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Abstract

The aim of this thesis is to propose a full vision-based solution to enable autonomous
navigation of a chaser spacecraft (S/C) during close-proximity operations in space ren-
dezvous (RDV) with a non-cooperative target using a visible monocular camera.
Autonomous rendezvous is a key capability to answer main challenges in space engineer-
ing, such as Active Debris Removal (ADR) and On-Orbit-Servicing (OOS). ADR aims
at removing the space debris, in low-Earth-orbit protected region, that are more likely
to lead to future collision and feed the Kessler syndrome, thus increasing the risk for
operative spacecrafts. OOS includes inspection, maintenance, repair, assembly, refueling
and life extension services to orbiting S/C or structures. During an autonomous RDV
with a non-cooperative target, i.e., a target that does not assist the chaser in acquisition,
tracking and rendezvous operations, the chaser must estimate the target’s state on-board
autonomously. Autonomous RDV operations require accurate, up-to-date measurements
of the relative pose (i.e., position and attitude) of the target, and the combination of
camera sensors with tracking algorithms can provide a cost effective solution.
The research has been divided into three main studies: the development of an algorithm
enabling the initial pose acquisition (i.e., the determination of the pose without any prior
knowledge of the pose of the target at the previous instants), the development of a re-
cursive tracking algorithm (i.e., an algorithm which exploits the information about the
state of the target at the previous instant to compute the pose update at the current
instant), and the development of a navigation filter integrating the measurements coming
from different sensor and/or algorithms, with different rates and delays.
For what concerns the pose acquisition phase, a novel detection algorithm has been de-
veloped to enable fast pose initialization. An approach is proposed to fully retrieve the
object’s pose using a set of invariants and geometric moments (i.e., global features) com-
puted using the silhouette images of the target. Global features synthesize the content of
the image in a vector of few descriptors which change values as a function of the target
relative pose. A database of global features is pre-computed offline using the target geo-
metrical model in order to cover all the solution space. At run-time, global features are
computed on the current acquired image and compared with the database. Different sets
of global features have been compared in order to select the more performing, resulting
in a robust detection algorithm having a low computational load.
Once an initial estimate of the pose is acquired, a recursive tracking algorithm is ini-
tialized. The algorithm relies on the detection and matching of the observed silhouette
contours with the 3D geometric model of the target, which is projected into the image
frame using the estimated pose at the previous instant. Then, the summation of the
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distances between each projected model points and the matched image points is written
as a non-linear function of the unknown pose parameters. The minimization of this cost
function enables the estimation of the pose at the current instant. This algorithm pro-
vides fast and very accurate measurements of the relative pose of the target. However,
as other recursive trackers, it is prone to divergence. Thus, the detection algorithm is
run in parallel to the tacker in order to provide corrected measurements in case of tracker
divergences.
The measurements are then integrated into the chaser navigation filter to provide an
optimal and robust estimate. Vision-based navigation algorithms provide only pose mea-
surements. However, some RDV operations require the synchronization of chaser motion
with target motion, implying the need of knowing also target velocity and rotation rate.
For this reason, the navigation function relies on a dynamic filter instead of a kinematic
one. Moreover, vision-based measurements can be affected by high latency. Two delay
management techniques suitable for the space RDV application have been applied to this
problem. The selected methods are the Filter Recalculation method -which always pro-
vides an optimal estimation at the expense of a high computational load- and the Larsen’s
method -which provides a faster solution whose optimality lies on stronger requirements.
The performance of the methods has been analyzed in order to allow the selection of the
most suitable technique for the RDV problem.
The results of each study have been integrated in order to build a robust navigation solu-
tion, taking into account the constraint of the reduced computational resources available
on typical space-qualified processors.

ii



iii

Résumé

L’objectif de cette thèse est de proposer une solution complète basée sur la vision pour
permettre la navigation autonome d’un vaisseau de poursuite (S/C) lors d’opérations de
proximité dans l’espace de rendez-vous (RDV) avec une cible non coopérative en utilisant
une caméra monoculaire visible.
Le rendez-vous autonome est une capacité clé pour répondre aux principaux défis de
l’ingénierie spatiale, tels que l’enlèvement actif des débris (ADR) et l’entretien en orbite
(OOS). L’ADR vise à éliminer les débris spatiaux, dans les régions protégées en orbite
basse, qui sont les plus susceptibles d’entrâıner des collisions futures et d’alimenter le
syndrome de Kessler, augmentant ainsi le risque pour les engins spatiaux opérationnels.
L’OOS comprend des services d’inspection, d’entretien, de réparation, d’assemblage, de
ravitaillement et de prolongation de la durée de vie des satellites ou structures en or-
bite. Lors d’un RDV autonome avec une cible non coopérative, c’est-à-dire une cible qui
n’aide pas / n’interagit pas le chasseur dans les opérations d’acquisition, de poursuite et
de rendez-vous, le chasseur doit estimer l’état de la cible à bord de manière autonome.
Les opérations de rendez-vous autonomes nécessitent des mesures précises et actualisées
de la pose relative (c’est-à-dire la position et l’attitude de la cible), et la combinaison
de capteurs de caméra avec des algorithmes de poursuite peut constituer une solution
rentable.
La recherche a été divisée en trois études principales : le développement d’un algorithme
permettant l’acquisition de la pose initiale (c’est-à-dire la détermination de la pose sans
aucune connaissance préalable de cette pose aux instants précédents), le développement
d’un algorithme de poursuite récursif (c’est-à-dire d’un algorithme qui exploite les infor-
mations sur l’état de la cible à l’instant précédent pour calculer la mise à jour de la pose
à l’instant actuel), et le développement d’un filtre de navigation intégrant les mesures
provenant de différents capteurs et/ou algorithmes, avec différents taux et délais.
En ce qui concerne la phase d’acquisition de la pose, un nouvel algorithme de détection a
été développé pour permettre une initialisation rapide de la pose. Une approche est pro-
posée pour récupérer entièrement la pose de la cible en utilisant un ensemble d’invariants
et de moments géométriques (c’est-à-dire des caractéristiques globales) calculés à par-
tir des images de la silhouette de la cible. Les caractéristiques globales synthétisent le
contenu de l’image dans un vecteur de quelques descripteurs qui changent de valeurs en
fonction de la pose relative de la cible. Une base de données des caractéristiques globales
est pré-calculée hors ligne en utilisant le modèle géométrique de la cible afin de couvrir
tout l’espace de la solution. Au moment de l’exécution, les caractéristiques globales sont
calculées sur l’image actuelle acquise et comparées avec la base de données. Différents
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ensembles de caractéristiques globales ont été comparés afin de sélectionner les plus per-
formants, ce qui a permis d’obtenir un algorithme de détection robuste avec une faible
charge de calcul.
Une fois la première estimation de la pose effectuée, un algorithme de suivi récursif est
initialisé. L’algorithme repose sur la détection et la correspondance des contours de la sil-
houette observée avec le modèle géométrique 3D de la cible, qui est projeté dans le cadre de
l’image en utilisant la pose estimée à l’instant précédent. Ensuite, la somme des distances
entre chaque point du modèle projeté et les points de l’image correspondants est écrite
comme une fonction non linéaire des paramètres de pose inconnus. La minimisation de
cette fonction de coût permet l’estimation de la pose à l’instant courant. Cet algorithme
fournit des mesures rapides et très précises de la pose relative de la cible. Cependant,
comme d’autres trackers récursifs, il est sujet à des divergences. Ainsi, l’algorithme de
détection est exécuté en parallèle avec le tracker afin de fournir des mesures corrigées en
cas de divergence.
Les mesures sont ensuite intégrées dans le filtre de navigation du chasseur pour fournir une
estimation optimale et robuste. Les algorithmes de navigation basés vision ne fournissent
que des estimations de pose. Cependant, certaines opérations de rendez-vous nécessitent
la synchronisation du mouvement du chasseur avec le mouvement de la cible, ce qui im-
plique la nécessité de connâıtre également la vitesse linéaire et la vitesse de rotation de la
cible. Pour cette raison, la fonction de navigation repose sur un filtre dynamique plutôt
que sur un filtre cinématique. De plus, les mesures basées vision peuvent être affectées
par une latence élevée. Deux techniques de gestion des retards adaptées au rendez-vous
spatial ont été appliquées à ce problème. Les méthodes choisies sont la méthode de re-
calcul du filtre - qui permet toujours une estimation optimale au détriment d’une charge
de calcul élevée - et la méthode de Larsen - qui fournit une solution plus rapide et dont
l’optimalité repose sur des exigences plus strictes. Les performances des méthodes ont
été analysées afin de permettre la sélection de la technique la plus appropriée pour le
problème de la RDV.
Les résultats de chaque étude ont été intégrés afin de construire une solution de navigation
robuste, en tenant compte de la contrainte des ressources de calcul réduites disponibles
sur les processeurs typiques qualifiés pour le spatial.
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Chapter 0

Synthèse des Travaux (Français)
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Le rendez-vous (RDV) autonome est une capacité clé pour répondre aux principaux
défis de l’ingénierie spatiale, tels que l’enlèvement actif des débris (Active Debris Re-
moval, ADR) et l’entretien en orbite (On-Orbit-Servicing, OOS). L’ADR vise à éliminer
les débris spatiaux, dans les régions protégées en orbite basse, qui sont les plus suscepti-
bles d’entrâıner des collisions futures et d’alimenter le syndrome de Kessler, augmentant
ainsi le risque pour les engins spatiaux opérationnels. L’OOS comprend des services
d’inspection, d’entretien, de réparation, d’assemblage, de ravitaillement et de prolonga-
tion de la durée de vie des satellites ou structures en orbite. Lors d’un RDV autonome
avec une cible non coopérative, c’est-à-dire une cible qui n’aide pas le chasseur dans les
opérations d’acquisition, de poursuite et de rendez-vous, le chasseur doit estimer l’état de
la cible à bord de manière autonome. Les opérations de rendez-vous autonomes nécessitent
des mesures précises et actualisées de la pose relative (c’est-à-dire la position et l’attitude
de la cible), et la combinaison de capteurs de caméra avec des algorithmes de traitement
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d’image (IP, Image Processing) et computer vision (CV) peut constituer une solution
rentable.
L’objectif de cette thèse est de proposer une solution complète basée sur la vision pour per-
mettre la navigation autonome d’un vaisseau chasseur lors d’opérations de proximité dans
l’espace de rendez-vous avec une cible non coopérative en utilisant une caméra monocu-
laire visible.
La recherche a été divisée en trois études principales: le développement d’un algorithme
permettant l’acquisition de la pose initiale (c’est-à-dire la détermination de la pose sans au-
cune connaissance préalable de cette pose aux instants précédents, Sec.0.3), le développement
d’un algorithme de poursuite récursif (c’est-à-dire d’un algorithme qui exploite les infor-
mations sur l’état de la cible à l’instant précédent pour calculer la mise à jour de la pose
à l’instant actuel, Sec.0.2), et le développement d’un filtre de navigation intégrant les
mesures provenant de différents capteurs et/ou algorithmes, avec différents fréquences et
délais, Sec.0.1.
Le travail est présenté en partant du filtre de navigation, ce qui permets de introduire
aussi les complexes modèles dynamiques qui gouvernent l’environnent spatial.

0.1 Filtre de navigation

La fonction d’un filtre de navigation est d’intégrer les mesures issues des capteurs afin de
fournir une estimation optimale et robuste. Les algorithmes de navigation basés vision
ne fournissent que des estimations de pose. Cependant, certaines opérations de rendez-
vous nécessitent la synchronisation du mouvement du chasseur avec le mouvement de la
cible, ce qui implique la nécessité de connâıtre également la vitesse linéaire et la vitesse
de rotation de la cible. Pour cette raison, la fonction de navigation repose sur un filtre
dynamique plutôt que sur un filtre cinématique. De plus, les mesures basées vision peuvent
être affectées par une latence élevée. Le filtre se trouve donc à devoir gérer deux types
de mesures: des mesures dites lentes, qui deviennent disponibles pour être intégrées dans
le filtre après un délai de traitement et qui ont normalement une fréquence moins élevée
que celle du filtre, et des mesures dites rapides, qui ont une fréquence plus élevée et un
délai de traitement presque négligeable. Deux techniques de gestion des retards adaptées
au rendez-vous spatial ont été appliquées à ce problème. Les méthodes choisies sont la
méthode de re-calcul du filtre (Filter Recalculation) - qui permet toujours une estimation
optimale au détriment d’une charge de calcul élevée - et la méthode de Larsen - qui fournit
une solution plus rapide et dont l’optimalité repose sur des exigences plus strictes. Les
performances des méthodes ont été analysées afin de permettre la sélection de la technique
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la plus appropriée pour le problème de la RDV.
On introduit dans cette section la formulation théorique de ces deux techniques. La
campagne de validation et la formalisation complète sont détaillés dans le Chapitre 2 de
la thèse.
Dans un soucis de clarté, les méthodes sont appliqué à un système linéaire en temps-
discret, mais elles seront aussi implémentées sur des modèles non linéaires en Sec.2.3. La
représentation d’état d’un système linéaire discret observé par des mesures sans délais,
avec bruit d’état wk et bruit de mesure vk ( wk et vk non corrélés), est [Gibbs, 2011]: xk = Akxk−1 +Bkuk + wk

yk = Ckxk + vk
, with E

[
wkw

T
j

]
=

 0 k 6= j

Qk k = j
, E

[
vkv

T
j

]
=

 0 k 6= j

Rk k = j

(1)
Le filtre de Kalman (KF) associé à ce système est brièvement présenté ci dessous (la
formalisation complète se trouve en Appx.B.1.2). Le KF se divise en trois étapes:

• La prédiction de l’estimé a priori de l’état et de la matrice de covariance d’état
(x̂k|k−1, Pk|k−1, Eq.(2)).

• Calcul du gain optimal Kk qui minimise l’estimé a posteriori de la matrice de co-
variance d’état Pk|k (Eq.(3)).

• Mise à jour de l’état et de la matrice de covariance (Eq.(4)).

prédiction

 x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

Pk|k−1 = AkPk−1|k−1A
T
k +Qk

(2)

calcul du gain Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)−1 (3)

mise à jour

 x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1)
Pk|k = (I −KkCk)Pk|k−1

(4)

Quand des mesures affectées par délai sont présentes, le système en Eq.(1) reçoit à l’instant
k une mesure qui correspond à l’instant s (s = k−Nd, Nd nombre des pas de délai, comme
montré en Fig.1), tell que:

y∗s = C∗sxs + vs, with E
[
vsv

T
j

]
=

 0 s 6= j

R∗s s = j
(5)

Dans ce cas Eq.(3) n’est plus optimale et une nouvelle solution qui tient compte de la
contribution de y∗s doit être cherchée pour calculer les estimées optimaux x̂k|k,k∗ and Pk|k,k∗ .
Généralement, garantir l’optimalité de la solution demande un coût computationnel élévé
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(i.e., Filter Recalculation method). En raison de ça, des méthodes sub-optimales qui
puissent réduire le coût computationnel sont proposées (i.e., Larsen’s method).

Figure 1: Système avec Nd pas de délais.

0.1.1 Méthode de re-calcul du filtre

La méthode de re-calcul du filtre consiste en retourner à l’instant de temps où la mesuré
retardée a été acquise, incorporer cette mesure, et re-calculer la trajectoire entière de
l’état jusqu’à l’instant actuel. En faisant ça, toute l’historique de l’estimé sera optimale.
L’estimation est faite comme si deux filtres étaient utilisés. Il y a un filtre principal, qui
fonctionne à fréquence constante et traite les mesurer sans délais yk, et un deuxième fil-
tre, qui est activé chaque fois une mesure affectée par un délai y∗s arrive. Pour permettre
au filtre secondaire de re-calculer un estimé optimal en fusionnant la mesure retardée, il
est nécessaire que, chaque fois une mesure de ce type est acquise (i.e., quand la caméra
capture une image), l’état prédit x̂s|s−1 ainsi que la covariance Ps|s−1 correspondant à cet
instant soient stockés en mémoire. De plus, de façon à re-calculer toute l’historique de
l’état, aussi les inputs us+i et les mesures rapides ys+i doivent être enregistré pour tous
les instants de temps entre l’échantillon s (i.e., quand l’image a été prise) et l’échantillon
s + Nd (quand la mesure devient disponible pour être intégrée dans le filtre), i.e., for
i ∈ [1, Nd − 1].
Les filtres fonctionnent de la manière suivante. A l’instant s, une mesure lente est ac-
quise et x̂s|s−1, Ps|s−1 sont sauvegardés. Pour tous les instants s + i (i ∈ [1, Nd − 1]) le
filtre principale traite les mesures rapides ys+i comme dans un filtre de Kalman classique
(Eqs. (2),(3),(4)). Les mesures ys+i et les inputs us+i sont enregistrés à chaque instant.
A l’instant k = s + Nd la mesure lente y∗s et sa matrice de covariance R∗s deviennent
disponibles et le filtre secondaire est donc activé. Le filtre retourne à l’instant s et calcule
l’update optimale en utilisant le vecteur mesure ỹs = [ys, y∗s ]T , où ys sont les mesures
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rapides et y∗s sont les mesures lentes affectées par délai:
K̃s = Ps|s−1C̃

T
s (C̃sPs|s−1C̃

T
s + R̃s)−1

x̂s|s = x̂s|s−1 + K̃s(ỹs − C̃sx̂s|s−1)
Ps|s = (I − K̃sC̃s)Ps|s−1

, with C̃s =
 Cs

C∗s

 , R̃s =
 Rs ∅
∅ R∗s


(6)

Les estimés optimales x̂s|s and Ps|s sont après propagés par le filtre secondaire de l’instant
s+ 1 à l’instant k = s+Nd selon les Eqs.(2),(3),(4). Cela clarifie le besoin de sauvegarder
les valeurs des mesures rapides et des inputs. Une fois que la boucle est arrivée à l’instant
k = s+Nd, le filtre a fourni l’estimé optimal de l’état et de la covariance d’état à l’instant
actuel.
Dans le cas où il n’y a pas de mesures rapides, la structure du filtre est simplifiée: l’état et
la matrice de covariance vont évoluer en boucle ouverte tant que aucune mesure n’arrive.
Quand une mesure lente arrive, le filtre secondaire est activé. Il calcule l’estimé optimale
à l’instant s, puis l’état et la matrice de covariance sont re-projetés à l’instant actuel k à
travers Nd pas de prédiction.
Cette méthode peut devenir assez chère en terme de coût computationnel à cause du
besoin de sauvegarder autant de variables, ainsi que à cause des Nd boucles de Kalman
qui doivent être calculée chaque fois une mesure lente arrive. Toutefois, il s’agit de la
seule formulation qui fournit un estimé optimal aussi en présence de mesures rapides et
avec des systèmes non-linéaires. En outre, cette méthode est applicable à des cas avec
plusieurs mesures affectées par des délais différents.

0.1.2 Méthode de Larsen

La méthode de Larsen (autrement dite méthode d’extrapolation) a été proposée en [Larsen
et al., 1998] comme amélioration de la méthode de Alexander ([Alexander, 1991]), pour
gérer les délais des mesures dans les systèmes linéaires discrets. La méthode consiste en
calculer, tout au long le la période de délai, un terme de correction qui doit être ajouté
à l’estimé dans l’instant de temps où la mesure devient disponible. La différence entre la
méthode d’Alexandre et la méthode de Larsen est que cette dernière ne nécessite pas de
connâıtre, à l’instant s, ni la covariance R∗s, ni la matrice des mesures C∗s relatives aux
mesures lentes. Ces matrices sont censées devenir disponibles à l’instant k ensemble à
la mesure retardée y∗s . En raison de ça, la méthode de Larsen est appropriée pour des
systèmes exploitants des mesures de type IP-CV, car les algorithmes qui fournissent ces
mesures traitent la matrice de covariance R∗ ensemble à la mesure y∗.
La structure du filtre est la suivante. Comme pour la méthode de re-calcul du filtre,
quand une nouvelle mesure lente est acquise à l’instant s, x̂s|s−1 et Ps|s−1 sont stockés. A
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chaque instant s + i (i ∈ [1, Nd − 1]), la structure classique du KF en Eqs. (2),(3),(4)
est appliquée au système en exploitant les mesures rapides. En outre, le terme Ms+i =
(I −Ks+iCs+i)As+iMs+i−1 est calculé, où Ms = I. A l’instant k = s + Nd, y∗s , R∗s et C∗s
deviennent disponibles. Le filtre calcule le gain Kk et la mise à jour en accord avec les
Eqs.(3),(4) en utilisant la mesure rapide yk. Le terme de correction finale M∗

k sera donc
[Larsen et al., 1998]:

M∗
k = Ms+Nd

=
Nd∏
i=1

(I −Ks+iCs+i)As+i (7)

A ce point, la mesure extrapolée yextk est calculée, de façon à obtenir une représentation
de la mesure y∗s -qui corresponds à l’instant s- à l’instant k:

yextk = y∗s − C∗s x̂s|s−1 + C∗k x̂k|k−1 (8)

Larsen en [Larsen et al., 1998] démontre comment calculer le gain optimal K∗k et la mise
à jour de l’état correspondant:

K∗k = M∗
kPs|s−1C

∗
s
T (C∗sPs|s−1C

∗
s
T +R∗s)−1

x̂k|k,k∗ = x̂k|k +K∗k(yextk − C∗k x̂k|k)
Pk|k,k∗ = Pk|k −K∗kC∗sPk|kM∗

k
T

(9)

où le gain K∗k est le gain K∗s (i.e., le gain que aurait été calculé si la mesure y∗s avait été
utilisé à l’instant s) pre-multiplié par le terme de correction de Larsen M∗

k .
En présence de mesures rapides la méthode de Larsen performe de manière sub-optimale:
à chaque pas de temps le gain Ks+i est calculé en utilisant une matrice de covariance
Ps+i|s+i−1 qui n’est pas optimal car elle ne tient pas compte de la contribution de la
mesure lente y∗s . De toute façon, même si sous-optimale, la méthode requiert simplement
deux multiplication de matrices et le stockage de deux variables aux instants où une
mesure lente est acquise, sans le besoin de enregistrer les mesures rapides et les inputs.
De plus, comme la méthode de re-calcul du filtre, la méthode de Larsen peut être appliqué
aussi à de cas avec délais variable. En Sec.2.4 nous présentons une campagne de test qui
démontre que la diminution de la performance due à l’approximation introduite par cette
méthode est tout à fait acceptable.

0.2 Algorithme de suivi de pose

Dans les application spatiales, les méthodes qui s’appuyant sur la détection des features
peuvent ne pas être assez robustes à cause des conditions d’illumination difficiles en en-
vironnent spatial, ainsi que à cause des textures particuliers des satellites [Lichter and
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Dubowsky, 2004]. D’autre part, il est raisonnable supposer que l’on dispose du modèle
géométrique 3D du satellite cible même si ce dernier n’avait pas été conçu pour participer
à des rendezvous. Cela nous autorise à chercher une solution de navigation parmi les
méthodes basée modèle. Cette famille d’algorithmes cherche la pose de la cible qui mieux
superpose le modèle 3D a priori avec le satellite dans l’image acquise. Dans le contexte de
la vision monoculaire, les techniques qui s’appuient sur l’extraction des arêtes sont très
adaptes aux applications spatiales, car les arêtes sont des éléments proéminents facilement
détectables en correspondance des gradients d’image élevés.
Un algorithme basé modèle qui s’appuie sur la détection et le suivi des aretes est l’algorithme
RAPiD [Harris and Stennett, 1990]. A l’instant k, le modèle 3D est projeté dans le repère
image en utilisant la pose estimée à l’instant précèdent (k − 1). Un algorithme (i.e.,
algorithme de masquage ou masking) détermine les arêtes du modèle qui sont visibles,
et il les échantillonne (voir Appx.D.1) en déterminant un set de points de contrôle. Ces
points de contrôle sont les points qui vont être “matchés” avec les contours détectes dans
l’image prise à l’instant k (en utilisant le filtre de Canny). La correspondance entre un
point de contrôle et le point correspondant qui appartient aux contours de l’image se fait
en cherchant le long du vecteur normal à l’arête qui contient le point de contrôle (vori
Appx.D.2, algotihme de matching). Cette recherche mono-directionnel permet de réduire
la dimension de la recherche et de augmenter la vitesse d’exécution de l’algorithme. Pour
calculer la nouvelle pose, RAPiD s’appuie sur l’hypothèse que, au premier ordre, des pe-
tits changements dans la pose du modèle causent un déplacement des points de contrôle
qui est linéaire par rapport aux paramètres de pose. Cela permet de calculer la nouvelle
pose en résolvant un problème aux moindres carrés.
Pendant un rendez-vous avec une cible non-coopérative comme un débris spatial qui peut
être en fort rotation, la variation de la pose entre deux instants consécutifs peut être
trop grande pour permettre la linéarisation du problème, et l’algorithme RAPiD diverge
rapidement. Dans cette thèse, nous proposons l’utilisation d’une fonction de coût non-
linéaire qui est minimisée en utilisant l’algorithme le Levenberg-Marquardt (LM). De plus,
on propose de utiliser comme points de contrôle seulement les points appartenant au con-
tour externe de la silhouette de la cible. Cet approche permet de réduire le nombre de
faux correspondances avec les contours de l’image (voir Sec.3.3.3), et est beaucoup plus
rapide. Dans la suite on présente d’abord le problème du suivi d’objet avec vision monoc-
ulaire (Sec.0.2.1), et on détaille après la construction de la fonction de coût utilisée dans
le suivi de pose (Sec.0.2.2). Finalement, en Sec.0.2.3, nous montrons comment intégrer
l’algorithme de suivi de pose au filtre de navigation proposée en Sec.0.1. Plus de détails
sur l’algorithme proposée et sur ces performances sont fournis dans le Chapitre 3.
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0.2.1 Estimation de pose avec vision monoculaire

L’image en Fig.2 propose une représentation schématique du problème de l’estimation
de pose avec vision monoculaire. Nous appelons X tg

i = [xtgi , y
tg
i , z

tg
i ] les coordonnées

exprimées en repère cible (i.e., target, pour simplicité centré au centre de masse COM de
la cible) d’un point Xi qui appartient à la cible. Les cordonnées du point Xi exprimés en
repère caméra (cam) sont:

Xcam
i = trcam−tg +Rcam−tgX

tg
i (10)

Le vecteur trcam−tg = [trcamcam−tgtx , tr
cam
cam−tgty , tr

cam
cam−tgtz ] est le vecteur de translation qui
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Figure 2: Représentation schématique du problème de l’estimation de pose avec vision
monoculaire. f = fx = fy longueur focale, (cx, cy) point principale de image.

décrit la position relative de l’origine du repère target (Otg, i.e., le COM de la cible),
par rapport à l’origine du repère caméra (Ocam), exprimée en repère caméra. Nous allons
appeler ce vecteur tr = [trx, try, trz] par souci de simplicité. La position relative du
repère caméra par rapport au repère chasseur est connue par calibration au sol. La
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matrice Rcam−tg est la matrice de rotation qui décrit l’attitude relative caméra-target,
qui peut aussi être représentée avec le quaternion correspondant qcam−tg (voir Appx A.1).
Dans ce cas, Eq.(10) devient:

Xcam
i = trcam−tg + qcam−tg ⊗X tg

i ⊗ q∗cam−tg (11)

Pour simplicité, on va renommer Rcam−tg en R, et qcam−tg en q. En rappelant le modèle
de caméra sténopé (i.e., pinhole camera) ayant comme matrice de projection la matrice
K telle que:

K =


fx 0 cx

0 fy cy

0 0 1

 , (12)

et en utilisant la notation introduite en Appx.A.2, où l’on utilise Qrotj (X
tg
i , q) ( avec

j = 1 : 3) pour indiquer la première, la deuxième et la troisième composantes du vecteur
Qrot(X tg

i , q) = q⊗X tg
i ⊗ q∗, on obtient les cordonnées en repère image (i.e., le plan uv en

Fig.2) du point X tg
i :

ui
vi

 =


fx
trx +Qrot1(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cx

fy
try +Qrot2(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cy

 (13)

0.2.2 Optimisation non linéaire: construction de la fonction de
coût

Comme anticipé, pendant un RDV avec une cible non coopérative, la variation de la pose
de la cible entre deux prises d’image consécutives peut être trop grande pour permettre
la linearization du déplacement. Tout à fait, un débris peut être en rotation à une vitesse
qui peut dépasser les 6 deg/s [Bonnal et al., 2013]. Dans cette section nous présentons
la formulation analytique de notre méthode d’estimation qui est basée sur l’optimisation
d’une fonction non linéaire. Supposons d’avoir une fonction non-linéaire d’ajustement
ŷ(p) d’un vecteur de N paramètres p, et un ensemble de M points yi. Les paramètres
peuvent être estimés en minimisant la somme des carrés pondérés des erreurs entre les
données mesurées yi et la fonction d’ajustement ŷi(p). La fonction de coût résultant est:

χ2(p) =
M∑
i

(yi − ŷi(p))2 = (Y − Ŷ (p))TW (Y − Ŷ (p)) (14)

où la matrice de poids W correspond à diag(1/σ2
i ), avec σi l’écart type de l’erreur associée

à la mesure yi. Le set de données mesurées Y est le vecteur composé par les projections
des points [ui, vi]T (i.e., les cordonnées mesurées en repère image des points matchés avec
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les points de contrôle X tg
i ) le long de la normale à l’arête contentant les points de contrôle

ni = [nui
, nvi

]T .

yi = nui
ui + nvi

vi, Y = [y1, y2, ..., yi, ..., yM ]T (15)

La matrice W est définie comme la matrice identité de dimension M ×M , car il n’y a pas
de moyen de connâıtre l’erreur associée aux correspondances entre les points de contrôle
et les points image [ui, vi].
Le paramètre de pose p à estimer est la pose complète à l’instant k. Dans le paramètre de
pose p, les rotations sont représentés en utilisant le quaternion q = qcam−tg = [q0, q1, q2, q3]T ,
car le quaternion a la dimensionnalité plus petite pour une représentation non singulière
du group de rotation SO(3) [Markley, 2004]. Le vecteur de paramètres p est donc le
vecteur de taille 7×1 égal à [trx, try, trz, q0, q1, q2, q3]. En rappelant Eq.(13), la fonction
d’ajustement devient:

ŷi = nTi

 ûi(X tg
i , p)

v̂i(X tg
i , p)

 = nui

(
fx
trx +Qrot1(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cx

)
+ nvi

(
fy
trx +Qrot2(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cy

)
(16)

et Ŷ (p) = [ŷ1(p), ŷ2(p), ..., ŷi(p), ..., ŷM(p)]T . L’optimisation non linéaire est résolue en
utilisant l’algorithme de Levenberg-Marquardt (LM) décrite par [Gavin, 2011] et détaillée
en Appendix D.4. La matrice jacobienne de la fonction Ŷ (p) doit être déterminée afin
de calculer à chaque pas l’incrément du paramètre p. Pour chaque point du modèle X tg

i ,
qui correspond au point mesuré yi et à la fonction d’ajustement ŷi(X tg

i , p), la matrice
jacobienne Ji de taille 1× 7 est:

Ji = ∂ŷi
∂p

=
[
nui

∂ûi
∂trx

+ nvi

∂v̂i
∂trx

, . . . , nui

∂ûi
∂q3

+ nvi

∂v̂i
∂q3

]
(17)

Le calcul des éléments de la matrice jacobienne correspondants aux termes de translation
est simple, lorsque le calcul des éléments qui correspond aux termes de rotation est plus
complexe. En Appendice A.2.3 nous présentons la dérivation de la matrice jacobienne
analytique pour la fonction représentant la rotation d’un vecteur X tg

i = [xi, yi, zi] par
rapport à un quaternion q. La matrice jacobienne résultante est:

∂(q ⊗X tg
i ⊗ q∗)

∂q
=



∂Qrot1(X tg
i , q)

∂q
∂Qrot2(X tg

i , q)
∂q

∂Qrot3(X tg
i , q)

∂q


=


A D C −B
B −C D A

C B −A D

 (18)
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où:
A = ∂Qrot1

∂q0
= ∂Qrot2

∂q3
= −∂Qrot3

∂q2
= 2(q0xi − q3yi + q2zi)

B = ∂Qrot2

∂q0
= ∂Qrot3

∂q1
= −∂Qrot1

∂q3
= 2(q3xi + q0yi − q1zi)

C = ∂Qrot1

∂q2
= ∂Qrot3

∂q0
= −∂Qrot2

∂q1
= 2(−q2xi + q1yi + q0zi)

D = ∂Qrot1

∂q1
= ∂Qrot2

∂q2
= ∂Qrot3

∂q3
= 2(q1xi + q2yi + q3zi)

(19)

Les éléments de la matrice jacobienne en Eq.(17), pour la composante ûi et pour la
composante v̂i, sont:

∂ûi(X tg
i , p)

∂trx
= fx

1
trz +Qrot3(X tg

i , q)
∂ûi(X tg

i , p)
∂try

= 0

∂ûi(X tg
i , p)

∂trz
= −fx

trx +Qrot1(X tg
i , q)

trz +Qrot3(
(
X tg
i , q)

)2

∂ûi(X tg
i , p)

∂q0
= fx

A
(
trz +Qrot3(X tg

i , q)
)
− C

(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q1
= fx

D
(
trz +Qrot3(X tg

i , q)
)
−B

(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q2
= fx

C
(
trz +Qrot3(X tg

i , q)
)

+ A
(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q3
= fx

−B
(
trz +Qrot3(X tg

i , q)
)
−D

(
trx +Qrot1(X tg

i , )
)

(
trz +Qrot3(X tg

i , q)
)2

(20)



∂v̂i(X tg
i , p)

∂trx
= 0

∂v̂i(X tg
i , p)

∂try
= fy

1
trz +Qrot3(X tg

i , q)
∂v̂i(X tg

i , p)
∂trz

= −fy
try +Qrot2(X tg

i , q)
trz +Qrot3(

(
X tg
i , q)

)2

∂v̂i(X tg
i , p)

∂q0
= fy

B
(
trz +Qrot3(X tg

i , q)
)
− C

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q1
= fy

−C
(
trz +Qrot3(X tg

i , q)
)
−B

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q2
= fy

D
(
trz +Qrot3(X tg

i , q)
)

+ A
(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q3
= fy

A
(
trz +Qrot3(X tg

i , q)
)
−D

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

(21)
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La matrice obtenue est utilisée à chaque itération pour calculer la direction de l’incrément
de pose, en partant de l’hypothèse initiale p0 qui est égale à la pose estimé à l’instant k−1.
Dans le processus d’estimation, quelque approximation est introduite: à chaque mise à
jour du paramètre dans l’algorithme de LM, un nouvel set de points de contrôle devrait
être calculé en utilisant l’algorithme de masquage, et des nouvelles correspondances avec
les points image devraient être calculées en utilisant l’algorithme de matching. Cependant,
ce type de approche augmenterait excessivement le coût computationnel de l’algorithme.
En raison de ça, le set de points de contrôle, de points matchés et de vecteurs normaux
sont gardés constant dans chaque appel à l’algorithme LM. La méthode d’estimation
montre une très bonne performance même en présence de cette approximation, comme
montré en Sec.3.4.

0.2.3 Calcul de la matrice de covariance des mesures R

L’un des problèmes principaux des algorithmes de IP-CV c’est de obtenir une bonne
caractérisation du bruit associé aux mesures (i.e., de la matrice de covariance du bruit
des mesures R). Cette matrice est nécessaire pour intégrer les mesures dans le filtre de
Kalman de façon optimale. Toutefois il peut s’avérer très compliqué d’avoir une bonne
caractérisation de R car le bruit des mesures dépend de plusieurs facteurs, tels que le
bruit intrinsèque du capteur, la distance relative caméra-cible, la vitesse de rotation et
translation, la fréquence de capture d’image, les conditions d’illumination, et même la
pose relative. Quand on utilise l’algorithme de LM pour estimer un paramètre (dans
notre cas, le paramètre pk, qui correspond -du point de vue du KF- à la pose mesuré à
l’instant k), la covariance du paramètre estimé pk peut être calculée en utilisant la matrice
jacobienne et la matrice de poids, selon la formule introduite en [Gavin, 2011]:

R = [JTWJ]−1 . (22)

Cependant, comme anticipé, les valeurs de la matrice de poids W ne sont pas connues.
En raison de ça, il devient nécessaire d’identifier un nouvel critère pour caractériser la
mesure. On a donc décidé d’utiliser comme indicateur du niveau de confiance de la mesure
la valeur de la fonction χ2 évaluée en correspondance du paramètre estimé pk, divisée par
le nombre de dégrées de liberté du problème (i.e., ν = M − N + 1). Cette valeur est
nommée reduced cost function (fonction de coût réduite) et est aussi un parmi les critères
de convergence de l’algorithme de LM.

r = χ2(pk)
ν

(23)

La valeur de r peut être vue comme une moyenne carrée des erreurs de reprojection,
et elle est appelée résiduel dans les chapitres suivants. Pour une même géométrie de la
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cible, pour des paramètres de caméra donnés, et pour une distance relative caméra-cible,
le résiduel peut être corrélé avec la matrice de covariance du bruit des mesures (i.e., un
résiduel très petit indique que l’erreur de reprojection est très petit et que donc la mesure
est très fiable). Cette corrélation est obtenue expérimentalement lors d’une calibration au
sol.

0.3 Algorithme de détection de pose

Les algorithmes de suivi récursifs, comme celui décrit en Sec.0.2, peuvent fournir des
mesures très précises, mais ils sont aussi sujets à des divergences en présence de minima
locaux (voir Sec.3.4.2). En raison de ça, un algorithme de suivi doit être accompagné
par une méthode d’estimation de pose par détection, qui puisse permettre l’initialisation
de pose et la détection d’erreurs dans l’algorithme de suivi. Dans un algorithme de
détection, la pose de la cible est calculée sans utiliser aucune information a priori concer-
nant la pose aux instants précèdents. Un nouvel algorithme de détection a été développé
pour permettre une initialisation rapide de la pose. Une approche a été proposée pour
récupérer entièrement la pose de la cible en utilisant un ensemble d’invariants et de mo-
ments géométriques (c’est-à-dire des caractéristiques globales, global features) calculés à
partir des images de la silhouette de la cible. Les caractéristiques globales synthétisent le
contenu de l’image dans un vecteur de quelques descripteurs qui changent de valeurs en
fonction de la pose relative de la cible. Une base de données des caractéristiques globales
est pré-calculée hors ligne en utilisant le modèle géométrique de la cible afin de couvrir
tout l’espace de la solution. Au moment de l’exécution, les caractéristiques globales sont
calculées sur l’image actuelle acquise et comparées avec la base de données. Différents
ensembles de caractéristiques globales ont été comparés afin de sélectionner les plus per-
formants, ce qui a permis d’obtenir un algorithme de détection robuste avec une faible
charge de calcul. On décrit brièvement dans cette section les principes de la méthode, qui
sont détaillés sans le Chapitre 4.
L’intérêt d’utiliser des global features comme les descripteurs de Fourier [Wallace and
Wintz, 1980, Reeves et al., 1988, Chen and Ho, 1991, Glais and Ayoun, 1994] ou les mo-
ments d’image [Dudani et al., 1977, Reeves et al., 1988, Glais and Ayoun, 1994, Breuers,
1999] est que ces features peuvent être construites de façon à être invariantes à la trans-
lation, au facteur d’échelle, et surtout à la rotation. Si une forme bidimensionnelle est
décrite par ces invariantes, la valeur de la feature ne dépend pas ni de la position du
centröıde de la forme (i.e., invariance à la translation), ni de la dimension de la forme
(i.e., invariance au facteur d’échelle), ni de la rotation de la forme dans le plan image (i.e.,
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invariance à la rotation). La forme de la silhouette projetée dépend de l’attitude relative
et de la position relative de l’objet observé, et la contribution de l’attitude est couplée
à la contribution de la position. Cependant, sous l’hypothèse de weak perspective model
(i.e., modèle de prospective faible) les effets peuvent être découplés au prix d’une accept-
able dégradation de la performance (voir Sec.4.5). L’hypothèse de prospective faible est
valable quand la profondeur de l’objet le long de l’axe optique est beaucoup plus faible
que la distance entre l’objet e la caméra, [Petit, 2013], ou quand le champ de vue (field
of view, FOV) est relativement petit ou l’objet est placé près du centre du FOV (i.e.,
trcamcam−tgx

∼ 0 and trcamcam−tgy
∼ 0 en Eq.(10)). Ceci sont des conditions qui se vérifient

pendant la phase d’acquisition de pose. Le modèle de perspective faible assume que tous
les points de l’objet 3D sont à la même distance z depuis la caméra, sans que des erreurs
significatives soient introduit par rapport au modèle complète de caméra sténopé. Sous
ces hypothèses, on peut supposer que la distance trcamcam−tgz

affecte seulement l’échelle de la
silhouette projetée, lorsque les composants trcamcam−tgx

et trcamcam−tgy
affectent juste la position

du centröıde de la silhouette. De cette façon, si des caractéristiques globales invariantes
sont utilisées pour décrire la silhouette du S/C à une pose donnée, la valeur de la feature
dépendra seulement de l’angle de roulis ϕ et de l’angle de tangage ϑ de la matrice Rcam−tg

(Eq.(10)). Au fait, l’angle de lacet ψ affecte seulement la rotation de la forme projetée
dans le plan image, comme montré en Fig.3.
Les principes de la méthode proposée sont les suivants. Pendant un processus hors-ligne,
un set de vues synthétiques de la cible (appelées images de training) est généré pour
un nombre discrète de valeur de (ϕ, ϑ) ∈] − π, π]×] − π/2, π/2]. Quand on génère la
base de données, l’angle de lacet ψ = ψtrain est fixé à la valeur de zéro. De plus, la
caméra pointe parfaitement vers le COM de la cible, i.e., trcamcam−tgy

= trcamcam−tgy
= 0,

et la distance trcamcam−tgz
= d est constante pour toute les vues de la base de données.

Cette configuration est montrée en Fig.3. Le choix de la distance d = dtrain peut avoir
une influence sur la performance de l’estimation, comme il sera montré en Sec.4.5.2.
Pour un couple donné de (ϕ, ϑ), la position de la caméra, exprimée en repère cible, est
trtgcam−tg = dtrain · [sinϑ, −cosϑ sinϕ, −cosϑ cosϕ]T . Sous l’hypothèse que l’axe optique
de la caméra pointe vers le COM de la cible, le lieux des points trtgcam−tg(dtrain, ϕ, ϑ) est
la sphère de radius dtrain centrée dans le COM de la cible. Ainsi, les attitudes relatives
utilisées pour générer les images de training peuvent être assignées en sélectionnant Nw

points aléatoires sur la sphère. Pour éviter le sur-échantillonage de la zone polaire, qui
est obtenu en utilisant un échantillonnage uniforme en ϕ and ϑ, les points sont assignés
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Figure 3: Représentation schématique du problème de l’estimation de pose avec vision
monoculaire avec trcamcam−tgy

= trcamcam−tgy
= 0.

avec l’algorithme décrit en [Kuffner, 2004] ϕ = 2π randϕ − π
ϑ = asin(1− 2randϑ)

(24)

où randϕ and randϑ sont deux variables aléatoires indépendantes distribuées uniformément
dans l’intervalle ]0, 1]. Il faut noter que, même si un échantillonage aléatoire est conseillé
pour faire le benchmark des différents descripteurs globaux, un échantillonage déterministe
est préférable pour la solution de navigation nominale. Dans ce cas, le schéma à spirale
peut être utilisé pour créer l’échantillonnage uniforme sur la sphère [Koay, 2011].
Une fois que les images correspondantes à les Nw vues, les descripteurs sont calculés pour
chaque vue. La dimension du database correspondant est Nw×Nf , avec Nf la dimension
du vecteur descripteur. Pendant l’exécution de l’algorithme, quand la caméra acquiert
une nouvelle image (appelée ici image de test), l’algorithme calcule le vecteur descripteur
pour l’image de test et cherche dans la base de donnée le couple de (ϕmeas, ϑmeas) ayant
le plus proche vecteur descripteur (en minimisant la distance Euclidienne). Les deux
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dégrées de liberté restant, i.e., l’angle de lacet ψ et la distance relative camera-target d,
sont estimée en utilisant les moments géométriques (GMs), selon la procédure détaillée ci-
dessous. Du point de vue mathématique, les moments sont des projections d’une fonction
sur une base polynomiale [Flusser et al., 2009]. Les GMs s’appuient sur l’intuitive base de
puissances ppq(x, y) = xpyq. La définition générale du moment géométrique d’une image
est:

mpq =
∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y) dx dy , (25)

oùf(x, y) est la fonction égale à l’intensité du pixel ayant coordonnées (x, y). Quand on
utilise une image binaire comme une silhouette, f(x, y) est égale à 1 dans la silhouette et
à 0 ailleurs. Pour une image binaire, les moments d’ordre inférieure sont associés à des
propriétés géométrique de la silhouette observée. Par exemple, m00 est la surface, lorsque
m10/m00 = xc et m01/m00 = yc sont les coordonnées x et y du centröıde de la silhouette.
Les GMs peuvent etre rendus invariant à la translation et au facteur d’échelle très facile-
ment. L’invariance à la translation est obtenue en calculant les moments géométriques
centraux µpq, selon:

µpq =
∫ ∞
−∞

∫ ∞
−∞

(x− xc)p(y − yc)qf(x, y) dx dy . (26)

L’invariance au facteur d’échelle est obtenue en divisant les moments centraux par une
puissance du moment d’ordre zéro:

νpq = µpq
mw

00
, with w = p+ q

2 + 1 . (27)

Pour une image donnée, l’angle de lacet ψ peut etre calculé en utilisant les moments
centraux de deuxième ordre. Il est connu dans des domaines comme l’ingénierie des
structures que il est possible de calculer les axes principaux d’inertie d’une section plane
avec ses moment du deuxième ordre µ20, µ11, µ02. Pour une forme bidimensionnelle, il
est possible de exprimer les moments centraux µ′pq après une rotation de α dans le plan
image en utilisant les valeurs des moments µpq avant la rotation:

µ′pq =
p∑

l1=0

q∑
l2=0

rl111r
l2
21r

p−l1
12 rq−l211 µl1+l2,p+q−(l1+l2) (28)

où r11, r12, r21, r22 sont les éléments de la matrice de rotation qui décrit la rotation dans
le plan image:  r11 r12

r21 r22

 =
 cos(α) sin(α)
−sin(α) cos(α)

 (29)

Vue cette formula, il est possible de calculer l’inclination ψ̃0 de l’axe majeur d’inertie de
la forme observée selon la procédure décrite ci dessous. Si on applique une rotation de
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ψ̃0 au repère image, et on calcule les moments centraux après rotation, on obtiendra les
moments principaux de la section. Les moments de deuxième ordre peuvent être calculés
soit en utilisant Eq.(28), soit en utilisant Eq.(25) avec les coordonnées centrées et tournées
de ψ̃0:

µ′pq =
∫ ∞
−∞

∫ ∞
−∞

(
x cos(ψ̃0) + y sin(ψ̃0)

)p (
−x sin(ψ̃0) + y cos(ψ̃0)

)q
f(x, y) dx dy (30)

Les moments du deuxième ordre résultants sont:
µ′20 = µ20 cos2(ψ̃0) + µ02 sin2(ψ̃0) + 2µ11 sin(ψ̃0)cos(ψ̃0)
µ′02 = µ20 sin2(ψ̃0) + µ02 cos2(ψ̃0)− 2µ11 sin(ψ̃0)cos(ψ̃0)
µ′11 = −µ02 sin(ψ̃0)cos(ψ̃0)− µ20 sin(ψ̃0)cos(ψ̃0) + µ11

(
cos2(ψ̃0)− sin2(ψ̃0)

) (31)

L’angle ψ̃0 est calculé facilement en imposant que le moment mixte µ11 soit égal à zéro,
comme dans le cas où les moments sont calculée dans le repère principal d’inertie. Alter-
nativement, il est possible de minimiser µ′20. En utilisant les formules trigonométriques,
la troisième équation du système (31) devient:

µ′11 = −1
2(µ20 − µ02) sin(2ψ̃0) + µ11 cos(2ψ̃0) = 0

ψ̃0 = 1
2atan2

(
2µ11

µ20 − µ02

) (32)

Cependant, pour calculer sans ambigüıté l’angle ψ0 ∈] − π, π], il faut déterminer une
direction le long de l’axe d’inertie, i.e., il faut distinguer entre ψ0 = ψ̃0 ou ψ0 = ψ̃0 − π.
Pour faire cela, les moments du troisième ordre sont utilisés, car ils changent de signe
quand le repère est tourné d’un angle égal à π [Tahri, 2004]. Les moments centraux en
repère image tourné d’un angle ψ̃0 sont donnés par l’Eq.(28), avec α = ψ̃0 en Eq.(29).
Après, pour convention, nous définissons comme in-plane rotation (i.e., rotation dans le
plan) ψ0 la direction pour laquelle µ′30 après une rotation de ψ0 est positive, i.e.,

ψ0 =

 ψ̃0 if µ′30 > 0 ,
ψ̃0 − π if µ′30 < 0 .

(33)

Cette ambigüıté peut être résolue seulement si la silhouette n’est pas symétrique en rota-
tion. Si la silhouette possède une symétrie de type N-fold rotation symmetry (N-FRS) (i.e.,
si elle se répète après une rotation autour de son centröıde d’un angle 2πj/N , pour tous
les j = 1, ..., N), N solutions sont possibles. Dans ce cas, seulement l’observation de la
pose de la cible sur un série d’images consécutives peut permettre de résoudre l’ambigüıté
Une fois que ψ0test a été calculé pour l’image actuelle, il est possible de calculer l’angle de
lacet ψmeas avec la procédure suivante. Pour la vue de training qui correspond le mieux
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à la vue actuelle, nous pouvons calculer l’angle ψ0train
( ψ = ψtrain = 0 pour hypothèse).

L’angle de lacet mesuré ψmeas sera donc:

ψmeas = ψ0test + (ψtrain − ψ0train
). (34)

Finalement, la mesure dmeas de la distance relative caméra-cible le long de l’axe optique
est obtenue en utilisant le moment d’ordre zéro m00test de l’image actuelle:

dmeas =
√
m00train

/m00test · dtrain, (35)

où m00train
est le moment d’ordre zéro de la vue de training ayant la meilleure correspon-

dance avec la vue de test.
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Figure 4: Structure de l’algorithme d’estimation de pose proposé.

Pendant la construction du database, l’axe optique de la caméra zcam pointe tou-
jours vers le COM de la cible. Cependant, pendant la phase de acquisition de pose,
la caméra sera pointé probablement vers le centröıde de la silhouette observée. Pour
des raisons opérationnelles, il est aussi possible que le pointage ne sera pas réalisable, par
exemple car il sera nécessaire d’aligner les deux interfaces de docking. Dans ce cas, en rap-
pelant Eq.(13) et en exploitant le fait que d =

√
(trcamcam−tgx

)2 + (trcamcam−tgy
)2 + (trcamcam−tgz

)2 ∼
trcamcam−tgz

, les composantes trcamcam−tgx
et trcamcam−tgy

peuvent être approximées par
trcamcam−tgx

= d

f
(xctest − cx)

trcamcam−tgy
= d

f
(yctest − cy)

(36)

où (xctest , yctest) sont les coordonnées du centröıde observé. On rappelle que f est la
longueur focale de la caméra, et que (cx, cy) sont les cordonnées du point principal de la
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caméra. Les identités en (36) peuvent être utilisée aussi pour assurer le pointage de la
caméra même avant que la pose complète de la cible soit acquise.
En utilisant les invariants rotationnelles, nous pouvons réduire considérablement la di-
mension du database qui doit être stocké, en augmentant aussi la vitesse d’exécution de
l’algorithme. Dans les Sections 4.4.1, 4.4.2, and 4.4.3 nous détaillons la procédure pour
calculer les invariantes rotationnelles en utilisant les moments complexes (CMs), les mo-
ments de Zernike (ZMs), et les descripteurs de Fourier (FDs). Finalement, dans la Section
4.5, nous comparons les performances des différents set de descripteurs.

0.4 Solution de navigation intégrée

Dans cette section finale (Chapitre 5), les résultats de chaque étude ont été intégrés afin
de construire une solution de navigation robuste, en tenant compte de la contrainte des
ressources de calcul réduites disponibles sur les processeurs typiques qualifiés pour le
spatial.
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A space rendezvous is the series of successive orbital maneuvers which brings an active
spacecraft (i.e., the chaser) in the vicinity or in contact with another orbiting object (i.e.,
the target). Autonomous rendezvous (RDV) are a key capability to answer main chal-
lenges in space engineering, such as Active Debris Removal (ADR) and On-Orbit-Servicing
(OOS). ADR aims at removing the space debris, in low-Earth-orbit (LEO) protected re-
gion, that are more likely to lead to future collision and feed the Kessler syndrome [Kessler
et al., 2010], thus increasing the risk for operative spacecraft (S/C). OOS includes inspec-
tion, maintenance, repair, assembly, refuelling and life extension services to orbiting S/C
or structures [Jasiobedzki et al., 1999], operations that are rarely performed and up till
now only by astronauts with a minimal support of robotic system (e.g. ISS, Hubble Space
Telescope and MIR Station repairs) and have a very high cost. Nowadays the failure of a
single system of a S/C can irrevocably compromise its whole mission. A change in the de-
sign of satellites, leading to a modular structure, could allow in-orbit-repair by a servicer
S/C. OOS could also have a positive impact on space environment and help reducing the

1



2 CHAPTER 1. INTRODUCTION

proliferation of space debris, providing life extension services to already orbiting S/C and
carrying out End Of Life (EOL) disposal.
Different operational scenarios entail targets of different nature, and consequently also
different technical approaches to the RDV operations. The definition and classification
of targets in literature has changed through the years as OOS and ADR became a real
prospect for space operations. At the beginning of the space rendezvous era, the target
vehicles were classified as cooperative, non-cooperative and uncooperative [Polites, 1998].
The target was considered as cooperative if “stabilized”, which, according to [Polites,
1998], meant that there is a functioning control system acting on it. On the other hand,
the target was considered non-cooperative if “non-stabilized”. The target was considered
uncooperative if it was actively evasive (i.e., defense applications, which are out of the
scope of this study). Moreover, [Polites, 1998] made a further distinction between an
active target and a passive one. According to this distinction, an active target could be
equipped with a radar transponder, laser diode or any other equipment that could ac-
tively help the navigation, while a passive target could only be equipped with passive aids
such as retro-reflector or visual markers. Thus, the characterization provided by [Polites,
1998] only focused on rendezvous scenarios where the target was originally designed to
participate in a rendezvous, without considering the case of rendezvous with objects such
as space debris. More recently, [Wertz and Bell, 2003] classified targets as cooperative,
if equipped with both active or passive aids to help the process, uncooperative, if lack-
ing such aids, and hostile if actively escaping from the chaser. Therefore the definitions
provided by [Wertz and Bell, 2003] do not make any qualitative distinction between a
satellite being stabilized or not, and focus more on the distinction between an object
originally designed or not to participate in a RDV. However, both the classification made
in [Polites, 1998] -which focus on the “behaviour” of the satellite- and the classification
provided in [Wertz and Bell, 2003] -which focus more on the physical characteristics of
the satellite- are necessary to fully define a scenario.
The characteristics of the target deeply affect the RDV mission from multiple point of
view, and GNC (Guidance, Control & Navigation) system is one of the chaser’s systems
that is the mostly affected. As this thesis focuses on the autonomous relative naviga-
tion of the chaser in the proximity of the target, we have decided to introduce a precise
nomenclature and classification of the target vehicle. In this thesis, we propose to classify
targets as cooperative or non-cooperative and prepared or non-prepared. According to the
definition provided in 2018 by the Consortium for Execution of Rendezvous and Servic-
ing Operations (CONFERS), when the target does not assist the chaser in acquisition,
track and rendezvous operations, it is referred to as non-cooperative [CONFERS, 2018],
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meaning that the chaser has to estimate autonomously on board the target state. The
notion of cooperative or non-cooperative therefore relates to target’s behavior. On the
other hand, the notion of prepared or non-prepared concerns target’s design. It indicates
whether the satellite was originally conceived to participate in a RDV, and therefore
whether it is supplied or not with equipment such as visual markers, navigational aids,
docking fixture to help both the tracking and the servicing. Because space debris objects
were not conceived to participate in a RDV and are now inoperative, ADR operations will
target non-cooperative and non-prepared S/C. On the other hand, OOS ideally targets
cooperative and prepared S/C. However, a generation of prepared satellite is not yet in
orbit, and a cooperative target can become non-cooperative in case of a system failure. A
RDV with a non-cooperative non-prepared target remains the most challenging scenario
for chaser’s GNC, and it is therefore the case covered in this thesis.
This chapter is structured as follows. Section 1.1 will provide a brief introduction about
the operational context in which autonomous rendezvous are going to play a role (i.e.,
On Orbit Servicing and Active Debris Removal). In Section 1.2 the phases of a space
rendezvous are detailed, underlying which are the constraint during each phase and most
importantly during the close-proximity phase. A major focus is given to navigation re-
quirements and navigation sensors. The contextualization provided in Sec.1.1 and Sec.1.2
will allow the reader to fully understand the thesis objective and contributions, which are
introduced in Section 1.3.

1.1 Operational context

1.1.1 On Orbit Servicing

In the last decade, the need to fully exploit the systems already launched, to provide
them cost-effectively support and even to build large structures in situ has arisen. The
goal is to advance beyond visiting destinations in space with sophisticated systems that
allow no room for failure, and beyond bringing at launch everything that is needed by the
mission. On-orbit repair, refurbishment or refueling will directly improve overall mission
reliability and will help to ensure mission success, while on-orbit assembling and on-orbit
depots will open the road for space exploration towards distant destinations.
All these activities can be classified as “On-Orbit Servicing” (OOS) activities, even if
lately the acronyms IOS (In-Orbit Servicing) is becoming of common use. An Interna-
tional Space University report ([ISU, 2007]) provides an analysis of the key challenges
and opportunities in the field of OOS, incorporating different aspects of the problem
and considering politic, economic, and technical aspects of OOS. The report provides the
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following definition for OOS :

“On-Orbit Servicing is a service offered for scientific, security, or commercial reasons
that entails an in-space operation on a selected client spacecraft to fulfill one (or more)
of the following goals: inspect, move, refuel, repair, recover from launch failure, or add

more capability to the systems”

The spacecraft providing the service is referred to as “servicer” (i.e., the chaser according
to the rendezvous nomenclature) and the spacecraft receiving the service is referred to
as “client” (i.e., the target according to the rendezvous nomenclature). Three different
categories for OOS as been identified:

• Inspection Missions: this kind of mission can provide additional information to
analyze and diagnose the cause of a satellite failure, and may be a first step towards
repairs or other future servicing missions. Techniques like Infra-red (IR) sensing
allow the verification of solar arrays functionality, while visible imagery can detect
the presence of debris/meteorites impacts and so on.

• Manipulation Missions: during these mission the servicer physically manipulate
the client. Manipulation mission include simple refuelling, but also more complex
activities such as assembling of large structures or operations where a robotic device
performs reparation on the client spacecraft. Substitution of entire module of the
client may be possible in a scenario where client spacecrafts are prepared.

• Maneuvering Missions: these missions includes re-orbitation of satellites, which
may be necessary due to launch failures or even to avoid that the client carries
the propellant necessary to reach or maintain its nominal orbit. De-orbitation of
satellites at their EOL may be included in this category, but will be discussed better
in Sec. 1.1.2.

The advantages of OOS are several. Nowadays the failure of a spacecraft component
may cause the loss of the entire mission. Spacecraft manufacturers take a risk-adverse ap-
proach and use redundancy, proven technology and long operational lifetimes to attempt
to mitigate the risk of failures. This increase the development cost and timelines. Effective
OOS will enable the industry to reduce the constraint of fault tolerance, decreasing cost
and increasing the technical performance of spacecrafts. OOS will increase the average
operational lifetime of satellites.
Nevertheless, to concretely start developing OOS missions, several challenges, both tech-
nological and economical, had to be faced. Before discussing these challenges, a brief
timeline of the very first OOS mission is given.
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1.1.1.1 History of On-Orbit-Servicing

A report from NASA’s Goddart Space Flight Center (GSFC) [GSFC, 2010] provides a
comprehensive survey about history and achievements of OOS before 2010.
The first OOS activities have been realized by manned crew during Extra Vehicular Ac-
tivities (EVAs). In 1973, during a series of EVAs, a NASA’s crew was able to replace a
thermal shield on Skylab (NASA’s first space station), completing the first successful on-
orbit repair. In 1984, thanks to its modular design, Solar Maximum Mission (SMM,1980-
1989) was captured by the Shuttle Challenger, repaired and redeployed, continuing its
mission until its reentry in 1989. Always in 1984 two satellites, Palapa B2 and Westar 6
-which had never functioned since their release from the cargo bay of the Shuttle due to
propulsion-leak issue- where recovered by a Shuttle mission, returned to Earth, retrieved,
resold and relaunched.
However, the biggest example of manned OOS is represented by the Hubble Space Tele-
scope (HST) servicing. HST was specifically designed to support OOS. In the period going
from 1993 to 2009, HST underwent five OOS missions.The first OOS (December 1993)
allowed the replacement of the solar arrays with a set of improved ones minimizing the
thermal sensitivity. In February 1997, a second mission advanced the scientific power of
HST by installing two second generation instrument, enabling the study of super-massive
black holes and Dark Energy. Also the S/C platform underwent some replacements and
repairs. OOS for repair/replacement both on HST platform and payload were repeated
in December 1999, March 2002, and May 2009. All the mission were performed by Space
Shuttle crews. However, the Columbia tragedy (1st of February 2003) raised awareness
about the role of human spaceflight in the space conquest, and pushed forward the devel-
opment of technologies to perform robotic OOS.
If HST is the biggest example of OOS for repair/refurbishment/replacement missions, the
International Space Station (ISS), being the largest artificial satellite ever build, is the
demonstration of the utility of on-orbit construction. The size of the structure precluded
ground assembly, test and launch as an entire unit. The whole assembly has taken 34
Shuttle and 4 Russian flights to deliver the major ISS elements, and (up to 2010) 143
spacewalks for a total of about 900 hours of EVAs. Moreover, robots have played an
important part in ISS construction and maintenance. The Space Station Remote Ma-
nipulator System (SSRMS, also known under the name of Canadarm 2), a robotic arm
placed on the ISS, enabled berthing operations with the HTV (see Sec. 1.2.3) and pre-
installation positioning of new ISS elements. It also provides a platform for EVAs. In
the same way, the Special Purpose Dexterous Manipulator (SPDM), is a device having
two independent robotic arms, allowing operations which were previously requiring EVAs,
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such as removal of failed components and installation of space units. SPDM (also known
as Dextre), together with Space Shuttle robotic arm (Canadarm), enabled in January
2013 the first refuelling mission on a non-prepared S/C (i.e., Robotic Refuelling Mission).
However those devices (Canadarm, Dextre, SSRMS) are operated remotely by man oper-
ators (both on ground or on the ISS), while the final goal of OOS is to exclude man from
the loop and to design robotic servicers capable to accomplish missions autonomously.
Autonomy will improve efficiency, robustness and capabilities, and this becomes of vital
importance when communication latency is high and/or communication windows are lim-
ited (the robot will be able to perform more tasks without the need of waiting human
operator assessment and approval to proceed).
The need of maturing key servicing technologies to perform autonomous missions led to
a series of technology demonstration activities. The National Space Development Agency
of Japan (NASDA, now known as Japan Aerospace eXploration Agency -JAXA-) realized
in November 1997 the first uncrewed automated rendezvous and docking demonstration
with cooperative target ( ETS-VII mission). In January 2003 and April 2005 the United
States Air Force Research Laboratory launched two microsatellites, XSS-10 and XSS-11 to
demonstrate technologies for autonomous navigation around target. In particular XSS-11
was capable of realizing autonomous proximity operations with a non-cooperative tar-
get (Minotaur first stage), as well as collision avoidance maneuver (CAM). This demon-
stration raised awareness on the military/ national security implication related to the
ability to approach and eventually affect an orbiting satellite. In March 2007 Defense
Advanced Research Project Agency (DARPA), in the frame of the Orbital Express mis-
sion, launched two system (servicer ASTRO and the prepared client NEXTsat), becoming
the first demonstration of successful end-to-end robotic satellite servicing activity. Re-
fuelling and some ORU (orbital replacement unit) activities such as the insertion of a
battery where performed, providing the confirmation that the key technologies needed for
satellite servicing were mature.

