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Abstract

The aim of this work is to investigate the compressibility effects on the wake dynamics of the circular
cylinder and the NACA0012 airfoil at low Reynolds numbers. In particular, the focus is made on
the primary and secondary instabilities that are responsible for the flow transition from a stationary
two-dimensional state to an unsteady three-dimensional one. In order to perform the stability analysis,
a global modal stability code is developed based on Krylov–Schur algorithm with a time-stepping
approach.

In the first part, we focus on the NACA0012 airfoil primary instability, which develops on the
stationary solution and yields the nonlinear development of a two-dimensional unsteady wake. This
unsteady flow is characterized using Direct Numerical Simulations at different Reynolds numbers
Re ∈ [200; 1000] for various angles of attack α ∈ [0◦; 20◦], while the steady base flow used for the
stability analysis is obtained using the Selective Frequency Damping (SFD) technique. The influence
of both the angle of attack and the Reynolds number on the characteristics of the most amplified
mode is first investigated in the incompressible regime, revealing in both cases a non-monotonic
evolution of the perturbation growth rate, with a maximum at a given value of α and Re. Then,
the compressibility effects in the low-subsonic regime are considered, with Mach numbers up to
M∞ = 0.5. Compressibility is observed to increase or decrease the mode growth rate with respect to
its incompressible value depending on the angle of attack and the Reynolds number. For α < 20◦,
compressibility has a destabilizing effect close to the critical threshold, which results in an earlier
Hopf bifurcation, while increasing the Mach number always results in a decrease of the growth rate of
the mode well above the critical threshold. Finally, the mode frequency decreases with the Mach number.

The second part is devoted to the three-dimensional secondary instabilities that arise on the
two-dimensional unsteady wake. In this case, the base flow used for the stability analysis is the
two-dimensional periodic solution calculated using Direct Numerical Simulations without resorting to
the SFD technique. The three-dimensionalization of the circular cylinder through the development of
mode A and mode B instabilities is investigated for Reynolds numbers up to Re = 350. Compressibility
is found to have a stabilizing effect on both the modes close to the critical thresholds, delaying the
3D transition, without modifying the transverse wavelengths at which the flow becomes unstable.
Conversely, above the critical threshold, compressibility has a stabilizing effect only on mode B, while
the range of critical wavelengths of mode A shifts toward lower values. Compressibility effects on the
secondary instability of the unsteady wake of the NACA0012 airfoil at angle of attack α = 20◦ are also
considered.
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Résumé

L’objectif de ce travail est d’étudier l’influence de la compressibilité sur la dynamique du sillage du
cylindre circulaire et du profil NACA0012, à faibles nombres de Reynolds. L’attention est portée en
particulier sur le développement des instabilités primaires et secondaires à l’origine de la transition
de l’écoulement d’un état bidimensionnel stationnaire vers un état tridimensionnel instationnaire. Le
développement d’un code basé sur l’algorithme de Krylov–Schur combiné à une approche itérative en
temps est réalisé pour conduire l’analyse de stabilité modale globale.

La première partie est focalisée sur l’instabilité primaire à l’origine de la bifurcation du sillage du
profil NACA0012 d’un état bidimensionnel stationnaire vers un état bidimensionnel instationnaire. Cet
écoulement instationnaire est caractérisé à l’aide de simulations numériques directes pour différents
nombres de Reynolds Re ∈ [200; 1000] et pour différents angles d’incidence α ∈ [0◦; 20◦]. L’écoulement
de base stationnaire nécessaire à l’analyse de stabilité est obtenu à l’aide de la technique de Selective
Frequency Damping (SFD). L’influence de l’angle d’incidence et du nombre de Reynolds sur les cara-
ctéristiques du mode le plus amplifié est d’abord étudiée dans le régime incompressible, révélant dans
les deux cas une évolution non-monotone du taux de croissance dont le maximum est atteint pour un
α et Re donné. L’influence de la compressibilité est ensuite explorée en régime compressible pour des
nombres de Mach jusqu’à M∞ = 0.5. Celle-ci produit un effet stabilisant ou déstabilisant sur le mode
qui dépend de l’angle d’incidence et du nombre de Reynolds. Pour α < 20◦, la compressibilité a un
effet déstabilisant près du seuil critique, qui se traduit par une bifurcation de Hopf plus précoce, tandis
que l’augmentation du nombre de Mach entraîne toujours une diminution du taux de croissance du
mode lorsqu’on s’éloigne du seuil critique. Enfin, la fréquence du mode diminue avec le nombre de Mach.

La deuxième partie est consacrée aux instabilités secondaires tridimensionnelles qui se développent
dans le sillage bidimensionnel instationnaire. Dans ce cas, l’analyse de stabilité est conduite sur un
écoulement de base instationnaire obtenu par des simulations numériques directes sans la SFD. Le
développement des modes A et B responsables de la transition du cylindre circulaire vers un état
tridimensionnel est d’abord étudié pour des nombres de Reynolds jusqu’à Re = 350. La compressibilité
a un effet stabilisant sur les deux modes à proximité des seuils critiques, retardant le processus de
tridimensionnalisation, mais ne modifie pas les longueurs d’onde des modes instables. En revanche,
au-dessus des seuils critiques, seul le taux de croissance du mode B décroît avec le nombre de Mach,
tandis que la plage des longueurs d’onde instables du mode A se déplace vers des valeurs plus faibles.
La réponse à l’augmentation du nombre de Mach des instabilités secondaires 3D se développant dans
le sillage instationnaire à l’aval d’un profil NACA0012 est étudiée dans un second temps.
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lengths of the recirculation region are indicated for Re = 250 and M ∞ = 0.5. Black,
orange and blue frames indicate different structure types. . . . . . . . . . . . . . . . . 70

4.7 Evolution of both the instantaneous positive (red) and negative (blue) vorticity saturated
at 10% of the maximum and the isocontour of longitudinal velocity ux = 0 (black line)
during the first half-period of vortex shedding. The corresponding time-averaged vorticity
is given at the extreme right for comparison. (a) Structure of type 1 for Re = 200 and
M ∞ = 0.1, (b) Structure of type 2 for Re = 300 and M ∞ = 0.3, (c) Structure of type 3
for Re = 350 and M ∞ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Evolution of the time-averaged flow characteristic lengths with respect to the Mach
number for the different the Reynolds numbers. Black, orange and blue symbols indicate
the different base flow structures (type 1, 2 and 3) as illustrated in figure 4.6. . . . . . 71

4.9 Floquet multiplier µ of the secondary instabilities as a function of the spanwise wavelength
λz for different Reynolds numbers. For comparison, the red lines correspond to results
from Leontini et al. [62] at Re = 300. Dashed lines represent the interpolation curves
for a given Reynolds number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Vorticity ω̃/max(||ω̃||) of mode A for a spanwise wavelength of λz = 4D at different
Reynolds numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Red
and blue iso-surfaces correspond respectively to positive and negative values of ±0.1.
The translucent iso-surfaces represent the base flow vorticity at level ±0.01. . . . . . . 73

xiv



List of Figures

4.11 Mode vorticity ω̃/max(||ω̃||) of mode B for a spanwise wavelength of λz = 0.8D at
different Reynolds numbers: (a) streamwise, (b) cross-stream and (c) spanwise component.
Same conventions as in figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.12 Mode vorticity ω̃/max(||ω̃||) of mode A for two spanwise wavelengths of λz = 4D and
λz = 3D at Reynolds numbers Re = 250 and 300: (a) streamwise, (b) cross-stream and
(c) spanwise component. Same conventions as in figure 4.10. . . . . . . . . . . . . . . . 75

4.13 Floquet multiplier µ of the secondary instabilities as a function of the spanwise wavelength
λz at Reynolds number Re = 200 (a), Re = 250 (b), Re = 300 (c) and Re = 350 (d)
for different Mach numbers. Dashed lines represent the interpolation curves for a given
Mach number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Values of Floquet multipliers shown in figure 4.13, for all the Reynolds and Mach
numbers considered, as a function of the wavelength normalized by the characteristic
lengths of the time-averaged base flow: (a) L, (b) L2 and (c) d. The different symbols
indicate the Mach numbers with the same convention as in figure 4.13. . . . . . . . . . 77

4.15 Vorticity ω̃/max(||ω̃||) of mode A at a wavelength of λz = 4D and Re = 350 for different
Mach numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Same
conventions as in figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.16 Vorticity ω̃/max(||ω̃||) of mode B at a wavelength of λz = 0.66D and Re = 350 for
different Mach numbers: (a) streamwise, (b) cross-stream and (c) spanwise component.
Same conventions as in figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 (a) Base flow velocity magnitude distribution at time t and (b) velocity magnitude field
difference between base flow at time t and t + T . . . . . . . . . . . . . . . . . . . . . . 82

