

Y; Type choice
Q; Standards choice

Each aircraft has an initial state based on Ret!™* Rft/"" and the fixed assignments At
and checks N M; from the periods previous to the start of the planning horizon. Algorithm 5
summarizes the logic behind the creation of these parameters.

Code Parameter Value

NP Percentage of aircraft starting in maintenance. ™%

Aty Number of periods previously done under mission j 0 —2M TJW"
Ret!™® Remaining calendar time 0 — Emae
Rft"*  Remaining flight time 0— H™e*
NM; Remaining maintenance periods 0-M

The initial states are simulated according to the following rules. (i) NV aircraft are
sampled from the set of aircraft and become the aircraft under maintenance Z" c Z; (ii) for
each sampled aircraft i € ZM | NM; is generated randomly and Ret!™t = gmae R ftinit —
E™% (see Line 4).

For the remaining I —Z* aircraft that are not in maintenance: (i) Ret!™ is first generated
randomly and then Rft/™ is generated randomly from the value of the former (see Line 8);
(ii) for each mission j belonging to the set of missions active at the beginning of the planning
period: R; aircraft are sampled and assigned to each such a mission with At;; previous
assignments (see Line 16).

3.6.5 Mission-aircraft compatibility

Mission compatibility parameters are generated in the following way. For each mission, a type
Y; € Y and a standard Q); € Q are assigned. @); can be null, which implies the mission has
no standard. A minimum number of aircraft of type y is calculated based on } (jeI|Y;=y} R;.

In order to guarantee a feasible number of aircraft to comply with missions, the require-
ments for each type of aircraft are calculated for the whole planning horizon. Then, this
serves as a lower bound on the number of aircraft of each type to create. For the remaining
aircraft, their type is chosen randomly taking the weight of the requirements for each type.
In order to guarantee a feasible number of aircraft per standard, we chose to generate twice
the number of required standards among the aircraft.
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Algorithm 5: Initial status generation logic

N o ok Wy -

© ®

10
11
12

13
14

15
16
17

18
19

Data:

JImit © 7. missions that start at t = 1.

Zirit C 7. aircraft in maintenance before ¢ = 1.

If mit — T aircraft assigned to mission j before ¢ = 1.
U (a,b): discrete uniform distribution between a and b.

begin
NV « |Z| x NP
IM < sample(Z,NV)
for i € 71" do
NM; + U(1, M)
Rctilm't « [max
thilnit « Emaz
for i € 7\ Z{7 do
Ret[™ « U(0, E™)
Ret!’ « RetI™ 4+ 1(-3,3)
if Ret!’ <0 then
L Ret!’ <0
if Ret!’ > T then
| Ret! « o

Rftimit « [Ret!’ x g;’jjjj}

for j € J™* do
Ij["“ — sample(Ij \ Zinit R;)
for i € Z]Imt do

| Atij < U(0,2 x MT"m)
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3.6.6 Cluster and service levels

A cluster is a group of missions where every mission has exactly the same requirements (i.e.
same type and standard). To explain the model input parameters, the following notations are
needed. Let Zj, C 7 represent the aircraft candidates for cluster k and QHy = |Zi| x H™* is
the maximum flight hours for the whole set of aircraft in a given cluster k.

Code Parameter Value

ANK Minimal number of serviceable aircraft per cluster.* 1,2, 3

APK Percentage of serviceable aircraft per cluster.* 0.05, 0.1, 0.2

HPK Percentage of sustainability per cluster.* 0.3, 0.5, 0.7

H ,gl’”t Minimal remaining flight hours for cluster k. HPE x QH,

AClust Minimal serviceable aircraft for cluster k. max { APKQy, ANKY

3.7 Experimentation and results

Following the techniques explained in Section 3.6, a base scenario is conceived. Then, several
scenarios are generated by changing one control parameter at a time during the generation of
instances. Table 3.2 shows the values used to generate the base scenario as well as the derived
scenarios. ‘Base scenario’ corresponds to the default values. ‘Studied scenarios’ corresponds
to the values that are modified to create each scenario.

For each scenario, 50 instances are randomly generated. Among scenarios, the same
position of instance always has the same random seed. This is done so that random differences
between instances in the same position among different scenarios are as small as possible and
comparisons can be more broadly generalized.

The following statistics regarding size, performance and Linear Programming (LP) relax-
ation are obtained for each scenario. With respect to the size of the problem: the average
number of variables (vars), constraints (cons) and non-zero values (non-zero) in the matrix
before the solver starts the branching phase. With respect to the performance of the solution
method: the number of instances with no integer solution after the time limit (no-int), the
minimum (£™), maximum (%) and average (t*“9) solving times and the average gap (g**9)

in %.

With respect to the quality of the linear relaxation and the applied cuts, several differ-
ences are obtained (in %): the LP relaxation against the best solution found (rinit); the LP
relaxation after cuts in the root node against the best solution found (rcuts); and the best
solution found after cuts in the root node against the best solution found (icuts). Finally, the
nodes in the branch and bound it took to prove optimality in the instances where it is proved
(nodes).

All instances are solved using the MIP model described in 3.4. The model is built in
Python with the PulLP library and solved with CPLEX 12.8. All tests are run on a 12-core,



3.7. Experimentation and results 57

Parameter Name Base scenario  Studied scenarios
Esize maintenance calendar time size 30 20, 40
Emox maintenance calendar time 60 40, 80
H™maz maintenance flight hours 1000 800, 1200
crere capacity in percentage of fleet 0.15 0.1, 0.2
M maintenance duration 6 4,8

|JP| number of parallel tasks 1 2,3,4
|T] number of periods in horizon 60 120, 140
ygmin minimum flight hours consumption 0 5, 15, 20
HPK minimum 7r ft per cluster 0.5 0.3, 0.7
max{rft} maximize rft at the end 0 1

Table 3.2: Experiments and studied scenarios.

64 GB RAM machine running Linux Fedora 20 with a CPU speed (in MHz) of 2927.000.

The rest of the current Section presents three experiments, each one uses a group of
scenarios. Section 3.7.1 presents an analysis on the sensitivity of the model to each parameter
of the problem. Section 3.7.2 compares the performance by changing the size of the problem.
Finally, Section 3.7.3 evaluates the contribution of using a generated feasible solution as input
to the MIP model.

3.7.1 Parameter sensitivity analysis

Experiment 1 consisted in analyzing the sensitivity of the model to changes in its input
parameters. Table 3.3 summarizes the performance after solving the model with each scenario.
It can be seen that most instances are solved to optimality, although the resolution times are
close to the imposed 1-hour limit. The variations in the size of the problem are due to the
differences in the solver’s pre-solving capabilities given the fact that these scenarios did not
change the size of the original problem.

The results obtained show that parameters with influence on execution times and in
remaining relative gaps included the ones that regulate the frequency of checks, e.g. the
amount of flight hours between checks (H™%"): increasing available hours, without changing
the flight load, will dramatically reduce solution times. This is seen in Figure 3.2, where
scenarios are shown in the X-axis while the times are shown in the Y-axis. This modification
also has an impact on whether a solution is feasible or not (see Table 3.3). Another parameter
that had a very sensible impact is the minimum amount of sustainability per cluster HPX.
The impact of both of these parameters can also be confirmed via the difference in the average
needed nodes to reach optimality, shown in Table 3.4.

Figure 3.3 shows the gaps obtained (in the Y-axis) for each scenario (in the X-axis).

The minimum consumption of flight hours per period U™™ makes the problem significantly
harder to solve. This can be confirmed both via the remaining gaps, solving times and with
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case gmin t*9  non-zero vars cons no-int inf g*v9
HPX=0.3 1.8 5.2 50976.5 4275.5 6273.0 0 0 0.0
H™*=1200 2.1 76.7  51030.3 4295.0 6298.2 0 0 0.1
Es7e=3() 1.6 172.8 29772.8 3826.1 5120.3 0 3 02
Esize=4() 4.0 266.8 64152.6 4496.1 6994.6 0 1 04
base 2.2 3106 51167.1 4310.7 6315.9 0 1 03
Emer=4() 81 530.9 68612.7 4525.5 7632.9 0 0 02
Emer=80 1.5 1250.6 28257.9 3877.8 5010.4 0 3 19
HPX=0.7 80.7 1746.9  50805.8 4393.9 6320.6 0 42 29
H™*=800 4.4 2168.5 51219.7 4327.2 6327.2 0o 5 27
Umin=5 24.6 2650.3 60950.1 5525.3 8583.6 0 3 43
Umin=2(0 3600.0 3600.0 53562.3 5379.8 8149.6 25 8 5.2
Umin=15 3600.0 3600.0 60716.4 5529.0 8573.6 10 6 6.3

Table 3.3: Experiment 1: summary per scenario sorted by average solving time.

base

umn=5
Umn=20
Umn=15
HPX=0.7
E HP¥=0. 3
§ H"=800
H"=1200
ES=40
ES=20
EV=80
=20 [ F——

0 1000 2000 3000
Solving time

I

Figure 3.2: Box-plot showing the distribution of solution times for each of the instances of
Experiment 1.
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Figure 3.3: Box-plot showing the distribution of relative gaps for each of the instances of
Experiment 1.

several instances where a feasible solution is not found after 1 hour (table 3.3). The effect
is evident even when adding a relatively small quantity of consumption hours (U™"=5),
although a greater impact is correlated with a higher minimum consumption. In addition,
Table 3.3 shows that the solver’s pre-processor is less able to reduce the problem size in these
scenarios than in most of the other ones. Table 3.4 shows how, although the initial relaxation
is particularly bad for these scenarios, the cuts phase (helped by a manual configuration of
the solver) significantly improves the relaxation.

3.7.2 Problem size sensitivity analysis

Experiment 2 studied changes in the problem size and the objective function. First, the
horizon is increased in size by changing the amount of planning periods. Second, the number
of parallel tasks is increased with an equivalent increase in the size of the fleet. Lastly, an
objective function that maximizes the final state in addition to minimizing the number of
checks is tested.

By activating maximization of the end state for the whole fleet (max{rft}=1), the ef-
ficiency of the solving process, measured in solving times, declines significantly. Another
condition with a similar effect is increasing the size of the planning horizon (|7°|=140). Both
scenarios seem to share the same difficulty.

A similar effect is detected when increasing the number of parallel missions |.J*| and the
size of the fleet proportionally. This effect can be explained by the fact that the model size
grows in proportion to the number of parallel missions (see ‘non-zero’ column in Table 3.5).

To summarize, although the model performance seems to deteriorate with larger instances,
the effect in resulting gaps seems to keep a lineal relationship with regards to |J*| and |,
for the studied scenarios and the resulting gaps are still acceptable. See Figure 3.4, where
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case rinit rcuts icuts nodes
base 15.9 1.2 8.0 4335.9
E5i7¢=2() 2.1 0.7 2.9  2999.0

Esize=4() 17.5 2.5 233 4384.3
Emaz—4() 41.0 50 7.3 15172.6
Emar—=g() 45 23 74 46174.8
H™==1200 17.1 0.1 35 121.2
H™*=800 10.3 5.0 17.8 89602.2
HPK=0.3 16.7 0.1 3.1 372.8
HPE=0.7 16.7 9.1 13.5 26534.8
Umin=15 23.8 74 8.0

Umin=30 20.1 6.3 35

Umin=5 18.2 6.8 22.3 13642.6
CPere—=().2 15.1 1.0 88 1386.2

Table 3.4: Experiment 1: mean performance of relaxations per scenario (in % difference).

case rmin t*9  non-zero vars cons no-int inf ¢g*9
base 2.2 310.6 51167.1  4310.7 6315.9 0 1 03
|T'|=120 19.9 376.0 88668.3 5815.8 9161.6 0 6 08
|JP|=2 20.1 1313.9 101572.8  8317.9 12266.2 0 5 08
|T'|=140 44.5 1651.0 115910.9 6738.7 11081.5 0 4 33
max{rft}=1 7.5 2198.8 51167.1 4310.7 6315.9 0 1 16
|JP|=3 62.7 2723.7 157213.7 12907.6 18915.8 1 8 25
|JF|=4 114.7  3228.6 209747.2 17045.4 24947.4 3 9 26

Table 3.5: Experiment 2: summary per scenario sorted by average solving time.
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Figure 3.4: Box-plot showing the distribution of relative gaps for each of the instances of
Experiment 2.

case rinit rcuts icuts nodes
base 15.9 1.2 8.0 4335.9
|JP|=2 151 21 99 10518.1
|JP|=3 16.1 4.0 179 11876.2
|JP|=4 152 38 114 98754
|T|=120 248 104 21.7 52398
|T'|=140 22.4 15.6 23.7 23023.9

max{rft}=1 7.2 3.3 59.3 142925.7

Table 3.6: Experiment 2: mean performance of relaxations per scenario (in % difference).

each scenario (in the X-axis) shows its gap in the Y-axis.