1.1.1.2 Economical challenges

All the missions discussed so far involve big scientific missions (e.g., HST repair), interna-
tional cooperation projects (e.g., ISS assembly), and Agencies demonstrators. Neverthe-
less, to push the development of enabling technologies and reduce the costs of servicing
mission, the market has to be extended to private satellite manufactures, and to do that
the commercial viability of OOS must be assessed. Satellite manufacturers may be sus-
picious towards the concept of designing for servicing since they consider it harmful to
their industry (it would add new complexity to their platforms and could decrease their
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sales since satellites would last longer, which is actually against the industrial trend of
planned obsolescence). Indeed, in a scenario where OOS is a common occurrence, satel-
lite manufacturers would be also the ones who offers servicering, and this will represent
another source of income. Nevertheless, the commercial interest in OOS will rise only
after the technology and its benefits are proven in an operational context. In fact, even if
the viability for hypothetical future market can be demonstrated, private industries may
be skeptical about taking the initial risk and development cost. For example, a refuelling
spacecraft would need to service multiple costumers in order to be economically viable.
Refuelling will give the client satellite an extended life, and the additional profit com-
ing from this life extension must be higher than the cost of refuelling. However, such a
viability assessment doesn’t take into account the high development cost of technologies
that have not yer reached the required TRL (Technology Readiness Level). In the same
way, the affirmation of modular design (whose first example is from NASA Multimission
Modular Spacecraft design [Falkenhayn, 1988], with SMM being the first spacecraft mak-
ing use of that design) will allow reparation/replacement of modules in space and reduce
the cost of on-ground assembly, integration and testing (AIT), but will need an initial
expensive changing of the whole development chain, from conception to manufacturing.
For this reason, public-private-partnerships has been pushed. This model involves the
collaboration between one or more government organizations (i.e., the Space Agencies)
and private industry: the public organization would incur most of the development cost
and initial risks, and scientific objectives could be combined with OOS technology demon-
stration objectives.
Another problem related to OOS is the need of a standardization: if the servicer is sup-
posed to dock to the client and establish a physical connection, standards need to be
developed for what concerns docking interfaces, data connections, power connections,
fluid connections and so on (depending on the kind of mission).
Finally, the lack of legal regulations for many OOS applications, such as high-resolution
sensing of S/C belonging to different countries or companies, and regulations about liabil-
ity and responsibility in the case of docking/manipulation, represents a real issue. These
aspects are better discussed in [Losekamm et al., 2015].

Viability assessments
During the last decades, several cost effectiveness and viability analysis for commercial
OOS have been proposed. Refuelling viability is discussed in [Hibbard, 1996], while
[Kreisel, 2003] and [Kreisel, 2002] asses the commercial implication, potential market
and impact of OOS. [Long et al., 2007] on the other hand suggests that the viability of
robotic OOS depends on a change in the operating practice which will have to shift from
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expensive, large and reliable satellites to smaller, lighter and cheaper satellite, leading
to economic savings in manufacturing and launching costs. More recently [Graham and
Kingston, 2015] has assessed the viability of Geostationary Earth Orbits (GEO) servicing
missions. Under the hypothesis of the study, refuelling mission and Begin Of Life (BOL)
intervention seemed to be the more valuable, while robotic interventions for repairs still
have a low viability due to the cost of the technologies needed.
GEO scenarios seem to be promising for several reasons. In January 2002 there were 900
reported objects in GEO of which only almost 28% were controlled, operational satellites
[ESA, 2003].The high concentration of satellites, the great potential for failures and the
ease of moving between objects in GEO (i.e., the orbits lie on the same planes) made
attractive the idea of a multi-satellite repair/refuelling vehicle. For instance, adding a
docking interface to a GEO satellite would only slightly increase its weight ( the Orbital
Express mission used a fully cooperative docking mechanism weighting 32 kg and a re-
fueling mechanism weighing 50 kg, which are less than the 3% of the total weight of an
ordinary GEO communication satellite [GSFC, 2010]).
Since GEO satellites cannot be de-orbited on Earth, they are usually moved to a grave-
yard orbit above the GEO protected region. This means that at launch a percentage of
the boarder propellant must be dedicated for this End Of Life (EOL) disposal, increasing
S/C weight at launch and therefore launching cost. Moreover, at the moment, there is
no practical way to gauge remaining propellant in zero gravity environment, so satellite
operators retire S/Cs based on estimation with safe margins. In a scenario where S/Cs
rely on a servicer to be moved into the graveyard orbit, the S/C would be able to fully
deplete the fuel, thus extending their mission duration.
It is important to underline how the use of a servicer to maneuver a prepared client in
EOL disposal (which is a future perspective for satellite that have not yet been launched)
is a different scenario with respect to the capture and disposal of a space debris, which
is already a Resident Space Object (RSO), is not prepared and may be even in a severe
tumbling.

1.1.1.3 On-Orbit-Servicing perspectives

Most of the satellite-servicing activities have already been demonstrated in LEO with
humans in the loop: the challenges lie in extending that capability to robots which can
autonomously perform these operations in location where communication latency impedes
direct ground control (and even monitoring).
Advanced robotics analogous to the task required by a servicer are routinely demonstrated
on the ground, and it is their application in Space missions that requires maturation.
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In the last decade several design proposal for commercial OOS have been proposed (con-
firming the rising interest of private companies for OOS), but at the time of writing (i.e.,
September 2020) only one vehicle has already provided commercial services (i.e., MEV-1).
A non-comprehensive list of the on main projects is here provided:

• European Orbital Life Extension Vehicles (OLEVs), funded by ESA and Orbital
Recovery Ltd (ORL), was designed to operate as an orbital “tugboat,” supplying
the propulsion, navigation and guidance to keep a telecom satellite in its proper
orbital slot for many years. Another application was the rescue of spacecraft that
have been placed in a wrong orbit by their launch vehicles, or which have become
stranded in an incorrect orbital location during positioning maneuvers. It appears
that the mission did not move to completion as very little has been heard from 2010
[Benedict, 2013].

• The German Space Agency, DLR (Deutsches Zentrum für Luft und Raumfahrt), has
been developing the Deutsche Orbitale Servicing mission (DEOS) robotic spacecraft
since 2007 and contracting with various European companies to work on different
technical elements. The DEOS project was aimed at the demonstration of technolo-
gies for the controlled in-orbit disposal (controlled destructive re-entry in Earth’s
atmosphere of the berthed spacecrafts) of a defective satellite (tumbling debris).
According to planning, DEOS was to be ready for launch in 2018, but the project
was canceled after the definition phase (B1) in 2013.

• In the frame of Horizon 2020 (European Framework Programs for Research and
Technological Development) activities, EROSS program (European Robotic Or-
bital Support Services) is a project coordinated by Thales Alenia Space France
(TAS-F) aimed at demonstrating European solutions for the servicers and the client
LEO/GEO satellites, enabling a large range of efficient and safe orbital support
services. The project will assess and demonstrate the capability of the on-orbit
servicing spacecraft to perform rendezvous, capture, docking, berthing and manipu-
lating of a client satellite provisioned for servicing operations including refuelling and
payload transfer/replacement. The project has been followed by EROSS+, which
aims at reaching a TRL 6 and demonstrate the developed solution in a complete
rendezvous with a prepared target in 2025.

• In 2011 Canadian MDA (which is the designer of the robotic arms Canadarm and
Dextre), planned to launch its Space Infrastructure Servicing (SIS) vehicle into
near geosynchronous orbit, where it would have serviced commercial and govern-
ment satellites in need of additional fuel, re-positioning or other maintenance. MDA
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had selected Intelsat General Corporation as its exclusive channel to bring on-orbit
services to the US Government. The project came to a standstill and only in 2017,
with the creation of the new company Space Infrastructure Service, MDA (now
MAXAR) announced an agreement with SES (a world leading satellite-enabled so-
lutions provider, with more than 50 GEO satellites and 12 MEO satellites on orbit)
for refuelling and life extension in GEO.

• In January 2018 the Israeli company Effective Space Solution signed a contract
with an unnamed customer to perform life extension services for GEO satellites.
The company planned to launch two 400 kg servicers named SPACE DRONE by
the 2020 and two more by the 2022. They targets GEO communication satellites
ranging from 1500kg to 4000kg of dry mass to provide them with life extension
up to 15 years and post mission disposal. However at the end of June 2020 the
company announced that it will be acquired by the U.S. subsidiary of Astroscale
(see Sec.1.1.3). The goal of providing life extension services to GEO satellites is
maintained, but there will be delays in the development of the missions.

• As a government entity, DARPA aim is to advance technology developments without
bringing products services directly to the market. With its Robotic Servicing of
Geosynchronous Satellites (RSGS), whose projected launch date would be late
2022 or early 2023, will be able on the other hand to provide different servicing,
such as high resolution inspection, anomaly resolution, upgrade installation, and re-
positioning in the GEO belt. The servicer will be capable to service approximately
the 90% of the S/C currently in GEO.

• Only one project has currently come to a complete design, launch and docking: on
9 October 2019 MEV-1 (Mission Extension Vehicle-1), a spacecraft from Northrop
Grumman Innovation Systems, was launched. The planned mission of MEV-1 was
to reach GEO orbits and link up with the Intelsat IS-901 communication satellite.
The rendezvous was planned to happen on a graveyard orbit above GEO region,
where IS-901 was placed in 2019 after 18 years of service. MEV-1 was planned
to take control of the pointing and orbit-maintenance duties for Intelsat IS-901,
replacing the satellite on its GEO slot and performing the first commercial OOS
ever done before. The servicing spacecraft was planned to extend IS-901 life by five
years and replacing it in the graveyard orbit at the end of the extended life. For
each year of MEV services, Intelsat will pay 13 million $. After the nominal mission
with IS-901, MEV-1, which has a 15-year design life, could theoretically depart and
perform OOS on other satellites. Controlled by the company’s satellite operations
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team, the MEV-1 uses a docking system that attaches to existing features on a
customer’s non-prepared satellite. On the 25th of February 2020, MEV-1 completed
successfully the historic docking with IS-901. MEV-1 and IS-901 became the first
commercial satellites to dock in orbit and are the first example of life-extension
services in GEO. After the proof of concept of MEV-1, a second servicing vehicle
(MEV-2) was launched the 15th of August 2020. It is planned to dock to the Intelsat
IS-1002, which, unlike IS-901, is still operative on its GEO slot. Being a carbon copy
of MEV-1 from a design point of view, MEV-2 will have therefore to realize a more
challenging and risky rendezvous in the populated GEO region.

These examples shows that -even if commercial satellite operator business models have
changed drastically (and often) during the past decade- the interest of private companies
in OOS has now become -not without some difficulties- a matter of fact, and a new era
of achievement has now been opened.

1.1.2 Space Debris problem

The term space debris indicates the collection of all non-operative objects in orbit around
the Earth, including spent rocket bodies and inactive satellites, but also fragments gener-
ated by destructive events (such as collisions and explosions) and objects released during
operations [Letizia, 2016]. This definition of space debris has to be considered an en-
gineering definition, since the legal framework does not provide standards to decide on
whether an object constitutes space debris [Popova and Schaus, 2018].
A report from the Inter-Agency Space Debris Coordination Committee (IADC), which
met during the 50th Session of the Scientific and Technical Sub-Committee of the United
Nations Committee on the Peaceful Uses of Outer Space (COPUOS)( 11-22 February
2013), states that the debris situation in low Earth orbit (LEO) may be reaching a catas-
trophic tipping point. The risk of a scenario where the density of objects in LEO is
high enough that collisions between objects will cause a cascade of collisions, with each
collision generating space debris thereby increasing the likelihood of further collisions,
is now well acknowledged. This cascade event, also known as Kessler Syndrome, first
predicted by Donald Kessler from NASA in 1978 [Kessler et al., 2010], will lead to an
exponential increase of the number of space debris. This means that the debris flux will
increase exponentially with time, even though a zero net input (zero new launches) may
be maintained. This phenomena, if not controlled and restrained, will prevent the use
of any LEO. Even if the situation in GEO in less critical at the moment, space debris
problem must be prevented also in GEO regions, mainly due to the reduced number of
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available orbital slots. In order to start monitoring and protect the region of interest,
IADC as declared two protected regions:

• LEOIADC region: from 0km to 2000 km of altitude, all the inclinations.

• GEOIADC region: from 35586 km to 35986 km of altitude and from -15o to +15o

of inclination. This region actually corresponds to the geostationary altitude ±200
km.

1.1.2.1 Space Debris environment

Assessing the actual state of space debris population needs both modeling and observation
tools. Objects of size smaller than 5-10 cm cannot be tracked by on-ground observation
[Xu et al., 2009] and therefore are not cataloged in the SSN (Space Surveillance Network
[Shepherd and Command, 2006]). The actual means of space surveillance include the
use of telescopes, radar, and laser (laser ranging for detection and tracking of unknown
non-cooperative targets is under demonstration and ESA plans for its own laser ranging
tests). In the context of space debris, these means of space surveillance are used to predict
reentries, to asses the necessity of performing CAM and to feed propagation models.
Nevertheless, it is from small un-trackable objects that comes the highest risk of further
collisions and fragmentation. Due to the high velocity of LEO objects (around 7km/s),
even the impact with a particles of some centimeters can lead to the destruction of a S/C.
Even objects having size lower than 1 mm cause S/C surface degradation. Estimation of
this population of fragments was done during Space Shuttle era (i.e., the so-called Long
Duration Exposure Facility): the degradation on the surfaces of satellite or solar arrays
brought back on Earth allowed an estimation of the debris flux the objects were subjected
to. Object from 1mm to 1 cm are likely to cross S/C shielding threshold, penetrate and
cause structural damage. Object bigger than 1 cm are likely to cause the complete loss
of the mission.

Fig.1.1 and Fig. 1.2 provide a visualization of the evolution of the absolute number
of objects orbiting or penetrating LEO (1.1) and GEO (1.2) regions. The objects are
classified with respect to their orbital class, being:

LEO Low Eart Orbit, from ground to 2000km of altitude

HEO High Eccentricity Eart Orbit, having the perigee altitude below 31570 km and the
apogee altitude above 40002 km (and then crossing both LEOIADC and GEOIADC

protected regions).
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Figure 1.1: Absolute number of objects penetrating LEOIADC protected regions. Images
credits: ESA’s Annual Space Environment Report, 2019

Figure 1.2: Absolute number of objects penetrating GEOIADC protected regions. Images
credits: ESA’s Annual Space Environment Report, 2019

GTO GEO Transfer Orbit, a transfer obit that has its perigee in LEOIADC region and
the apogee near or inside GEOIADC region.

LMO LEO-MEO Crossing Orbit, a orbit having perigee inside LEOIADC protected region
and apogee above that region but below 31570 km.

MGO MEO-GEO Crossing Orbit, a orbit having apogee inside GEOIADC protected region
and perigee above LEOIADC region and below 31570 km.
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EGO Extended Geostationary Orbit, an elliptical orbit having the major semi-axis be-
tween 37948 km and 46380 km, eccentricity below 0.25 and a positive inclination
below 25o.

The tracked classes are:

PL Payloads: space object designed to perform a specific function in space excluding
launch functionality (e.g. operational satellites).

PM Payload mission related objects: space objects released as space debris which
served a purpose for the functioning of a payload (e.g. covers for optical instruments,
astronaut tools).

PF Payload fragmentation debris, space objects fragmented or unintentionally released
from a payload as space debris for which their genesis can be traced back to a
unique event (e.g. when a payload explodes or when it collides with another object).

PD Payload debris: space objects fragmented or unintentionally released from a payload
as space debris for which the genesis is unclear, but whose orbital or physical
properties enable a correlation with a source.

RB Rocket body: space object designed to perform launch related functionality; This
includes the various orbital stages of launch vehicles, but not payloads which release
smaller payloads themselves. These objects, once terminated their (short) mission,
contribute to the population of space debris.

RM Rocket mission related objects: space objects intentionally released as space debris
which served a purpose for the function of a rocket body. Common examples include
shrouds and engines.

RF Rocket fragmentation debris: space objects fragmented or unintentionally released
from a rocket body as space debris for which their genesis can be traced back to
a unique event (e.g. objects created when a launch vehicle explodes).

RB Rocket debris, space objects fragmented or unintentionally released from a rocket
body as space debris for which the genesis is unclear, but whose orbital or physical
properties enable a correlation with a source.

UI Unidentified objects.

The highest amount of space debris is located in LEO region (between 600 km and
1000km of altitude), with a pick at the altitudes around 800 km. For these altitudes,
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the more populated inclination are the one corresponding to sun-synchronous orbit (97o-
105o). Below 600 km debris are not likely to “survive” thanks to the natural decay caused
by atmospheric drag. ESA publishes every year the “Annual Space Environment Report”
providing a photographs of the current situation and evolution of the environment [ESA,
2019a], based on DISCOS Database (Database and Information System Characterising
Objects in Space [Klinkrad, 1991]).
The figures underline the exponential growth of orbiting objects during the past decades,
even if part of the registered growth has to be attributed to the augmentation of sensing
performance. The number of objects isn’t the only tracked factor, since both the evolution
in the total mass and total surface orbiting are relevant (bigger objects generate a larger
amount of fragment in the case of a collision, and the probability of a collision with a
debris increases as the surface of the S/C increases). For this reason, also an “equivalent”
number, which is obtained multiplying physical property of the object (count, mass, and
area) with an equivalence factor, is computed. Table 1.1 shows then number of newly
added objects in 2018: Being the class of PL the only one not appertaining to the popu-

PL PF PD PM RB RF RD RM UI Total
both regions, absolute 2 0 0 0 6 0 0 3 46 57
LEOIADC , absolute 337 57 17 22 72 31 19 95 562 1252
LEOIADC , equivalent 369 57 17 21 45 8 10 87 88 703
GEOIADC , absolute 29 0 0 4 9 44 2 3 495 586
GEOIADC , equivalent 25 0 0 2 0 3 0 0 33 64
none, absolute 28 0 0 1 15 395 2 2 270 713

Table 1.1: Absolute and equivalent number of newly added object intersecting with the
protected regions. Table credits: ESA’s Annual Space Environment Report, 2019

lation of space debris, the extent of the problem becomes evident.
Fig. 1.3 shows the monthly number of objects tracked by the SNN, from the 60’s to 2016.
Two pick in the population of fragmentation debris can be found in 2007 and 2009. The
pick of 2007 is due to Chinese anti-satellite missile test and consequent destruction of
Chinese weather satellite Fengyun-1C. The pick of 2009 is due to the collision between
the operative Iridium-33 satellite and the inoperative Kosmos-2251, whit the following
decrease due to the atmospheric reentry of a percentage of the resulting fragment. These
two single events have increased by the 50% the risk of further collision. Currently, almost
2/3 of the CAM performed on operative satellites are aimed avoiding fragments due to
these two single events. The event of 2009 was a real game changer for the community
since it was the first collision involving an operative satellite, thus raising awareness on
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the real risk coming from space debris in LEO.

Figure 1.3: Monthly Number of Objects in Earth Orbit by Object Type
Images credits: NASA - Orbital Debris Quarterly News - April 2016 - vol. 20 (1-2)

For the non trackable populations, as well as for the prediction for the next years,
complex mathematical and statistical models are exploited (i.e ESA’s MASTER 2009
model, [Flegel et al., 2009]). Modeling for prediction implies the propagation of the ac-
tual population for a long period of time, with the inclusion of new objects from future
launches and eventual explosions, and considering the possibility of future fragmenta-
tion due to collision. Models has consider different scenarios, such as the possibility
of implementing mitigation guidelines (Sec.1.1.2.2), “business as usual” ( no mitigation
measures applied), and even the future advent of the mega-constellations. The study
in [Liou et al., 2013], starting from an initial population provided by MASTER 2009
model, compares the prevision in LEOIADC region for the next 200 years provided by
six different model. The considered model are ASI (Italian Space Agency) model SDM
(Space Debris Mitigation), ESA’s model DELTA (Debris Environment Long-Term Anal-
ysis), ISRO’s (Indian Space Research Organization) model KSCPROP, NASA’s model
LEGEND (LEO-to-GEO Environment Debris model), JAXA’s model LEODEEM, and
UK Space Agency model DAMAGE (Debris Analysis and Monitoring Architecture for the
Geosynchronous Environment) which has now been extended also to LEO region. All the
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models provide consistent results: even with a 90% compliance of the commonly-adopted
mitigation measures (see Sec. 1.1.2.2) and no future explosion, the simulated LEO debris
population will increase by an average of approximately 30 % in the next 200 years, with
catastrophic collisions expected to occur every 5 to 9 years. The conclusion drawn from
[Liou et al., 2013] is that active debris removal should be considered to stabilize the future
LEO environment.
To contrast the space debris problem, space operators have to act in two directions:

SDM Space Debris Mitigation: prevention of in-orbit explosion or collision and end of life
disposal.

SDR Space Debris Remediation: removal of the biggest space debris in the protected
regions.

Generally, SDM involves all those measures that must be taken during the design of the
satellite, and therefore can be applied only for satellite that are not yet in orbit. On
the other side, SDR is an extreme measure that has to target the RSO which are not
compliant with SDM guidelines and represent a real danger for operational satellite.

1.1.2.2 Space Debris Mitigation

The most effective short term means of reducing the space debris growth rate is to prevent
in-orbit explosions (e.g., via passivation of space objects at the end of their operational life)
or collisions (e.g., via CAM while the objects are still active). On orbit breakup events do
not depend only on collision with existing fragments, but also on explosions ( e.g., caused
by electrical overcharging, battery explosion, and propulsion issues). Accidental breakup
must be avoided both during the operational life of the S/C and after its EOL. The sets
of suggested measures to adopt after S/C EOL include also the clearance of the protected
regions (i.e., EOL disposal, which is considered as the most effective long-term means
of stabilizing the space debris environment at a safe level). According to [ESA, 2019a],
most internationally accepted space debris mitigation measures can be traced back to the
following objectives:

• The limitation of space debris released during normal operations.

• The minimization of the potential for on-orbit break-ups (an average of 8 non de-
liberate fragmentation occur each year)

• Post mission disposal to clear protected regions
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• Prevention of on-orbit collisions (An average of 1/2 CAM are performed each year
accepting a fatality risk below 10−4)

ESA’s mitigation guidelines are collected in ESA’s Standardization Steering Board (ESSB
standard) Space Debris Mitigation Compliance Verification Guidelines [ESA, 2015a].
The set of procedures to reduce post-EOL breakup risk are referred to as “passivation”
([Anselmo and Pardini, 2008]), and may include discharge of batteries, disconnection of
solar arrays from batteries, depletion burns to empty propellant tanks, and so on.
For what concerns the clearance of the protected region, both Earth reentry or disposal
to a graveyard orbit are accepted. Earth reentry, due to the required ∆V , is likely only
for LEO satellites. Satellites have to reenter Earth within 25 years after the EOL, with an
on-ground fatality risk lower than 10−4. Reentry can be obtained by placing the satellite
in an orbit where natural orbital decay due to atmospheric drag allows the reentry within
the prescribed 25 years, but only if the on-ground fatality risk of an uncontrolled reentry
-which can be assessed with tools such as ESA’s DRAMA [Martin et al., 2005]- is below
10−4. Otherwise, a controlled reentry targeting uninhabited area must be performed. An
alternative to the controlled reentry - which is more expensive both in terms of required
∆V and on a system level (e.g., more performing AOCS)- is to “design for demise” [Kelley,
2012]. Design for demise refers to the “intentional design of space system hardware so
that it will completely burn up – or “ablate” – during uncontrolled atmospheric reentry
as a means of post-mission disposal”. Of course this kind of design leads to an increase
of S/C production cost, which, depending on the mission, may be higher than the cost
of a controlled reentry. [Heinrich et al., 2015] summarizes current state of art on both
techniques in order to provide guidelines and recommendations to help in the trade-off for
this issue. EOL disposal and efficient CAM will become more and more important with
the advent of mega-constellations which will dramatically increase the number of objects
in LEO, with more than 1000 satellites planned for OneWeb constellation, almost 3000
planned for Boeing constellation, 4600 satellite planned for Samsung constellation and
about 1000 planned for Google Constellation [Larbi et al., 2017]. Alone, SpaceX Starlink
constellation could swell by more than 30 000 satellites, with more than 12 000 already
approved and 775 S/C already orbiting by September 2020. Nevertheless, SpaceX decided
to reduce the impact on LEO environment of the first set of 1440 planned satellites by
reducing their altitude from the initially planned 1100km to 550km.
For what concerns GEO clearance, GEO satellite should be disposed on an orbit having
an eccentricity lower than 0.003 and having a perigee altitude sufficiently above the geo-
stationary altitude, such that long-term perturbation forces will not cause the spacecraft
to enter the GEO Protected Region within 100 years. A first assessment of the altitude of
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the disposal orbit can be done using the following formula, where Cr is the dimensionless
solar radiation pressure coefficient and A/m is the ratio of the cross-section area to dry
mass of the space system:

hdisposal = hGEO + 235 + 103CrA/m (1.1)

A deeper insight of SDM in geosynchronous orbit is given in [Anselmo and Pardini, 2008].
LEO and GEO clearance requirements don’t involve only LEO/GEO satellites, but also
those S/C which are likely to enter the region after their EOL (e.g. missions in the unstable
Sun-Earth Lagrangian point L2, which should be disposed into heliocentric orbits with
no revisit closer than 1.5x106 km from Earth within 100 years).
Even if some passive deorbitation device is now under study (e.g., drag-augmentation
devices [E Roberts and Harkness, 2007], and solar pressure augmentation devices [Lücking
et al., 2013]), at the moment the only way to clear the protected regions is to perform
propelled maneuvers (except for those LEO satellites whose orbit will naturally decay
within the prescribed 25 years). As anticipated in Sec. 1.1.1, the possibility of relying on
a servicer S/C to clear the protected regions will augment the operational lifetime of the
client. Indirectly, this will also contribute to a reduction of space debris population growth
since it will avoid early replacement of S/C. It becomes clear how OOS can positively
contribute to SDM. Currently, SDM guidelines suggest particulars design to reduce the
risk of breakup, debris release, and so on. The maturation of OOS technology may lead
to the definition of new mitigation guidelines for S/C design, such as the possibility to
include visual aids and docking or grapple fixture to help RDV operations: OOS could
then provide both planned EOL disposals and emergency disposals in case of client system
failure.

1.1.2.3 Space Debris Remediation

Space Debris Remediation aims at removing the already existing debris that are more
likely to lead to future collision and feed the Kessler syndrome. Many works have as-
sessed the impact of ADR on the stability on environment, and more precisely LEO
environment, which presents the most dangerous situation in a short term scenario. In
[Liou and Johnson, 2009, Liou et al., 2010], prior to Iridium-Kosmos collision, NASA
proposes a sensitivity study to illustrate and quantify the effectiveness of various remedi-
ation options. The problem of selecting the best candidates for the removal is underlined
and a selection criterion is established, targeting the debris having a maximum value of
R(t) = P (t)×m where P (t) is the probability of collision and m is the mass of the object.
The environment simulations, carried out with LEGEND model, rely on assumption such
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as the percentage of compliance with SDM requirements of orbiting S/Cs, the solar activ-
ity, and the launch traffic. The results of the study lead to the conclusion that ADR must
be implemented together with SDM to keep the environment stable, with a removal of
mass equal to 5–10 large objects per year from regions with high object densities and long
orbital lifetimes starting from the 2020. After the Iridium-Kosmos collision, a new study
from NASA [Liou, 2011] was presented in order to take into account the new evolution of
LEO environment. The collision had changed the “initial condition environment” of the
simulations and has reignited the interest in performing ADR. The study also underline
the priority of realizing ADR in LEO environment, since in GEO and MEO environment
only few accidental collision between objects bigger than 10 cm where predicted in the
next 200 years. The work also underlines how the TRL to allow safe ADR operation has
not yet been reached and that the hypothetical start of ADR operation may be post-posed
to 2060, leading to 7 more collisions with respect to an early implementation in 2020. In
the same way, ESA’s internal studies show that continuous removal actions starting in
2060 would be 25% less effective in comparison to an immediate start [ESA, 2015b]. The
study in [Liou, 2011] also focuses in defining the LEO areas in which the highest values
for R(t) are found, resulting in altitudes between 600 − 1000 km and inclinations in the
ranges 70o − 75o, 80o − 85o, 95o − 100o, with almost the average of the mass in the ret-
rograde regions represented by rocket upper stages. According to [Liou, 2011], rocked
bodies may be the first targets of ADR demonstration due to their simple shapes and the
fact that they do not carry any sensitive instrument so that agreement for international
cooperation may be achieved easily. A deeper study assessing the breakup severity on
operational satellites aimed at defining a severity index for existing debris can be found
in [Letizia et al., 2016]. This severity index can help to define priority target for ADR. A
study from the CNES (Centre Nationale d’Etudes Spatiales) investigate the main issues
related to ADR [Bonnal et al., 2013]. The study underlines the need of ADR to be com-
pliant also with SDM requirements, which translates in the need of performing controlled
reentry when deorbiting debris of size bigger than 1000 kg, which are likely to survive the
atmospheric reentry and represent a risk for the population on Earth. A second issue is
related to the problem of realizing RDV operation with a satellite of another launching
state and will be investigated in Sec. 1.1.2.4. Moreover, the question of how to define
the operational scenario in an efficient way arises: for example, a chaser can be designed
to target a single debris, to capture it and to deorbit together with it, or to target more
satellites and deliver a deorbiting kit to each one of them. Finally, the realization of an
automated mechanical interfacing with a non prepared target which may be in tumbling is
a difficult task, and the TRL of the possible solution remain rather low. Technologies such
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as soft mechanical interface (e.g., nets, hooks, clamps, and harpoons) or even contact-less
solution (e.g. Ion beam [Bombardelli and Pelaez, 2011] for de-tumbling and removal) are
investigated but still needs to reach the required level of maturity. The study in [Wormnes
et al., 2013] proposes a survey of the technologies that can enables debris capture. Of
course ADR implementation needs the development of complex GNC functions, which
will be deeply investigated in Sec. 1.2.
Indeed, the challenges are numerous but the development of adequate SDR mechanisms
at an international and national level should not be postponed in order to ensure long
term space access.
Some works (e.g., [GSFC, 2010, Larbi et al., 2017]) include ADR withing the OOS activi-
ties, with [Larbi et al., 2017] assessing the possibility of using CubeSat to deorbit satellites
of the future mega-constellations. Although an EOL disposal is indeed a form of OOS,
main differences lie between performing a planned EOL disposal on a S/C which was
designed for this scope, and performing ADR on the already existing debris. These differ-
ences have major impacts on the needed technologies, navigation algorithms, proximity
operations that will be discussedin Sec.1.1.3. Moreover, SDR (which aims at reducing the
number of existing debris with ADR) and SDM (which aims at reducing the production
of new debris with CAM, passivation, shielding, EOL disposal and so on) are considered
as two separate contexts. For all these reasons, we will refer to ADR and to OOS as two
different but related issues.

1.1.2.4 Legal framework for SDM and SDR

As mentioned, the challenges that have to be faced to implement SDM and SDR are not
only technological and economical, but also legals. In order to understand the existing
legal framework of SDM and SDR, a brief history of space laws and regulation will be
presented.
In 1958 UN General Assembly set up the Committee on the Peaceful Uses of Outer Space
(UNCOPUOS), with the aim of governing the exploration and use of space for the benefit
of all humanity.. The Committee was tasked with reviewing international cooperation in
peaceful uses of outer space, studying space-related activities that could be undertaken by
the United Nations, encouraging space research programs, and studying legal problems
arising from the exploration of outer space. The work of the Committee lead to the
creation of the five treaties and five principles of outer space:

• Treaty on Principles Governing the Activities of States in the Exploration and Use
of Outer Space, Including the Moon and Other Celestial Bodies [UN, 1967b], which
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opened for signature in January 1967, and it entered into force in October 1967. As
for January 2019, it is ratified by 98 States and signed but non ratified by 23 States.

• Agreement on the Rescue of Astronauts, the Return of Astronauts and the Return
of Objects Launched into Outer Space [UN, 1967a], which opened for signature in
1968 and entered into force in December 1968. As for January 2019, it is ratified by
98 States and signed but non ratified by 23 States.

• Convention on International Liability for Damage Caused by Space Objects [UN,
1972], which opened for signature in 1972 entered into force in September 1972. As
for January 2019, it is ratified by 96 States and signed but non ratified by 19 States.

• Convention on Registration of Objects Launched into Outer Space, [UN, 1974],
which opened for signature on 14 January 1975 and entered into force on 15 Septem-
ber 1976. As for January 2019, it is ratified by 98 States and signed but non ratified
by 23 States.

• Agreement Governing the Activities of States on the Moon and Other Celestial
Bodies, [UN, 1979], which opened for signature on 1984 but entered into force only
in June 1984 as the fifth involved country ratified the convention. This convention
has not been ratified by all the Countries involved (or that plans to be involved)
in human space flight (i.e., the United States, the majority of the member states of
the European Space Agency, Russia, People’s Republic of China and Japan), so it
is considered to have a very low relevancy in international law.

The Outer Space Treaty (OST) can be considered as the constitution of space law: it con-
tains the basic principles for space activities, provides the basis for the next four treaties,
and has gained significant support. OST is considered to contain principles of customary
international law, which bind not only state parties to the treaty but also non-signatories
[Popova and Schaus, 2018]. OST enshrines freedoms in relation to human space activities:
freedom to explore outer space, the freedom to use outer space, the freedom of scientific
investigation, the freedom of access to all areas of celestial bodies.
[Popova and Schaus, 2018] proposes a detailed analysis of how these treats affects the
legal framework underlying SDM and SDR. OTS does not mention the Freedom to ac-
cess outer space, which is actually supposed as a pre-condition. Accessibility should be
preserved non only as a short-term perspective, but on a long-term basis, and such a
condition is maintained only if the space environment is stable. Sustainability is an in-
dispensable condition for the usability of outer space, therefore it is required that the use
of outer space by the current generation takes place on the basis of responsibility towards
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future generations. Even though the legal framework provides some general direction for
co-operation between the users of outer space, concrete laws on how to ensure sustain-
ability need to be formulated in more detail. In fact, the treaties on space law neither
expressly prohibit the creation of space debris nor impose an obligation on states and
their space actors to remove space objects from orbit. During its 62nd session in June
2019, the COPUOS adopted a preamble and 21 guidelines for the long-term sustainability
of outer space activities. These provide guidance on policy and regulatory framework for
space activities, safety of space operations, international cooperation, capacity-building
and awareness, and scientific and technical research and development. The guidelines
have been endorsed by the UN General Assembly in November 2019, but remains legally
non-binding.
On the technical level, both mitigation and remediation concepts have been developed in
order to facilitate the protection of near-Earth space from space debris aiming to main-
tain the conduct of space activities indefinitely in the future and therefore to guarantee
the freedom to use outer space. In the following paragraphs more details on the legal
frameworks of SDM and SDR are provided.

SDM legal framework
Since the 80’, no new international treaty on space have been developed, neither the ex-
isting ones have been revised. States are now increasingly focusing on non-legally binding
documents, such as technical guidelines. The technical guidelines for space debris mitiga-
tion were introduced in 2002 by the IADC, an organization consisting of 12 national space
agencies and ESA. IADC SDM guidelines [IADC, 2002] were written by scientist and en-
gineers and not by governments, and were adopted in 2007 also by the UNCOPUOS. SDM
guidelines depict environmentally relevant technical measures for future missions that will
ensure the protection of the outer space environment from space debris. Guidelines on
Space Debris Mitigation, are applicable to the mission planning and to the operations
of newly designed spacecraft and orbital stages and, if possible, to existing ones. These
guidelines are voluntary and include different measures (e.g. sharing information on space
objects and orbital events, conjunction assessment during all orbital phases of controlled
flight, criteria and procedures for the active removal of space objects and for the in-
tentional destruction of space objects, risks associated with the uncontrolled re-entry of
space objects and so on). As these instruments are not legally binding, they do not create
rules of international law, the violation or non-observation of which would give rise to an
international responsibility of states for creating or for not mitigating space debris. Com-
pliance with SDM measures is only of a voluntary nature and cannot be legally enforced.
Nevertheless, internal regulation of spaces agencies can contribute to the implementation
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of SDM. For example ESA Space Debris Mitigation Policy for Agency Projects (2014)
is applicable to the procurement of all ESA space systems and all operation under the
responsibility of ESA. Moreover SDM guidelines can serve as a model for the development
of national space laws (e.g France) which impose concrete obligations for implementing
mitigation measures on private space actors. Even if few States adopt SDM measures
as laws, this can deeply affects de general framework, due to the concept of launching
State. A launching State is any State (strictly speaking: any State party to the Outer
Space Treaty of 1967 or the Liability Convention of 1972) that “launches or procures the
launching of an object into outer space”, and any State “from whose territory or facility
an object is launched”. Any space object can thus be ‘tied’ to at least one State, and quite
often to more [ESA, 2017]. Given a certain payload (e.g. a communication satellite), its
launching States will be the State owning the satellite and paying for the launch, the
State providing the launcher and the State from which the launcher lifts off. According to
the Liability Convention, launching States are “jointly liable” of any damaged caused by
their space object, where damage means “loss of life, personal injury or other impairment
of health, or loss of or damage to property of States or of persons, natural or juridical, or
property of international intergovernmental organization [UN, 1972]”. Liability is relative
(culpability must be proven) for damages occurred in outer space and absolute for damage
occurred in air and ground. This means that even the State that procure the launch has
an interest in verifying that the carried payload is compliant with the current regulation.
It becomes clear how important is that a state such as France, which is a launching State
for all the mission relying on a Ariane launcher and lifting off from Kourou, has adopted
SDM guidelines as a state law. France, whose Space Law imposes the reentry of LEO
satellite within 25 years after the EOL with a fatality risk lower than 10−4, may ask, to
the State demanding the launch, to be compliant with the SDM requirements.
Currently IADC SDM guidelines are under discussion at COPUOS to become interna-
tional laws, but still have to overcome the reservation of some states ( emerging states are
reticent towards taking expensive technical measure to help preserving an environment
whose actual pollution wasn’t caused by them).

SDR legal framework
If the legal framework of SDM is complex, the one for SDR is even more. From a legal point
of view, neither is space debris defined nor its production prohibited, nor are the mitigation
and remediation of space debris considered in the binding law. Thus, the creation and the
non-removal of space debris is not recognized to be an unlawful act. The legal framework
does not provide standards to decide on whether an object constitutes space debris, but
also the legal regime for space activities does not define what space debris is (e.g., does it
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depend on S/C controllability or on functionality?). The Registration Convention provide
that space objects have to be registered, but no information concerning the functionality
or the current status of the space object must be provided, meaning the register cannot
be used to asses the eligibility for removal of a registered object. Moreover, as anticipated
in 1.1.2.3, it is not yet clear how a substantial risk should be defined so as to decide which
fragments should be removed first.
As there is no legal obligation for states to remove their objects, another relevant question
is how to gain authorization to remove in cases where, for example, the state or registry
neither consents to undertake the removal not does it provide authorization to a third
party due to security concerns. Also, the specific liability regime for space activities pose
problems when it comes to ADR operations: if a third party undertakes an ADR operation
on a object, and during this operation some damage is caused, also the launching States
of the object to be removed are liable. Moreover at the moment no change or transfer of
ownership or control of space objects is foreseen in space law treaties. Thus, in the case of
an accident that occurred during an ADR mission on a transferred satellite, the original
launching state will be held liable for any potential damage, although it might have no
possibility to control the satellite. This lack of regularization interest also OOS (e.g for
EOL disposal). Furthermore, ADR systems (as well as OOS systems) entail a capability
which is not restricted only to space debris and they could be used, if such an intent is
given, for the removal or inspection of any satellite. This dual characteristic, both civil
and military, makes ADR (and OOS) a sensitive capability.
One legal avenue to incorporate SDR mechanisms in the existing legal framework could
be to follow the same steps made to push national adherence to SDM guidelines (i.e.
implementing SDR and OOS measures nationally as part of authorization or licensing
requirements, or through national legislation). Moreover, space agencies can contribute
to the development and implementation of SDR by defining policies which are applicable
to the procurement of all space systems and operation under agencies responsibility. Such
a move from ESA will ensure accordance also to SDR and OOS mechanisms for European
projects).

1.1.3 From OOS to ADR and vice-versa: future perspectives

In the past five years, many things have changed. In December 2018 ESA announced
the end of e.Deorbit mission, the ESA’s Clean Space initiative began in 2013 aiming at
capturing and removing ENVISAT, an Earth observation satellite failed in 2012 [ESA,
2018]. The project has helped identifying the novel technologies that would need to be
developed, from the capture mechanism to the GNC functions. The mission stopped after
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the B1 phase, namely due to a lack of a commercial market for space debris removal and
the lack of funding. As ESA declared the end of e.Deorbit as an ADR mission, the re-
born of e.Deorbit as a servicing vehicle was announced. In the summer 2018 ESA issued
a ‘request for information’ to industries with the mandate to take down one ESA-owned
defunct satellite while demonstrating in-orbit servicing. This signifies the fact that the
synergies between ADR and OOS is now acknowledged, with ADR being the boundary
case: technologies enabling safe ADR would enable OOS too, while the reverse is not
true [ESA, 2019b]. The interconnection between ADR and OOS is well underlined by
the new project of ESA approved the 27-28 of November 2019, which has been called
ADRIOS (Active Debris Removal/In-Orbit Servicing). The project aims at the devel-
opment of GNC technologies and RDV/capture methods which will be applied to the
mission ClearSpace-1 that will realize the first demonstration of ADR. The mission will
target VESPA (Vega Secondary Payload Adapter), the upper stage of the VEGA launcher
that was left by ESA on a orbit between 660 km and 800 km in 2013. This upper stage,
which is relatively small (100 kg) seems to be an easy target due to its simple shape
and its rugged construction, represents a good start to demonstrate enabling technologies
that will pave the road to the capture of multiple and/or biggest object (e.g. the 8-tons
ENVISAT).
In the meantime, the Japanese Astroscale has targeted the market for end of life services
in LEO. In the end of the 2019 Astroscale has entered the AIT phase of ELSA-d mission.
The mission, originally scheduled to launch in 2020, will demonstrate technologies for
target search, target inspection, docking and removal with a prepared spacecraft, both
in tumbling and non- tumbling conditions. The aim of the mission is to develop a stan-
dard approach for EOL disposal of LEO satellites in mega constellations. The procedure
consists in attaching a standard docking mechanism on the client satellites before launch.
At end of life, this mechanism will allow efficient capture by a magnetic capture system
installed on the servicer, which will dock with two or possibly more clients and subse-
quently deorbit them.
Meanwhile, the market has started to change and satellite servicing has become an actual
market. In 2018, only about 10 GEO satellites orders have been placed. GEO operators
are uncertain of their 15 years business model and are therefore hesitating in purchasing
replacement satellites. Life extension servicing allows the operators to defer fleet replace-
ment decision making, allowing the market and technology uncertainties to mature. The
life extension servicers will in some way also contribute to the SDM, reducing the number
of decommissioned satellites. In the meantime, the rise of the constellations has pointed
out the need of a change in the manufacturing, which has now to meet the requirement
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of delivering satellites to costumers in a shorter period of time. The answer can be given
by flexible satellites exploiting modularity and software defined programmable payloads.
Together with modularity, also standardization is now promoted. These changes in de-
sign are paving the way for future OOS replacement/repairs by creating a catchment area
for future servicers. Constellations open the OOS market to LEO orbit, where servicers
will provide payloads installation, inspection and EOL disposal for those S/C unable to
perform it autonomously.

1.2 Space Rendezvous: phases, constraints, and so-
lutions

This section provides to the reader a general overview of the major issues related to
the development of an autonomous rendezvous, with a special focus on the navigation
problem. All the information provided in this section is retrieved from the book “Au-
tomated Rendezvous and Docking of Spacecraft” [Fehse, 2003], of Wigbert Fehse. The
book is a world-wide recognized milestone in the subject of autonomous space rendezvous
and includes all the expertise gained by ESA during the pre-development phase of the
Hermes-Columbus rendezvous program in 1989-1993 ( Hermes was meant to be the Eu-
ropean Space Shuttle, and was planned to dock with the Columbus orbiting modulus;
however the project never came to light and Columbus became a modulus of the ISS),
and the pre-development phase of the ATV program in 1994-1998 (i.e., the Automated
Transfer Vehicle, the European cargo ship in charge of supplying the ISS within 2008 and
2015). The book only covers cases involving cooperative and prepared targets, since at
the time of writing ADR and OOS were not already in the road-map of the space agen-
cies. However, the book provides a compendium on all the issues related to automated
rendezvous.

1.2.1 The phases of a rendezvous mission

A rendezvous mission is conventionally divided into five phases, i.e., the launch, the
phasing, the far range rendezvous, the close range rendezvous, and the mating.

Launch
The launch phase does not have any particular difference with respect to the launch
phase of any other mission: the launch window is univocally determined by the moment
in which the launch site is passing through the orbital plane in which the chaser is meant
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to be delivered by the launcher. A given orbital plane is intersected twice a day by
a given launching site, but usually launches in easterly direction are preferred in order
to exploit the tangential velocity component of the Earth rotation, which is almost 436
meters par second. The targeted orbital plane should correspond to the target orbital
plane since a change of plane maneuver performed by the chaser once in orbit would
mean an unacceptable propellant consumption. In the scenario of a chaser servicing more
than one client, it would be preferable to target spacecrafts on the same (or close) orbital
plane. At the end of the launch phase the chaser should be ideally placed on the same
orbital plane of the target, on a slightly lower orbit, at an arbitrary phase angle behind
the target (depending on the launching window and the target orbital parameters at the
launch date). This position can be reached after launch with an orbit raising maneuver
performed by the chaser’s own mean of propulsion.

Phasing
The aim of this phase is to reduce the orbital angular phase between the target and the
chaser. During this phase some adjustment of the orbital plane are performed, both to
correct launch injection error and compensate the target plane slow variation due to the
orbital perturbations. This phase is considered to be ended when an initial aim point is
acquired, or when a set of margins for position and velocities at a given range (i.e., the
trajectory gate or entry gate) is achieved. From this moment on, the navigation switches
from absolute to relative. Being based on absolute navigation (e.g., target and chaser
telemetries based on on-ground observation, GNSS measurements), the phasing is con-
trolled from ground control. The location of the aim point changes with the mission and
depends on many factor. Usually it is placed slightly below and behind the target, as the
natural drift will get the chaser close to the target without any propelled maneuver. If
the entry gate is used instead of the aim point, the apogee of the chaser is raised to the
altitude of the target orbit, while the perigee is raised successively with a series of maneu-
vers that decrease the phasing rate, until the pre-established conditions in position and
velocity are met. The accuracy on the chaser position required, at the end of this phase,
for safe operations is typically in the order of a few hundreds of meters in altitude and
a few kilometers in the orbital direction. This accuracy can be achieved with maneuvers
executed in open-loop (e.g., by Homann transfer) based on absolute navigation.

Far range rendezvous operations
This phases is also referred to as homing, in analogy with the terminology used in aero-
nautics. As anticipated, far range operations rely on relative navigation. In terms of
relative ranges, this phase usually starts at a few tens of kilometers from the target and
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ends at few kilometers from the target. The tasks of this phase are the acquisition of
the target orbit, the reduction of the approach velocity and the synchronization of the
mission timeline. This means that the phase may include some time-flexible elements in
order to synchronize the mission timeline with external events, such as Sun illumination,
communication window, crew operation timeline (in a rendezvous with a manned target
spacecraft). Time flexible elements may include faster or slower phasing rate as for the
phasing phase. Usually, synchronization is obtained by placing the chaser at the end of
the phase on a hold point on the V-bar (i.e., a point on the target orbit where the chaser
can stay indefinitely at nominal zero relative velocity with respect to the target without
propelled maneuvers).

Close range rendezvous operations
This phase is usually divided into two sub-phases, the closing, which place the chaser on
a final approach corridor, and the final approach phase, which leads to the mating condi-
tions. This phase can be initialized only if the out-of-plane errors have been corrected to
the same accuracy of the in-plane-errors, and the mission timeline has been synchronized.
During the closing, the approach trajectory should be designed such that the incapacity
to execute a thrust maneuver does not leave the vehicle on a trajectory which eventu-
ally leads to collision with the target (i.e., passive trajectory protection). The trajectory
should be designed taking into account the need of re-placing the chaser on a hold point
if contingencies arise. The objective of the final approach on the other hand is to achieve
docking or berthing conditions in terms of positions, velocities, relative attitude and an-
gular rates. For this reason, starting from a distance of almost 40−20 m, the chaser must
estimate also the relative attitude and rotation rate of the target. Trajectories in final
approach are closed loop controlled straight-lines (if controlled by automated on-board
system) or quasi straight-lines realized by a multitude of small hoops (if man-controlled).
Straight-lines (or quasi straight-lines) are chosen because of the relatively small field of
view of the sensors used in this phases, and to keep aligned the docking interfaces. In
this final phase, the measurement accuracy required before docking is approximately of
1% of the range, few centimeters on lateral position, about 1 cm/s of axial and lateral
rates, about 1 degrees for relative attitude and about 0.1 deg/s for rotation rates. This
requirement can be relaxed if instead of docking a berthing is foreseen (i.e., as a rule of
the thumb, they can be a factor of 5 higher than the ones required for docking). The
exception is in the angular rate, which should be a factor of 5 lower than the ones required
for the docking. These values are reported in the following section.
This phase is obviously very delicate due to the closeness of the chaser and target space-
crafts. Usually, a cone-shaped (half cone angle of 10-15 deg) approach corridor is defined,
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and the chaser trajectory must remain within the boundary of the cone. If the chaser exits
the cone, stop, retreat, or collision avoidance commands (i.e., active trajectory protection)
can be issued.
During this phase, the chaser thruster plume on the target can have major effects, such
as the deviation of its orbit or attitude due to the force exerted on the target vehicle, the
overheating of parts of the target surfaces, and the contamination of sensitive elements
(e.g., optical sensors) on the target surface by the combustion products. To avoid these
problems, usually the final braking burn is performed at a residual distance from the
target, and then the chaser move at constant and slow speed up till the docking. In the
case of berthing, the chaser-target relative distance at the end of the maneuver will be
high enough to avoid the consequences related to the exhaust plume.
The final approach phase is the phase under study in this thesis.

Mating
The mating phase can be realized through docking or berthing. In the case of docking, the
chaser GNC system controls the vehicle state parameters required to connect the docking
interfaces. In the case of berthing, the chaser GNC system delivers the vehicle at nominally
zero relative velocities and angular rates to a meeting point, where a manipulator, located
either on the target or chaser vehicle, grapples it, transfers it to the final position and
inserts it into the interfaces of the relevant target berthing port. In the case of ADR, also
the capture should be considered as a particular case of the mating phase.

Departure
The phase of departure is the phase in which, once that the mechanical link between
chaser and target is released, the chaser moves on a non-returning trajectory until it
reaches a sufficiently safe distance with respect to the target, where it can perform large
thrust maneuvers to de-orbit or reach another target. As for the final approach, issues
such as the thruster plume should be taken into account. In the case of EOL disposal,
the chaser will leave target orbit together with the target.

1.2.2 Sensors for rendezvous navigation

During far and close rendezvous, an increasingly accurate knowledge of the relative chaser-
target position, orientation and velocities is necessary, with the most strict requirements
to be met at capture.
In docking, the driving factor is the useful reception range of the docking mechanism in
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terms of lateral and angular misalignments. Depending on the type of docking port and
vehicle characteristic, the typical ranges are:

• approach velocity: 0.03− 0.3 m/s

• lateral alignment: 0.05− 0.2 m

• lateral velocity: 0.01− 0.05 m/s

• angular misalignment: 1− 5 deg

• angular rate: 0.05− 0.25 deg/s

For berthing, the requirements are less strict in positioning and more constraining for
what concerns relative velocities, with:

• positioning error (along each axis): 0.1− 0.5 m

• residual velocities: < 0.01 m/s

• angular misalignment: ≤ 10 deg

• angular rate: ≤ 0.1 deg/s

These docking and berthing constraints concern the real relative state. The errors in
positioning and residual velocities arise not only from navigation errors, but from multiple
sources including the presence of orbital disturbances, control errors (i.e., difference from
the commanded control forces/torques and the actuated ones) and so on. For this reason,
the precision required on the estimated state is higher that the required precision in
positioning and residual velocities. During phases controlled in closed-loop (i.e., the final
approach phase, which is the phase considered in this thesis), measurement accuracy
should be a factor from 2 to 5 times lower than the desired final accuracy.
The sensor used to obtain measurements of the target state during rendezvous operations
can be divided into three main families, i.e., radio frequency sensors, satellite navigation
systems, and optical sensors.

1.2.2.1 Radio frequency sensors

Radio frequency sensors can provide range, range-rate, line-of-sight (LOS), and even at-
titude measurements.
The principle of range and range-rate measurement is very simple: a sources on the chaser
emits radio-waves and then measures the time-of-flight or alternatively the phase-shift of
the received signal (after reflection on the target).
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Figure 1.4: Typical operational ranges and measurement accuracies of rendezvous sensors.
Images credits: Automated Rendezvous and Docking of Spacecraft, Wigbert Fehse, 2003,
Chap.5, Pg. 125.

Radio frequency sensors can also provide LOS measurements and attitude measurements.
The use of directional antennas (narrow beam antennas) mounted on a two axis gim-
bal system allows moving the antenna in order to detect the maximum amplitude of the
returning signal and the corresponding LOS. Attitude measurements on the other hand
can be obtained only with a cooperative-prepared target on which a rotating pattern is
mounted.
The operational range of radio frequency systems is limited by the lowest power of the
returning signal that can be detected on the receiver (chaser) side. The maximal oper-
ational range is typically of the order of 100 km. The presence on the target side of a
transponder that amplifies the received signal before re-transmitting it towards the chaser
increases the operational range of the radio frequency sensor. However, this implies that
the target is both cooperative and prepared.
In general, radio frequency systems are characterized by a high mass and power consump-
tion, and are used only in the far and middle range rendezvous phases, as they cannot
provide the required performance at shorter range. In the early development of automatic
on-board rendezvous systems, when no alternatives were available, all sensor design was
based on radio frequency techniques. An example is the Russian system Kurs, which
was (and is still) used for RDV navigation of the Soyuz and Progress vehicles with the
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MIR and the ISS (both cooperative and prepared targets). However, as a result of the
development of new techniques and technologies, in many cases either measurement per-
formance or mass and power consumption are nowadays more advantageous with other
sensor principles, which are, in the far and medium range, satellite navigation systems,
and, in the short range, optical Sensors.

1.2.2.2 Satellite navigation systems

The principles of satellite navigation systems (now known under the acronym GNSS, for
Global Navigation Satellite System) are well known. The system is composed by three
segment, the space segment, the ground segment, and the user segment. The user location
is determined as the intersection of three spheres (centered in three satellites belonging
to the space segment) and the time-bias resulting from un-synchronization of the user
clock can be corrected with a fourth measurement. GNSS positioning system ensures
very accurate measurements of the absolute position of a S/C equipped of a receiver,
and is therefore used for absolute navigation of the chaser. However, satellite navigation
enables relative measurements of position and velocities between chaser and target if
both vehicles are equipped with appropriate navigation receivers and if the raw data of
one of the receivers can be transmitted to the other vehicle. Such a system is known
under the name of Relative GPS. Relative navigation can be performed over relatively
large distances between the vehicles (from 50 km or more) with an accuracy of the order
of 10 m for position and 0.05 m/s for velocity, provided that a communication link is
available. Thus, such approach is not applicable to ADR missions and generally to RDV
with non-cooperative targets. The range and range-rate measurement accuracy achieved
by satellite navigation techniques is independent of the actual range between chaser and
target. The overall expenditure on power and mass is, for navigation systems based on
satellite navigation receivers, considerably lower than the one required by radio frequency
systems for the same operational range.

1.2.2.3 Optical sensors

Optical sensors are the optimal sensors for the close proximity operations (see Fig.1.4),
with an accuracy that increases as the distance chaser-target decreases, which is in line
with the RDV navigation requirements.
When Fehse published its book 20 years ago, he considered within the family of optical
sensors only scanning laser range finders and camera sensor, and stated that both sensors
required corner-cube reflectors to be mounted on the target. However, he also acknowl-
edged that, with the advance of image recognition techniques and other new technologies,
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it could be expected that in future a larger variety of sensor principles would have been
both available and suitable for automated rendezvous.
This has eventually happened, and we are now in a situation not only where more sensors
solution are available, but also where new image processing and computer vision tech-
niques enable the estimation of the pose of an non-prepared target. The sensors that
are currently considered for rendezvous are optical cameras in the visible range (both in
monocular and stereo configuration), optical camera in the infra-red ranges, and LIDAR.
LIDAR is the acronym of Light Imaging, Detection and Ranging. It is a laser scanning
technique that consists in illuminating the target with a laser light and measuring the
reflected pulses with a sensor, providing a digital 3D representation of the target. It can
provide depth information starting from a distance of 20-10 km according to ([Miravet
et al., 2008]), even if [Christian and Cryan, 2013] documents LIDAR utilization up to
5 km range for space applications. LIDAR can be classified in three major classes with
respect to their functioning mechanism [Christian and Cryan, 2013]:

• Scanning LIDARs: a narrow laser beam is swept over all the sensor Field Of
View (FOV), and the return signal is collected by a single detector. Laser direction
is changed by a set of mirror/lenses and other devices, thus allowing high precision,
very high resolution point clouds and target tracking. Since there is only a sensor,
scanning LIDAR is quite simple to calibrate, but it is a potential source of hardware
failure since it has moving parts. One of the major drawback of this kind of LIDAR
is that it takes a finite amount of time to scan the whole FOV and this can result
in motion blur if the object in the scene undergoes substantial relative motion.

• Detector Array LIDARs: the entire FOV is illuminated by a broad laser pulse at
once, while the laser Time-Of-Flight (TOF) is measured at pixel level on a detector
array, mainly as a conventional camera does. Detector Array LIDARs are more
difficult to calibrate with respect to Scanning LIDARs since they rely on multiple
detectors, but they are also more reliable since they don’t have any moving part.
The density of the 3D cloud of points is lower than the one obtained with Scanning
LIDARs since the size of the detector arrays must be limited. Within the Detector
Array LIDARs there are Flash LIDARs, which send out a laser pulse and measure
the TOF when the return pulse is detected at each pixel, and Continuous Wave LI-
DARs, which on the other hand modulate the intensity of the laser and measure the
phase difference between emitted and received signal. Continuous Wave technique
for the measurement of the TOF can be applied also to Scanning LIDAR. The limi-
tation of this technique (Continuous Wave) is the phase integer ambiguity problem:
the maximal measurable range rmax is limited by the modulation frequency fmod
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according to the formula: rmax = c/2fmod, where c is the speed of light. Consid-
ering a classical LIDAR operating at 15 MHz, the range is limited to about 10 m.
For this reason, Flash LIDARs, which can operate in a range from many kilometers
to docking are preferred to Continuous Wave LIDARs. Within Flash LIDARs, De-
tector Array Flash LIDARs can be preferred to Scanning Flash LIDARs since the
whole scene is illuminated at once, so that no noticeable motion blur is observed
in Detector Array LIDAR images (if the object is moving at a speed substantially
lower than the speed of light).

• Spatial Light Modulator LIDARs: This class of sensor is still under develop-
ment and is years away from being space-qualified. The Spatial Light Modulator
sequentially illuminates subsets of the scene with a sequence of known patterns, and
then the time history of the laser return is measured by a single detector. The 3D
points cloud is found using Compressed Sensing Algorithms. Even if this sensor
seems promising since it has no moving parts and only a single detector, it must
rely on approximations of the scene geometry.

A Scanning LIDAR has been used on the Space Shuttle to help docking with the MIR
Space Station, the Hubble Space Telescope and the ISS, as well as on ESA’s ATV. This
latter was capable to provide range and line-of-sight measurement from 300 m to docking,
and relative position and attitude from 30 m, at the rate of 1 Hz. Another Scanning
LIDAR has flown on the ATV and the HTV (i.e., the Japanese transfer vehicle), operating
from 1.5 km to docking. A Flash Detector Array LIDAR was selected by SpaceX for the
Dragon vehicle in order to perform proximity operations and capture, with a range that
didn’t exceed 1 km. This kind of LIDAR was selected also for the Orion Multi-Purpose
Crew Vehicle (NASA), with a FOV that can be set either to 12 deg (for long range) or
to 20 deg (for short range), and a maximal range of 5 km. A LIDAR device has been
successfully employed also on a satellite platform, the micro satellite XSS-11 of Lockheed
Martin and the Air Force Research Laboratory, for a 23 months mission [Allen et al.,
2008], demonstrating the capability of target full pose acquisition and tracking from a
distance of 400 m.
However, LIDARs have a relatively high mass and are very power-hungry instruments that
can affect the power budget of the chaser. For this reason, passive sensor such as visible
and infrared camera are considered. A single camera (i.e., also referred to as monocular
vision) provides a bi-dimensional information. Thus, when looking at an unknown object,
it will be possible to determine its relative position only up to an unknown scale factor,
i.e., it would not be possible to understand whether the object is big and far, or small
and close. For this reason, monocular vision is said to be bearing-only. This additional

35



36 CHAPTER 1. INTRODUCTION

degree of freedom can be solved if the observed object is known (i.e., model-based pose
estimation, see Sec.3.2). The use of two monocular cameras is referred to as stereo-vision
and allows to get range measurements even for unknown targets. In fact, the difference
between the position of a given feature at a given instant in the two images frames provides
an additional relation that allows determining the scale factor and measuring the range.
However, the accuracy of stereo-vision systems is inversely proportional to the distance
(i.e., the baseline) between the cameras.
Visible cameras operate in the visible range (i.e., 380-740 nm), and for this reason are
more sensitive to the illumination conditions and are likely to be coupled with artificial
illumination devices to ensures the navigation even in the absence of sun enlightenment.
On the other hand, thermal infra-red (TIR) cameras operate in the range of 8-16 µm

and therefore provide images that are independent on the illumination conditions (even
if the sun-direction still plays a role in heating the S/C surfaces). However, TIR cameras
are usually more expensive and with a lower resolution than VIS cameras. It is claimed
in [Opromolla et al., 2017b] that attitude measurements are not obtainable using only
TIR images due to the low resolution of TIR camera. However low level fusion of TIR
images with VIS images (and possibly also Ultra-Violet images [ESA, 2016]) can provide
enhanced images with high resolution and high robustness towards adverse illumination
conditions. The range of operation of camera sensors depends on their FOV. A very
narrow FOV enables position estimation starting from some hundreds of meters, and
attitude estimation from about 100 m, depending on the size of the target. However,
small FOVs require higher pointing precision and become unusable at shorter distances.
The trend is to associate a Narrow Angle Camera (NAC, with FOV around 5 deg) with
Wide Angle Camera (WAC, with FOV around 30−40 deg) to cover all the close proximity
phases of rendezvous.