4.18 Spectra obtained with different base states periods at (a) Re = 300, M ∞ = 0.05 and (b)
Re = 350, M ∞ = 0.3. Solid black line indicates the unitary circle. . . . . . . . . . . . 82

4.19 Comparison of the spectra obtained when using different base states with τ = T (a) and
τ = T/10 (b) for Re = 300 and M ∞ = 0.05. Comparison of the 3D-SFD response with
the 2D case (c). The transverse length of the domain is fixed to Lz = 4D for all 3D cases. 83

4.20 Q-criterion contours colored by spanwise vorticity. The slice shows the base state velocity
magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.21 Absolute values of the Floquet multiplier µ as a function of the wavelength λz at Reynolds
number Re = 500 and Re = 600 at α = 20° for different Mach numbers. Reference
values in red are taken from Meneghini et al. [73]. . . . . . . . . . . . . . . . . . . . . . 85

4.22 Vorticity ω̃/max(||ω̃||) of the period doubling mode for a spanwise wavelength λz = 0.66C

at Re = 500, 600 and M ∞ = 0.05, 0.5 : (a) streamwise, (b) cross-stream and (c) spanwise
component. Same conventions as in figure 4.10. . . . . . . . . . . . . . . . . . . . . . . 86

4.23 Spatial variation in the (x, y)-plane of the mode vorticity ω̃/max(||ω̃||) at λz = 0.66C:
(a) streamwise, (b) cross-stream and (c) spanwise component, superposed to base flow
vorticity contour at ±0.01 (black line). Two different spanwise locations separated by a
quarter period (i.e. z and z + λz/4) are shown. . . . . . . . . . . . . . . . . . . . . . . 87

3.1 Growth rate as a function of frequency of the most unstable mode (a) and length of the
recirculation region and streamwise location of maximal intensity in the spatial structure
of the most unstable mode (b), for α = 14°, 18° and 20°, varying the Reynolds number. 105

xv



Nomenclature

4.1 Convergence on drag coefficient CD and Strouhal number St with respect to 5 different
meshes at Re = 300. M1 is the coarsest, M5 the most refined. M∞ (red dots) represent
the asymptotic value as given by Richardson extrapolation. Henderson [46] reported
CD ≈ 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Convergence on the Floquet exponents for (a) mode A at a wavelength λz = 4D and (b)
mode B at a λz = 0.8D with respect to 5 different (x, y)-resolutions and ∆z = 0.125D

at Re = 300 and M ∞ = 0.05. Red dots correspond to the Richardson extrapolation. . 108

5.1 Time variation of drag and lift coefficient at Re = 300 and M ∞ = 0.05. Red dots are
four different instants corresponding to the four stability analysis calculation. . . . . . 109

5.2 Vorticity ω̃/max(||ω̃||) of mode A with wavelength λz = 4D at Re = 300 and M ∞ = 0.05
for different base flow instants θ: (a) streamwise, (b) cross-stream and (c) spanwise
component. Iso-surfaces at levels ±0.1 (positive in red, negative in blue) superposed to
translucent iso-surfaces of base flow vorticity at level ±0.01. . . . . . . . . . . . . . . . 110

5.3 Vorticity ω̃/max(||ω̃||) of mode B with wavelength λz = 0.8D at Re = 300 and M ∞ =
0.05 for different base flow instants θ: (a) streamwise, (b) cross-stream and (c) spanwise
component. Iso-surfaces at levels ±0.1 (positive in red, negative in blue) superposed to
translucent iso-surfaces of base flow vorticity at level ±0.01. . . . . . . . . . . . . . . . . 111

6.1 Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 3D and
Re = 350. Iso-surfaces at levels ±0.1 (positive in red, negative in blue) superposed to
translucent iso-surfaces of base flow vorticity at level ±0.01. . . . . . . . . . . . . . . . 113

6.2 Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 3D and
Re = 250. Same convention as in figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 4D and
Re = 250. Same convention as in figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Convergence on mean drag, lift and Strouhal coefficients with respect to 4 different
meshes for the NACA0012 airfoil at α = 20°, Re = 1000 and M ∞ = 0.05. M1 is the
coarsest, M4 the most refined. M∞ represents the asymptotic value, computed thought
a Richardson extrapolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvi







Chapter 1

Introduction

Abstract: This chapter is devoted to the description of the fundamental concepts presented in this
thesis. In section §1.1, the context of this work is presented. We introduce the governing equations in
section §1.2 and the framework of linear stability in §1.3 with the absolute/convective and local/global
instability concepts. The description and formation of the primary two-dimensional and secondary
three-dimensional wake flow instabilities are presented in §1.4. In section §1.5, we discuss the objectives
of this PhD work and the organization of the present manuscript. In the last section, §1.6, we summarize
the key points of the present chapter in French and will do so throughout the manuscript.

Contents:

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.1 Context

Wake flows have been of fundamental interest to scientists and engineers for more than a century. These
flows can be found almost everywhere: the flow behind a body moving through a fluid, like behind
cars or aircraft, as shown in figure 1.1.a, or the flow downstream of a body immersed in a stream,
like behind simplified shapes, i.e. canonical objects, as reported in fig 1.1.b and also like wind-driven
strained clouds developing in the wake of an island (figure 1.1.c). The incompressible flow regime
behind a given body, can be characterized by the ratio between inertial and viscous forces. This ratio
is a non dimensional number known as Reynolds number Re and allows the scaling of different flow
configurations, which is of crucial importance for the representativeness of experimental studies of
large-size problems. In figure 1.1.b the evolution of the wake behind the circular cylinder is fully
characterized by the value of the Reynolds number Re, regardless of the characteristic size of the
cylinder, speed or fluid viscosity.

The study of wake flows is of crucial importance for the design and the optimization of transportation
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(a) (b) (c)

1

2

3

Re=4000

Re=300

Re=150

Figure 1.1 – (a) Turbulent wake flow behind an airplane, (b) wake behind a circular cylinder from
laminar to turbulent [113] and (c) von Kármán street materialized by strained clouds in the wake of
Alejandro Selkirk Island (The image was taken by the Landsat 7 satellite in September 1999. Credit:
Bob Cahalan/NASA, USGS).

vehicles’ shapes. It allows, for instance, to reduce the aerodynamic drag force and therefore fuel
consumption, or to establish the flight envelope of an aircraft. High speed flows encountered in
terrestrial transport applications (i.e. high Reynolds numbers) combined with complex shapes (figure
1.1.a), result in flows much more complex and chaotic than the one illustrated in figure 1.1.c, with well
organized and smooth patterns. The combination of high speed and complex design, makes the study
of these flows very challenging, this is where the need for a simplification of the problem comes from.
A deep understanding of the flow dynamics around canonical bodies is a necessary first step before
dealing with real-world applications in all their complexity.

We now focus our attention on figure 1.1.b, which illustrates the evolution of the flow behind a
circular cylinder from a laminar to a turbulent regime. If we consider that turbulence is the result of the
succession of qualitative and topological changes of the dynamical system, known as bifurcations, that
progressively involve finer structures, we notice that the well organized and smooth patterns (fig. 1.1.b.1
and 1.1.b.2) are nothing less than the outcome of the very first bifurcations. These arise when progress-
ively increasing the Reynolds number from a flow at rest, and therefore are the first stages on the route
to turbulence (fig. 1.1.b.3). For this reason, studying the first bifurcations, and associated instabilities,
that arise and modify the flow dynamics, is a key point for characterizing the fundamentals of flow
evolution and understanding phenomena that persist even at higher Reynolds numbers, as in figure 1.1.c.

The study of fluid instabilities is the subject of a specific field of fluid dynamics, called hydrodynamic
stability, that has emerged in the late 19th century with the pioneering works of Helmholtz, Kelvin,
Rayleigh and Reynolds [32, 66, 88, 110]. Until recently, these studies have mostly considered atmospheric

density (kg m−3) mean temperature (K) mean pressure (Pa)
Earth 1.225 288 101 325

Stratosphere (25 km) 0.0401 222 2549
Mars 0.0155 214 636

Table 1.1 – Average conditions encountered on Earth, Mars and the stratosphere at an altitude of
25 km.
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Figure 1.2 – Reynolds number vs Mach number chart for various applications and experiments
[4, 30, 60, 83, 103]

conditions on Earth (see table 1.1), where flows at low Reynolds numbers are treated as incompressible.
During the last decades, many technological limits have been overcome and prospective applications
such as vactrains (e.g. Hyperloop concept), stratospheric flight, Martian exploration or optimization
of liquid atomization have gained significant interest. Figure 1.2 shows the range of Reynolds-Mach
numbers for some of those applications. The flows involved are different from conventional regimes and
are typical of low density/pressure environments (Mars or stratosphere, see table 1.1) or of high-speed
micro-objects. Compressibility, even at very low Reynolds numbers, is no more negligible in this context
and may impact the wake dynamics.