Table 3.6 how the quality of the cuts phased decreases with the size of the planning
horizon, in relaxation quality as in integer solution quality. Also, the number of nodes needed
to find an optimal solution considerably increases in the (|7'|=140) scenario. This is possible
due to the fact that aircraft need a third maintenance in these circumstances and the possible
maintenance combinations grow in a combinatorial sense. Lastly, guaranteeing an optimal
solution appears to prove difficult when considering the final state in the objective function,
as seen in the average number of nodes needed.

3.7.3 Heuristic comparison

Experiment 3 studied the impact of using the heuristic presented in Section 3.5 to generate
fast feasible solutions for instances. These solutions are, firstly, compared to the best available
solutions obtained using the mathematical model (usually optimal) and, later, used as input
in order to warm-start the solution process by the solver.
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base H-
|T|I=140 —{ | ‘
|T|I=120 {D—
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Figure 3.5: Box-plot showing the distribution of solution times for each of the instances of
Experiment 2.

case ty? oty ttw 9 9w %Difg Y%lInity
base 2471 237 183.0 0.2 0.1 22.0 95.9
Umin=s 2417.5  92.8 2364.2 3.8 3.4 19.0 74.5
TP |=2 706.9 862 9769 04 07 220 644
7P|=3 1979.5 217.1 17123 1.6 1.0  23.0 34.1
|JP|=4 3102.1 401.1 2963.7 1.1 1.1 19.5 18.4
|T|=120 247.6 478 305.0 0.5 0.8 19.7 75.0
|T'|=140 1493.3  65.8 1211.7 2.9 1.9 234 87.0
max{rft}=1 2214.1 23.7 21942 1.6 1.7 89.9 95.9

Table 3.7: Comparison of all instances where a feasible solution is found by the heuristic in
a selected set of difficult scenarios.

Table 3.7 shows several ways to properly measure the heuristic’s performance: (1) the

average time it takes to find an initial solution (¢7,7); (2) the relative distance between the

solution found by the heuristic and the best solution found with the MIP model (%Difx);
(3) the probability of finding an initial solution in a short time (10 minutes) (%Inity); (4)

the difference between the original average solving times ¢}’ (average gaps gy;”

i G-

) and the ones
after providing an initial solution ¢

The relative quality seems to depend particularly on the type of objective function being
used (max{rft}=1 scenario) but not so on the size of the problem. On the other hand, the
probability of finding a solution appears to depend on the number of parallel tasks at any
given time. Finally, the average times to find a solution do increase with problem size but
not in a uncontrollable way, especially for increases in planning horizon size.

Secondly, feeding an initially generated solution to the solver slightly increases the solving
process, both in resolution times and in gap, although not in a meaningful quantity. Taking
into account the heuristic performance and impact on resolution, it can be concluded that it
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is particularly useful for longer planning horizons, where the performance remains high and
the impact is also greatest.

Finally, since the solver permitted it, giving a nearly-feasible solution to the solver is
tested. Usually this solution is then repaired by the solver during the cutting phase. No gains
in solution times and gap are observed for these cases.

3.8 Conclusions

This chapter presented a new MIP formulation for the long-term Flight and Maintenance
Planning problem for military aircraft. Its performance is measured by solving an array of
scenarios inspired by real French Air Force needs.

Compared to the existing literature, the problem studied includes several new constraints
while still managing to solve fairly large instances. Also, a complexity proof is presented.

The study shows that the mathematical model’s performance is quite robust with respect
to increases in fleet size, number of missions and the size of the planning horizon. On the
other hand, adding fixed additional consumptions outside of missions proves challenging.

In terms of performance, gains in resolution time are obtained by developing a construction
heuristic that provides starting solutions for the cases where an integer solution is not easily
obtained by the model. It is shown to be potentially useful in scenarios with long planning
horizons.

With respect to extending the model, additional constraints from real world application,
such as long-term storage of grounded aircraft, can be incorporated.

In order to better integrate long term schedules with the existing medium- and short-
term maintenance planning, a matheuristic that alternates between the two problems could
potentially satisfy the needs of the different scopes with a good quality solution that takes
several types of aircraft maintenance into account simultaneously.

Regarding uncertainty treatment, explicit ways to measure the stochastic nature of the in-
put parameters can be implemented. For example, by using robust optimization or stochastic
programming in order to guarantee the feasibility of the solution even in extreme scenarios.

Next chapter will show an alternative solution approach based on Machine Learning aimed
at obtaining a better performance while producing a more balanced maintenance planning,
and thus, more robust to small changes.
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In this chapter, we propose a new solution approach based on a new Mixed Integer Pro-
gram and the use of both valid cuts generated on the basis of initial conditions and learned
cuts based on the prediction of certain characteristics of optimal or near optimal solutions.

These learned cuts are generated by training a Machine Learning model on the input data and

results of 5000 instances. This approach helps to reduce the solution time with little losses in

65
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optimality and feasibility in comparison to alternative matheuristic methods. The obtained
experimental results show the benefit of a new way of adding learned cuts to problems based
on predicting specific characteristics of solutions.

The chapter is structured as follows. Section 4.1 formulates an alternative MIP model for
the MFMP problem. Section 4.2 presents valid cuts and Section 4.3 presents learned bounds
and constraints for this MIP model. Section 4.4 explains the experimentation methodology
and Section 4.5 shows the results of those experiments. Finally, Section 4.6 summarizes the
conclusions.

The contributions of this chapter were presented in the following publications: F. Peschiera,
R. Dell, J. Royset, A. Hait, N. Dupin, and O. Battala. A novel solution approach with
ML-based pseudo-cuts for the Flight and Maintenance Planning problem. OR Spectrum,
pages 1-30, jun 2020. ISSN 0171-6468. doi: 10.1007/s00291-020-00591-z. URL http:
//link.springer.com/10.1007/s00291-020-00591~z; F. Peschiera, N. Dupin, O. Battaia,
and A. Hait. An alternative mip formulation for the military flight and maintenance planning
problem. In Congrés annuel de la société Francaise de Recherche Opérationnelle et d’Aide
d la Décision (ROADEF), pages 1-2, Montpellier, FR, 2020. URL https://oatao.univ-
toulouse.fr/26033/.

4.1 Alternative mathematical formulation

This section presents the base model: the decision variables, constraints and objective func-
tion. With respect to the model on chapter 3.4, it models both mission and maintenance
assignments as start-stop assignments.

4.1.1 Variables

The following binary decision variables prescribe the assignment of missions and checks to
aircraft.

a;jrr  has value one if aircraft ¢ starts an assignment to mission j at the beginning
of period t and finishes at the end of period t’, zero otherwise.

myy  has value one if aircraft ¢ starts a check at the beginning of period ¢t and
then starts the next check at the beginning of period ¢’ or does not have a
second check (' = T'), zero otherwise.

The following continuous auxiliary variables prescribe the status of each aircraft or group
of aircraft.

rftiy  remaining flight time for aircraft ¢ € I at the end of period t € T.
e?ts Deviation in serviceability for cluster k at end of ¢ in interval s.
eﬁs Deviation in sustainability for cluster k at end of ¢ in interval s.

etCS Deviation in maintenance capacity at end of ¢ in interval s.


http://link.springer.com/10.1007/s00291-020-00591-z
http://link.springer.com/10.1007/s00291-020-00591-z
https://oatao.univ-toulouse.fr/26033/
https://oatao.univ-toulouse.fr/26033/
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4.1.2 Objective function and constraints

The main objective function (4.1) expresses the difference between the total deviation from all
goals on serviceability, sustainability and maintenance capacity and the mean starting time

of the second maintenance.

Min ZPASXGI‘?tS—l— ZPHSXekHts—i— Z PCy x €S,

keK, keK, teT ,s€S
teT, teT,
seS seS
— P2M Z M X t,
1€,
t€7‘ilwlnit’
teTM
Z Mt b + Ntlnzt < cmaT Z eg teT
1€Z, seS
(t1,t2)ETTT:
Z Aijtyto > R] j € j’t € T]
iGIj,

(tl ,tz)ETT\Z't

Z Mty + Z Z Qijtrty < 1 teT,iel

(t1,t2)€ JE  (t1,t2)€
TTT: TiNTi TT Tje

(4.1)

(4.2)

(4.3)

(4.4)

Constraints (4.2) limit the number of unpenalized simultaneous checks. Constraints (4.3)
enforce aircraft mission requirements. Constraints (4.4) restrict each aircraft to at most one

assignment each period.

Z agjey Hyyyr + Uty < R 4 H™ (1 — myy,y,)
Gott)eT T T,
i€t € 7;M1nit7t2 c 7;?4+
Z az’jtt’HJ/‘tt’ + Uélt2 < H™ 4+ H™(1 — mygyey)
(j,t,tl)EJTﬁtth
i € Ity € TMm 4y € TMT
Z az‘jtt’Hg/‘tt’ + Ut/QT < H™ 4+ H™¥(1 — mytyt,)
Gt )eT T Trayr
i€ Ity € TMmi ty € TME

(4.5)

(4.6)

(4.7)

Constraints (4.5) - (4.7) limit the total flight hours of each aircraft before the first check,
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between checks and after the second check.

ST M, + NG < AG 43 el keK,teT (4.8)
1€Ty, s€S
(t1,t2)ETT Tt
ST orfte > HG™ 4> eff, kekteT (4.9)
i€Ly sES

Constraints (4.8) limit the number of unpenalized aircraft from cluster k simultaneously
undergoing a check in period ¢. This measures serviceability. Constraints (4.9) record any
deviation from the remaining flight hour requirement for each cluster k£ and each period ¢.

rfti <ty + H™ Y ma,
(t1,t2)€

TTT:
—U™ — N g, (H - U™ tef{l,. . T}ieTl (4.10)
jEJtm\le
(tl,tz)GTT‘%t
rftiy = Rft]™ t=0ieZ (4.11)
rfty > H™ Y miy, teT,iel (4.12)
(t1,t2)€
TTT:

Constraints (4.10) - (4.12) define the remaining flight time for each aircraft ¢ and each
period t resulting from planned mission and maintenance assignments.

S mgy =1 i€l (4.13)
terriMInit,
veTMT

Constraints (4.13) require maintenance assignments for each aircraft. Each aircraft is
assigned one (if ¢ = T') or two checks over the whole planning horizon.

Yoo i =1 i€T,je,te Alri (4.14)
(t1,62)ETT Tt

Constraints (4.14) require aircraft to comply with pre-assigned tasks during periods in
Alnit,
J
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aijir € B i€L,je T, t,t)eTT; (4.15)
My € B i€ I,te TMme ¢ e TMT (4.16)
rfty € [0, H™] te{0,.,T}iecT (4.17)
e € [0,UA] kekK,teT,seS (4.18)
el e [0,UH,] keK,teT,seS (4.19)
e € [0,UCy] teT,seS (4.20)

Constraints (4.15) - (4.20) declare all the decision variables’ bounds and domains.

4.2 Deterministic bounds and valid cuts

This section presents various levels of cuts and bounds obtained from the initial status of the
fleet and applied to the MIP model in Section 4.1. First, each individual aircraft is analyzed:
at each period (Section 4.2.1), at the start of the planning horizon (Section 4.2.2), and at
the end of the planning horizon (Section 4.2.3). Then, Section 4.2.4 analyzes each group of
aircraft by type and period. Finally, Section 4.2.5 deals with the whole fleet at each period.

4.2.1 Accumulated checks per aircraft and period

For each period ¢, and using the aircraft initial states, we calculate the minimum and maxi-
mum number of checks that an aircraft could have already started and ended at the start of
the period.

We define TM17" € T and TM17%* € T as, respectively, the minimum and maximum
periods for starting the first check for aircraft i. Analogously, TM2/" € T and TM27%* € T
are the minimum and maximum periods for starting the second check for aircraft i.

Using previous notation,

TMl;.nm = mtin {t c 7;M1nit}

TM1* = min{mtax {t e 7;M’"“}, | RftImt jgmin )
. ‘ "

TM27"" = min {t e TTMl;'”'"}

TM2 = min{max {t € Ty b, TMIPT + M + B0 /U™ ]}

To guarantee a feasible solution, the ranges of periods to start the first and second checks
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need not be empty:

TM1; = [TM17" TM1%%) £ ()
TM2; = [TM27", TM2) = ()

Lower and upper bounds for the accumulate number of checks started (M ACCSQ”", M ACCSZT“"” )
and finished (MA®“F" MAe Fmaz) can be pre-calculated for each period using these units.
We name the range M4°S? to represent both the lower level and upper level of the range of
accumulated starts by replacing the terms min and max by b, as in bound.

t < TM1pmes
TM1Pee < ¢ < TM2e
t > TM2mes

Acc gmin __

t < TM1min
TM1™™ <t < TM2mn
t > TM2min

Acc gmazr __

N o= o NP o

MACCFﬁe = MACCSZb(t_M) i€Z,teT,be {min,mazx}

4.2.2 Mission assignments at the start of the horizon for each aircraft

Before aircraft i can undergo its first check (i.e. at t§ = TM17" —1), flight hours for assigned

missions must not exceed its initial remaining flight hours, as represented by cuts (4.21) (a
subset of constraints (4.5) in section 4.1).