1.2.3 Where are we now?

In Sec.1.1.1.3 we have anticipated that, at the moment of writing, the Mission Extension
Vehicle (MEV-1) manufactured by Northrop Grumman and launched the 9 October 2019
is the first commercial satellite servicing spacecraft ever built, and the first to perform an
automated rendezvous with a non-cooperative and non-prepared target.
Globally, the MEV relies on existing technologies. The spacecraft is based on Northrop
Grumman’s GEOStar design, and it is equipped with an electrical propulsion system (i.e.,
ion thrusters for orbit raising and orbit keeping), but it also has a small tank of liquid hy-
drazine fuel on-board, mainly for higher-impulse maneuvers during the docking sequence.
The MEV-1 also uses a docking structure based on devices developed for the Space Shut-
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tle servicing flights to the Hubble Space Telescope. The navigation sensors installed on
the MEV-1 are similar to the rendezvous aids used on the Northrop Grumman’s Cygnus
space station supply ship. The MEV-1 is equipped with visible and infrared cameras,
along with a scanning LIDAR [Spaceflight Now, 2020].
All the rendezvous operations have been carried out in the so-called supervised autonomy.
The nominal planned close proximity operations are detailed in the following. As the
MEV-1 reaches a hold point, named far hold, placed at 80 m above the target (i.e., on the
+ R-bar side), it waits for ground command to proceed. Then, MEV-1 moves forward till
a near hold point placed at a relative distance of 20 m, and waits for another clearance
from ground. After this clearance, it proceeds towards the last way-point, placed about
1 m from the target. These approaches are performed very slowly and last some hours.
After the final go-aheads (both from the client ground control and the servicer ground
control), the MEV-1 deploys a stinger into the nozzle of the apogee engine of Intelsat,
pulling the two satellites together [Spaceflight Now, 2020].
However, before attempting the actual docking, the MEV-1 has performed several re-
hearsal approach. In fact, MEV-1 arrived in the vicinity of IS-901 on February 5th, and
until February 24th it did a number of approaches, allowing ground control calibrating
sensors and algorithms, and testing out the procedures [Spaceflight Now, 2020].
From this paragraph, three important points must be underlined:

1) The rendezvous has been carried out in supervized autonomy, which means that
man is still in the loop to provide go/no-go clearance.

2) Before the final approach maneuver and docking, a series of approaches (lasted 3
weeks) has been performed to allow sensor and algorithms calibration. Even if it
is not mentioned in the source, it is very likely that this calibration has been per-
formed on-ground from streamed images of IS-901 acquired by the MEV-1 cameras,
and not autonomously by the MEV-1 embedded algorithms. This underline one of
the major problem related to autonomous navigation for space RDV, which is the
lack of extended databases of images acquired in space with whom testing the al-
gorithms. Algorithms are tested and calibrated on-ground with synthetic images of
the target, which means that they are going to need a re-calibration when running
with real space imagery. At the moment, it is very unlikely to think of a vision-based
autonomous rendezvous that can be performed without this “rehearsal” phase.

3) The MEV-1 is equipped with visible, TIR, and LIDAR cameras. Even if the ten-
dency of the literature works is to provide innovative solutions which can work with
a single sensor, it is also true that a multisensor configuration ensures an higher ro-
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bustness and redundancy of information. The configuration chosen for the MEV-1
provides robustness towards bad illumination conditions (with the thermal infra-
red camera and the LIDAR), and ensures a good knowledge of the relative range
thanks to the LIDAR. Moreover, each one of the sensor can potentially enable the
navigation even if the other two are unavailable, ensuring redundancy.

1.3 Thesis contributions and contents

As anticipated in the previous sections, this thesis will focus on the relative autonomous
navigation of the chaser in the final approach phase of a rendezvous with a non-cooperative
and non-prepared target. The navigation solution should provide relative position esti-
mation from a distance of about 100 m, and attitude estimation from a distance of about
40-20 m from the target. The relative position and relative attitude of the target with
respect to the chaser are referred to as relative pose of the target.
In Sec.1.2.2 it has been explained how optical sensors are the best candidate for this close
proximity phase. Navigation that exploits measurements coming from optical sensors is
referred to as vision-based navigation. In Par.1.2.2.3 different sensors have been intro-
duced, namely the VIS and TIR cameras (both in monocular and stereo configuration),
and the LIDAR. In Sec.1.2.3 we have shown how the first ever automated commercial
OOS vehicle was equipped with all the optical sensor previously discussed. Multiple sen-
sors configuration was chosen to ensure redundancy and increase the reliability of the
mission. LIDARs, VIS cameras, and TIR cameras are in some way complementary, pro-
viding different kinds of information which needs different kind of processing algorithms.
LIDAR, in particular, provide 3D information independent from illumination conditions
and which can be easily translated into pose measurements. From the 3D points-cloud
provided by LIDARs, the pose can be initialized with template matching and Principal
Component Analysis (PCA,[Wold et al., 1987]) techniques [Jasiobedzki et al., 2005, Taati
and Greenspan, 2005], and tracked with methods such as the Iterative Closest Point
(ICP) [Opromolla et al., 2015a, Opromolla et al., 2015b, Opromolla et al., 2017a, Liu
et al., 2016], which are also suitable for stereo configurations [Jasiobedski et al., 2001].
However, LIDARs are power hungry devices with a relatively high mass. For this reason,
systems based solely on monocular cameras are recently gaining popularity as cost ef-
fective solutions ensuring rapid pose estimation under low power and mass requirements.
Moreover, monocular pose estimation methods can provide also range measurements when
observing a known target, which is the case of the majority of ADR and OOS scenarios.
This makes monocular configuration preferable also to stereo configuration, as stereo con-

38



39 CHAPTER 1. INTRODUCTION

figuration implies an higher mass and a lower operational range limited by the size of the
chaser platform. Moreover, even with stereo configuration, it would be necessary to have
some backup monocular-based navigation algorithm to still ensure the realization of the
mission if one of the two cameras becomes unavailable.
For the above reasons, this thesis will focus on the development of a navigation solution
for close-proximity operations based on the exploitation of a monocular visible camera.
This does not exclude a priori the possibility of coupling the VIS camera with a TIR
camera to perform low-level fusion and provide to the navigation algorithms an enhanced
image. The objective is to develop a robust solution which takes into account also the
reduced computational resources available on space enabled processors.
The problem of relative navigation can be divided into two major issues. The first issue
is to translate the information provided by the sensor (i.e., the image) into a pose mea-
surement. The families of algorithms that deal with this problem are known under the
name of Image Processing (IP) and Computer Vision (CV) techniques. This issue can be
divided into two sub-topics. On the one hand, there is the so-called frame-by-frame track-
ing problem. In the tracking problem, the IP-CV algorithms provide a measurement of
the current observed pose exploiting the knowledge of the estimated pose at the previous
instant. On the other hand, there is the so-called pose acquisition (or initialization) prob-
lem, where the IP-CV algorithms must provide a measurement of the current observed
pose without any prior information about the state of the target (i.e., this condition is
also referred to as lost-in-space). These algorithms are referred to as pose estimation by
detection algorithms. The algorithms that ensure robust tracking are usually very differ-
ent from the algorithms providing a robust pose initialization, and for this reason these
two aspects will be covered in two different chapters.
The second issue is to integrate the obtained measurements into the Navigation function
of the chaser, where different measurements from multiple sensor and/or algorithms can
converge. The objective of the Navigation function is therefore to obtain, from the mea-
surement it receives, a robust estimate of the observed state.
This latter issue is discussed in Chapter 2. It has been placed before the chapters dealing
with the IP-CV problem because it allows us to introduce concepts that are necessary at
the understanding for the following chapters. In Chapter 3 the problem of pose tracking
will be addressed, while Chapter 4 will deal with the problem of pose estimation by de-
tection. Finally, in Chapter 5 the solutions developed in each chapter are integrated and
tested in a RDV scenario.
The main contributions of the thesis are summarized below:
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Chapter 2: Navigation Function
This Chapter has two main contributions: it provides a detailed modelization of the rel-
ative dynamics within the estimation filter, and it proposes a comparison of two delay
management techniques suitable for the space rendezvous applications. In fact, IP-CV
algorithms usually have high latency, implying that the chaser navigation filter has to fuse
delayed and multi-rate measurements. The selected methods are the Filter Recalculation
method -which always provides an optimal estimation at the expense of a high computa-
tional load- and the Larsen’s method -which provides a faster solution whose optimality
lies on stronger requirements. The application of these techniques to the space rendezvous
problem is discussed and formalized. Finally the methods are compared in a Monte-Carlo
campaign, aimed at demonstrating whether the loss of performance of Larsen’s method
due to its sub-optimality still enables target state robust tracking.

Chapter 3: Frame-by-frame Tracking
In this Chapter, the theory underlying monocular model-based tracking for pose estima-
tion is recalled and an innovative tracking algorithm is formally developed and imple-
mented. The algorithm is based on the detection and matching of the observed target
silhouette contours with the 3D geometric model of the target. This algorithm provides
fast and very accurate measurements of the relative pose of the target. The algorithm is
then coupled with the dynamic Kalman Filter introduced in Chap.2. The performance of
the algorithm is tested in different scenarios with high fidelity synthetic images.

Chapter 4: Pose Estimation by Detection
The Chapter proposes a method based on global descriptors to estimate the pose of a
known object using a monocular camera, in the context of space rendezvous between an
autonomous spacecraft and a non-cooperative target. The method estimates the pose
by detection, i.e., it require no prior information about the pose of the observed object,
making it suitable for initial pose acquisition and for the monitoring of faults in other
on-board estimators. An approach is presented to fully retrieve the object’s pose using a
pre-computed set of invariants and geometric moments. Three classes of global invariant
features are analyzed, based on complex moments, Zernike moments and Fourier descrip-
tors. The robustness of the different invariants is tested under various conditions and
their performance is discussed and compared. The method offers a fast and robust solu-
tion for pose estimation by detection, with a lower computational complexity than other
space-qualified pose acquisition algorithms.
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Chapter 5: Integrated Solution
In this Chapter the algorithms described in the previous Chapters are integrated in order
to provide an integrated solution enabling the autonomous navigation from a relative
distance of 100 m from the target. The integrated solution is tested in different scenarios.
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The task of the Navigation function is to provide the Control and the Guidance func-
tions with the information about the current state of the vehicle and the environment
surrounding. This function is implemented as a digital filter processing inputs obtained
from different sensors or via communication links from external sources in order to obtain
the best estimate. Filters relying on representative dynamic modes allow propagating
the observed state even when sensor information is only intermittently available. In the
navigation function of autonomous robotic systems, the algorithms generally used for the
estimation belong to the family of the Kalman Filters (KF). The Kalman Filter is an
optimal observer in the sense that it minimizes the sum of the estimation error variances
for all the state vector components. In Appendix B the theory underlying the Kalman
theory is recalled, and the filter formulations and conventions that are going to be used
in the current chapter are detailed.
Vision-based navigation relies on the use of optical sensors coupled with image processing
and computer vision algorithms to obtain a measurement of target relative pose. These
algorithms usually have high latency, implying that chaser navigation filter must be able
to fuse delayed and multi-rate measurements. This chapter provides a detailed modeliza-
tion of the vision-based space rendezvous dynamics estimation problem, and it proposes
a comparison of two delay management techniques suitable for this application. The se-
lected methods are the Filter Recalculation method -which always provides an optimal
estimation but has a high computational load- and the Larsen’s method -which provides
a fast solution that is optimal only under certain conditions. The application of these
techniques to the space rendezvous problem is discussed and formalized. The methods
are then compared in a Monte Carlo campaign, aimed at demonstrating whether the loss
of performance of Larsen’s method due to its sub-optimality still enables target robust
tracking.

2.1 Introduction

As anticipated, IP-CV tracking algorithms can have a relatively high latency. This results
in a delay between the time instant of data acquisition (i.e., when the image is captured
by the camera) and the time instant when the processed measurements are available and
ready to be fused into the navigation filter. The navigation filter will therefore need to
merge infrequent and delayed measurements of the relative target state. Since the tracking
can be provided by additional sensors (e.g., visible camera, infrared camera, LIDAR)
and algorithms (e.g., contour-based, 3-D points cloud based, marker-based algorithms)
with different computational burden and latency, the filter must be able to fuse multi-
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rate measurements as accurately as possible. While slow measurements are available
after a certain delay, fast measurements (i.e., referred to as interim measurements) are
available at a higher rate and processed almost instantaneously. Interim measurements
have therefore to be fused within the delay period in order to provide the best estimate.

2.1.1 Delay management techniques in space applications

The problem of delay management in space applications and more precisely in space RDV
scenarios has been sporadically assessed [Zhou et al., 2012, Rems et al., 2017, Benninghoff
et al., 2014]. These works propose delay management techniques for the estimation of
the chaser-target relative translational dynamics -which is described by the Clohessy-
Wiltshire-Hill (CWH) equations [Fehse, 2003, Curtis, 2013]- and are suitable only for
linear systems where no interim measurements are considered. No solutions have already
been presented for the estimation of target rotational dynamics, which is, in addition,
represented by a non-linear model. The current recommended best practice for S/C atti-
tude estimation is the M-EKF (Multiplicative-Extended Kalman Filter, [Markley, 2003]),
where both attitude quaternion and rotation rate are measured and no consistent delay
affects the measurements. However vision-based navigation algorithms usually provide
only pose measurements, without velocity nor rate, and these measurements can be af-
fected by a substantial delay. Some RDV operations may require the synchronization of
chaser motion with target motion, implying the need of knowing also target velocity and
rotation rate (which are not directly measured). In the case of high rotation rates typical
of a tumbling object, a kinematic filter relying only on attitude measurements is not capa-
ble to converge to the right values of rate. Nevertheless these variables can be estimated
using a dynamic filter instead of a kinematic one. For this reason, the target rotational
state estimation will be formulated as an Additive Extended Kalman Filter (A-EKF).
Finally, this filter must be capable of managing multi-rate and delayed measurements.

2.1.2 Delay management techniques in literature

Outside from space engineering, in areas such as the automation industry, there is a
vast literature on Kalman Filtering techniques with delayed, infrequent and multi-rate
measurements. In [Gopalakrishnan et al., 2011] methods are classified into two main
families: “state augmentation approaches” and methods which fuse the measurements
on arrival. State augmentation methods rely on augmenting the current state with ap-
propriate past information required to fuse the delayed measurements. These methods,
such as the fixed-lag smoothing [Simon, 2006, Gelb, 1974], provide optimal estimates and
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can be extended to other filters (e.g., Particle Filter, Unscented Kalman Filter), but are
suitable only for fixed-delay measurements. Moreover one major drawback is the fact
that the size of the system increases as the delay increases, leading thus to a proportional
increase of the computational load. State augmentation methods can be therefore very
suitable for applications where delays consist in small number of samples ([Hsiao et al.,
1996, Kaszkurewicz and Bhaya, 1996]) or applications where the computational burden
is not an issue, such as industrial process control. As a consequence they appear to be
inapplicable to space RDV due to the limited on-board computational resources of S/C.
On the other side, methods that fuse the delayed measurements on arrival can handle
large and variable delays with a reasonably low computational load, while granting the
optimality of the estimation under certain intervals and conditions. These methods can
incorporate interim measurements while merging the slowest ones, which makes them
suitable for domain such as autonomous navigation. For these applications, fast measure-
ments coming from fast sensors need to be fused during the delay period, which is usually
associated to the processing of slow measurements coming from vision-based estimation
([Larsen et al., 1998]).
Within this family of delay management techniques, one method always provides an opti-
mal estimate even in presence of interim measurements: the Filter Recalculation method.
This method has been used in chemical process control industry ([Prasad et al., 2002, Li
et al., 2004]). It can be applied also to non-linear systems without any loss of optimality,
except for the one naturally introduced by the Extended Kalman Filter (EKF), at the ex-
pense of a high computational load. On the other side, the method that provides the best
trade-off between optimality and computational burden is the Larsen’s method [Larsen
et al., 1998]. This method has been theorized for linear systems but can be extended also
to non-linear systems with the introduction of certain approximations that will be further
developed in the sequel (Sec. 2.3.2.2).
The aim of this chapter is to offer a comparison of these two delay management tech-
niques, which have never been applied to the vision-based autonomous rendezvous navi-
gation problem in space, and especially to the estimation of the highly non-linear target
relative rotational dynamics. In particular, we will analyze the loss of performance of
Larsen’s method with respect to Filter Recalculation method when the former is in sub-
optimal conditions. It will allow to assess whether this technique is suitable for vision
based RDV with non-cooperative targets. The chapter is structured as follows: in Sec.2.2
the techniques are formalized, underlining their differences in optimality and computa-
tional burden. In Sec.2.3 the implementation of these techniques is described towards the
vision-based autonomous RDV problem, and in Sec.2.4 the performance of the filters is
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investigated under different sources of uncertainties (e.g., state initialization, knowledge of
target inertia matrix, knowledge of chaser control forces, measurement noise). In Sec.2.5
the conclusions are drawn and an overview of the future developments is presented.

2.2 Filter Equations

In this section the formulation of the delay management techniques is presented. The
methods are implemented on a linear time-discrete system for sake of clarity but will be
extended to a non-linear continuous system in Sec.2.3. A linear discrete system observed
by non-delayed measurements, where the process noise wk and the measurement noise
vk are assumed to be zero-mean Gaussian white-noise processes (i.e. the errors are not
correlated forward or backward), can be put in state-space form as follows [Gibbs, 2011]:

 xk = Akxk−1 +Bkuk + wk

yk = Ckxk + vk
, with E

[
wkw

T
j

]
=

 0 k 6= j

Qk k = j
, E

[
vkv

T
j

]
=

 0 k 6= j

Rk k = j

(2.1)
The associated KF formulation is briefly recalled here for sake of clarity, and fully devel-
oped in Appendix B.1.2. The KF is divided in the following steps:

• Prediction of the a priori estimate of the state and the state error covariance matrix
(x̂k|k−1, Pk|k−1, Eq.(2.2)).

• Computation of the optimal Kalman gain Kk which minimize the a posteriori esti-
mate of the state error covariance Pk|k (Eq.(2.3)).

• Update of state and covariance matrix (Eq.(2.4)).

prediction

 x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

Pk|k−1 = AkPk−1|k−1A
T
k +Qk

(2.2)

gain computation Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)−1 (2.3)

update

 x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1)
Pk|k = (I −KkCk)Pk|k−1

(2.4)

When delayed measurements are presents, at instant k the system in Eq.(2.1) receives a
delayed measurement corresponding to time instant s (s = k − Nd, Nd number of delay
samples, as shown in Fig.2.1), such that:

y∗s = C∗sxs + vs, with E
[
vsv

T
j

]
=

 0 s 6= j

R∗s s = j
(2.5)
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In such a case, Eq.(2.3) is no more optimal and a new solution has to be found in order to
compute the best estimates x̂k|k,k∗ and Pk|k,k∗ which take into account the contribution of
y∗s . Usually the optimality of the solution implies a high computational load (i.e., Filter
Recalculation method), so that some methods propose sub-optimal solutions which can
reduce the computation time (i.e., Larsen’s method).

Figure 2.1: System with a Nd-saples delayed output

2.2.1 Filter Recalculation method

The Filter Recalculation method consists in going back to the time step when the delayed
measurement was taken, incorporating the measurement and recomputing the entire tra-
jectory of the state until the current step. In so doing, the whole estimate time history
will be optimal. The estimation is made as if two filters were employed: a principal one,
which operates at constant rate by processing fast measurements yk, and a second one,
which is activated any time a delayed (i.e., slow and infrequent) measurement y∗s arrives.
In order to let the secondary filter recalculate an optimal estimate by fusing the delayed
measurement and reconstructing the state through the Nd delay samples, any time a slow
measurement is acquired (i.e. when a camera captures an image), the predicted state
x̂s|s−1 and the predicted covariance Ps|s−1 corresponding to that time step have to be
stored. Moreover, in order to update the whole time history, also the input us+i and the
fast measurements ys+i must be stored for any time step going from the sample s (when
the slow measurement is taken) to the sample s+Nd (when the slow measurement become
available after the processing delay), i.e., for i ∈ [1, Nd − 1].
The filters operate as follows. At instant s a slow measurement is taken and x̂s|s−1, Ps|s−1

are stored. For all the time steps s + i (i ∈ [1, Nd − 1]) the principal filter processes fast
measurements ys+i as in a classical KF (Eqs. (2.2),(2.3),(2.4)), and measurements ys+i
and inputs us+i are stored at each of these steps. At k = s+Nd the slow measurement y∗s
and its corresponding covariance matrix R∗s become available and the secondary filter is
activated. The filter goes back to instant s and computes the optimal update using the
full measurements vector ỹs = [ys, y∗s ]T , where ys are the fast measurements and y∗s the
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slow ones:
K̃s = Ps|s−1C̃

T
s (C̃sPs|s−1C̃

T
s + R̃s)−1

x̂s|s = x̂s|s−1 + K̃s(ỹs − C̃sx̂s|s−1)
Ps|s = (I − K̃sC̃s)Ps|s−1

, with C̃s =
 Cs

C∗s

 , R̃s =
 Rs ∅
∅ R∗s


(2.6)

The optimal estimates x̂s|s and Ps|s are then propagated by the secondary filter from
instant s + 1 to instant k = s + Nd according to Eqs.(2.2),(2.3),(2.4), thus clarifying the
need of storing the values of interim measurements and inputs. Once the loop has reached
instant k = s + Nd, the filter has provided an optimal estimate of the current state and
of the state error covariance matrix.
In the case where no interim measurements are present, the structure of the filter will be
simplified: the state and the covariance matrix will evolve in open loop (only prediction
step with no update) as long as no delayed measurement arrives. At the arrival of a delayed
measurement, the secondary filter computes the optimal estimate at instant s and then
state and covariance are re-projected to the current instant k through Nd prediction steps.
This method can become quite expensive in terms of computational burden due to the
need of storing variables and the Nd Kalman loops to be performed any time a delayed
measurement arrives. Nevertheless, it is the only formulation which provides an optimal
estimate even in presence of interim measurements and also for non-linear systems. More
precisely, in the case of non-linear systems, the loss of optimality is introduced by the
use of the EKF, which is intrinsically sub-optimal due to the linearization of state and
measurement equations, and not by the use of the Filter Recalculation method. Finally,
the Filter Recalculation method can be easily extended to variable delays.

2.2.2 Larsen’s method

The Larsen’s (or extrapolation) method was proposed in [Larsen et al., 1998] as an im-
provement of Alexander’s method ([Alexander, 1991]) for delay management in discrete
linear system. These methods rely on the computation, throughout the delay period, of
a correction term to add to the filter estimate when the delayed measurement becomes
available. The main difference between Alexander’s and Larsen’s methods is that the
latter does not need to know, at instant s, neither the covariance matrix R∗s nor the mea-
surement sensitivity matrix C∗s of the slow measurement. These matrices are supposed
to become available at instant k together with the delayed measurement y∗s . Larsen’s
method is therefore suitable for systems relying on measurements processed by IP-CV
algorithms, as these algorithms usually process R∗ together with y∗.
The structure of the filter is the following. As for the Filter Recalculation method, at
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time s, when a new slow measurement is acquired, x̂s|s−1 and Ps|s−1 are stored. At each
instant s + i (i ∈ [1, Nd − 1]) the classic KF structure in Eqs. (2.2),(2.3),(2.4) is applied
using fast measurements. Moreover, the term Ms+i = (I −Ks+iCs+i)As+iMs+i−1 is com-
puted, with Ms = I. At time instant k = s + Nd, y∗s , R∗s and C∗s become available. The
filter firstly computes the Kalman gain Kk and the updates as in Eqs.(2.3),(2.4) using
fast measurements yk. The final correction term M∗

k will be [Larsen et al., 1998]:

M∗
k = Ms+Nd

=
Nd∏
i=1

(I −Ks+iCs+i)As+i (2.7)

Then an extrapolated measurement yextk is computed to derive a representation of mea-
surement y∗s , which is referred to instant s, at instant k:

yextk = y∗s − C∗s x̂s|s−1 + C∗k x̂k|k−1 (2.8)

In [Larsen et al., 1998] Larsen provides the demonstration of the computation of the
optimal gain K∗k and the resulting state and covariance updates, which are:

K∗k = M∗
kPs|s−1C

∗
s
T (C∗sPs|s−1C

∗
s
T +R∗s)−1

x̂k|k,k∗ = x̂k|k +K∗k(yextk − C∗k x̂k|k)
Pk|k,k∗ = Pk|k −K∗kC∗sPk|kM∗

k
T

(2.9)

where the Kalman gain K∗k is actually the Kalman gain K∗s (i.e., the gain that would have
been computed if the measurement y∗s had become available at instant s) pre-multiplied
by the Larsen correction term M∗

k .
In the presence of interim measurements this method performs sub-optimally: at each
interim step, the gain Ks+i is computed using a covariance matrix Ps+i|s+i−1 that is not
optimal because it has not yet taken into account the contribution of y∗s . Even if in
this case the method performs sub-optimally, it requires only two matrix multiplications
at each time instant and the storage of two variables any time a slow measurement is
acquired, as in the case without interim measurements. Moreover there is no need of
storing interim measurements and inputs. As the Filter Recalculation method, Larsen’s
method can be extended to variable delays which are not known a priori.

2.2.3 No interim measurements case

In the absence of interim measurements and for a linear system, Filter Recalculation and
Larsen’s methods give the same estimates. The theoretical demonstration of this result
is an original contribution of this study and is provided in the current section. Let us
assume that the delayed measurement y∗s and its corresponding sensitive matrix and noise
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covariance matrix are available at instant s. The update at instant s is then given by: x̂s|s = x̂s|s−1 +K∗s (y∗s − C∗s x̂s|s−1)
Ps|s = (I −K∗sC∗s )Ps|s−1

with K∗s = Ps|s−1C
∗
s
T (C∗sPs|s−1C

∗
s
T +R∗s)−1

(2.10)
For all the time steps k = s + i (i ∈ [1, Nd − 1]) no interim measurements are processed,
such that state and error covariance matrix evolve in open-loop: x̂k|k = x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

Pk|k = Pk|k−1 = AkPk−1|k−1A
T
k +Qk

(2.11)

After Nd loops, at k = s+Nd, the estimated state x̂s+Nd|s+Nd
will be:

x̂s+Nd|s+Nd
=
Nd∏
i=1

As+i

 x̂s|s +
Nd∑
i=1

 Nd∏
j=i+1

As+j

Bs+ius+i (2.12)

Recalling the expression of x̂s|s in Eq.(2.10) and calling z∗s the residual y∗s − C∗s x̂s|s−1,
Eq.(2.12) becomes:

x̂s+Nd|s+Nd
=


Nd∏
i=1

As+i

 x̂s|s−1 +
Nd∑
i=1

 Nd∏
j=i+1

As+j

Bs+ius+i

+
Nd∏
i=1

As+i

K∗s z∗s
(2.13)

where the expression inside the curly brackets corresponds to the open-loop evolution
of the predicted state x̂s|s−1 from s to s + Nd, and the term ∏Nd

i=1As+i is the correction
term M∗ of Eq.(2.7) in the absence of interim measurements, and, as a consequence,
in the absence of interim Kalman gains. It therefore appears that using the delayed
measurement at instant s and then propagating the a posteriori estimate x̂s|s (i.e., Filter
Recalculation method) is equivalent to propagate the a priori estimate (prediction) x̂s|s−1

and to perform the update at k = s + Nd by pre-multiplying the update K∗s z
∗
s by a

correction factor, which is Larsen’s correction factor. It becomes also clear that Larsen’s
method exploits the superposition property of linear systems to project in the “future”
the update K∗s z

∗
s , which can be seen as a ∆xs that is propagated through the same

transformation of x̂s|s−1.
The same demonstration can be done for the state error covariance matrix. At k = s+Nd,
the estimated covariance Ps+Nd|s+Nd

will be:

Ps+Nd|s+Nd
=

Nd∏
i=1

As+i

Ps|s
Nd∏
i=1

ATs+i

+
Nd∑
i=1

 Nd∏
j=i+1

As+j

Qs+i

Nd∏
i=1

ATs+i


=


Nd∏
i=1

As+i

Ps|s−1

Nd∏
i=1

ATs+i

+
Nd∑
i=1

 Nd∏
j=i+1

As+j

Qs+i

Nd∏
i=1

ATs+i

−
Nd∏
i=1

As+i

K∗sC∗sPs|s−1

Nd∏
i=1

As+i


(2.14)

where the term in the curly brackets is the open loop evolution of Ps|s−1 and the term
outside the curly brackets is equal to Larsen covariance update in Eq.(2.9).
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This demonstration shows how, in the particular case of the absence of interim measure-
ments (and therefore in the absence of interim updates of state and state error covariance
matrix) the Filter Recalculation method -which goes back at instant s, computes the
update at s and predicts the state along the delay interval up to the current instant-
corresponds to Larsen’s method -which exploits the linearity of the system to compute
at the current time an update that takes into account the propagation occurred from s

to s + Nd. In such a case, Larsen’s method is preferable since it always requires a lower
amount of computation, and a lower storage for values of Nd above a certain threshold,
as shown in Sec.2.4.4. Filter Recalculation method should be selected only if the whole
optimal time history of the estimate from s to s+Nd needs to be known.
These considerations are valid only for linear systems. Non-linear systems, as it will be
shown in section 2.3, cannot exploit the superposition property and force to consider the
use of the approximated transition matrix instead of Ak. This hypothesis will introduce
approximations also in Larsen’s state and covariance update.

2.3 Application to the space rendezvous problem

In this section, the dynamics underlying a space RDV is presented first, before applying
the methods discussed in Sec.2.2 to this specific dynamic system.
When expressed at its Center-of-Mass (CoM), the motion of a S/C can be decoupled
between the translational motion of its CoM and its rotational motion. Therefore the
navigation filters for translational and rotational dynamics will be completely decoupled
and the estimation of these two motions will be studied as two different and decoupled
problems. Actually, when the relative translational dynamics is modeled according to
the CWH equations, a small coupling between translational and rotational motion exist,
but can be neglected as long as the chaser is controlled with respect to a reference frame
that originates in its CoM [Fehse, 2003]. In this thesis, rotations are described using
quaternions, according to Hamilton convention [Sola, 2015] (i.e., q = q0 + q1i+ q2j + q3k,
where the first element q0 is the scalar part). A vector x is rotated from a reference
frame b (xb) to a reference frame a (xa) according to : xa = qa−b ⊗ xb ⊗ q∗a−b, with q∗ the
quaternion conjugate of q and ⊗ the quaternion product. In Appendix.A.1 more details
about the employed convention are given.

2.3.1 Translational dynamics in space rendezvous

For what concerns the translational dynamics, the scenario of the rendezvous allows the
introduction of very powerful hypotheses, such as the fact that the relative distance chaser-
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target is much smaller than the distance Earth-target. This allows to introduce some
simplifications to derive the dynamic model which describes the relative motion of the
chaser with respect to the target. This model, in the case of a circular orbit, can be put
under the form of a system of linear differential equations called Hill’s equations [Fehse,
2003]: 

ẍ− 3ω2x− 2ωẏ = Fx
mc

ÿ + 2ωẋ = Fy
mc

z̈ + ω2z = Fz
mc

(2.15)

where Fx,y,z are the control forces acting on the chaser CoM, mc is the chaser’s mass
and ω is the target’s orbit angular rate. The relative position is expressed in target
LOF (Local Orbital Frame), according to the convention used in [Curtis, 2013] (x axis
directed as the radial that goes from Earth to the target, z axis directed as the angular
momentum of target orbit and y axis that completes the right-handed trihedron). In
Appendix C.1 the derivation of this reference frame with respect to the Inertial Earth
Centered frame is provided. The homogeneous solution of the system in Eq.(2.15), which
leads to the analytical computation of the transition matrix Φ(t) of the time-continuous
linear state-space representation corresponding to Eq.(2.15), is known under the name
of Clohessy-Wiltshire equations. The CWH transition matrix is valid only for circular
orbits, even if the analytical computation of a transition matrix valid for elliptical orbits
is described in [Yamanaka and Ankersen, 2002], which includes the CWH equations as a
special case for zero eccentricity orbits. A comprehensive survey and comparison of linear
and non-linear models for spacecraft relative motion can be found in [Sullivan et al., 2017].
In Appendix C.2 the derivation of the relative dynamics model according to the CWH
equations is fully detailed.
Given the transition matrix Φ(t) of the time-continuous linear state-space representation
corresponding to Eq.(2.15), the time-discrete system can be expressed according to:

Ak = eAT = Φ(T )

Bk =
∫ T

0
eATBdt

(2.16)

where A,B are the time-continuous state matrices, T is the time step size of the time-
discrete system and Ak, Bk the time-discrete state matrices. The demonstration of this
correspondence is provided in Appendix B.1.3. The computation of Ak and Bk is carried
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out in Appendix C.2.2 and results in:

Ak =



4− 3cos(ωT ) 0 sin(ωT )
ω

2
ω

(1− cos(ωT ))

6 (sin(ωT )− ωT ) 1 2
ω

(cos(ωT )− 1) 1
ω

(4 sin(ωT )− 3ωT )

3ω sin(ωT ) 0 cos(ωT ) 2 sin(ωT )
6ω(cos(ωT )− 1) 0 −2 sin(ωT ) (4 cos(ωT )− 3)

∅4x2

∅2x4
cos(ωT ) 1

ω
sin(ωT )

−ω sin(ωT ) cos(ωT )



Bk = 1
mc



1
ω2 (1− cos(ωT )) 2

ω2 (ωT − sin(ωT ))
2
ω2 (sin(ωT )− ωT ) 4

ω2 (1− cos(ωT ))− 3
2T

2

sin(ωT )
ω

2
ω

(1− cos(ωT ))
2
ω

(cos(ωT )− 1) 4
ω

sin(ωT )− 3T

∅4x1

∅2x2

1
ω2 (1− cos(ωT ))

sin(ωT )
ω


(2.17)

The system can be therefore written in the form of Eq.(2.1) and both Larsen’s and Filter
Recalculation methods can be easily implemented and will provide the same results in
case of no interim measurements.
In the case of vision-based navigation, the CV algorithms will compute a relative target
position in camera reference frame. Assuming that the rotation quaternion from camera
to chaser reference frame is known a priori by on-ground calibration, it will be necessary
to know at each instant the quaternion qch−LOF , in order to rotate the measurements
from chaser ch reference frame into target LOF coordinates before using them in the
KF based on Eq.(2.17). This quaternion is needed also to rotate chaser control forces,
which are the input of the dynamic system. qch−LOF can be computed by the quaternion
product between the conjugate of chaser absolute attitude quaternion, denoted qi−ch with
i the inertial reference frame, and qi−LOF , which is the rotation quaternion from inertial
reference frame to target LOF. Eq.(2.18) shows the relation between a vector expressed
in ch reference frame and the same vector expressed in LOF frame: qch−LOF = q∗i−ch ⊗ qi−LOF

xLOF = q∗ch−LOF ⊗ xch ⊗ qch−LOF
(2.18)

Note the chaser inertial attitude qi−ch is actually estimated by the usual AOCS (Attitude
and Orbit Control System) usually based on a traditional M-EKF. Besides, the qi−LOF is
related to target orbital parameters, and therefore to its absolute velocity and position. In
a RDV scenario qi−LOF (and target absolute position and velocity) can be easily initialized
by on-ground telemetries. This allows the initialization of the KF, which is fed by the
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vision-based measurements. From that moment on, at each time step, the KF-estimated
relative pose will be added to the absolute chaser position (i.e., whose estimation can rely
on GNSS and accelerometers measurements), resulting in an absolute translational target
state from which an updated estimation of qi−LOF can be derived.

2.3.2 Rotational dynamics in space rendezvous

As anticipated in Sec.2.1, certain close proximity operations require the knowledge of the
complete rotational state of the target (i.e., attitude quaternion qi−tg and rotation rate
ωtgi−tg). The estimation of the absolute rotational dynamics of the chaser is not considered
in this work and it will be assumed that both chaser attitude and rotation rate are known
under low level of uncertainties (i.e., 0.1 deg as a typical performance of classical sensor
configuration such as star-tracker+gyroscope).
As mentioned early, the current best practice for chaser rotational state estimation through
a M-EKF [Trawny and Roumeliotis, 2005] cannot be applied directly to the target estima-
tion. In fact the majority of the IP-CV algorithms only provides the relative chaser-target
attitude measurement but not necessarily the rotation rate. Therefore, the target angular
momentum equation must be added to the state equations in order to allow also the es-
timation of the rotation rate. In Appendix C.3 the derivation of the rotational dynamics
model for a rigid body in space is detailed. The target rotational dynamics prediction
modeled is given by the system already derived in Eq.(C.87):

q̇i−tg = 1
2qi−tg ⊗

 0
ωtgi−tg


ω̇tgi−tg = −I−1

tg

(
ωtgi−tg × Itgω

tg
i−tg

) (2.19)

where Itg is the inertia matrix of the target at its CoM. The orbital disturbance torques
that affects the target dynamics will be modeled in the system as process noises. This
second order system is formulated as an A-EKF, in order to ensure observability of the
rotation rate from attitude measurements. Moreover, the application of Larsen’s method
to the M-EKF is not straightforward due to the presence of a multiplicative update. The
M-EKF formulation was developed in order to avoid the ill-conditioning problems that
could appear in the state error covariance matrix when the quaternion normalization is
forced ([Markley and Crassidis, 2014]). In fact quaternion attitude representation, which
is the lowest dimensional non-singular representation of the rotation group SO(3), has an
additional degree of freedom which is constrained by the normalization constraint. The
M-EKF, instead of an additive update of a classic EKF, computes a quaternion error
and multiplies it to the predicted quaternion, obtaining a unit quaternion estimate. An
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in-depth study is carried out in [Carmi and Oshman, 2007] to understand whether or not
such a constraint leads to an ill-conditioned P matrix. The work provides the mathemat-
ical demonstration that the quaternion estimation error covariance matrix does lead to
ill-conditioning problem as its trace tends to zero, but also that this property is not inher-
ited by its corresponding second order Taylor approximation, as the one computed by the
A-EKF. This theoretical demonstration explains how several works relying on an A-EKF
attitude estimation (e.g., such as [Bar-Itzhack and Oshman, 1985]) have never shown
ill-conditioning problems. Moreover [Carmi and Oshman, 2007] has provided a practical
demonstration that the covariance matrix computed by the A-EKF is well conditioned
even in static and noise-free attitude estimation problem, contrary to predictions made
in literature (e.g., [Zanetti and Bishop, 2006, Pittelkau, 2003]). This A-EKF estimation
filter has been used in the sequel, and it is illustated through the tests in Sec.2.3 how this
well-posedness brought numerically stable results.
The time-discrete measurement equation must be added to the time-continuous dynamic
system in Eq.(2.19). The measured quantity is the relative chaser-target attitude quater-
nion (yk = qch−tg), which must be expressed as a function of the state vector qi−tg. More-
over qch−tg also depends on the absolute chaser quaternion qi−ch, which is supposed to
be previously estimated by a classic M-EKF. Exploiting the quaternion properties it is
possible to write the quaternion product in matrix form:

qa−b ⊗ qb−c = Σ(qa−b)qb−c , with Σ(q) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (2.20)

and therefore:
qch−tg = q∗i−ch ⊗ qi−tg = Σ(q∗i−ch) qi−tg (2.21)

The time-discrete output equation yk = Ckxk + vk is therefore linear in the variable qi−tg,
with:

Ck =
[

Σ(q∗i−ch) ∅4x3

]
, xk =

 qi−tg

ωtgi−tg

 (2.22)

Since qi−ch is the result of an estimation process, the covariance Rk associated to qch−tg
should take into account also the uncertainties introduced by Σ(q∗i−ch) through the com-
putation of the composed variance of the function qch−tg = f(qi−ch, qi−tg) according to
the propagation of uncertainties rules. Since this work focuses on the characterization
of the intrinsic performance of the delay management techniques, the true qi−ch will be
used during the performance analysis not to introduce a cascading coupling between the
covariances of the chaser and the target states.
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2.3.2.1 Filter Recalculation method implementation

Since the system dynamics is given by the continuous process in Eq.(2.19) while the
measurement presented in Eq.(2.21) is a discrete process, the CD-EKF (Continuous Dis-
crete Kalman Filter [Frogerais et al., 2012, Kulikov and Kulikova, 2014]) structure will
be exploited in order to propagate target rotational state and covariance matrix. The
derivation of the CD-EKF equations is carried out in Appendix B.2. Both state and
covariance prediction equations can be written in the following time-continuous form:

dx

dt
= f(t, x)

dP

dt
= ∂f(t, x)

∂x
P (t) +

(
∂f(t, x)
∂x

)T
P (t) +G(t)Q(t)G(t)T

(2.23)

where the second equation is a differential Lyaponouv equation derived using the ap-
proximated state equation dx

dt
∼ ∂f(t,x)

∂x
dx + G(t)w(t), with G(t) the input matrix of the

process noise [Crassidis and Junkins, 2011]. The jacobian F (x) = ∂f(t,x)
∂x

has an analytical
formulation which is derived in Appendix C.3.2, and its evaluation does not require a lot
of computational resources. The prediction step, both for the state and the covariance
matrix P , is computed by numerical integration from tk−1 to tk of the ordinary differential
equations in Eq.(2.23). The numerical integration is done using the explicit fourth order
Runge-Kutta (RK) method (see Appendix B.2). Numerical integration procedures may
provide solution of P that are not necessarily positive semi-definite matrix, which is in
contradiction to the intrinsic properties of the state error covariance matrix. The numer-
ical integration of the class of coupled differential equations in Eq.(2.23) is investigated
in [Mazzoni, 2008], which suggests procedures that ensure stable solutions and guarantee
positive semi-definite covariance matrices P . Nevertheless, for the rotational dynamics
estimation problem, it has not been experienced any issues, neither with the stability of
the solution, nor with the properties of the covariance matrix. With a filter run frequency
of 10 Hz, a single sub-step for the fourth order RK integration is necessary. The so com-
puted x(tk) and P (tk) are the prediction of the state (x̂k|k−1) and of the covariance matrix
(Pk|k−1). From this moment on, the CD-EKF will follow the steps of a classical Discrete
Kalman Filter to compute the gain Kk, the covariance update and the state update using
the discrete measurement yk.
When the delayed measurement y∗s arrives, the update at time s is computed using the
stored x̂s|s−1, Ps|s−1, and qi−chs (that is needed to compute matrix C∗s ). No inputs us need
to be stored since the disturbance torques acting on the target are not modeled and affect
the dynamics as process noises. Then, if no interim measurements are present, x̂s|s and
Ps|s are propagated through the delay interval using Nd RK integration cycles. On the
other side, if interim measurements have to be processed, qi−ch has to be stored for any
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time step going from s to s + Nd, and then the filter implementation follows the steps
explained in Sec.2.2.1.

2.3.2.2 Larsen’s method implementation

As described in Sec.2.2.2, Larsen’s method has been expressly designed for linear system.
The correction termM∗ requires the knowledge of the transition matrix Φk = Ak, implying
that, for a non-linear system, an approximation must be computed. Here a second order
RK approximation will be used [Carpenter and D’Souza, 2018]:

Φk = I + T F+ + T 2

2 F×

with


F× = F (x̂k−1|k−1)F (x̂k|k−1)

F+ = F (x̂k−1|k−1) + F (x̂k|k−1)
2

(2.24)

where F (x̂k−1|k−1) and F (x̂k|k−1) are the Jacobian ∂f
∂x

of the state equation f , evaluated
respectively in the estimated state at k − 1 and the predicted state at k, and T is the
time stem size. The prediction of the covariance matrix can be done using the discrete
Lyaponouv equation presented in Eq.(2.2), adapted for a non-linear system:

Pk|k−1 = ΦkPk−1|k−1ΦT
k +Qk (2.25)

In fact, as discussed in [Carpenter and D’Souza, 2018], both methods in Eq.(2.23) and
Eq.(2.25) can be used to compute the prediction of the state error covariance matrix for
non-linear systems. The choice of using the discrete Lyaponouv equation instead of the
differential Lyaponouv equation as for the CD-EKF is done in order to save computational
resources. Indeed, the matrix Φk needs to be computed to implement Larsen’s method,
and Qk is computed as follows [Gibbs, 2011] :

Qk =
∫ tk

tk−1
Φ(tk, τ)G(τ)Q(τ)GT (τ)ΦT (tk, τ)dτ

=
∫ tk

tk−1

[
I + (T − τ) F+ + (T − τ)2

2 F×

]
G(tk)Q(tk)GT (tk)

[
I + (T − τ) F+ + (T − τ)2

2 F×

]T
dτ

(2.26)
where Q(t) and G(t) have been considered constant along the interval (which is a good
assumption since matrix G depends on target inertia matrix and disturbance torques have
a slow dynamics) and equal to Q(tk) and G(tk). On the other hand, Φ(tk, τ) has been
substituted by the second order approximation of Eq.(2.26). The resulting Qk is:

Qk = QGT +
(
F+QG +QGF

T
+

) T 2

2 +
(
F+QGF

T
+ + 1

2(F×QG +QGF
T
× )
)
T 3

3 + ...

...+
(
F+QGF

T
× + F×QGF

T
+

) T 4

8 + F×QGF
T
×
T 5

20
(2.27)
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where QG = G(tk)Q(tk)G(tk)T . The expression of course can be truncated at lower orders
if needed, namely for small values of T .

2.4 Simulations and Performance analysis

The Kalman Filters have been implemented in a full GNC RDV simulator developed in
Simulink and have been tested in a Monte Carlo (MC) Campaign. The generated true S/C
dynamics takes into account all the principal sources of disturbance in LEO environment,
such as atmospheric disturbances, solar pressure and J2 corrective term, according to the
models described in Appendix C.1. The translational dynamics is generated integrating
Gauss planetary equations (which take into account also chaser thrusters acceleration),
while the rotational dynamics is generated integrating the angular momentum equation
(which takes into account also control torques applied to the chaser). Since the main goal,
at this stage, is to compare the “intrinsic” performance of the filtering techniques, the
true state is used to compute guidance and control profiles.
The filters are tested first with simulated measurements that are generated by adding
a Gaussian noise to the true relative state. It is necessary to go through this stage in
order to test the performance of the filters under Kalman optimality hypothesis before
coupling it with IP-CV measurements. Measurements resulting from IP-CV algorithms
are affected by noise which depends on many factors, such as the intrinsic noise of the
sensor, the relative distance camera-target, the relative rotation rate and velocity, the
camera capture rate, the illumination conditions and even the target relative pose itself.
Some of these factors can be taken into account thanks to the knowledge of camera
parameters and the estimated dynamics, but other factors cannot be modeled on-line in
real time (i.e. the coupling between illumination source direction with a certain attitude
and reflective materials). This makes it very difficult to have a representative model of the
covariance matrix R which is valid in any condition. The delay management techniques
must therefore demonstrate robustness with respect to uncertainties in the knowledge of
matrix R.
In all the simulated scenarios, we will assume that the relative position and the relative
attitude quaternion measurements are acquired at a rate of 1 Hz and become available
for the filter after a delay of 1 second, which corresponds to Nd = 10 assuming that the
navigation filter operates at 10 Hz. These are all reasonable values taking into account
the typical latency of an IP-CV algorithm and navigation filter run frequency with typical
space processing capabilities. A particular focus is given to the estimation of the rotational
dynamics, which will be tested firstly in the case without interim measurements and
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then in the presence of a set of interim measurements. The latter case is the most
critical for Larsen’s method, since sub-optimality arises both from the linearization of
the state transition matrix and from the presence of interim measurements, as explained
in Sec.2.2.2. All the simulation scenario that are presented are tested over 200 Monte
Carlo runs on a 500 seconds simulation. For all the simulations, the state error covariance
matrix P is initialized as the identity matrix.

2.4.1 Performance of the translational dynamics estimation with
delayed measurements

The simulated scenario is the following: the target is on a circular orbit in LEO at an
altitude of 765 km and the chaser is on an orbit having the same orbital parameters as
target orbit, except for the altitude, which is lower. The initial conditions of the relative
target-chaser position in LOF are: x0 = [−50, 0, 0, ]T m. The chaser is subjected to a
continuous profile of thrust in order to perform an R-bar maneuver (see Appx.C.2.3) that
makes the chaser intercept the target after 500 seconds, at a relative speed of 10 cm/s.
We have already precised that the distribution of the measurements around the true state
could not be Gaussian and that the standard deviation of the measurements tends to
decrease as the camera approaches the target. Moreover the uncertainty of the measured
relative position will be higher in the direction of camera optical axis since the depth of
the observed object cannot be directly measured (i.e., monocular vision is bearing-only
and the scale factor can be determined only by model-based tracking methods). If the
chaser is performing an R-bar maneuver and it is pointing the target, as in the simu-
lated scenario, the optical axis of the camera corresponds to the direction of target LOF
x axis. Therefore the measurement component along x direction is generated with an
higher standard deviation with respect to the other components.
Four MC scenarios have been selected in order to test the performance of the filtering
techniques under uncertainties in the knowledge of the true covariance of the measure-
ments R and the knowledge of the chaser applied acceleration (i.e., which is the input of
CWH state-space representation). The latter may be due to an error in the knowledge of
chaser mass or to a difference between the commanded and the true thrust. All the sim-
ulations have a relative position initialization error uniformly distributed in the interval
[−10m,+10m] for x component and [−5m,+5m] for y and z components. The relative
velocity estimate is always initialized to be 0 m/s along each direction.

Table 2.1 summarizes the different conditions tested in each MC scenario. In cases
T.A and T.B the standard deviation of the generated measurements noise is fixed to a
constant value of 2 m for the x component and 1 m for y and z components. These values
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Table 2.1: Definition of the MC scenarios for the translational dynamics

Position initialization error
Control thrust F

Simulated measurement noise
knowledge error

T.A
∆x ∈ [−10m,+10m]

∆F = 0
σx = 2m

∆y,∆z ∈ [−5m,+5m] σy, σz = 1m

T.B
∆x ∈ [−10m,+10m]

∆F ∈ [−0.25F, 0.25F ]
σx = 2m

∆y,∆z ∈ [−5m,+5m] σy, σz = 1m

T.C
∆x ∈ [−10m,+10m]

∆F = 0
σ = σ0 + ∆σ, σ0 = [2, 1, 1]m

∆y,∆z ∈ [−5m,+5m] ∆σ ∈ [−0.8σ0, 0.8σ0]

T.D
∆x ∈ [−10m,+10m]

∆F ∈ [−0.25F, 0.25F ]
σ = σ0 + ∆σ, σ0 = [2, 1, 1]m

∆y,∆z ∈ [−5m,+5m] ∆σ ∈ [−0.8σ0, 0.8σ0]

of σ are quite representative for a distance around 50 m, but are overestimated for shorter
distances (i.e., the second half of the simulations), since camera sensors are characterized
by an increase of measurement accuracy with decreasing range [Fehse, 2003].
Cases T.C and T.D test the sensitivity of filter performance under the presence of random
variations in the standard deviation of the measurement noise, in order to assess the
robustness to a variable image processing covariance. The standard deviation will be equal
to σ0 + ∆σ, where ∆σ is a uniformly distributed variable that varies at any instant in the
interval [−0.8σ0,+0.8σ0] and σ0 corresponds to the values defined for cases T.A and T.B.
Such a noise is more similar to the one that will characterize the IP-CV measurements.
The filter is unaware of the measurement noise variation, therefore both cases T.C and
T.D will have the nominal tuning respectively of T.A and T.B.
In cases T.A and T.C, chaser acceleration is supposed to be known and only the sensitivity
to uncertainties on the initials condition is tested. In cases T.B and T.D, an uniformly
distributed uncertainty in the interval of [−25%,+25%] is added to the knowledge of
chaser control accelerations. In such a case the difference between the truly applied
acceleration and the one seen by the KF affects the system as a process noise. In order
to grant the convergence of the filter in these cases, the diagonal terms of matrix Q are
increased of two order of magnitude with respect to case T.A.
Tables 2.2 and 2.3 show the steady-state performance of the filter. The reported values,

averaged over 200 MC runs, are:

- σm: the standard deviation of the measurement noise generated by the simulator.

- σe: the standard deviation of the estimation error (Absolute Knowledge Error AKE,
according to [Ott et al., 2011] standard)

- (1 − σe/σm): an index (in percentage) of the noise attenuation introduced by the
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Table 2.2: Performance with known measurement noise
Case T.A Case T.B

σm σe (1− σe/σm) σm σe (1− σe/σm)
x [m] 1.999 0.053 97.33% 1.999 0.145 92.77%
y [m] 1.000 0.033 96.73% 1.000 0.099 90.22%
z [m] 1.000 0.025 97.47% 1.000 0.070 93.03%
ẋ [m/s] - 0.232·10−3 - - 0.182·10−2 -
ẏ [m/s] - 0.203·10−3 - - 0.173·10−2 -
ż [m/s] - 0.103·10−3 - - 0.088·10−2 -

Table 2.3: Performance with variable measurement noise
Case T.C Case T.D

σm σe (1− σe/σm) σm σe (1− σe/σm)
x [m] 1.924 0.052 97.29 % 1.921 0.138 92.82%
y [m] 0.985 0.032 96.71% 0.967 0.095 90.22 %
z [m] 0.965 0.024 97.46% 0.989 0.069 93.01 %
ẋ [m/s] - 0.225·10−3 - - 0.173·10−2 -
ẏ [m/s] - 0.201·10−3 - - 0.168·10−2 -
ż [m/s] - 0.099·10−3 - - 0.087·10−2 -

filter.

This latter performance index is presented only for those variables which are measured
(the relative position for what concerns the translational dynamics). As no interim mea-
surements are present, both Filter Recalculation method and Larsen’s method provide
the same results, so there is no distinction in the performance of the estimation. Com-
paring T.B to the correspondent case with known control acceleration T.A, and T.D to
the correspondent case with known control acceleration T.C, it is possible to see a slight
performance degradation. Indeed, the calibration of Q used in cases T.A and T.C pro-
vides very high level of attenuation (around 97%) that is paid by a loss of robustness with
respect to uncertainties in the knowledge of the control accelerations, which could even
make the filter diverge. For the cases having variable measurement noise (T.C and T.D),
the averaged standard deviation of the measurement noise σm is slightly decreased and
therefore also the standard deviation of the AKE σe. The attenuation index is slightly
degraded from case T.A to case T.C, while it is almost the same for cases T.B and T.D,
where the uncertainty on the process noise is dominant with respect to the uncertainty
on the measurement noise.
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2.4.2 Performance of the rotational dynamics estimation with
delayed measurements

The simulated rotational dynamics is the following: the chaser is rotating very slowly
around the LOF −z axis in order to ensure target pointing during the R-bar maneuver (a
rotation of about 360 deg within one orbital period), while the target is rotating under the
effect of its initial conditions and of the orbital disturbances. Four scenarios have been
analyzed, case R.A, case R.B, case R.C and case R.D, whose different conditions are
summarized in Table 2.4. The initial attitude quaternions qi−tg and qi−ch are equal to the
initial qi−LOF quaternion, while the initial target rotation rate is equal to 1 deg/s around
each body axis for cases R.A, R.B, and R.C, and equal to 3 deg/s around each body axis
for case R.D. These last rotation rates are representative of drifting S/C rotation rates,
and remain particularly challenging for an IP algorithm running on a space processor.

Table 2.4: Definition of the MC scenarios for the rotational dynamics
Attitude initialization Target’s true initial

Itg knowledge error
Simulated measurement

error rotation rate noise

R.A ∆θ ∈ [−40deg,+40deg] ωtgi−tg = [1 , 1 , 1 ]Tdeg/s ∆Itg = 0 σ = 4deg

R.B ∆θ = 0deg ωtgi−tg = [1 , 1 , 1 ]Tdeg/s ∆Itg ∈ [−0.5Itgii
, 0.5Itgii

] σ = 4deg

R.C ∆θ ∈ [−20deg,+20deg] ωtgi−tg = [1 , 1 , 1 ]Tdeg/s ∆Itg ∈ [−0.2Itgii
, 0.2Itgii

]
σ = σ0 + ∆σ, σ0 = 2deg

∆σ ∈ [−0.8σ0, 0.8σ0]

R.D ∆θ ∈ [−20deg,+20deg] ωtgi−tg = [3 , 3 , 3 ]Tdeg/s ∆Itg ∈ [−0.2Itgii
, 0.2Itgii

]
σ = σ0 + ∆σ, σ0 = 2deg

∆σ ∈ [−0.8σ0, 0.8σ0]

In cases R.A and R.B the standard deviation of the measurements noise (i.e., rep-
resented in Euler attitude angles) is equal to 4 deg, which is an overestimation of the
typical noise standard deviation of IP-CV measurements. In cases R.C and R.D the
measurements noise has standard deviation equal to σ0 + ∆σ, with σ0 = 2 deg and ∆σ a
uniformly distributed variable that varies at any instant in the interval [−0.8σ0,+0.8σ0].
Since the filter is unaware of the measurement noise variation, both R.C and R.D have
the nominal tuning for a constant σ = 2 deg.
Case R.A tests the performance of the methods under uncertainties in the initialization
of the state of the filter. Target rotation rate estimation is always initialized at 0 deg/s
while target attitude quaternion estimation is initialized by adding a random error ∆θ
expressed in Euler angles to the true state. The initialization error Euler angles are uni-
formly distributed in the interval [−40 deg, 40 deg].
Case R.B tests the filters performance under the presence of uncertainties in the knowl-
edge of target inertia matrix Itg and no error in the state initialization. The inertia matrix
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used in the filter is obtained by adding to each diagonal term Itgii
of the true inertia matrix

a value α, where α is a uniformly distributed variable in the interval [−0.5Itgii
,+0.5Itgii

].
Cases R.C and R.D reproduce scenarios with uncertainties values closer to the ones en-
countered in a real vision-based RDV in space. The initialization error Euler angles in
both cases is in the interval [−20 deg, 20 deg], which could be the convergence interval
of a classical model-based recursive tracking algorithm [Lepetit et al., 2005]. Actually
it is even more probable that the KF will be initialized with a lower initialization error
since it is preferable to have the IP-CV tracking algorithms converge on their own before
starting to feed the navigation filter with these measurements. The uncertainty on the
target inertia diagonal terms is uniformly distributed in the interval [−0.2Itgii

,+0.2Itgii
].

An uncertainty of 20% in the knowledge of the inertia matrix is quite probable for RDV
where the industrial model of the target is supposed to be known but still there could be
uncertainties on the amount of remaining propellant or on the degradation of the S/C.
The only difference between case R.C and R.D is that in the first one the true target
initial rotation rate is equal to 1 deg/s around each body axis, while in the second one is
equal to 3 deg/s around each body axis. In all the four scenarios, the estimated rotation
rate is initialized at 0 deg/s.
Table 2.5 shows the steady-state performance of the filters for each one of the scenarios

described, averaged on 200 Monte Carlo runs over a simulation of 500s. The perfor-
mance of the two delay management techniques is compared to the performance of a
classic CD-EKF (Eq.(2.23)) processing the infrequent measurements without delay. For
what concerns the attitude estimation, the estimation error θ is given in the axis-angle
representation, which provides a scalar representation of the error:

δq = q∗i−tgtrue
⊗ qi−tgest

θ = 2
∣∣∣atan

(√
δq2

1 + δq2
2 + δq2

3/δq0

) ∣∣∣ (2.28)

The reported values in Table 2.5, averaged on 200 MC runs, are:

- σm: the root mean square of the measurement noise generated by the simulator.

- σND: the root mean square of the AKE for the filter with infrequent non-delayed
measurements.

- σR: the root mean square of the AKE for the Filter Recalculation method.

- σL: the root mean square of the AKE for the Larsen’s method.

As for the translational dynamics, also the attenuation index for each filter is shown.
For the rotation rate components, the root mean square corresponds to the standard
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Table 2.5: Performance of the rotational dynamics estimation
Case R.A

σm σND σR σL (1− σND/σm) (1− σR/σm) (1− σL/σm)
θ [deg] 6.919 1.730 1.750 1.787 75.00% 74.71% 74.17%
ωx [deg/s] - 0.0131 0.0131 0.0128 - - -
ωy [deg/s] - 0.0120 0.0121 0.0124 - - -
ωz [deg/s] - 0.0191 0.0189 0.0187 - - -

Case R.B
σm σND σR σL (1− σND/σm) (1− σR/σm) (1− σL/σm)

θ [deg] 6.919 1.778 1.808 1.841 74.30% 73.87% 73.39 %
ωx [deg/s] - 0.0130 0.0130 0.0128 - - -
ωy [deg/s] - 0.0124 0.0125 0.0123 - - -
ωz [deg/s] - 0.0203 0.0202 0.0201 - - -

Case R.C
σm σND σR σL (1− σND/σm) (1− σR/σm) (1− σL/σm)

θ [deg] 3.402 0.907 0.920 0.939 73.35% 72.97% 72.39%
ωx [deg/s] - 0.0075 0.0075 0.0073 - - -
ωy [deg/s] - 0.0076 0.0077 0.0076 - - -
ωz [deg/s] - 0.0010 0.0099 0.0098 - - -

Case R.D
σm σND σR σL (1− σND/σm) (1− σR/σm) (1− σL/σm)

θ [deg] 3,460 1.025 1.071 1.096 70.38% 69.06% 68.31%
ωx [deg/s] - 0.0044 0.0045 0.0046 - - -
ωy [deg/s] - 0.0069 0.0070 0.0079 - - -
ωz [deg/s] - 0.0072 0.0072 0.0075 - - -

deviation of the estimation since the mean of the estimate is zero. No attenuation index
is computed for this state since the rotation rate is not measured. The results confirm
the expectations: the performance of the attitude estimation is in all the cases better for
the filter without delay, followed by Filter Recalculation method and then by Larsen’s
method. On the other side the performance of the estimation of the angular rate is
almost comparable for all the filters. In general the filter shows better performance under
uncertainties in the initialization (R.A) with respect to uncertainties in the knowledge of
the inertia matrix (R.B) -which actually corresponds to uncertainties in the knowledge of
the prediction model. The performance degrades as the rotation rate increases (case R.D
is the only one having an attenuation index lower than 70%). In any case, it is worth
highlighting that the attenuation index of Larsen’s method is only one percent below the
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one of Filter Recalculation method. Also in the transient phase the Filter Recalculation
method shows very slightly better performance than the Larsen’s method. It is only in
the simulations with interim measurements that the transient performance of the Filter
Recalculation method is remarkably better than the one of Larsen’s method, as we will
show in the next paragraph.

2.4.3 Performance of the rotational dynamics estimation with
delayed and interim measurements

We have analyzed the performance of the filters in two more cases, case RI.C and RI.D,
adding also a set of interim (fast) measurements of the attitude quaternion. This could
be the case of measurements coming from marker-based methods or from the use of a
trained convolutional neural network, since both methods have a relatively low latency.
The measurements are generated with a rate equal to the filter run frequency (10 Hz).
They are affected by a Gaussian noise having standard deviation equal to σ0+∆σ, with ∆σ
a uniformly distributed variable that varies at any instant in the interval [−0.8σ0,+0.8σ0].
Slow delayed measurements have σ0 = 2 deg and fast measurements have σ0 = 4 deg.
The characteristics of the simulated scenarios are summarized in Table 2.6.