For this growing number of engineering applications, compressible flows at low Reynolds numbers
are becoming essential, but a fundamental knowledge on the physics underlying these conditions is
lacking. The aim of this work is therefore to contribute to the understanding of this specific regime
which has been very little explored so far, focusing our attention on how compressibility may affect the
development of instabilities and the transition to turbulence of the wake of various bodies.

1.2 Governing equations

The motion of compressible Newtonian fluids is described by the Navier–Stokes equations, obtained
by applying the laws of conservation of mass, momentum and energy. In this work, we consider the
three-dimensional compressible Navier–Stokes (NS) equations in conservative form for an ideal gas:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇p + ∇ ·
[
µ (∇u + ∇uT ) − 2

3
µ∇ · u δij

]

∂ρE

∂t
+ ∇ · (ρuE + pu) = ∇ · (K∇T ) + ∇ ·

(
u
[
µ (∇u + ∇uT ) − 2

3
µ∇ · u δij

])
(1.1)
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where ρ is the fluid density, u the velocity vector, p the pressure, T the temperature and E the total
energy. The viscosity µ and the thermal conductivity K are constant. The system can be written in
the following compact form

∂q

∂t
= N (q) (1.2)

with q = (ρ, ρu, ρE)T representing the state vector and N the nonlinear NS dynamical operator. We
introduce four nondimensional numbers:

Re =
ρ∞U∞L

µ
, M ∞ =

U∞√
γ p∞

ρ∞

, St =
fL

U∞

, Pr =
µcp

K (1.3)

the Reynolds, Mach, Strouhal and Prandtl numbers, respectively. Here, the Prandtl number is taken
constant (Pr = 0.7). Quantities with subscript ∞ indicate upstream quantities, L is the characteristic
length scale, cp is the specific heat at constant pressure, γ is the ratio of specific heats and f is the
shedding frequency. The corresponding convective time scale is T = L/U∞.

1.3 Linear stability theory

One of the fundamental approaches for investigating flow instabilities and transition to turbulence is the
linear stability analysis. Within this theory, a flow state q, governed by the dynamics of the nonlinear
Navier–Stokes system (eq 1.2), can be seen as the superposition of a base state qb, a stationary or
periodic solution of the Navier–Stokes equations, and a small-amplitude disturbance q′. Through a
Taylor expansion we can write:

∂(qb + ǫq′)
∂t

= N (qb + ǫq′)

= N (qb) + ǫ
∂N (q)

∂q

∣∣∣∣
qb

q′ + O
(
ǫ2
) (1.4)

where ǫ ≪ 1 to ensure small amplitude perturbations. The base state satisfies the NS equations,
q̇b = N (qb), therefore, equation (1.4) reduces to:

∂q′

∂t
= L q′ (1.5)

where L = ∂N (q)
∂q

∣∣∣
qb

is the Jacobian of the Navier–Stokes operator computed at the base state. This

means that, in the neighborhood of the base state qb, the dynamics of the perturbation can be described
by the dynamics of the linearized system. It should be noticed that, considering an initial condition
q′(0), the analytic solution of equation (1.5) is

q′(t) = Mq′(0) (1.6)

where M = eL t is the exponential propagator. The damping or the growth, or in general the evolution
of the perturbation, will characterize the stable or unstable nature of the base state. System (1.5)
can be simplified depending on the base flow properties (e.g. if it is parallel or non parallel) and on
assumptions made on the perturbation form. Depending on these assumptions, linear stability can be
investigated by different approaches.
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ℜ(ωj) < 0

t

ℜ(ωj) > 0

t

(a) (b)

Figure 1.3 – (a) Damped or (b) amplified perturbation amplitude depending on the sign of the real
part of ω.

Modal and non-modal approaches

For the moment, we consider that the damping/growth of perturbations has been defined in time1.
We can first distinguish between modal and non-modal approaches. The modal analysis is based on
the assumption of an exponential dependence on time and the perturbation can be seen as the sum of
linearly independent perturbations under the form

q′(x, t) =
∞∑

j=1

q̃j(x)eωjt + c.c. =
∞∑

j=1

q̃j(x)e[ℜ(ωj)+iℑ(ωj)]t + c.c.

=
∞∑

j=1

q̃j(x)eℜ(ωj)t[cos(ℑ(ωj)t) + i sin(ℑ(ωj)t)] + c.c.

(1.7)

ωj is the complex frequency of the perturbation whose real part, ℜ(ωj), determines whether the
perturbation is damped or amplified in time (whether ℜ(ωj) is negative or positive, respectively), and
whose imaginary part, ℑ(ωj), is the pulsation of the perturbation which is related to its frequency
ℑ(ωj) = 2πfj (see figure 1.3). Given the linear independence and the exponential time dependence,
i.e. each perturbation is autonomous with a monotonic amplitude temporal evolution, we can character-
ize the perturbation q′ by its asymptotic behaviour. As t → ∞, the perturbation q̃j(x)eωjt associated
to the highest ℜ(ωj), i.e. to the most amplified or least damped perturbation, will dominate and drive
the dynamics of the flow. What is the q̃j(x) structure and what does ωj stand for?
Replacing the form of the perturbation (1.7) in the system (1.5), we obtain :

∂q̃j(x)eωjt

∂t
= L q̃j(x)eωjt. (1.8)

The time derivative development and the simplification of the exponential lead to:

ωj q̃j(x) = L q̃j(x). (1.9)

This corresponds to an eigenvalue problem (EVP) and shows that ωj and q̃j(x) are the eigenvalue and
corresponding eigenvector of L . Therefore, through the modal approach, the linear stability reduces
to a spectral analysis of the linearized operator.

The non-modal approach [93], instead, also known as the transient growth analysis, does not

1The damping/growth of perturbations can also be defined in space, in the context of local stability analysis, that will
be treated at the end of this section
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suppose an exponential time evolution and the perturbation

q′(x, t) =
∞∑

j=1

q̃j(x, t) + c.c. (1.10)

is considered as the sum of no longer linearly independent perturbations. Interacting with each other,
the decay/amplification of the disturbance may not be monotonic and exhibit a transient in the early
time evolution. Therefore, this analysis concerns the evolution of the perturbation on time scales that
are completely neglected by the modal approach. Moreover, this method does not suppose the base
flow to be steady. Nevertheless, in the large-time limit t → ∞, this analysis recovers the least stable
mode, i.e. the modal response.
In this work, we adopted the modal approach.

Local and global approaches

Properties of the base flows can be used to further simplify the problem. If the base flow qb exhibits
one or more homogeneous directions, an exponential spatial dependence of the perturbation along
those directions can be assumed. With respect to the number of homogeneous directions of the base
flow in which we consider a modal evolution, the approach is said to be local, bi-global or tri-global.
Thus, the spatial structure of the perturbation, defined by q̃j(x) in (1.7), becomes:

q̃j(x) = q̃j(x1, x2, x3) =





q̃j(x1)ei(αx2+βx3) if qb = qb(x1) local

q̃j(x1, x2)eiαx3 if qb = qb(x1, x2) bi-global

q̃j(x1, x2, x3) if qb = qb(x1, x2, x3) tri-global

(1.11)

where x1, x2 and x3 denote generic spatial coordinates, while α and β, in the temporal formulation,
are real numbers that define the wavenumbers along the associated direction2. Introducing the
perturbations form (1.7) with the local and bi-global spatial evolution in the system (1.5), we find
a simplified eigenvalue problem, whose eigenvalues ωj depend on the wavenumbers: ωj = ωj(α) or
ωj = ωj(α, β). The relation between frenquency and wavenumber is called dispersion relation. In
this work the tri-global, here simply called global approach3, has been used: no assumption is made
about the spatial dependence of the base flow, i.e. qb = qb(x1, x2, x3), and the spatial structure of the
perturbation is free to evolve in space without imposing any periodicity a priori.

After these considerations, we can finally define the approach used in the present work: a modal
global stability analysis, that defines temporal global modes. Thus, we are able to characterize the
stable/unstable nature of the base flow depending on the spectral properties of L . The stability of qb

is therefore expressed by the following criterion:

• the base state is said to be globally stable if ℜ(ωj) < 0 ∀j ∈ N
∗. It means that any perturbation

is damped in time and the perturbed flow will always relax to its initial equilibrium state;

2This is in the case of local temporal analysis. In local spatial analysis, instead, α and β are complex numbers, while
ω is imaginary following our convention (1.7).