Y aijuwHjy + Ul < Rf™ i€ T, tf =TM1M" — 1 (4.21)
(jtt")€
TT Tixes

Clearly, some mission assignments can be discarded because the flight hour usage for

those assignments alone, together with the minimum default usage, is more than the initial
remaining time:
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Qi = 0 (s I> (j?tvt,) € jTﬁltf | thilmt < H]/'tt’ + U{tf (422)

4.2.3 Accumulated checks at the end of the horizon per aircraft

Each aircraft’s lower bound and upper bound of performed checks in the last period (T), is:
[1, 1], [1, 2] or [2, 2], e.g., [1, 2] implies a lower bound of 1 and an upper bound of 2. Let I'M
be the set of aircraft with range [1, 1] and I?M the set of aircraft with range [2, 2].

With certainty on the number of checks, it is possible to enforce this on the decision
variables using the following cuts.

'™ ={ieT|MASp" =1}
I2M — {Z cT ’ MAccS%in — 2}

> mar=1 ie ™M (4.23)
terE_MInit
mar = 0 ie I*M t g T Mt (4.24)

4.2.4 Accumulated checks per aircraft type and period

Both MACCF;;t and MACCSlI-’t from Section 4.2.1 can be aggregated by aircraft type y.

M{ACCS& = Z MA«s?, teT,yeY,be {min,max}
i€y
YM{“F), =" MA“F), teT,ycV,be {min,maz} (4.25)
i€T,

By using the required mission assignments, we calculate the number of checks that fit
until period ¢ (aircraft that are in a mission cannot be in maintenance). Because each mission
demands a specific type of aircraft, this bound is made at the aircraft type level. Let J Rﬁcc
represent the accumulated required number of assignments (in aircraft-periods) for mission
j until the end of period t. Let I R‘;fc be the number of aircraft-periods available for main-
tenance for type y up to period t. Then, YM?CCF;?‘” is an upper bound on the number of
checks that can be finished until the end of period ¢ for all aircraft of type y.
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JRY“= > R; teT,jed
teT;|t <t
IR =TV, x t— > JRj teT,yey
JETy
IR

YM?CCF;?(W — {

M,J teT,yel (4.26)

By using the mission required flight hours over time, we can calculate how many checks
we need until period ¢. Let YHy"%Cc be the sum of all flight-hour needs of missions of type
y until the end of period ¢. This demand of flight hours can be subtracted from the initial
remaining flight time of the group of aircraft and then divided over the H™%" flight hours
each check provides. Thus, we get a lower bound YMQ“‘CCFJQi” on the number of checks we
need to do for aircraft of type y until period ¢.

YHy = Y (H; — U™") x JRy™ + |I|U], teT,yey
JE€ETy

Y Hje — 2iely, Rt
Hma:p —|

YMéACCF;Zm =T teT,yel (4.27)

So, in this way, we arrive to two lower bounds (4.25 and 4.27) and two upper bounds
(4.25 and 4.26) per period and aircraft type. We then get the maximum and the minimum
respectively to get bounds on the number of checks until period ¢t. Y M ACCFé’t represents the
bound b in the number of total checks since the beginning of the planning horizon for all
aircraft of type y until period t.

YMAchzZnn — max{YMfch;Zm, YM2ACCF$m
Acc rmax __ . Acc rrmax Acc rrmazx
YM Fyt = min{Y M7 Fyt , Y My Fyt

Let QM;;" represent the number of finished checks before the end of period ¢ given t;
and t9 are the start of the first and second checks, respectively.

0 t<t1+M
QMZ%?Z;L: 1 ti+M<t<to+ M
2 t>to+ M

This provides the following cut:
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YMACER™ < N mug, x QM < YMACER®  teT,yedY  (4.28)
i€Ty,
t1€7;]w[nit,
tgeﬁll”“

Cuts (4.28) limit the starts of checks of aircraft of type y in order to have the number of
finished checks to fall between the Y M ACCFé’t bounds.

4.2.5 Accumulated checks per period

The bounds on accumulated checks by type and period defined in section 4.2.4 can be aggre-
gated into the whole fleet.

TM{est =3 yMA“s?, t €T,be {min,max}
yey

TM{“F) =Y Y MA“F!, t € T,b e {min,mazx}
yeY

Additionally, the maintenance capacity together with the maintenance duration offer an
upper bound on the maximum number of checks that can be finished until a given period t.

TMzAchtmaa: _ I_i

] x g teT

Following the same path as in the previous section, we calculate the net upper bound for
maintenance per period.

TMAchtmax — Hlin{TMlAchtmaw, TMéﬁlchtmax}

Which provides the following cut:

TMACF™ < 3" myy, x QMR < TMACF™ ™ teT (4.29)
i€T,
4 67;1\/1177,#7

M+
b2 €Ty
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Cuts (4.29) limit the starts of checks of all aircraft in order to have the total number of
finished checks to fall between the TMAF? bounds.

4.3 Learned bounds and constraints

Learned bounds, as we present them, are similar to deterministic bounds in terms of imple-
mentation: they can be both represented by an additional set of constraints or a reduction in
the set of decision variables. The main difference is that the latter (as presented in Section
4.2) are guaranteed not to remove valid solutions from the solution space while the former
can, and often do, remove valid solutions. The reason for this is that learned bounds do
not focus in the feasible solution space itself but in the statistical distribution of the optimal
or near optimal solution in that space. This, in turn, permits learned bounds to drastically
reduce the solution space even if there is a chance of removing an optimal solution.

Whenever relevant, we use notation similar to that used in Larsen et al. [104]. Let a
particular instance of our problem be represented by the input vector x and the optimal
solution to our problem by y*(x) := arg minycy ;) C(2,y). Where C(z,y) and Y(x) are the
cost function and the solution space respectively. Finally, let g,(y) Vn € {1,.., N} represent
N features from the solution y. Our goal is, then, to predict g,(y*) for each n € {1,..,N}
by means of the input vector x and a function §,(z) learned from matching features on both
input and output data.

Each predicted feature n of an instance’s optimal solution generates one or more pseudo-
cuts that reduce the solution space Y(z). This reduction removes valid solutions from the
solution space and can potentially remove optimal solutions. Following notation in [111],
we refer to these pseudo-cuts as “learned constraints”. The result of applying all learned
constraints thus creates a new solution space )'(z). Let §*(x) be the optimal solution for
this new problem, i.e., §*(z) = arg minyeyr () C(x,y).

It would be desirable that the following holds:

Cla,§"(2)) = Clx, y"(x))

In other words we allow an invalid reduction of the original solution space as long as the
optimal objective function value of the reduced solution space )’(x) is not too far from the
optimal objective function value of the original solution space.

In what is left of this section, we first explain the general case of constraining maintenance
cycles in 4.3.1 and we then present g, (y) and the method to calculate g, (z) using a supervised
learning algorithm in 4.3.2.
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4.3.1 Constraining maintenance cycles

We seek to limit the combinations of possible maintenance cycles (check patterns) for each
aircraft in the fleet. This decision is motivated by: (1) having a check frequency as homoge-
neous as possible among similar aircraft, presented as a second objective in Section 3.1; (2)
improving solution time, by reducing the number of decision variables; and (3) permitting
the creation of a forecasting method that provides the planner with information about the
optimal solution of a given instance without having to solve it.

Let H be the set of constraints to add as learned constraints and D the set of variables
my. For each h € H, let A" € RIPl and v € R. Finally, let D* C D be a selected subset of
variables used in constraint h € H.

Equation 4.30 shows the generic formulation of every possible learning constraint h € H.

> AL xm > " heH (4.30)

meDh

This formulation includes stronger constraints H' C H of the type seen in Equation 4.31.

m=0 heH meD" (4.31)

Other special case where A" € BIP! creates cover-cut-like constraints H” C H of the type
seen in Equation 4.32.

oo om0 heH (4.32)
meDh| AR =1

4.3.2 Predicting maintenance cycle constraints

One key difference among the check patterns for a given aircraft is the distance between the
two checks. We define the distance between two checks as the number of periods that take
place between the end of the first check and the beginning of the second check. The minimum
(maximum) distance between two checks is E™™ (E™%) periods (see Section 3.3.1).

Because the objective function encourages the model to plan the second check as late as
possible (see the Equation (4.1)), the model rewards making the two checks far apart from
each other, avoiding the second check altogether in certain cases.
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Figure 4.1: Response NM (y axis) vs input features pc (x axis) and Init (rows).

In fact, instances where the demand in flight hours is low (e.g., the sum of all flight hours
along the horizon is low), typically have only one check for each aircraft. Contrary to this,
instances with a high demand for flight hours have more checks and the second check is
typically done sooner. A similar relationship can be expected from the initial status of the
fleet. If a given fleet is in good status (e.g., aircraft at the beginning of the planning horizon
haven’t flown that many hours since their last check), one would expect less checks overall
and farther apart. Both the total demand of flight hours and the initial status of the fleet are
known parameters.

This intuition can be formalized via a supervised ML model where a response n is a
function g, (y*) on the optimal maintenance cycle distribution (e.g., in Figure 4.1 the response
is the total number of checks) and the input features are a function on the mission flight
hours demand and the fleet initial status distributions (e.g., in Figure 4.1 the input feature
is the average flight hour demand). Note that the instances used in the figure are solved to
optimality or close to optimality and that “Init: 1/3” includes instances under the percentile
33th for feature Init (as defined in table 4.2) and group “Init: 2/3” includes instances between
percentiles 33th and 66th for that feature.

The method consists in the following. First, we choose a set of candidate responses to
predict. Then, we calculate several input features that we suspect can predict those responses.
Finally, after validating the ML model on said responses and input features, we obtain, for
each response, the subset of input features that best predict the chosen responses and the
function that minimizes the loss function: g, (x).

For our problem, we choose the responses in Table 4.1.

With the following equations:
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NM Total number of checks.

J 1 Average distance between the second check and the end of the
horizon over fleet.

L ¢ Average distance between two checks over the fleet.

Table 4.1: Responses extracted from the solution of any MFMP problem that are predicted
using features from input data for the problem.

we Average consumption per period.

Init Sum of fleet remaining flight hours before first period.

Spec Sum of all special mission flight hours.

Hwc Period that splits total consumption in two equal parts. Can be
fractional.

U% Variance of consumption per period.

maxc Max consumption per period.

Table 4.2: Input features extracted from the input parameters of any MFMP problem that
are used to predict responses from the solution for that problem.

NM = > muw + |7
(3,6t ED|t' <T
1
Hr—t = [l > muw x (T —t)
(3,t,¢')eD
1
My — = m Z Mt X (75/ —t—M)
(i,t,t")eD

After validating the ML model, we obtain the input features in Table 4.2.

Let the consumption in period ¢ be represent by the following:

Cy = Z HjRj teT
JET T

And let JO represent the set of special missions, i.e., that have a capability or where

Qj # 2.

Then the equations for those input features are:
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4.4 Experimentation

Five thousand small (15 aircraft) instances are randomly generated following the method
found in Section 3.6. The sources of randomness are the missions, i.e. the quantity, hour
needs, resource quantities, minimum durations, special requirements; and the initial fleet
status, i.e. remaining calendar time, remaining flight time, special capabilities for each aircraft
at the start of the planning horizon. These instances are used as an input to obtain learned
constraints.

Figure 4.2 shows the distribution on the average distance between checks for all solved
instances. The minimum (maximum) distance allowed for each aircraft in each instance is 30
(60) periods.

3 additional sets of 1000 instances each are randomly generated to test the implementation
of these learned constraints. Each set corresponds to a particular size of fleet: 30, 45 and 60
aircraft.
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In what is left of this section, we first explain the mathematical model implementation and
execution in 4.4.1. We then present the statistical model implementation in 4.4.2. Finally,
all tested mathematical models are explained in 4.4.3.

4.4.1 Mathematical model implementation

Mathematical models are generated using python 3.7 and the PuLP library.

All instances are solved until optimality with a time limit of 1 hour and a tolerance
(absolute gap) of 10. We use CPLEX 12.8 running on single thread Windows 7 with 72
2.3GHz processors and 128 GB RAM workstation. Up to 70 experiments are run in parallel.
CPLEX parameters are optimized for the problem using the CPLEX Tuner tool.

4.4.2 Implementation of learned constraints

Of the 5000 instances, around 1000 instances are discarded in order to build the prediction
model because of having violated soft constraints or having an absolute gap too large (bigger
than 100). The remaining 4084 instances are split into two groups: training (70%) and testing
(30%). The training set is used to train a statistical model. The testing set is used for the
feature selection process.

For forecasting, we test and compare several methods: Linear Regression (LR), Decision
Tree Regression (DTR), Multi-layer Perceptron regression (MLPR), Support Vector Regres-
sion (SVR), Quantile Regression (QR) and Gradient Boosted Regression Trees (GBRT).