Table 2.6: Definition of the MC scenarios for the rotational dynamics with interim
measurements

Attitude initialization Target’s true initial
Itg knowledge error Slow measurements noise Fast measurements noise

error rotation rate

RI.C ∆θ ∈ [−20deg,+20deg] ωtgi−tg = [1 , 1 , 1 ]Tdeg/s ∆Itg ∈ [−0.2Itgii
, 0.2Itgii

]
σ = σ0 + ∆σ, σ0 = 2deg σ = σ0 + ∆σ, σ0 = 4deg

∆σ ∈ [−0.8σ0, 0.8σ0] ∆σ ∈ [−0.8σ0, 0.8σ0]

RI.D ∆θ ∈ [−20deg,+20deg] ωtgi−tg = [3 , 3 , 3 ]Tdeg/s ∆Itg ∈ [−0.2Itgii
, 0.2Itgii

]
σ = σ0 + ∆σ, σ0 = 2deg σ = σ0 + ∆σ, σ0 = 4deg

∆σ ∈ [−0.8σ0, 0.8σ0] ∆σ ∈ [−0.8σ0, 0.8σ0]

Case RI.C reproduces the conditions of case R.C for what concerns the initialization
error, the uncertainties on the knowledge of target inertia matrix, and the true rotation
rate, while RI.D reproduces the same conditions of R.D. Table 2.7 shows the performance
of Filter Recalculation and Larsen’s method. The root mean square of the averaged mea-
surement error and of the attenuation index are not presented since the measurements are
characterized by different noises. The root mean square of the averaged estimation errors
of each case can be directly compared to the values of the corresponding case in Table
2.5, taking into account that the only difference is the presence of high frequency atti-
tude measurements with higher standard deviation. The performance of both methods is
highly increased with respect to the cases without interim measurements since, within a
delay interval, the state does not evolve in open loop but it continues being corrected by
the fast measurements. The steady-state performance of the Filter Recalculation method
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is only slightly better than Larsen’s one, and it is only during the transient phase that Fil-
ter Recalculation method shows a remarkably better performance, with lower overshoots,
but with a comparable convergence time. This degradation of Larsen’s method perfor-
mance can be explained as follows: in the case without interim measurements Larsen’s
method was optimal (i.e., to the extent that it was linearizing the propagation of the
update); in the case with interim measurements Larsen’s method becomes non-optimal
also with respect to Kalman theory, since -as explained in Sec.2.2.2- the correction term
M∗ is computed using Kalman gains that do not take into account the contribution of
the delayed measurement.
The performance of the filters in the transient phase can be observed in Fig.2.2 and

Table 2.7: Performance of the rotational dynamics estimation with interim measurements
Case RI.C Case RI.D
σR σL σR σL

θ [deg] 0.667 0.690 0.736 0.790
ωx [deg/s] 0.0077 0.0077 0.0137 0.0140
ωy [deg/s] 0.0101 0.0101 0.0200 0.0212
ωz [deg/s] 0.0113 0.0114 0.0281 0.0293

Fig.2.3, which show the first 200 seconds of a single-run in cases R.C, RI.C (Fig.2.2),
and R.D, RI.D (Fig.2.3), with the same filter state initialization (i.e., an error on Euler
attitude angles of [+20 deg, −10 deg, +15 deg]) and the same uncertainty on the diagonal
terms of target inertia matrix (i.e., 20%). In the figures it can be noticed how the filters
exploiting interim measurements converge faster than filters with only infrequent delayed
measurements. Moreover it can be noticed how the Filter Recalculation method has
performance comparable to Larsen’s method in the cases without interim measurements
(R.C and R.D), but is more performing in the case with interim measurements (RI.C
and RI.D), showing much lower error overshoots: 4.4 deg versus 15.2 deg for case RI.C,
and 5.6 deg versus 13.4 deg for case RI.D. Actually, in case RI.C Larsen’s method shows
a higher overshoot than the corresponding no-interim measurements case R.C (15.2 deg
versus 11.8 deg), even if it rapidly converges to a lower error. The curves representing
the angle error for the no-interim measurements cases show the peculiarity of appearing
piece-wise linear: this is due to the fact that the estimate evolves in open loop as long as
a new measurement arrives and only every Nd steps the state is corrected by the Kalman
update. The same behavior cannot be observed in cases RI.C and RI.D since a fast
measurement is processed at each time step.
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Figure 2.2: Transient phase estimation error in a single run for cases R.C and RI.C
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Figure 2.3: Transient phase estimation error in a single run for cases R.D and RI.D

2.4.4 Execution time and needed storage

As already mentioned, the choice of the best filter is a trade-off between performance
and computational load. Both Larsen’s and Filter Recalculation methods have almost
the same latency for the time steps in which no delayed measurements arrive, while,
at the arrival of a delayed measurement, Filter Recalculation method has to completely
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recompute the estimate through the delay period. This means that the latency -averaged
on a full simulation- of the Filter Recalculation method will be almost two times the
latency of Larsen’s method in a case where the slow measurement acquisition frequency
is equal to the reciprocal of the delay period multiplied by the filter run frequency.
Another important aspect is the amount of data that need to be stored for each method,
with respect to a classical KF without delayed measurements. Table 2.8 shows the amount
of “double” to be stored within a delay period (from s to s+Nd) for each method, under
the following hypothesis:

- Nd = 10: number of delay samples of the delayed measurements

- f = 10 Hz: navigation filter run frequency

- f/Nd = 1 Hz: frequency of the delayed measurements (any time a delayed mea-
surement becomes available for the filter, another one is acquired and starts being
processed by the IP-CV algorithms)

- mint: size of the interim measurements vector yk.

Table 2.8: Amount of double to be stored within a delay period by both estimation filters
Rotational Dynamics Translational Dynamics

Recalculation Larsen Recalculation Larsen
x̂s|s−1 7x1 7x1 6x1 6x1
Ps|s−1 7x7 7x7 6x6 6x6
qi−chk

4xNd 4x1 (qi−chs
) - -

yk mintxNd - mintxNd -
uk - - 3xNd -
M∗

k - 7x7 - 6x6
56+(4 +mint) Nd 109 42+(3+mint)Nd 78

Larsen’s method, due to the need of propagating through each time instant the 7x7
matrix M∗, requires to allocate a higher memory with respect to a classical KF, but the
required space does not depend on the number of the delay samples nor on the size of
the interim measurements vector. On the other side, the Filter Recalculation method,
which for small values of delay and small size of interim measurements vector requires to
store a lower amount of data, rapidly increases its storage burden as Nd or mint increase.
Figure 2.4 shows the required number of double to be stored as a function of the number
of delay samples Nd, for different sizes mint of the interim measurements vector. In the
case with no interim measurements (mint = 0), Filter Recalculation method becomes
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worse (in terms of needed storage) than Larsen’s methods for Nd > 13, while for the case
with mint = 4 (e.g., the one treated in Sec. 2.4.3) Filter Recalculation method becomes
worse than Larsen’s methods for Nd > 6. The same considerations on the needed storage
can be done for the translational dynamics: in the case without interim measurements
Filter Recalculation method becomes worse than Larsen’s method for Nd > 12, while,
for the case with mint = 3, Filter Recalculation method becomes worse than Larsen’s
methods for Nd > 6. Therefore, even if it requires less operations than the Recalculation
method, Larsen’s method needs to store a rather high amount of data, which is almost
comparable to the one needed by the Filter Recalculation method for values of Nd ∼ 10
(which is reasonable value taking into account latency of IP-CV algorithms and the typical
navigation filter run frequency). Nevertheless, the main advantage of Larsen’s method
concerns the computational burden, which is equally distributed over every time step
(the update of the correction term M∗

k , which requires only two matrix multiplications
for every time step). On the other side Filter Recalculation method concentrates the
whole computational load in the time instant in which the delayed measurements become
available. In these time steps, the computational load of the Filter Recalculation method is
multiplied by a factor equal to Nd and might be incompatible with the critical applications
run by the on-board computer for this particular time step.
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Figure 2.4: Amount of double to be stored as a function of the delay samples

2.5 Conclusion

The problem of incorporating delayed and multi-rate measurements in a navigation fil-
ter for the estimation of the dynamics of a non-cooperative target has been assessed. A
dynamic filter for the estimation of full target rotational and translational state exploit-
ing relative pose measurement has been formalized. Two delay management techniques
have been compared: Larsen’s method, which provides a fast but sub-optimal solution,
and Filter Recalculation method, which always provides the optimal estimate but has
a higher computational load. The Monte Carlo validation campaign has shown that
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Larsen’s method performance is comparable to Filter Recalculation method performance.
The latter shows remarkably better performance only in the transient phase of simula-
tions exploiting interim measurements but at the expense of a higher computational and
storage need. When a delayed measurement arrives, Filter Recalculation method com-
putational load is multiplied by a factor equal to the number of delay samples, which
might be incompatible with the critical applications run by the on-board computer for
this particular time step. This suggests that, in applications where the on-board resources
are limited, Larsen’s method is preferable since it provides a faster estimation without
any significant degradation of the steady-state performance.
In this work we have discussed the case with two set of measurements: a set of fast and
instantaneous measurements and a set of slow and delayed measurements. The methods
discussed in this chapter can be extended, with some modifications, to cases with multiple
set of measurements having variable delays and rates.
The following step will be to test the filtering techniques with real vision-based measure-
ments. The simulator described in Sec.2.4 and developed with the collaboration of Thales
Alenia Space integrates a high fidelity image generator that allows to generate realistic
S/C images in order to implement IP-CV tracking algorithm in the loop. Therefore, the
developed navigation function will be coupled and tested with a monocular model-based
tracking algorithm, with a special focus on the evaluation and update of the noise co-
variance matrix R as the chaser gets closer to the target. This analysis is carried out in
Chapter 3.
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Chapter 3

Frame-by-frame Tracking
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3.1 Introduction

Autonomous rendezvous navigation algorithms require accurate, up-to-date measurements
of the relative pose (i.e., position and attitude) of the target. Inexpensive camera sensors
have a small form factor -so that they are easily integrated to the S/C without affecting
its design- and a low power budget (unlike LIDARs [Kelsey et al., 2006, Sharma et al.,
2018b]). For this reason, the coupling of camera sensors with image processing (IP) and
computer vision (CV) algorithms can provide a cost effective solution. In this chapter we
propose a vision based navigation algorithm that allows the 6-degrees-of-freedom (DOF)
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pose estimation of a non-cooperative non-prepared target using a single visible monocular
camera. Indeed, the use of monocular vision provides advantages with respect to stereo-
camera configurations, because single cameras have a lower complexity and a much larger
operational range which is not limited by the size of the satellite platform.

3.2 Monocular model-based tracking

Image-based pose estimation can be classified into non-model-based and model-based tech-
niques [Kelsey et al., 2006]. Non-model-based techniques do not assume any a priori
knowledge of the tracked object’s shape, texture and other visual attributes. These
methods rely on visual features (e.g., SURF, SIFT, ORB) which are ideally recogniz-
able and distinguishable from one image to another, regardless of the pose of the camera,
the lighting or the spectral conditions in the image. For space applications, methods
that depend upon visual features detection are computationally expensive and yield poor
results[Sharma et al., 2016] since phenomena such as occlusions, harsh lighting, and re-
flective materials can make reliable detection and correspondence impossible [Lichter and
Dubowsky, 2004]. On the other hand, model-based techniques take advantage of a priori
knowledge of the object whose pose is to be estimated. This knowledge can be in the
form of “fiducials” (or “markers”), or in the form of a 3D geometrical description of the
object (which could incorporate also textures, reflectance and other visual attributes).
Fiducials are features expressly designed in such a way (shape/colour) that are easily de-
tected and identified with an ad hoc method [Lepetit et al., 2005] (e.g., ArUco, ARToolkit,
AprilTags). The use of fiducials implies that the target is originally designed to be easily
trackable, and therefore it is prepared (see Sec.1). On the other hand, the 3D model of a
satellite is exploitable even if the S/C was not supposed to participate in RDV operation.
3D model-based tracking algorithms are therefore more general than fiducial points based
ones, and this is why they are the best candidates for this study. The model matching
process computes a cost function describing how well the 3D model, in a specific pose or
configuration, matches the observed data in image [Jasiobedzki et al., 1999]. In the case
of a monocular sensor (i.e., a single camera), the matching will be performed between
the 2D projection of the 3D model and the image. Within the many 3D model-based
techniques for monocular camera, the more suitable for space applications are the ones
relying on edge extraction and tracking, since edges are strong features easily detectable
in correspondence of high image gradients. These methods are computationally efficient
and naturally stable to lighting changes even for specular materials [Lepetit et al., 2005].
A well-known model-based algorithm relying on edge tracking is RAPiD (Real-time At-
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titude and Position Determination) algorithm. RAPiD was first theorised in 1990 by C.
Harris and C. Stennett in [Harris and Stennett, 1990] and it was one of the first monocular
3D tracker to successfully run in real-time due to its low computational complexity. At
instant k, the 3D a priori model is projected in the image frame using the pose parameters
estimated at instant k − 1. Visible edges are selected and sampled in order to determine
a set of “control points” that will be used in the optimization process. At the same time,
edges are extracted on the greyscale image captured at the instant k, resulting in a binary
image. Then the control points are associated to the observed points on the image. The
matching is carried out by searching along the vector normal to the edge that contains
the control point. This mono-directional search reduces the matching search-space from
bi-dimensional to one-dimensional, thus allowing fast tracking. To compute the pose cor-
rection, RAPiD method relies on the fact that, at first order, small changes in the object
pose will cause a displacement of the control points in the image frame which is linear in
the pose parameters. This linearity enables to determine the variation of pose through
the solution of a simple linear least square problem.
The first use of RAPiD for vision-based autonomous space rendezvous dates from the year
2006 [Kelsey et al., 2006]. The study underlines why simple cameras should be preferred
with respect to LIDAR and other scanning and ranging sensor which could provide good
relative position accuracy at distances up to several kilometers as well as relative orien-
tation cues at shorter distance, but are typically very expensive and power hungry, and
often characterized by a small field of view (FOV). The algorithm in [Kelsey et al., 2006]
relies on the iterative recursive least squares method (IRLS) to reject outliers proposed
in [Drummond and Cipolla, 2002] and includes a Kalman enhancement (as suggested by
[Evans, 1990]) in order to improve the robustness of the estimation. The application of a
non-linear version of RAPiD in space rendezvous has been assessed also in [Petit et al.,
2012, Petit et al., 2011, Petit et al., 2013], where a graphic process units (GPU) is used
in order to render not only geometrical edges but also texture discontinuities of the a
priori model. Other RAPID-like methods have been proposed in [Lourakis and Zabulis,
2017, Lentaris et al., 2019]. All the cited works couple the pose estimation algorithm with
a linear Kalman filter (KF) which propagates a simple kinematic model. However, in the
case of high rotation rates typical of a tumbling object, a simple kinematic filter doesn’t
allow to estimate the rotation rate of the target, which needs to be known to perform
some RDV operations requiring the synchronization of chaser motion with target motion.
In this chapter, a robust tracking algorithm, based on a non-linear version of RAPID
method is proposed. The method does not need any GPU augmentation and it is com-
patible with typical space processing capabilities. Then, the algorithm is coupled with

73



74 CHAPTER 3. FRAME-BY-FRAME TRACKING

the navigation filter described in Chapter 2. This coupling enables the estimation of the
full target rotational and translational state exploiting only relative pose measurement af-
fected by delay. The chapter is structured as follows. In Sec.3.3 the implementation of the
proposed tracking algorithm is presented: Sec.3.3.1 recalls the theory underlying RAPID
algorithm, while Sec.3.3.2 and Sec.3.3.3 describe in details the proposed IP-CV algorithm;
in Sec.3.3.4 the coupling with the dynamic filter is discussed. In Sec.3.4 the performance
of the proposed solution is investigated, while in Sec.3.5 we introduce a discussion about
the real-time validation on the robotic test bench. In Sec.3.6 the conclusions are drawn.

3.3 Implementation of the methods

In this section the theory underlying RAPiD and our algorithm will be presented. Both
the methods rely on the same steps for the edge extraction, the projection of the a
priori model, and the matching, but differ in the construction of the cost function. The
edge extraction on the greyscale image captured at instant k relies on the Canny edge
detector, whose output is a binary image which is white in correspondence of edges and
black elsewhere. For the projection of the model, a “masking algorithm”, which behaves
almost like a classic z-buffer algorithm, has been developed. The algorithm projects into
the image frame the a priori 3D model of the target using the last available estimate
of the pose, and determines a set of control points belonging to the visible geometrical
edges of the target. More details on the algorithm logic and development are given in
Appendix D.1. In order to enable the matching procedure, for each control point the two-
component normal vector (orthogonal to the edge containing the point) is computed. For
each control point, the corresponding 3D coordinates in target frame are stored because
they will be used in the optimization process. Finally, the matching of a control point
with an observed point in the binary image is found by moving, from the projected control
point, along the projected normal vector until a value equal to 1 is found. Of course this
can produce a discrete number of false matching, which is one of the main drawbacks of
the mono-directional search that underlies the method fastness. In order to reduce the
number of false matching, a maximal acceptable distance from the control point to the
corresponding matched point dtoll is introduced. If no match is found at a distance lower
than dtoll, the control point is discarded. This value of tolerance depends on many factors
such as the time span between two time step, the relative rotational and translational
target rate, the relative distance camera-target, and the image size. High values of dtoll
increase the probability of false matching, and above a certain value of dtoll the hypothesis
of small pose variation underlying the matching procedure is no more valid. However, it is
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important not to underestimate the value of dtoll since this would prevent the recovering
of the tracker from small divergence. More details about the matching algorithm are
provided in Appendix D.2. Once that the set of matched points is determined, the cost
function can be built.

3.3.1 Linear optimization with RAPiD

The analytical formalisation of RAPiD proposed in [Lepetit et al., 2005] is now briefly
recalled. This is necessary to help the reader to better understand the method proposed
in Sec.3.3.2.
Figure 3.1 provides a schematic representation of the monocular pose estimation problem.
Let X tg

i = [xtgi , y
tg
i , z

tg
i ] be the coordinates of a point Xi belonging to the target object

expressed in the target RF (tg), which we assume for simplicity to be centered at target
COM. The coordinates of Xi expressed in the camera (cam) RF are:

Xcam
i = trcam−tg +Rcam−tgX

tg
i (3.1)

Figure 3.1 The vector trcam−tg = [trcamcam−tgtx , tr
cam
cam−tgty , tr

cam
cam−tgtz ] is the translation vector

that describe the relative position of the center of target RF (Otg, i.e., target’s COM),
with respect to center of camera RF (Ocam), expressed in camera RF. We will refer
to it as tr = [trx, try, trz] for sake of simplicity. The relative position of the camera
RF with respect to the chaser RF should be known from on-ground calibration. The
rotation matrix Rcam−tg is the rotation matrix that describes the relative attitude camera-
target, which can be equivalently expressed with the corresponding quaternion qcam−tg (see
Appendix A.1). For sake of lightness of the notation, we will refer to trcam−tg as to tr and
to Rcam−tg as to R. After a small time interval, the coordinates of X expressed in camera
frame can be written as a function of the former pose parameters (i.e., tr and R), and
the pose increment δtr = [δtrx, δtry, δtrz] and ∆R:

Xcam
i = tr + δtr + ∆R ·RX tg

i (3.2)

RAPiD relies on the hypothesis that the variation of pose within two subsequent frames
is small so that the rotation matrix can be linearised. From Eq.(A.11) the derivative of
the rotation matrix is know and it is therefore possible to write:

R(t+ δt) = R(t) + dR
dt

∣∣∣∣∣
t

δt , with dR
dt = [ω]× (3.3)
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Figure 3.1: Schematic representation of the pose estimation problem. In the figure, we
have the focal length of the camera f = fx = fy, and (cx, cy) the principal point of the
image

where ω = ωcamcam−tg and

[ω]×δt = [δθ]× with[δθ]× =


0 −δθz δθy

δθz 0 −δθx
−δθy δθx 0

 (3.4)

Then Eq.(3.2) becomes:

Xcam
i (t+ δt) = tr + δtr + (I3×3 + [δθ]×)RX tg

i

Xcam
i (t+ δt) = Xcam(t) + δtr + [δθ]×RX tg

i

(3.5)

Reminding the classical pin-hole calibrated and undistorded camera model having projec-
tion matrix

K =


fx 0 cx

0 fy cy

0 0 1

 , (3.6)
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and denoting the product RX tg
i = [Rxi

, Ryi
, Rzi

], the projection mi(t) of the point
Xcam
i (t) in the image plane (i.e., uv plane in Fig.3.1) is given by:

mi(t) = mi =
ui
vi

 =


fx
trx +Rxi

trz +Rzi

+ cx

fy
try +Ryi

trz +Rzi

+ cy

 (3.7)

while mi(t+ δt) is given by:

mi(t+ δt) = m′i =
u′i
v′i

 =


fx
trx +Rxi

+ δtrx − δθzRyi
+ δθyRzi

trz +Rzi
+ δtrz − δθyRxi

+ δθxRyi

+ cx

fy
try +Ryi

+ δtry − δθxRzi
+ δθzRxi

trz +Rzi
+ δtrz − δθyRxi

+ δθxRyi

+ cy

 (3.8)

Since the components of δtr and δθ are assumed to be infinitesimal, u′ and v′ can be
manipulated in order to retain only terms up to first order:

u′i = fx
trx +Rxi

+ (δtrx − δθzRyi
+ δθyRzi

)
trz +Rzi

+ (δtrz − δθyRxi
+ δθxRyi

) + cx = fx
a+ y

b+ x
+ cx with x, y → 0 (3.9)

For x→ 0, the fraction can be approximated to:

a+ y

b+ x
∼ a+ y

b+ x

∣∣∣∣
x=0
−x (a+ y)

(b+ x)2

∣∣∣∣∣
x=0

= a+ y

b
− ax+ xy

b2 = a

b
+ 1
b

(
y− a

b
x+O(x2)

)
(3.10)

resulting in:

u′i = ui + fx
1

trz +Rzi

(
δtrx − δθzRyi

+ δθyRzi
− u(δtrz − δθyRxi

+ δθxRyi
)
)

(3.11)

The same linearization procedure can be applied on the expression of v′, leading to:

v′i = vi + fy
1

trz +Rzi

(
δtry − δθxRzi

+ δθzRxi
− v(δtrz − δθyRxi

+ δθxRyi
)
)

(3.12)

The projected point m′i can therefore be written as a function of the point mi plus the
product of a matrix Ci = C(tr, R,X tg

i ) and a vector δp = [δtrx, δtry, δtrz, δθx, δθy, δθz]T :

m′i = mi + Ci δp (3.13)

assuming for simplicity that fx = fy = f , the expression of Ci is:

Ci = f


1

trz +Rzi

0 − trx +Rxi

(trz +Rzi
)2 −Ryi

trx +Rxi

(trz +Rzi
)2

Rzi

trz +Rzi

+Rxi

trx +Rxi

(trz +Rzi
)2 , −

Ryi

trz +Rzi

0 1
trz +Rzi

− try +Ryi

(trz +Rzi
)2

−Rzi

trz +Rzi

−Ryi

try +Ryi

(trz +Rzi
)2 Rxi

try +Ryi

(trz +Rzi
)2 ,

Rxi

trz +Rzi


(3.14)

i.e., a 2x6 coefficient matrix which is function of the known pose (tr, R) at the current
instant t, and of the coordinates of the point Xi in target R.F.
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From an operative point of view, this means that at the time step k, the projection m′i

of the known point Xi in the image frame can be written as the sum of mi, which is
the projection of the point Xi in the image frame using the known pose parameters at
the time step k − 1, and Ciδp, which is the product between a known coefficient matrix
depending on the pose at the instant k − 1 and the coordinates of the point X tg

i , and
the unknown parameters δp. In Appendix D we provide a physical interpretation of the
coefficient matrix Ci.
At the time instant k, an image of the target is acquired and the edges are extracted.
The control point Xi are projected into the image frame using the known pose parameters
at the instant k − 1, and are matched to the image points through the monodirectional
search previously described. The variation of pose δp can be estimated minimizing the

cost function χ(δp) =
M∑
i

d2
i . The cost function is the summation of the square distances

between each projected control point mi (with i = 1 : M) and the corresponding matched
point in the image frame mmeas

i , projected on the vector ni. The vector ni is the vector
normal to the edge to which the control point belongs. Note that mmeas

i is the point
on the captured image at the current instant that has been matched to mi through the
mono-directional search along the normal ni = [nui

, nvi
]T .

d2
i =

[
nTi (m′i −mmeas

i )
]2

=
[
nTi (mi −mmeas

i ) + nTi Ciδp
]2 (3.15)

Note that the quantity lmeasi = nTi (mi −mmeas
i ), that we name perpendicular distance, is a

known scalar depending on the pose parameters at the instant k−1 and on the measured
point. Denoting Ai the 1× 6 vector equal to nTi Ci, the cost function becomes:

χ(δp) =
M∑
i

(Aiδp− lmeasi )2 (3.16)

and the estimated parameter δp is:

δp = arg minδp
∑M
i (Aiδp− lmeasi )2 (3.17)

Eq.(3.17) corresponds to the linear least-square problem Aδp = l, where A is the M × 6
matrix whose i line is equal to Ai, and l is the constant term vector whose i element is
equal to li. The estimated parameter δp is given by:

δp =
(
ATA

)−1
A l (3.18)

The update of the pose, i.e., the pose measured by the tracking algorithm at the time
instant k, is therefore:  trk = trk−1 + δtr

Rk = (I3×3 + [δθ]×)Rk−1
(3.19)
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or alternatively, naming q the relative attitude quaternion qcam−tg:

qk = δq ⊗ qk−1

δq = 1√
1 + δθ2

x + δθ2
y + δθ2

z


1
δθx

δθy

δθz


(3.20)

3.3.2 Non-linear optimization: construction of the cost function

As anticipated, during a rendezvous with a non-cooperative S/C, the target variation of
pose within two consecutive image acquisitions may be too great to enable linearisation
of the trajectory in the image frame, and the tracking could be rapidly lost. A space
debris may be in tumbling, with a total rotation rate that can exceed 6 deg/s [Bonnal
et al., 2013]. In this section we provide an analytical formulation of our estimation method
based on the optimization of a non-linear cost function. Given a fitting non linear function
ŷ(p) of a vector of N parameters p, and a set of M data points yi, the parameters can be
estimated minimizing the sum of the weighted squares of the errors between the measured
data yi and the fitting function ŷ(p). The resulting scalar cost function is:

χ2(p) =
M∑
i

(yi − ŷi(p))2 = (Y − Ŷ (p))TW (Y − Ŷ (p)) (3.21)

where the weight matrix W is equal to diag(1/σ2
i ), with σi the standard deviation of the

error associated to measurement yi. The set of measurement data Y will be a vector
composed by the projections of the points [ui, vi]T (i.e., the measured coordinates in
image frame of the matched point corresponding to X tg

i ) along the projected normal
ni = [nui

, nvi
]T .

yi = nui
ui + nvi

vi, Y = [y1, y2, ..., yi, ..., yM ]T (3.22)

The weight matrix W is set to be equal to the identity matrix of size M ×M , since there
is no way to know the error related to each matched image point [ui, vi].
The pose parameter p to be estimated is the full pose at the instant k, and not the pose
increment as it was done for RAPiD algorithm. In the pose parameter p, rotation will be
described using the quaternion q = qcam−tg = [q0, q1, q2, q3]T , since quaternions have the
lowest dimensionality possible for a globally non-singular representation of the rotational
group SO(3) [Markley, 2004]. The parameter vector p is therefore a 7× 1 vector equal to
[trx, try, trz, q0, q1, q2, q3]. Analogously to Eq.(3.1) For each control point X tg

i which has
found a match in the image, the corresponding coordinates expressed in camera RF are:

Xcam
i = tr + q ⊗X tg

i ⊗ q∗ (3.23)
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Reminding the notation defined in Appendix A.2, we use Qrotj (X
tg
i , q) ( with j = 1 : 3)

in order to refer to the first, the second and the third component of the vector resulting
from the rotation described by the function Qrot(X tg

i , q) = q ⊗ X tg
i ⊗ q∗, we project the

point Xcam
i into the image frame using the pinhole camera model (i.e., Eqs.(3.6),(3.7)).

The fitting function becomes:

ŷi = nTi

 ûi(X tg
i , p)

v̂i(X tg
i , p)

 = nui

(
fx
trx +Qrot1(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cx

)
+ nvi

(
fy
trx +Qrot2(X tg

i , q)
trz +Qrot3(X tg

i , q)
+ cy

)
(3.24)

and the non linear function will be Ŷ (p) = [ŷ1(p), ŷ2(p), ..., ŷi(p), ..., ŷM(p)]T . The non-
linear optimization is solved using the version of the Levenberg-Marquardt (LM) algorithm
described by [Gavin, 2011] and detailed in Appendix D.4. The Jacobian of the nonlinear
functions Ŷ (p) has to be derived in order to compute at each iteration the update of
parameter p. For each matched model point X tg

i , corresponding to the measured point yi
and the fitting function ŷi(X tg

i , p), the Jacobian Ji is the 1× 7 vector:

Ji = ∂ŷi
∂p

=
[
nui

∂ûi
∂trx

+ nvi

∂v̂i
∂trx

, . . . , nui

∂ûi
∂q3

+ nvi

∂v̂i
∂q3

]
(3.25)

The computation of the elements of the Jacobian with respect to the translational terms
is straightforward, while it is more complex for the elements derived with respect to the
quaternion. In Appendix A.2.3 the derivation of analytical Jacobian for the rotation of a
vector X tg

i = [xi, yi, zi] with respect to a quaternion q is carried out. The Jacobian is:

∂(q ⊗X tg
i ⊗ q∗)

∂q
=



∂Qrot1(X tg
i , q)

∂q
∂Qrot2(X tg

i , q)
∂q

∂Qrot3(X tg
i , q)

∂q


=


A D C −B
B −C D A

C B −A D

 (3.26)

where:
A = ∂Qrot1

∂q0
= ∂Qrot2

∂q3
= −∂Qrot3

∂q2
= 2(q0xi − q3yi + q2zi)

B = ∂Qrot2

∂q0
= ∂Qrot3

∂q1
= −∂Qrot1

∂q3
= 2(q3xi + q0yi − q1zi)

C = ∂Qrot1

∂q2
= ∂Qrot3

∂q0
= −∂Qrot2

∂q1
= 2(−q2xi + q1yi + q0zi)

D = ∂Qrot1

∂q1
= ∂Qrot2

∂q2
= ∂Qrot3

∂q3
= 2(q1xi + q2yi + q3zi)

(3.27)
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The terms of the Jacobian matrix in Eq.(3.25) for the ûi and v̂i components are therefore:



∂ûi(X tg
i , p)

∂trx
= fx

1
trz +Qrot3(X tg

i , q)
∂ûi(X tg

i , p)
∂try

= 0

∂ûi(X tg
i , p)

∂trz
= −fx

trx +Qrot1(X tg
i , q)

trz +Qrot3(
(
X tg
i , q)

)2

∂ûi(X tg
i , p)

∂q0
= fx

A
(
trz +Qrot3(X tg

i , q)
)
− C

(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q1
= fx

D
(
trz +Qrot3(X tg

i , q)
)
−B

(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q2
= fx

C
(
trz +Qrot3(X tg

i , q)
)

+ A
(
trx +Qrot1(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂ûi(X tg
i , p)

∂q3
= fx

−B
(
trz +Qrot3(X tg

i , q)
)
−D

(
trx +Qrot1(X tg

i , )
)

(
trz +Qrot3(X tg

i , q)
)2

(3.28)



∂v̂i(X tg
i , p)

∂trx
= 0

∂v̂i(X tg
i , p)

∂try
= fy

1
trz +Qrot3(X tg

i , q)
∂v̂i(X tg

i , p)
∂trz

= −fy
try +Qrot2(X tg

i , q)
trz +Qrot3(

(
X tg
i , q)

)2

∂v̂i(X tg
i , p)

∂q0
= fy

B
(
trz +Qrot3(X tg

i , q)
)
− C

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q1
= fy

−C
(
trz +Qrot3(X tg

i , q)
)
−B

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q2
= fy

D
(
trz +Qrot3(X tg

i , q)
)

+ A
(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

∂v̂i(X tg
i , p)

∂q3
= fy

A
(
trz +Qrot3(X tg

i , q)
)
−D

(
try +Qrot2(X tg

i , q)
)

(
trz +Qrot3(X tg

i , q)
)2

(3.29)

The obtained Jacobian is used at each iteration to analytically compute the direction of
the parameter increment, starting from the initial guess p0 which is taken to be equal
to the estimated pose at instant k − 1. In this optimisation process, some approxima-
tions are introduced: at each update of the pose within the LM algorithm, a new set of
control points and normal vectors should be computed by the masking algorithm, and
new matches with the binary image should be found. Nevertheless, such a process would
dramatically increase the computational load of the algorithm. For this reason, the set of
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control points, matched points and normal vectors will be kept constant for all the loops
within each LM run. The algorithm shows very good performance even if in presence of
this approximation, as it will be illustrated in Sec.3.4.

3.3.3 Use of silhouette contours

One of the major drawbacks of applying the Canny edge extraction on the greyscale images
is that the algorithm detects not only geometrical edges, but also texture discontinuity,
which are not managed in the masking algorithm. Moreover, the direction of the light
could make invisible some geometrical edge due to the particular reflective texture of the
MLI (Multi Layer Insulation), which usually covers S/Cs. Finally, shadows contours are
identified by the Canny edge extractor as edges (e.g., as it is possible to see for the shadow
contour highlighted in red in Fig.3.2(a), which appears in the output image of the Canny
edge detector in Fig.3.2(b)). All these conditions can lead to possible false matching
of the control points with a non-geometrical edge. As this work does not consider the
option of using GPU acceleration to render also texture discontinuities (i.e., as done
in [Petit et al., 2012]) or shadows, the most robust solution to reduce the number of
false matching is to rely only on the external contour of the target (i.e., the silhouette
contours). If the target is artificially illuminated by the chaser, or if there are proper sun
illumination conditions (see [Fehse, 2003]), the silhouette contour of the target can be
retrieved applying threshold and morphological operators on the greyscale image before
the Canny edge extraction. This has been done for the image shown in Fig.3.2(d), whose
Canny edge extraction output is shown in Fig.3.2(e). Although the study presented in
this Chapter relies only in the use of a visible (VIS) camera, the coupling with an infra-red
(IR) thermal camera would provide benefits to the silhouette extraction, increasing the
robustness towards illumination conditions, shadows and reflective materials. Moreover,
the use of multi-spectral imagery could help the segmentation process in presence of the
Earth in the background. Providing a solution for background segmentation is out of the
scope of this study. However, in Sec.5, we will provide some details of a segmentation
algorithm developed in Thales Alenia Space and integrated to the final navigation solution
proposed by this thesis.

As only the silhouette contours are now extracted, a new masking algorithm capable of
detecting only the external perimeter of the target has been implemented. The algorithm
is detailed in Appendix D.1.3, and it has lower computational load with respect to the
former masking algorithm. For the pose corresponding to Fig.3.2(a), the computational
time of the new algorithm (Fig.3.2(f)) is decreased by a factor of 5 with respect to the
latency time of former masking algorithm (Fig.3.2(c)). Averagely, the latency is reduced
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: 3.2(a) Greyscale image. 3.2(b) Canny edge extraction on greyscale image.
3.2(c) Projection of all visible geometrical edges. 3.2(d) Thresholded image. 3.2(e) Canny
edge extraction on thresholded image. 3.2(f) Projection of the external perimeter edges.

by a factor of 4 − 5. The new masking algorithm applied to the thresholded image,
together with a proper choice of dtoll, has proven to generate fewer mismatches than
the former technique, thus allowing not to consider outliers rejection algorithms such as
RANSAC proposed by [Zisserman, 1995] or the IRLS technique proposed by [Drummond
and Cipolla, 2002, Kelsey et al., 2006], techniques that increase the computational load
of the algorithm.

3.3.4 Integration of the measurements in the navigation filter

The tracking algorithm discussed in the previous sections provide a measurement of the
relative pose target-chaser, but no measurement of the relative translational velocity and
rotation rate. As anticipated in Sec.2, certain close proximity operations require the
knowledge of the complete relative state of the target. The coupling of the IP-CV al-
gorithm with a dynamic KF enables the estimation of both translational and rotational
velocity of the target. Moreover, the measurements computed by the IP-CV tracking algo-
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rithm can be affected by a consistent delay, due to the high computational load associated
to operation such as image segmentation, the 3D model projection, and the non-linear
optimisation. There will be therefore a delay between the time of acquisition (i.e., im-
age capture by the camera), and the time in which the measurement becomes available.
In addition, due to the high computational load of the IP-CV algorithm, measurements
could be available at a lower rate with respect to the one of the navigation filter. For this
reason, the filter must implement appropriate technique to merge delayed and infrequent
measurements.
Besides the benefits already listed, the coupling of the tracking algorithm with the dy-
namic KF extremely increases the robustness of the tracking. In fact recursive tracking
algorithms, although they provide very precise measurements, are prone to divergence
because they limit the search of the new pose measurement in the neighborhood of the
previous estimate (i.e., model-image matching is done by local search in proximity of the
projected model at the previously estimated pose). Mismatching are usually due to noisy
images and poor silhouette extraction, but can also be “intrinsic” to the method. This
could be the case when the S/C, rotating, passes from a configuration (instant k − 1)
in which a geometrical edge is visible, to a configuration (instant k) in which that edge
becomes invisible (or vice versa). This phenomenon is known as self-occlusion. In such
a case, the edge will be present in the a priori projected model, but will be invisible in
the Canny image (or vice versa), increasing the probability to match the control points
with the wrong edge in the image. This makes the optimization algorithm converge to a
local minimum which does not represent the real pose of the target. Usually, model-based
recursive algorithms cannot recover autonomously from these local minima and the track-
ing diverges. Even if our algorithm has shown good convergence property with respect to
RAPiD, there are some configurations in which the tracking is lost (e.g., when the faces
of the solar arrays become visible or invisible). For this reason, the coupling with the
KF becomes crucial: the dynamic filter propagates a physical model which predicts the
motion of the target and makes edges appear and disappear according to the prediction
model.
In this section, the dynamic model implemented in the navigation filter, as well as the
applied delay management technique, are briefly recalled. The complete formalisation of
the method and its application to the space RDV navigation problem are discussed in
Sec.2 and Appendix C. Then, in Sec.3.3.4.2, we will explain how to optimally couple the
IP-CV measurements with the KF.
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3.3.4.1 Recalls of the proposed navigation filter

The translational motion is modelled according to the well known Clohessy-Wiltshire-
Hill’s equations [Fehse, 2003], a system of linear differential equations that describes the
relative motion of the chaser with respect to the target. The motion is expressed in the
target Local Orbital Frame (LOF, with x axis along the radial Earth-target, z axis along
target orbit angular momentum and y axis completing the right-handed trihedron):


ẍ− 3ω2x− 2ωẏ = γx

ÿ + 2ωẋ = γy

z̈ + ω2z = γz

(3.30)

where ω is target’s orbit angular rate and γx,y,z are the control accelerations acting on
chaser centre of mass (COM). The state transition matrix associated to the system in
Eq.2.15 can be analytically computed, thus the relative translational dynamics can be
written in the form of a linear time-discrete system. The rotational dynamics is modelled
according to the non-linear prediction model:

q̇i−tg = 1
2qi−tg ⊗

 0
ωtgi−tg


ω̇tgi−tg = −I−1

tg

(
ωtgi−tg × Itg ω

tg
i−tg

) (3.31)

where qi−tg is the attitude quaternion from inertial to target RF, ωtgi−tg is target rotation
rate with respect to the inertial RF expressed in target RF and Itg is the inertia matrix
of the target at its COM.
In order to integrate delayed measurements, Larsen’s method is implemented (see Sec.2.2.2).
This method relies on the computation, throughout the delay period, of a correction term
to add to the filter estimate when the delayed measurement becomes available. It requires
only two matrix multiplications at each time step, as well as the storage of the predicted
state and error covariance matrix relative to the time step in which the measurement was
acquired. Moreover, Larsen’s method allows to merge multi-rate measurements, enabling
the use of multiple sensors and tracking algorithms. Larsen’s method is sub-optimal
for non-linear systems and in the presence of multi-rate measurements, but has a very
low computational load compared to optimal methods (e.g., Filter Recalculation method,
[Prasad et al., 2002, Li et al., 2004]). As proven by the analysis in Sec.2.4, for the RDV
problem, Larsen’s method is the best trade-off between optimality and computational
load, with a performance comparable to the one of the optimal method.
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3.3.4.2 Computation of the measurement noise covariance matrix R

One of the main problem related to the IP-CV algorithms is to have a good character-
ization of the measurement noise covariance matrix R, which is needed to integrate the
measurements into the Kalman filter. Nevertheless, it may be particularly difficult to have
a good characterization of R because the measurement noise depends on many factors,
such as the intrinsic noise of the sensor, the relative distance camera-target, the relative
rotation rate and velocity, the camera capture rate, the illumination conditions and even
the target relative pose itself. When using the LM algorithm for the estimation of a pa-
rameter (in our case the parameter pk, which correspond, from the point of view of the
KF, to the measured pose at instant k), the covariance of the estimated parameter pk,
and therefore of the measured pose, can be computed from the Jacobian and the weight
matrix, according to the formula [Gavin, 2011]:

R = [JTWJ]−1 . (3.32)

However, as anticipated, the value of the weighting matrix W is not known. For this
reason, it became necessary to detect another index of merit of the obtained measurement.
The value of the χ2 function evaluated at the estimated parameter pk, divided by the
degree of freedom of the problem (i.e., ν = M −N + 1) is used as an indicator of the level
of confidence of the measurement. This value is named reduced cost function and it also
used as one of the convergence criteria in the LM algoritm.

r = χ2(pk)
ν

(3.33)

The value of r is a sort of averaged squared reprojection error, and it will be referred
to as residual in the following sections. For a given target geometry, camera parameters
and relative camera-target distance, the residual can be correlated to the noise covariance
matrix of the associated measurements (i.e., a very low residual indicates that the repro-
jection error is minimal and therefore that the measurement is reliable). This correlation
is obtained experimentally during offline calibration.

3.4 Performance analysis

The proposed non-linear tracking algorithm is tested in order to characterize the per-
formance at different distances. First, the tracking algorithm is tested with a constant
calibration of the Kalman Filter, i.e., with a constant value of measurement noise covari-
ance matrix R. Two different conditions are analyzed. In a first set of simulations, the
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estimation chain is tested using perfect silhouette images. This excludes illumination con-
ditions, shadows and reflective textures from the possible sources of false matching. In the
second set of simulations, realistic synthetic images are used. Then, the simulations are
repeated using a dynamic calibration of the KF, i.e., exploiting the residual r introduced
in Sec.3.3.4.2 to dynamically update the measurement noise covariance matrix R.

3.4.1 Simulation scenarios

In all the simulated scenarios, the images are acquired at a rate of 1 Hz. A latency time
of 1 second for the IP-CV algorithm is assumed. Therefore, the measurements become
available by the filter after a delay of 1 second, which corresponds to a delay of 10 time
step, assuming a filter run frequency of 10 Hz.
In the set of simulations relying on perfect target silhouettes, target and chaser are at a
fixed distance and do not translate with respect to the inertial frame. Chaser’s attitude is
fixed with the camera pointing towards the target, while the target is rotating according
to the angular momentum equation under the effect of its initial conditions.
The second set of simulations is run on a full GNC rendezvous simulator modelling the
LEO environment, with orbital perturbations affecting both chaser’s and target’s dy-
namics (see Appx.C.1). The simulations are performed in closed-loop, meaning that the
estimated pose is used to control camera pointing and chaser position, thus adding a
source of error. The chaser is equipped with a spot light illuminating the target. The
images are simulated using Thales Alenia Space high fidelity image simulator SpiCam.
The images are affected by shadows, reflections and blur, so that the silhouette retrieved
by the Canny edge extraction is highly affected by noise. Fig. 3.3 shows, for the same
relative pose, the difference between the perfect silhouette used in the first set of simula-
tions and the noisy one used in the second set of simulations.

(a) First set of simulations (b) Second set of simulations

Figure 3.3: Comparison between perfect (3.3(a)) and noisy (3.3(b)) silhouettes

Each set of simulations is repeated twice, once with static calibration of the KF, once
with dynamic calibration of the KF. We will refer to case S.A and D.A (respectively
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Static A and Dynamic A) for the cases relying on perfect silhouettes and respectively
with static and dynamic KF calibration. We will refer to case S.B and D.B (respectively
Static B and Dynamic B) for the cases relying on the high fidelity RDV simulator and
respectively with static and dynamic KF calibration.
For each one of the 4 cases, the algorithm has been tested at a distance of 30 m, 20 m and
10 m, with a camera having a 30 deg FOV and a size of 1024×1024 pixels, i.e., in Eq.(3.6)
we have cx = cy = 512 and fx = fy = f = cx/ tan(FOV/2) = 1911. The target has a
size of 4× 3× 1 meters. These dimensions, translated in pixel, correspond, in the image
frame, to an object size of 255× 191× 64 pixels at 30 m (i.e., Fig.3.4(a)), 382× 287× 96
pixels at 20 m (i.e., Fig.3.4(b)), and 764× 573× 191 pixels at 10 m (i.e., Fig.3.4(c)). The

(a) (b) (c)

Figure 3.4: 3.4(a) Silhouette of the satellite at 30 m, 3.4(b) Silhouette of the satellite at
20 m, 3.4(c) Silhouette of the satellite at 10 m.

3D model projected by the masking algorithm is simplified and has fewer details than the
CAD model used to generate the images, which on the other hand accurately reproduces
the geometry of the S/C.
For each distance and each case, 100 simulations of 200 seconds have been run, varying
on the initial conditions of target attitude and rotation rate. The initial relative attitude
quaternions have been uniformly sampled to cover all the attitude “space”, while target
rotation rate components along each body axis are random variables uniformly distributed
in the interval [−1deg/s,+1deg/s].

3.4.2 Simulation results

Tables 3.1 and 3.2 show the performance of each case at each distance, averaged on the
100 simulations. In Tab.3.1 the performance of the cases with static KF calibration are
shown, while Tab.3.2 shows the performance of the cases with dynamic KF calibration.
For the attitude estimation, the error is given in the axis-angle representation, which
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provides a positive scalar representation of the error (see Eq.(2.28)). The mean and the
root-mean-square (RMS) are shown both for the error of the measured relative quaternion
(δθmeas) and for the error of estimated relative quaternion (δθest). For the relative tar-
get/chaser rotation rate estimation error ([δωxest, δωyest, δωzest], expressed in chaser RF),
the standard deviation σ is shown. The performance of the method in cases S.A and
D.A can be considered as the intrinsic performance of the algorithm, because no exter-
nal sources of error are present (i.e., external edges are perfectly extracted from binary
silhouette images, and there are not pointing errors). Thus, cases S.A and D.A must be
considered as a benchmark to compare respectively cases S.B and D.B.
For what concerns the tests with static calibration, is should be noted that the mean
of the angular error is lower for the measured quaternion, while the root-mean-square
error is lower for the estimated quaternion. This is due to the static calibration of matrix
R. The KF is calibrated in order to be robust towards divergent measurements, giving
relatively more confidence to the prediction model than to the measurements. When the
measurements are good, the estimation is less precise than the measurement itself, but
when measurement start diverging, the estimation brings the measurement back to the
correct pose. The performance of the quaternion estimation can be increased by using a
time-varying calibration of the KF that computes in real-time the value of the measure-
ment noise covariance R, as it is visible in Tab.3.2.
The performance of case S.B can be directly compared to the benchmark performance of

Table 3.1: Performance of the non-linear tracking algorithm with constant KF calibration
Case S.A: Perfect silhouette Case S.B: High fidelity RDV simulator

30 m 20 m 10 m 30 m 20 m 10 m
mean RMS mean RMS mean RMS mean RMS mean RMS mean RMS

δθmeas [deg] 1.91 3.34 1.23 2.22 0.80 1.47 6.73 8.73 3.82 5.20 1.73 2.51
δθest [deg] 2.13 3.20 1.34 2.01 0.83 1.25 7.21 9.23 4.12 5.41 1.79 2.42

σ σ σ σ σ σ

δωxest [deg/s] 0.065 0.047 0.023 0.109 0.073 0.046
δωyest [deg/s] 0.169 0.115 0.057 0.191 0.122 0.067
δωzest [deg/s] 0.141 0.087 0.044 0.167 0.113 0.063

case S.A. A degradation of the performance occurs: at 20 m the method has diverged in
10 runs, and at 30 m in 26 runs. The value shown in Table 3.1 are averaged on the simu-
lations in which the tracking was ensured. The high degradation of the performance at a
distance of 30 m is due to the reduced size of the S/C in the image frame. As the distance
increases, the number of control points used to compute the cost function decreases: this
increases the relative weight of a mismatching with the noisy silhouette.
In cases D.A and D.B, the baseline value of R used in the previous simulation is multi-
plied in run-time by a factor R that depends on the value of residual associated to the
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pose measurement (e.g., R < 1 if r is small, and R >> 1 is r is big). The values of R
and the ranges of r are pre-defined via off-line scheduling. Looking at Table 3.2 it should
be noted that not only the global performance is increased, but also that the estimated
quaternion has become more precise that the measured one. Moreover, it should be noted
how the mean and root mean squared errors of the measured quaternion are decreased
with respect to the static cases This underlines how the measurements of a recursive
tracker are dependent on the estimated pose itself: if the pose estimation improves, the
measurements improve too. For the baseline simulation D.A, the mean angular error of
the estimated quaternion is 1.08 deg at 30 m, 0.74 deg at 20 m, and 0.47 deg at 10 m. Also

Table 3.2: Performance of the non-linear tracking algorithm with dynamic KF calibration
Case D.A: Perfect silhouette Case D.B: High fidelity RDV simulator

30 m 20 m 10 m 30 m 20 m 10 m
mean RMS mean RMS mean RMS mean RMS mean RMS mean RMS

δθmeas [deg] 1.74 3.11 1.15 2.09 0.73 1.33 4.70 7.15 3.04 5.00 1.60 2.69
δθest [deg] 1.08 1.64 0.74 1.10 0.47 0.68 4.34 5.53 2.66 3.49 1.40 1.75

σ σ σ σ σ σ

δωxest [deg/s] 0.046 0.034 0.015 0.052 0.042 0.035
δωyest [deg/s] 0.131 0.087 0.044 0.080 0.062 0.044
δωzest [deg/s] 0.106 0.066 0.033 0.066 0.053 0.041

for case D.B we can observe an improvement of the performance with respect to case S.B,
with the algorithm that diverges in 6 runs at 20 m and 17 runs at 30 m. Nevertheless,
there is still a significant degradation passing from case D.A to case D.B. To overcome
this degradation of the performance, different solutions can be envisaged. The simpler
solution from an algorithmic point of view is to equip the chaser with multiple cameras
having different FOV in order to rely, during each RDV phases, on an optimized sensor.
However, this solution may be not applicable from a system point of view. The coupling
of the VIS camera with a thermal IR camera will surely improve the silhouette extrac-
tion. Nevertheless, in order not to compromise the mission in case of failure of a camera
sensor, it is necessary to develop a solution that ensures the tracking even with the lowest
number of sensors available. For this reason, the development of ad-hoc pre-processing
techniques to enhance the silhouette extraction should be envisaged (see Sec.5.1). Fi-
nally, the coupling of the tracking algorithm with a pose acquisition algorithm will enable
re-initialization in cases where the divergence of the tracking can not be avoided.

3.5 Real-time implementation

The tracking algorithm discussed in the current chapter was supposed to be tested in real-
time on Thales Alenia Space robotic bench in Cannes. The robotic bench is composed by
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two industrial robotic arms IRB 2400/16 made by ABB which simulate the behavior of
the target from one side, and of the chaser on the other. On the target arm it is mounted
a down-scaled mock-up of the target model used in this thesis.

(a) (b)

Figure 3.5: Images of the target mock-up mounted on Thales Alenia Space robotic bench
at different relative poses

Figure 3.5 shows the target mock-up at two different relative poses. For a series of
reason, it was not possible to complete the validation campaign before the end of the
thesis. The main issues encountered were related to the knowledge of the ground-truth
actuated by the robotic arms, the extrinsic calibration of the camera and the illumina-
tion conditions. In particular, it has proven to be difficult to isolate the target mock-up
from the robotic bench background, also because of the reflective texture of the mock-up.
Moreover, a poor knowledge of the actuated ground-truth prevented us to correctly eval-
uate the performance of the tracking algorithm. However, all preliminary steps needed to
test the tracking algorithm in real-time on the robotic bench have been carried out, and
the tracking algorithm proved real-time estimation capability.
The most important outcome of the real-time test preparation has been the re-coding
of the IP-CV algorithms on a static programming language (i.e., C++). The “trans-
lation” from Matlab code to C++ has been carried out exploiting Matlab auto-coding
application. The Matlab codes (i.e., the masking algorithm, the matching algorithm, the
optimization relying on the LM algorithm) have been modified to comply with some gen-
eral rules for auto-coding (e.g., declaration of type and size of outputs and inputs), and a
generic “example” script implementing the full tracking algorithm was written. From this
inputs, the Matlab coder generated a library of C++ functions and an example main. The
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functions were then integrated on a C++ script implementing the image pre-processing
with Open-CV functions and the pose estimation with our developed code. An important
lesson was learned from the auto-coding procedure. When using Matlab coder, all the
Matlab functions belonging to Matlab libraries are re-coded in C++ (e.g., eye(), norm(),
inv(), etc). However, they are not re-coded in a “universal” way, but only in compliance
with the way they are used in the parent function (e.g., if the function norm() is ap-
plied only to 3× 1 vectors in the parent function, the auto-coded norm function in C++
will bug if it receives a 4 × 1 input). Thus, the “translation” of a function belonging to
the standard Matlab libraries is not unique. This may generate an issue when trying to
integrate multiple auto-coded libraries. For this reason, we recommend to rely on user-
defined functions instead of functions belonging to the standard Matlab libraries when
auto-coding is foreseen.
The porting of the tracking algorithm in C++ has allowed us to better assess the com-
putational load of the method. The pose estimation algorithm was tested on a 2.70 GHz
Intel Core i7 processor. The algorithm proved to be very fast, with an average latency
-from the Canny edge extraction to the cost function minimization on 500 processed
images- of 60.1 millisecond at 40 m (i.e., 16.64 images/s), 62, 5 millisecond at 20 m (i.e.,
16 images/s), and 85.8 millisecond par image (i.e., 11.66 images/s) at 10 m. The latency
has been decreased of a factor close to 20 when passing from Matlab to C++. It goes
without saying that the performance achieved will degrade when the processing chain will
run on a space embedded target, but the latency on the testing processor suggests that
real-time on space-enabled processor is achievable.

3.6 Conclusion

The current thesis chapter has addressed the problem of monocular model-based pose
tracking for space rendezvous, proposing an innovative method relying on silhouette-edges
extraction and tracking. The method has been formally developed and implemented. The
coupling with the dynamic filter introduced in Chapter 2 enables the robust estimation
of the relative pose, as well as the estimation of the translational velocity and rotation
rate, of the target. The method has shown high performance and robustness when using
perfect silhouette images, and suffered a loss of robustness at high relative distances when
tested in closed-loop on realistic images affected by shadows, blur and reflections. Indeed,
the use of a dynamic calibration of the KF improves the performance. Different solutions
to strengthen the estimation have been proposed, such as the coupling of the visible
camera with a thermal infra-red camera in order to improve the silhouette extraction. The
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proposed estimation chain provides a cost effective solution with a very low computational
load, thus compatible with typical space processing capabilities. However, as all the
recursive pose tracker, the proposed method does not allow to initialize the pose from the
so-called lost in space condition (i.e., no prior information of the target pose), neither it
is capable of recovering from big pose estimation error. In the next chapter, the problem
of pose acquisition will be assessed.
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Chapter 4

Pose Estimation by Detection
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As discussed in Chapter 3, traditional 3D tracking has a recursive nature, which pro-
vides a strong prior on the pose for each new frame and makes image feature identification
and matching relatively easy [Lepetit et al., 2005]. However, recursive methods require
initialization and can diverge in presence of local minima (see Sec.3.4.2). For this reason,
a recursive tracking algorithm must be complemented with a pose estimation by detection
algorithm to enable initial pose acquisition and fault detection. In a detection algorithm,
the pose is retrieved by exploiting a-priori information on the geometry and appearance
of the tracked object, but with no knowledge of the pose at previous instants. Since
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space-qualified microprocessors have relatively low computational resources, the pose es-
timation by detection algorithm must be computationally inexpensive. Moreover, it has
to cope with the peculiarities of the RDV problem, such as harsh illumination conditions
or the presence of textureless and reflective materials on the target.

4.1 Related work

When using monocular vision, the atavistic problem to model and recognize a 3D infor-
mation from 2D images has to be faced. Monocular pose estimation by detection can be
performed using geometric methods or by template matching.
In geometric methods, the observed 2D features in the input image are matched with
a database of features computed offline. Then the pose is retrieved by solving the
Perspective-n-Point (PnP) problem. Geometric approaches based on local feature are
proposed for S/C pose acquisition in [Sharma et al., 2018b, Pesce et al., 2019, Rondao
and Aouf, 2018]. In [Sharma et al., 2018b], the weak gradient elimination technique is
employed to eliminate the background and the Hough transform is used to extract strong
edge features, which are then merged into higher-level features. The correspondences be-
tween the image and the 3D model are obtained by paring each detected feature group
with each analogous group of the 3D model. Unlike template matching techniques, only
a small set of possible matches is hypothesized and then verified. Each combination of
feature correspondences is employed to solve the PnP problem using the Efficient-PnP
method [Lepetit et al., 2009]. This leads to multiple solutions, which are classified into
“high” and “low” confidence poses according to the magnitude of the reprojection error.
Only when the reprojection error is below a certain threshold the pose is considered to be
correctly acquired. Even if this method doesn’t require the storage of the templates, but
only the storage of the S/C 3D model, it can still be considered computationally heavy,
with an average execution time on a standard 2.5 GHz Intel-Core i-5-4570T processor
of more than 8 seconds. In [Pesce et al., 2019] a set of image-model correspondences
between the detected features and the 3D model (i.e., consensus set) is selected and used
to compute a first guess pose solving the PnP problem. The obtained solution allows to
re-project the 3D model features on the focal plane and to compare them to the ones
detected in the original image, in order to obtain an enlarged consensus until a given
threshold is reached. However, methods relying on local feature detection lack robustness
in the adverse illumination conditions encountered by spaceborne systems.
In template matching approaches, a training set of views of the object is acquired offline
to generate a database of templates that are compared at run-time with the input image.