3The term global refers to the fact that all space variables are considered as eigendirections. With this definition the
authors consider that in two-dimensional frameworks, global stability analysis does not necessarily reduce to bi-global
stability, since the term bi-global, in its generic formulation, incorporates a modal spatial evolution assumption. This is
not the case in our analysis. Either the problem is two-dimensional and the third dimension is completely neglected, or
tri-dimensional and even if the third dimension is homogeneous, we can perform a tri-global analysis, different from the
bi-global one, where the wavenumber has to be imposed a priori.
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1.3. Linear stability theory

• the base state is said to be globally unstable if there exists at least one eigenvalue ωj with
ℜ(ωj) > 0. This means that at least one perturbation grows in time and the perturbed flow will
diverge from the base state, either indefinitely or converging toward another equilibrium state;

• the base state is said to be marginally stable if the leading eigenvalue ωj satisfies ℜ(ωj) = 0. In
this case, the perturbation is neither damped nor amplified.

1.3.1 Temporal and spatial approaches

In the context of local stability analysis, we can distinguish between a temporal and a spatial analysis.
In this case, the difference lies on whether we define the damping/growth of perturbations in space or in
time. Although we resort to a global approach in the present work, implying that the damping/growth
of the perturbations is defined in time, an introduction to the local stability analysis is useful to
understand concepts that will be discussed in the next section. Indeed, in section 1.3.2 we will see that
temporal and spatial local analysis lead to issues related to global stability. From equation (1.11), the
perturbation is expressed as follows:

q′(x, t) =
∞∑

j=1

q̃j(x1)ei(αx2+βx3)eωt + c.c. (1.12)

Without loss of generality, we restrict the following discussion to a two-dimensional problem, i.e. :

q′(x, t) =
∞∑

j=1

q̃j(x1)eiαjx2eωjt + c.c. (1.13)

In the temporal local stability analysis, the temporal frequency ω is considered as complex, while the
spatial wavenumber α is a given real number:

q′(x, t) = q′(x, t, α) =
∞∑

j=1

q̃j(x1)eiαx2eωjt + c.c.

= q̃j(x1)
[

cos(αx2) + i sin(αx2)
]

eℜ(ωj)t
︸ ︷︷ ︸

drives the
decay/growth

[
cos(ℑ(ωj)t) + i sin(ℑ(ωj)t)

]
+ c.c.

(1.14)

The disturbance is then considered as a wavepacket consisting of the superposition of periodic waves
along the x2 direction, whose wavelength is given by λ = 2π

α
. Each wave grows or decays in time at a

specific rate, given by ℜ(ωj), and propagates at a constant phase speed, given by vφ = ℑ(ωj)
α

. If all
disturbances corresponding to a given wavenumber have the same phase velocity, the medium is said to
be non-dispersive. The envelope of the wavepacket propagates at a speed defined by the group velocity,
vg = dℑ(ωj)

dα
. Through the resulting EVP, it is possible for each wavenumber α to identify the most

amplified perturbation associated to the maximum growth rate ℜ(ωj).

In the spatial local stability analysis, the spatial wavenumber α is considered as complex, while the
temporal frequency is a given pure imaginary number iω:

q′(x, t) = q′(x, t, ω) =
∞∑

j=1

q̃j(x1)eiαjx2eiωt + c.c.

= q̃j(x1) e−ℑ(αj)x2

︸ ︷︷ ︸
drives the

decay/growth

[
cos(ℜ(αj)x2) + i sin(ℜ(αj)x2)

][
cos(ωt) + i sin(ωt)

]
+ c.c.

(1.15)
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Chapter 1. Introduction

Analogously, through the resulting EVP, we are able to see whether the resulting perturbation grows
(negative ℑ(αj)) or decays (positive ℑ(αj)) in space.

The differences between temporal and spatial approaches will be discussed in section 1.3.2. In
particular, the limitations of choosing one or the other as well as the need for a spatio-temporal analysis
in the context of local stability of open flows, will be addressed.

1.3.2 Absolute and convective instabilities

The main difficulty in choosing either a spatial or a temporal approach when addressing the local
stability of a given flow lies in the fact that one needs to decide a priori whether the spatial or temporal
damping/growth of the perturbation is more relevant. In open flows, such as wake flows, in which
fluid particles are continuously advected downstream, both approaches employed separately may not
be representative of the global dynamics of the flow. In particular local spatial analysis may have no
physical relevance and the stable/unstable characterization given by the local temporal analysis is
not exhaustive. Hence, it is better to resort to a spatio-temporal analysis, where both ω and α are
considered complex. The perturbation form (1.13) becomes then:

q′(x, t) = q′(x, t, α) =
∞∑

j=1

q̃j(x1)eiαjx2eωjt + c.c.

= q̃j(x1) e−ℑ(αj)x2+ℜ(ωj)t
︸ ︷︷ ︸

drives the
decay/growth

[
cos(ℜ(αj)x2)+ isin(ℜ(αj)x2)

][
cos(ℑ(ωj)t)+i sin(ℑ(ωj)t)

]
+c.c.

(1.16)

This analysis leads to the absolute and convective instability concepts, which are related to the
global instability of the flow[25, 27, 50, 51].

For sake of simplicity and without loss of generality, we restrict expression (1.16) to a one-dimensional
problem. We ignore the dependence along x1, that only affects the initial wave amplitude, and we
consider the spatio-temporal wave evolution in the (x2, t) plane only, which hereinafter will simply be
denoted by the (x, t) plane. From the work of Bers [13] and following [49, 50, 51], this analysis can be
reduced to the study of the Green’s function, G(x, t), of the dispersion relation in the physical space
(x, t). Function G(x, t) contains all the information about the spatio-temporal dynamics of the system
as a response to a localized initial impulse at (x, t)=(0,0).

The stationary-phase or steepest descent method [11, 38] allows to evaluate the G(x, t) evolution
over long times. With this method, the asymptotic response to the impulse corresponds to G(x, t)
estimated along each ray x

t
= cst, considering the complex wavenumber α∗ for which the phase velocity

is stationary, i.e. real group velocity equal to x
t
:

∂ω

∂α
(α∗) =

x

t
= V . (1.17)

In this way, G(x, t) identifies a wavepacket and the couple (α∗, ω∗ = ω(α∗)) can be interpreted as the
spatial wavenumber and associated temporal frequency perceived by an observer moving at velocity
V along the spatio-temporal rays x

t
= V [51]. Is this wavepacket growing along this ray? From the

perturbation form (1.16), we have:

e−ℑ(α)x+ℜ(ω)t = e−ℑ(α)V t+ℜ(ω)t = e(−ℑ(α)V +ℜ(ω))t. (1.18)
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t

x

V+
V−

Vmax t

x

V+
V−

Vmax

σ

VV+V− Vmax

ωr,max

ωr,0

σ

VV+V− Vmax

ωr,max

ωr,0

(a) (b)

(c) (d)

Figure 1.4 – Convective (a) and absolute (b) instability evolution in the (x, t) plane. Associated growth
rate σ(V ), which defines the extremes rays V−, V+ and the absolute growth rate ωr,0, in the convective
(c) and absolute (d) cases.

Therefore, along the ray, the perceived growth rate σ has the following expression:

σ = σ(V ) = ℜ(ω∗) − ℑ(α∗)V (1.19)

and the perturbation either grows (σ < 0) or decays (σ > 0). If now we consider a temporal analysis
(α is real), the growth rate, given by ℜ(ω(α)), presents a maximum (ωr,max) with respect to α. This
maximum, is achieved for a wavenumber that we call αmax, and the corresponding group velocity is4:

∂ω

∂α
(αmax) = Vmax (1.20)

Hence, along x
t

= Vmax, the perceived wavenumber is real and the growth rate is σ(Vmax) = ωr,max,
which represents a global maximum for σ. The concepts of spatio-temporal instability are then defined
as:

• the base flow is stable if lim
t→∞

G(x, t) = 0, i.e. σ < 0, along all rays x
t

= cst;

• the base flow is unstable if lim
t→∞

G(x, t) = ∞, i.e. σ > 0, at least along one ray x
t

= cst.

When the base flow is unstable, the range within which the wavepackets grow exponentially, is finite.
The extremes of this range are denoted as V− and V+ and correspond to the rays along which σ = 0,
as reported in figure 1.4. At this point, we should consider the wavepacket that remains at the point of
impulse, i.e. the wavepacket with zero group velocity (V = 0). The wavenumber associated to this
wavepacket, α0, is a saddle point of the dispersion relation, i.e.

∂ω

∂α
(α0) = 0. (1.21)

4This derivative assumes both ω and α to be complex numbers. It is different from the one used for calculating αmax:
∂ℜ(ω)

∂α
(αmax) = 0.
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σ

X

ωr,max(X)

ωr,0(X)

ωr,0,max

σ

X
ωr,max(X)

ωr,0(X)
ωr,0,max

σ

X

ωr,max(X)

ωr,0(X)

ωr,0,max

(a) (b) (c)

Figure 1.5 – Resulting scenarios of local stability analysis of weakly non-parallel flows: locally stable
base flow (a), locally convectively unstable base flow (b), locally absolutely unstable base flow (c)

This wavepacket is associated with the so called absolute growth rate σ(0) = ωr,0, which defines the
nature of the instability. Convective and absolute instability are then defined as follows:

• the base flow is convectively unstable, if lim
t→∞

G(x, t) = 0, i.e. σ < 0, along the ray x
t

= 0;

• the base flow is absolutely unstable, if lim
t→∞

G(x, t) = ∞, i.e. σ > 0, along the ray x
t

= 0.