Robust predictions involve predicting bounds, or quantiles. Only two implementations
offered the possibility of predicting quantiles: QR and GBRT. Both techniques are found to
have similar effectiveness in predicting the 10% and 90% quantiles. At the end, the former is
chosen because it returned scalar coefficients for every regressor and so is more intuitive to
validate. To build the QR models, python 3.7 is used together with the statsmodels library.

The learning constraint associated with the number of checks is:

S m< NM" - 7| (4.33)
meS
S m>NM -] (4.34)
meSy

Where 81 = {mp € D|t' < T'}. The learning constraint associated to the average lateness
of the second checks would be then:
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ST (T 1) x maw < Y0y x| (4.35)
my €D

ST —t) x mu > iy x |1 (4.36)
My €D

Finally, concerning the mean distance between checks, two types of constraints are devised.
The first type is equivalent to the previous two, limiting the average distance between checks.

Yo (=t = M) xmiy < g, x |1 (4.37)
My €D

S (' —t— M) xmyy > i, x || (4.38)
My €D

The second type, assumes each aircraft has a maximum deviation with respect to the
mean distance between checks in order to limit the combinations of possible checks:

My = 0 miw € DIt —t — M < b, — tol (4.39)
Mgy = 0 My € DIt —t — M > j4 , + tol (4.40)

Figure 4.3 shows the prediction of the upper bound for the mean distance between checks
(ﬂftﬁb_t) plotted against three input features from Table 4.2. Each instance has one black
(blue) point with the actual value (predicted upper bound). For the vertical and horizontal
facets, “1/3” corresponds to instances under the 33th percentile for that feature and “2/3”

to instances between the 33th and the 66th percentile for that feature.

4.4.3 Model experimentation

We call “base” the model described in Section 4.1, “old” the one formulated in Section 3.4
and “base_*” (“old__*”) the various derivatives from each model. The model “base__determ”
refers to the “base” model with deterministic cuts added as described in Section 4.2.

Each learned cuts model involves the combination of two configuration parameters, cor-
responding to two steps during the pattern production. In the first step, we control the
maximum deviation (tol) we allow each individual maintenance pattern to be from the mean
distance between maintenances prediction bounds (see equations (4.39) and (4.40)). In the
second step, we control how many of the previously rejected maintenance patterns should
we incorporate nonetheless to the model, randomly, as a percentage (recyc) of the already
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Figure 4.3: Response uy_; (y axis) vs input features Init (x axis), uwe (columns), uc (rows)
for the over 4000 instances solved.

Scenario tol recyc
base o0 0
base_al 2 0
base a2 0 0
base_a3 —oo 0
base a2r 0 0.2
base a3r —oo 0.2

Table 4.3: All learned cuts models that are based on the “base” model.

reduced number of patterns. The “base” model (tol = co0) has no added cuts. The most
aggressive model (tol = —o00), assumes all aircraft should have the same distance between
checks, equal to the predicted average.

The notation for the learned cuts models is shown in Table 4.3 and they are consistent
between the “base” model and the “old” model. Each consists of a particular combination
of the tolerance for creating patterns (tol) and the percentage of random extra patterns
(recyc). Reducing tol reduces the number of patterns created and increasing recyc increases
the number of patterns recycled (included).

Three additional matheuristics are tested to compare the performance gains offered by
the previously presented learned cuts. The matheuristics are described below:
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base_ flp  The linear relaxation of the “base” model is solved. Only maintenance
patterns with a non-zero value in the relaxed optimal solution are kept
for a second run of the “base” model.

base_ fip2 'The linear relaxation of the “base” model is solved. Only maintenance
patterns that are similar to a pattern with a non-zero assignment (i.e.,
both patterns share the same aircraft and at least one date of the two
checks) are kept for a second run of the “base” model.

base_flp3 The linear relaxation of the “base” model is solved. Let t{ (t}) be the
soonest (latest) check for aircraft ¢ with a non-zero value in the optimal
relaxed solution. Only maintenance patterns that have the first main-
tenance after a tzf and the second maintenance before té are used in the
second run.

4.5 Results

All comparisons presented in this section, with the exception of Tables 4.9 and 4.10, are
done using the medium size dataset (|Z| = 30). We define the following possibilities for the
status of the solution for any problem. Infeasible: problem proven infeasible. IntegerFeasible:
an integer solution is found but not proven optimal before time limit. IntegerInfeasible: no
integer solution is found before time limit. Optimal: difference between relaxation and best
integer solution is less than the absolute gap. Each status is exclusive one from the other (i.e.
they sum the totality of correctly generated instances).

This section is structured as follows. First, Section 4.5.1 briefly analyses the “base” and
“old” models in terms of their performance; Section 4.5.2 presents the results of learned cuts
applied on both models; Section 4.5.3 compares the learned cuts with other more traditional
matheuristic techniques; finally, Section 4.5.4 shows a complete comparison including larger
dataset sizes and alternative variants on the learned cuts.

4.5.1 Comparison between models and deterministic cuts

We compare the “base”, “old” and “base__determ” models with respect to solution time. This
performance is expressed as: (1) the number of nodes that are visited in the branch and bound
phase before proving optimality, (2) the quality of the LP relaxation (before and after the
cuts phase), (3) the capacity to obtain feasible solutions and (4) the time it takes to prove an
optimal solution.

Table 4.4 shows statistics on the status of the solutions returned by each model. The
“old” model is considerably better at obtaining feasible solutions in less than one hour. Table
4.5 shows the quality of the relaxation and the number of nodes needed to obtain an optimal
solution. “nodes” (“time”) is the average number of nodes (solution time) to prove optimality,
“LP_first” (“LP__cuts”) is the average relative distance between the initial LP (LP after root
node cuts) and the optimal. Only optimal instances are counted. The “base” model is
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Indicator base base_determ old
Infeasible 41 44 40
IntegerFeasible 277 289 640
IntegerInfeasible 384 368 29
Optimal 279 280 272
Total 981 981 981

Table 4.4: Comparison of the number of instances per status returned in each model: “base”,
“old” and “base_determ”.

Indicator base base determ old
LP cuts 0.39 0.54 0.48
LP first 4.93 4.91 22.04
nodes 705.32 692.60 3234.61
time 1031.48 1054.36  996.36

Table 4.5: Quality of the relaxation and number of nodes needed to obtain an optimal solution
in each model: “base”, “old” and “base determ”.

considerably better at obtaining a good initial LP relaxation while also needing considerably
less nodes to prove optimality. With respect to solution times to obtain an optimal solution,
they present a similar performance. The deterministic “base_determ” model offers slight
improvements on the “base” model.

4.5.2 Comparison of learned cuts

In order to assess the merits of the learned constraints, we use several indicators that measure
three main concepts: quality degradation, performance gains and feasibility sensibility.

Figures 4.4 and 4.5 show a summary of the proportion and changes of the status of
the solution for both models, “base” and “old”, respectively, when applied learned cuts. The
number of solutions with an “Optimal” status increases in both cases. With respect to finding
feasible solutions, the “base” model sees a decrease on the number of instances without a
solution (“IntegerInfeasible” status) when adding learned cuts while the “old” model sees a
regression in this respect. Note that the number of infeasible solutions remains almost the
same with the given configuration regardless of the model used.

When adding learned constraints, we eliminate valid solutions from the pool (i.e. these
are invalid cuts or pseudo cuts). This implies there is a risk of taking out the actual optimal
solution. In order to measure the effect of these cuts on the value of the optimal solution, we
measure quality degradation as the distance (in % with respect to the “base”) between the
objective functions in the cases when all models return an optimal status. Figure 4.6 compares
the distribution of such degradations for each case. Only optimal solutions are counted and
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Figure 4.7: The distribution of solution times of each method for all instances.

the right and left side tails representing 10% of the sample are removed for better display. The
degradations of the learned cuts are almost entirely lower than 5% from the “base” optimal.
The “old” model is expected to have a degradation of 0% or close to 0%, which it does.

We measure the performance of each method by comparing the solution time. Figure 4.7
shows the distribution of solution times for each model for all instances. The x-axis represents
the percentile of instances from 0 to 100 and the y-axis the time it takes to solve the slowest
instance in that percentile. It is possible to see how adding the cuts increases performance
and the greatest performance gains are obtained in the “base” model.

Another consequence of these pseudo-cuts is eliminating the complete solution space for
an instance. We quantify this possibility in the following way: the number of new infeasi-
ble instances obtained and the increase on the number of soft constrains violations. Table
4.6 presents the following statistics on feasibility: “IntegerInfeasible — Infeasible” is the
number of additional new infeasible instances which had this status in the “base” model;
“errors_mean” is the average of new soft constraints violations and “errors_new” is the per-
centage of new instances with at least one soft constraint violation, among optimal solutions.
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Indicator base a2r old old a2r
IntegerInfeasible — Infeasible 5.00 0 2.00
errors_ mean 0.06 0 0.06
errors_ new 2.42 0 4.35

Table 4.6: The impact on feasibility for each method on all instances.
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Figure 4.8: The percentage difference in variance for the distance between checks in alternative
models with respect to the base model.

This shows the number of additional infeasible instances is almost non existent and there is
very little additional instances with soft constraints violations in both models. All new in-
feasible instances are instances that are not proven feasible (“IntegerInfeasible — Infeasible”)
and could potentially be indeed infeasible.

As stated previously, the uniform usage of the fleet is also a factor to take into account
when choosing a correct maintenance planning. Given that the pattern selection is oriented
towards constraining the check patterns that are too far from the predicted mean distance
between checks, it is expected for the variance of this measure to decline. For the cases when
there is more than one fleet type (i.e., for larger instances), the variances of each fleet type
are calculated individually and summed into one single indicator. Figure 4.8 shows how the
variance is greatly reduced in most of the cases, to around half, which results in a more stable
and balanced planning.

4.5.3 Comparison with other matheuristics

The three alternative matheuristics were compared with the learned cuts model in terms of
performance, loss of optimality and loss of feasibility.

Table 4.7 shows the following indicators for optimal solutions: new infeasible instances
per method and per status in the “base” model; the average of new soft constraints viola-
tions (“errors_mean”) and the percentage of new instances with at least one soft constraint
violation (“errors_new”).
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Indicator base_a2r base_flp base_flp2 base flp3
IntegerFeasible — Infeasible 0.00 10.00 8.00 8.00
IntegerInfeasible — Infeasible 5.00 76.00 12.00 10.00
Optimal — Infeasible 0.00 3.00 3.00 3.00
errors mean 0.05 1.97 1.00 1.05
errors_ new 2.31 31.54 23.85 24.23

Table 4.7: Comparison of the impact on feasibility with matheuristic methods.
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Figure 4.9: The distribution of solution times for each method for all 994 instances solved.

One can see that some previously “Optimal” and “IntegerFeasible” solutions in the “base”
model become now “Infeasible”, in contrast with the “base_ a2r” model. Also, these matheuris-
tics introduce many more new soft constraints violations. Figure 4.9 shows the solution time
for each method compared to the base model and to the learned cuts model. In the x-axis is
the percentile of instances from 0 to 100. In the y-axis is the time it took to solve the slowest
instance in that percentile: only the most aggressive of the matheuristics beats the previously
shown learned cuts.

These two results highlight the advantage of using learned cuts over other more standard
matheuristics: they offer a good combination of less degradation in new infeasible solutions
and better performance in solution times.

4.5.4 Summary

Tables 4.8, 4.9, and 4.10 show a summary for each dataset of the gains and costs of applying
different degrees of cuts in models “base” and “old”. Each statistic (“Stat”) is a comparison
between the named model and the “base” model. As a reference, the “old” model results are
also shown and compared accordingly. It is important to note that the “old” model is similar
in feasibility (£, Ey and Infeas), quality degradation (Q,, @ and Qgs) and variance (V)
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Stat base _al base a2r base a3r old old al old a2r old a3r

E, 0.16 0.07 2.28 -0.01 2.27 0.07 2.65
By, 1.02 2.54 10.66 0 10.66  4.57 13.2
Feas  25.96 32.5 33.1 36.22 32.5 35.01 35.11
Infeas 1.21 0.61 1.51 -0.1  1.41 0.21 1.61
Qu 12.97 9.86 27.65 -0.18 5658 6.3 14.4
Qum 2.8 3.65 8.08 0.02  6.36 2.67 5.48
Qos 4.82 7.83 11.17 0.92 9.93 4.14 7.81
T, 16.16  -29.5 -49.53 054  -14.17 -5.2 -30.39
vV, 41.31  -42.56 -60.19 1.83  -93.2  -48.77  -68.45

Table 4.8: Summary table comparing the performance of several options of cuts in scenario
of size |Z| = 30.