95



96 CHAPTER 4. POSE ESTIMATION BY DETECTION

Classical template matching approaches compare the pixels intensities of the templates
and the input image according to similarity measures or alignment functions [Petit, 2013].
However, these methods are computationally expensive and lack robustness to illumina-
tion changes [Petit, 2013] . Other approaches rely on templates of local features, such
as image gradient orientations (e.g., [Dalal and Triggs, 2005, Hinterstoisser et al., 2010])
or binary templates of the extracted edges. An edge-based template matching approach
relying on a similarity measure derived from Chamfer Matching [Barrow et al., 1977] and
on an unsupervised clustering technique based on affinity propagation [Frey and Dueck,
2007] is proposed for S/C pose estimation in [Petit, 2013].
The template matching approaches described are computationally complex because of
the evaluation of a large number of possible pose hypotheses and real-time may not be
achievable on space qualified processors. They might be appropriate for pose initialization,
but cannot be used as a backup algorithm to help detecting divergence in the recursive
tracking algorithm. For this reason, recent works have focused on using Convolutional
Neural Networks (CNNs) for pose estimation directly from greyscale images in a end-to-
end fashion [Sharma and D’Amico, 2020, Sharma et al., 2018a]. However, the reported
accuracy is currently still lower than that of geometric methods [Sharma et al., 2018b].
Hybrid approaches, where CNNs are used to extract keypoints (i.e., local features) from
the image while the PnP solver is used to compute the pose, have recently shown very
good accuracy with synthetic images [Kisantal et al., 2020]. However, this still raises the
issue of relying on local feature detection.
The approach proposed in this chapter is to rely on template matching with global fea-
tures instead of local ones. Global features such as image moments or Fourier descriptors
provide a low-dimensional representation of the target’s silhouette on a binary image. As
for a typical appearance-based template approach, this representation can be matched
to its nearest neighbor in a database constructed offline from a sufficiently rich sample
of possible poses. However, due to the small amount of data stored for each view, the
search for the optimal matching remains computationally inexpensive, resulting in a fast
estimation procedure that can be run in parallel of a frame-to-frame tracking algorithm.
If global features are computed from binary silhouette images, they become independent
from illumination conditions. However, in this case, the pose estimation algorithm should
be complemented with a segmentation algorithm, especially when complex background
such as the Earth is present in the image
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4.2 Pose estimation with global descriptors

Pose estimation methods usually rely on local image features. Local image features, such
as object edges and corners, are in general compared to a model using symbolic pattern
matching techniques [Breuers, 1999]. Once a structural match between the image features
and the object model is found, the object pose is estimated through an iterative fitting
technique. On the other side, global image features are in general converted to a pose
estimate in a single processing step by means of statistical methods, such as the nearest
neighbor search or neural networks. This makes pose estimation based on global image
features less complex compared to methods based on local image features. The method
consists in computing global features for the current view of the object whose pose is to
be determined, and comparing them with a database of features computed offline and
representing the whole search space in order to find the best match.
Early attempts to use global features for shape recognition were motivated by aircraft iden-
tification applications and relied on Hu’s moment invariants ([Dudani et al., 1977, Reeves
et al., 1988, Glais and Ayoun, 1994, Breuers, 1999]) and Fourier descriptors ([Wallace and
Wintz, 1980, Reeves et al., 1988, Chen and Ho, 1991, Glais and Ayoun, 1994]). Dudani
proposed in [Dudani et al., 1977] to use these features not only for aircraft recognition
but also for pose estimation, inspiring follow-up work in [Reeves et al., 1988, Chen and
Ho, 1991, Glais and Ayoun, 1994, Breuers, 1999].Unfortunately, Hu’s invariants, although
very commonly used, are now known to form an incomplete set, see Section 4.4, which
results in limited discrimination capabilities. During the past two decades, progress in
pattern recognition led to the development of more powerful sets of rotation-invariant
global features, which however were never tested for the pose estimation problem. In
this paper, we consider complex moments (CMs), Zernike moments (ZMs) and Fourier
descriptors (FDs). CMs directly improve on Hu’s invariants [Flusser et al., 2009], see
Section 4.4.1. ZMs form a set of orthogonal moments, see Section 4.4.2, with advantages
in terms of information redundancy and image representation capabilities [Abu-Mostafa
and Psaltis, 1984, Teh and Chin, 1988]. Some authors claim that Pseudo-ZM [Gishkori
and Mulgrew, 2019] are more robust than ZM with respect to additive noise, but their
independence (see Section 4.4) is considered questionable [Flusser et al., 2009]. ZMs were
used in [Gand́ıa and Casas, 2003] to determine the orientation of a S/C from silhouette
images, as we do here. However, the authors did not fully exploit the power of the ZMs
since they do not use the rotation invariance to reduce the complexity of the problem,
as we explain in Section 4.3. In [Chang and Ghosh, 2000] the amplitude of ZMs up to
the 29th order is used as rotation invariant to estimate the pose of airplanes, but the use
of only amplitudes leads to an incomplete set of descriptors, which results in limited dis-
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crimination capabilities, as we explain in Section 4.4.2. Moreover, in [Chang and Ghosh,
2000] the in-plane rotation (see Section 4.3) is retrieved by comparing the phase of the
ZMs in the database with the phase of the ZMs computed on the observed image. This
approach leads to a doubling of the dimension of the descriptor database. In Section 4.3,
we describe a method to retrieve the in-plane rotation that requires storing only one de-
scriptor for each database view. The amplitude of the Pseudo-ZMs is also used as rotation
invariant in [Khotanzad and Liou, 1996], but this work proposes a method to compute
only two of the six degrees-of-freedom (DOF) of the pose. A coarse initialization of two
attitude angles using ZM is done in [Rondao et al., 2020]. Finally, Pseudo-ZMs are used
in [Fu and Sun, 2017] for aircraft pose estimation from contour images. First, the authors
determine with Pseudo-ZMs two of the three attitude angles of the observed object. Then,
shape context descriptors are used to retrieve the remaining DOF. However, as we details
in Section 4.3, the remaining DOF can be computed using geometric moments, resulting
in a simpler and faster estimation method.
Moment-based invariants are generally computed using the whole silhouette of the ob-
served object, since the performance of boundary moments quickly deteriorates in the
presence of noise and discretization effects on the images [Reeves et al., 1988, Barczak
et al., 2011], and thus CMs and ZMs are generally sensitive to the distribution of the
“mass” in the image silhouette. On the other hand, FDs are computed only from the
contours of the observed object, hence are more sensitive to changes in the object bound-
aries [Reeves et al., 1988]. This motivates our goal of comparing Fourier descriptors and
moment-based invariants.
This Chapter is organized as follows. In Section 4.3, we present a detection algorithm for
the pose estimation of a S/C of known geometry, based on global features computed from
a single binary image. First, the method determines two of the three Euler angles that
describe the attitude of the S/C using rotation invariant features. Then, the remaining
degrees of freedom, i.e., the relative translation and the in-plane rotation, are retrieved
using geometric moments (GMs). In Section 4.4 the theory underlying the computation
of rotation invariants based on CMs, ZMs and FDs is recalled, and we propose a novel
method to compute rotation invariant FDs. Then, Section 4.5 analyzes and compares
the performance of these three sets of global descriptors, characterizing their behavior in
different conditions typically encountered in operational RDV scenarios. To the best of
our knowledge, no prior work provides such an evaluation of the performance of modern
global descriptors for the problem of detecting and estimating the pose of a 3D object.
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4.3 Proposed method

The interest in using global features such as Fourier descriptors [Wallace and Wintz,
1980, Reeves et al., 1988, Chen and Ho, 1991, Glais and Ayoun, 1994] or image moments
[Dudani et al., 1977, Reeves et al., 1988, Glais and Ayoun, 1994, Breuers, 1999] is that
these features can be made invariant to translation, to scaling, and most importantly to
rotation. If a bi-dimensional shape is described by such invariant features, the value of the
features will not depend on the position of the shape centroid (translation invariance),
on the shape dimension (scaling invariance), and on the rotation of the shape in the
image plane (rotation invariance). The shape of the projected silhouette does depend
both on the relative attitude and the relative position of the observed object, and the
contribution of the translation is coupled with the contribution of the attitude. However,
under the hypothesis of weak-perspective model, those effects can be decoupled at the
cost of an acceptable degradation of the estimation performance (as we show in Sec.4.5).
The weak perspective model can be assumed when the depth of the object along the
line of sight is small compared to the distance from the camera [Petit, 2013], or when
the FOV is relatively small or the object is placed near to the center of the FOV (i.e.,
trcamcam−tgx

∼ 0 and trcamcam−tgy
∼ 0 in Eq.(3.1)). These are indeed conditions that are met

during the pose acquisition phase. In the weak perspective model it is assumed that all
points on a 3D object are at the same distance z from the camera without significant
errors in the projection with respect to the full pinhole perspective model. Under this
hypotheses, it can be assumed that the distance trcamcam−tgz

affects only the scale of the
projected silhouette, while the components trcamcam−tgx

and trcamcam−tgy
affect only the position

of the silhouette centroid. Thus, if global invariant features are used do describe the S/C
silhouette at a given pose, the value of the features will depend only on the roll and pitch
angles ϕ and ϑ of the matrix Rcam−tg (Eq.(3.1)). In fact, the yaw angle ψ only affects the
rotation of the projected shape in the plane image, as visible in Fig.4.1.
The principle of the pose estimation algorithm that we propose is the following. During
an off-line process, a set of synthetic views of the target, referred to as training images
in the following, is generated for a sufficiently large number of discrete values of the
pairs (ϕ, ϑ) ∈] − π, π]×] − π/2, π/2]. When generating the database, the yaw angle
ψ = ψtrain is set to zero. Moreover, the camera is pointing perfectly towards the target
COM, i.e., trcamcam−tgy

= trcamcam−tgy
= 0, and the distance trcamcam−tgz

= d is kept fixed for all
the views in a database. This set-up is described by Fig.4.1. The choice of distance
d = dtrain can in fact affect the performance of the pose estimation, as we discuss in
Section 4.5.2. For a given pair (ϕ, ϑ), the position of the camera expressed in the target
RF is trtgcam−tg = dtrain · [sinϑ, −cosϑ sinϕ, −cosϑ cosϕ]T . Under the assumption that
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Figure 4.1: Schematic representation of the pose estimation problem using a monocular
image

the camera’s optical axis is pointing towards the target’s COM, the locus of the points
trtgcam−tg(dtrain, ϕ, ϑ) is represented by the sphere of radius dtrain centered at the target
COG. Thus, the relative attitudes used to generate the training images can be assigned
by selecting Nw random points on the sphere. In order to avoid oversampling of the polar
zone, which would be the result of a uniform sampling of ϕ and ϑ, the points are assigned
using the algorithm suggested in [Kuffner, 2004] ϕ = 2π randϕ − π

ϑ = asin(1− 2randϑ)
(4.1)

where randϕ and randϑ are two independent random variables uniformly distributed in the
interval ]0, 1]. Note that although random attitude sampling was used here for bench-
marking the different sets of global descriptor, a deterministic sampling may be more
adequate for the nominal pose estimation solution. In that case, a spiral scheme could be
used to generate uniformly distributed samples on the unit sphere [Koay, 2011].
Once the images corresponding to the Nw viewpoints are generated, the global invariant
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descriptors are computed for each view. The size of the resulting database is Nw × Nf ,
with Nf the dimension of the feature vector. At run-time, when the camera acquires
a new image of the target (referred to as test image in the sequel), the algorithm com-
putes the descriptor vector associated to the resulting view and finds in the database the
pair (ϕmeas, ϑmeas) with the closest descriptor vector (minimizing the Euclidean distance),
i.e., performs a nearest neighbor search. The two remaining degrees of freedom, i.e., the
yaw angle ψ and the relative camera-target distance d, are estimated using geometric
moments (GMs), according to the procedure described in the following. From a math-
ematical point of view, moments are projections of a function into a polynomial basis
[Flusser et al., 2009]. GMs rely on the most intuitive power basis ppq(x, y) = xpyq. The
general definition for a geometric moment of an image is:

mpq =
∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y) dx dy , (4.2)

where f(x, y) is a function equal to the intensity level of the image in correspondence of
the point (x, y). When binary images such as object silhouettes are considered, f(x, y) is
equal to 1 inside silhouette and 0 elsewhere. For binary images, the lower order geomet-
ric moments are associated with geometrical properties of the observed silhouette. For
example, m00 is the area, while m10/m00 = xc and m01/m00 = yc are the x and y coordi-
nates of the silhouette’s centroid. Geometric moments can be easily made translation and
scale invariant. Translation invariance is obtained by computing the central geometric
moments µpq, according to:

µpq =
∫ ∞
−∞

∫ ∞
−∞

(x− xc)p(y − yc)qf(x, y) dx dy . (4.3)

Scale invariance is obtained by dividing the central geometric moments by an appro-
priated power of the area:

νpq = µpq
mw

00
, with w = p+ q

2 + 1 . (4.4)

From a given image, the yaw angle ψ of Rcam−tg can be retrieved using the second order
central moments, as follows.
It is known in fields such as structural engineering that it is possible to determine the
principal axis of inertia of a cross-section given its second order central geometric moments
µ20, µ11, µ02. Given a certain shape, it is possible to compute its central GM µ′pq after an
in-plane rotation of an angle α using its central GM µpq before the rotation:

µ′pq =
p∑

l1=0

q∑
l2=0

rl111r
l2
21r

p−l1
12 rq−l211 µl1+l2,p+q−(l1+l2) (4.5)
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where r11, r12, r21, r22 are the elements of the rotation matrix that describes the in-plane
rotation of the shape:  r11 r12

r21 r22

 =
 cos(α) sin(α)
−sin(α) cos(α)

 (4.6)

Given this relation, it is possible to compute the inclination ψ̃0 of the major axis of
inertia of the observed shape with the following procedure. Applying a rotation of ψ̃0

to the reference system and computing the rotated centered moments, one will obtain
the principal moments of inertia of the shape. The second order rotated moments can be
obtained both with Eq.(4.5), or applying Eq.(4.2) for the rotated and centered coordinates

µ′pq =
∫ ∞
−∞

∫ ∞
−∞

(
x cos(ψ̃0) + y sin(ψ̃0)

)p (
−x sin(ψ̃0) + y cos(ψ̃0)

)q
f(x, y) dx dy (4.7)

The resulting second order rotated centered moments are:
µ′20 = µ20 cos2(ψ̃0) + µ02 sin2(ψ̃0) + 2µ11 sin(ψ̃0)cos(ψ̃0)
µ′02 = µ20 sin2(ψ̃0) + µ02 cos2(ψ̃0)− 2µ11 sin(ψ̃0)cos(ψ̃0)
µ′11 = −µ02 sin(ψ̃0)cos(ψ̃0)− µ20 sin(ψ̃0)cos(ψ̃0) + µ11

(
cos2(ψ̃0)− sin2(ψ̃0)

) (4.8)

The angle ψ̃0 can be easily computed by imposing the mixed moment µ11 to be null, has it
happens when the second order moments are computed with respect to the principal axis
of inertia. Alternatively, one can maximize µ′20. Applying the double-angles trigonometric
formulas, the third equation of system (4.8) becomes:

µ′11 = −1
2(µ20 − µ02) sin(2ψ̃0) + µ11 cos(2ψ̃0) = 0

ψ̃0 = 1
2atan2

(
2µ11

µ20 − µ02

) (4.9)

However, to recover the full in-plane angle of rotation ψ0 ∈] − π, π] of the silhouette,
we still need to determine a specific direction along the axis of inertia, i.e., distinguish
between ψ0 = ψ̃0 or ψ0 = ψ̃0 − π.
For this, the third order GMs can be used, since they change sign under a rotation of π
[Tahri, 2004]. Central moments in the image frame rotated by an angle ψ̃0 are given by
Eq.(4.5), with α = ψ̃0 in Eq.(4.6). Then, as a convention, we define the in-plane rotation
ψ0 to be the direction for which the moment µ′30 after rotation by ψ0 is positive, i.e.,

ψ0 =

 ψ̃0 if µ′30 > 0 ,
ψ̃0 − π if µ′30 < 0 .

(4.10)

The ambiguity can be resolved only if the silhouette is not rotationally symmetric. In the
case of a silhouette having an N-fold rotation symmetry (N-FRS) (i.e., if it repeats itself
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after rotation around its centroid by 2πj/N , for all j = 1, ..., N), N solutions are possible.
In such case, only an observation of the target pose on a set of consecutive frames could
help solve the ambiguity.
Once ψ0test is determined for the current image, we can deduce the measured yaw angle
ψmeas of the camera frame by the following procedure. For the training view in the
database that best matches the current view, which we recall was generated with ψ =
ψtrain = 0, we can similarly compute the angle ψ0train

of the major axis of inertia (these
angles can be precomputed and stored with each view). Then ψmeas is determined by

ψmeas = ψ0test + (ψtrain − ψ0train
). (4.11)

Finally, we obtain a measure dmeas of the relative camera-target distance along the optical
axis from the zeroth order moment m00test of the current silhouette image, namely

dmeas =
√
m00train

/m00test · dtrain, (4.12)

where m00train
is the zeroth order moment for the best matching training view, which

again can be precomputed and stored in the database.
When constructing the database, the camera optical axis zcam is always pointing towards
the target’s COM. However, during the pose acquisition phase of a RDV, the camera will
likely be pointing towards the observed silhouette centroid instead of the target COM. It
may also be the case that, for some operational reasons such as the need for aligning chaser
and target docking interfaces, pointing exactly toward the COM cannot be done. In such a
case, recalling (3.7) and exploiting the fact that d =

√
(trcamcam−tgx

)2 + (trcamcam−tgy
)2 + (trcamcam−tgz

)2 ∼
trcamcam−tgz

, the components trcamcam−tgx
and trcamcam−tgy

can be approximated by
trcamcam−tgx

= d

f
(xctest − cx)

trcamcam−tgy
= d

f
(yctest − cy)

(4.13)

where (xctest , yctest) are the coordinate of the observed silhouette centroid. We remind
that f denotes the focal length of the camera and (cx, cy) the principal point of the image.
The identities (4.13) can be used to ensure camera pointing even before the target’s full
pose has been acquired.

By using rotation invariants, we can drastically reduce the dimension of the database
that needs to be stored and increase the speed of the search. For example, if the library
were built using a uniform discretization of 5 deg for the Euler angles, the database table
would contain Nw = 72×36×72 = 186624 synthetic views if ψ were included in the search
space, but only Nw = 72× 36 = 2592 synthetic views if rotations invariants where used.
In Sections 4.4.1, 4.4.2, and 4.4.3 we provide details about the computation of invariant
global features using CMs, ZMs, and FDs.
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Figure 4.2: Structure of the proposed pose estimation algorithm.

4.4 Computation of the invariant global features

While designing translation and scale invariants based on moments is generally straight-
forward, see (4.3) and (4.4), rotation invariance is more difficult to obtain. In a seminal
paper [Hu, 1962], Hu introduced a set of 7 rotation invariants based on combination of
second and third order geometric moments:

Hu1 = m20 +m02

Hu2 = (m20 −m02)2 + 4m2
11

Hu3 = (m30 − 3m12)2 + (m03 − 3m21)2

Hu4 = (m30 +m12)2 + (m03 +m21)2

Hu5 = (m30 − 3m12)(m30 +m12) [(m30 +m12)2 − 3(m03 +m21)2]
−(m30 − 3m21)(m03 +m21) [3(m30 +m12)2 − (m03 +m21)2]

Hu6 = (m20 −m02) [(m30 +m12)2 − (m03 +m21)2] + 4m11(m30 +m12)(m03 +m21)
Hu7 = −(m30 − 3m12)(m30 +m12) [(m30 +m12)2 − 3(m03 +m21)2]

−(m30 − 3m21)(m03 +m21) [3(m30 +m12)2 − (m03 +m21)2]
(4.14)

where, if the geometric moments mij are replaced by the central moments µij (Eq.(4.3))
or by the normalized moments νij (Eq.(4.4)), the relations give invariants not only to
rotation but also to translation (i.e., central moments), or to translation and scaling
(i.e., with normalized central moments). Hu’s set is one of the first set of invariant that
has been used for visual pattern recognition. Unfortunately, Hu’s approach cannot be
generalized, so that only invariants up to the third order can be derived, limiting the
descriptive power of these features. On the other hand, by choosing other polynomial
basis functions to compute the moments, as for CMs and ZMs, one can derive general
rules for the computation of rotation invariants of up to any order. In particular, a set of

104



105 CHAPTER 4. POSE ESTIMATION BY DETECTION

invariants up to a given order r must be independent and complete [Flusser et al., 2009].
A set is independent if none of its elements can be expressed as a function of the other
elements. It is complete if any rotation invariant up to the order r can be expressed by
means of the set elements only. A complete set contains both true invariants and pseudo-
invariants. True invariants are invariants that do not change sign under reflection, while
pseudo-invariants (also known as skew-invariants) do [Flusser et al., 2009]. The capability
of pseudo-invariants to detect mirror reflections is very important for the pose estimation
problem, since a mirrored image corresponds to a different S/C attitude.

4.4.1 Rotation invariants with complex moments

CMs are computed by projecting the image function on the basis ppq(x, y) = (x+ iy)p(x−
iy)q, where i is the imaginary unit. The complex moment cpq of order p+ q is defined by
the following formula:

cpq =
∫ ∞
−∞

∫ ∞
−∞

(x+ iy)p(x− iy)qf(x, y) dx dy . (4.15)

Translation and scaling invariance can be obtained as for the standard geometric moments,
replacing m00, m10 and m01 in (4.3) and (4.4) by c00, Re(c10) and Im(c10) respectively.
Each CM can be expressed in terms of geometric moments of the same order, ad vice-versa,
according to [Flusser et al., 2009]:

cpq =
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · jp+q−k−j ·mk+j,p+q−k−j

mpq = 1
2P+qiq

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ck+j,p+q−k−j

(4.16)

CMs carry the same amount of information as GMs, but are more convenient to derive
an independent and complete set (also referred to as a basis) of rotational invariants up
to any order, as shown by Flusser [Flusser, 2000]. The key points of the approach are
recalled here. If the complex moments are expressed in polar coordinates (x = r cos θ,
y = r sin θ), (4.15) becomes:

cpq =
∫ ∞

0

∫ 2π

0
(r cos θ + ir sin θ)p(r cos θ − ir sin θ)qf(r, θ) r dr dθ

=
∫ ∞

0

∫ 2π

0
rp+q+1ei(p−q)θf(r, θ) dr dθ .

(4.17)

From (4.17) we can see that the complex conjugate of a CM satisfies c∗pq = cqp and that
a pure rotation of the image around the origin by an angle α changes CMs according to

c′pq = e−i(p−q)αcpq , (4.18)
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which shows that the magnitude of a CM is a rotation invariant. However CM magnitudes
do not generate a complete set. Instead, considering complex moments up to the order
r ≥ 2, we construct the following basis of rotation invariants [Flusser, 2000]

Br =
{

Φpq := cpq c
p−q
q0p0 | p ≥ q and p+ q ≤ r

}
, (4.19)

where p0 and q0 that can be arbitrary chosen such that p0 + q0 ≤ r, p0 − q0 = 1, q0 6= 0,
and cq0p0 6= 0. Rotation invariance follows from

c′pqc
′p−q
q0p0 = e−i(p−q)αcpq ·

(
cq0p0e−i(q0−p0)α

)p−q
= cpqc

p−q
q0p0 . (4.20)

The exponents p0, q0 are generally chosen as small as possible, e.g., p0 = 2 and q0 = 1,
because high order moments are more sensitive to noise [Teh and Chin, 1988]. Each
basis element Φpq such that p 6= q, except Φp0q0 , provides two real-valued invariants,
corresponding to the real and imaginary parts of Φpq. It can be proven that the real part
is a true invariant, while the imaginary part is a pseudo-invariant. Hu’s invariants can be
expressed from the elements of B3 (i.e., {Φ(1, 1), Φ(2, 1), Φ(2, 0), Φ(3, 0)}, with p0 = 2
and q0 = 1):

Hu1 = Φ(1, 1) = c11

Hu2 = |Φ(2, 0)|2
|Φ(2, 1)|2 = c20c02

Hu3 = |Φ(3, 0)|2
|Φ(2, 1)|3 = c30c03

Hu4 = Φ(2, 1) = c21c12

Hu5 = Re (Φ(3, 0)) = Re (c30c
3
12)

Hu6 = Re (Φ(2, 0)) = Re (c20c
2
12)

Hu7 = Im (Φ(3, 0)) = Im (c30c
3
12)

(4.21)

The equivalency can be demonstrated using Eq(4.16). From Eq.(4.21) it is possible to see
how Hu’s set is not independent, as it holds that Hu3 = (Hu2

5 +Hu2
7)/Hu3

4. Moreover it
is not possible to fully reconstruct the set of CMs basis B3 from Hu’s invariants, meaning
that the set is also incomplete. In particular, it is not possible to determine the sign
of Im (Φ(2, 0)) from Hu’s set, meaning that the set is missing a skew-invariant. Thus,
complex moment invariants up to the third order (six invariant) will surely provide better
recognition performance than the seven Hu’s invariants.
Note that if an object has an N-FRS, then all its complex moments with non-integer
(p − q)/N are equal to zero. In [Flusser and Suk, 2006] Flusser provide an extension of
(4.19):

BN =
{

ΦN(p, q) ≡ cpqc
k
q0p0|p ≥ q ∧ p+ q ≤ r ∧ k ≡ (p− q)/N is integer

}
(4.22)
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with p0 and q0 that can be arbitrary chosen such that p0 + q0 ≤ r, p0 − q0 = N and
cq0p0 6= 0.
For our pose estimation algorithm, CM invariants up to order 10 (i.e., Nf = 62) are com-
puted using the basis in Eq.(4.19) and stored in the database. The elements Φ00 = c00 and
Φ10 = c10c12 are not included in the set because c00 and c10 are already used to achieve
scaling and translation invariance. The list of the CMs basis up to the 10th order is shown
in Table 4.1.
Because high-order moments have much higher magnitude than low order moments, the
components of the feature vector must be normalized before applying the minimum Eu-
clidean distance criterion. This issue, which is already present with Hu’s invariants, has
been addressed in the literature using different approaches, e.g., using z-score normaliza-
tion [Dudani et al., 1977, Breuers, 1999] or variance balancing [Reeves et al., 1988, Khotan-
zad and Liou, 1996]. Here, we follow the approach suggested in [Mallick, 2018] of replacing
each feature F by Fn, with

Fn = sign(F ) · log(|F |) , (4.23)

which was found to provide the best recognition capabilities for CMs invariants.

Table 4.1: Complex Moments basis up to 10th order.

Φ11 = c11

Φ21 = c21c12

Φ20 = c20c
2
12

Φ30 = c30c
3
12

Φ40 = c40c
4
12

Φ31 = c31c
2
12

Φ22 = c22

Φ50 = c50c
5
12

Φ41 = c41c
3
12

Φ32 = c32c12

Φ60 = c60c
6
12

Φ51 = c51c
4
12

Φ33 = c33

Φ70 = c70c
7
12

Φ61 = c61c
5
12

Φ52 = c52c
3
12

Φ43 = c43c12

Φ80 = c80c
8
12

Φ71 = c71c
6
12

Φ62 = c62c
4
12

Φ53 = c53c
2
12

Φ90 = c90c
9
12

Φ81 = c81c
7
12

Φ72 = c72c
5
12

Φ63 = c63c
3
12

Φ44 = c44

Φ54 = c54c12

Φ10,0 = c10,0c
10
12

Φ91 = c91c
8
12

Φ82 = c82c
6
12

Φ73 = c73c
4
12

Φ64 = c64c
2
12

Φ55 = c55

4.4.2 Rotation invariants with Zernike moments

Zernike Moments are a family of orthogonal moments, i.e., the corresponding polynomial
basis satisfies ∫∫

Ω

ppq(x, y) · pjk(x, y) dxdy = 0 (4.24)
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for all q 6= j, p 6= k, where Ω is called the region of orthogonality and must contain the
support of the image f , which must therefore typically be rescaled. For ZMs, Ω is taken
to be the unit disk. Given an image expressed in polar coordinates, ZMs are defined by
[Flusser et al., 2009]

Anl = n+ 1
π

∫ 2π

0

∫ 1

0
V ∗nl(r, θ)f(r, θ) r drdθ (4.25)

where n is a nonnegative integer called the order, l ∈ {−n,−n + 2, . . . , n} is called the
repetition (note that the difference n − |l| is always even), and Vnl denotes the Zernike
polynomials

Vn,l(r, θ) = Rn,l(r)eilθ (4.26)

with radial part

Rn,l(r) =
(n−|l|)/2∑
s=0

(−1)s (n− s)!
s!((n+ |l|)/2− s)!((n− |l|)/2− s)!r

n−2s . (4.27)

The radial part can be also written as

Rn,l(r) =
n∑

k=|l|,|l|+2...
Bnlkr

k, with Bnlk = (−1)(n−k)/2((n+ k)/2)!
((n− k)/2)!((k + l)/2)!((k − l)/2)!

(4.28)
where the coefficients Bnlk allow writing the relation between ZMs and GMs:

Anl = n+ 1
π

n∑
k=|l|,|l|+2...

(k−|l|)/2∑
j=0

|l|∑
m=0

(
(k − |l|)/2

j

)(
|l|
m

)
wmBnlkmk−2j−m,2j+m, with w =

 −1 l > 0
1 l ≤ 0

(4.29)
The radial functions satisfy Rn,−l(r) = Rnl(r), so that An,−l = A∗nl and ZMs with repeti-
tion l = 0 are real valued moments.
Different methods have been proposed to normalize the image to the unit disk. In [Khotan-
zad and Hong, 1990], each shape is resized so that its zeroth order GM m00 is set to a
predetermined value, while in [Gand́ıa and Casas, 2003] a fixed-dimension bounding box
is used instead of the zeroth order moment. In this paper, we simply transform the co-
ordinates of the points belonging to the object’s silhouette to normalized central polar
coordinates, i.e., θ = atan ((x− xc)/(y − yc)) and r =

√
(x− xc)2 + (y − yc)2/rmax, with

rmax the maximum value among the radii of the considered silhouette. This approach,
also in [Khotanzad and Liou, 1996], ensures that all the points in the object’s silhouette
are used to compute the moments, and also provides translation invariance. Scaling in-
variance is obtained by dividing Anl by the zeroth order moment A00, as suggested by
[Flusser et al., 2009].
Teague [Teague, 1980] was the first to propose a set of rotation invariants based on ZMs,
up to the eighth order, but gave no general rule to derive invariants of higher order. As
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for CMs, some authors [Khotanzad and Liou, 1996, Khotanzad and Hong, 1990, Chang
and Ghosh, 2000] use only the magnitude |Anl|, but this provides an incomplete set of
invariants because the information carried by the pseudo-invariants is lost. Wallin [Wallin
and Kubler, 1995] noted that ZMs, which are complex valued moments, behave as CMs
under rotation, so that rotation invariance can be obtained by multiplying ZMs by an
appropriate phase-cancellation term, see (4.18) and the discussion below. As suggested
by [Flusser et al., 2009], this term has to be searched among the ZMs with repetition 1,
starting from A31. Similarly to CMs, these moments are equal to zero for objects having
a rotational symmetry. In this case, the normalization moment should be searched within
the ZMs having repetition 2. Given the normalizing moment Anrlr , the normalized ZM
Znl is

Znl = Anle−ilφ, with φ = 1
lr

atan
[

Im(Anrlr)
Re(Anrlr)

]
. (4.30)

Table 4.2: Zernike radial polynomial up to 10th order

R00 = 1
R11 = r

R20 = 2r2 − 1
R22 = r2

R31 = 3r3 − 2r
R33 = r3

R40 = 6r4 − 6r2 + 1
R42 = 4r4 − 3r2

R44 = r4

R51 = 10r5 − 12r3 + 3r
R53 = 5r5 − 4r3

R55 = r5

R60 = 20r6 − 30r4 + 12r2 − 1
R62 = 15r6 − 20r4 + 6r2

R64 = 6r6 − 5r4

R66 = r6

R71 = 35r7 − 60r5 + 30r3 − 4r
R73 = 21r7 − 30r5 + 10r3

R75 = 7r7 − 6r5

R77 = r7

R80 = 70r8 − 140r6 + 90r4 − 202 + 1
R82 = 56r8 − 105r6 + 60r4 − 10r2

R84 = 28r8 − 42r6 + 15r4

R86 = 8r8 − 7r6

R88 = r8

R91 = 126r9 − 280r7 + 210r5 − 60r3 + 5r
R93 = 84r9 − 169r7 + 105r5 − 20r3

R95 = 36r9 − 56r7 + 21r5

R97 = 9r9 − 8r7

R99 = r9

R10,0 = 252r10 − 630r8 + 560r6 − 210r4 + 30r2 − 1
R10,2 = 210r10 − 504r8 + 420r6 − 140r4 + 15r2

R10,4 = 120r10 − 252r8 + 168r6 − 35r4

R10,6 = 45r10 − 72r8 + 28r6

R10,8 = 10r10 − 9r8

R10,10 = r10;

Each Znl leads to two real-valued invariants, except for Znrlr and for the moments
with repetition l = 0. Z00 and Z10 are not included in the set. In fact, A00 is already used
to obtain scaling invariance, while A10 is always zero when central coordinates are used.
For the pose estimation algorithm, ZM invariants up to the 10th order (i.e., Nf = 62) are
computed and stored in the database. The radial polynomials used to compute ZMs are
reported in Table 4.2. Unlike GMs and CMs, ZMs values have a smaller dynamic range
[Flusser et al., 2009], which simplifies the process of feature matching in the database.
Some authors claim that the presence of factorial terms in the radial polynomials increases
the computation time needed to compute ZMs, especially for higher order moments, and
methods to speed up the computation of the moments are proposed in [Prata and Rusch,
1989, Hwang and Kim, 2006, Wee et al., 2004]. Prata method [Prata and Rusch, 1989]
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exploits the recurrence relation:

Rnl(r) = 2rn
n+ l

Rn−1,l−1(r)− n− l
n+ l

Rn−2,l(r) (4.31)

However, as discussed in Section 4.5, the optimal performance of the ZM-based pose
estimation algorithm is obtained with moments up to the seventh and ninth order. For
such relatively low orders, the radial polynomial coefficients can be stored and thus do
not need to be computed on-line.

4.4.3 Rotation invariants with Fourier descriptors

Fourier descriptors (FDs) provide a mean for representing the boundary of a two-dimensional
shape. Indeed, since a closed curve can be represented by a periodic function of a contin-
uous parameter, it admits a Fourier transform, whose coefficients can be used as global
descriptors both for shape recognition and shape retrieval [Arbter et al., 1990]. In the
first works discussing the use of FDs for pattern recognition, x and y coordinates were
considered separately and two Fourier transforms were computed. However Ref.[Zhang
et al., 2002] explains how Fourier descriptors must be derived from a shape signature,
which can be any 1-D function representing 2-D areas or boundaries. Different shape
signatures have been used in literature to derive FDs, but the most popular starts by
defining the complex central coordinate position sequence

z(n) = (x(n)− xc) + i(y(n)− yc), for n = 1, . . . , Np, (4.32)

with Np the number of points belonging to the contour and the coordinates of the con-
tour’s centroid given by xc = 1

Np

∑Np

n=1 x(n), yc = 1
Np

∑Np

n=1 y(n). The FDs are defined by
computing the discrete Fourier transform (DFT) of z using the fast Fourier transform
(FFT)

Z(ω) =
Np∑
n=1

z(n) exp
(
−i2π(n− 1)

Np
ω

)
, for ω = 0, . . . , Np − 1. (4.33)

Scaling invariance is obtained by dividing the DFT sequence by |Z(1)|. Translation
invariance is obtained by discarding the coefficient Z(0), which is indeed equal to 0 when
complex central coordinates are used to define the position sequence.

The behavior of FDs under rotation is similar to that of CMs and ZMs, see (4.18).
However, the Fourier transform depends also on the starting point used to describe the
contour. If this starting point is shifted by m positions, the resulting transform Z̃(ω) is

Z̃(ω) = Z(ω) exp
(

2πi
Np

ωm

)
. (4.34)

A solution is to use only the magnitude of the transform |Z(ω)| as descriptor, as in [Zahn
and Roskies, 1972, Chen et al., 2004, Conseil et al., 2007, Barczak et al., 2011], since
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it is invariant to rotation and independent of the choice of initial point. However the
resulting feature set will be incomplete, since every harmonic Z(ω) provides in fact two
invariants, i.e., its magnitude and phase or alternatively real and imaginary parts. As
with CMs and ZMs, the imaginary parts of FDs are pseudo-invariants [Zahn and Roskies,
1972]. In [Persoon and Fu, 1977], the rotation and starting point are determined by a
search for the best matching through all the possible shapes, but this procedure increases
the computational time of the nearest neighbor search. In this paper, we propose a
method to achieve simultaneously rotation invariance and independence with respect to
the choice of initial point. First, using the GMs of the contour, the in-plane rotation
angle ψ0 is computed as described in Section 4.3. By convention, the initial point of the
contour is taken to be the intersection of the contour with the half line originating from
the figure centroid and with direction ψ0. In the case of multiple intersections, we select
the farthest one from the centroid. The sequence X = [x1 + iy1, ..., xj + iyj, ..., xNp +
iyNp ]T is then rearranged starting from the selected initial point and following the contour
counterclockwise. Then, the coordinates of the points are rotated by an angle −ψ0, i.e.,
we let

Xr = X e−iψ0 . (4.35)

and compute the DFT of the sequence Xr. This procedure is similar to the approach used
in [Kuhl and Giardina, 1982] and [Chen and Ho, 1991], where the ellipse described by
the first harmonic phasor is used instead of the inertia ellipsoid. Note that none of these
methods can be applied when ellipse degenerates into a circle, i.e., when the object’s
silhouette has an N-FRS. Note that curves presenting a N-FRS have zero amplitude
harmonics for all indices that are not integral multiples of N [Zahn and Roskies, 1972].
For the pose estimation algorithm, FDs up to the 99th harmonic (i.e., Nf = 198) are
computed and stored in the database.

4.5 Application and performance analysis

In this section, the performance of the method presented in Sec.4.3 is characterized for
different invariants and conditions. We aim to provide guidelines for choosing the type
and number of descriptors (choice of order) among ZMs, CMs and FDs that provides the
best compromise between pose estimation accuracy and computation time. The sets of
invariant based on CMs, ZMs and FDs described in Sec.4.3 have never been character-
ized and compared on the same recognition problem, and in particular on the problem
of pose estimation of a 3-D object. Some works have provided comparison between two
different set of features, which, however, were often incomplete. Ref. [Reeves et al., 1988]
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compares the performance in aircraft recognition and pose estimation of the seven Hu’s
invariants (after variance balancing, cf. Sec.4.5.1) and Fourier descriptor, showing com-
parable recognition properties. More comparisons have been carried out in the scope of
image classification. Hu’s invariants and FDs have been compared in Ref.[Chen et al.,
2004] for the problem of letter recognition, with FDs demonstrating better performance
for low resolution images. Also in Ref.[Conseil et al., 2007] FD magnitudes up to the 64
harmonics outperformed Hu’s invariants in the context of hand posture recognition. How-
ever, Hu’s set is made of only seven invariants which are known to form an incomplete
set (cf. Sec.4.4.1). The invariance with respect to scaling and rotation of CM invari-
ants up to the 4th order and FD magnitudes up to the 9th harmonic was analyzed in
Ref.[Barczak et al., 2011] using images of the American Sign Language (ASL): CMs in-
variants computed on silhouettes and FDs resulted having almost the same performance,
while boundary CMs invariants resulted to be worst. Images of the ASL have been used
also in Ref.[Otiniano-Rodrıguez et al., 2012] to compare the recognition performance of
ZMs invariants and Hu’s invariants. ZMs invariants up to the 9th order resulted having the
best accuracy; however, Hu’s invariants were computed on boundary images, which are
known to provide a lower recognition power with respect to silhouette images. In Ref.[Teh
and Chin, 1988] various moments, including CMs, GMs and some orthogonal moments
among which ZMs, are examined and compared with respect to sensitivity to image noise,
information redundancy, and capability for image representation. The study showed that
higher order moments are more vulnerable to noise, and that the orthogonal moments
are better than the other types of moments in terms of information redundancy, as was
also demonstrated in [Abu-Mostafa and Psaltis, 1984]. In terms of overall performance,
Zernike and pseudo-Zernike moments (which are derived from the ZMs by releasing from
the condition imposing n− |l| to be even) outperformed the others.
However, even if more than one source states that ZMs based invariants globally per-
forms better than other sets, no works have directly compared the three set introduced
in Sec.4.3. This section proposes a deep analysis of the performance of the three de-
scribed sets in order to characterize their behavior under different conditions that can be
encountered in an operational scenario.

4.5.1 Simulation setup

The geometry of the target S/C used in the simulations is inspired from the structure of the
Iridium-NEXT satellites and shown in Fig. 4.3. The synthetic views are generated with
Thales Alenia Space rendering engine SpiCam. The target has a size of 4× 3× 1 meters
and the views are generated for a camera with a FOV of 30◦ and image size of 1024×1024
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Figure 4.3: Geometry and body reference frame of the target spacecraft

pixels, i.e., on Fig. 4.1 we have cx = cy = 512 and f = cx/ tan(FOV/2) = 1911. The
target dimensions, translated in pixel, correspond to a projected size of 191 × 143 × 48
pixels at 40 m, 255 × 191 × 64 pixels at 30 m, 382 × 287 × 96 pixels at 20 m, and
764 × 573 × 191 pixels at 10 m (see Fig.4.4). The main structure of the S/C, composed
of the central body and the lateral solar arrays, has two symmetry planes, (Otg, xtg, ztg)
and (Otg, ytg, ztg), see Fig. 4.1. Some elements on the central body such as antennas
and a docking fixture break the symmetry but are relatively small and visible only for
a restricted range of attitudes. The ambiguity of determining the pose of a symmetric
body was already noted in previous work on aircraft pose estimation and classification
[Dudani et al., 1977, Chen and Ho, 1991, Breuers, 1999]. With the method of [Breuers,
1999], for any triplet of Euler angles [ϕ, ϑ, ψ], 8 solutions are possible. Two solutions
are due purely to the presence of a symmetry plane, i.e., [ϕ, ϑ, ψ] and [−ϕ, −ϑ, ψ − π].
Then, two more solutions, i.e., [π − ϕ, −ϑ, ψ] and [π + ϕ, ϑ, ψ − π], are due to the
impossibility of distinguishing between mirror images using Hu’s invariants. Moreover,
for all of the 4 solutions described, the method in [Breuers, 1999] cannot disambiguate the
in-plane rotation between [ϕ, ϑ, ψ] and [ϕ, ϑ, ψ − π]. In contrast, by using a complete
set of invariants containing also pseudo-invariants, as discussed in Section 4.4, and by
estimating the in-plane rotation as proposed in Section 4.3, we need only to consider
the two potential solutions [ϕ, ϑ, ψ] and [−ϕ, −ϑ, ψ − π] for every output of the pose
estimation algorithm.
In order to characterize the intrinsic performance of the descriptor without including
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(a) (b)

(c) (d)

Figure 4.4: 4.4(a) Silhouette of the satellite at 40 m, 4.4(b) Silhouette of the satellite at
30 m, 4.4(c) Silhouette of the satellite at 20 m, 4.4(d) Silhouette of the satellite at 10 m.

the problem of distinguish between two symmetric attitudes, the tests described in this
Section are done using training images and test images corresponding to attitudes in
the semi-sphere where ϕ ≥ 0. The training database has a size of Nw = 5000 and the
methods are tested on 2000 images. Both the training and the test attitudes are generated
by modifying the sampling scheme (4.1) to consider only nonnegative values of ϕ, i.e.,
with ϕ = π randϕ. Only for the test attitudes, also ψ is randomly generated such that
ψ = 2π randψ−π, where randψ is a random variable uniformly distributed in the interval
]0, 1]:  ϕ = π randϕ

ϑ = asin(1− 2randϑ)
(4.36)
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Test images are generated with perfect camera pointing (i.e., trcamcam−tg = [0, 0, d]), except
for the images used in Sec.4.5.2.5, where the algorithm is tested in the presence of camera
pointing errors. Even if the object is symmetric, the number of rotation symmetries of the
projected silhouette is always smaller or equal to 1. It is equal to 1 if the projected shape
has one axis of reflection [Shen et al., 2000]. This implies that the invariants proposed
in Section 4.4.1 and Section 4.4.2 can be used, except for attitudes corresponding to a
camera position close to the sphere poles, i.e., ϑ ∼ 0 and ϕ ∼ 0 or ϕ ∼ π. For these
attitudes, the projected S/C shape has a 2-FRS and a different set of invariants should
be computed to enable recognition. Nevertheless, according to [Flusser et al., 2009], the
order of the normalizing moment used to obtain rotation invariance should be kept as
low as possible to improve the performance of the recognition, as higher order moments
are more sensitive to noise. In order to avoid degrading the global performance of the
algorithm for the sake of improving the recognition of just two isolated orientations, the
rotation-normalizing moments are kept equal to c12 for CMs and A31 for ZMs. Moreover,
in correspondence of the polar attitudes, the rule for the determination of the in-plane
angle of rotation ψ0 described in Section 4.3 will provide two solutions. However, this
ambiguity can be resolved by imposing a continuity constraint between two consecutive
pose estimates, as will be developed in Chapter 5.

4.5.2 Simulation results

We describe in this section the results of four different simulation experiments. In Para-
graph 4.5.2.1, our aim is to characterize the degradation of the pose estimation perfor-
mance when the S/C in the test images is at a distance dtest different from the distance
dtrain used to build the database. Pararagraph 4.5.2.2 compares the performance of the
different global descriptors when the resolution of both test and training images changes.
In Paragraph 4.5.2.3, the robustness against the resizing of the test images is investigated,
while Paragraph 4.5.2.4 studies the influence of the database size Nw on the estimation
error. Finally, in Paragraph 4.5.2.5, the robustness to camera pointing errors is analyzed.
For any test image, we compute the estimation error in the axis-angle representation us-
ing unit quaternions. If qcam−tgtrue

is the true relative attitude quaternion associated with
the camera-target pose in a test image, and qcam−tgmeas

the relative attitude quaternion
estimated by the algorithm, the error δϕϑψ is computed as:

δq = q∗cam−tgtrue
⊗ qcam−tgmeas

δϕϑψ = 2 atan
(∣∣∣∣√δq2

1 + δq2
2 + δq2

3/δq0

∣∣∣∣) (4.37)
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where quaternions are written q = q0 + q1i + q2j + q3k, with q0 denoting the scalar part,
and q∗ denotes the quaternion conjugate q∗ = q0 − (q1i + q2j + q3k). The quantity δϕϑψ

represents the smallest rotation that aligns the measured quaternion with the true one,
and its value is always in the interval [0, 180◦]. We assume that a test image has found an
acceptable match if δϕϑψ < 20◦. Indeed, when using a frame-to-frame tracking algorithm,
a pose estimation error in this range can typically be corrected, while outside of this
range the matching result can be rejected as outlier, as done in Chap.5. Finally, we
record as performance indices: i) the accuracy (also denoted % < 20◦), defined here as
the percentage of detections with an estimation error lower than 20◦; ii) the mean of the
error δϕϑψ over all the test samples such that δϕϑψ < 20◦; and iii the mean of the measured
distance dmeas computed using all the test samples.

A baseline test is performed using a database built with dtrain = 20 m and test images
taken at the same distance. Table 4.3 shows the performance of the CM, ZM, and FD
invariants as a function of the moment or harmonic order. The best accuracy for CMs
is 90.45%, obtained with invariants of the 5th order, with a mean angular error of 2.67◦.
The best accuracy of ZM-based invariants is 96.95%, obtained with moments up to the
9th order, with a mean angular error of 1.74◦. However, little performance improvement
is observed beyond the 7th order. The optimal performance of FDs is obtained using
coefficients up to the 10th harmonic, with an accuracy of 85.05% and a mean angular
error of 3.03◦, and no improvements is observed for higher order harmonics. In general,
even when the accuracy of CM, ZM, and FD invariants is comparable (e.g., 4th order
CMs, 3rd order ZMs and 10th harmonic FDs), the mean angular error using ZMs is lower.
The descriptors show a comparable performance in the estimation of the distance dmeas.

4.5.2.1 Effect of a variation of the test distance with a constant training
distance

The descriptors based on ZMs, CMs, and FDs are theoretically invariant on a continuous
image, but this invariance degrades for a digital image due to pixel discretization [Huang
and Leng, 2010, Barczak et al., 2011]. Thus, if the descriptors for a test image with
the target at distance dtest are compared to a database of descriptors computed with
the target at a different distance dtrain, the quality of the matching may be reduced in
practice. Moreover, below a certain value of d, it is no more possible to assume that the
distance affects only the scale: its contribution to the shape of the projected silhouette
may entail an additional degradation of the performance.

To investigate this issue and understand if one can use a database with a single distance
to estimate the S/C pose at different distances or if it is necessary to store views covering
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Table 4.3: Performance for dtrain = 20 m, dtest = 20 m.
Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

% < 20 deg 84.15 86.65 90.45 89.55 88.40 88.20 86.95 88.50
δϕϑψ mean [deg] 2.95 2.99 2.67 2.75 2.83 2.92 2.92 3.15
dmeas mean [m] 20.14 20.13 20.15 20.13 20.09 20.08 20.05 20.02

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

% < 20 deg 85.35 91.85 95.25 95.45 96.40 96.25 96.95 96.80
δϕϑψ mean [deg] 2.12 1.86 1.80 1.74 1.75 1.73 1.74 1.76
dmeas mean [m] 20.07 20.01 20.01 20.01 20.02 20.01 20.01 20.01

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

% < 20 deg 53.65 74.65 81.50 84.30 84.95 85.05 85.05 85.00
δϕϑψ mean [deg] 4.65 3.34 3.23 3.01 3.01 3.03 3.05 3.05
dmeas mean [m] 20.13 20.21 20.12 20.04 20.03 20.01 19.98 19.98

a wide range of relative distances, we use the same training database built with dtrain = 20
m and the same test attitudes, but perform tests with different values of dtest. Results
are shown in Table 4.4 for dtest = 30 m, dtest = 40 m and dtest = 10 m. At 30 m, the
maximal accuracy is obtained for CMs up to the 6th order (85.80%), for ZMs up to the
9th order (94.85%), and for FDs up to the 20th harmonic (i.e., 72.85%). Zernike invariants
are the most stable, with an accuracy loss of only 2.1% compared to the baseline test.
The mean angular error is increased for all the methods. Trends are confirmed when
the test distance increases. At 40 m, FDs are the most affected (best accuracy equal to
61.25% for the 10th harmonic), followed by CMs (best accuracy equal to 78.40% with
moments up to the 6th order). Zernike invariants confirm their higher stability, with the
best performance obtained for the 9th order. The accuracy of 91.35% for ZMs is still
higher than the best performance of CM and FD in the baseline test, and the mean
angular error of 3.02◦ is comparable. On the other hand, if the test distance is decreased
with respect to the training distance, as illustrated in Table 4.4 for dtest = 10 m, the
moment-based descriptors (CMs and ZMs) show a substantial performance degradation.
The best accuracy for CM invariants (67.45%) is obtained with moments up to the 6th
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Table 4.4: Effect of a variation of the test distance with a constant training distance
(dtrain = 20 m)

Complex moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 30 m
% < 20 deg 73.95 77.55 83.95 85.80 83.00 83.15 81.40 82.45
δϕϑψ mean [deg] 5.19 4.94 5.03 4.90 5.26 5.21 5.88 5.64
dmeas mean [m] 30.45 30.39 30.53 30.36 30.21 30.25 30.01 30.02

dtest = 40 m
% < 20 deg 66.55 71.35 75.65 78.40 71.40 73.65 71.00 74.05
δϕϑψ mean [deg] 6.29 6.25 6.46 6.23 6.80 6.72 7.35 7.19
dmeas mean [m] 40.56 40.59 40.71 40.67 40.15 40.24 39.52 39.78

dtest = 10 m
% < 20 deg 57.20 60.65 64.85 67.45 63.30 64.65 64.60 64.60
δϕϑψ mean [deg] 7.93 7.84 8.69 8.40 8.92 8.72 8.86 8.82
dmeas mean [m] 9.79 9.70 9.75 9.79 9.71 9.70 9.72 9.71

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 30 m
% < 20 deg 78.85 86.90 93.00 92.50 93.95 93.20 94.85 94.40
δϕϑψ mean [deg] 3.06 2.57 2.55 2.42 2.42 2.37 2.41 2.45
dmeas mean [m] 30.19 30.11 30.11 30.11 30.12 30.12 30.12 30.12

dtest = 40 m
% < 20 deg 71.40 80.20 89.35 89.65 90.95 89.40 91.35 91.25
δϕϑψ mean [deg] 3.90 3.19 3.29 3.02 3.03 2.96 3.02 3.11
dmeas mean [m] 40.28 40.22 40.21 40.22 40.22 40.22 40.23 40.22

dtest = 10 m
% < 20 deg 62.20 72.90 80.80 84.80 87.00 86.65 87.70 87.35
δϕϑψ mean [deg] 5.04 4.64 4.62 4.11 4.12 4.15 4.20 4.28
dmeas mean [m] 9.87 9.89 9.89 9.88 9.87 9.88 9.87 9.87

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

dtest = 30 m
% < 20 deg 43.80 61.80 69.50 72.10 72.7 72.65 72.85 72.75
δϕϑψ mean [deg] 5.69 4.29 4.2 3.70 3.76 3.75 3.82 3.82
dmeas mean [m] 30.53 30.48 30.32 30.10 30.05 29.99 29.92 29.90

dtest = 40 m
% < 20 deg 34.45 48.80 57.80 60.40 61.10 61.25 61.00 60.95
δϕϑψ mean [deg] 6.58 5.10 5.00 4.42 4.48 4.50 4.58 4.63
dmeas mean [m] 41.08 40.76 40.53 40.16 40.07 40.01 39.91 39.90

dtest = 10 m
% < 20 deg 45.65 80.80 84.60 90.70 92.25 91.25 90.25 90.00
δϕϑψ mean [deg] 6.95 5.31 5.14 4.13 4.15 4.14 4.22 4.23
dmeas mean [m] 9.75 9.77 9.66 9.85 9.86 9.84 9.83 9.83
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order, with a mean angular error of 8.40◦. The degradation of ZM invariant is smaller
(accuracy = 87.70%, mean angular error = 4.20◦ for the 9th order), but higher than the
degradation incurred at 40 m. This relatively large performance loss can be attributed
to the fact that at 10 m the distance starts having a non-negligible contribution to the
shape of the projected silhouette. On the other hand, FD shows an opposite trend, with
a accuracy of 92.25% for the 9th harmonic, a value which is even higher than the one
obtained in the baseline test. The trends are summarized in Fig. 4.5, which shows as
a function of dtest the evolution of best performance obtained for each set of descriptors
(attained for 6th order CMs, 9th order ZMs, and 10th harmonic for FDs). The measured
distance dmeas tends to be underestimated when dtest < dtrain, and overestimated when
dtrain < dtest, as a consequence of the effect of d on the shape of the projected silhouette.
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Figure 4.5: Effect of a variation of the test distance with a constant training distance
dtrain = 20 m.

4.5.2.2 Effect of a variation in the resolution of both the test and the training
images

In order to better isolate in the previous tests the true effect of a mismatch between dtest
and dtrain from a potential degradation in performance simply due to a lower silhouette
resolution as the distance increases, we performed additional simulation experiments as-
suming dtest = dtrain, with this distance equal to 10 m and 40 m, complementing the
baseline test at 20 m. The numerical results are shown in Table 4.5 and Fig. 4.6 displays
the performance indices of the 6th order CMs, the 9th order ZMs, and the 10th harmonic
FDs as a function of the test distance. The accuracy of CMs and ZMs is only slightly
affected by the distance. For ZM invariants up to the 9th order, the accuracy and mean
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angular error are only slightly affected by the distance, going from 97.15% and 1.75◦ at
10 m to 95.25% and 1.98◦ at 40 m respectively. On the other hand, the mean angular
error of both CMs and FDs degrades more clearly for a lower image resolution. The mean
angular error of CM invariants up to the 6th order is equal to 2.57◦ at 10 m and 3.41◦

at 40 m, and the mean angular error of FD invariant up to the 10th harmonic is equal
to 2.86◦ at 10 m and 3.87◦ at 40 m. An interesting result is the trend in the accuracy of
FDs, which monotonically increases as the image resolution increases, with a maximum
of 96.65% (10th harmonic) at a distance of 10 m. This performance is comparable to
the accuracy of ZM invariants, even though the error obtained with ZMs remains always
lower.
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Figure 4.6: Effect of a variation in the resolution of both the test and the training images
(dtest = dtrain).

4.5.2.3 Effect of a resizing of the test images

The largest contributor to the algorithm latency is the time needed to compute moment
invariants (see Sec.4.5.4). The execution time increases linearly with the number of pixels
to be processed, and this may suggest to resize the acquired image before computing the
descriptors. In this paragraph we test the performance of the invariants at dtrain = dtest =
20 m, where the test images have been resized from 1024× 1024 pixels to 256× 256 and
512 × 512 pixels using OpenCV resize() function [OpenCV development team, 2019a].
When computing descriptors from the resized images, (4.12) needs to be corrected to
allow computing the correct value of dmeas:

dmeas =
√
m00train

/m00test · dtrain ·
√
npixelR/npixel0 , (4.38)
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Table 4.5: Effect of a variation of the resolution of both the test and the training images
(dtrain = dtest)

Complex moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 40 m
% < 20 deg 82.00 84.65 90.75 90.40 89.30 89.45 88.15 89.15
δϕϑψ mean [deg] 4.07 3.77 3.54 3.41 3.54 3.72 3.83 3.92
dmeas mean [m] 40.29 40.19 40.19 40.20 40.09 39.99 40.02 40.10

dtest = 10 m
% < 20 deg 82.90 85.05 89.45 88.55 87.55 86.60 85.65 85.70
δϕϑψ mean [deg] 2.7 2.69 2.56 2.57 2.78 2.91 3.01 3.17
dmeas mean [m] 10.08 10.04 10.03 10.04 10.02 10.01 9.99 10.00

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 40 m
% < 20 deg 84.35 86.70 93.40 92.95 94.90 94.50 95.25 94.75
δϕϑψ mean [deg] 2.41 2.03 2.04 1.97 1.98 1.98 1.98 1.96
dmeas mean [m] 40.07 40.03 40.04 40.02 40.03 40.02 40.03 40.02

dtest = 10 m
% < 20 deg 85.50 93.05 95.90 96.20 96.80 97.05 97.15 97.20
δϕϑψ mean [deg] 1.96 1.87 1.80 1.76 1.73 1.74 1.75 1.77
dmeas mean [m] 10.03 10.01 10.01 10.00 10.00 10.01 10.00 10.01

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

dtest = 40 m
% < 20 deg 38.45 51.35 59.25 61.85 62.90 62.15 62.35 62.25
δϕϑψ mean [deg] 5.65 4.35 4.07 3.80 3.93 3.87 3.90 3.88
dmeas mean [m] 41.01 40.61 40.29 39.69 39.69 39.64 39.60 39.59

dtest = 10 m
% < 20 deg 62.55 89.20 92.10 96.30 96.50 96.65 96.05 95.85
δϕϑψ mean [deg] 4.53 3.30 3.14 2.79 2.85 2.86 2.85 2.85
dmeas mean [m] 10.05 9.93 9.93 10.00 10.00 10.00 10.00 10.00

where npixelR is the total number of pixel in the resized image and npixel0 is the total
number of pixel in the original image. The results are displayed in Table 4.6.

Moment invariants show an accuracy comparable to the baseline test, and a slightly
increased angular error. ZM invariants show a higher degradation in the estimation of
the distance with respect to CMs. However, this issue can be overcome using the original
image to compute m00, and the resized image to compute rotation invariants. The per-
formance of the FD is very poor. However, as discussed in Sec.4.5.4, the very low time
needed to compute FDs suggests that image resizing is unnecessary when working with
Fourier invariants.
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Table 4.6: Effect of a resizing of the test image. (dtrain = dtest = 20 m)
Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

256× 256
% < 20 deg 78.30 82.75 87.40 87.55 86.25 86.25 85.40 86
δϕϑψ mean [deg] 3.85 3.69 3.49 3.52 3.58 3.63 3.74 3.9
dmeas mean [m] 20.02 19.99 19.99 19.98 19.96 19.92 19.91 19.86

512× 512
% < 20 deg 81.9 84.70 89.90 88.90 87.00 87.10 86.30 87.30
δϕϑψ mean [deg] 3.53 3.43 3.16 3.15 3.30 3.41 3.52 3.64
dmeas mean [m] 19.98 19.97 19.99 20.00 19.96 19.93 19.84 19.86

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

256× 256
% < 20 deg 78.55 89.65 94.20 94.30 95.25 95.55 95.95 95.90
δϕϑψ mean [deg] 3.52 2.84 2.70 2.49 2.46 2.42 2.38 2.41
dmeas mean [m] 20.02 19.92 19.91 19.91 19.90 19.90 19.90 19.89

512× 512
% < 20 deg 83.05 91.40 94.55 94.60 95.60 95.55 96.55 96.35
δϕϑψ mean [deg] 2.66 2.20 2.11 1.98 1.95 1.95 1.96 1.98
dmeas mean [m] 19.94 19.89 19.88 19.87 19.87 19.87 19.87 19.87

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

256× 256
% < 20 deg 25.50 40.35 45.45 48.40 48.75 48.65 48.75 48.80
δϕϑψ mean [deg] 7.44 5.98 5.74 5.30 5.39 5.35 5.37 5.40
dmeas mean [m] 20.39 20.12 20.10 19.55 19.52 19.47 19.40 19.41

512× 512
% < 20 deg 37.4 55.15 60.70 63.35 63.80 63.65 63.60 63.70
δϕϑψ mean [deg] 5.88 4.46 4.26 4.01 4.03 4.05 4.15 4.16
dmeas mean [m] 20.24 20.12 20.04 19.71 19.68 19.64 19.61 19.60

4.5.2.4 Effect of the database size Nw

Increasing Nw typically leads to a smaller distance between a given target orientation and
its nearest neighbor in the database, and hence to a smaller estimation error on average.
However, a larger database requires more memory as well as more computation time for
matching, although as we discuss below the latter is typically much smaller than the time
needed to compute the invariants. The effect of reducing the database size Nw is evaluated
for dtrain = dtest = 20 m. Table 4.7 shows the results for Nw = 1000 and Nw = 3000, in
addition to the baseline scenario with Nw = 5000.

The estimated average distance is not displayed in the table as no appreciable differ-
ences with respect to the baseline test were found. Fig. 4.7 compares the performance
indices as a function of the ZM-based invariants’ order for the different values of Nw.
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Table 4.7: Effect of database size Nw. with dtrain = dtest = 20 m.
Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

Nw = 1000 m
% < 20 deg 71.80 74.10 77.95 77.30 76.70 75.10 74.70 75.95
mean [deg] 4.82 4.94 4.92 5.05 5.27 5.26 5.17 5.22

Nw = 3000 m
% < 20 deg 80.30 82.95 86.85 86.80 85.65 85.75 84.10 84.75
mean [deg] 3.35 3.44 3.23 3.36 3.51 3.54 3.50 3.68

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

Nw = 1000 m
% < 20 deg 75.35 79.95 86.15 87.55 89.60 89.50 90.85 90.25
mean [deg] 3.70 3.49 3.53 3.40 3.42 3.34 3.35 3.35

Nw = 3000 m
% < 20 deg 82.65 89.25 93.75 94.40 95.25 95.15 95.85 95.45
mean [deg] 2.44 2.23 2.21 2.15 2.13 2.14 2.13 2.14

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

Nw = 1000 m
% < 20 deg 49.50 68.70 75.30 77.90 79.20 78.95 79.10 79.05
mean [deg] 5.36 4.56 4.46 4.29 4.37 4.41 4.48 4.49

Nw = 3000 m
% < 20 deg 53.15 73.20 80.55 82.75 83.15 83.35 83.40 83.20
mean [deg] 4.86 3.68 3.56 3.33 3.34 3.38 3.42 3.42
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As expected, both the accuracy and mean angular error improve with larger values of
Nw. However, the marginal improvement also decreases as Nw becomes large, so that
above a certain threshold, the performance gains may not be worth the higher storage
and computational costs.
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Figure 4.7: Performance of the ZM invariants for different database sizes Nw.

4.5.2.5 Effect of a pointing error

(a) (b)

Figure 4.8: Silhouette of the target satellite at 20 m, at a relative attitude of ϑ = −35.02◦,
ψ = 87.99◦. In Fig.4.8(a) the pointing error is ∆γ = 1.43◦, in Fig.4.8(b) it is ∆γ = 5.85◦.
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Table 4.8: Effect of a pointing error. dtrain = dtest = 20 m
Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 83.00 86.35 90.40 89.80 88.85 88.50 87.65 88.50
δϕϑψ mean [deg] 3.57 3.55 3.36 3.43 3.53 3.62 3.65 3.80
∆trx mean [cm] 4.75 4.67 4.63 4.65 4.71 4.65 4.74 4.74
∆try mean [cm] 4.89 4.83 4.80 4.78 4.69 4.75 4.88 4.81
∆trz mean [m] 0.605 0.537 0.499 0.521 0.539 0.563 0.638 0.624

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 80.30 84.70 88.05 87.65 85.80 85.95 85.70 86.25
δϕϑψ mean [deg] 6.08 6.01 5.84 5.83 5.89 5.93 6.17 6.26
∆trx mean [cm] 6.70 6.20 6.32 6.05 6.36 6.20 6.64 6.62
∆try mean [cm] 6.82 6.18 6.11 5.96 6.42 6.54 6.59 6.53
∆trz mean [m] 0.701 0.577 0.587 0.553 0.654 0.641 0.691 0.690

Zernike moment invariants
order: 3rd 4th 5th 6th 7th 8th 9th 10th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 85.40 91.85 95.70 95.70 96.65 96.85 97.35 97.15
δϕϑψ mean [deg] 2.77 2.57 2.54 2.47 2.45 2.47 2.47 2.47
∆trx mean [cm] 4.49 4.39 4.39 4.38 4.37 4.37 4.38 4.37
∆try mean [cm] 4.53 4.46 4.46 4.46 4.45 4.46 4.46 4.45
∆trz mean [m] 0.292 0.162 0.156 0.156 0.156 0.157 0.157 0.157

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 84.25 90.70 94.90 94.60 95.90 96.05 97.10 96.65
δϕϑψ mean [deg] 5.47 5.29 5.27 5.24 5.20 5.21 5.21 5.22
∆trx mean [cm] 5.07 4.54 4.56 4.53 4.52 4.50 4.50 4.50
∆try mean [cm] 5.16 4.71 4.68 4.66 4.65 4.63 4.63 4.63
∆trz mean [m] 0.318 0.176 0.176 0.169 0.168 0.166 0.167 0.168

Fourier descriptors
harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 53.45 74.15 80.65 84.15 84.80 84.60 84.55 84.50
δϕϑψ mean [deg] 4.99 3.88 3.62 3.48 3.48 3.49 3.51 3.51
∆trx mean [cm] 6.84 5.67 5.53 4.72 4.70 4.71 4.72 4.72
∆try mean [cm] 6.56 5.63 5.45 4.86 4.88 4.89 4.89 4.89
∆trz mean [m] 2.211 1.235 1.088 0.586 0.593 0.599 0.610 0.613

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 53.05 75.00 81.00 84.10 84.45 84.60 84.45 84.45
δϕϑψ mean [deg] 6.81 6.05 5.78 5.74 5.75 5.77 5.79 5.77
∆trx mean [cm] 13.26 8.66 8.04 5.82 5.81 5.84 5.93 5.91
∆try mean [cm] 14.08 9.10 8.69 6.27 6.28 6.31 6.29 6.28
∆trz mean [m] 2.189 1.166 1.038 0.562 0.566 0.571 0.584 0.585
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While the database is constructed by centering the image at the target’s COM, during
the pose acquisition phase in a real RDV the camera will likely point at the silhouette’s
centroid, causing a small pointing error. In some scenario, it may be even impossible to
keep the target in the center of the FOV, causing a larger pointing error. The presence of
this error affects not only the position of the image’s centroid (which does not influence the
invariants), but also the projected shape of the S/C, because of the camera’s perspective
projection. It is therefore important to understand whether the presence of such pointing
errors affects the algorithm. To do this, we added angular offsets to the camera RF around
the xc and yc axis and tested the algorithm at a distance of 20 m, using the database built
with dtrain = 20 m. Two sets of 2000 images were generated. In the first one, each image
is generated adding a total pointing error ∆γ such that ∆γ ∈ [1.42◦, 2◦] (see Fig.4.8(a)).
In the second set, the error is ∆γ ∈ [4.25◦, 6◦] (see Fig.4.8(b)). For these tests we collect
also the performance on the estimation of the relative position vector trcamcam−tgmeas

. In
particular, the mean of the absolute errors ∆trx,y,z = |trcamcam−tgmeasx,y,z

− trcamcam−tgtruex,y,z
|, is

shown. The results are displayed in Table 4.8 and show that all the methods are relatively
robust to pointing errors. The accuracy of the invariants remains almost the same as for
the baseline test, while the mean angular errors increase slightly. It is interesting to
see how the attitude error grows almost linearly with the pointing error ∆γ. ZM based
invariants show lower angular errors and position errors than the other sets of invariants.

4.5.3 Discussion of the results

From the tests described in this section, the following important conclusions can be drawn.

• If the target is close, the shape of its projected silhouette can change significantly
with the distance, resulting in a significant decrease in performance for moment-
based invariants. This phenomenon depends on the camera sensor properties and
on the target geometry. In our experiments, it starts occurring for a distance of
about 10 m, i.e., about two-and-a-half times the maximum dimension of the target.
FDs, on the other hand, suffer less from this issue.

• The accuracy of moment-based invariants is only mildly affected by the image reso-
lution, see Fig. 4.6, and by the image resizing, see Par. 4.5.2.3. Thus, images could
be sub-sampled before computing moments in order to decrease the computation
time of the algorithm. This results in a small performance loss, which might be ac-
ceptable if the algorithm is only used to detect the divergence of a classical iterative
tracking algorithm.

• ZM invariants up to the 4th order (i.e., 13 features) always perform better than CM
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and FD invariants of any order or harmonic. The accuracy for FDs is comparable
to that of ZMs only for high resolution images.

• The accuracy of FDs is highly affected by the test distance, and the accuracy al-
ways increases as the test distance decreases, regardless of the training distance.
This can be explained as follows. The majority of the spectral content of the pro-
jected S/C silhouette, which is a relatively simple shape, is contained in the first 10
harmonics. For a low resolution image, the rasterization effect shifts some of the
spectral content of the S/C shape to be to higher frequencies, resulting in loss of
information. On the other hand, for high resolution images, the spectral content is
correctly distributed in the first harmonics and the matching accuracy is enhanced.
This feature is also very interesting because for short distances the computation
time for the silhouette’s moments increases due to the large number of pixels to
be processed. The computation of FDs on the other hand needs less time, since
only contour points have to be processed. Thus, it could be useful to switch from
moment-based descriptors to FDs as the test distance becomes sufficiently small.