Figure 1.4 schematically summarizes the difference between absolute and convective instability. If the
absolute growth rate is negative, i.e. both V− and V+ are positive (figure 1.4.c), instabilities generated
by the impulse are convected downstream (figure 1.4.a) and the flow behaves like a noise amplifier.
Conversely, if the absolute growth rate is positive, i.e. V− negative and V+ positive (figure 1.4.d),
the instabilities will gradually contaminate the whole domain (figure 1.4.b) and the flow will behave
like an oscillator. We can now understand why local spatial theory may not have physical relevance.
Indeed, it is meaningful only if the flow is convectively unstable. If the instability is absolute, so by
definition any spatial location will be contaminated by the disturbance at long time, the concept of the
asymptotic spatial behaviour (x → ∞) looses its significance. Conversely, if the instability is convective,
the perturbation oscillating in time will eventually emerge at x → ∞ as represented by the spatial
response.

1.3.3 Relation between local and global instability

Keeping in mind that the absolute/convective instability theory is local and therefore valid for parallel
flows, it is reasonable to ask how these results can be used and extended to the case of non-parallel
flows. Hence, in this section, we will see how these results are related to the global response of the flow.

We now address weakly non-parallel flows, i.e. flows that slowly evolve along the streamwise
direction (x). The streamwise evolution of the base flow can be quantified by the variation of a
characteristic local length scale, such as the momentum thickness θ [27]. The base flow is considered
weakly parallel if

ǫ =
dθ

dx
≪ 1 (1.22)

and it is supposed to vary over a slow space scale X = ǫx. This slow evolution allows to consider
the flow dynamics at each streamwise station as locally parallel. With this approach, it is possible to
analyze the streamwise evolution of the maximum and absolute growth rate, ωr,max and ωr,0. Figure
1.5 presents the different scenarios that can be encountered. The flow is uniformly locally stable if
ωr,0 < ωr,max < 0 whatever streamwise position (figure 1.5.a). When a region of local convective
instabilities arises (figure 1.5.b), ωr,0 < 0 for all X but ωr,max > 0 for some X, the flow is locally
convectively unstable and behaves like an noise amplifier. Nevertheless, this type of flow is globally
stable, because no self-excited state can arise. If, on the contrary, there is a region of local absolute
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1.4. Wake instabilities behind bluff bodies

instability (figure 1.5.c), nothing can be said a priori about the existence of a global instability, i.e. a
self-sustained state that oscillates at a specific frequency ωG.

There have been different theories proposed to identify the global frequency ωG, among which:

• The initial resonance condition [74]: ωG is the absolute frequency ω0 at the upstream boundary
between convective and absolute regions.

• The downstream resonance condition [59]: ωG is the absolute frequency ω0 at the downstream
boundary between convective and absolute regions.

• ωG is the predicted maximum absolute frequency ω0,max [86].

A more general theory that relates global and local instability properties has been provided by the
WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) approach [25, 28, 40, 61, 76]. With this method, the
global mode structure is considered in the form of WKBJ expansions [11] along the streamwise direction
and the global frequency ωG is defined as the absolute frequency ω0 at a the saddle point Xs of ω0(X)
in the complex X-plane, such that 5:

∂ω0

∂X
(Xs) = 0 (1.23)

likewise ω0 has been derived for parallel flows, i.e. considering the saddle point of the dispersion relation
ω(α). In fact, in order to relate local to global analysis, the streamwise direction needs to be seen as
an eigenvalue direction as well. Therefore, since ωr,0,max represents the maximum absolute growth rate
over the real axis X, the following inequalities hold:

ωr,G ≤ ωr,0(Xs) ≤ ωr,o,max. (1.24)

The presence of a region of absolute local instability is a necessary but not sufficient condition for
global instability to occur. The flow is found to be globally unstable if the zone of absolute instability
is sufficiently large.
This theory, developed for weakly non-parallel flows, applies satisfactorily to wake flows, which can be
strongly non parallel, especially in the case of wake behind bluff bodies [51, 75].

1.4 Wake instabilities behind bluff bodies

The evolution of the wake behind a circular cylinder has been widely studied during the last decades
[9, 39, 111, 113]. At very low Reynolds numbers in the Stokes regime, Re < 5, the flow is attached to the
cylinder (figure 1.6.a), until a first topological change occurs at Re = 5 and two steady counter-rotating
vortices form behind the cylinder [5], giving rise to the recirculation region (figure 1.6.b). At this stage,
the flow has been found to transition into a convective instability (figure 1.5.b), while at Re = 25, the
first local absolute instability appears (figure 1.5.c) [51, 75]. Nevertheless, at this stage the region of
local absolute instability is small and the flow is still dominated by local convective instability.

The two counter-rotating vortices become unsteady as the primary global instability appears, at
Re = Rec1 ≈ 47, due to the fact that the region of local absolute instability has become sufficiently
large to make the flow globally unstable [26, 51]. The flow has entered into a self-sustained periodic
vortex-shedding regime, with a pattern of swirling vortices called the von Kármán vortex street. Further
increasing the Reynolds number, the amplitude of the oscillation increases. Then, a second bifurcation
occurs at Re = Rec2 ≈ 180, with the wake becoming three-dimensional, i.e. the two-dimensional
periodic solution becomes unstable.

5Analogously to the derivative (1.20), this derivative considers both ω0 and X complex.
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(a) (b) (c)

Figure 1.6 – Cylinder wake evolution : (a) Re = 1.54 , (b) Re = 9.6 and (c) Re = 26. Adapted from
pictures 24, 40 and 42 of Van Dyke’s album; photographs by Sadatoshi Taneda [108].

q̇

q

q̇

q

(a) (b)

Figure 1.7 – Stable fixed point, Re < Rec1 (a) and unstable fixed point with stable limit cycle,
Rec2 > Re > Rec1 (b), in the phase space (q, q̇).

This description of the successive stages of the wake behind the circular cylinder as the Reynolds
number is increased also applies to wakes behind other types of bodies, with the transition from
a stationary to a two-dimensional periodic solution at a first critical value Rec1 and the three-
dimensionalisation of the wake at a second critical value Rec2. In particular, the evolution from
a stationary to a periodic solution always corresponds to a Hopf bifurcation. The three-dimensional
mechanism, on the other hand, can originate from different types of instabilities. The first Hopf
bifurcation occurring on the stationary state and the different bifurcations occurring on the periodic
solution are further described in the next subsections.

1.4.1 The first Hopf bifurcation

We have just described the qualitative and topological changes of the system with respect to the
Reynolds number. For Re below the first critical value, Rec1, the solution is stationary, while for
Rec1 < Re < Rec2 the solution is periodic, i.e. the von Kármán vortex street, with Rec2 representing
the critical value above which the flow is three-dimensional. These two types of equilibrium solutions
represent the so called attractors, towards which trajectories starting from a neighbouring initial state
will converge as t → ∞. These two attractors, i.e. the stationary and the periodic solutions, are both
stable solutions for Re < Rec1 and Rec1 < Re < Rec2, respectively. They are referred to as a fixed
point and a limit cycle solutions and can be represented in the phase space (q, q̇) as shown in figure

12



1.4. Wake instabilities behind bluff bodies

q̇

Re

q

Rec1

Figure 1.8 – Hopf bifurcation diagram. A slice at fixed Re < Rec1 corresponds to figure 1.7.a, while at
fixed Re > Rec1 corresponds to 1.7.b

1.7. For Re < Rec1 the fixed point solution is stable (figure 1.7.a), while for Rec1 < Re < Rec2 the
fixed point solution, i.e. the stationary solution (green dot in figure 1.7.b), is unstable, but the system
presents a stable limit cycle, i.e. the periodic solution.

The transition from a stable fixed point to a stable limit cycle is well known as a supercritical
Hopf bifurcation [97, 100], that is depicted in figure 1.8. Such a bifurcation is characterized by the fact
that the leading eigenvalue of the Jacobian matrix L (see equation (1.9)) is a complex conjugate pair,
ω = ωr ± iωi, that crosses the real axis at Re = Rec1

6, with

dωr

dRe

∣∣∣∣
Rec1

> 0. (1.25)

At Re = Rec1
7, the imaginary part of the eigenvalues gives the oscillation frequency [97].