Stat base al base a2r base a3r old old al old a2r old a3r

E, 0 0.05 1.49 0 0.68 0.14 2.11
Ey, 0 2.7 10.81 0 2.7 8.11 10.81
Feas 37.01 48.55 54.56 60.58 49.55 55.07 58.48
Infeas 2 0.8 2.3 0 2.4 0.1 1.6
Qu 3.14 4.54 15.68 0.37 7.39 3.73 6.48
Qm 2.8 3.77 9.2 0 7.42 2.69 5.69
Qo5 6.69 10.21 24.39 1.79 11.49 9.74 15.31
T, -8.9 -15.48 -31.64 0.64 -6.62 -1.6 -10.65
V, -41.62 -45.04 -62.71 -2.48  -95.29 -48.84 -68.16

Table 4.9: Summary table comparing the performance of several options of cuts in scenario
of size |Z| = 45

as the “base” model, since both share the same solution space. Thus, the gains in performance
(T, and Feas), and variance reduction (V,,) offered by the learned cuts models need to be
weighted against trade-offs on the former indicators.

All comparisons are done against the “base” model for each option dataset size. E,, and

Lo, refer to the percentage difference in average number of soft constraint violations per
instance and the proportion of new instances with at least one violation, among optimal solu-
tions. Feas (Infeas) refers to the average additional number of feasible (infeasible) instances
obtained as a percentage of total instances (1000). Q,, @ and Qg5 are the average, median
and 95-percentile difference in the objective function when comparing optimal solutions (as
a percentage of the “base”). T}, is the difference in average solution times (as a percentage
of the “base”) for all instances. V), is the difference (as a percentage of the “base”) in the

variance of the distance between checks along the fleet for all instances.

Regarding optimality degradation (@), solutions with learned cuts tend to be 5-6% away
from the real optimal (or the best known solution). By recycling some excluded patterns the
gap can be reduced to less than 4%.
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Stat base a2 base a2r base a3r old old al old a2r old a3r

E, 0 0 0 0 1.92 0 3.92
Eq, 0 0 0 0 7.69 0 15.38
Feas  32.59 36.02 43.18 53.88 37.23  44.7 49.44
Infeas 5.76 1.22 3.44 0.11 3.54 0.61 2.33
Q. 4.57 3.97 7.74 0.63 7.13 2.54 5.28
Qm 3.97 3.15 7.47 0 6.29 2.58 5.3
Qo5 8.38 7.81 13.66 3.42 14.05  4.33 9.5
T, -10.19  -8.26 -18.54 0.74  -448  -0.44 -5.67
v, -50.9 -43.28 -61.98 1.13  -94.89 -47.54  -66.8

Table 4.10: Summary table comparing the performance of several options of cuts in scenario
of size |Z| = 60

Regarding performance, all learned cuts increase the number of instances where a feasible
solution is found in the “base” model: Feas improves by an average difference of 20% to
50% (measured in % of total instances). This is not so in the case of the “old” model, where
performance is lost in this sense. Gains in solution times are also substantial. The average
time (7},) usually improves between 10% to 30%.

Additional infeasible solutions and soft constraints violations (Infeas and FE) increase
with the aggressiveness of the cuts and depending on whether we allow the possibility of
recycling or not. In the cases of less aggressive cuts, most new infeasible instances are not
proven feasible by the “base” model. The impact of recycling in reducing the number of
infeasible instances while keeping most of the performance is to be noted.

Finally, variance reduction (V') between 40% and 60% is usually obtained with most
cut strategies, although recycling reduces slightly the strength of the reduction. The more
aggressive a cut, the most the gain in variance reduction.

Larger instances allow for more aggressive cuts without losing too much feasibility or qual-
ity, as can be seen by comparing the impact of “base_a3dr” across different sizes of instance.
The cuts in the “base” model have greater reductions in solution time than those in the “old”
model, while the cuts in the latter have slightly lower feasibility and quality degradation and
slightly greater variance reductions. This can be explained as the nature of the cuts differs in
each formulation: in the “base” model it consists in reducing the number of variables while
in the “old” model it consists in adding constraints.

The best compromise seems to be reached when adding recycling to aggressive cutting
(“base_a2r” or “base a3r”) depending on the size of the instance. In most of the cases, a
low or very low optimality degradation (@) can be seen together with a low feasibility change
(Infeas, E), compared to both the “base” and “old” models. The performance gains can be
seen in both time to reach an optimal solution (7") and the reduction of the variance (V') of
the usage of the fleet. Finally, compared to the “base” model, the amount of feasible solutions
(Feas) is increased.
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These results encourage the design of more sophisticated ways of predicting patterns in
solutions. Ideally, a function that returns a probability distribution of patterns for each
instance could be trained and then used to sample promising patterns. Our learned cuts
model is a special case where we give a very high priority (a probability of 1) to patterns in
the range of tolerance for the distance between checks and a very low probability (dependent
on the recycling parameter and the total amount of available patterns) to the rest of the
patterns.

4.6 Conclusions

This chapter presents an alternative MIP formulation for the long-term Military Flight and
Maintenance Planning problem. The performance is compared with previous formulations
using cases inspired by the French Air Force. Valid bounds are formulated and tested. A
forecasting model is designed to predict characteristics of optimal solutions based on the input
data and used to create pseudo-cuts. For comparison, several matheuristic that use the LP
relaxation are also applied to reduce the solution space of the problem.

The study shows that predicting characteristics of the optimal solution is a powerful
method to obtain very good solutions that are close to the optimal, in less time and with
very little loss of feasibility. In addition, the prediction also allows consideration of a second
objective without hindering performance. The performance gains of these pseudo-cuts will
depend heavily on the implementation, i.e, on the mathematical model employed and the way
the pseudo-cuts are added to the model.

A comparison with more classical matheuristic techniques highlights the potential benefits
of doing a good trade-off between optimality and infeasibility degradation in the search for
performance.

Further work includes, first of all, researching better ways to predict the optimal patterns
in a solution. Secondly, the application of this technique into problems where pattern can
potentially be used, such as workforce scheduling and cutting stock problems. Furthermore,
this technique can be generalized into a random sampling of patterns where each pattern is
picked with a probability equal to the potential it has to appear in the optimal solution.

In this chapter, patterns were created exclusively from check decisions. Also, the gains
in performance decrease as the size of instances to apply the cuts becomes too large with
respect to the size of the instances used to train the predictions. As a consequence very
large scale instances could not be solved efficiently. Chapter 5 presents an extension of
this pattern concept that includes mission assignment decisions. The result is an explicit
graph-based pattern generation technique that is explored with Dynamic Programming and
implemented into a Variable Neighborhood Descent matheuristic. The goal is to obtain very
good performance when solving very large scale instances.
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This chapter presents an alternative VND matheuristic for the MFMP problem that com-
bines Rolling Horizon (RH) heuristics and graph-based Dynamic Programming (DP) algo-

rithms for local optimizations. This method produces near-optimal solutions faster than

previous exact methods from Chapters 3 and 4.

The chapter is structured as follows. Section 5.1 outlines the solution method, including

the implemented neighborhoods. Section 5.2 formulates a graph representation of the solution

91
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space. Section 5.3 describes the scenario generation and the implementation details and
Section 5.4 provides the results. Finally, Section 5.5 shows the conclusions.

The contributions of this chapter are to be submitted for publication as: F. Peschiera,
N. Dupin, A. Hait, and O. Battaia. Novel graph-based matheuristic to solve the flight and
maintenance planning problem. Forthcoming.

5.1 Solution approach

Variable Neighborhood Descent (VND) is a variant of the more common metaheuristic Vari-
able Neighborhood Search (VNS) [123] presented Section 2.3.3. The main difference is VND
omits the random perturbation phase present in VNS and thus applies the local search phase
to the unmodified current solution.

In our case, the resulting VND approach consists of a series of large local searches, ran-
domly selected, for two neighborhood types. We call these two neighborhood types “SPA”
and “RH”. Let a candidate move be a relatively small part of the solution space that is chosen
to be explored and optimized. In our problem we define a candidate move as a combination
of: (1) a set of consecutive periods 7. C T and (2) a subset of aircraft Z. C Z.

All neighborhoods have in common the use of a slice and repair approach where (1) a
valid solution is taken as input, (2) a candidate move is selected, (3) an exact method is run
on the candidate to repair it and, finally, (4) the solution to the candidate is incorporated
to the solution. The choice of the candidate move in (2) is determined partly randomly and
partly based on the number of soft constraints violations on the current solution. Figure 5.1
summarizes the general solution approach.

The section is structured as follows. Sections 5.1.1 and 5.1.2 describe the solution encoding
and a pattern representation of the solution, respectively. Section 5.1.3 presents the two
neighborhoods: a RH heuristic that solves a MIP model and that we call “RH”; and a
DP algorithm that solves a Shortest Path Problem (SPP) and that we name “SPA”. Finally,
Section 5.1.4 presents several methods, some based on said neighborhoods, to create an initial
solution.

5.1.1 Solution encoding

Let I (T) be |Z| (|T|). Any solution = for the FMP is represented by a matrix A = Z/*T.
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e

A
x = getInitial Solution()
2* =00
t = clock()

h 4

‘(e = getErrors(x)
'Lz = getObjective(x, e)

*

z < 2" Yes —>| N —
=2z
No
v
{clock() —t> tmax]f Yes 4{ End }
{
No

move = choose{ SPA, RH }
Lﬂ, Z. = getCandidate(e, move)

x = move(zx, T, I.)

Figure 5.1: VND matheuristic with two neighborhoods “SPA” and “RH” that returns the
best solution found z* with cost z*after t,,,, seconds.
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aiq aiz - Qg ccc G1T

a1 Q2 -+ Q¢ -°c AT
A=

a;1 a2 Qq.t a; T

arp ar2 -+ arg - AT

Each cell a; € A in the matrix contains one integer value representing the assignment
value of aircraft ¢ at period t¢.

—1 check
aig =40 no assignment

J mission j

In order to know the complete state of a particular aircraft i in period ¢ (i.e., calculate
the r ft;; and rct;;), one needs to explore each cell ay Vi’ < t.

5.1.2 Pattern representation

We define a pattern as a sequence of missions assignments and checks for aircraft ¢ between
periods t and t'. For a pattern to be feasible, it should comply with maintenance rules
regarding flight hours and calendar periods between checks, the initial status of the aircraft,
the periods in which each mission is available, the minimum and maximum durations of
assignments to missions and the capacity of the aircraft to do a particular mission.

Let P represent all feasible patterns for aircraft ¢ between the start of period ¢ and
the end of period t'. If pattern p € P; belongs to solution x, then p and a;; are related as
follows:

p = {ait, Git41, ..., aw } & pE Py ANpE

In particular, any solution x can be completely represented by a set of size |Z| patterns
p; € Pior, one for each aircraft ¢ € Z. In this case, each pattern p; corresponds to a row in
matrix A. The generation of patterns is explained in detail in Section 5.2, where a pattern is
modeled as a path in a graph representation of the solution.
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5.1.3 Neighborhoods

Given a valid initial solution z and a candidate move ¢, two neighborhoods are available to
produce a new solution. Section 5.1.3.1 defines an exact algorithm that solves a SPP, Section
5.1.3.2 describes a generalized RH MIP model.

5.1.3.1 Shortest Path Algorithm

We name this neighborhood “SPA” and consists of a HC heuristic that changes the assign-
ments for a set of aircraft, one aircraft at a time, in order to improve the objective function.
This neighborhood takes advantage of a graph representation of an aircraft’s solution, detailed
in Section 5.2.1.

It does so by finding the shortest path between the extreme nodes of the candidate move
using the existing graph representation for the aircraft. The weights for the edges in the
graph are modified so that the solution to the SPP is also the optimal pattern swap for that
aircraft.

Algorithm 6 presents the logic to find a solution for candidate move ¢ by modifying one
aircraft at a time. First, in Line 3 we calculate the violations of soft constraints without
counting the present aircraft and only for the relevant periods (i.e., ¢t € 7). Then, the state
of the aircraft at periods t° and t¥ is mapped with the equivalent nodes in the aircraft’s graph
in Lines 4 and 5. Function get weight in Line 7 assigns a weight to each arc a according
to the marginal impact on the objective function from including a in the current solution for
aircraft i. The state of aircraft i in period t¥ should be compatible with the periods that
follow t¥ and this implies filtering out some nodes from graph G;. This is done in Line 8,
where a subgraph G’ is created. A new pattern is obtained by solving the SPP on graph G’
in Line 9. Finally, the pattern is applied to the solution in Line 10, replacing the previous
solution for aircraft 4.

More detail on the implementation for the get_weight function can be found in Algorithm
7. Four sources of weights are identified for a given arc a, one for each component of the
objective function. The weights depend on the destination node n = a.Head. Lines (6-8)
increase the weight by PR if aircraft ¢ is not assigned to an unsatisfied mission j at period t.
Lines (9-11) increase the weight by PC' if the aircraft will be in maintenance during a period
when there is no more free maintenance capacity left. Lines (12-16) increase the weight by
PH for each extra flight hour that the aircraft’s clusters k € KC; need to reach their minimum
sustainability constraint, at each period of node n. Finally, Lines (17-18) increase the weight
by T'— n.t* in case node n corresponds to a check.