• The distance is always correctly recovered using (4.12), even when δϕϑψ is higher
than 20◦. Hence, even in the case of an incorrect matching, the best match is an
image having a “mass” distribution similar to the one of the S/C silhouette. This
provides a method to estimate the camera-target distance d using monocular vision,
even when it is not possible to estimate the attitude correctly.

It should be noted that all the tests have been carried out using perfect binary images, and
that a degradation should be expected when using real images of the target spacecraft.
When using real images, the extracted binary silhouettes are very likely to be affected by
segmentation errors. However, the design or choice of robust background subtraction and
segmentation algorithms are out of the scope of this study.

4.5.4 Computation time and Memory requirements

Fig.4.9 shows the evolution of the computation time needed to compute the descriptors,
as a function of the invariants’ order, averaged over the images of the test set at 20 m.
The times are normalized with respect to the time needed to compute ZM invariants up to
the 10th order. Using MATLAB on a 2.70 GHz Intel Core i7 processor, this time is equal
to 649.95 milliseconds. The absolute times are displayed in Table 4.9. Note however that
these absolute computation times are mostly indicative, since the implementation could be
optimized and would be done in a statically compiled programming language or directly in
hardware on a real system, which can lead to significant improvements. For ZMs and CMs,
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Figure 4.9: Computation time normalized with respect to the 10th order ZM invariant
computation time

Table 4.9: Absolute computation time of invariants averaged on 2000 images at d = 20
m

3rd order 4th order 5th order 6th order 7th order 8th order 9th order 10th order
ZMs [ms] 61.5 95.52 146.32 211.26 296.5 400.51 509.16 649.95
CMs [ms] 70.67 120.64 173.39 242.18 316.93 411.29 492.03 599.92

FDs [ms] 5.80 ψ0 [ms] 21.71

the total computation time of the algorithm is the sum of the time needed to compute
the nth order invariants and the time needed to compute the in-plane rotation angle ψ0.
For FDs, the computation time includes the time needed to extract the edges from the
silhouette’s image (using the OpenCV function findContours() [OpenCV development
team, 2019b]), as well as the time to compute the in-plane rotation. In fact, for FDs, ψ0

must be calculated before computing the Fourier transform. The FFT computes all the
harmonics up to the size of the input sequence simultaneously, hence the computation time
does not depend on the invariants’ order. We see that the computation time for CMs and
ZMs is comparable, while FDs are much faster to compute than moment-based descriptors.
Note that the computation of the 7th order ZM invariants requires only half of the time
needed to compute the 10th order ones, and that in every test, these invariants have shown
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an accuracy very close to the optimal one (which was always obtained for the 9th or 10th

order) as well as similar mean angular errors. Hence, 7th order ZM invariant offer a good
compromise between computational cost and estimation performance. CM invariants
offer no particular advantage, as they are always outperformed by ZM invariants and take
essentially the same amount of time to compute. Finally, the size of the database affects
only moderately the overall computation time of the algorithm, since the time necessary
for the nearest neighbor search is largely dominated by the descriptor computation time.
For example, with a database of size Nw = 5000, matching requires less than 0.1% of
the time needed to compute the 10th order ZM invariants. Thus, the choice of the value
of Nw should be driven only by the memory available to store the database and by the
precision required for the algorithm.,Note again that since the size of the database grows
exponentially with the number of parameters to discretize, this analysis relies crucially on
the fact that the distance and yaw angles are not included in the matching process, thanks
to the invariance properties of the descriptors. The memory needed for the descriptor
database storage can be computed by multiplying the value of 8 bytes (i.e., the dimension
of a double type variable) by the total number of doubles in the database, which is given
by Nw × (Nf + 4) (i.e., the number of the rotation invariant Nf , plus m00train

, ψ0train
,

ϕtrain, and ϑtrain). A database of ZMs invariants up to the 9th order (i.e., Nf = 53) with
Nw = 5000 has a size of 2.28 Mbytes. A navigation solution using two databases of ZMs
invariants up to the 7th order (i.e., Nf = 34) computed respectively for dtrain = 40 m and
dtrain = 20 m, and a database of FDs up to the 10th harmonic (i.e., Nf = 18) computed
at dtrain = 10 m, requires a size of 3.93 MBytes if Nw = 5000, and 2.353 MBytes if
Nw = 3000. These requirements are compatible with the resources available on typical
space qualified avionics.

4.6 Conclusion

In this Chapter we have proposed a template matching method to estimate the pose of a
non-cooperative target during space rendezvous from a single binary image capturing the
target’s silhouette. The method is suitable for initial pose acquisition and for detecting
faults and deviations in other on-board trackers, and represents a novel approach for the
pose estimation of a spacecraft in a rendezvous. Three types of global descriptors, based
on complex moments, Zernike moments, and Fourier descriptors, are introduced and com-
pared in order to match the silhouette in a database of pose-dependent feature vectors
generated offline. By exploiting the scale and rotation invariance of these descriptors, the
approach requires discretizing only two pose angles to construct the database, leading to
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fast computation times appropriate for real-time implementations. Our performance anal-
ysis shows that Zernike moment invariants provide the highest accuracy and robustness
in off-nominal conditions. Fourier descriptors show comparable performance with a much
lower computational cost, but only for high resolution images or short target distances.
This suggests that these two types of descriptors are complementary and could be used in
combination. The next chapter will focus on the post-processing of the algorithm outputs
to detect outliers and discriminate between symmetric attitudes.
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In this Chapter, the tools developed in Chapters 2, 3, and 4 are merged together to
provide an integrated navigation solution to cover the final approach rendezvous phase.
As anticipated, the development of background segmentation techniques was out of the
scope of this thesis. However, the navigation chain has been tested also on synthetic
images having Earth in the background after the application of a background subtrac-
tion algorithm. The algorithm was developed by Thales Alenia Space in the scope of
rendezvous-related projects. For this reason, the background subtraction algorithm will
be briefly described in Sec.5.1. In Sec.5.2 we will explain how to exploit the detection algo-
rithm developed in Chap.4 to cover the range-only RDV phase, while in Sec.5.3 we details
the 6 degrees-of-freedom integrated solution. Finally, in Sec.5.4 the navigation solution is
applied to a simulated RDV scenario, and in Sec.5.5 the conclusions are drawn.
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5.1 Background subtraction algorithms

Figure 5.1: Example of input and output images of the segmentation algorithm

In order to robustly apply the pose estimation algorithms, it is necessary to isolate the
target spacecraft from any possible complex background present on the captured image.
In this section we will present the use of neural network applied to space image segmen-
tation. Recently major advances have been achieved in the domain of computer vision
thanks to neural network, especially convolutional neural networks. This allows reaching
in many applications a precision that was complicated to achieve until now, and image
segmentation strongly benefits from these new techniques. The use of neural network
for image segmentation has already been explored on classic cases, with famous network
architectures like Mask-R CNN [He et al., 2018], SegNet [Badrinarayanan et al., 2017], or
U-NET [Ronneberger et al., 2015]. In the case considered for this study, the need is to
precisely extract the mask of a satellite in space environment, with complex illumination
conditions and backgrounds such as the Earth. The solution must be embeddable, mean-
ing that the network must have a low computational load. Fully convolutional neural
networks with transposed convolutions layers applied to a classical encoder-decoder ar-
chitecture have been selected for this study. The convolution layers offer a higher level of
representation at each step, while the encoder architecture decreases the feature space to
force the categorization of pixel into relevant classes. Finally, the transpose convolution
layers reconstruct the segmented image. This approach seems to be will fitted to our case,
with acceptable resource consumption with a network composed by 6 convolutional layers
and 13500 parameters to be trained. A meta-optimization operation was performed to
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find the best fitted meta-parameter of the network (e.g., depth of the encoding/decoding,
number of convolution kernels). The output of the neural network is a gray-scale image
where the intensity of the pixel corresponds to the probability the pixel has of belonging
to the spacecraft silhouette. The segmentation has been tested with two independent
dataset generated with two different synthetic image generators, one of them being highly
representative. The network was previously trained on 9000 labeled images randomly
generated by the image generator, and then tested on an independent dataset generated
by the same generator on a given test case. The network was able to extract the satellite
in almost every case, even when it was barely visible due to the distance or the presence
of shadows. The mask borders are precise with a low noise of only few pixels. Some
outputs showed the issue of misdetection of some spacecraft parts, either on the inside
of the mask -especially for very short range detections-, or on thin parts like the solar
array connections. The generated mask can present some false detection with secondary
blobs, but these blobs are always smaller and with a lower pixel intensity than the satel-
lite blob. A simple post processing algorithm is applied to extract the main blob: a 20%
downscaled image exploration is performed to detect the blob, which is then extracted
using a watershed algorithm. The final output is a binary image. For some images, this
post-processing resulted in a separation of the solar arrays from the satellite core. This
issue has been solved applying morphological filtering on the full scale image before the
extraction of the main blob. This post-processing technique can also help filling missing
S/C parts that are inside the detected silhouettes. With the filtering, the algorithm has a
complexity of O (n), with n the size of the image. While no precise metric was measured
at this stage due to the difficulty to find a relevant one, it was assessed that only the 0.2%
of the images was presenting defaults making them non exploitable for pose estimation.
The impact of the proposed segmentation method on the pose estimation algorithms will
be shown in Sec.5.4, where the full navigation solution is tested.

5.2 Range-only navigation mode

As anticipated in 1.2, the 6 degrees of freedom (6-DOF) pose estimation is required only
for the final approach, starting from a relative distance of 40 − 20 m from the target.
Before reaching this distance, different navigation modes are activated sequentially, and
their activation depends mainly on the apparent size of the tracked object in the image.
When the apparent size of an object in the field of view of the camera is smaller than 1
pixel, the object behaves as a point source. For an object this far away the luminance
(i.e., luminous intensity per unit area of light traveling in a given direction) of the object
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is more important that the apparent size. The luminance depends on many factors, such
as the viewing geometry, the direction of the Sun, the direction of the observer, and the
reflectivity properties of the target. When the target starts being identifiable in the image,
the so-called Line-of-Sight (LOS) navigation (also referred to as angles-only navigation)
can start [D’Amico et al., 2013]. LOS navigation is bearing-only: it enables to correctly
identify the camera-target direction, allowing to point the sensor towards the target, but
does not provide range measurements.
As the size of the target in the image frame increases, model-based method can be used
to measure the camera-target relative distance. When the range starts being measur-
able, the relative position camera-target can be fully retrieved. We will refer to this
navigation mode as range-only mode. For a given target geometry and camera sen-
sor, there is a range of distances in which the method based on global descriptors de-
scribed in Chapter 4 does not allow the correct detection of the relative attitude of the
observed object, but does provide reliable range measurements. The relative camera-
target translation vector trcamcam−tg, that we decompose in its coordinates x, y, z (i.e.,
trcamcam−tg = [xcamcam−tg, ycamcam−tg, z

cam
cam−tg] = [x, y, z]) can be retrieved as described in Sec.4.3.

When current view is matched with a view in the training database, the relative distance
camera-target is computed according to Eq.(4.12), which is recalled here:

dmeas =
√
m00train

/m00meas · dtrain (5.1)

Then, using the coordinates of the current spacecraft silhouette (xcmeas , ycmeas), and the
projection equation (3.7), one can write:

x

z
= 1
fx

(xcmeas − cx)
y

z
= 1
fy

(ycmeas − xy)

dmeas =
√
x2 + y2 + z2

(5.2)

From the system (5.2), the relative position can be retrieved. Then, under the hypothesis
of weak perspective model (see Sec.4.3), (5.2) can be approximate to dmeas ∼ z, and the
computation of the relative position is simplified.
Figure 5.2 shows the measured relative camera-target position in camera frame obtained
using the detection method developed in Chapter 4 relying on Zernike moment invariants
up to the 9th order. The figure shows the results for a straight-line approach from 200
m to 40 m, using the training database built at a relative distance of 40 m computed for
the tests described in Sec 4.5.2.2. The sensor properties are the same used in 4.5.2 (i.e.,
FOV= 30 deg, size of the image = 1024× 1024 pixels, and cx = cy = 512), and figure 5.3
shows the appearance of the target spacecraft at a relative distance of 200 m.
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Figure 5.2: Measured camera-target position frame using ZM invariants

Figure 5.3: Silhouette of the target at 200 m with a 1024 × 1024 pixels camera, FOV=30◦
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From the figure it is visible how the measurement error decreases as the distance
decreases, which is both due to the fact that the target size in the image increases, and
the relative distance gets closer to the training distance. The fourth graphical in Fig.5.2
shows the relative percentage error, which sets below the 2% when the range is lower than
70 m. The coupling of these measurements with the translational Kalman filter based on
the CWH equations described in 2.3.1 will improve the estimation and provide a smoother
estimate, as it will be shown in the simulation of Sec.5.4. Note that this simulation is not
representative of a real world scenario, where noise and segmentation errors should be
expected and will cause the degradation of the performance. However, the results shown
in Fig.5.2 allow understanding which is the performance of the method as a function of
the apparent size of the S/C in the image frame. The results show that, for the considered
target geometry, ZM invariants allow the estimation of the range starting from a distance
of z0 = 200 m with a field of view FOV0 = 30 deg. For a given object at a given attitude,
the size of the projected silhouette in the image frame depends on the value of the range
and the camera parameters. Thus, if range measurements are needed from a distance
of z1 m, this provide a constraint on the field of view FOV1 of the camera to be used.
Calling ∆u the size of the projected target silhouette at a given attitude along the axis
xcam, and being ∆X the real-size dimension of the target along the same axis, one can
write:

∆u = fx
∆X
z

= cx
tan(FOV/2)

∆X
z

∆u
∆x = cx

z tan(FOV/2) = const
(5.3)

and therefore derive an expression for the value of FOV1 that provides at a distance z1

the same performance as the one of the reference camera with FOV0 at a distance z0:
cx0

z0 tan(FOV0/2) = cx1

z1 tan(FOV1/2)
FOV1 = 2atan

(
tan(FOV0/2)cx1

cx0

z0

z1

) (5.4)

Considering two cameras having the same sensor size, in order to have range estimation
from z1 = 1000 m a NAC (Narrow-Angle-Camera) with a FOV1 smaller than 6.13 deg
is required. However it should be reminded that the operational range of a camera has
also a lower bound, and that model-based algorithms start being unusable when the tar-
get occupies more than the 90% of the FOV. Therefore a NAC must always be coupled
with a WAC (Wide-Angle-Camera), whose operational range superposes with the NAC
operational range.
It should be reminded that the proposed method is not analytically exact, but provides
a good approximation under the assumption of weak-perspective model, which is a rea-
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sonable model when the depth of the object along the line of sight is small compared to
the distance from the camera, or when the camera field of view is small.

5.3 6 Degree-Of-Freedom pose estimation

Starting from a relative distance of 40− 20 m, the 6 DOF pose estimation should be ini-
tialized. First, a pose acquisition phase is needed: during this phase the servicer is on a
holding point and acquires the 6-DOF pose of the target. Once that the pose is initialized,
the tracking can start. During the tracking phase, the performance of the estimation is
enhanced by the knowledge of the rigid body rotational dynamics using Kalman filtering
techniques.
With a 1024 × 1024 pixels 30 deg FOV WAC, the pose can be reliably retrieved from a
distance of 40 m using the Global Descriptor (GB) based detection algorithm developed
in Chap.4. Using Zernike moment invariants, at a distance of 40 m with a train database
built at the same distance, the method allows the detection of the observed pose with
an accuracy of 95% and a mean error of 2 deg (see Tab.4.5). In order to have a reliable
initialization of the pose, a methodology must be developed in order to robustly discard
the 5% of the outlying detections. Moreover, the method presented in Chapter 4 do not
allow to distinguish between two symmetric attitudes. In Section 5.3.2 we will present
a methodology that allows initializing the pose discarding the outliers and eliminating
the ambiguity due to the symmetry of the observed object, starting from measurement
provided by the detection method proposed in Chap.4.
Once the pose is acquired, the tracking starts. The 6-DOF pose tracking will rely on
two different and independent algorithms: a pose estimation by detection algorithm (i.e.,
detector, Sec.5.3.3.1) and a frame-by-frame recursive tracker (i.e., tracker, Sec.5.3.3.2).
The detector relies on the measurements computed using the GD method, and exploits a
kinematic KF to reject outliers and discriminate between multiple solutions caused by the
target symmetries. The measurements computed by the detector are completely indepen-
dent from the ones computed by the recursive tracker. On the other hand, the recursive
tracker is based on the algorithm developed in Chapter 3 and it is coupled with the dy-
namic filter described in Chapter 2. Only the state estimated by the recursive tracker and
the dynamic filter will be considered by the Guidance and the Control functions. The
role of the detector is to supervise the recursive tracker in order to provide a corrected
measurement in case of tracker divergences.
Before detailing each algorithm in a dedicated section, we provide in Fig. 5.4 an overview
of the logic of the 6-DOF pose estimation. As the 6-DOF pose estimation phase starts,
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the pose acquisition algorithm is repeated until a set of conditions is met. If after a given
number of iterations (i.e., it max in the diagram) the conditions are not satisfied, an error
is sent. Otherwise, if the conditions are met, the pose is considered to be acquired and
both the tracker and the detector are initialized.
If, during the tracking, the detector notices that its measurements are no more reliable, it
can be reinitialized by the pose acquisition function. This reinitialization will not affect
the tracker, if the tracker estimate is still considered reliable (i.e., if the condition tracker
initialized in Fig.5.4 is true).
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Figure 5.4: Logic of the 6-DOF pose estimation algorithm

The tracker behaves as follows. First, it computes a measurement and checks if it
is reliable. If the measurement is reliable, it is sent to the dynamic filter to obtain the
current pose estimate. Otherwise, the tracker asks the detector for a measurement. If
the detector has an available measurement, the measurement is refined and, if reliable,
it used in the filter update step. Otherwise, if the refined detector measurement is not
considered as reliable, or if no detector measurements are available (i.e., the detector is
in re-initialization), the dynamic filter performs only the prediction step (i.e., the filter
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operates in open-loop) and the predicted state is used as estimated state. If the filter
propagates in open-loop for more time step than a given threshold (i.e., pr max in the
diagram), then the dynamic filter sends an error and asks for the re-initialization of both
the tracker and the detector.

5.3.1 Impact of target symmetry on the pose estimation

For sake of simplicity, the diagram in Fig.5.4 does not show the initialization of the sym-
metry, which will be discussed in Sec.5.3.2. However, the ambiguity brought by the target
symmetric geometry needs to be addressed with ad-hoc solutions that depend on the par-
ticular geometry of the target, as well as on the type of mission.
For the particular case considered in this study, we do not consider the pose to be fully
acquired as long as the symmetry ambiguity isn’t solved. This is due to the fact that, for
a given range of roll angles, there are some parts of the model that break the symmetry.
These parts are clearly identifiable at the distance where the pose is acquired.
Other target satellites may have even more than two possible solutions for a given pro-
jected silhouette (i.e., in presence of axial symmetry, as for the satellite depicted in Fig.5.5)
and no prominent 3D parts breaking the symmetry. In such a case, the tracking must be
initialized before the detection of the symmetry, and only at very close range it would be
possible to select the exact solution using visual features such as markers or the shape of
the docking fixture.
However, it is important to notice that the non-detection of the symmetry does not pre-
vent the dynamic filter to converge, and even allows to correctly estimate the rotation
rate of the target expressed in chaser (and inertial) frame. We provide in this section
more details.
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Figure 5.5: Rendering of the CSO-1 (Composante Spatiale Optique) satellite, which has
a 4 fold rotation symmetry with respect to the nadir axis. Images credits: Ministère des
Armées, www.defense.gouv.fr

For a 3D rigid object, there is no relative motion between the body frame and the
“symmetric” body frame. For example, for the satellite in Fig.5.5, the attitude of the
body frame can be determined only with an uncertainty corresponding to a rotation of
π/2, π, and 3π/2, around the nadir axis. For the model used in this study (see Fig.4.3),
the body frame can be determined with an uncertainty of π around the body axis ztg (i.e.,
xtg and ytg axis can be mistaken for −xtg and −ytg). Let’s call qtg−tgSym and Rtg−tgSym

the quaternion and the rotation matrix indicating the (constant) offset between the real
body frame and the “symmetric” one:

qtg−tgSym = [0 0 0 1]T

Rtg−tgSym =


−1 0 0
0 −1 0
0 0 1

 (5.5)

For a given target attitude (expressed with respect to the inertial frame) qi−tg = [q0 , q1 , q2 , q3]T ,
the “symmetrical” attitude qi−tgSym is:

qi−tgSym = qi−tg ⊗ qtg−tgSym = [−q3 q2 − q1 q0]T (5.6)
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Using the formula in Eq.(A.5) one can obtain the relation between the two attitudes
expressed in Euler angles:

eui−tg = [ϕ ϑ ψ]T

eui−tgSym = [−ϕ − ϑ ψ]T
(5.7)

Since the quaternion qtg−tgSym is constant, the angular rates ωtgSymtg−tgSym and ωtgtg−tgSym are
null (i.e., q̇tg−tgSym = 1

2qtg−tgSym ⊗ ω
tgSym
tg−tgSym = 1

2ω
tg
tg−tgSym ⊗ qtg−tgSym = 0). This allows

to write an important relation on the angular rates. Being ωtgi−tg = [ωx, ωy, ωz]T the true
angular rate expressed in the true body axis, one can write:

ωtgSymi−tg = RT
tg−tgSymω

tg
i−tg

ωtgSymi−tgSym = ωtgSymi−tg + ωtgSymtg−tgSym = RT
tg−tgSymω

tg
i−tg + 0 = [−ωx − ωy ωz]T

(5.8)

Intuitively this relation could be obtained by differentiation of the Euler angles (i.e.,
ωx/ysym = dϕ/ϑsym

dt
= −ϕ/ϑt+1−(−ϕ/ϑt)

dt
= −ωx/y, and ωzsym = dψsym

dt
= ψt+1−π−(ψt−π)

dt
= ωz).

This relation is very important because it says that, if the estimated attitude is not the
true but the symmetric one, the Kalman filter rotation rate estimation will converge to
the values of [−ωx, −ωy, ωz]. If at a given instant t the navigation algorithm notices that
it is estimating the wrong state [qi−tgSym, ωtgSymi−tgSym], the state can be corrected using the
equations in (5.8) and (5.6). The state covariance matrix P can be corrected using the
jacobian of the (linear) transformation [qi−tgSym, ωtgSymi−tgSym] = J[qi−tg, ωtgi−tg]:

J =



0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1


, Psym = JPJT (5.9)

The mathematical relations that leads to the derivation of (5.8), (5.6), and (5.9) can be
generalized for any geometric model and value of qtg−tgSym. This would help to switch from
one filter estimate to its symmetrical one as soon as the ambiguity is solved. However, it is
very important to notice how the angular rate expressed in coordinates different from the
target body coordinates is correctly estimated. Let’s consider the relative camera-target
rotation rate expressed in camera coordinates:

ωcamcam−tg = −ωcami−cam + qcam−tg ⊗ ωtgi−tg ⊗ q∗cam−tg (5.10)
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if the algorithm is estimating the symmetric attitude, the equation becomes:

ωcamcam−tgSym = −ωcami−cam + qcam−tgSym ⊗ ωtgSymi−tgSym ⊗ q∗cam−tgSym
= −ωcami−cam + qcam−tgSym ⊗ (ωtgSymi−tg + ωtgSymtg−tgSym)⊗ q∗cam−tgSym
= −ωcami−cam + qcam−tg ⊗

[
qtg−tgSym ⊗

(
ωtgSymi−tg + 0

)
⊗ q∗tg−tgSym

]
⊗ q∗cam−tg

= −ωcami−cam + qcam−tg ⊗ ωtgi−tg ⊗ q∗cam−tg
= ωcamcam−tg

(5.11)
This demonstration uses as “global” reference frame the camera frame cam, but can be
repeated for the chaser ch frame and the inertial i frame. This result is very important
because it states that the relative rotation rate of the target in camera (or chaser) axis
is correctly estimated even in presence of a pose estimation error due to the symme-
try. Therefore, for those applications where only the rotation rate is needed in order to
synchronize the chaser motion with the target motion before capture or berthing (e.g.,
during active debris removal with non prepared S/C), it will not be necessary to solve the
ambiguity related to the multiple symmetrical solutions.

5.3.2 Pose acquisition function

The pose acquisition function exploits measurements from the GD-based method. Due
to the sensitivity of the acquisition phase, Zernike moment invariants are used, as they
provide the best performance. The method described in 4.3 needs to be associated to
some post-processing of the measurements to enable robust pose initialization, and in
this section we details the post-processing procedure.
First of all, the training database must be extended also to the negative values of the roll
angles. The database built in Sec.4.5.2 contained 5000 views corresponding to training
attitudes where the roll angle was always positive (i.e., ϕ ≥ 0). In fact, for the particular
target geometry considered in this study, due to the presence of two symmetry plane, for
each solution [ϕ, ϑ, ψ], the symmetrical solution [−ϕ, −ϑ, ψ − π] is also possible. The
presence of small objects on the main body of the target breaks this symmetry for a range
of roll angles such that |ϕ| ∈ [80, 100] deg. Thus, the database is extended adding 500
views satisfying the following conditions (in degrees):

ϕ = −(80 + 20 randϕ)
ϑ = asin(1− 2 randϑ)
ψ = 0

(5.12)

For these attitudes, the descriptor vector is computed according to Sec. 4.4.2. Using this
“extended” training database, the raw measurements of the Euler attitude angles along
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a certain time-window will appear as in Fig.5.6. The blue solid lines represent the true
Euler angles ϕ, ϑ, and ψ, while the blue dashed lines represent the symmetric solution
branches. In the first graph it is possible to see how value of negative ϕ are registered only
for |ϕ| ∈ [80, 100], due to the particular construction of the database. The objective of
the pose acquisition function is to identify a time-window in which there are not outlying
measurements. For outlying measurement (or outlier) we mean a measurement which is
not attributable to any of the two symmetric solutions.
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Figure 5.6: ZM-based detection algorithm raw measurements at a distance of 40 m

To initialize the pose, three conditions have to be satisfied.

1) Initially, we search for a time-window of a given length (ltw) along which the dif-
ference between two consecutive attitude measurements is below a given threshold
δt1. The fulfillment of such a condition ensures, in the observed time-window, that
the measurements are “continuous” and therefore compatible with the rigid body
dynamics, and that no outliers are present (the probability that in the considered
time-window there is a series of outlying measurements close one to the other exists
but remains low). At the current time-step t = i, the new acquired measurement
[ϕi, ϑi, ψi] is compared with the measurement [ϕi−1, ϑi−1, ψi−1] acquired at the
previous instant t = i− 1.
Two index indicating the angular distance between the two measurements are com-
puted ( similarly to what was done in 4.5.2 to evaluate the recognition performance
of the GD methods), one taking into account only the roll and pitch angles (δϕϑi

),
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and the second taking into account the full attitude (δϕϑψi
).

δq = quat([ϕi, ϑi, 0])⊗ quat∗([ϕi−1, ϑi−1, 0])
δϕϑi

= 2
∣∣∣atan

(√
δq2

1 + δq2
2 + δq2

3/δq0

) ∣∣∣


δq = quat([ϕi, ϑi, ψi])⊗ quat∗([ϕi−1, ϑi−1, ψi−1])
δϕϑψi

= 2
∣∣∣atan

(√
δq2

1 + δq2
2 + δq2

3/δq0

) ∣∣∣
(5.13)

The operator quat() indicates the operation that passes from the Euler angles to the
corresponding quaternion (i.e., Eq.(A.6)). These indices are saved, together with
the current measurement, on a shifting memory which collects the last ltw (from
t = i+ 1− ltw to t = i) values of the indices δϕϑt , δϕϑψt , and measurements.
It should be reminded that the roll and pitch angles are computed at the same time
thought a nearest neighbor search, while the yaw angle is computed in a second
step using geometric moments (see Sec.4.3). First, the condition on the continuity
of the roll and pitch angles has to be satisfied. If all the stored values of δϕϑt ,
t ∈ [i+1− ltw, i] are less than δt1 , the first condition cond1 is satisfied. A reasonable
value of the time-window size ltw is 10, while for δt1 a value of 20 deg can be used.

2) Then, the continuity of the yaw angle is checked. The second condition cond2 is
automatically satisfied if all the stored values of δϕϑψt , t ∈ [i+1− ltw, i] are less than
δt1 . However, as outlined in Sec.4.5.1, for the considered target geometry, there is
an indetermination in the estimation of the yaw angle for those couple of [ϕ, ϑ] that
correspond to a projected silhouette having a 2-fold rotation symmetry. In such
a case, the GD based method cannot distinguish between two values of ψ shifted
of π. This can lead to the presence of values of δϕϑψt close to 180 deg. Thus, an
error in ψ close to 180 deg can indeed be corrected. A threshold δt2 is defined in
order to set the acceptable difference between two consecutive yaw angles (a value
of 20 deg can be used). From t = i + 1 − ltw to t = i − 1, the yaw discontinuity
δψt =min(|ψt+1 − ψt|, |ψt+1 − ψt| − 2π) is computed. If at least one value of δψt is
in the interval [δt2, π− δt2], the time-window is discarded since the discontinuity in
ψ cannot be attributed to the 2-FRS ambiguity. On the other hand, if a value of
δpsit is in the interval [π − δt2, π], a counter cψ (initialized at 0) is incremented by
one and the value of the yaw angle ψt+1 is shifted of π. When the algorithm has
reached t = i − 1, cψ will indicate the number of shifts that have been performed
along the considered time-window.
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discarded

Figure 5.7: Correction algorithm detecting discontinuity of π in the yaw measurements

The value of cψ can go from 0 (no corrections have been performed) to ltw−1 (all the
value of ψt except for t = i+ 1− ltw have been corrected). A value of cψmax must be
defined to set the maximal number of accepted corrections over a time-window. In
this work, a value of cψmax = 30%ltw has been chosen. If cψ ≤ cψmax (Fig. 5.7, Case
A), the corrections of the ψt are accepted, and the values of δϕϑψt , t ∈ [i+2−ltw, i] are
recomputed in order to check if they verify cond2 (i.e., δϕϑψt < δt1). If cψ ≥ ltw−cψmax

(Fig. 5.7, Case B), then all the corrected values of ψ must be shifted of π, and then
checked for the verification of cond2. Finally, if cψmax < cψ < ltw − cψmax(Fig. 5.7,
Case C), it means that there are not enough values of ψ on the same solution branch,
and therefore it is impossible to solve the ambiguity caused by the 2-FRS, and the
time-window is discarded.

3) If both cond1 and cond2 are verified, then the current (and eventually corrected)
measurement qcam−tgi

= quat([ϕi, ϑi, ψi]), together with the relative position trcamcam−tg

computed according to Sec.5.2, is used as prior to refine the measured pose us-
ing the contour-based non-linear tracking algorithm described in 3.3, obtaining
q̃cam−tgi

, t̃r
cam
cam−tg. Then, the reprojection error of the refined pose is computed

according to Eq.(3.33), and compared with a threshold δt3 . The value of δt3 cannot
be generalized because it depends on many factors, such as the relative range, the
camera calibration matrix, the target geometry and even the camera-target relative
attitude. Thus, a table of δt3 values must be pre-computed offline. As already spec-
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ified in Sec.3.3.4.2, such a table should already be computed in order to provide
a correlation between the measurements computed by the tracking algorithm and
the value of the corresponding measurement noise covariance matrix. In a prelimi-
nary study, for a given geometry and camera properties, a simple parametrization
of δt3 as a function of the camera-target range provides satisfying results. If the
reprojection error is less than δt3 , the third condition cond3 is verified and the pose
q̃cam−tgi

, x̃camcam−tg is accepted as initial pose. The time instant i is then referred to
as tacqf

and the time instant i+ 1− ltw is referred to as tacqi
.

5.3.2.1 Symmetry detection

If cond3 is verified, the pose q̃cam−tgi
, x̃camcam−tg is considered a valid measurement to start

the tracking. However, the ambiguity on the attitude q̃cam−tgi
due to the target symmetry

remains. As anticipated, this ambiguity can be solved only if |ϕ| ∈ [80, 100] deg. If the
measured roll angle is in this range during the pose acquisition time-window, when cond2

is verified, two refined poses and residuals are computed using the tracking algorithm. The
first is computed using the relative attitude qcam−tgi

= quat[ϕi, ϑi, ψi], and the second
using the symmetric relative attitude qsymcam−tgi

= quat([−ϕi, −ϑi, ψi − π]). The pose
providing the lower residual is selected (if the difference between the two residual is above
a certain threshold) and the residual is compared to δt3 to check for cond3. If qsymcam−tgi

results being the pose with the lower residual, all the collected measurements [ϕt, ϑt, ψt],
t ∈ [i + 1 − ltw, i] are “switched” to the symmetrical solution branches ([ϕt, ϑt, ψt] →
[−ϕt, −ϑt, ψt − π]). The symmetry is then considered to be initialized and i = tacqf

=
tsym. The tracking is initialized even if during the acquisition time-window the roll angles
do not enter in the interval allowing the discrimination of the symmetric attitudes, Then,
as soon as the roll angle measured by the tracking algorithm enters the range |φ| ∈
[80, 100] deg, the procedure described above is repeated applying the criterion based on
the residual previously described. More details are provided in Sec.5.3.3.2.

5.3.2.2 Filter initialization

When the initial attitude qcam−tg is acquired, the rotational dynamic filter has to be
initialized. There is no need to do this for the translational dynamics since the transla-
tional KF has already been activated during the Range-only mode. All the measurement
acquired (and eventually corrected) during the pose acquisition time-window are taken
into account: the measurements are propagated inside a kinematic rotational filter from
t = tacqi

to t = tacqf
. The filter state will be composed by the target absolute attitude

quaternion qi−tg and its rotation rate with respect to the inertial frame expressed in body
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axis ωtgi−tg. The prediction model is described in Appx.C.3.1, where also the state jacobian
matrix of the considered model is introduced. The sensitivity matrix C is the same as
the sensitivity matrix of the dynamic filter whose computation is carried out in Sec.2.3.2.
In order to compute the sensitivity matrix C, it will be necessary to store at each instant
the latest ltw values of the estimated chaser attitude quaternion qi−ch and eventually of
the quaternion qch−cam if it is time-varying (e.g., the camera is placed on a articulated
robotic arm). The sensitivity matrix is equal to Ct = Σ(q∗ch−camt

⊗ q∗i−cht
), see Eq.(2.20)).

The prediction of the state and the state covariance matrix is performed according to the
CD-EKF formulation (see Appx.B.2). The initialization of the filter is given by:

qi−tgtacqi |tacqi
= qi−chtacqi

⊗ qch−camtacqi
⊗ qcam−tgtacqi

ωtgi−tgtacqi |tacqi
= [0, 0, 0]T

xtacqi |tacqi
=

 qi−tgtacqi |tacqi

ωtgi−tgtacqi |tacqi


Ptacqi |tacqi

= eye(7)

(5.14)

Successively the kinematic filter goes from t = tacqi
+ 1 to t = tacqf

. This allows to
have a robust initialization of the target rotational state at the current instant tacqf

, and
allows the state covariance matrix P to start converging. The obtained values of the state
covariance matrix Ptacqf

and the state xtacqf
will be used as initialization for the dynamic

rotational KF described in Sec.2.3.2.
The filter initialization function has a latency that can be neglected with respect to the
pose acquisition function described in the previous paragraph, which is dominated by the
time needed to compute moment invariants (see Sec.4.5.4).

5.3.3 Pose tracking functions

We have already explained that the 6-DOF pose tracking will rely on two different and
independent algorithms, i.e., the detector and the tracker. The measurements computed
by the detector are completely independent from the ones computed by the recursive
tracker. The role of the detector is to provide a corrected measurement in case of tracker
divergences.

5.3.3.1 Detector

The logic of the detection algorithm is very simple. At the current time step t, the GD
method developed in Chapter 4 is used to obtain a measurement of the relative camera-
target Euler angles eumeascam−tg = [ϕ, ϑ, ψ]. From these angles, the symmetrical solution
eusymcam−tg = [−ϕ, −ϑ, ψ − π] is built. The goal then is to determine which is the more
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likely solution according to the target state at the previous instants. Thus, a kinematic
filter is associated to the detection method. The filter structure and initialization are
discussed in Sec.5.3.2.2. From the estimated state at the instant t − 1, the predicted
target absolute state at the instant t is computed, and, using the current camera ab-
solute attitude quaternion qi−cam, the predicted qcam−tg and the associated Euler angles
eucam−tg = [ϕpred, ϑpred, ψpred] are obtained. The predicted quaternion serves as anchor
point to select the most likely measurement. The angular distances of the predicted atti-
tude from the current measurement and from the symmetric measurement are computed,
both with and without taking into account the yaw angle.

δq = quat([ϕ, ϑ, 0])⊗ quat∗([ϕpred, ϑpred, 0])
δϕϑmeas = 2

∣∣∣atan
(√

δq2
1 + δq2

2 + δq2
3/δq0

) ∣∣∣


δq = quat([ϕ, ϑ, ψ])⊗ quat∗([ϕpred, ϑpred, ψpred])
δϕϑψmeas = 2

∣∣∣atan
(√

δq2
1 + δq2

2 + δq2
3/δq0

) ∣∣∣


δq = quat([−ϕ, −ϑ, 0])⊗ quat∗([ϕpred, ϑpred, 0])
δϕϑsym = 2

∣∣∣atan
(√

δq2
1 + δq2

2 + δq2
3/δq0

) ∣∣∣


δq = quat([−ϕ, −ϑ, ψ − π])⊗ quat∗([ϕpred, ϑpred, ψpred])
δϕϑψsym = 2

∣∣∣atan
(√

δq2
1 + δq2

2 + δq2
3/δq0

) ∣∣∣

(5.15)

If δϕϑsym < δϕϑmeas , the symmetric solution is the one closer to the prediction, and the
measurement must be corrected:

if δϕϑsym < δϕϑmeas
eumeascam−tgt

= eusymcam−tgt

δϕϑmeas = δϕϑsym

δϕϑψmeas = δϕϑψsym

(5.16)

Once that the ambiguity on the two symmetric solution is solved, the algorithm searches
for eventual correctable discontinuities in the yaw angle. Similarly to what was done in
the pose acquisition algorithm, the angular distance δψ =min(|ψ−ψpred|, |ψ−ψpred|−2π)
is computed. If δpsi is in the interval [π − δt2, π], then ψ must be switched of π and the
value δϕϑψmeas must be updated:

if π − δt2 ≤ δψ ≤ π
ψ = ψ − π
δq = quat([ϕ, ϑ, ψ])⊗ quat∗([ϕpred, ϑpred, ψpred])

δϕϑψmeas = 2
∣∣∣atan

(√
δq2

1 + δq2
2 + δq2

3/δq0

) ∣∣∣
(5.17)
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At the end of these two step, the corrected measurement is considered only if both δϕϑmeas

and δϕϑψmeas are below a threshold which can be set to be equal to δt1 (e.g., 20 deg).
If the conditions are satisfied, then the measurement can be used in the update step of
the kinematic filter. Otherwise, the measurement is considered to be an outlier and it
is discarded. In such a case, the KF estimated state will be equal to the KF predicted
state. A counter ckine is increased by one any time a measurement is discarded, and it is
reset to zero any time a measurement is accepted and used in the KF update step. The
counter indicates the number of time step during which the state has been propagated
without any measurement update. If the counter exceed a certain threshold ckinemax (with
ckinemax ∼ 20 step), the state is no more considered as reliable and the detector must be
reinitialized though the procedure discussed in Sec. 5.3.2. In such a case, a flag indicating
the availability of the detector measurements must be set to false as long as a new pose is
acquired. It should be noted that this reinitialization will not affect the recursive tracker,
which only in case of its own divergence will “consult” the detector.
It has already been anticipated that, if the symmetry has not been initialized during the
pose acquisition phase, it is the task of the recursive tracker to initialize it. When the
recursive tracker has solved the ambiguity on the symmetry, it sends a flag to the detector
indicating whether it has to switch on the symmetric solution branch or not. If at the
generic instant t the flag (sent from the recursive tracker at the time step t− 1) indicates
to the detector that it must switch to the symmetric solution, the kinematic KF estimated
state and covariance matrix at t− 1 must be corrected according to Eqs.(5.6), (5.8), and
(5.9). In such a way, the predicted state at t will be placed on the correct solution branch
and will allow to select the correct measurement.

5.3.3.2 Tracker

The tracker is based on the contour-based non-linear tracking algorithm discussed in
Sec.3.3. This algorithm uses, at the time step t, the estimated relative pose at the instant
t−1 (obtained from the dynamic KF estimate) to project the 3D a priori model, select the
control points and match them to the edges extracted from the current captured image.
Then the new pose is computed minimizing a non-linear cost function. This measured
pose is then incorporated in the dynamic KF, as discussed in Sec.3.3.4. Both the IP-CV
algorithm and the dynamic filter are activated at t = tacqf

and initialized through the
procedure discussed in Sec.5.3.2.2.
While the IP-CV “core” of the tracker (masking algorithm, matching, cost function min-
imization) has not been modified for the implementation of the full solution, its interface
with the dynamic filter has been changed in order to allow a dynamic calibration of the
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filter and to benefit from the addition of the detection algorithm.
The measurement computed by the frame-by-frame tracker is associated to a residual.
As explained in Sec.3.3.4.2, for a given target geometry, camera parameters and relative
camera-target distance, the residual can be correlated to the noise covariance matrix R

of the associated measurements (i.e., a very low residual indicates that the reprojection
error is minimal and therefore the measurement is reliable). For the simulations carried
out in the following Section (i.e., Sec.5.4), we have decided to use a discrete tuning of R.
For a given distance, three thresholds are set, i.e., rlow, rhigh, and rmax. The thresholds
are computed experimentally during a series of tests where the residual is correlated to
the magnitude of the measurement error. If the residual is below rlow, the value of R is
reduced of one order of magnitude with respect to the nominal value, i.e., R = 0.1 Rnom.
If the residual is in the interval [rlow, rhigh], then R = Rnom. If the residual is in the
interval ]rhigh, rmax], the covariance matrix is increased of two order of magnitude, i.e.,
R = 100 Rnom. Finally, if the residual exceeds the threshold rmax, the measurement com-
puted by the recursive tracker is discarded. In such a case, the recursive tracker “asks”
the detector for its measured pose (downstream of the kinematic KF). Three scenarios
are possible:

• The validity flag of the detector estimate is true: the estimated relative pose sent by
the detector is refined using the contour-based tracking algorithm and the residual
is computed. If the residual is below rmax the measurement is accepted and used in
the dynamic KF to perform the state update. The measurement noise covariance
matrix is set to be R = 100 Rnom.

• The validity flag of the detector estimate is true, but the residual obtained refin-
ing the detector estimated pose is above the threshold rmax. The measurement is
discarded, and the state in the dynamic Kalman filter is propagated in “open-loop”
(i.e., only prediction step).

• The validity flag of the detector estimate is false. This is the worst case scenario,
since the detector estimate is not available to correct the divergence in the recursive
tracker. In such a scenario, the state of the dynamic filter is propagated without
update step as long as the pose is re-acquired.

If the dynamic filter does not receive any update for a given number of time steps (i.e.,
the number of open-loop cycles of the KF exceed the threshold pr max in Fig.5.4), it is
the filter that ask for a full re-initialization of the pose. If the pose is not reacquired after
a given number of time-steps (i.e., it max in Fig.5.4), an error is sent at higher level. If
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the tracking is lost, the chaser should stop its approach motion to begin a new acquisition
phase or even perform a collision avoidance maneuver if necessary.

Symmetry detection
If the symmetry ambiguity has not been resolved during the pose acquisition phase, this
task is transferred to the tracker. If the estimated relative camera-target Euler angle φ
at a certain time step enters the interval |ψ| ∈ [80, 100], at the following time step the
contour-based pose estimation algorithm is run using both the current and the symmetric
pose as initial guess. The pose providing the lower residual is selected (if the difference
between the two residual is above a certain threshold). If the selected pose is on the
solution branch opposite to the current estimate, also the dynamic KF state must be
corrected, according to Eqs.(5.6), (5.8), and (5.9). In this case, a flag is sent to the
detector in order to allow it performing the same correction. In this case, the latency of
the tracker is almost doubled, and the delay is managed by the dynamic KF.

5.3.4 6-DOF pose estimation logic

The diagram in Fig.5.8 shows the detailed logic of the pose estimation function. For sake
of simplicity, the error messages shown in Fig. 5.4 are not included in the work flow.
The diagram is divided in two “environments”, the image processing block and the nav-
igation function block. This division aims at separating the functions that process the
images to obtain a valid measurement, from the navigation function which receives as
input a measurement and outputs an estimated state. The pose acquisition function, the
detector and the tracker are gathered in the image processing block, while the dynamic
filter is contained in the navigation function block, where they may be other blocks such
as the chaser absolute rotational dynamics and the chaser absolute translational dynamics
estimators. This separation may be also performed at hardware level, by implementing
all the image processing on dedicated hardware such as a FPGA.
The communication between the blocks is performed by numerical variables and Boolean
flags. Flags travel on the dashed lines, while variables travel on the solid lines.
The flags that are connected to a block indicate that the action inside the block must be
performed only if the flag is true. There are four flags connected to a block:

• do pose acq: if true, the pose acquisition function must be executed. It is initialized
as true.

• do detector : if true, the detector must be executed. It is initialized as false.
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• do tracker : if true, the tracker and the dynamic filter must be executed. It is
initialized as false.

• do update: if true, the the dynamic filter uses the measurement form the image
processing function to do the state update, otherwise the filter evolves in open-loop.
It is initialized as false.

POSE ACQUISITION

do_pose_acq

do_pose_acq = true

do_pose_acq = false

do_tracker = true

do_detector= true

POSE_0

DETECTOR

do_pose_acq = false

do_detector = true

ini_detector = true

MEAS_DETECTOR

do_pose_acq = true

do_detector = false

ini_detector= false

do_detector
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ini_tracker

Masking

Minimization

������� � ��	


do_tracker
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DYNAMIC FILTER
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do_tracker = false

∄	POSE_MEAS
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the time-window

Filter initialization
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	POSE_0

Figure 5.8: Detailed logic of the 6-DOF pose estimation

The flags connected to the bi-color diamonds operate as selectors: if the flag is true, the
output of the diamond is equal to the input connected to the green triangle; if the flag
is false, the output of the diamond is the input connected to the red triangle. There are
two flags connected to a diamond:

• ini detector : it is false if the detector needs an initialization (in such a case the new
acquired pose from the pose acquisition function is used as prior in the algorithm).
It is initialized as false.

• ini tracker : it is false if the tracker needs an initialization (in such a case the new
acquired pose from the pose acquisition function is used as prior in the algorithm).
It is initialized as false.
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The diagram aims also at highlighting the input-output flow from the image processing
function and the navigation function. The navigation function receives, as input, the
initialized pose POSE 0 from the pose acquisition function if the tracking is not yet
initialized, and the measured pose (i.e. POSE MEAS) with the do update flag from the
tracker. The outputs of the navigation function are the inputs of the image processing
function at the next time-step. They are the POSE ESTIMATED, the ini tracker flag,
and the do tracking flag, which all enter the tracker block, and the do pose acq flag which
enters the pose acquisition function and activate it if the tracking is lost, i.e., when the
number of open-loop cycles (nopen−loop) of the dynamic KF exceeds the threshold nmax.
The estimated pose is also send towards the guidance and the control functions, which
are not included in the diagram. Also signals such as the do pose acq and the do tracking
should be sent at higher level (i.e., to the mission and vehicle management (MVM) or
the failure detection, identification and recovery (FDIR) functions), in order to activate
different modes (e.g., collision avoidance maneuvers, stop of the forced motion and so on).

5.4 Application to an operational scenario

The navigation architecture has been tested on a forced motion scenario from a relative
distance of 100 m to 5 m, using the 1024×1024 pixels, 30 deg FOV camera that has been
used also in the simulations of Chapters 3 and 4. In the first 2 minutes of the simulation,
the chaser approaches the target along the V-bar (i.e., yLOF axis) at a relative speed of
0.5 m/s. During this phase, only range measurements are provided using the algorithm
discussed in Sec.5.2. When the chaser reaches a distance of 40 m from the target, it
stops the motion and start the 6-DOF pose acquisition phase, according to the method
discussed in Sec.5.3.2. After 2 minutes, the chaser starts another forced motion towards
the target at a relative speed of 0.2 m/s. The approach velocities have been chosen in
order to cover all the phases in a relatively short simulation, but remain high compared
to the approach rates usually used during close proximity operations (e.g., for the MEV-1
mission, the approach from 80 m to docking lasted some hours, see Sec.1.2.3). However,
the choice of high approach velocities allows us to test the tracking algorithm in presence
of high displacements of the target from one image frame to the following one. The target
rotation rate is initialized to be 1.5 deg/s around each body axis, which is an upper bound
of the rate that can be expected during a rendezvous [Bonnal et al., 2013]. The camera
acquisition frequency is 1 Hz, while the navigation filter run frequency is 10 Hz. In order
to run the detection algorithm, three different database have been built. The first one
is built at a distance of dtrain = 40 m, and it is used in the range-only phase, in the
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pose acquisition phase and during the tracking, down to a relative distance of 30 m. The
second database is built at dtrain = 20 m and it is used for a relative distance in the interval
[30, 15] m. For the distances below 15 m a database built at dtrain = 10 m is used. All the
databases have the size of 5500× 56 (i.e., Nw = 5500 samples, Nf = 51 Zernike rotation
invariants up to the 9th order, and 4 more global features being ψ0train

, m00train
, ϕtrain,

and ϑtrain). 9th order ZM invariants have been chosen as they have proven to provide the
optimal performance in Sec.4.5.2. As the distance decreases, the interval of distances in
which a database built at a given distance dtrain can provide reliable detections become
smaller. This is due to the fact that the weak perspective approximation is no more
applicable for shorter ranges, and the effect of the relative distance on the shape of the
projected silhouette becomes non-negligible. For a 30 deg FOV camera and the considered
target geometry, the detection algorithm does not provide reliable measurements below
∼ 8 m.

5.4.1 Discussion of the results

The simulation is run with three different series of images:

• CASE A: The first set of images are perfect binary silhouettes of the target satellite.
The simulation run with this set is the baseline simulation which shows the intrinsic
performance of the pose estimation algorithm.

• CASE B: The second set of images is composed by grey-scale images obtained
illuminating the target satellite with a spot-light placed on the chaser. This could
be the case of a rendezvous performed approaching the target from the -R-bar side,
or a rendezvous on a geo-stationary orbit performed along the V-bar. The images
are affected by shadows, reflections and blur, so that the silhouette retrieved is
affected by multiple sources of noise. The silhouettes are retrieved using a simple
thresholding technique.

• CASE C: The third set of images is composed by grey-scale images obtained illumi-
nating the target satellite with a spot-light placed on the chaser, and Earth in the
background. This is the case that is more likely to happen during rendezvous on a
Low Earth orbit. The method discussed in Sec.5.1 is used to extract the silhouette
from the background.

Tables 5.1 and 5.2 show the performance in the estimation of the target attitude and
the relative position of all cases, as a function of the range. The metric used for the
rotational dynamics performance (Tab.5.1) is the angular error δϕϑψ. The metric used for
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the translational dynamic (Tab.5.2) is the range error. Both the mean knowledge error
µ (i.e., the MKE, which is the mean of the Absolute Knowledge Error AKE according to
[Ott et al., 2011]) and the root mean square of the AKE are listed. It is evident how the
performance is degraded in cases B and C. However at close range (i.e., below 20 m), the
performance is satisfying in all the scenarios. For what concerns the translation estimation
performance, it is interesting to notice how the overall performance of CASE B (i.e., no
Earth in background, simple thresholding) is worse than the overall performance of CASE
C (i.e., Earth in background, background subtraction and silhouette post-processing).
This suggests that the post-processing technique proposed in Sec.5.1 should be used also
in case of deep-space background to enhance the silhouette extraction.

Table 5.1: Comparison of the performance of the 6-DOF pose estimation algorithm as a
function of the range

Rotational dynamics, estimated δϕϑψ [deg]
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

CASE A
µ 0.98 1.11 0.39 0.43 1.09 0.80
rms 1.72 1.40 0.45 0.57 1.17 1.28

CASE B
µ 1.30 4.10 1.27 1.02 1.19 1.75
rms 1.44 5.07 1.47 1.23 1.38 2.52

CASE C
µ 3.76 5.92 2.36 2.52 2.16 3.51
rms 4.68 7.22 2.42 2.57 2.23 4.48

Table 5.2: Comparison of the performance of the 6-DOF pose estimation algorithm as a
function of the range

Translational dynamics: estimated range error [m]
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

CASE A
µ 0.195 0.267 0.107 0.043 0.045 0.150
rms 0.206 0.279 0.115 0.047 0.046 0.180

CASE B
µ 0.591 1.845 0.507 0.192 0.024 0.679
rms 0.649 1.903 0.564 0.224 0.029 0.940

CASE C
µ 0.240 0.422 0.229 0.275 0.366 0.291
rms 0.307 0.430 0.261 0.288 0.369 0.329

Table 5.3 shows the overall performance (from t = tacqf
) of more metrics. For the

rotational dynamics, the mean of δϕϑψdetector
, δϕϑψtracker

, and δϕϑψest (the angular error re-
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spectively of the detector measurements, of the tracker measurements, and of the dynamic
filter estimates) is shown. Also the mean of the AKE of the estimated rotation rate δωxest

,
δωyest

, and δωzest
is listed. For the translational dynamics, the mean of the position estima-

tion error (i.e., δxext , δyext , and δzext) and the mean of velocity estimation error (i.e., δẋext ,
δẏext , and δżext) are listed. The translational state is expressed in LOF frame, so that the
y component indicates the direction of the motion, and it is therefore characterized by
higher errors. For CASE C, the overall angular error of the detector is very high due to
the fact that the detector diverges between 40 m and 30 m and is therefore reinitialized.

For what concerns the performance of CASE C, significant improvement could be ob-

Table 5.3: Overall comparison
CASE A CASE B CASE C

δϕϑψdetector
[deg] µ 3.22 6.21 12.14

δϕϑψtracker
[deg] µ 0.95 1.93 4.17

δϕϑψest [deg] µ 0.80 1.75 3.51
δωx [deg/s] µ 0.06 0.11 0.15
δωy [deg/s] µ 0.04 0.07 0.11
δωz [deg/s] µ 0.10 0.18 0.19
δx [m] µ 0.008 0.012 0.024
δy [m] µ 0.150 0.679 0.291
δz [m] µ 0.009 0.014 0.021
δẋ [m/s] µ 0.000 0.001 0.001
δẏ [m/s] µ 0.003 0.017 0.009
δż [m/s] µ 0.001 0.001 0.001

tained by training the background subtraction neural network with a bigger training
dataset and increasing the number of layers in the network, but this could lead to an aug-
mentation of the computational load of the algorithm. The performance of the estimation
algorithm on the test CASE C shows that the navigation solution is quite robust with re-
spect to the presence of noise and errors on the extracted silhouette. This means that, in
the presence of deformation of the target satellite due to the flexibility of the appendages
or to damaged parts, the algorithm ensures a certain level of robustness. However, in the
presence of big non-modeled differences, the 3D a priori model upon which the estimation
algorithms rely could be updated from ground after an inspection phase. In fact, the seg-
mentation algorithm is the only part of the navigation solution that requires a relatively
long training phase on-ground, but it could be made model-invariant by increasing the
training dataset size with images of different spacecrafts and increasing the number of the
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network layers. For what concerns the detection algorithm, a new feature database can
be built in less than a hour once that the new model has been estimated, and then it can
be updated from ground.
The following Sections provide figures and tables that detail the performance of the naviga-
tion solution for CASE A (Sec.5.4.1.1), CASE B (Sec.5.4.1.2), and CASE C (Sec.5.4.1.3),
that we discuss in the following.
Figures 5.9, 5.12, and 5.15, show, for each one of the cases, the estimated relative position
and velocity in LOF frame. As the approach is performed along the V-bar, yLOF corre-
sponds to the direction of motion, and yLOFLOF−ch, ẏ

LOF
LOF−ch, are the variables affected by the

biggest estimation error. The pose is acquired at tacqf
= 145 s in CASE A and CASE B,

and at tacqf
= 155 s in CASE C. Before tacqf

, the navigation function is in range-only mode
and the dynamic translational filter (i.e., violet dots) uses the raw measurements coming
from the ZM-based detection algorithm (i.e., magenta dots). After tacqf

, the 6-DOF pose
tracking starts and the dynamic translational filter (i.e., blue dots) uses the measurements
coming from the tracker (i.e., cyan dots). The relative range error in percentage is also
shown.
Figures 5.11, 5.14, and 5.17, show, for each one of the cases, the estimated absolute at-
titude and rotation rate of the target with respect to the inertial frame. The plots show
the estimated quaternion qi−tg and rotation rate ωtgi−tg from t = tacqf

(i.e., magenta dots),
obtained using the dynamic filter and the tracker measurements. When the dynamic filter
uses the refined detector measurements to compute the estimate, the state is plotted in
violet. When no measurements are available and the filter evolves in open-loop, the state
is plotted in cyan. The quaternion measurements obtained during the time acquisition
window (i.e., tacqi

≤ t ≤ tacqf
) are displayed in blue. The green dot indicates the time

instant in which the symmetry ambiguity is solved and the estimate is switched to the
right solution branch (t = 176 s for all the simulations).
Finally, Figures 5.10, 5.13, and 5.16 show the angular error of the estimated attitude.
The plot shows the angular error from t = tacqf

(i.e., magenta dots), obtained using the
dynamic filter and the tracker measurements. When the dynamic filter uses the refined
detector measurements to compute the estimate, the error is plotted in violet. When
no measurements are available and the filter evolves in open-loop, the angular error is
plotted in cyan. The angular errors obtained during the time acquisition window (i.e.,
tacqi
≤ t ≤ tacqf

) are displayed in blue. The green dots indicate the angular error before
the ambiguity on the symmetry is solved at t = 176 seconds. The angular errors computed
before t = 176 s (i.e., blue and green dots) have been obtained shifting the estimate of
π. Note that the angular error is not always decreasing as the relative distance decreases
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(e.g., there is a peak around t = 260 s). This is due to the fact that the estimation per-
formance does not depend only on the relative distance, but also on the current attitude
of the target. In particular, around t ∼ 260 s, the target solar arrays become invisible
(i.e., in Fig.4.3, we have that the camera optical axis is parallel to ytg). We know from
Chapter 3 that the particular condition in which some surface of the tracked object passes
from being visible to being invisible is particularly challenging for contour-based tracking
algorithms, and can lead to the divergence of the algorithm. This also explains why,
around t ∼ 270 s, detector measurements are used.
The performance of the tracker measurements, the detector measurements, and the esti-
mated state as a function of the range are collected for all the simulations. Tables 5.4,
5.6, and 5.8 show the performance of the rotational dynamics estimation. The collected
indices are the mean and the RMS of δϕϑψdetector

, δϕϑψtracker
, and δϕϑψest (the angular error

respectively of the detector measurements, of the tracker measurements, and of the dy-
namic filter estimates), and the mean and RMS of the AKE of the estimated rotation rate
δωxest

, δωyest
, and δωzest

. Tables 5.5, 5.7, and 5.9 show the performance of the translational
dynamics estimation. The collected indices are the mean and the RMS of the absolute
range error (i.e., along yLOF ) of the detector measurement, the tracker measurement, and
the KF estimate. For the KF estimate, also the mean and the RMS of the absolute range
rate error (i.e., named velocity error estimate in the tables) are shown.
One should note that the performance of the estimated state achieved in CASE A and
CASE B below 10 m is compliant with all the docking and berthing requirements ex-
pressed in Sec.1.2.2 (i.e., a navigation error at least two time smaller than the accuracy
demanded on the real relative state). However in CASE C the performance is degraded
with respect to the other cases, and the estimation errors below 10 m do not assure the
margin required to safely control the chaser in docking and berthing operations.
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5.4.1.1 Case A: Perfect silhouette images
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Figure 5.9: Relative target-chaser translational state in LOF , perfect silhouette images
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Figure 5.10: Angular error of the estimated target attitude quaternion, perfect silhouette
images
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Figure 5.11: Absolute target rotational state, perfect silhouette images

Table 5.4: Performance of the rotational dynamics estimation, perfect silhouette images
Rotational dynamics

range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

δϕϑψ detector [deg]
µ 2.75 2.27 1.57 1.69 12.97 3.22
rms 18.11 2.52 1.77 2.21 13.95 11.73

δϕϑψ tracker [deg]
µ 1.07 1.25 0.63 0.61 1.17 0.95
rms 2.42 1.62 1.19 0.94 1.37 1.78

δϕϑψ estimated [deg]
µ 0.98 1.11 0.39 0.43 1.09 0.80
rms 1.72 1.40 0.45 0.57 1.17 1.28

δωx estimate [deg/s]
µ 0.07 0.11 0.04 0.05 0.01 0.06
rms 0.12 0.18 0.06 0.07 0.02 0.11

δωy estimate [deg/s]
µ 0.05 0.04 0.03 0.02 0.01 0.04
rms 0.07 0.05 0.04 0.02 0.02 0.05

δωz estimate [deg/s]
µ 0.14 0.14 0.01 0.07 0.07 0.10
rms 0.26 0.18 0.02 0.10 0.09 0.18
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Table 5.5: Performance of the translational dynamics estimation, perfect silhouette images
Translational dynamics

range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

range error detector [m]
µ 0.060 0.080 0.075 0.030 0.167 0.071
rms 0.079 0.093 0.076 0.038 0.189 0.092

range error tracker [m]
µ 0.292 0.289 0.127 0.061 0.050 0.196
rms 0.499 0.361 0.156 0.084 0.073 0.344

range error estimate [m]
µ 0.195 0.267 0.107 0.043 0.045 0.150
rms 0.206 0.279 0.115 0.047 0.046 0.180

velocity error estimate [m/s]
µ 0.003 0.008 0.002 0.001 0.002 0.003
rms 0.004 0.029 0.002 0.001 0.002 0.012

5.4.1.2 Case B: Grey-scale images

0 50 100 150 200 250 300 350 400
time, [s]

0

5

10

15

 %
 

0 50 100 150 200 250 300 350 400
time, [s]

-0.2

-0.1

0

0.1

 [
m

] 

0 50 100 150 200 250 300 350 400
time, [s]

-100

-80

-60

-40

-20

0

 [
m

] 

0 50 100 150 200 250 300 350 400
time, [s]

-0.2

0

0.2

0.4

 [
m

] 

0 50 100 150 200 250 300 350 400
time, [s]

-0.02

-0.01

0

0.01

 [
m

/s
] 

0 50 100 150 200 250 300 350 400
time, [s]

-0.5

0

0.5

1

1.5

2

 [
m

/s
] 

0 50 100 150 200 250 300 350 400
time, [s]

-0.04

-0.02

0

0.02

 [
m

/s
] 

Figure 5.12: Relative target-chaser translational state in LOF , grey-scale images
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Figure 5.13: Angular error of the estimated target attitude quaternion, grey-scale images
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Figure 5.14: Absolute target rotational state, grey-scale images
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Table 5.6: Performance of the rotational dynamics estimation, grey-scale images
Rotational dynamics

range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

δϕϑψ detector [deg]
µ 6.49 5.99 5.40 3.37 12.60 6.21
rms 18.29 6.84 6.37 4.46 13.60 12.44

δϕϑψ tracker [deg]
µ 1.31 3.92 2.24 1.17 1.20 1.93
rms 1.51 4.68 3.52 1.56 1.47 2.79

δϕϑψ estimated [deg]
µ 1.30 4.10 1.27 1.02 1.19 1.75
rms 1.44 5.07 1.47 1.23 1.38 2.52

δωx estimate [deg/s]
µ 0.10 0.18 0.16 0.09 0.02 0.11
rms 0.12 0.28 0.24 0.13 0.03 0.18

δωy estimate [deg/s]
µ 0.09 0.07 0.07 0.05 0.02 0.07
rms 0.11 0.09 0.09 0.06 0.03 0.09

δωz estimate [deg/s]
µ 0.09 0.57 0.04 0.14 0.09 0.18
rms 0.13 0.87 0.05 0.21 0.12 0.39

Table 5.7: Performance of the translational dynamics estimation, grey-scale images
Translational dynamics

range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

range error detector [m]
µ 1.094 1.293 0.931 0.482 0.202 0.902
rms 1.246 1.312 0.935 0.511 0.217 1.037

range error tracker [m]
µ 1.168 1.604 0.470 0.236 0.089 0.844
rms 1.292 1.778 0.535 0.263 0.119 1.111

range error estimate [m/s]
µ 0.591 1.845 0.507 0.192 0.024 0.679
rms 0.649 1.903 0.564 0.224 0.029 0.940

velocity error estimate [m/s]
µ 0.026 0.017 0.012 0.011 0.006 0.017
rms 0.031 0.032 0.012 0.011 0.006 0.024
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5.4.1.3 Case C: Segmented images
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Figure 5.15: Relative target-chaser translational state in LOF , segmented silhouette im-
ages
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Figure 5.16: Angular error of the estimated target attitude quaternion, segmented silhou-
ette images
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Figure 5.17: Absolute target rotational state, segmented silhouette images

Table 5.8: Performance of the rotational dynamics estimation, segmented silhouette im-
ages

Rotational dynamics
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

δϕϑψ detector [deg]
µ 6.98 37.32 3.61 4.60 12.30 12.14
rms 18.94 43.04 3.87 5.01 14.78 22.34

δϕϑψ tracker [deg]
µ 4.27 8.22 2.53 2.56 2.29 4.17
rms 5.67 13.16 2.68 2.60 2.37 6.83

δϕϑψ estimated [deg]
µ 3.76 5.92 2.36 2.52 2.16 3.51
rms 4.68 7.22 2.42 2.57 2.23 4.48

δωx estimate [deg/s]
µ 0.23 0.20 0.07 0.11 0.05 0.15
rms 0.32 0.28 0.09 0.14 0.06 0.23

δωy estimate [deg/s]
µ 0.17 0.11 0.10 0.04 0.09 0.11
rms 0.21 0.15 0.14 0.06 0.14 0.16

δωz estimate [deg/s]
µ 0.20 0.49 0.02 0.09 0.13 0.19
rms 0.32 0.68 0.020 0.11 0.17 0.36
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Table 5.9: Performance of the translational dynamics estimation, segmented silhouette
images

Translational dynamics
range [m]: = 40 ∈ ]40, 30] ∈ ]30, 20] ∈ ]20, 10] < 10 overall

range error detector [m]
µ 0.420 1.546 0.292 0.467 0.735 0.648
rms 0.465 1.607 0.403 0.492 0.754 0.832

range error tracker [m]
µ 1.022 0.486 0.185 0.228 0.268 0.539
rms 1.601 0.626 0.287 0.261 0.286 0.986

range error estimate [m]
µ 0.240 0.422 0.229 0.275 0.366 0.291
rms 0.307 0.430 0.261 0.288 0.369 0.329

velocity error estimate [m/s]
µ 0.008 0.012 0.013 0.009 0.003 0.009
rms 0.009 0.031 0.014 0.009 0.004 0.016

5.4.2 Latency of the algorithms

The segmentation stage has been tested on a 2.20 GHz Intel Core i7 development laptop
equipped with a Nvidia GTX 1070 GPU. While real-time performances can be achieved
(i.e., 36 millisecond for each image, thus an average of 27.78 images/s on the development
laptop), this is not representative of a real world scenario were the processing chain
must run on a space embedded target. The process of porting the neural network on a
space compatible FPGA, with the objective of achieving at least a working frequency of
1 Hz and ideally 10 Hz, is on-going. There are also possibilities to decrease, if needed,
the neural network resource consumption by alleviating it (e.g., reducing the number of
layers and/or the number of kernel in the layers) at the cost of its precision, but this could
be compensated by efficient post processing able to correct this. Moreover, reducing the
size of the image before entering the CNN could largely speed up the processing with
acceptable precision trade-off.
The pose estimation algorithms were tested on a 2.70 GHz Intel Core i7 processor. All
the algorithms are autocoded in C++ from MATLAB code. The average time needed to
compute ZM invariants up to the 9th order is equal to 208 millisecond, 387 milliseconds
and 1.16 seconds respectively at 40 m, 20 m, and 10 m. The latency of the algorithm
at 10 m, as well as its computational load (i.e., due to the number of silhouette points
to process in order to compute the rotation invariants), is not compatible with real-time
implementation. However, this computation time can be drastically reduced resizing the
image before computing the moment invariants. The results shown in Sec.4.5.2.3 prove
that the method is robust to a reduction of the size of the test images. Note however that
this absolute computation time is mostly indicative, since the computation of moment
invariants can be optimized [Prata and Rusch, 1989, Hwang and Kim, 2006, Wee et al.,
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2004], which could lead to significant improvements. The time needed to compute the
moment invariants is the dominant part of the detection algorithm: with a database of
the size considered in this study, the matching requires less than 0.1% of the time needed
to compute the 9th order ZM invariants at 20 m.
On the same processor, the tracking algorithm (from the Canny edge extraction to the
cost function minimization), has an average latency of 60.1 millisecond at 40 m (i.e., 16.64
images/s), 62, 5 millisecond at 20 m (i.e., 16 images/s), and 85.8 millisecond par image
(i.e., 11.66 images/s) at 10 m.
In the pose acquisition phase, at each time step, the latency will be the summation of the
time needed for the segmentation and the time needed for the computation of the ZM
invariants. The latency needed to compute the angular distances between two consecutive
measurements and eventually correct the ψ angle is almost negligible. At the time instant
where cond1 and cond2 are satisfied, the latency of the pose acquisition function must
take into account also the execution time of the contour-based tracking algorithm. If
the symmetry must be detected, the latency of the tracker must be counted twice. The
filter initialization function has a latency that can be neglected with respect to the total
latency of the pose acquisition function. During the 6-DOF tracking, if the detector and
the tracker are executed in parallel (which is possible since they are independent one from
the other), the latency is equal to the time needed by the segmentation plus the highest
latency among the tracker and the detector. However, if the tracker measurement isn’t
accepted, the detector measurement must be corrected using the tracker and the latency
of the tracker is therefore doubled.
The performance shown in the previous paragraph has been obtained in presence of a
very high relative dynamics (i.e., very high approach velocity of the chaser, and high
rotation rate of the target), which is very unlikely to happen in a real-world scenario.
This allows us to state that if, after implementation of the algorithm on a space-qualified
processor, the working frequency of 1 Hz is not reached, the acquisition rate could be
slightly decreased without any major degradation of the estimation performance.