1.4.2 Limit cycle instabilities

The stability of the limit cycle solution can be studied by means of Floquet theory, which describes the
behaviour of linear differential equations with time-periodic coefficients. In this case, equation (1.5)
becomes:

∂q′

∂t
= L (t)q′ (1.26)

where the Jacobian matrix is a periodic linear operator: L (t) = L (t + T ), with T indicating the
oscillation period. Floquet analysis relates the study of the limit cycle to that of a fixed point through
the so-called Poincaré map. The Poincaré map is a collection of points, obtained by storing a single
point of the trajectory for each cycle of motion, i.e. the intersection of the trajectory with a Poincaré
section, as depicted in figure 1.9. Looking at the evolution of the points of the Poincaré map, it is then
possible to deduce if the periodic system is stable or not. Introducing the Floquet transition matrix

6A fixed point solution can become unstable through different types of primary bifurcations. Since the von Kármán
instability is well known to arise from a Hopf bifurcation, the description of the other bifurcation types occurring for fixed
point solutions is not presented here. The readers interested can refer to Charru [22] for details.

7As it will be seen later on in the manuscript, the frequency given by the imaginary part of the eigenvalue may diverge
from the one observed in the nonlinear regime as the Reynolds number is increased beyond Rec1, depending on the base
state considered.
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Pn−1

Pn

Trajectory

Limit cycle

Poincaré section

Figure 1.9 – Poincaré map, limit cycle and trajectory representation. The green dot indicates the fixed
point solution representative of the limit cycle.

φ(0, T ), that relates the states of the system at time t = 0 and t = T , we have:

q′(T ) = φ(0, T ) q′(0) (1.27)

If now we compare this expression to the generic solution of the time-independent coefficient system
(1.6) q′(t) = eL tq′(0), we obtain that φ(0, T ) = eL T [10, 48, 99]. The eigenvalues of the Floquet
transition matrix, referred to as the characteristic Floquet multipliers, can be then interpreted in
the same way as the eigenvalues of the exponential propagator matrix M = eL T . In fact, due to its
periodicity, L (t) results in a constant coefficient matrix on the Poincaré section.

The Floquet characteristic multipliers µ, eigenvalues of the exponential propagator M , and ω, the
eigenvalues of the Jacobian matrix L , also called Floquet exponents, are related through

µ = eωT . (1.28)

Hence, the stability of each mode can be either deduced from the real part of ω or the modulus of µ:

Stable





ωr < 0

|µ| < 1
Unstable





ωr > 0

|µ| > 1
. (1.29)

There can be different bifurcations of the limit cycle, depending on how the characteristic Floquet
multiplier crosses the unit cycle. Looking at figure 1.10, we have:

• when µ = +1, i.e. ω = 0 + 0i (see Appendix A), the limit cycle presents a saddle-node bifurcation.
A new stable periodic orbit (red cycle) emerges with the same periodicity of the original orbit
(green cycle). In special cases, in particular for symmetric wakes, the saddle node bifurcation
results in a pitchfork bifurcation [17];

• When µ 6= +1, i.e. ωi 6= 0, the system presents a new frequency. The intersections of the original
(green) and new (red) orbits with the Poincaré section, which are represented by the green and
red dots respectively, can be seen as the unstable fixed point that bifurcates toward a limit cycle
(blue cycle), see also figure 1.7.b. The new periodic orbit (red trajectory) can be then visualized
as lying on a torus with periodicity 2π/ωi. This bifurcation is called Secondary Hopf bifurcation
or Neimark–Sacker bifurcation. Within this case, there is a particular condition, corresponding
to µ = −1, which results in ωi = ω̄i/2, with ω̄i = 2π/T indicating the base flow frequency.
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Figure 1.10 – Bifurcations of a periodic limit cycle through the Floquet multipliers µ (first row) and
eigenvalues of the Jacobian matrix ω (second row). Visualization of the unstable periodic solution
represented in green with the resulting stable one in red (third row) and the asymptotic intersections
of trajectories with the Poincaré section (fourth row), n ∈ N. ω̄i = 2π/T in the second row indicates
the base flow frequency, while eigenvalues represented in opacity indicate other possible solutions that
cannot arise due to the aliasing effect and the base state periodicity.

Hence, the emerging periodic orbit has exactly twice the periodicity of the original one. This
bifurcation is called Period doubling bifurcation8. In this case, the intersections of the new orbit
with the Poincaré map coincide with two stable points that, around the original orbit, define a
Möbius band. The other particular condition, obtained for µ = ±i and corresponding to a period
quadrupling, is unlikely to appear, since it would produce a resonance with the period doubling

8In mathematics, the Feigenbaum phenomenon stands as a route to chaos going through an infinite sequence of period
doubling bifurcations of periodic limit cycles.

15



Chapter 1. Introduction

Primary instability Secondary instability

a)
Stationary base state

b)
Von Kármán street

c)
Tridimensionalisation

Figure 1.11 – Schematic representation of primary and secondary instabilities development.

instability [102].

1.5 Research objectives and manuscript organization

The aim of this work is to analyze the effects of compressibility on the primary and secondary instability
of two canonical bodies, i.e. the circular cylinder and the NACA0012 airfoil at different angles of attack.
To date, very few studies have addressed stability analysis in this peculiar regime and there is a lack of
fundamental knowledge on the physics that drives compressible effects at low Reynolds numbers. To
achieve this objective, a linear global stability solver has been developed and coupled to the high order
compressible simulation code IC3 of DAEP at ISAE-Supaero.
First of all, we specify how the analysis of the two types of instabilities are treated:

• The primary instability develops on the steady stationary state (figure 1.11.a) and leads to a time
periodic regime (figure 1.11.b). The identification of these instabilities needs the computation of
a steady stationary base flow (fixed point solution) on which stability analysis is performed.

• The secondary instability develops on the time periodic state (figure 1.11.b) and leads to
three-dimensionalisation (figure 1.11.c). This analysis does not require the steady base state
computation, but only the time periodic two-dimensional state solution of the Navier–Stokes
system (limit cycle solution). Then, a Floquet stability analysis is performed by the same stability
solver.

The manuscript is organized as follows. The numerical methods used for the steady base state
computation and the stability analysis are presented in Chapter 2, followed by the validation of the
developed numerical stability solver on three different test cases: the lid-driven cavity (LDC), the
two-dimensional circular cylinder and the NACA0012 airfoil at 16° angle of attack. In Chapter 3, results
from DNS and primary instability analysis on the two-dimensional NACA0012 airfoil are discussed
for both the incompressible and compressible flow regimes, with angles of attack ranging from α = 8°
to α = 20° and Reynolds numbers up to Re = 1000. In Chapter 4, secondary instabilities on the
three-dimensional circular cylinder wake and three-dimensional NACA0012 airfoil wake are analyzed
in both the incompressible and compressible regimes. Conclusions and perspective are presented in
Chapter 5.
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1.6. Résumé

1.6 Résumé

Ce chapitre introduit d’abord le contexte applicatif qui justifie l’étude des écoulements compressibles à
bas nombre de Reynolds. Jusqu’à tout récemment, les analyses de stabilité hydrodynamique portaient
principalement sur les conditions atmosphériques terrestres (voir tableau 1.1), où les écoulements à
faible nombre de Reynolds sont considérés comme incompressibles. Au cours des dernières décennies, de
nombreuses limites technologiques ont été dépassées et des applications comme le vol stratospherique
et l’exploration martienne ont suscité un grand intérêt. Les écoulements concernés sont différents
des régimes conventionnels et sont typiques des environnements à faible densité/pression (Mars ou
stratosphère, voir tableau 1.1) ou des écoulements induits par le déplacement de micro-objets à grande
vitesse. Pour ce nombre croissant d’applications, la compréhension des écoulements compressibles à
faible nombre de Reynolds devient essentielle, mais une connaissance fondamentale de leur dynamique
spécifique fait encore défaut.

La section 1.2 est consacrée à l’établissement des équations régissant l’évolution des écoulements
compressibles, ainsi que la définition des nombres adimensionels caractérisant l’écoulement. La section
1.3 présente un rappel général des différentes approches utilisées dans le cadre de l’analyse de stabilité
linéaire. Les limites des approches locales temporelles ou spatiales sont exposées au travers de la
formulation en analyse locale convective-absolue, avec laquelle l’analyse globale est étroitement liée. Le
problème aux valeurs propres résultant de la linéarisation du système de Navier–Stokes est dérivé à
l’équation (1.9), permettant ainsi de définir les conditions de stabilité d’un écoulement :

• l’état de base est dit globalement stable si ℜ(ωj) < 0 ∀j ∈ N
∗. Cela signifie que toutes les

perturbations sont amorties dans le temps. Dans ce cas, l’écoulement perturbé reviendra toujours
à son état d’équilibre initial, appelé état de base ;

• l’état de base est globalement instable s’il existe au moins une valeur propre ωj avec ℜ(ωj) > 0.
Cela signifie qu’il existe au moins une perturbation dont l’amplitude croît dans le temps. Dans ce
cas, l’écoulement perturbé va diverger de l’état de base, soit indéfiniment, soit en convergeant
vers un nouvel état d’équilibre ;

• l’état de base est dit marginalement stable si la valeur propre principale ωj a une partie réelle
nulle ℜ(ωj) = 0. Dans ce cas, la perturbation n’est ni amortie ni amplifiée.