Figure 5.2 shows an example of a candidate move ¢ of one aircraft being modified by
“SPA”. The candidate move is 7. = {1,2,3,4,5}, Z. = {2}.
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Algorithm 6: SPA(z,Z.,7.)
Data:
x: current solution.
G;: graph for aircraft 7.
G’ filtered graph for aircraft i.
a: arc of graph.
t5: first period in 7.
t#: last period in 7.

begin
for i € shuf fle(Z.) do
err < get_errors_subset(x,Z \ {i},Tc)
source « get_node(Gj,i,t°, x)
sink < get_node(G;,i,t", x)
for a € GG; do
L weight|a] < get_weight(i,a,err)

ES B => IS, SR SURE

8 G’ + filter__graph(Gi,x)
9 pattern <— shortest_path(G}, source, sink, weight)
10 x. Apply(pattern)

SPA
1 1 1..-0-"0\ - 1-.1.1 0 0
(1 =1 -1 -1 0) 111 2 -1)
A=19"7 0 2 2 At =15750 2 2
00 0 0 0 00000

Figure 5.2: Example of a “SPA” neighborhood applied to solution A. in order to obtain
solution A.41.



5.1. Solution approach

Algorithm 7: get_weight(i,a,err)

Data:

i: aircraft.

a: arc of graph.

err: errors per category.

w: total weight of arc.

n: head node of arc a.

T: number of periods in planning horizon.

1

2

3 periods < {n.t5, ..., n.t'}

4 n.rfts <= map(t — r ft;;)Vt € periods

5 w <0

6 for (j,t) € err[R;] do

7 if 1 € Z; Nt € periods An.a <> j then
8 | wew+PR

9 for t € err[C™%*] do

10 if t € periods An.a == —1 then
11 L w <+ w+ PC

12 for (k,t,7 ftrem) € err[HS*!] do
13 if ke K; At enrfts then

14 rft < norfts[t] +rftrem

15 if rft < 0 then

16 | wew+ PH x —rft

17 if n.a = —1 then

18 Lw<—w+T—n.tS

19 return w
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5.1.3.2 Rolling Horizon

We name this neighborhood “RH” and consists of a generalization of the model presented in
Section 4.1 to handle rolling horizons of any size.

In order to adapt it to solve candidate moves, we first build the complete MIP model with
the whole set of variables and constraints for the whole planning horizon and the whole fleet
of aircraft, as we would normally do to solve the entire problem. Then, at each iteration we
(1) initialize the set of variables with the current solution, (2) fix all non-empty assignments
outside of the candidate move, and (3) add additional temporary cuts for the assignments
that cross the boundaries of the candidate move so that the part that falls outside is fixed
while the part inside is set free. Note that this reduced model can schedule checks and assign
missions outside of the boundaries of the candidate move as long as they comply with all
the additional cuts and variable fixes. In practice, the solver pre-solve step eliminates a large
part of the problem, reducing it to an equivalent instance of small or medium size with a
potentially good initial solution.

Given that we use the same objective function as the original problem, an optimal solution
to this neighborhood provides an optimal change to the solution for a given candidate move.

Let t° (tF) be the first (last) period of 7.. Let D(r); be the set of variables of type
r € {m,a} that refer to aircraft 7. Let D(r); C D(r); be the subset of variables that are part
of the current solution, i.e., where m;;» = 1 or a;j;» = 1, indexed by aircraft ¢. Finally, let
t*(d) denote the first period index t and ¢¢(d) denote the last period index ¢’ for some variable
de D(T’)z

For each d € D(r);, if t*(d) and t¢(d) fall outside the candidate move, i.e., t°(d) ¢ 7. and
t¢(d) ¢ 7T., then the variable is fixed. If both fall inside the candidate move, then the variable
is initialized but is not fixed. If only one of the two falls inside the candidate move, two cases
arise: one at each side of the boundary.

If t*(d) falls before the candidate move (i.e, t*(d) < t¥) and t¢(d) falls somewhere inside
the candidate move (i.e., t°(d) € 7.), Constraints (5.1) guarantee that an assignment r (check
or mission) crossing the beginning of the boundary will only change its end period t¢(d) to
somewhere inside 7. while fixing its start period t*(d).

B(r)f = {t*(d)|t*(d) < t¥ At(d) € To Vd € D(r);} ie€Z,re{m,a}
DB(r); = {d € D(r);|t’(d) € B(r); A (ts —1<t°(d) < tE)} i€Z,re{m,a}

Y od>1 i€Z,re€{m,a} (5.1)
DB(r)f

Similarly, the second case where t*(d) € T, and t(d) > t¥ is formulated in Constraints
(5.2).
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S N O O
|
—

Figure 5.3: Example of a “RH” neighborhood applied to solution A, in order to obtain solution

Aot
B(r)¢ = {t¢(d)|t*(d) € T At¢(d) > tF VYo € D(r);} i€Z,re{m,a}
DB(r)¢ = {d € D(r);|(t° < t5(d) <tF + 1) At°(d) € B(r)§} ieZ,re{m,a}
Z d>1 ieZ,re{m,a} (5.2)
DB(r)¢

Figure 5.3 shows an example of a candidate move being modified by “RH”. The candidate
move is 7, = {1,2,3}, T. = {2,3,4}. tS =2, tF = 4. molg € D(m)g and agose € D(a)g are
ﬁxed. alllg € D(a)1 is modiﬁed with B(a){ = {1}, DB(CL)‘{ = {a1111,a1112,a1113, CL1114}.

5.1.4 Initial solution

Three initialization methods were conceived.

The first, a heuristic, consists of calling the “SPA” neighborhood for the whole problem,
ie., SPA(@,Z,T). The second, a MIP model with a time limit, consists of calling the “RH”
neighborhood for the whole problem, i.e., RH(&,Z,T).

The third consists of calling the constructive heuristic we call Greedy Maintenance-First
(“maintFirst”), presented in Chapter 3.5.

5.2 Pattern construction

We will use a network to represent the solution space for each aircraft. Let the state s
of an aircraft be determined by the values of its rft and rct and let an assignment v be
defined by its value a, its start period t* and its end period tf. An assignment v can consist
of a check, a mission assignment or an empty assignment. In this network, each node n
represents an assignment v to an aircraft that ends the assignment in state s (i.e., has state
s at the end of period v.t/ ). An arc (n1,ng) represents a transition between two consecutive
periods (i.e., between ni.tf and ng.t%). Contrary to other network-based representations in
the FMP literature, we keep count of the state of the aircraft in each node with respect to its
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maintenance needs, thus creating a much larger graph that can be explored more efficiently.
This increased level of detail incurs in costs in terms of time and memory during its generation.
These limitations and ways of tackling them are discussed in Section 5.3.4. The concepts of
state and assignment are similar to the definitions of state and decision space in Deng et al.
[60] for the AMS problem. The key differences are: (1) each state in our network includes the
status of a single aircraft instead of the concatenation of status for all aircraft in the fleet,
(2) our assignments include mission assignments in addition to check scheduling, (3) we only
deal with one check type.

In the next sections, the graph representation will be presented in detail. Section 5.2.1
formally describes the definition of each node and arc, Section 5.2.2 presents the way to
create such a graph. Finally, Section 5.2.3 explains how to obtain paths between two nodes
by extracting all paths, randomly sampling them or finding good paths.

5.2.1 Graph representation

A Directed Acyclic Graph (DAG) G(X,V) is created for each aircraft. Each node z € X in
the graph represents the concatenation of a state and an assignment, which we name “status”.
Thus, the node is represented by a unique combination of:

t° assignment starting period.

tf assignment ending period.

a assignment value for each period between the start of ¢* and the end
of tf.

rft remaining flight time after the end of period ¢/.

rct remaining calendar time after the end of period tf.

Each outbound neighbor of a node represents a new status for the aircraft on the imme-
diately next period. This guarantees that the graph will never have any cycles, since we only
consider neighbors that are in the future of the current node and, by construction, that have
not been visited yet.

Figure 5.4 shows an example of a graph. Nodes are plotted with time in the horizontal
axis. Each node shows t°/r ft/rct and a color determined by a: white (empty), gray (check)
and green (mission). Each arc shows a of its head node. The leftmost node is the source and
represents the initial status of the aircraft at the beginning of the first period. The rightmost
node is the sink node and represents the state of the aircraft at the end of the last period (it
is unknown).

5.2.2 Graph creation

In order to generate an explicit graph with all possible status for an aircraft, an exhaustive
exploration of its states and transitions needs to be realized. This search starts in a node
that represents the initial status of the aircraft and that we call source. From this node, we
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Figure 5.4: DAG of status transitions in a horizon of 5 periods.
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apply a depth-first search (DFS) and calculate at each step all the neighbors of the node.

Algorithm 8 shows the procedure executed to create the graph for every aircraft i. The
source node is created in Line 2 from the initial status of aircraft . Then, if the aircraft has
any fixed assignments during the initial periods, graph G is initialized with those states in
Line 5. We also initialize our list of remaining nodes R with the source node or with the fixed
nodes in case they exist. From there, a DFS is started in Line 8: at each iteration, a node n
is removed from the list R. If n belongs to the graph G, it means we have already visited this
node and nothing is done. If n does not belong to G, all its neighbor nodes are calculated in
Line 11 based on maintenance needs and feasible mission assignments. These neighbors are
then added as outbound arcs of node n in G and are added to list R. This is repeated until
list R is empty. Finally, Line 13 adds one artificial node for each assignment combination (°,
t!, a) and one new arc between each existing node in G' and one of these artificial nodes, as
long as they share the same assignment information. By convention, the state of these new
nodes is set to rft = —1,rct = —1. In practice this function creates | X| new arcs, since each
existing node in G shares the same assignment with one and only one new node.

Algorithm 8: CreateGraph(i)
Data:
i: aircraft.
n: current node.
R: list of remaining nodes to visit.
f: fix initial states.
Result:
G: graph, represented by a mapping between nodes and a list of their neighbors.

1 begin
2 n < get__source_node(7)
3 f < get__fixed_states(i)
4 if [f| > 0 then
5 L R < G[n] < get__fized_nodes(f)
else
L R+ [n]
while |R| > 0 do
n < R.pop()
10 if n ¢ G then
11 G[n] < get_neighbors(n)
12 L R.Add(G]n)])
13 G + add__artificial_end_nodes(G)
14 return G
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Table 5.1: All possible patterns (paths) between source and sink nodes in Figure 5.4.

5.2.3 Path extraction

Given a Graph G(X,V), a single path between two nodes 1 € X and zy € X is equivalent to
a pattern, as defined in Section 5.1.2. The set of all paths between two nodes can be obtained
with a DFS. Let t° (t) be the first (last) period in time window 7.. Given an existing feasible
solution a;; € Z, we map the status of an aircraft i at the period +° (t¥) with node x1 (z2).

Take % and z; first. Since the assignment a,;s does not necessarily start and end in period
t%, the assignment start t% < t° and end t%” > t% periods need to be obtained from the
solution. Finally, these periods are used to produce the status of the aircraft: rft = rft,.sn,
ret = retyse, t° = t5', tf =t 4 = ays. In the special case where the assignment is an
empty assignment of duration 1 (i.e., ays = 0), the status mapping is simplified: rft = r ft;s,
rct = retys, t* =t/ =15, a = 0. Node 1 is thus obtained using this status mapping.

For node x5 this procedure needs to be modified since we do not want to fix the end state
of the aircraft. Instead, we obtain the artificial node that corresponds to choosing all nodes
where the assignment in ¢ is the same as the one in the current solution. The status used
for z is thus the following: rft = —1, rct = —1, t5 = t¥ ¢t/ =t a4 = ayp.

Using the example in Figure 5.4, there exist 12 unique paths from source to sink. Table
5.1 shows all those possible patterns for that aircraft: mission assignments (1), checks (-1)
and empty assignments (0).

The DFS procedure can be easily modified to render a limited number of paths at each
time, by stopping the DFS process after a number of paths is returned. This, nevertheless,
results in a biased sampling of the paths since, by construction, the DFS guarantees that
consecutive paths share most of the sequence. In addition to this, by default, most DFS
implementations use the same sequence of choices given the same graph. This approach is,
thus, limited when the size of the sample is small relative to the size of the whole set of paths
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to sample.

Unbiased sampling techniques exist. Take a DAG and pre-calculate the number of paths
that pass through each node in their trip from x; to z2. This operation can be done in O(V),
where V' is the number of edges in between the two nodes. Then, we use this information to
sample one neighbor at each node when iterating from x;. This implies not doing a DFS but
starting each path at z1, which could be inefficient.

Of course, unbiased does not mean good. Another possibility is to take biased samples
of paths in a graph, by giving more probability to arcs that are similar to the paths we are
looking for (i.e., have nodes that are potentially more useful for the solution). This implies
having information about the paths we are looking for from the solution (e.g., the number of
errors in the solution). Doing this avoids having to generate very large samples to get a good
solution.