5.5 Conclusion

The current chapter has addressed the problem of monocular model-based pose estimation
for close-proximity operations during space rendezvous using a visible monocular camera.
A complete navigation solution, covering all the navigation phases from the 6 degrees-of-
freedom pose acquisition to the robust full pose tracking, has been presented and tested in
different scenarios. The pose estimation relies on a contour-based recursive tracker which
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provides very precise measurements, and on a global-feature based detection algorithm
which allows pose initialization and measurement correction in case of divergence of the
tracker. A background subtraction algorithm based on convolutional neural network has
been integrated to the navigation algorithms. The method enables the extraction of
the target silhouette from the acquired image, allowing to reach satisfying estimation
performance even in presence of complex background such as the Earth. The segmentation
algorithm would certainly benefit from the use of multi-spectral images, especially in the
thermal infrared spectrum, and from the increase of the training database size. With the
implementation of this improvements, the estimation performance in presence of complex
background is likely to get closer to the baseline performance with perfect silhouette
images.
The proposed estimation chain provides a cost effective solution with a relatively low
computational load. The latency of the navigation functions on standard PCs allows to
assume that, after the implementation of the algorithms on a dedicated hardware such
as a FPGA, the navigation chain will satisfy the requirement of 1 Hz acquisition rate.
Future works will focus on the porting of the navigation algorithms on a space-qualified
hardware.
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Chapter 6

Conclusion

This thesis went through the development of a navigation solution for autonomous space
rendezvous with non-cooperative target based on the use of a monocular visible camera.

After an introduction on the operational context of space rendezvous in Chapter 1,
the problem of incorporating delayed and multi-rate measurements in a navigation fil-
ter for the estimation of the dynamics of a non-cooperative target has been assessed in
Chapter 2. A dynamic filter for the estimation of full target rotational and translational
state exploiting relative pose measurement has been formalized. Two delay management
techniques have been compared: Larsen’s method, which provides a fast but sub-optimal
solution, and Filter Recalculation method, which always provides the optimal estimate but
has a higher computational load. The Monte Carlo validation campaign has shown that
Larsen’s method performance is comparable to Filter Recalculation method performance.
The latter shows remarkably better performance only in the transient phase of simula-
tions exploiting interim measurements but at the expense of a higher computational and
storage need. When a delayed measurement arrives, Filter Recalculation method com-
putational load is multiplied by a factor equal to the number of delay samples, which
might be incompatible with the critical applications run by the on-board computer for
this particular time step. This suggests that, in applications where the on-board resources
are limited, Larsen’s method is preferable since it provides a faster estimation without
any significant degradation of the steady-state performance.

Then, in Chapter 3, the problem of monocular model-based pose tracking for space
rendezvous has been assessed, and an innovative method relying on silhouette-edges ex-
traction and tracking has been proposed. The method has been formally developed and
implemented. The coupling with the dynamic filter introduced in Chapter 2 enables the
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robust estimation of the relative pose, as well as the estimation of the translational ve-
locity and rotation rate, of the target. The method has shown high performance and
robustness when using perfect silhouette images, and suffered a loss of robustness at high
relative distances when tested in closed-loop on realistic images affected by shadows, blur
and reflections. Indeed, the use of a dynamic calibration of the KF improves the perfor-
mance. Different solutions to strengthen the estimation have been proposed, such as the
coupling of the visible camera with a thermal infra-red camera in order to improve the
silhouette extraction. The proposed estimation chain provides a cost effective solution
with a very low computational load, thus compatible with typical space processing capa-
bilities. However, as all the recursive pose tracker, the proposed method does not allow
to initialize the pose from the so-called lost in space condition (i.e., no prior information
of the target pose), neither it is capable of recovering from big pose estimation error.

For this reason, we have proposed in Chapter 4 a template matching method to esti-
mate the pose of a non-cooperative target during space rendezvous from a single binary
image capturing the target’s silhouette. The method is suitable for initial pose acquisi-
tion and for detecting faults and deviations in other on-board trackers, and represents a
novel approach for the pose estimation of a spacecraft in a rendezvous. Three types of
global descriptors, based on complex moments, Zernike moments, and Fourier descrip-
tors, are introduced and compared in order to match the silhouette in a database of
pose-dependent feature vectors generated offline. By exploiting the scale and rotation
invariance of these descriptors, the approach requires discretizing only two pose angles
to construct the database, leading to fast computation times appropriate for real-time
implementations. Our performance analysis shows that Zernike moment invariants pro-
vide the highest accuracy and robustness in off-nominal conditions. Fourier descriptors
show comparable performance with a much lower computational cost, but only on for
high resolution images or short target distances. This suggests that these two types of
descriptors are complementary and could be used in combination.

Finally, in Chapter 5, the algorithms developed in the previous chapters have been
merged in order to develop a complete navigation solution, covering all the navigation
phases from the 6 degrees-of-freedom pose acquisition to the robust full pose tracking.
The pose estimation relies on the contour-based recursive tracker of Chap.3, which pro-
vides very precise measurements, and on the global-feature based detection algorithm of
Chap.4, which allows pose initialization and measurement correction in case of divergence
of the tracker. A method to post-process the outputs of the detection algorithm to elim-
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inate outliers and provide a robust pose acquisition has been developed. A background
subtraction algorithm based on convolutional neural network has been integrated to the
navigation algorithms. The method enables the extraction of the target silhouette from
the acquired image, allowing to reach satisfying estimation performance even in presence
of complex background such as the Earth. The segmentation algorithm would certainly
benefit from the use of multi-spectral images, especially in the thermal infrared spectrum,
and from the increase of the training database size. With the implementation of this
improvements, the estimation performance in presence of complex background is likely to
get closer to the baseline performance with perfect silhouette images.
The proposed estimation chain provides a cost effective solution with a relatively low
computational load. The latency of the navigation functions on standard PCs allows to
assume that, after the implementation of the algorithms on a dedicated hardware such as
a FPGA, the navigation chain will satisfy the requirement of 1 Hz acquisition rate.

Future works in Thales Alenia Space will go towards three main directions:

- Improvement of the background subtraction technique

- Porting of the navigation solution on FPGA

- Test campaign on the Thales Alenia Space robotic test-bench in Cannes
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Appendix A

Kinematics of rotations

Contents
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A.1 Convention for rotations

In order to use an unambiguous notation in the whole thesis, in this section we detail the
convention and operators that will be used to describe rotations and vectors in different
reference frames.
Rotations are described by quaternions, according to Hamilton convention (see [Sola,
2015]). A quaternion q is a four-component object with a three-vector part qv and a
scalar part q0:

q =
 q0

qv

 =


q0

q1

q2

q3

 (A.1)

It is used to define a rotation of a angle α around the vector qv normalized, such that:

q =
 q0

qv

 =


cos

(
α

2

)
qv
|qv|

sin
(
α

2

)
 (A.2)
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The correspondence between the quaternion q and the rotation matrix R that corresponds
to the same rotation is described by the following equation:

R(q) = (q2
0 − qTv qv)I3×3 + 2qvqTv + 2q0[qv]× (A.3)

where I3×3 is the 3×3 identity matrix. The notation [v]× for a given vector v = [v1, v2, v3]T

indicates the skew-symmetric cross-product matrix equal to:

[v]× =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 , and therefore [qv]x =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (A.4)

while the relation between the quaternion components and the corresponding Euler angles
is given by: 

ϕ atan2
(

2q2q3 + 2q0q1

1− 2(q2
1 + q2

2)

)
ϑ asin

(
2q0q2 − 2q1q3

)
ψ atan2

(
2q1q2 + 2q0q3

1− 2(q2
2 + q2

3)

) (A.5)

and 

q0 = cos
(
ϕ

2

)
cos
(
ϑ

2

)
cos
(
ψ

2

)
+ sin

(
ϕ

2

)
sin
(
ϑ

2

)
sin
(
ψ

2

)

q1 = sin
(
ϕ

2

)
cos
(
ϑ

2

)
cos
(
ψ

2

)
− cos

(
ϕ

2

)
sin
(
ϑ

2

)
sin
(
ψ

2

)

q2 = cos
(
ϕ

2

)
sin
(
ϑ

2

)
cos
(
ψ

2

)
+ sin

(
ϕ

2

)
cos
(
ϑ

2

)
sin
(
ψ

2

)

q3 = cos
(
ϕ

2

)
cos
(
ϑ

2

)
sin
(
ψ

2

)
− sin

(
ϕ

2

)
sin
(
ϑ

2

)
cos
(
ψ

2

)
(A.6)

The Hamiltonian convention for quaternions is also referred to as “local to global”. Given
a vector xa expressed in reference frame a, and the same vector expressed in the reference
frame b (i.e., xb), the following relation allows to pass from one frame to the other:

xa = qa−b ⊗ xb ⊗ q∗a−b (A.7)

(where q∗ is the quaternion conjugate q∗ = [q0, −q1, −q2, −q3]T ), and ⊗ indicates the
quaternion product such that:

qa ⊗ qb =


qa0qb0 − qa1qb1 − qa2qb2 − qa3qb3

qa0qb1 + qa1qb0 + qa2qb3 − qa3qb2

qa0qb2 − qa1qb3 + qa2qb0 + qa3qb1

qa0qb3 + qa1qb2 − qa2qb1 + qa3qb0

 (A.8)

To rotate a 3 components vector x using quaternions formalism, a dimension is added to
transform the vector into a quaternion with null scalar part q0 = 0 and with qv = x. For
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sake of simplicity, we will not change the notation of vectors when used in quaternion
products. The same rotation can be described using the rotation matrix Ra−b

xa = Ra−bx
b (A.9)

Finally, the derivative of an attitude quaternion and a rotation matrix must be introduced.
Given the rotation rate ωa−b corresponding to the attitude quaternion qa−b, the rotation
rate can be expressed either in the global (a) reference frame (ωaa−b) or in the local (b)
reference frame (ωba−b). The quaternion derivative will be:

q̇a−b = 1
2qa−b ⊗ ω

b
a−b

= 1
2 ω

a
a−b ⊗ qa−b

(A.10)

while, reminding the definition of the cross-product matrix [ ]×, the derivative of the
rotation matrix will be:

Ṙa−b = Ra−b[ωba−b]×

= [ωaa−b]×Ra−b

(A.11)

A.2 Jacobian of quaternion operations

In the following section the analytic computation of the Jacobians of a series of operation
such as the computation of the quaternion conjugate, the quaternion product and the
rotation of a vector from one frame to another will be presented.

A.2.1 Quaternion product

Let’s denote the quaternion product qa ⊗ qb with the function Qprod(qa, qb):

qa ⊗ qb =


qa0qb0 − qa1qb1 − qa2qb2 − qa3qb3

qa0qb1 + qa1qb0 + qa2qb3 − qa3qb2

qa0qb2 − qa1qb3 + qa2qb0 + qa3qb1

qa0qb3 + qa1qb2 − qa2qb1 + qa3qb0

 (A.12)

The Jacobians are:

∂(qa ⊗ qb)
∂qa

= JQprod(qa,qb)/qa =


qb0 −qb1 −qb2 −qb3

qb1 qb0 qb3 −qb2

qb2 −qb3 qb0 qb1

qb3 qb2 −qb1 qb0

 (A.13)
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∂(qa ⊗ qb)
∂qb

= JQprod(qa,qb)/qb
=


qa0 −qa1 −qa2 −qa3

qa1 qa0 −qa3 qa2

qa2 qa3 qa0 −qa1

qa3 −qa2 qa1 qa0

 (A.14)

A.2.2 Quaternion conjugate

Let’s denote the quaternion conjugate q∗ of a quaternion q with the function Qconj(q):

q∗ =


q0

−q1

−q2

−q3

 (A.15)

The Jacobian is:

∂q∗

∂q
= JQconj(q)/q =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.16)

A.2.3 Rotation of a vector

Let’s denote the rotation of a vector ω with respect to a quaternion q with the function
Qrot(ω, q) such that:

Qrot(w, q) = q ⊗

 0
ω

⊗ q∗ (A.17)

Let’s now call w = [0, ω]T = [0, ω1, ω2, ω3]T and (q ⊗ w) = qw:

Qrot(w, q) = q ⊗ w ⊗ q∗ = qw ⊗ q∗ (A.18)

The Jacobian, with respect to q and with respect to ω, can be written as:
∂(q ⊗ w ⊗ q∗)

∂q
= JQrot(ω,q)/q = ∂(qw ⊗ q∗)

∂qw

∂(q ⊗ w)
∂q

+ ∂(qw ⊗ q∗)
∂q∗

∂(q∗)
∂q

(A.19)

∂(q ⊗ w ⊗ q∗)
∂ω

= JQrot(ω,q)/ω = ∂(qw ⊗ q∗)
∂qw

∂(q ⊗ w)
∂ω

(A.20)

Let’s now focus on the computation of JQrot(ω,q)/q. Using the formula in (A.13) and the
definition of quaternion conjugate in (A.15), the first quantities are computed:

∂(qw ⊗ q∗)
∂qw

=


q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

 (A.21)
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∂(qw)
∂q

= ∂(q ⊗ w)
∂q

=


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (A.22)

The first part of the Jacobian will be therefore:

∂(qw ⊗ q∗)
∂qw

∂(qw)
∂q

=

=


q1ω1 + q2ω2 + q3ω3 −q0ω1 + q3ω2 − q2ω3 −q3ω1 − q0ω2 + q1ω3 q2ω1 − q1ω2 − q0ω3

q0ω1 − q3ω2 + q2ω3 q1ω1 + q2ω2 + q3ω3 −q2ω1 + q1ω2 + q0ω3 −q3ω1 − q0ω2 + q1ω3

q3ω1 + q0ω2 − q1ω3 q2ω1 − q1ω2 − q0ω3 q1ω1 + q2ω2 + q3ω3 q0ω1 − q3ω2 + q2ω3

−q2ω1 + q1ω2 + q0ω3 q3ω1 + q0ω2 − q1ω3 −q0ω1 + q3ω2 − q2ω3 q1ω1 + q2ω2 + q3ω3


(A.23)

Let’s now compute the second part of the Jacobian. Using (A.14):

∂(qw ⊗ q∗)
∂q∗

=


qw0 −qw1 −qw2 −qw3

qw1 qw0 −qw3 qw2

qw2 qw3 qw0 −qw1

qw3 −qw2 qw1 qw0

 (A.24)

where, using (A.12):

qw = q ⊗ w =


−q1ω1 − q2ω2 − q3ω3

q0ω1 − q3ω2 + q2ω3

q3ω1 + q0ω2 − q1ω3

−q2ω1 + q1ω2 + q0ω3

 (A.25)

Reminding (A.15), the second part of the Jacobian will be:

∂(qw ⊗ q∗)
∂q∗

∂(q∗)
∂q

=

=


−q1ω1 − q2ω2 − q3ω3 +q0ω1 − q3ω2 + q2ω3 +q3ω1 + q0ω2 − q1ω3 −q2ω1 + q1ω2 + q0ω3

q0ω1 − q3ω2 + q2ω3 q1ω1 + q2ω2 + q3ω3 −q2ω1 + q1ω2 + q0ω3 −q3ω1 − q0ω2 + q1ω3

q3ω1 + q0ω2 − q1ω3 q2ω1 − q1ω2 − q0ω3 q1ω1 + q2ω2 + q3ω3 q0ω1 − q3ω2 + q2ω3

−q2ω1 + q1ω2 + q0ω3 q3ω1 + q0ω2 − q1ω3 −q0ω1 + q3ω2 − q2ω3 q1ω1 + q2ω2 + q3ω3


(A.26)
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It can be noted that the first line of ∂(qw ⊗ q∗)
∂qw

∂(qw)
∂q

is opposite to the first line

of ∂(qw ⊗ q∗)
∂q∗

∂(q∗)
∂q

, while the other lines are equals. Defining the following quantities:

A = 2(q0ω1 − q3ω2 + q2ω3)
B = 2(q3ω1 + q0ω2 − q1ω3)
C = 2(−q2ω1 + q1ω2 + q0ω3)
D = 2(q1ω1 + q2ω2 + q3ω3)

(A.27)

the expression of the Jacobian becomes:

∂(q ⊗ w ⊗ q∗)
∂q

= ∂(qw ⊗ q∗)
∂qw

∂(q ⊗ w)
∂q

+ ∂(qw ⊗ q∗)
∂q∗

∂(q∗)
∂q

=


0 0 0 0
A D C −B
B −C D A

C B −A D


(A.28)

Then the dimension must be reset to a matrix 3×4 by eliminating the first line, since the
quantity for which we are calculating the Jacobian is a 3 element vector (the rotated ω ).
Introducing the notation Qrotj (ω, q), j = 1 : 3 in order to refer to the first, the second and
the third component of the vector resulting from the rotation described by the function
Qrot(ω, q), the Jacobian can be written as:

∂Qrot(ω, q)
∂q

= JQrot(ω,q)/q =



∂Qrot1(ω, q)
∂q

∂Qrot2(ω, q)
∂q

∂Qrot3(ω, q)
∂q


=


JQrot1 (ω,q)−q

JQrot2 (ω,q)−q

JQrot3 (ω,q)−q

 (A.29)

where JQrotj (ω,q)/q is the 1× 4 vector:

JQrot1 (ω,q)/q =
[
A D C −B

]
=
[
∂Qrot1(ω, q)

∂q0

∂Qrot1(ω, q)
∂q1

∂Qrot1(ω, q)
∂q2

∂Qrot1(ω, q)
∂q3

]

JQrot2 (ω,q)/q =
[
B −C D A

]
=
[
∂Qrot2(ω, q)

∂q0

∂Qrot2(ω, q)
∂q1

∂Qrot2(ω, q)
∂q2

∂Qrot2(ω, q)
∂q3

]

JQrot3 (ω,q)/q =
[
C B −A D

]
=
[
∂Qrot3(ω, q)

∂q0

∂Qrot3(ω, q)
∂q1

∂Qrot3(ω, q)
∂q2

∂Qrot3(ω, q)
∂q3

]
(A.30)

Let’s now focus on the Jacobian with respect to w. Using Eq.(A.13) and (A.15):

∂(qw ⊗ q∗)
∂qw

=


q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

 (A.31)
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and, using Eq.(A.14)

∂(q ⊗ w)
∂w

=


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (A.32)

therefore:

∂(q ⊗ w ⊗ q∗)
∂w

= ∂(qw ⊗ q∗)
∂qw

∂(q ⊗ w)
∂w

=


q2

0 + q2
1 + q2

2 + q2
3 0 0 0

0 q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

0 2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q3q2 − 2q0q1

0 2q1q3 − 2q0q2 2q3q2 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


(A.33)

This matrix actually must be reduced eliminating the first line and the firs column, which
correspond to the null scalar component added to obtain the four-element w from the
three-element ω.

∂(q ⊗ w ⊗ q∗)
∂ω

=


0 1 0 0
0 0 1 0
0 0 0 1

 ∂(qw ⊗ q∗)
∂qw


0 0 0
1 0 0
0 1 0
0 0 1



=


q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q3q2 − 2q0q1

2q1q3 − 2q0q2 2q3q2 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


(A.34)
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Appendix B

Kalman filtering theory

Contents
B.1 Kalman filtering for linear systems . . . . . . . . . . . . . . . 180

B.1.1 The Continuous Kalman Filter . . . . . . . . . . . . . . . . . . 180

B.1.2 The Discrete Kalman Filter . . . . . . . . . . . . . . . . . . . . 183

B.1.3 From the Continuous to Discrete Kalman Filter . . . . . . . . . 186

B.2 The Continuous-Discrete Extended Kalman Filter . . . . . . 187

This appendix provides an overview of the theory underlying optimal filtering using
Kalman filter (KF). Several formulations and extension of Kalman filter exist, depending
on whether the filter is applied to a linear or a non-linear system, a time-discrete or a
time-continuous system. In Sec.B.1, the derivation of the KF for a linear system, both
in the time-continuous and in the time-discrete formulation, is presented. Moreover, the
theory underlying the passage from the time-continuous to the time-discrete formulation
is discussed. In Sec.B.2, the extension to the estimation of a non-linear time-continuous
system with time-discrete measurement is presented.

B.1 Kalman filtering for linear systems

B.1.1 The Continuous Kalman Filter

Let’s take a process x(t) and a measurement y(t) whose dynamics is governed by the
following linear equations: ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t)

y(t) = C(t)x(t) + v(t)
(B.1)
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where u(t) is a deterministic quantity (i.e., the input), w(t) and v(t) are respectively the
process and the measurement noise. These two quantities are two uncorrelated zero mean
Gaussian processes whose covariances Q and R are defined according to:

E
[
w(t)wT (τ)

]
= Q(t)δ(t− τ)

E
[
v(t)vT (τ)

]
= R(t)δ(t− τ)

E
[
v(t)wT (τ)

]
= 0

(B.2)

with E[ν] denoting the expected value of the random variable ν. The objective of the
Kalman Filter is to provide the best estimate x̂ of the process exploiting the difference
between the real measurement y (affected by noise) and the predicted measurement (ŷ).
The equation governing the process estimate is therefore written in the form: ˆ̇x(t) = A(t)x̂(t) +B(t)u(t) +K(t)[y(t)− ŷ(t)]

ŷ(t) = C(t)x̂(t)
(B.3)

Introducing the state error e(t):

e(t) = x̂(t)− x(t) , (B.4)

Eqs.(B.1) and (B.3) allows to derive the dynamics of the error e(t):

ė(t) = A(t)x̂(t) +B(t)u(t) +K(t)[y(t)− ŷ(t)]− A(t)x(t)−B(t)u(t)−G(t)w(t)

= A(t)x̂(t)− A(t)x(t) +K(t)[C(t)x(t) + v(t)− C(t)x̂(t)]−G(t)w(t)

= [A(t)−K(t)C(t)]e(t) +K(t)v(t)−G(t)w(t)
(B.5)

which can be written as:

ė(t) = E(t)e(t) + z(t) with

 E(t) = A(t)−K(t)C(t)
z(t) = −G(t)w(t) +K(t)v(t)

(B.6)

The Gaussian processes v(t) and w(t) are not correlated, thus the covariance of z(t) can
be written in the form:

E
[
z(t)zT (τ)

]
=
[
G(t)Q(t)GT (t) +K(t)R(t)KT (t)

]
δ(t− τ) (B.7)

The state error covariance P (t) = E
[
e(t)eT (t)

]
can be computed reminding the general

solution for a linear system of the first order such as the one in Eq.(B.6). Denoting
Φe(t, t0) the transition matrix of the system in Eq.(B.6) (i.e., ΦE(t, t0) = eE(t)(t−t0), and
ΦT
E(t, t0) = eET (t)(t−t0)), we have:

P (t) = E
[(

ΦE(t, t0)e(t0) +
∫ t

t0
ΦE(t, τ)z(τ)dτ

)(
ΦE(t, t0)e(t0) +

∫ t

t0
ΦE(t, τ)z(τ)dτ

)T]

(B.8)
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Assuming that e(t) and z(t) are uncorrelated, Eq.(B.8) becomes:

P (t) = E
[
ΦE(t, t0)e(t0)eT (t0)ΦT

E(t, t0)
]

+ E
[(∫ t

t0
ΦE(t, τ)z(τ)zT (τ)ΦT

E(t, τ)dτ
)]

(B.9)
Being E

[
e(t0)eT (t0)

]
= P (t0), and reminding Eq.(B.7), the expression of the state error

covariance becomes:

P (t) = ΦE(t, t0)P (t0)ΦT
E(t, t0) +

∫ t

t0
ΦE(t, τ)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t, τ)dτ

(B.10)
Replacing (t− τ) with (t− t0) + (t0 − τ), it is possible to write:

P (t) = ΦE(t, t0)
(
P (t0) +

∫ t

t0
ΦE(t0, τ)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t0, τ)dτ

)
ΦT
E(t, t0)

(B.11)
Eq.(B.11) is derived in order to obtain the expression of Ṗ (t), which is:

Ṗ (t) = E(t)ΦE(t, t0)
(
P (t0) +

∫ t

t0
ΦE(t0, τ)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t0, τ)dτ

)
ΦT
E(t, t0)+

+ΦE(t, t0)
(
P (t0) +

∫ t

t0
ΦE(t0, τ)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t0, τ)dτ

)
ΦT
E(t, t0)ET (t)+

+ΦE(t, t0) d
dt

(∫ t

t0
ΦE(t0, τ)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t0, τ)dτ

)
ΦT
E(t, t0)

Ṗ (t) = E(t)P (t) + P (t)ET (t) + ΦE(t, t0)
(
ΦE(t0, t)

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT
E(t0, t)

)
ΦT
E(t, t0)
(B.12)

From Eq.(B.12) the following differential Lyapunov equation is obtained:

Ṗ (t) = E(t)P (t) + P (t)ET (t) +G(t)Q(t)GT (t) +K(t)R(t)KT (t)
Ṗ (t) = [A(t)−K(t)C(t)]P (t) + P (t) [A(t)−K(t)C(t)]T +G(t)Q(t)GT (t) +K(t)R(t)KT (t)

(B.13)
The optimal gain K(t) is computed in order to minimize the trace of Ṗ (t). Knowing
that the covariance matrix is symmetric (P (t) = P (t)T ), and applying the following trace
properties 

tr(ABC) = tr(CAB) = tr(BCA)

∂tr(AB)
∂A

= BT

∂tr(ACAT )
∂A

= 2AC

(B.14)

it is possible to write:

∂tr(Ṗ (t))
∂K(t) = −2P (t)CT (t) + 2K(t)R(t) = 0 (B.15)

which leads to the expression of the optimal Kalman gain K(t):

K(t) = P (t)CT (t)R−1(t) (B.16)
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Replacing the expression of K(t) in Eq.B.13 with Eq.(B.16) leads to:

Ṗ (t) = A(t)P (t)− P (t)CT (t)R−1(t)C(t)P (t) + P (t)AT (t) + ...

...− P (t)CT (t)R−1(t)C(t)P (t) +G(t)Q(t)GT (t) + P (t)CT (t)R−1(t)R(t)R−1(t)C(t)P (t)

Ṗ (t) = A(t)P (t) + P (t)AT (t)− P (t)CT (t)R−1(t)C(t)P (t) +G(t)Q(t)GT (t)
(B.17)

which is a continuous Riccati equation that allows computing the estimated covariance
matrix. The KF operates as follows: once initialized with a guess of x̂(t0) and P (t0),
the gain K(t) is computed using Eq.B.16. Then x̂(t) and P (t) are computed through
integration of Eq.B.3 and B.13.

B.1.2 The Discrete Kalman Filter

The Navigation functions operates in the discrete-time domain with a given rate. Thus,
a discrete version of the Kalman Filter should be derived.
Let’s consider the time-discrete process xk and the time-discrete measurement yk that are
governed by the following linear time-discrete equation: xk = Akxk−1 +Bkuk +Gkwk

yk = Ckxk + vk
(B.18)

where wk and vk represent respectively the process and the measurement noise, uncorre-
lated one from the other, white and with normal probability distributions, with covariance
Qk and Rk such that: 

E [wkwj] =

 0 k 6= j

Qk k = j

E [vkvj] =

 0 k 6= j

Rk k = j

(B.19)

The a priori estimates of process and of measurement are defined as the system was not
affected by noise:  x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

ŷk|k−1 = Ckx̂k|k−1
(B.20)

As in the continuous case, the objective of the Kalman Filter is to exploit the difference
between the real measurement yk and the predicted measurement ŷk|k−1 to obtain the
information needed to update the a priori estimate x̂k|k−1, and compute the optimal a
posteriori estimate x̂k|k. The goal is to find an equation that computes the a posteriori
estimate as a linear combination of the a priori estimate and the so called residual, which is
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the difference between the real measurement yk and the predicted one (ŷk|k−1 = Ckx̂k|k−1):

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)
= (I −KkCk)x̂k|k−1 +Kk(Ckxk + vk)

(B.21)

Let’s introduce the a priori estimation error ek|k−1 and the a posteriori estimation error
ek|k:  ek|k = xk − x̂k|k

ek|k−1 = xk − x̂k|k−1 = Akek−1|k−1 +Gkwk
(B.22)

Eq.(B.21) can be manipulated in order to express the dependence of the a posteriori error
to the a priori one. Subtracting xk from the right and left side of Eq.(B.21) one obtains:

x̂k|k − xk = (I −KkCk)x̂k|k−1 +KkCkxk − xk +Kkvk

ek|k = (I −KkCk)ek|k−1 −Kkvk
(B.23)

The optimal value of Kk is the one that minimize the trace of the a posteriori state error
covariance Pk|k. Reminding that the process and the measurement noises are independent
one from another, and that the noise has covariance equal to Rk, it is possible to write:

Pk|k = E
[
ek|keTk|k

]
= E

[
(I −KkCk)ek|k−1eTk|k−1(I −KkCk)T

]
+ E

[
Kkvkv

T
kK

T
k

]
= (I −KkCk)Pk|k−1(I −KkCk)T +KkRkK

T
k

(B.24)

where Pk|k−1 is the a priori state error covariance:

Pk|k−1 = E
[
ek|k−1eTk|k−1

]
= E

[
(Akek−1|k−1 +Gkwk)(Akek−1|k−1 +Gkwk)T

]
= AkPk−1|k−1A

T
k +GkQkG

T
k

(B.25)

The Optimal Kalman Gain Kk is found imposing the partial derivative of the a posteriori
state error covariance with respect to Kk to be equal to 0. Applying the same trace
properties introduced for the time-continuous case in Eq.(B.14) we obtain:

∂tr(Pk|k)
∂Kk

= −Pk|k−1C
T
k − Pk|k−1C

T
k + 2KkCkPk|kC

T
k + 2KkRk = 0 (B.26)

which is solved by a value of Kk equal to:

Kk = Pk|k−1C
T
k (CkPk|kCT

k +Rk)−1 (B.27)
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Once that the optimal gain is computed, the state is updated using Eq.(B.21), and the a
posteriori error covariance is updated using Eq.(B.24):

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)T +KkRkK
T
k

= Pk|k−1 −KkCkPk|k−1 − Pk|k−1C
T
k K

T
k +KkCkPk|k−1C

T
k K

T
k +KkRkK

T
k

= Pk|k−1 −KkCkPk|k−1 − Pk|k−1C
T
k K

T
k +Kk(CkPk|k−1C

T
k +Rk)KT

k

= Pk|k−1 −KkCkPk|k−1 − Pk|k−1C
T
k K

T
k +Kk(K−1

k Pk|k−1C
T
k )KT

k

= Pk|k−1 −KkCkPk|k−1 − Pk|k−1C
T
k K

T
k + Pk|k−1C

T
k K

T
k

= (I −KkCk)Pk|k−1

(B.28)

The discrete KF will therefore operate as follows. An a priori estimate of the state, the
measurement, and the state error covariance are predicted using the state equations and
the a posteriori estimate of the previous step. This phase is named prediction:

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk

ŷk|k−1 = Ckx̂k|k−1

Pk|k−1 = AkPk−1A
T
k +GkQkG

T
k

(B.29)

Then the gain is computed, taking into account the noise covariance and the a priori
predicted error covariance:

Kk = Pk|k−1C
T
k (CkPk|kCT

k +Rk)−1 (B.30)

Finally, both the state and the state error covariance matrix are corrected in the update
step obtaining the a posteriori estimates: x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = (I −KkCk)Pk|k−1
(B.31)

In practice, the Kalman gain Kk is a sort of weight that discriminate which contribution
between the a priori estimate and the measurement residual are going to be given more
importance in the computation of the update. Taking the two limit cases, if the mea-
surement noise covariance Rk tends to zero, Kk tends to C−1

k and the update is simply
calculated by inverting the relation state/measurement:

x̂k|k = x̂k|k−1 + C−1
k (yk − Ckx̂k|k−1)

= C−1
k yk

(B.32)

On the other hand, if the measurement noise covariance matrix tends to infinity (i.e., the
measurement are not reliable), or if the a priori error covariance tends to zero (i.e., the
process prediction is completely reliable), the Kalman gain is equal to zero and therefore
the a posteriori estimate is equal to the a priori one:

x̂k|k = x̂k|k−1 (B.33)
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B.1.3 From the Continuous to Discrete Kalman Filter

When implementing optimal estimation of a time-continuous process with a digital filter,
there is the need of discretizing the time-continuous equations that govern the dynamic
of the process. In this section the correspondence between the continuous state matrix
A(t) and input matrix B(t), and the discrete state matrix Ak and input matrix Bk is
presented. Remembering the expression of the general solution for a system in the form
of Eq.(B.1) for t0 = 0:

x(t) = eAtx0 +
∫ t

0
Φf (t, τ)Bu(τ)dτ = eAtx0 +

∫ t

0
eAte−AτBu(τ)dτ (B.34)

it is possible to write the solution at the consecutive instants tk+1 = (k+1)T and tk = kT :


x(kT ) = eAkTx0 +

∫ kT

0
eAkT e−AτBu(τ)dτ

x((k + 1)T ) = eA(k+1)Tx0 +
∫ (k+1)T

0
eA(k+1)T e−AτBu(τ)dτ

(B.35)

Multiplying all the terms of the first equation in (B.35) by eAT and solving the equation
for eA(k+1)Tx0 we get:

eA(k+1)Tx0 = eATx(kT )−
∫ kT

0
eA(k+1)T e−AτBu(τ)dτ (B.36)

The value of eA(k+1)Tx0 found in Eq.(B.36) can be replaced in the second equation
of(B.35):

x((k + 1)T ) = eATx(kT ) +
[∫ (k+1)T

0
eA(k+1)T e−AτBu(τ)dτ −

∫ kT

0
eA(k+1)T e−AτBu(τ)dτ

]
(B.37)

which is equivalent to:

x((k + 1)T ) = eATx(kT ) +
∫ (k+1)T

kT
eA(k+1)T e−AτBu(τ)dτ (B.38)

Then, supposing that in the interval from kT to (k + 1)T the input u(t) = u(kT ) is
constant and equal to u(tk), it is possible to take it out of the integral, obtaining:

x((k + 1)T ) = eATx(kT ) +
∫ (k+1)T

kT
eA[(k+1)T−τ ]Bdτ u(kT ) τ ∈ [kT, (k + 1)T [

(B.39)
It is possible to see that as τ ranges from kT to (k+1)T (i.e., the lower and the upper limit
of the integration) the exponent ranges from T to 0. If a new variable λ = (k+ 1)T − τ is
introduced, then dλ = −dτ , and λ ranges from λ = T to λ = 0 as τ ranges from τ = kT

to τ = (k + 1)T , and Eq.(B.39) becomes:

x((k + 1)T ) = eATx(kT )−
∫ 0

T
eAλBdλ u(kT ) λ ∈ [0, kT [

= eATx(kT ) +
∫ T

0
eAλBdλ u(kT ) λ ∈ [0, kT [

(B.40)
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which can be written as:

x(tk+1) = eATx(tk) +
∫ T

0
eAλBdλ u(tk)

x(tk+1) = Akx(tk) +Bku(tk)
(B.41)

For a linear system, the correspondence between the continuous-time state and input
matrices A(t) and B(t), and the discrete-time state and input matrices Ak, Bk is therefore:

Ak = eAT = Φ(T ) Bk =
∫ T

0
eATBdt (B.42)

In the scope of this thesis, this equivalence will be useful to model the relative translational
dynamics of the chaser with respect target, as it will be detailed in Sec.C.2.2.

B.2 The Continuous-Discrete Extended Kalman Fil-
ter

The Kalman theory can be extended to non-linear dynamic systems by means of lineariza-
tion. However, the obtained estimate is no more optimal, i.e., the computed Kalman gain
is not the gain that minimize the a posteriori state error covariance matrix. In this sec-
tion we details the theory underlying the Continuous-Discrete Extended Kalman Filter
(CD-EKF), which is a version of the KF allowing to estimate a time-continuous non linear
process with time-discrete measurements [Frogerais et al., 2012, Kulikov and Kulikova,
2014]. For the scope of this thesis, the CD-EKF will be used for the estimation of the
rotational dynamics of the target. Let’s take a dynamic system given in the following
form: 

dx(t)
dt

= f (t, x(t)) +Bu(t) +Gw(t)

y(tk) = c(x(tk)) + v(tk)⇐⇒ yk = c(xk) + vk

(B.43)

where x(t) is a time-continuous non-linear process, f(t, x(t)) is the nonlinear equation
describing the dynamic of the system. w(t) is the Gaussian process noise with covariance
Q (w(t) ∼ N (0, Q))and G is the noise input matrix. At the time instant tk, the prediction
of both the state and the covariance matrix P is computed integrating numerically from
t = tk−1 to t = tk the following coupled ordinary differential equations:

dx

dt
= f(t, x) +Bu(t)

dP

dt
= ∂f(t, x)

∂x
P +

(
∂f(t, x)
∂x

)T
P +GQ(t)GT = R(P, t)

(B.44)
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The second equation in the system is a differential Lyapunov equation that can be derived
as follows. Firstly, the state equation can be linearized and written as:

dx(t)
dt
∼ ∂f(t, x)

∂x
x(t) +Bu(t) +Gw(t) (B.45)

The integration of this equation from an initial time t0 to the running time t yields to:

x(t) = Φf (t, t0)x(t0) +
∫ t

t0
eF (t−τ)Bu(τ)dτ +

∫ t

t0
eF (t−τ)Gw(τ)dτ (B.46)

where Φf is the state transition matrix of the linearized process (i.e., Φf (ti, tj) = eF (ti−tj),

with F the Jacobian of f , F = ∂f(t, x)
∂x

) The state error covariance matrix can be com-
puted from its definition:

P (t) = E
[
(x(t)−m(t))(x(t)−m(t))T

]
(B.47)

where m(t) is the mean (i.e., the expected value) of x(t):

m(t) = E [x(t)] = E
[
Φf (t, t0)x(t0) +

∫ t

t0
eF (t−τ)Bu(τ)dτ +

∫ t

t0
eF (t−τ)Gw(τ)dτ

]
= Φf (t, t0)m(t0) +

∫ t

t0
eF (t−τ)Bu(τ)dτ

(B.48)
The computation of the state error covariance matrix ca be carried out similarly to what
has been done for the time-continuous linear case:

P (t) = E
[(

Φf (t, t0)x(t0) +
∫ t

t0
Φf (t, τ)Bu(τ)dτ +

∫ t

t0
Φf (t, τ)Gw(τ)dτ − Φf (t, t0)m(t0)−

∫ t

t0
Φf (t, τ)Bu(τ)dτ

)
...

...
(

Φf (t, t0)x(t0) +
∫ t

t0
Φf (t, τ)Bu(τ)dτ +

∫ t

t0
Φf (t, τ)Gw(τ)dτ − Φf (t, t0)m(t0)−

∫ t

t0
Φf (t, τ)Bu(τ)dτ

)T]

P (t) = E
[(

Φf (t, t0)
(
x(t0)−m(t0)

)
+
∫ t

t0
Φf (t, τ)Gw(τ)dτ

) (
Φf (t, t0)

(
x(t0)−m(t0)

)
+
∫ t

t0
Φf (t, τ)Gw(τ)dτ

)T]

P (t) = E
[(

Φf (t, t0)
(
x(t0)−m(t0)

))(
Φf (t, t0)

(
x(t0)−m(t0)

))T]
+ E

[(
Φf (t, t0)

(
x(t0)−m(t0)

))(∫ t

t0
Φf (t, τ)Gw(τ)dτ

)T]
+ ...

...+ E
[(∫ t

t0
Φf (t, τ)Gw(τ)dτ

)(
Φf (t, t0)

(
x(t0)−m(t0)

))T]
+ E

[(∫ t

t0
Φf (t, τ)Gw(τ)dτ

)(∫ t

t0
Φf (t, τ)Gw(τ)dτ

)T]

P (t) = Φf (t, t0)E
[(
x(t0)−m(t0)

)(
x(t0)−m(t0)

)T ]
ΦT
f (t, t0) + 0 + 0 + E

[∫ t

t0
Φf (t, t0)Φf (t0, τ)Gw(τ)w(τ)TGTΦT

f (t0, τ)ΦT
f (t, t0)dτ

]

P (t) = Φf (t, t0)
(
P (t0) +

∫ t

t0
Φf (t0, τ)G E

[
w(τ)w(τ)T

]
GTΦT

f (t0, τ)dτ
)

ΦT
f (t, t0)

(B.49)
The final expression of the state error covariance will be:

P (t) = Φf (t, t0)
(
P (t0) +

∫ t

t0
Φf (t0, τ)G QGTΦT

f (t0, τ)dτ
)

ΦT
f (t, t0) (B.50)
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Eq.(B.50) is derived in order to obtain Ṗ (t):

Ṗ (t) = FΦf (t, t0)
(
P (t0) +

∫ t

t0
Φf (t0, τ)G QGTΦT

f (t0, τ)dτ
)

ΦT
f (t, t0) + ...

...+ Φf (t, t0)
(
P (t0) +

∫ t

t0
Φf (t0, τ)G QGTΦT

f (t0, τ)dτ
)

ΦT
f (t, t0)F T + ......

...+ Φf (t, t0) d
dt

(∫ t

t0
Φf (t0, τ)G QGTΦT

f (t0, τ)dτ
)

ΦT
f (t, t0)

Ṗ (t) = FP (t) + P (t)F T + Φf (t, t0)
(
Φf (t0, t)G QGTΦT

f (t0, t)
)

ΦT
f (t, t0)

(B.51)
This lead to the differential Lyapunov equation presented in (Eq.B.44):

Ṗ (t) = FP (t) + P (t)F T +GQGT (B.52)

This system in Eq.B.44 is solved numerically dividing the step ∆t = tk − tk−1 in sub-
steps tk,n of size equal to δ, where tk,1 < ... < tk,n < ... < tk,α, tk,1 = tk−1, tk,α = tk

and δ = tk,n − tk,n−1. At each sub-step, the prediction is done applying an Explicit
Runge-Kutta method of order i, as shown by the following equation:

xk,n = xk,n−1 +
(
RKδi f

)
(xk,n−1, tk,n−1)

Pk,n = Pk,n−1 +
(
RKδiR

)
(Pk,n−1, tk,n−1)

(B.53)

For the rotational dynamics KF developped in Chapter2, a fourth order scheme is used:(
RKδ4f

)
(t, x) = δ

6 (K1 + 2K2 + 2K3 +K4) (B.54)

where: 

K1 = f(t, x)

K2 = f(t+ δ

2 , x+ δ

2K1)

K3 = f(t+ δ

2 , x+ δ

2K2)

K4 = f(t, x+ δK3)

(B.55)

The so computed values of x(tk) and P (tk) are the a priori prediction of the state and
the covariance matrix x̂k|k−1 and Pk|k−1 . From this moment on the CD-EKF follows
the steps of a classical Discrete Kalman Filter in order to compute the gain Kk and the
update using the discrete measurement yk. As in Section B.1.2, the goal is to find an
equation that computes the a posteriori estimate as a linear combination of the a priori
estimate and the difference between the real measurement y(xk|k−1) and the predicted one
(ỹ(x̂k|k−1)):

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (B.56)
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If the measurement is a non-linear function of the state, an approximation has to be
introduced before computing the Kalman gain:

Ck = ∂ci
∂xj

(x̂k|k−1, 0) (B.57)

The predicted and the real measurement can be approximated to:

ỹk ' Ckxk + vk
˜̂yk ' Ckx̂k|k−1

(B.58)

The equation of the a posteriori error can be now manipulated as in Eq.(B.23) and the a
posteriori error is found:

ek = (I −KkCk)ek|k−1 −Kkvk (B.59)

The covariance is computed taking into account that the process and the measurement
noises are independent one from another, and that the measurement noise has discrete
covariance equal to Rk:

Pk|k = E
[
ek|keTk

]
= E

[
(I −KkCk)ek|k−1e−Tk (I −KkCk)T

]
+ E

[
Kkvv

TKT
k

]
= (I −KkCk)Pk|k−1(I −KkCk)T +KkRkK

T
k

(B.60)

where Pk|k−1 is the a priori error covariance matrix that was computed through numerical
integration. The Kalman Gain Kk is found minimizing partial derivative of the a poste-
riori state error covariance matrix with respect to Kk, using the now well known trace’s
properties in Eq.(B.14):

∂tr(Pk|k)
∂Kk

= −Pk|k−1C
T
k − Pk|k−1C

T
k + 2KkCkPk|kC

T
k + 2KkRk = 0 (B.61)

This leads to a value of Kk equal to:

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)−1 (B.62)

As anticipated, unlike the linear cases, the so computed Kalman Gain is not the optimal
gain even if it is found through minimization of the a posteriori covariance. In fact two
approximations due to linearization issues have been introduced, namely the Jacobian
A used to compute numerically the a priori covariance Pk|k−1 and the Jacobian C that
linearize the non-linear measurement sensitivity matrix.
The a posteriori state estimate and state error covariance matrix can now be computed:

Pk|k = (I −KkCk)Pk|k−1 (B.63)
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Alternatively, the covariance update can be derived using the so-called Joseph Form,
which is claimed to be more numerically-stable [Crassidis and Junkins, 2011]:

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)T +KkRK
T
k (B.64)

However, Joseph’s stabilized version requires more computations than the classical form.
For the update of the state, the non-linear sensitivity function c(xk) can be directly used
without need of exploiting the Jacobian Ck:

x̂k|k = x̂k|k−1 +Kk

(
yk − c(x̂k|k−1)

)
(B.65)
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Appendix C
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This appendix provides an overview of the models governing the translational and
rotational dynamics of both target and chaser during a space rendezvous. First, a short
introduction on Keplerian orbits and the absolute translational dynamic model imple-
mented in the RDV simulator is given. Then, the relative translational dynamics model
underlying a rendezvous is presented, as well as the rotational dynamic model.

C.1 Absolute translational dynamics

According to the Keplerian two-body problem, the knowledge of the S/C state vector
(position and velocity) at any instant allows the determination of a unique set of six
orbital elements (a semi-major axis, e eccentricity, i inclination, Ω Right Anomaly of
Ascending Node (RAAN), ω argument of periapsis and θ the true anomaly) and vice-
versa. The RAAN and i define the orbital plane, a and e define the shape of the orbit
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(i.e., “dimension” and type of conic), ω fixes the position of the periapsis on the orbital
plane, while θ is the only time-varying parameter and indicates the angular position of
the spacecraft with respect to the periapsis.
In order to define the orbital parameters, an inertial reference frame must be selected.
When studying Earth orbits, the J2000 Earth centered equatorial frame is usually chosen
(i.e., the ECI, which stands for Earth-Centered-Inertial)[ESA, 2012]:

• xi axis direction is towards the mean equinox at J2000 (i.e., the intersection between
the J2000 equatorial plane and the ecliptic plane).

• zi axis is defined by the direction of the Earth mean rotation axis at J2000

• yi axis completes the right-handed trihedron

The RF origin is at the Earth’s center of mass, which can be assumed to be the orbital
focus of all the artificial Earth satellite orbits, as Earth mass is in the order of 1024 kg.
As anticipated, the angles Ω and i define the orbital plane of an object orbiting around
Earth, and with ω they identify the so called Orbital Reference Frame:

• a rotation of Ω around inertial zi axis defines x′ and y′ axis ( x′ is also called
ascending node N , and defines the intersection between the equatorial plane and
the orbital plane)

• a rotation of i around x′ axis defines a z′ axis (which corresponds to the angular
momentum h of the orbit) and y′′ .

• a third rotation of an angle ω around z′ = h axis rotates x′ axis to x′′ which intersects
the perigee of the orbit.

The matrix that allows the passage from a vector xi written in the inertial frame and
a vector xorb written in the orbital frame is obtained by multiplying the three rotation
matrices RΩ, Ri, Rω :

xi = Ri−orb x
orb = RΩRiRω x

orb (C.1)

where

RΩ =


cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 Ri =


1 0 0
0 cos i − sin i
0 sin i cos i

 Rω =


cosω − sinω 0
sinω cosω 0

0 0 1


(C.2)

From the Orbital RF, it is possible to easily define the Local Orbital Frame (LOF) of a
spacecraft, which become essential when dealing with relative translational dynamics. The
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Local Orbital RF is a moving RF centered at the spacecraft COM. During rendezvous,
the relative motion is studied as the relative motion of the chaser with respect to the
target, expressed in the Local Orbital Frame of the target. . More than one convention
exist to define this RF In this thesis, the RVH convention will be used [Curtis, 2013]. The
Local Orbital Frame is defined such that:

• xLOF axis is the radial that goes from Earth to the spacecraft, i.e., the R-bar.

• zLOF axis is directed as h, the angular momentum of the spacecraft orbit, i.e., the
H-bar.

• yLOF axis completes the trihedron (for circular orbits, it is directed as the tangential
velocity vector), i.e., the V bar.

The transformation that goes from the Orbital Frame to the Local Orbital Frame of a
spacecraft is a rotation of an angle θ (where θ is the true anomaly of the spacecraft)
around angular momentum vector h (i.e., zorb).

xorb = Rorb−LOF x
LOF = Rθ x

LOF =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xLOF (C.3)

xi = Ri−LOF x
LOF = RΩRiRωRθ x

LOF (C.4)

Since the rotations of ω and θ are performed around the same axis, they can be collected
in the same rotation matrix Ru where u = ω + θ:

Ru = RωRθ =


cos (ω + θ) − sin (ω + θ) 0
sin (ω + θ) cos (ω + θ) 0

0 0 1

 (C.5)

and
xi = Ri−LOF xLOF = RΩRiRu x

LOF (C.6)

Usually another convention known as LVLH (Local Vertical, Local Horizontal) convention
is used[Fehse, 2003]:

• zLV LH axis is the radial that goes from the spacecraft to the Earth COM, i.e., -R-bar.

• yLV LH axis is directed in the direction opposite to the angular momentum of space-
craft orbit, i.e., -H-bar.

• xLV LH axis completes the trihedron (for circular orbits, it is directed as the tangen-
tial velocity vector), i.e., the V-bar.
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In order to pass from the RVH convention to the LVLH convention, a rotation of π/2
around h followed by a rotation of −π/2 around the obtained x axis are needed:

xLV LH =


0 1 0
0 0 −1
−1 0 0

xRVH (C.7)

For a Keplerian orbit, only θ is a time-varying orbital element, and it is responsible
of the rotation of the LOF. Nevertheless, in the presence of perturbations, such as the
atmospheric drag in LEO, the Earth’s non uniform mass distribution, the solar pressure,
and third body perturbation, the Keplerian orbital elements are not constant. Therefore,
at any instant, the position and velocity components allow to compute the parameters
of the osculating Keplerian orbit described by the spacecraft motion. Using the so called
force-approach, the variation of the orbital parameters can be described by a system
of differential equations called Gauss Planetary Equations where the perturbations are
written in the form of accelerations. These equations directly relate the perturbing force
components to the rate of change of the orbital elements. The equations that governs the
variation of the elements can be derived expressing the accelerations either in the Local
Orbital RF, with accelerations that have component fr directed as the radial unit vector
r̂, fθ perpendicular to r̂ and in the orbital plane, and fh directed as the unit vector ĥ
parallel to the angular momentum, or in the intrinsic reference frame (which is a frame
where x is directed as the normal to the orbit trajectory n̂, y is directed as the tangent to
the orbit trajectory t̂ and z is directed as ĥ. For completeness, we report here set of the
Gauss equations used in the rendezvous simulator using for this study, with perturbing
accelerations expressed in the local orbital reference frame:

da
dt = 2

√
a3√

µ(1− e2)
[e sin θ · fr + (1 + e cos θ) · fθ]

de
dt =

√
a(1− e2)

µ
[sin θ · fr + (cos θ + cosE) · fθ]

di
dt =

√
a(1− e2)

√
µ(1 + e cos θ) cosu · fh

dΩ
dt =

√
a(1− e2)

√
µ(1 + e cos θ)

sin u
sin i · fh

dω
dt =

√
a(1− e2)

µ

[
−cos θ

e
· fr + 2 + e cos θ

e(1 + e cos θ) sin θ · fθ −
sin u cot i
1 + e cos θ · fh

]
dM
dt =

√
µ

a3 −
√
a

µ

1− e2

e(1 + e cos θ) [(2e− cos θ − e cos2 θ) · fr + (2 + e cos θ) sin θ · fθ]

(C.8)
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where µ is the gravitational constant of the planet and the variable M is the mean anomaly
of the orbit, a parameter which is linearly proportional to the time and allows to compute
the true anomaly θ [Curtis, 2013]. The orbit propagator used for this study integrates,
at each time instant, the osculating orbital parameters, from which the absolute position
and velocity of the S/C are derived. In the following paragraphs the perturbations that
have been included in the RDV simulator used for this study are briefly detailed (i.e., the
atmospheric drag, the solar pressure, and the non-uniform mass distribution).

Atmospheric drag
When the perigee of an orbit is below 1000 km, the atmospheric drag effects is not
negligible and it increases as the altitude decreases. Drag, unlike other perturbation
forces, is a non-conservative force and continuously decreases the energy of the orbit
reducing its semi-major axis.
The effect of the atmosphere on a spacecraft should be studied taking into account the
contribution of each spacecraft’s surface and the orientation of each surface with respect
to the relative velocity of the spacecraft in the atmospheric flow. It produces both a force
and a torque. However, in a first approximation, the atmospheric drag acceleration can
be modeled according to:

fd = −1
2ρV

2CD
A

m
t̂ (C.9)

where ρ is the atmospheric density at the considered altitude, A is the cross sectional
area exposed to the flux, m is the mass of the spacecraft, CD is the dimensionless drag
coefficient of the spacecraft, V is the modulus of the S/C velocity. The components of
t̂ need to be expressed in the Orbital RF in order to identify the contribution fr , fθ
and fh. Actually, the atmosphere velocity due to the rotation of Earth and the presence
of atmospheric winds should be taken into account to compute the S/C velocity in the
aerodynamic flow. However, at the altitudes considered for the RDV scenarios, these
contributions can be neglected and the absolute translational velocity of the S/C can be
used. The highest uncertainty in Eq.(C.9) is brought by the atmosphere density, which
is a function of both the altitude and the time (due to the effect of solar flux and the
diurnal variation). For a first approximation we can consider a very simple model, the
so-called exponential model:

ρ = ρ0e
−α(h−h0) (C.10)

where h is the actual altitude of the spacecraft in kilometers, h0 is the reference height of
200 km where the value of density ρ0 = 10−10 kg/m3 is measured, and α is a scale factor
equal to 0.016 km−1. This model provide results corresponding to a low solar activity,
and therefore it defines the lower boundary of density values for a given altitude. Another
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model provides the higher boundary of values, and corresponding to a high solar activity:

ρ = A1e
(A2−A3

√
h), with


A1 = 2.14 10−10

A2 = 8.27
A3 = 1.68 10−2

(C.11)

During rendezvous operation, a difference in the values of m/(CDA) -also known as the
ballistic coefficient- of the target and the chaser produces the so called differential drag,
which causes deviation from the nominal relative trajectory.

Solar pressure
The solar-radiation pressure is induced by the light energy (photons) radiated from the
sun. The perturbing acceleration of a satellite due to solar-radiation pressure acceleration
can be computed by means of the following equation [ESA, 2015a]:

fsp = Cr
A

m
P0

(
r0

r

)2
r̂Sun−S/C (C.12)

where Cr is the solar radiation pressure reflectivity coefficient, A is the cross sectional area
exposed to the flux, m is the mass of the spacecraft, r is the distance Sun-S/C, vector,
r0 is the reference distance equal to 1 Astronomic Unit (UA), P0 is the solar radiation
pressure at the distance r0, and r̂Sun−S/C is the Sun-S/C unit vector. The components of
this vector need to be expressed in the Orbital RF in order to identify the contributions
fr , fθ and fh. Below 800 km of altitude, the perturbing acceleration from drag is greater
than that from solar radiation pressure, while, above 800 km, acceleration from solar
radiation pressure is greater [Larson and Wertz, 1992].