La section 1.4 présente les deux premières instabilités rencontrées dans le sillage de certains
corps émoussés, comme le cylindre circulaire : la bifurcation de Hopf et la tridimensionalisation de
l’écoulement. La bifurcation de Hopf correspond au passage d’une solution stationnaire à un régime
périodique bidimensionnel auto-entretenu en formant un sillage de tourbillons plus connu sous le nom
d’allée de von Kármán. D’un point de vue mathématique, cette transition est décrite par le passage
d’une solution à point fixe instable à une solution de type cycle limite stable (images 1.7 et 1.8).
La bifurcation de Hopf correspond au franchissement de l’axe réel par une paire de valeurs propres
complexes (ω = ωr + iωi pour le problème aux valeurs propres (1.9)). La tridimensionnalisation a lieu
sur le sillage bidimensionnel de von Kármán et correspond à une instabilité du cycle limite périodique.
Son analyse nécessite de recourir à une théorie spécifique, appelée théorie de Floquet, qui lie l’étude du
cycle limite à celle d’un point fixe.

Jusqu’à présent, très peu d’études ont abordé l’analyse de la stabilité dans ce régime particulier
et il y a un manque de connaissances fondamentales des écoulements compressibles à faible nombre
de Reynolds. Dans ce cadre, l’objectif de ce travail est d’analyser les effets de la compressibilité sur
l’instabilité primaire et secondaire de deux corps canoniques : le cylindre circulaire et l’aile NACA0012
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à différentes incidences. Un solveur de stabilité globale linéaire a été développé et couplé au code de
simulation compressible d’ordre élevé IC3 du DAEP à l’ISAE-Supaero. Tout d’abord, nous précisons
comment l’analyse de ces deux instabilités est traitée :

• l’instabilité primaire se développe sur un état de base stationnaire (figure 1.11.a) et conduit à
un régime périodique (figure 1.11.b). L’identification de ces instabilités nécessite le calcul d’un
écoulement de base stationnaire (solution point fixe) sur lequel l’analyse de stabilité est effectuée ;

• l’instabilité secondaire se développe sur l’état périodique (figure 1.11.b) et conduit à une tridi-
mensionnalisation de l’écoulement (figure 1.11.c). Cette analyse ne nécessite pas le calcul d’un
état de base stationnaire, mais seulement la solution de l’état périodique bidimensionnel, solution
du système de Navier–Stokes (solution de type cycle limite). Ensuite, une analyse de stabilité de
Floquet est effectuée avec le même solveur de stabilité.

Le manuscrit est organisé comme suit. Les méthodes numériques utilisées pour le calcul de l’état
de base stationnaire et l’analyse de stabilité sont présentées au chapitre 2, suivies par la validation
du solveur numérique sur trois cas différents : la cavité, le cylindre circulaire et le profil NACA0012
pour une incidence de 16°. Le chapitre 3 présente les résultats de l’analyse DNS et de l’analyse
de l’instabilité primaire sur le profil aérodynamique bidimensionnel NACA0012 pour les régimes
d’écoulement incompressible et compressible, avec des incidences comprises entre α = 8° et α = 20°
et des nombres de Reynolds allant jusqu’à Re = 1000. Dans le chapitre 4, les instabilités secondaires
tridimensionnelles du cylindre circulaire et de l’aile NACA0012 sont analysées dans les régimes
incompressible et compressible. Les conclusions et les perspectives sont présentées au chapitre 5.
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Chapter 2

Numerical methods: steady base state
computation and stability analysis

Abstract: This chapter is devoted to the numerical methods related to the base state computation
and the global stability analysis. The validity of the continuum hypothesis is demonstrated in §2.1.
The steady base state calculation methodologies and the modified governing equations for computing
the filtered steady solution are introduced in §2.2, while §2.3 focuses on stability analysis and on the
resolution of large eigenvalue problems. The numerical methods and code development are validated
in §2.4 for the lid-driven cavity, the circular cylinder and the NACA0012 airfoil at an angle of attack
α = 16°. In §2.5 we summarize the present chapter in French.

Contents:

2.1 Continuum hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Steady base state computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Code validation and parameters dependence . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Continuum hypothesis

In the context of low Reynolds number compressible flows, due to the low density, the mean free path
increases and the validity of the continuum hypothesis, and so the one of the NS equations, must be
verified. The Knudsen number Kn, defined as the ratio of particle mean free path over the characteristic
length scale, determines whether the medium can be considered as a continuum or not. The NS
equations can be used under the assumption of continuum mechanics, i.e. if Kn . 0.01. At higher
Knudsen number (rarefied flow), this assumption does not apply anymore and statistical mechanics is
needed in order to model it1.

In figure 2.1, the values of the Knudsen number are given as a function of the Reynolds and Mach
number:

Kn =
M ∞

Re

√
γπ

2
(2.1)

where γ is the heat capacity ratio.

1Or the Navier–Stokes equations may be used with slip conditions in near continuum hypothesis.
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Figure 2.1 – Knudsen number isocontours in the Reynolds-Mach numbers plane, calculated using
expression 2.1.

In the range of Reynolds (Re ∈ [200; 1000]) and Mach (M ∞ ∈ [0.05; 0.5]) numbers considered in this
work, the maximum Knudsen number is 0.007 < 0.01, so the continuum hypothesis is valid.

2.2 Steady base state computation

The steady base flow is obtained with the numerical solver IC3, a high order compact solver for the
compressible NS equations developed at ISAE-SUPAERO [12, 44, 91]. IC3 is a parallel finite volume
based code with explicit Runge–Kutta (RK) scheme for time integration. In this work, the third-order
RK and the fourth-order centered [12] schemes have been used respectively for temporal and spatial
discretization.

Below the critical threshold of the first bifurcation, the base flow corresponds to a steady solution
of the NS equations which is directly obtained from direct numerical simulations (DNS). Above the
critical threshold, instead, the numerically simulated flow is naturally unsteady and there are two types
of base flow that can be used for the stability analysis. Either it can be chosen as the time-average
of the unsteady solution or it can be computed enforcing the steadiness of the numerical solution.
The choice of the base state is of crucial importance, since the stability responses are different with
respect to the base flow considered. Indeed, as originally found by Barkley [8] in the case of the circular
cylinder, before being theoretically proven by Sipp et al. [96] and generalized by Turton et al. [107],
temporal averages of quasi-monochromatic frequency oscillating flows are marginally stable close to
critical parameters, rendering the identification of bifurcation threshold very difficult, while the mode
frequency matches the natural one. On the other hand, stability analysis performed on enforced steady
solutions (obtained either by filtering or imposing symmetry conditions), enables a clear identification
of the critical threshold, but the mode frequency diverges from the observed one when moving above
the bifurcation threshold. In the present work, since we are interested in the influence of compressibility
on bifurcations as well as the instabilities characteristics above the critical thresholds, we opt for
the second option and resort to a filtering technique for computing a fixed point solution of the NS
equations.

We use the selective frequency damping (SFD) method, first introduced by Åkervik et al. [1], which
damps the highest temporal frequency by means of a low-pass filter introduced in the NS equations
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a) b)

1
2fn

1
fn

ωr

ωr + 1
∆

Figure 2.2 – Isocontours of the growth rate ℜ(λ+) = λ+
r (a) and the frequency ℑ(λ+) = λ+

i (b) in the
(∆, χ) plane as given by equation (2.4). The value of ω is set to ωr + 2πfni = 0.126 + 1.04i which
corresponds to the most amplified mode of the two-dimensional circular cylinder at Re = 100 and
M ∞ = 0.05. The open circles represent the outcome of the numerical simulations of (2.2).

(1.2) in the following way:

∂q

∂t
= N (q) − χ(q − q̄)

∂q̄

∂t
=
q − q̄

∆

(2.2)

where q̄ is an approximation of the unknown steady solution, while χ and ∆ are respectively the gain
and the width of the low-pass filter. Both q and q̄ converge toward the targeted steady solution q̄0,
i.e. N (q̄0) = 0.