Finally, instead of sampling for good paths, one can directly choose the best path. This
is easily achieved by giving weights to the arcs so as to obtain the best path that maximizes
the current solution. This implies setting the right weights for the arcs and solving a SPP
(e.g. with Djikstra). This approach is explained in detail in Section 5.1.3.1.

5.3 Experimentation

This section first presents the instances being used for this study in Section 5.3.1. Then, im-
plementation details regarding the model (Section 5.3.2) and graph creation (Section 5.3.3)
are listed. Next, some time and memory considerations when solving instances and gen-
erating the graphs are explained in Section 5.3.4. Lastly, the general configuration of the
neighborhoods is described in Section 5.3.5.

5.3.1 Instance characteristics

Following the method in Section 3.6 which produces random instances of different sizes, several
scenarios are studied, focusing in large instances (i.e., fleets of 60 or more aircraft). The size
of the planning horizon for all instances is set to 90 monthly periods.

In order to make comparisons compatible with the previous mathematical models (that
can only schedule a maximum of two maintenances), the distance between maintenances is not
allowed to be less than half the size of the planning period to guarantee that there will never
exist the possibility to plan three maintenances for one aircraft. As a result, the minimum
(maximum) distance between maintenances is set to 45 (60).

We group instances with the same fleet size in scenarios that are identified by the size
of the fleet. Scenarios for fleet sizes of 60 to 255 aircraft are studied. For each scenario, a
number of random instances is solved. These instances are identified by the seed that is used
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to generate the input data. For studying the initial solution and the quality of neighbors a
single scenario (60) of 10 instances (seeds 81 to 90) is used. For comparing large instances, 6
scenarios (90, 105, 120, 195, 225, 255) of 5 instances each (seeds 8001 to 8005) are studied.

5.3.2 Mathematical model implementation

The mathematical models are generated using python 3.7 and the PuLP library [122] and
are solved using CPLEX 12.10 running on a 12-core, 64 GB RAM machine running Linux
Fedora 20 with a CPU speed (in MHz) of 2927.000. CPLEX parameters are optimized for
the problem using the CPLEX Tuner tool. Threads are limited to 1.

5.3.3 Graph implementation

Graphs are generated once at the beginning of the solving process. These graphs are imple-
mented using python 3.7 and exploited with the graph-tool python library [128]. This library
includes several graph algorithms that are executed using efficient implementations in C+-+
and offers fast numpy array modification of nodes’ and edges’ attributes. A mapping is done
between the nodes in the graph and the status of any given aircraft in order to communicate
graph results to and from the graph representation.

5.3.4 Time and memory considerations

Instances for the initial solution study are solved for 10 seconds. Instances for comparing
neighborhoods are solved for 5 minutes. Larger instances (90 - 255) are solved for 20 minutes.

Generating and storing one graph per aircraft is too expensive both in terms of time and
memory consumption, even after parallelizing the creation of each individual graph. In order
to come across these issues, two changes are implemented. The first one re-uses the same
graph for all aircraft that belong to the same cluster £ € X while maintaining a unique source
node for the initial conditions of each aircraft. The second is joining nodes with similar r ft
(by rounding down). This rounding down eliminates possible nodes and edges and so removes
parts of a valid solution but does not add any non-valid solutions.

The example in Table 5.2 summarizes the size of three graphs in instance 8001 for 90
periods and 30 aircraft with different rounding coefficients. The original size (i.e., no rounding)
is shown with = 0. It is clear that the reduction in the size of the graphs can be considerable:
a 90% reduction in the number of nodes and edges when rounding down rft in each node
to the nearest 50. The final implementation uses a rounding of 50. Since most missions
assignments demand between 10 and 100 flight hours per period and can last several periods,
this aggregation is not too excessive.

These modifications reduce the time to generate the graphs from an average of 10 minutes
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cluster No N5 N10 N50 E(] E5 E10 E50

1 1.154.924 607.637 405.120 125.269 3.578.970 1.894.645 1.267.978 393.549
2 624.470 288.380 185.126  57.759 2.010.881 932.348 598.700 185.074
3 1.520.081 705.793 457.281 147.586 4.794.562 2.230.633 1.448.954 470.375

Table 5.2: Graph sizes in number of nodes (N;) and edges (Ey) for a selected number of
rounding coefficients x.

to an average of 2. These times are excluded from the performance comparison in Section
54.

5.3.5 Choice of parameters for neighborhood implementations

In the case of the “SPA” method, there is limited additional gain to have more than one
aircraft included in the candidate move, so we limit it to one, i.e., we set |Z.| = 1. Because of
the good performance of the method, the time window of the candidate is set to the maximum
possible, i.e. T.=T.

In the case of the “RH” method, the number of aircraft in medium size instances is limited,
following previous experiments in Chapter 4, to between 30 and 60. With respect to the size
of the time window, the limit is set so as to have a chance of including a complete cycle.
This implies having between 20 and 66 periods. Furthermore, we provide the current solution
to warm-start the solving process and we stop the solving after 30 seconds or at 2% gap,
whichever happens first.

5.4 Results

Several methods are tested following the implementations of the neighbors described in 5.1.3:
“SPA”, “RH”, “maintFirst”. The combination of “SPA” and “RH” is called “VND”. When
applying the method “RH” to the whole problem, i.e., solving the exact mathematical model
with CPLEX, we use “MIP”.

The section is structured as follows. Section 5.4.1 evaluates each method in terms of
the speed and quality of the initial solution obtained, Section 5.4.2 compares the quality of
neighborhoods “SPA” and “RH”. Finally, Section 5.4.3 compares the performance of “VND”
with “MIP” in very large instances.

5.4.1 Finding an initial solution

As a consequence of having elastic constraints for all four coupling constraints (maintenance
capacity, serviceability, sustainability and mission assignments), it is relatively easy to find a
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instance maintFirst (%) MIP (%) SPA (%)

81 244204 663550 12922
82 770 1957 87
83 905 3191 138
84 1261 5663 306
85 594 2502 150
86 429 3323 94
87 2163 7813 162
88 2412 12189 937
89 54225 656024 11449
90 1606 11057 511

Table 5.3: Comparison on the relative gap of the initial solution for 10 instances and for each
method.

feasible solution, even if the quality of that solution may be low.

We compare three constructing heuristics in their quality of initial solution. They are:
“SPA”, “maintFirst” and “MIP”, presented in Section 5.1.4. In the case of “maintFirst” and
“MIP” we stop the execution at the time “SPA” takes to find an initial solution, which is 10
seconds for tested instances of size 60. Table 5.3 measures the quality of the initial solution
in each method by comparing it with the best solution found for each of the 10 instances.
Each value is the relative difference between the objective and the best objective found for

that instance, e.g., W x 100 for “MIP”.

In 10 seconds it is difficult for a solver to start the cutting phase, yet alone the branching
phase for a large sized problem. The consequence is the particularly low quality of the initial
integer solutions found by “MIP”. It is worth mentioning that, if given more time and for this
same size of instances, “MIP” is capable of obtaining high quality integer solutions during
the cutting phase, sometimes proving optimality without the need to branch at all. The
relative low performance of “maintFirst” confirms findings by [37, 92]: a decomposition based
on deciding iteratively high-level maintenance decisions and low-level operations is not well
suited to these types of planning problems. As with CG techniques used in [147], “SPA”
provides good neighborhoods that balance the high-level maintenances with the low-level
mission assignments.

As a result, “SPA” beats both “RH” and “maintFirst” by a large margin in obtaining
good quality initial solutions.

5.4.2 Comparing neighborhoods

In order to achieve good quality solutions, a metaheuristic needs to be able to explore the
solution space as much as possible, avoiding local minima. In the case of the VND, this
depends on the size and types of neighborhoods it uses and how well they complement each
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Figure 5.5: The best solution found in the y-axis (in log scale) and the solving time in the
x-axis for each method, stopped at 300 s.

other.

In order to evaluate the “RH” and the “SPA” neighborhoods independently, we generate
an initial solution using “maintFirst” and then proceed to test three cases: (1) only “SPA”,
(2) only “RH”, and (3) both neighborhoods, i.e., “VND”, with a 50:1 probability weight. Each
instance is executed 5 times for each case: each of the five executions had a different seed in
order to control the random number generators for the initial solution and the neighborhoods.
These tests are done in a fleet of 60 aircraft with a solution time limit of 300 seconds. As a
proxy for local minimum, we declare reaching a “stable solution” after 70 seconds without any
improvement in the best solution found. The neighborhoods are configured in the following
way for all tests: “SPA” uses |Z.| = 1 and |7¢| =T. “RH” uses |7;| = 40 and |Z.| = 10.

Figure 5.5 shows how “SPA” quickly gets into a local minimum, usually of good quality.
Each column represents one of 5 random executions for instance 81. “RH” takes longer to
stabilize due to the number of possible neighborhoods being greater and also because each
iteration takes longer. The quality of “SPA” over “RH” neighborhoods is consistent with [65].
“VND” usually provides a good compromise of the two by sharing the speed of “SPA” and
the avoidance of local minima from “RH”.

Figures 5.6 and 5.7 show a comparison on the time it takes to reach a stable solution
for each method and the quality of that solution. In both cases the x-axis represents each
instance. In Figure 5.6 the y-axis is the time. In Figure 5.7 the y-axis is the normalized
objective function value in log scale. Each point corresponds to one of the 5 times the
instance is solved.
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Figure 5.6: Comparison on the time it takes to reach a stable solution for 10 instances solved
5 times each. The x-axis is each method and the y-axis is the time.

It can be seen that “VND” improves substantially the quality of the solution, compared
to “RH” and “SPA”. In addition, “RH” and “VND” usually avoid falling into local minima,
reaching the time limit without falling into a stable solution, while “SPA” does fall into a
local minima in less than the time limit. The y-axis in Figure 5.7 has been normalized by
dividing each value over the smallest one for each instance.

As in [65], this particular combination of neighborhoods provides gains that surpass the
individual advantages of each independent neighborhood. This is achieved because the size
of the neighborhoods is large and because the local minima are not correlated between the
two neighborhoods.

5.4.3 Very large instances

It is uncommon for a fleet of military aircraft to surpass several dozen aircraft. Nevertheless,
in order to test very large instances that could resemble real-life instances of large fleets in

FMP problems, we increase the fleet size to hundreds of aircraft to compare the performance
of “VND” with “MIP”".

Table 5.4 compares the best solutions found after 20 minutes on 5 instances for each large
scenario. The dif column represents % x 100. In more than half of the instances,
“VND” obtains a solution that is at least 25% smaller. In the two instances where it does

not obtain a better solution, “VND” is less than 5% worse than “MIP”.

One of the advantages of using an exact method as “MIP” is the possibility of producing
a global lower bound. We can then compare how far is each method from the lower bound
obtained from “MIP”. Table 5.5 shows the percentage gap of each method from the best
lower bound found in “MIP”. The gap is measured using the solution as a reference, e.g.,

W x 100 for “MIP”. In some of the instances, the difference can be quite small for
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Figure 5.7: Comparison on the quality of the solution when reaching a stable solution for 10
instances solved 5 times each. The x-axis is each method and the y-axis is the normalized
objective function value in log scale.

scenario instance MIP VND dif (%)

90 8001 306658 298621 -2,62
8002 2104420 2035755 -3,26

8003 2514723 988814  -60,68

8004 326232 239640  -26,54

8005 60550 62571 3,34

105 8001 1018262 734363  -27,88
8002 1717329 1171060  -31,81

8003 1833870 14652 -99,20

8004 285501 270783 -95,16

8005 630426 633133 0,43

120 8001  8v41v4 727721  -16,75
8002 1168682 1188695 1,71

8003 974591 696745  -28,51

8004 190291 65045  -65,82

8005 1771422 985650  -44,36

Table 5.4: Comparison on the best solution found for each instance of each scenario by each
method.
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scenario instance MIP (%) VND (%)

195 8001 73,40 6,57
8002 13,73 4,24
8003 12,92 15,46
8004 36,07 16,98
8005 96,48 32,34
225 8001 83,76 21,15
8002 96,00 36,12
8003 41,14 18,99
8004 99,28 28,12
8005 97,45 40,37
255 8001 67,06 33,38
8003 74,89 24,67
8004 80,12 30,89
8005 70,76 28,85

Table 5.5: Percentage gaps between each method and the highest lower bound found by
“MIP”'

“VND” (5%). In most cases the gaps are reduced considerably with the average gap falling
from 67.4% to 24.2% and reducing the maximum gap over all instances from 99% to 40%.