Non-uniform mass distribution
The non-uniform density distribution and the ellipsoid-shape of Earth are responsible of
one of the most relevant perturbation effects. As the Earth has a bulge at the equator
and a flattening at the poles, the equipotential surfaces of the Earth’s gravity filed are
not spheres, but they look like irregular ellipsoid. The gravitational potential to which a
S/C in Earth orbit is subjected at a given position r · r̂ can be written as:

U = µ

r

[
1−

∞∑
n=2

Jn

(
R

r

)n
Pn(sin δ)

]
(C.13)

where r is the Earth-S/C distance, µ is Earth gravitational constant, R is the equatorial
radius of Earth, δ is the geodetic latitude of the S/C, Jn are the so-called gravity harmonics
coefficients, and Pn indicates the Legendre polynomial of order n. The values of the
harmonics depend on the shape and mass distribution of the central body. The second

197



198 APPENDIX C. DYNAMIC MODELS

order zonal harmonic is J2 = 1.082629 · 10−3, while the following harmonics are of order
10−6 or lower. Thus, a reasonably good accuracy can be maintained by simply including
the J2 effect.
The Legendre polynomial by definition are

Pn(x) = 1
2nn!

dn

dxn
[(x2 − 1)n] (C.14)

For the second order harmonics, Eq.(C.14) becomes:

P2(sin δ) = 1
2(3 sin2 δ − 1) (C.15)

so the approximated potential function becomes:

U = k

r

[
1− J2

(
R

r

)2 (3
2 sin2 δ − 1

2

)]
(C.16)

The contribution due to J2 can be isolated from the potential of a perfect spherical body:

UJ2 = U − k

r
= −k

r
J2

(
R

r

)2 (3
2 sin2 δ − 1

2

)
(C.17)

The declination δ can be expressed using the coordinates of the considered point expressed
in the ECI RF, and the distance r:

z = r sin δ ⇒ sin δ = z

r
(C.18)

Eq.(C.17) becomes:

UJ2 = −k
r
J2

(
R

r

)2 (3
2
z2

r2 −
1
2

)
(C.19)

The perturbing forces along each component can be derived by taking partial derivatives
of UJ2 :

fJ2 = ~∇UJ2 = ∂UJ2

∂r
r̂ + ∂UJ2

∂z
ẑ (C.20)

Once derived, Eq.(C.20) has to be expressed in the Local Orbital Frame. This can be
done easily as the components of the unit vector ẑ of the ECI, expressed in the Local
Orbital RF, corresponds to the last row of the rotation matrix Ri−LOF of Eq.(C.6):

ẑLOF =


sin i sin u
sin i cosu

cos i

 , (C.21)

while the value z/r = sin i sin u. These relations allow to write the contribution of the
non-uniform mass distribution in analytical form as a function of the orbital parameters,
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which allows to include this perturbation source directly in Eq.(C.8):

fr = −3
2
kJ2R

2

r4 (1− sin2 i sin2 u))

fθ = −3
2
kJ2R

2

r4 (2 sin2 i sin u cosu)

fh = −3
2
kJ2R

2

r4 (2 sin i cos i sin u)

(C.22)

C.2 Relative translational dynamics

As detailed in Sec.1.2.1, the navigation must switch from absolute to relative as the
chaser gets closer to the target. The description of the relative translational dynamics
of the couple chaser-target using the Gauss equations would be to complex to be used
as a prediction model in a navigation filter. As it will be shown in this Section, after a
linearization of the gravitational acceleration that is acting on the chaser, it is possible
to write the relative dynamics of the chaser in the target LOF in the form of a linear
system of second order differential equations. The motion of a body under the influence
of a central force follows the Newton’s law of gravitation [Fehse, 2003] :

Fg(r) = −GMm

r2
r
r

= −µm
r3 r (C.23)

where
Fg(r) = gravitational force

G = universal gravitational constant

M = mass of the central body (e.g. Earth)

m = mass of the spacecraft

r = the radius vector, r = |r|

µ = GM

(C.24)

The central acceleration to which a S/C is subjected is:

fg(r) = −µ r
r3 (C.25)

Supposing that no perturbations are acting neither on the target nor on the chaser,
from Eq.(C.25) the equations of motion of the target and the chaser are given by:

r̈t = −µ rt
r3
t

r̈c = −µrc
r3
c

+ F
mc

(C.26)
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where F is the control force acting on the chaser and mc is the mass of the chaser.
The relative position s of the chaser with respect to the target, as well as the relative
acceleration s̈, expressed in the ECI frame, are:

s = rc − rt

s̈ = r̈c − r̈t
(C.27)

From Eqs.(C.26) and (C.27), one obtains

s̈ = −µrc
r3
c

+ µ
rt
r3
t

+ F
mc

= fg(rc)− fg(rt) + F
mc

(C.28)

Figure C.1: Relative target-chaser position. The axis X, Y , Z identify the ECI RF, while
the axis x̂, ŷ, ẑ identify target LOF

The expression of the gravitational force acting on the chaser fg(rc) can be linearized
around the vector rt by means of Taylor expansion:

fg(rc) = fg(rt) + dfg(r)
dr

∣∣∣∣∣
r=rt

(rc − rt) (C.29)

Considering that
r = [rx, ry, rz]T and r =

√
r2
x + r2

y + r2
z , (C.30)

fg(r) can be written as :

fg(r) = −µrx
r3 î+−µry

r3 ĵ +−µrz
r3 k̂ (C.31)

where î, ĵ, k̂ are the unit vectors directed along the ECI axis X, Y , Z (fig.C.1). Thus,
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the derivative dfg(r)
dr can be written in the form of the Jacobian:

dfg(r)
dr

= −µ



∂(rx/r3)
∂r

∂r

∂rx

∂(rx/r3)
∂r

∂r

∂ry

∂(rx/r3)
∂r

∂r

∂rz
∂(ry/r3)
∂r

∂r

∂rx

∂(ry/r3)
∂r

∂r

∂ry

∂(ry/r3)
∂r

∂r

∂rz
∂(rz/r3)
∂r

∂r

∂rx

∂(rz/r3)
∂r

∂r

∂ry

∂(rz/r3)
∂r

∂r

∂rz


(C.32)

which, evaluated in r = rt, gives

dfg(r)
dr

∣∣∣∣∣
r=rt

= − µ
r3
t

M , with M =



1− 3r
2
x

r2
t

3rxry
r2
t

3rxrz
r2
t

3ryrx
r2
t

1− 3
r2
y

r2
t

3ryrz
r2
t

3rzrx
r2
t

3rzry
r2
t

1− 3r
2
z

r2
t


(C.33)

Eq.(C.28) then becomes
s̈ = − µ

r3
t

Ms + F
mc

(C.34)

The aim now is to represent the chaser motion in the rotating target local orbital frame.
Being the rotation rate of the LOF equal to ω, and identifying with the index ∗ the
derivatives take in the rotating LOF, it is possible to write:

s̈ = ẍc − ẍt = ω̇ × s + ω × ω × s + ω × d∗s
dt + d∗2s

dt2
(C.35)

Eq.(C.35) can be expressed in LOF coordinates, where sLOF = [x, y, z], and ωLOF =
[0, 0, ω]. Being ω̇ equal to zero for a circular orbit, it is possible to write

d∗2s
dt2

=


ẍ

ÿ

z̈

 , ω × (ω × s) =


−ω2x

−ω2y

0

 , 2ω × d∗s
dt =


−2ωẏ
2ωẋ

0

 , dω

dt × s =


0
0
0


(C.36)

Moreover, knowing that rLOFt = [r, 0, 0], and reminding that for a circular orbit ω2 =
µ/r3, Eq.(C.34) becomes:

s̈ = − µ
r3
t

Ms + F
mc

= −ω2


−2 0 0
0 1 0
0 0 1



x

y

z

+ F
mc

= −


−2ω2x

ω2y

ω2z

+ F
mc

(C.37)

Substituting Eqs.(C.36),(C.37) into the Eq.(C.35), the well known linear system of
differential equation for the relative motion, known as Hill’s equations, is obtained:

ẍ− 3ω2x− 2ωẏ = γx

ÿ + 2ωẋ = γy

z̈ + ω2z = γz

(C.38)
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where the terms γx,y,z = Fx,y,z

mc
are the control accelerations of the chaser. The motion

of the z coordinate, which is also referred to as out-of-plane motion, is not coupled with
the in-plane motion (x and y components).

The system in (C.38) can be written in the time-continuous state-representation form,
by setting as state vector xip = [x, y, ẋ, ẏ]T for the in-plane motion and xop = [z, ż]T for
the out-of-plane motion:


ẋ

ẏ

ẍ

ÿ

 =


0 0 1 0
0 0 0 1

3ω2 0 0 2ω
0 0 −2ω 0




x

y

ẋ

ẏ

+



0 0
0 0
1
mc

0

0 1
mc


 Fx

Fy

→ ẋip = Aipxip +Bipuip

(C.39)

 ż

z̈

 =
 0 1
−ω2 0

  z

ż

+ 1
mc

 0
1

Fz → ẋop = Aopxop +Bopuop (C.40)

The homogeneous solution of the system in Eq.(C.38), which leads to the analyt-
ical computation of the transition matrix Φ0 of the time-continuous linear state-space
representation corresponding to Eqs.(C.39),(C.40), is known under the name of Clohessy-
Wiltshire equations and will be detailed in Sec.C.2.1. It must be reminded that this
linear system has been obtained by linearization of the gravitational force acting on the
chaser. Because of this linearization, the accuracy of the CWH equations decreases as the
target-chaser distance increases. In a LEO rendezvous mission, position errors will be-
come significant at a distance of a few tens of kilometers from the origin. For example, in
the radial direction (i.e., x), an error equal to ∆x = r(1− cos(y

r
)) is always present due to

the orbit curvature. For a target orbit at an altitude of h = 800km (i.e., r = 6766km), the
error in the radial direction is ∆x = 7.0 m at a distance of y = 10 km, and ∆x = 62.7m
at a distance of y = 30km. If a curved definition of the y-coordinate were used, the useful
range of the CWH equations could be significantly increased [Fehse, 2003].

C.2.1 Analytical solution for the homogeneous problem

The analytical solution of the set of second order differential equations in (C.38) is ob-
tained computing firstly the homogeneous solution (i.e., γx,y,z = 0), and then adding a
particular solution.
The computation of the homogeneous solution can be done in many ways, both in time
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domain or in Laplace domain. In the following section the solution in time domain pro-
posed by [Curtis, 2013] is presented. Assuming that in t = t0 the initial conditions are:


x(t0)
y(t0)
z(t0)

 =


x0

y0

z0

 ,

ẋ(t0)
ẏ(t0)
ż(t0)

 =


ẋ0

ẏ0

ż0

 (C.41)

the second equation in (C.38) cn be integrated:

d
dt(ẏ + 2ωx) = 0→ ẏ + 2ωx = const = ẏ0 + 2ωx0 (C.42)

It is possible therefore to write:

ẏ = ẏ0 + 2ω(x0 − x) (C.43)

and to substitute this result in the first equation of (C.38):

ẍ− 3ω2x− 2ω [ẏ0 + 2ω(x0 − x)]→ ẍ+ ω2x = 2ωẏ0 + 4ω2x0 (C.44)

This is a classical second order differential equation which has solution in the form of:

x = A sin(ω(t− t0)) +B cos(ω(t− t0)) + 1
ω2 (2ωẏ0 + 4ω2x0) (C.45)

Evaluating this equation at t = t0, the value of B is found:

x(t0) = x0 = B + 2
ω
ẏ0 + 4x0 → B = −3x0 −

2
ω
ẏ0 (C.46)

The value of A can be computed by differentiation of the expression of x, and evaluating
the obtained result in t = t0:

ẋ = ωA cos(ω(t− t0))− ωB sin(ω(t− t0))→ ẋ(t0) = ẋ0 = ωA→ A = ẋ0

ω
(C.47)

The expression of x becomes therefore:

x = ẋ0

ω
sin(ω(t− t0)) + (−3x0 −

2
ω
ẏ0) cos(ω(t− t0)) + 2

ω
ẏ0 + 4x0 (C.48)

And, rearranged:

x = (4− 3 cos(ω(t− t0)))x0 + sin(ω(t− t0))
ω

ẋ0 + 2
ω

(1− cos(ω(t− t0)))ẏ0 (C.49)

Deriving Eq.(C.49), the expression of ẋ is obtained:

ẋ = 3ω sin(ω(t− t0)))x0 + cos(ω(t− t0))ẋ0 + 2 sin(ω(t− t0))ẏ0 (C.50)
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In order to compute y, the expression of x in Eq.(C.49) is inserted in Eq.(C.43):

ẏ = ẏ0 + 2ω
[
x0 − (4− 3 cos(ω(t− t0)))x0 −

sin(ω(t− t0))
ω

ẋ0 −
2
ω

(1− cos(ω(t− t0))ẏ0

]
= 6ω(cos(ω(t− t0))− 1)x0 − 2sin(ω(t− t0))ẋ0 + (4 cos(ω(t− t0))− 3)ẏ0

(C.51)
Eq.(C.51) is then integrated in time:

y = 6ω
( 1
ω

sin(ω(t− t0))− (t− t0)
)
x0 + 2

ω
cos(ω(t− t0))ẋ0 +

( 4
ω

sin(ω(t− t0))− 3(t− t0)
)
ẏ0 + C

(C.52)
The integration constant C is found evaluating the equation in t = t0

y0 = 2
ω
ẋ0 + C → C = y0 −

2
ω
ẋ0 (C.53)

The expression of y is therefore:

y = 6 (sin(ω(t− t0))− ω(t− t0))x0 + y0 + 2
ω

(cos(ω(t− t0))− 1)ẋ0 +
( 4
ω

sin(ω(t− t0))− 3(t− t0)
)
ẏ0

(C.54)
For what concerns the third equation in (C.38), which describe the out-of-plane motion,
the solution is decoupled and can be expressed as:

z = D cos(ω(t− t0)) + E sin(ω(t− t0)) (C.55)

with 
D = z0

E = ż0

ω

(C.56)

Naming t− t0 = τ , the solution of the homogeneous problem is:

x = (4− 3cos(ωτ))x0 + sin(ωτ)
ω

ẋ0 + 2
ω

(1− cos(ωτ))ẏ0

y = 6 (sin(ω(τ))− ωτ)x0 + y0 + 2
ω

(cos(ωτ)− 1)ẋ0 + 1
ω

(4 sin(ωτ)− 3ωτ)ẏ0

ẋ = 3ω sin(ωτ)x0 + cos(ωτ)ẋ0 + 2 sin(ωτ)ẏ0

ẏ = 6ω(cos(ωτ)− 1)x0 − 2 sin(ωτ)ẋ0 + (4 cos(ωτ)− 3)ẏ0

z = cos(ωτ)z0 + 1
ω
sin(ωτ)ż0

ż = −ω sin(ωτ)z0 + cos(ωτ))ż0

(C.57)
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The homogeneous solution can be rearranged in matrix form, dividing the in-plane-motion
from the out-of-plane motion:


x

y

ẋ

ẏ

 =



4− 3cosωτ 0 sin(ωτ)
ω

2
ω

(1− cos(ωτ))

6 (sin(ωτ)− ωτ) 1 2
ω

(cos(ωτ)− 1) 1
ω

(4 sin(ωτ)− 3ωτ)

3ω sin(ωτ) 0 cos(ωτ) 2 sin(ωτ)

6ω(cos(ωτ)− 1) 0 −2 sin(ωτ) (4 cos(ωτ)− 3)




x0

y0

ẋ0

ẏ0



(C.58)

 z

ż

 =

 cos(ωτ) 1
ω

sin(ωτ)

−ω sin(ωτ) cos(ωτ)


 z0

ż0

 (C.59)

The solutions for both the in-plane motion and the out-of-plane one are written therefore
in the form of: 

xip(t) = Φip(τ)xip(t0)

xop(t) = Φop(τ)xop(t0)
(C.60)

We also know that the general expression for the solution of the homogeneous problem in
the state-space domain can be written as:

xip(t) = eAip(t−t0)xip(t0) = eAip(τ)xip(t0)

xop(t) = eAop(t−t0)xop(t0) = eAop(τ)xop(t0)
(C.61)

which means that the matrices in Eqs.(C.58) and (C.59) are the the so-called State Tran-
sition Matrix (STM) of the system:

Φip(t, t0) = Φip(τ) = eAip(τ) = eAip(t−t0)

Φop(t, t0) = Φop(τ) = eAop(τ) = eAop(t−t0)
(C.62)

The computation of these matrices is very important when writing the time-discrete
representation of the problem, as it will be explained in Section C.2.2.

C.2.2 Discretization of the CWH equations

As demonstrated in Appendix B.1.3, given a continuous-time linear system described by
the matrices A and B:

ẋ(t) = A(t)x(t) +B(t)u(t) (C.63)
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and given the corresponding time-discrete linear system described by the matrices Ak and
Bk at the generic instant tk:

xk = Akxk−1 +Bkuk (C.64)

it is possible to write, denoting T the generic time-interval between two consecutive time-
steps (i.e., tk+1 − tk = T ):

Ak = eAT = Φ(T ) (C.65)

Bk =
∫ T

0
eATBdt (C.66)

Thus, for the CWH system, the matrix Ak can be obtained by evaluating the STM of
Eqs.(C.58),(C.59) evaluated in τ = T .
On the other side, Bk must be computed by integrating Eq.(C.66). For the in-plane
motion, it will be:

Bkip
=
∫ T

0



4− 3 cosωτ 0 sin(ωτ)
ω

2
ω

(1− cos(ωτ))

6 (sin(ωτ)− ωτ) 1 2
ω

(cos(ωτ)− 1) 1
ω

(4 sin(ωτ)− 3ωτ)

3ω sin(ωτ) 0 cos(ωτ) 2 sin(ωτ)

6ω(cos(ωτ)− 1) 0 −2 sin(ωτ) (4 cos(ωτ)− 3)





0 0
0 0
1
mc

0

0 1
mc


dτ

= 1
mc

∫ T

0



sin(ωτ)
ω

2
ω

(1− cos(ωτ))

2
ω

(cos(ωτ)− 1) 1
ω

(4 sin(ωτ)− 3ωτ)

cos(ωτ) 2 sin(ωτ)

−2 sin(ωτ) (4 cos(ωτ)− 3)


dτ = 1

mc



−cos(ωτ)
ω2

2
ω2 (ωτ − sin(ωτ))

2
ω2 (sin(ωτ)− ωτ) − 4

ω2 cos(ωτ)− 3
2τ

2

sin(ωτ)
ω

− 2
ω

cos(ωτ)

2
ω

cos(ωτ) 4
ω

sin(ωτ)− 3τ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
T

(C.67)
leading to:

Bkip
= 1
mc



1
ω2 (1− cos(ωT ) 2

ω2 (ωT − sin(ωT ))

2
ω2 (sin(ωT )− ωT ) 4

ω2 (1− cos(ωT ))− 3
2T

2

sin(ωT )
ω

2
ω

(1− cos(ωT ))

2
ω

(cos(ωT )− 1) 4
ω

sin(ωT )− 3T


(C.68)
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For the out-of-plane motion, the input matrix will be:

Bkop =
∫ T

0

 cos(ωτ) 1
ω

sin(ωτ)

−ω sin(ωτ) cos(ωτ)


 0

1
mc

 dτ = 1
mc

∫ T

0


1
ω

sin(ωτ)

cos(ωτ)

 dτ

Bkop = 1
mc


− 1
ω2 cos(ωτ)

sin(ωτ)
ω


∣∣∣∣∣∣∣∣∣
T

0

= 1
mc


1
ω2 (1− cos(ωT ))

sin(ωT )
ω


(C.69)

C.2.3 Computation of open-loop maneuvers

The CWH equations allow to easily compute the ∆V required to perform open loop
maneuvers to approach the target. In this section we detail two methods, the two impulses
rendezvous, and the straight line approaches. It should be reminded that these methods
are just a preliminary tool to generate rendezvous trajectories. First, the so-computed
maneuvers are affected by the intrinsic linearization error underlying the CWH equations.
Secondly, chaser’s thruster have a finite thrust, so that the impulsive maneuvers which are
theoretically considered as instantaneous ∆V are actually maneuvers that have a finite
duration. Thirdly, these approaches are not compliant with the safety requirements for
rendezvous operation. Finally, as anticipated in Sec.1.2.1, during the final approach the
maneuvers must be performed in closed loop. However, for the scope of testing navigation
algorithms, these methods provide an useful tool to generate close proximity trajectories.

C.2.3.1 Two impulses rendezvous

By definition, a two impulses rendezvous is a rendezvous maneuver characterized by two
impulsive burns, the first one putting the chaser on a trajectory that will “impact” the
target after a given time-of-flight TOF, and the second one realized before the impact
in order to bring the relative velocity of the spacecrafts to zero. The knowledge of the
transition matrix allows computing the initial ∆V0 and the final ∆Vf that the chaser
thrusters must provide in order to perform the maneuvers. The expression in Eq.(C.60)
can be rearranged naming

r =


x

y

z

 , r0 =


x0

y0

z0

 , v =


ẋ

ẏ

ż

 , v0 =


ẋ0

ẏ0

ż0

 . (C.70)
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The CWH system can be written as r(τ) = Φrr(τ)r0 + Φrv(τ)v0

v(τ) = Φvr(τ)r0 + Φvv(τ)v0
(C.71)

where the matrices Φrr,Φrv,Φvr,Φvv are composed by the rearranged elements of the
matrices Φip,Φop:

Φrr =


4− 3cosωτ 0 0

6 (sin(ωτ)− ωτ) 1 0

0 0 cos (ωτ)

 ,Φrv =



sin(ωτ)
ω

2
ω

(1− cos(ωτ)) 0

2
ω

(cos(ωτ)− 1) 1
ω

(4 sin(ωτ)− 3ωτ) 0

0 0 sin(ωτ)
ω



Φvr =


3ω sin(ωτ) 0 0

6ω(cos(ωτ)− 1) 0 0

0 0 −ω sin(ωτ)

 ,Φvv =


cos(ωτ) 2 sin(ωτ) 0

−2 sin(ωτ) (4 cos(ωτ)− 3) 0

0 0 cos(ωτ)


(C.72)

Let’s now imagine that the chaser is, at the the instant t = t0 = 0, at a relative distance
from the target r = r0, with a relative velocity v = v0

−. Using the STM, it is possible
to determine the relative velocity v = v0

+ (i.e., the chaser relative velocity after the first
burn) that is needed at instant t = t0 = 0 to reach the target after the TOF prescribed
(i.e., r(TOF ) = 0 m).

r(TOF) = Φrr(TOF )r0 + Φrv(TOF)v+
0 = 0

v+
0 = −Φ−1

rv (TOF )Φrr(TOF )r0
(C.73)

The initial ∆V0 = v0
+ − v0

− is therefore computed. Once that v0
+ is determined, also

vf = v(ToF) can be computed using the second equation in (C.71):

v(TOF ) = v−f = Φvr(TOF )r0 + Φvv(TOF )v+
0

= [Φvr(TOF )− Φvv(TOF )Φ−1
rv (TOF )Φrr(TOF )] r0

(C.74)

The final ∆Vf is the one that brings to zero the relative velocity (i.e., v+
f = 0 m/s), and

therefore ∆Vf = −v−f .

C.2.3.2 Straight line approaches

In this section the R-bar and V-bar constant velocity straight line approaches are briefly
described. As anticipated in Sec.1.2.1, these maneuvers are performed (in closed loop)
during the final approach before contact (e.g., last 100 meters).
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Constant velocity straight line V-bar approach
Starting from an hold point along the V-bar (which is a stable point where the chaser
can stay for an undetermined time with nominal zero relative velocity), a straight line
approach is started providing to the chaser an initial tangential ∆Vyi

directed towards
the target. To keep the chaser moving at constant speed Vy along the V-bar, a radial
continuous acceleration γx must be provided. At the end of the maneuver, a second ∆Vyf

of equal magnitude and opposite direction of ∆Vyi
is performed to stop the motion (i.e.,

∆Vyf
= −∆Vyi

= −Vy). Being ẏ(t) = Vy, the profile of y(t) can be integrated, resulting
in y(t) = y0 + Vy t. By definition of the maneuver, the other components (i.e., x(t) and
z(t)) are always null. Thus it is possible to write:

x(t) = 0
y(t) = y0 + Vy t

z(t) = 0
,


ẋ(t) = 0
ẏ(t) = Vy

ż(t) = 0
(C.75)

Then, using the Hill’s equations in Eq.(C.38), the value of the radial acceleration γx can
be computed:

ẍ− 3ω2x− 2ωẏ = γx

ÿ + 2ωẋ = γy

z̈ + ω2z = γz

⇒
γx = 2ωVy
γy = 0
γz = 0

(C.76)

Constant velocity straight line R-bar approach
As for the approach along the V-bar, the initial hypothesis is that the chaser is on a hold
point at zero relative velocity with respect to the target. However, such an hold point is
not stable and requires the application of a continuous thrust profile. By definition the
maneuver is performed with a constant velocity profile ẋ(t) = Vx. The maneuver starts
with a radial boost providing an initial ∆Vxi

= Vx and ends with a final radial boost
∆Vxf

in the opposite direction of ∆Vxi
(i.e., ∆Vxf

= −∆Vxi
). To perform the straight

line approach, accelerations both in x and y direction must be applied during the whole
maneuver. Analogously to the V-bar case, it is possible to compute the values of these
accelerations using Hill’s equations:

x(t) = x0 + Vx t

y(t) = 0
z(t) = 0

,


ẋ(t) = Vx

ẏ(t) = 0
ż(t) = 0

⇒
γx = −3ω2(x0 + Vx t)
γy = 2ωVx
γz = 0

(C.77)

The straight line R-bar approach is therefore obtained applying a continuous thrust profile
along the V-bar and a thrust profile inversely proportional to the position x along the
R-bar.

209



210 APPENDIX C. DYNAMIC MODELS

C.3 Absolute rotational dynamics

As anticipated in Sec.A.1, there are several representations for the attitude of a rigid
body, which is expressed as the relative orientation between a coordinate frame attached
to the body and a fixed or inertial coordinate frame. For the scope of this thesis, the
quaternion representation according to the Hamiltonian convention has been chosen to
represent the rotational dynamics of a S/C. Although the 3x3 orthogonal attitude matrix
is the fundamental representation of the spacecraft’s attitude, the orthogonality require-
ment imposes six constraints on its nine elements, reflecting the fact that the special
orthogonal group SO(3) of rotation matrices has dimension three. Therefore, employing
the nine elements of the attitude matrix as components of a state vector in a Kalman Filter
leads to some complexity in enforcing the constraints. However, all the three-parameter
representations of SO(3) are singular or discontinuous for certain attitudes. This suggests
the use of higher-dimensional non-singular parameterizations of the attitude, such as the
quaternion representation, which is a four-dimensional representation upon which the unit
norm constraint is added. According to Eq.(A.10), quaternions respond to the kinematic
relation:

q̇i−SC = 1
2qi−SC ⊗

 0
ωSCi−SC

 (C.78)

where i is the inertial frame and SC is the spacecraft frame.

C.3.1 Kinematic model for the absolute rotational dynamics
propagation

A simple kinematic model could be used to propagate the attitude of spacecrafts having a
very low dynamics (i.e., ωSCi−SC ∼ 0). The equation governing the evolution of the rotation
rate would be:

ω̇SCi−SC = 0 (C.79)

The navigation filter modeled according to this model is referred to as kinematic filter. In
order to compute the optimal estimate for such a system according to the Kalman theory,
it is necessary to know the Jacobian F (x) of the non linear function f(x), according to
the formulation:

x =
 qi−SC

ωSCi−SC

 , ẋ = f(x) , F (x) = ∂f(t, x)
∂x

(C.80)
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Reminding the notation introduced in Sec.A.2 and Eqs.(A.12),(A.13),(A.14), it is possible
to write:

F (x) = 1
2

 JQprod(qi−SC ,w
SC
i−SC)/qi−SC

JQprod(qi−SC ,w
SC
i−SC)/wSC

i−SC

∅3×4 ∅3×3

 (C.81)

where wSCi−SC = [0; ωSCi−SC ]. The analytical formulation of these Jacobians is provided in
Sec.A.2.

C.3.2 Dynamic model for the absolute rotational dynamics prop-
agation

For objects characterized by relatively high rotation rate, it is necessary to include the
angular momentum equation in order to enable the estimation of both the attitude and
the rotation rate. It is convenient to express the angular momentum equation in a frame
that is attached to the rotating body, because the inertia matrix of the body is constant
if expressed in such a frame (i.e., İSCSC = 0, without taking into account time-dependent
variations due to events such as propellant consumption, solar array deployment and so
on). To do so, it is necessary to recall that the derivatives of a vector v taken in two
different frames A and B, with B in relative motion with respect to A are related by the
following:

dA(v)
dt = dB(v)

dt + ωA−B × v (C.82)

where dA(v)
dt indicates the derivative of the vector v taken in frame A, and dB(v)

dt indicates
the derivative of the vector v taken in frame B. From the second law of the dynamics, it
is known that the derivative of the angular momentum Γ taken in the inertial frame i is
equal to the summation of the external torques T acting on the system:

di(Γ)
dt = T (C.83)

From Eq.(C.82) it is also possible to write:

di(Γ)
dt = dSC(Γ)

dt + ωi−SC × Γ (C.84)

The angular momentum Γ, expressed in target frame, is given by Γ = ISCSCω
SC
i−SC . As the

inertia matrix expressed in the spacecraft body frame is constant, equalling Eq.(C.84)
with Eq.(C.83) it is possible to write:

ISCSC ω̇
SC
i−SC + ωSCi−SC × ISCSCωSCi−SC = T SC (C.85)
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In order to lighten the notation, we will use only one index for the inertia matrix, based
on the assumption that in this thesis we will always express the inertia of a body in the
body axis, i.e., ISCSC = ISC . Eq.(C.85) can be written both for the chaser and the target.
The torques acting on the SCs are the perturbing torques for both the satellites, and the
control torques Tctrl for the chaser. However, only control torques are modeled, while the
orbital disturbance torques that affect the spacecraft dynamics will be considered in the
systems as process noises:

Ichω̇
ch
i−ch + ωchi−ch × Ichωchi−ch = T chctrl

Itgω̇
tg
i−tg + ωtgi−tg × Itgω

tg
i−tg = 0

(C.86)

The model governing the rotational dynamics of the target is therefore:
q̇i−tg = 1

2qi−tg ⊗
 0
ωtgi−tg


ω̇tgi−tg = −I−1

tg

(
ωtgi−tg × Itg ω

tg
i−tg

) (C.87)

The navigation filter modeled according to this non-linear propagation model is referred
to as dynamic filter. In order to implement the filter equations, the Jacobian of the state
function have to be computed:

F (x) = 1
2

 JQprod(qi−tg ,w
tg
i−tg)/qi−tg

JQprod(qi−tg ,w
tg
i−tg)/wtg

i−tg

∅3×4 Jω̇tg
i−tg/ω

tg
i−tg

 (C.88)

The sub-matrix corresponding to the quaternion derivative lines are equal to the ones
of the kinematic filter in Eq.(C.81), whose analytical formulation is provided in Sec.A.2.
The computation of the new term Jω̇tg

i−tg/ω
tg
i−tg

is provided in the following. Reminding that
the general cross product between two vectors v × w can be written in matrix form as:

v × w = [v]×w = −[w]×v (C.89)

the Jacobian of the cross product can be derived with the formula:

J(v × w) = [v]×J(w)− [w]×J(v) (C.90)

Using Eq.(C.89) the expression of ωtgi−tg can be written as:

ω̇tgi−tg = −I−1
tg

(
[ωtgi−tg]×Itgω

tg
i−tg

)
= −I−1

tg

(
−[Itgωtgi−tg]×ω

tg
i−tg

)
(C.91)

and the Jacobian with respect to ωtgi−tg becomes:

Jω̇tg
i−tg/ω

tg
i−tg

= −I−1
tg

(
[ωtgi−tg]×

∂(Itgωtgi−tg)
∂ωtgi−tg

− [Itgωtgi−tg]×
∂ωtgi−tg
∂ωtgi−tg

)
= −I−1

tg

(
[ωtgi−tg]×Itg − [Itgωtgi−tg]×

)
.

(C.92)
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C.4 Relative rotational dynamics

In this section we will derive the model of the relative attitude qch−tg dynamics. Even
if this model is not used in the navigation function because of its high non-linearity, it
is of interest to derive the equation governing the relative dynamics. According to the
convention introduced in Sec.A.1, it is possible to derive the expression of the relative
quaternion qch−tg as a function of the absolute attitudes of the chaser and the target:

xch = q∗i−ch ⊗ xi ⊗ qi−ch
= q∗i−ch ⊗ qi−tg ⊗ xtg ⊗ q∗i−tgqi−ch
= qch−tg ⊗ xtg ⊗ q∗ch−tg

(C.93)

and:
qch−tg = q∗i−ch ⊗ qi−tg (C.94)

The derivative of the relative quaternion responds to the general rule introduced in
Sec.A.1:

q̇ch−tg = 1
2qch−tg ⊗ ω

tg
ch−tg = 1

2ω
ch
ch−tg ⊗ qch−tg. (C.95)

where, in order to lighten the notation, when expressing the derivative of a quaternion
qa−b we use the expression ωba−b instead of [0;ωba−b]. The same result can been obtained
using the chain rule for derivation, noting that for the generic angular velocity ωSCi−SC it
is possible to write that (ωSCi−SC)∗ = −ωSCi−SC :

q̇ch−tg = d
dt(q

∗
i−ch ⊗ qi−tg) = q̇∗i−ch ⊗ qi−tg + q∗i−ch ⊗ q̇i−tg

= 1
2
(
qi−ch ⊗ ωchi−ch

)∗
⊗ qi−tg + 1

2q
∗
i−ch ⊗

(
qi−tg ⊗ ωtgi−tg

)
= 1

2
(
−ωchi−ch

)
⊗ q∗i−ch ⊗ qi−tg + 1

2
(
qch−tg ⊗ ωtgi−tg ⊗ q∗ch−tg

)
⊗ qch−tg

= 1
2
(
−ωchi−ch

)
⊗ qch−tg + 1

2ω
ch
i−tg ⊗ qch−tg

= 1
2
(
−ωchi−ch + ωchi−tg

)
⊗ qch−tg

= 1
2ω

ch
ch−tg ⊗ qch−tg

(C.96)

The derivation of the relative angular acceleration requires more steps. First, reminding
Eq.(C.82), it is possible to write:

di(ωch−tg)
dt = dch(ωch−tg)

dt + (ωi−ch × ωch−tg). (C.97)

Developing Eq.(C.97), and expressing all the vectors in the chaser RF, we can write:

dch(ωchch−tg)
dt = −di(ωchi−ch)

dt +
di(ωchi−tg)

dt − (ωchi−ch × ωchch−tg). (C.98)
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At this point, an important property of the rotation rate needs to be introduced. Given
the angular rate ωa−b, from Eq.(C.82) we have:

da(ωa−b)
dt = db(ωa−b)

dt + (ωa−b × ωa−b)
da(ωa−b)

dt = db(ωa−b)
dt

, (C.99)

and therefore: 
di(ωi−ch)

dt = dch(ωi−ch)
dt

di(ωi−tg)
dt = dtg(ωi−tg)

dt

. (C.100)

Reminding the angular momentum equations Eq.(C.86) for the chaser (i.e., expressed in
chaser coordinates), and for the target (i.e., expressed in target coordinates) it is possible
to write: 

di(ωchi−ch)
dt = −I−1

ch

(
ωchi−ch × Ichωchi−ch − T chctrl

)
di(ωtgi−tg)

dt = −I−1
tg

(
ωtgi−tg × Itgω

tg
i−tg

) . (C.101)

The second equation in the previous Eq.(C.101) can be expressed in the chaser frame
according to:

di(ωchi−tg)
dt = qch−tg ⊗

[
−I−1

tg

(
ωtgi−tg × Itgω

tg
i−tg

)]
⊗ q∗ch−tg. (C.102)

Then, using Eqs.(C.101) and (C.102), Eq.(C.98) becomes:

ω̇chch−tg = −I−1
ch

(
ωchi−ch × Ichωchi−ch − T chctrl

)
− qch−tg ⊗

[
−I−1

tg

(
ωtgi−tg × Itgω

tg
i−tg

)]
⊗ q∗ch−tg − (ωchi−ch × ωchch−tg).

(C.103)
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Appendix D

Insight on the tracking algorithm

Contents
D.1 Masking algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.1.1 Projection of the model . . . . . . . . . . . . . . . . . . . . . . 216

D.1.2 Computation of visible edges . . . . . . . . . . . . . . . . . . . 217

D.1.3 Computation of the silhouette perimeter . . . . . . . . . . . . . 220

D.2 Matching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 220

D.3 Physical principle behind RAPiD linearization . . . . . . . . . 223

D.4 Levenberg-Marquardt algorithm . . . . . . . . . . . . . . . . . 227

D.1 Masking algorithm

In this section the code developed to project a 3D geometric model into the image frame in
order to determine the visibility of its edges is presented. The code has two main functions.
First, given the pose parameters, it projects the model in the image frame. Then, it
determines a set of control point belonging to the model visible edges. In computer
vision, there are two main families of algorithms used to determine the visibility of the
objects in a scene, the “Ray Tracing” algorithms [Glassner, 1989], and the “z-buffer”
algorithms [Greene et al., 1993]. The code developed for this thesis is derived from the
second family of algorithms: the 3D model of the observed object at a given pose is
projected in the image frame using the pinhole camera model, and the z components of
the projected points are checked to determine visible and masked parts.
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D.1.1 Projection of the model

The geometry of the 3D object to be projected, that we will refer to as target for sake
of simplicity, is declared using a matrix V collecting the 3D coordinates of each vertex
of the model, and a matrix S which assigns to each surface of the model the vertex that
belong to it:

• Matrix V has size nvertex × 3, with nvertex the number of vertex in the 3D model.
The line i of matrix V corresponds to the coordinates of vertex vi, expressed in the
target reference frame. Vertex are defined by their position in matrix V , i.e., the
vertex whose coordinates are in the 4th row is referred to as vertex 4.

• Matrix S has size nsurf × vmax, with nsurf the number of surfaces in the model,
and vmax is the maximum number of vertex that any surface of the model has.
For example, for a pentagonal prism, vmax = 5 since the basis have 5 vertex. The
element Sij is the jth vertex of surface i. There is no rules in selecting the first
vertex of a surface (i.e., Si1). However, once that the first vertex has been selected,
the following vertex must be declared following the perimeter of the surface, in the
sense that defines the exiting normal to the surface according to the right hand rule.
If a surface j has a number of vertex nvj

lower than vmax vertex, the element Si1 is
repeated vmax − nvj

+ 1 times. Surfaces are defined by their position in matrix S.

The code receives as input the last update of relative camera-target pose, which is com-
posed by the estimated attitude quaternion qcam−tg and the relative position of the target
COM with respect to the camera, i.e., trcamcam−tg. The projection of the 3D model is easily
made by applying the following transformations to each vertex X tg

i in target RF Firstly,
each point is roto-translated in camera RF, according to:

Xcam
i =


xcami

ycami

zcami

 = trcamcam−tg + qcam−tg ⊗X tg
i ⊗ q∗cam−tg (D.1)

Then the points are projected in image RF according to the pinhole projection model,
i.e., Eq.(3.6):

mi =


u

v

w

 =



fx
xcami
zcami

+ cx

fy
ycami

zcami

+ cy

zscale z
cam
i


(D.2)
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The component zcami is multiplied by factor zscale in order to make the order of magnitude
of the w component equal to the order of magnitude of u and v. At this point, the 3D
distorted coordinates of the model vertex are obtained and the geometry can be built.
First, the normal ni of the surface i is computed. Calling j, k, l three consecutive vertex
appertaining to surface i, and being ejk the edge relying point j to point k and ekl the
edge relying point k to point l, the normal can be computed as follows:

ni = cross (ekl,−ejk)
|cross (ekl,−ejk)|

(D.3)

where the operator cross() denotes the cross product.
Then, all the edges belonging to the model are declared. Edges belonging to different
surfaces and relying the same two points are counted once. A nedges x 2 matrix E is
defined, where nedges is the total number of edges in the model. The element Ei1 is
the number corresponding to first vertex of edge i, and the element Ei2 is the number
corresponding to the second vertex (end) of edge i. Edges are defined by their position in
matrix E. Then, using matrix V , S, and E, three matrix are built:

• SV , a matrix of size nsurf × nvertex where the element SVij is equal to 1 if vertex j
belongs to surface i and 0 otherwise.

• SE, a matrix of size nsurf × nedges where the element SEij is equal to 1 if edge j
belongs to surface i and 0 otherwise.

• EV , a matrix of size nedges × nvertex where the element EVij is equal to 1 if vertex
j belongs to edge i and 0 otherwise.

D.1.2 Computation of visible edges

The logic of the algorithm is to compare a surface i with all the other surfaces in order to
determine which edge of surface i is masked (totally or partially) by the other surfaces.
Since the 3D model has already been distorted according to the pinhole model, the visi-
bility of the object is studied as it were hit by a parallel beam of light directed as z (i.e.,
the optical axis of the camera). Only the surfaces exposed to the “flow” are checked, i.e.,
those surfaces for which the condition dot(ni, [0, 0, 1]T ) < 0 is valid, with ni the normal
vector of the surface.
The surfaces that satisfy this condition are the meshed. Two different meshes are done: a
bi-dimensional mesh along the surface, and a mono-directional mesh along the perimeter
of the surface. The set of points belonging to the mono-directional mesh is the set of
candidate control points whose visibility has to be determined in order to use them in the
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optimization process to determine the new pose parameters. The points belonging to the
surface mesh are the points that can potentially mask the points of the first set.
At this point the real masking computation starts. Surface i is compared with each one of
the j surfaces going from 1 to i− 1. The aim is to understand if surface i is masking part
of the edges of surface j and vice-versa, and this is done by checking the w coordinates
of the points that are superposed in the plane uv.
First of all, Matlab function “inpolygon” is used to determine four families of points:

• pei, the points of the edges belonging to surface i that are inside the projected
perimeter defined by the vertex of surface j.

• pej, the points of the edges belonging to surface j that are inside the projected
perimeter defined by the vertex of surface i.

• psi, the meshed points of surface i that are inside the projected perimeter defined
by the vertex of surface j.

• psj, the meshed points of surface j that are inside the projected perimeter defined
by the vertex of i.

Four different situations can happen:

• All the families are empty: there is no conflict between surface i and j.

• The family psi (and pei) is composed only by points that are on the projected
perimeter defined by the vertex of j (and vice versa for the families psj and pej):
the surfaces share an edge (or part of it), and this do not generate any kind of
masking

• One of the two surfaces is completely behind the other. This happens when the
maximum w coordinate of one family (psi or pei ) is lower than (or equal to) the
minimum w coordinate of the other family (psj or pej ): max

(
w(psi)

)
≤ mix

(
w(psj)

)
i is masking j

max
(
w(psj)

)
≤ min

(
w(psi)

)
j is masking i

(D.4)

• None of these previous condition is satisfied, so there is a complex conflict between
the two families and it is not possible to state that one family is completely behind
the other. The check has to be done point by point.

The logic used to solve such a complex conflict is the following. For each point of pei the
two closest neighbour in plane uv appertaining to psj are searched and their average w

218



219 APPENDIX D. INSIGHT ON THE TRACKING ALGORITHM

coordinate is computed. If the w coordinate of pei point is lower, it means that the two
psj neighbours are are masked by it. If the w coordinate of pei point is greater, the latter
is masked. This procedure is repeated for all the pei points, and then for all pej points
(which are checked with respect to the psi family).
For some complex geometry (e.g., geometries having very small surfaces that have to be
compared to big ones) it is possible that one of the family psi or psj has less than 2 points,
so that the search of the two closest neighbours would provide no solution: in these cases
the search of the nearest neighbour is extended to the whole set of points of the meshed
surface.
At the end of the iteration on the surfaces si, all the visible edges of the model have
been detected and sampled. Their coordinates 3D in target RF and the corresponding
2D coordinates (u and v) in the image frame are known ad ready to be used in the
tracking algorithm. However, in order to perform the matching (see Sec. D.2), also the
bi-dimensional vector normal to the projected edge must be known. Since the endpoints
of each edge are known, assuming that a is the first endpoint and b the second one, the
normal assigned to all the points i belonging to that edge will be:

ni =
 va − vb
ub − ua

 (D.5)

The normal of the endpoints is set to be null since they belong to more than on edge.
This means that vertex will not be used in the optimization procedure.
For a complex object having lot of surfaces, this algorithm can be very computationally
heavy and it represents more than a half of the total time required for the whole tracking
algorithm. The computation time strongly depends on the number of points processed,
and therefore on the mesh density and the apparent dimension of the object (and therefore
to its real dimensions and its relative distance with respect to the camera). Given a certain
mesh density, the smaller and the further the target is, the fastest is the algorithm. In the
same way, for a given distance and target dimension, the less dense is the mesh, the fastest
is the algorithm. On the other hand, the denser is the mesh, the highest is the number
of control points to be used in the optimizations procedure. Even if the performance of
the tracking algorithm does not depend directly on the number of control points (since
together with the number of control points also the number of possible outliers increases),
it is always better to have a big set of control points ( [Drummond and Cipolla, 2002]
suggest to use at least 400 points). For a given distance (and target geometry) the goal
is therefore to find a trade off between the latency of the masking algorithm and the
performance of the optimization, and therefore the mesh density that ensure this trade
off. An offline mesh density “scheduling” should be done in order to compute offline the
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optimal value of this parameter as the target-chaser distance varies.

D.1.3 Computation of the silhouette perimeter

An algorithm capable of detecting only the external perimeter of the target (the space/object
boundaries) has been implemented to enable the tracking of the target silhouette perime-
ter.
The code relies on the same preliminary algorithm discussed in section D.1.1. The main
difference with respect to the code discussed in section D.1.2 is the fact that surfaces
will not be meshed, and only the mono-dimensional mesh along the edges of the surfaces
satisfying the condition dot(ni, [0, 0, 1]T ) < 0 is done. If some points of the edges in
surface i is superposed in the plane uv to some points of surface j (or vice-versa), it is
not necessary to determine whether the edge is behind or ahead of surface j. In fact,
it certainly do not belong to the external perimeter of the object, since its projection is
“contained” in the projection of surface j. This matter of fact allows to avoid the two
dimensional mesh of the surfaces and the resulting check point by point, which was the
cause of the high computational load of the former masking algorithm. The algorithm
will then proceed as follows:
Surface i is compared with each one of the j surfaces going from 1 to i−1, and “inpolygon”
is used to determine two families of points:

• pei, the meshed points of the edges belonging to surface i that are inside the pro-
jected perimeter defined by the vertex of surface j

• pej, the meshed points of the edges belonging to surface j that are inside the pro-
jected perimeter defined by the vertex of surface i

As already explained, all the points belonging to families pei and pej are surely not
on the external perimeter of the object, and then they are discarded. At the end of the
iteration, only the points belonging to the external perimeter will be left, and they will
be selected as control points.

D.2 Matching algorithm

The output of the masking algorithm is a set of 3D visible points in target reference frame
(i.e., X tg

i ), their corresponding 2D coordinates projected in the image reference frame (i.e.,
mi), and the corresponding two components normal to the edge containing the 2D control
point (i;e., ni). In order to match the points mi with the edged extracted on the current
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image, only the 2D coordinates ui, vi of the projected points mi and their corresponding
normal vector ni will be used.
The image used for the matching is the output of the Canny edge extraction on the grey-
scale image (if all the visible geometrical edges are considered) or alternatively on the
silhouette image (if only the edges belonging to the external perimeter of the target are
considered). The image is in the form of a pu × pv binary matrix that we denotes Ic,
where pu is the number of pixels along u direction and pv is the number of pixels along v
direction. The elements of the matrix are equal to 1 where an edge has been found and 0
elsewhere. The matching of a model point mi with a measured point mmeas

i in the image
is found moving from mi along ni till a value equal to 1 is found. The main difficulty in
the matching procedure is to deal with the discrete domain of search of the image, which
goes in u direction from 1 to pu and in v direction from 1 to pv.
Let’s take a projected control point mi having coordinates:

mi =
 ui

vi

 (D.6)

Its pixel coordinates in the measured image frame are:

m0 =
 u0

v0

 =
 ceil(u)

ceil(v)

 (D.7)

The normal vector n corresponding to this point is:

n =
 nu

nv

 (D.8)

As already anticipated in Section D.1, points belonging to corners (which could therefore
be associated with more than one edge), are not taken into account and therefore their
normal is set to n = [0, 0]T . Once that the algorithm has checked that the control point
is not a corner, the strategy distinguishes three different cases:

• nu ∼ 0, nv 6= 0: vertical normal

• nu 6= 0, nv ∼ 0: horizontal normal

• nu 6= 0, nv 6= 0: any other case

The first and the second cases are very easy to solve. In the first case the match is
searched by keeping the value of u = u0 constant and changing the value of v, which will
be therefore v = v0 ± j whit j positive integer satisfying the condition imposed by the
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tolerance dtoll:

j ∈ Z+ : |(v0 + j)− v0|+ |(v0 − j)− v0|
2 < dtoll

: j < dtoll

(D.9)

The search is stopped if a matching is found (i.e Ic(u, v) = 1), if the condition on the
tolerance is no more satisfied, or if the search exceed the limit of the image (1 ≤ u ≤ pu,
1 ≤ v ≤ pv).
The same consideration can be done for the second case: the value of v is kept constant
to v = v0 and the search is performed along u axis (u = u0 ± k whit k positive integer
satisfying tolerance constraint) and it is stopped according to the same criteria already
discussed.

k ∈ Z+ : |(u0 + k)− u0|+ |(u0 − k)− u0|
2 < dtoll

: k < dtoll

(D.10)

The case with a generic normal which is not parallel to any axis is more complex. The
straight line described by the normal vector is introduced. Its angular coefficient muv and
offset q will be: 

muv = nv
nu

quv = v0 −muvu0;
(D.11)

The search is then performed starting from (u, v) = (u0, v0) in the following way:

• at each iteration j, v is increased (or decreased) of the positive integer j: vp = v0 +j,
vm = v0 − j

• for the image row defined by a value of vp, all the value of u that are crossed by the
straight line defined by muv and quv are searched to find a matching. For the value
vp = v0 + j, if 1 ≤ vp ≤ pv, two value of u are defined:

up1 = ceil
(
vp − 1− quv

muv

)
up2 = ceil

(
vp − quv
muv

) (D.12)

The matching will be searched then for all the u ∈ Z satisfying the following condi-
tions:  min (up1 , up2) ≤ up ≤ max (up1 , up2)

1 ≤ up ≤ pu
(D.13)

For each couple (up, vp), the distance from the original point (u0, v0) is computed
in order to see if the constraint on the tolerance is satisfied:√

(up − u0)2 + (vp − v0)2 < dtoll (D.14)
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The same search is done for vm = v0 − j. Two value of u are defined:
um1 = ceil

(
vm − 1− q

m

)
um2 = ceil

(
vm − q
m

) (D.15)

The matching will be searched then for all the um ∈ Z satisfying:

min (um1 , um2) ≤ um ≤ max (um1 , um2) (D.16)

under the constraints: 
√

(um − u0)2 + (vm − v0)2 < dtoll

1 ≤ vm ≤ pv

1 ≤ um ≤ pu

(D.17)

If, for the same value of j, a match is found both for the positive values vp and for
the negative values vm, only the closest to u0, v0 is keept.

• if no match has been found, and the average distance 0.5
√

(up − um)2 + (vp − vm)2

is lower than dtoll a new iteration start with j increased of a unit.

The points that will be used in the optimization are the control points that have found
a matching. Therefore the number of points usable will be lower than the set of visible
points provided by the masking algorithm.
This kind of matching procedure is not perfect and, even when the match is found in
correspondence of a true image edge (and therefore the matched point is considered to
be an inlier), three sources of errors are always present. First, errors intrinsic to the
mono-directional search exist. Secondly, there is an error due to the differences between
the 3D a-priori model implemented on the algorithm and the real geometry of the target.
Thirdly, the discrete domain of the image introduces an error. This latter source of error
is due to the fact that the coordinates of a control point can assume any value in the real
domain, while the matched point has coordinates expressed in the integer domain. This
means that it will be useless to exceed in the quantity of control points since two control
points very close in the image frame will be likely matched to the same pixel.

D.3 Physical principle behind RAPiD linearization

Let’s introduce the same notation used in 3.3.1, with tr the relative position camera-target
in camera frame and R the target relative attitude rotation matrix at an instant t, and
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X tg
i the coordinates of a target point expressed in target RF:

tr =


trx

try

trz

 , RX tg
i =


Rxi

Ryi

Rzi

 X tg
i


xtgi

ytgi

ztgi

 (D.18)

Let’s now suppose that we also know the first derivatives of the pose parameters, i.e., the
relative translational velocity vrcamcam−tg, named vr in the sequel, and the relative camera-
target rotation rate in camera axis, i.e., ωcamcam−tg, named ω in the sequel:

vr =


vrx

vry

vrz

 , ω =


ωx

ωy

ωz

 (D.19)

Reminding Eq.(3.7), at any instant t the points can be projected in image reference frame:

u(t) = fx

trx +Rxi

trz +Rzi

+ cx

v(t) = fy
try +Ryi

trz +Rzi

+ cy

(D.20)

with tr and R that are function of time. Assuming that the same X tg
i model point is

tracked from the frame at instant t0 to the frame at instant t0 + δt, the trajectory of the
point in the image frame at the instant t0 + δt can be approximated at the first order:

u(t0 + δt) = u(t0) + du
dt

∣∣∣∣∣
t=t0

δt

v(t0 + δt) = v(t0) + dv
dt

∣∣∣∣∣
t=t0

δt
(D.21)

where the first time derivative can be written as:
du
dt = ∂u

∂trx

dtrx
dt + ∂u

∂try

dtry
dt + ∂u

∂trz

dtrz
dt + ∂u

∂RX tg
i

dRX tg
i

dt
dv
dt = ∂v

∂trx

dtrx
dt + ∂v

∂try

dtry
dt + ∂v

∂trz

dtrz
dt + ∂v

∂RX tg
i

dRX tg
i

dt

(D.22)

Let’s focus on the derivation of the u component. The computation for the partial deriva-
tive with respect to the translational terms is straightforward:

∂u

∂trx
= fx

1
trz +Rzi

∂u

∂trx
= 0

∂u

∂trz
= −fx

trx +Rxi

(trz +Rzi
)2

(D.23)
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and the time derivative of vector tr is:

dtrx
dt = vrx

dtry
dt = vry

dtrz
dt = vrz

(D.24)

The derivation of the terms concerning the rotation is more complex. The vector ∂u

∂RX tg
i

is the 3 vector:
∂u

∂RX tg
i

=
[
∂u

∂Rxi

,
∂u

∂Ryi

,
∂u

∂Rzi

]
(D.25)

where, from Eq.(D.20), we compute:

∂u

∂Rxi

= fx
1

trz +Rzi

∂u

∂Ryi

= 0
∂u

∂Rzi

= −fx
trx +Rxi

(trz +Rzi
)2

(D.26)

Reminding the expression of the derivative of a rotation matrix in Eq.(A.11) and the
definition of the cross product matrix in Eq.(A.4), the time derivative of RX tg

i becomes:

dRX tg
i

dt = dR
dt X

tg
i +R

dX tg
i

dt = [ω]×RX tg
i +R ∅3×1 (D.27)

dRX tg
i

dt =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0



Rxi

Ryi

Rzi

 =


−ωzRyi

+ ωyRzi

−ωxRzi
+ ωzRxi

−ωyPx+ ωxRyi

 (D.28)

The complete expression of the time derivative of u is:

du
dt = fx

1
trz +Rzi

vrx − fx
trx +Rxi

(trz +Rzi
)2vrz + fx

−ωzRyi
+ ωyRzi

(trz +Rzi
)2 − fx

(trx +Rxi
)(−ωyRxi

+ ωxRyi
)

(trz +Rzi
)2

= fx
(trz +Rzi

)2 [(trz +Rzi
)(vrx − ωzRyi

+ ωyRzi
)− (trx +Rxi

)(vrz − ωyRxi
+ ωxRyi

)]

(D.29)
The same computations can be done for the v component. The derivative with respect to
the translation is: 

∂v

∂trx
= 0

∂v

∂trx
= fy

1
trz + Pz

∂v

∂trz
= −fy

try +Ryi

(trz +Rzi
)2

(D.30)
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and with respect to the rotation, being ∂v

∂RX tg
i

the 3× 1 vector:

∂v

∂RX tg
i

=
[
∂v

∂Rxi

,
∂v

∂Ryi

,
∂v

∂Rzi

]
(D.31)

is: 

∂v

∂Rxi

= 0
∂v

∂Ryi

= fy
1

trz + Pz
∂v

∂Rzi

= −fy
try + Py

(trz + Pz)2

(D.32)

resulting in:

dv
dt = fy

1
trz +Rzi

vry − fy
try +Ryi

(trz +Rzi
)2vrz + fy

−ωxRzi
+ ωzRxi

(trz +Rzi
)2 − fx

(try +Ryi
)(−ωyRxi

+ ωxRyi
)

(trz +Rzi
)2

= fy
(trz +Rzi

)2 [(trz +Rzi
)(vry − ωxRzi

+ ωzRxi
)− (try +Ryi

)(vrz − ωyRxi
+ ωxRyi

)]

(D.33)
Now, assuming for simplicity that at the instant t0 the state variables tr0, vr0, R0 and
ω0 are written as [trx, try, trz, vrx, vry, vrz, R, ωx, ωy, ωz], the linearized expression for
u(t0 + δt) and v(t0 + δt) becomes:

u(t0 + δt) = u(t0) + fx

(trz +Rzi
)2 [(trz +Rzi

)(vrx − ωzRyi
+ ωyRzi

)− (trx +Rxi
)(vrz − ωyRxi

+ ωxRyi
)] δt

v(t0 + δt) = v(t0) + fy
(trz +Rzi

)2 [(trz +Rzi
)(vry − ωxRzi

+ ωzRxi
)− (try +Ryi

)(vrz − ωyRxi
+ ωxRyi

)] δt

(D.34)
Moreover, noting that 

δtrx = vrxδt

δtry = vryδt

δtrz = vrzδt

δθx = ωxδt

δθy = ωyδt

δθz = ωzδt

, (D.35)

the terms in Eq.(D.34) can be rearranged and, reminding the definition of the parameter
δp and the coefficient matrix Ci from Eq.(3.14), one obtains:

 u(t0 + δt)
v(t0 + δt)

 =
 u(t0)
v(t0)

+ Ciδp (D.36)

From Eqs.(D.34) and (D.36) it is easy to notice that the linearization introduced in RAPiD
algorithm ( see Sec.3.3.1) corresponds to a linearization of the projected trajectory of the
points X tg

i in the image frame.
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D.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is an iterative technique that locates the min-
imum of a cost function expressed as the sum of the squares of non-linear real-valued
functions. The LM algorithm has become a standard technique for non-linear least-
squares problems, widely adopted in a broad spectrum of disciplines. The Levenberg-
Marquardt algorithm is a combination of two optimization methods, the gradient descent
method, where the sum of the squared errors is reduced by updating the parameters in
the steepest-descent direction, and the Gauss-Newton method, where the cost function is
assumed to be locally quadratic. In this section we will provide details of version of LM
algorithm developed for the scope of this thesis.
Given a fitting function ŷ(p) of a vector of N unknown parameters p, and a set of M
data points yi, it is convenient to minimize the sum of the weighted squares of the errors
between the measured data yi and the fitting function ŷ(p). The resulting scalar cost
function is called chi-squared error criterion:

χ2(p) =
m∑
i

[
yi − ŷ(p)

wi

]2

= (Y − Ŷ (p))TW (Y − Ŷ (p))
= Y TWY − 2Y TWŶ + Ŷ TWŶ

(D.37)

with W the diagonal weighting matrix where the element Wii is equal to 1/σ2
yi

, i.e., the
inverse of the square measurement error yi. Being Ŷ non linear, the minimization is done
iteratively.
The gradient descent method searches the minima by moving in the direction opposite to
the gradient of the objective function, which is the steepest direction. The gradient of the
χ2(p) function is:

∂χ2(p)
∂p

= −2(Y − Ŷ (p))TW ∂Ŷ (p)
∂p

= −2(Y − Ŷ (p))TWJ
(D.38)

where J is the M ×N Jacobian matrix of the function Ŷ with respect to the parameter p.
Starting from an initial guess p0, at the iteration k the parameter update hk is computed
by moving in the direction of the steepest descent:

pk = pk−1 + hk

hk = −α
(
∂χ2(p)
∂p

)T ∣∣∣∣∣∣
pk−1

= αJTW (Y − Ŷ (pk−1))

(D.39)
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where α is a positive scalar.
On the other side, the Gauss-Newton method approximates the cost function χ2(p) around
the optimal parameter p̂ with a quadratic function. Using a first order Taylor expansion
it is possible to write:

Ŷ (p+ h) ∼ Ŷ (p) +
[
∂Ŷ

∂p

]
h

∼ Ŷ + Jh
(D.40)

Replacing the approximation Ŷ (p+ h) ∼ Ŷ + Jh in the expression of χ2(p+ h):

χ2(p+ h) ∼ Y TWY − 2Y TWŶ (p+ h) + Ŷ (p+ h)TWŶ (p+ h)
∼ Y TWY − 2Y TWŶ (p)− 2Y TWJh+ Ŷ (p)TWŶ (p) + 2Ŷ (p)TW Ĵh+ hTJTWJh
∼ Y TWY + Ŷ (p)TWŶ (p)− 2Y TWŶ (p)− 2(Y − Ŷ (p))TWJh+ hTJTWJh

(D.41)
the expression of χ2(p + h) becomes a quadratic function of the perturbation h, having
approximated Hessian matrix equal to JTWJ. The value of h that minimizes the cost
function is found by setting the first derivative of the approximated χ2(p+ h) to zero:

∂χ2(p)
∂h

∼ −2(Y − Ŷ (p))TWJ + 2hTJTWJ = 0 (D.42)

which results in
hk =

(
(Y − Ŷ (pk−1))TWJ(JTWJ)−1

)T
= JTW (Y − Ŷ (pk−1))(JTWJ)−1

(D.43)

and
pk = pk−1 + hk (D.44)

It is possible to notice that the increment in the Gauss-Newton method is equal to the in-
crement in the Gradient Descent method when the quantity (JTWJ)−1 is equal to αIN×N ,
where IN×N is the N ×N identity matrix.
The LM algorithm is capable of adaptively varying the parameter update between the
one provided by the Gauss-Newton method and the Gradient Descent method thanks to
the λ parameter:

h = JTW (Y − Ŷ (pk−1))(JTWJ + λI)−1 (D.45)

If λ, which is called damping parameter, is equal to 0, the LM update will be equal to
the Gauss-Newton update, while if the value of λ is large, the LM update will tend to
the Gradient Descent update. The value of λ is increased only if an iteration results in a
worst fitting of the cost function, i.e., χ(p+ h) > χ(p). Otherwise, as solution improves,
the damping parameter is decreased, approaching to the Gauss-Newton method.
The algorithm used in this work implements a version of LM proposed by [Gavin, 2013]

228



229 APPENDIX D. INSIGHT ON THE TRACKING ALGORITHM

and [Nielsen et al., 1999], where the quantity ρk(h), called metric, is introduced:

ρk(h) = χ2(p)− χ2(p+ h)
hT (λh+ JTW (Y − Ŷ (p))

(D.46)

The metric is a measure of the improvement the update h gives to χ2. If ρk is greater
than a positive threshold ε4, it means that the updated parameter pk + hk is sufficiently
better than pk, so that pk+1 is set to pk + hk and the value of λ is decreased. Otherwise
the parameter p is left unchanged (i;e., pk+1 = pk) and λ is increased.
The convergence criteria are the ones suggested by [Gavin, 2013]. The iterations are
stopped if one of the following conditions is satisfied:

o Convergence of the gradient: max|JWY − Ŷ )| < ε1

o Convergence of the parameters: max|hi/pi| < ε2

o Convergence of the reduced cost function: χ2/(M −N + 1) < ε3

where M is the size of the measurements vector and N the size of the parameters vector.
The values of ε1, ε2, ε3, ε4 are user-specified. If no criterion is satisfied, the algorithm
stops when the iterations have reached a maximal threshold.
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243



244 BIBLIOGRAPHY

[Teague, 1980] Teague, M. R. (1980). Image analysis via the general theory of moments.
JOSA, 70(8):920–930.

[Teh and Chin, 1988] Teh, C.-H. and Chin, R. T. (1988). On image analysis by the
methods of moments. IEEE Transactions on pattern analysis and machine intelligence,
10(4):496–513.

[Trawny and Roumeliotis, 2005] Trawny, N. and Roumeliotis, S. I. (2005). Indirect
kalman filter for 3d attitude estimation. University of Minnesota, Dept. of Comp.
Sci. & Eng., Tech. Rep, 2:2005.

[UN, 1967a] UN (1967a). Agreement on the rescue of astronauts, the return of astronauts
and the return of objects launched into outer space; 672 unts 119; entered into force 3
december 1968.

[UN, 1967b] UN (1967b). Treaty on principles governing the activities of states in the
exploration and use of outer space, including the moon and other celestial bodies;610
unts 205; entered into force on 10 october 1967.

[UN, 1972] UN (1972). Convention on international liability for damage caused by space
objects; 961 unts 187; entered into force 1 september 1972.

[UN, 1974] UN (1974). Convention on registration of objects launched into outer space;
1023 unts 15; entered into force 15 september 1976.

[UN, 1979] UN (1979). Agreement governing the activities of states on the moon and
other celestial bodies; 1363 unts 13; entered into force 11 july 1984.

[Wallace and Wintz, 1980] Wallace, T. P. and Wintz, P. A. (1980). An efficient three-
dimensional aircraft recognition algorithm using normalized fourier descriptors. Com-
puter Graphics and Image Processing, 13(2):99–126.
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