As is expected: as the size of instances gets larger, the increase in relative performance

increases too. Figure 5.8 shows the solving process for “MIP” and “VND”. The gap in the

bestFound—best Bound
ey x 100. Most

of the times, the initial solution provided by “SPA” is better than the best solution found
by “MIP”. Even then, the solution is constantly being improved by the combination of the

y-axis is measured using the best integer as a reference, i.e.,

two complementary neighborhoods: the small continuous improvements (especially at the
beginning) are usually done by the “SPA” neighborhood, while the discrete jumps later in
the solving process are the work of the “RH” neighborhood.

5.5 Conclusions

This chapter describes a matheuristic method to solve the long-term MFMP problem. The
method is based on the combination of a RH technique and a Graph-based DP algorithm. The
performance is compared with other heuristics and with an exact MIP model using CPLEX.

The results show the advantage of formulating a hybrid approach to solving large-scale
combinatorial problems. The method takes advantage of two very different, and thus com-
plementary, neighborhoods to feed a VND. This results in improvements in the quality of the
initial solution, the overall solution time and the quality of the best solution found.

As a consequence of the general approach taken to design the technique, it can be adapted
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Figure 5.8: The percentage gap for the best solution found so far and the solving time for
very large instances between 195 to 255 aircraft.

and applied to the regular (commercial) FMP problem as well as other similar problems such
as the NRP and Rolling Stock Assignment and Maintenance Planning problem.

Further work includes different ways to exploit the graph representation of the solution
space. For example, obtaining the K shortest paths instead of using the shortest (optimal)
one and then sampling one of those good candidate solutions. This sampling could be part of
a GRASP-like heuristic. Another possible extension is to use a fast, biased sampling method
(as in Chapter 4) to obtain enough patterns to build a set covering problem formulation and
solve it as a neighbor alternative to “RH”".

As with other heuristics, this methodology is compatible with parallel computing. For
example, a parallel multi-start algorithm can be used to generate a better initial solution.
Furthermore, each iteration can be turned into a “Best of K” parallel neighbors. Finally,
in order to handle the large amounts of memory required to store the graphs, and in order
to permit a smoother parallel code, a graph database can be used and queried by several
processes in parallel.



CHAPTER 6

Conclusions and future research

Conclusions

This thesis studies the Military Flight and Maintenance Planning problem and provides sev-
eral new methods to solve it efficiently. The MFMP problem has not been frequently con-
sidered in the literature and in this thesis a deep analysis of its structure, complexity and
properties was conducted. A new mathematical formulation was proposed, based on the
French Air Force’s requirements, and included more sophisticated constraints never before
studied together in the MFMP problem.

The first solution approach for this new problem, presented in Chapter 3, is based on a MIP
formulation. The model was able to solve small and medium instances up to optimality or near
to optimality and to provide solutions with reasonable quality for large instances. A sensitivity
analysis was conducted in order to evaluate the impact of the problem’s characteristics and
size on the final performance of the model. In order to improve the performance of this model,
a Simulated Annealing metaheuristic was implemented to find fast initial solutions that are
given as a starting point for the MIP model. The experimental tests provided insights on the
characteristics that most influence the performance of the solution method. Furthermore, the
tests showed the reduction in solution time due to the use of heuristic solutions to warm-start
MIP models.

The second solution approach, presented in Chapter 4, combines a new MIP model, effi-
cient valid cuts, and Machine Learning (ML)-based learned cuts. The new MIP model used
a pattern-like formulation. Such a formulation generates a great number of variables, mak-
ing the problem considerably larger, but due to tighter constraints, the linear relaxation is
improved. The valid cuts used the initial status of the fleet and the relevant information on
the mission requirements. The ML-based learned cuts were trained on thousands of small
instances to find relationships between the input data features and specific characteristics of
the optimal solutions. This learned information was used to apply invalid cuts to the solution
space of large instances. These cuts reduced considerably the problem size without exclud-
ing good quality solutions from the solution space. The numerical tests showed significant
improvements in the performance of the solution process. This work is one of the first in the
field that successfully uses supervised learning techniques to predict characteristics of optimal
solutions on new instances of well-known problems and applies it to MIP models.

The third and last solution approach, presented in Chapter 5, is conceived to handle very
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large instances efficiently. It is based on a Variable Neighborhood Descent (VND) matheuris-
tic that combines two types of exact neighborhoods: a Rolling Horizon (RH) technique and a
Dynamic Programming (DP) algorithm. The DP algorithm used a graph-based explicit enu-
meration of states for each aircraft with respect to the next maintenance. As a consequence,
good quality patterns were efficiently generated for each aircraft by solving a Shortest Path
Problem in a Directed Acyclic Graph. The combination of time-based partitions (RH) and
aircraft-based ones (DP) was shown to be particularly successful at avoiding local minima and
reaching near-optimal solutions in very short time with comparison to exact methods. This
work demonstrates the potential of combining efficient exact methods and metaheuristics to
successfully solve large instances of the MEMP problem.

Future research

The MFMP studied in this thesis is inspired by the French Air Force actual needs of the
Mirage 2000 fleet maintenance scheduling and mission planning. In this regard, many of the
characteristics of the problem are a result of discussions with the DGA and Armée de I’Air.
Nevertheless, some variants of this base problem exist that could be explored. The first one is
the possibility of long term storage of aircraft. This option lets the aircraft its calendar-based
check frequency requirements, i.e., an stored aircraft cannot fly and is “paused” in time and
so does not deteriorate. The second one is using a flexible man-hour maintenance capacity.
This technique, often used in the FMP and medium term MFMP problems implies modeling
the capacity of the maintenance workshop as a total number of working hours per period.

The proof of complexity in Chapter 3 was specific for the long term problem, using min-
imum consecutive assignments of missions to aircraft. This proof is not compatible with
short and medium term formulations where missions are usually continuous assignments of
flight hours per period. Nevertheless, alternative proofs using the scheduling of maintenances
could be explored for these problems. In particular, special cases where the problem becomes
polynomial can be identified. This is probably the case when the mission requirements are
continuous flight hours and the maintenance operations are already planned (a flight planning
problem under maintenance constraints).

When dealing with planning horizons in the size of several years, consideration of uncer-
tainties is crucial. By guaranteeing certain levels of availability and sustainability at each
period per sub-fleet, the solutions found by our methods provide already a certain level of
robustness. Nevertheless, if more information can be available on the uncertainty sources,
the robustness of a solution can be improved using techniques tailored to the nature of that
uncertainty.

The potential of the application of Machine Learning techniques to optimization methods
is considerable. In Chapter 4, our attention was centered on a very specific application of
well known techniques of supervised learning to gain information on the optimal solutions.
Other techniques should also be tested. For example, logistic regression can be used for the
estimation of the probability that a given solution pattern (i.e., variable) takes part in the
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optimal solution. This probability can then be used to sample patterns and, thus, solutions.
Another example is the use of automatic feature-selection techniques to obtain, faster and
easier, a better set of input features to predict the optimal patterns.

Concerning the application of the ML information, a clear separation between the predic-
tion part and the optimization one was maintained: good patterns are first predicted for a
given instance and then used to solve the problem with these insights. An alternative is to
apply the prediction inside of the solution process by sampling patterns as part of a broader
decomposition technique where sampling is used as a first step to solve a subproblem. In this
case, sampling can be adapted by new information coming from the current solution, such as
constraint violations or shadow prices.

Decomposition techniques that can benefit from this kind of sampling are the ones where
the number of decision variables grows exponentially with respect to the problem size. An
evident candidate for this are string representations of variables such as the ones used in CG
decompositions. Another potential good candidate is the one were a very large explicit graph
is built for each possible state of each aircraft.

Directed Acyclic Graphs can actually be used to sample potentially interesting patterns.
By assigning weights to edges and setting a maximum distance K for the extracted patterns,
one can put a floor on the quality of the extracted paths. Then, by carefully choosing the
probabilities to sample neighbors of a node, the result becomes an unbiased sampling of paths
that have a quality better than K.

Finally, such a sampling can be also used for different purposes. One is to pass the sampled
patterns to a set-covering master model that is compatible with the routing constraints found
in FMP and VRP problems. A second option is to integrate the sampled patterns in the
constructive phase of a GRASP heuristic in order to produce many fast and reasonably good
solutions that can later be improved with local search.
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Time-related index sets
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Consider a small example where M = 2,Rct{”it = 5, EMaT = 7 EMin — 4 MTM =
3, MT** =4, T = 15,71 = {4,...,10},Z; = {1} then, the example solution in Figure A.1
should comply with the following;:
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Figure A.1: A solution to the small example problem that is feasible with respect to calendar
constraints on assignments and checks.

TMinat ={2,...,5}

Ts ={2,3}

TM ={7,...,10}

TM ={12,...,14}

T+ ={14,15}

TTTs ={(2,7),...(2,10), (3,8)....(3,11)}

TTh ={(4,6),(4,7),(5,7),(5,8),...,(8,10)}
TTTis ={(4,6),(4,7),(5,7),(5,8)}

T T Ti29 ={(1,4,6),(1,4,7),(1,5,7),(1,5,8),(1,6,8)}

Figure A.1 shows an example solution that complies with the time-related indexed sets.
Aircraft 1 has a first check in period 2 € TMI"” A second check is done in period 9 € ;M.
Also, since (2,9) € TT T3, aircraft 1 is considered in maintenance in period 3. The aircraft
has an assignment to mission 1 in periods (5,8) € T7;. Since (5,8) € TT Ji5, aircraft 1 is
considered assigned to mission 1 during period 5. Finally, since maintenances are done in

periods (2,9), all possible mission assignments between (e.g., (1, 5,8)) should be in J7 T129.



APPENDIX B

Instance data specification

Each instance studied in this thesis has the same standard format specified in Figure B.1. The
structure has been generalized so it can be used and compared with other similar problems:
Tasks (missions), Resources (aircraft) and Maintenances (checks).

The structure allows for several different types of Maintenances, each one with its own
frequency in terms of calendar periods and flight hours, duration and needs of maintenance
resources. Maintenances are done in what we call a Workshop: each workshop has its own
capacity that can vary according to the period in the year and each maintenance can only
be done at its workshop. Finally, there is a dependency between the different maintenances:
there are some (overhaul maintenances) that reset the counters for the others. For this, we
have the ‘affects’ and ‘depends’ attributes.

The initial status of an aircraft “RlInitial” allows for Rct/ (‘elapsed’) and Rft/ (‘used’)

for each aircraft ¢ and each maintenance m. The minimum amount of flight hours done in

each period U/} can vary according to each aircraft ¢ and each period ¢.

Regarding the non-dimensional parameters for an instance, they are the following: num_ period,
start, seed, min__hours_perc and min_ avail percent.
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Figure B.1: Set of data objects that constitute an Instance.
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Résumé — Cette thése étudie le probléme de planification de vol et de la maintenance
des avions militaires. D’abord, nous étudions la complexité de ce probleme d’optimisation.
Puis, nous proposons un modeéle de programmation linéaire en nombres entiers (PLNE) pour
le résoudre. Nous construisons un générateur d’instances et une heuristique pour générer des
solutions initiales. Ensuite, nous appliquons I’Apprentissage Automatique pour améliorer la
performance des modeles PLNE en utilisant des coupes valides générées a partir des condi-
tions initiales et des coupes apprises a partir de la prédiction des caractéristiques de solutions
optimales. Ces coupes sont appliquées & un nouveau modele PLNE. Le résultat est une réduc-
tion du temps de résolution avec peu de pertes d’optimalité et de faisabilité par rapport aux
méthodes matheuristiques alternatives. Finalement, nous présentons une nouvelle matheuris-
tique pour résoudre efficacement des grandes instances. La méthode utilise une descente a
voisinage variable qui combine la programmation dynamique (DP) et I’horizon glissant. La
DP exploite une représentation en graphe de ’espace des solutions de chaque avion. Le ré-
sultat est des solutions rapides et presque optimales, et un passage a 1’échelle efficace pour
des instances de tres grande taille.

Mots clés : maintenance d’aéronefs, planification de vol et maintenance, programma-
tion linéaire aux nombres entiers, matheuristiques, apprentissage automatique, algorithmes
hybrides

Abstract — This thesis studies the long term Military Flight and Maintenance Planning
problem. First, we evaluate the complexity of this optimisation problem. Then we propose a
Mixed Integer Programming (MIP) model to solve it. We develop an instance generator and
a heuristic to generate initial solutions. Furthermore, we apply Machine Learning to improve
the performance of the MIP model by using valid cuts generated on the basis of initial
conditions and learned cuts based on the prediction of characteristics of optimal solutions.
These cuts are applied to a new MIP model. This results in reductions in the solution
time with little losses in optimality and feasibility in comparison to alternative matheuristic
methods. Finally, we present a new matheuristic to efficiently solve large instances. The
method employs a Variable Neighborhood Descent that combines Dynamic Programming
(DP) and Rolling Horizon neighborhoods. The DP is applied to a graph representation of the
solution space for a single aircraft. This results in fast good quality solutions and an efficient
scaling for very large instances.

Keywords: aircraft maintenance, flight and maintenance planning, mixed integer pro-
gramming, matheuristics, machine learning, hybrid algorithms
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