The convergence criterion of the steady stationary solution has been set on the L2 norm variation
within the last 5 characteristic times as follows:

||ρu(t) − ρu(tf − 5T )||2
||ρu(tf − 5T )||2

≤ 0.002 for t ∈ [tf − 5T ; tf ]. (2.3)

The convergence toward the steady state depends on the chosen values of (∆, χ). Such a steady
state is obtained only if the most unstable eigenvalues λ± of the modified system (2.2) are stable,
i.e. ℜ{λ±} < 0. As derived in Appendix A, the two most unstable eigenvalues λ± have the following
expression:

λ± = ω − χ(1 − α±) where α± =
−1 + χ∆ − ∆ω ±

√
(1 − χ∆ + ∆ω)2 + 4χ∆
2χ∆

(2.4)

with ω denoting the most unstable eigenvalue of the unfiltered dynamical system. Figure 2.2 displays
the isocontours of both the real and imaginary part of λ+ in the (∆, χ) plane, where ω has been set
to ωr + 2πfni = 0.126 + 1.04i, which corresponds to the most amplified mode of the two-dimensional
circular cylinder at Re = 100 and M ∞ = 0.05. Numerical simulations of system (2.2) have been
performed for the circular cylinder with various values of (∆, χ), starting from uniform initial conditions
equal to the upstream quantities on the whole domain2. A maximal number of temporal iterations

2Another option is to initialize the SFD simulation with the unfiltered unsteady solution of the unmodified NS system.
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Periodic Stationary Unconverged
a) b) c)

Figure 2.3 – Visualization of the mapping of ω toward λ± in the three different cases: a) periodic
(∆ = 1.5, χ = 0.1), b) stationary (∆ = 5, χ = 0.26) and c) unconverged (∆ = 15, χ = 0.4) solutions. The
black circles indicate the eigenvalue corresponding to the most unstable mode of the two-dimensional
circular cylinder at Re = 100 and M ∞ = 0.05, ω = ωr±2πfni = 0.126±1.04i, and the two corresponding
mapped eigenvalues λ±.

has been set in order to stop a simulation which does not convergence. The results of the simulations
are represented by the open circles in figure 2.2.a. Their outcome is either a converged stationary
solution, a periodic solution or an unconverged solution, depending on the chosen values of (∆, χ). In
the two latter cases, the convergence criterion (2.3) was never satisfied within the maximal number of
time-steps allowed.

Therefore, the parameters (∆, χ) of the low-pass filter must be chosen adequately to ensure the
convergence of the numerical simulations. Some theoretical bounds can be derived to set their values.
First, the filter cutoff frequency must be chosen below the frequency of the unstable disturbances of
the flow:

fc =
1

∆c
≤ fn. (2.5)

Åkervik et al. [1] even suggest that fc = 1
∆c

≤ fn

2 . Nevertheless, we can see in figure 2.2.a that for

fc =
1

∆c
≤ 2fn (2.6)

the simulation converges toward the filtered solution. We also remark that for high values of the gain
χ, the convergence is achieved even with lower values of ∆. This is mainly due to the uniform initial
condition, i.e. if the initial condition is taken as the unfiltered unsteady solution, the oscillations are
not damped unless ∆ satisfies condition (2.5). The gain of the filter χ must be high enough to damp
the unstable mode, namely

χ > ωr. (2.7)

Figure 2.3 displays for three (∆, χ) couples, the evolution of the two eigenvalues λ± in the complex
plane, according to their analytical expression (2.4). The imaginary part of ω is varied, while its real
part is fixed to ωr = 0.126, which corresponds to the growth rate of the most unstable mode for the
circular cylinder at Re = 100 and M ∞ = 0.05. In the first case, figure 2.3.a, where ∆ = 1.5 and
χ = 0.1, condition (2.7) is not satisfied and it can be seen that the eigenvalue λ+ has a lower growth
rate with respect to ω, but is still positive. This prevents the modified system to converge towards a
steady stationary solution and rather yields a periodic solution. The value of χ is here not high enough
to map the eigenvalue ω into the damped part of the spectrum, i.e. ℜ(λ+) ≤ 0, and this is why the
numerical system leads to an unsteady periodic solution. Another condition recommended by Åkervik
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et al. [1] to ensure convergence, or at least a faster convergence, is

ωr < χ < ωr +
1
∆

. (2.8)

In figure 2.3.c, we see that when this condition is not satisfied, i.e. χ > ωr + 1
∆ , the most unstable

mode complex frequency ω is mapped into an eigenvalue λ+ whose real part ℜ(λ+) is negative and
imaginary part ℑ(λ+) is very close to 0. The negative real part ensures the steadiness of the solution,
but the low frequency corresponds to very long oscillation periods, i.e. longer temporal scales, inducing
the simulation to converge very slowly [1]. Therefore, the fixed number of temporal iterations is not
large enough to obtain the stationary solution. We define this case as the unconverged case3. When the
couple (∆, χ) is well within the bounds, the system converges towards the stationary solution within
the fixed number of temporal iterations, see figure 2.2.b, and corresponds to a fixed point solution of
the NS system.

Therefore, despite its ease of implementation, the SFD method should be used with some a priori
knowledge on the most unstable mode in order to ensure the convergence of the simulations. If the
mode characteristics are not known a priori, it is possible to use an adaptive algorithm as proposed by
Jordi et al. [55]: the SFD method is combined with a flow stability analysis, in order to compute an
approximation of the most unstable mode for the “partially converged” steady base flow and iteratively
find the optimal parameters (∆opt, χopt). Close to the bifurcation threshold, instead, one can consider
that ωr ≪ fc, therefore χ = fc stands as a good compromise. In this work, the filter parameters (∆,χ)
are deduced from the unfiltered DNS solutions: ∆ = 1

fn
and χ = 1

∆ , where fn is the natural frequency.

2.3 Stability analysis

As already presented in section 1.2, the dynamics of a perturbation q′ = q̃eωt, with q̃ = [ρ̃, ρ̃u, ρ̃E]T ,
in the neighborhood of the base state qb reads 4:

∂q′

∂t
= L q′ (2.9)

where L = ∂N (q)
∂q

∣∣∣
qb

is the Jacobian matrix of the discretized NS operator computed at the base state

qb. In order to find the dominant modes which govern the asymptotic behavior of the perturbation,
we have to compute the spectrum of L . However, explicitly assembling the Jacobian matrix of very
large-scale dynamical systems can be very expensive and time consuming. For this reason, the so-called
matrix-free approaches are becoming very popular nowadays: the coefficients of the Jacobian matrix are
not computed explicitly, but rather accessed by evaluating matrix-vector products [65]. A large number
of iterative methods used to solve eigenvalue problems allow for a matrix-free implementation, including
the Krylov–Schur method [47, 98] which has been chosen here. This method is an improvement of
the Arnoldi algorithm and belongs to the class of Krylov projection methods whose aim is to find an
approximation of the most relevant eigenvalues and corresponding eigenvectors of a matrix, projecting

3In this case, the term unconverged refers to the system that did not reach a solution either stationary or periodic
within the fixed number of temporal iterations, and for this reason it does not even satisfy the convergence criterion 2.3.
It is different from the periodic solution, for which the convergence criterion 2.3 is not satisfied either, even if the system
converged toward a (periodic) solution within the fixed number of temporal iterations.

4It should be noticed that, even though the time average solution is usually taken as base state for the stability
analysis, it is not a solution of the NS system and it does not satisfy q̇b = N (qb), while the filtered solution does.
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the original problem onto an orthonormal basis of the Krylov subspace. Given an eigenproblem

Ax = λx , (2.10)

the Krylov subspace of m-dimension Km is generated by the n × n matrix A and a n-dimensional
vector b as follows:

Km(A, b) = span
{

b, Ab, A2b, ..., Am−1b
}

(2.11)

where
{
b, Ab, A2b, ..., Am−1b

}
is called the Krylov sequence. This sequence, under some assumptions,

converges towards the eigenvector associated with the largest modulus eigenvalue as m → ∞ (power
iteration method). In order to describe the Krylov–Schur procedure, we first have to introduce the
Arnoldi algorithm.

2.3.1 The Arnoldi algorithm

Considering problem (2.10) and the Krylov sequence, we can write

AKm ≃ Km [e2, e3, ..., em, −c]︸ ︷︷ ︸
companion matrix

. (2.12)

The computation of the companion matrix spectrum is cheaper than that of A and, since it represents
the projection of A onto Km, its eigenpairs approximate those of A. We should note that in (2.12),
the equality is achievable only if c = −K −1

m Anb, which is not convenient to compute; moreover,
increasing the Krylov subspace dimension m, the sequence consists of vectors that become almost
linearly dependent , making the companion matrix ill-conditioned.

Approximation (2.12) can be reformulated as follows:

AVm = VmH + r eT
m︸ ︷︷ ︸

residual

(2.13)

where Vm is an orthonormal basis of the Krylov subspace, normalized with the euclidean norm. H is
an upper Hessenberg matrix whose spectrum approximates that of A and the residual indicates how
far the orthonormal basis is from an invariant subspace of A [47]. Figure 2.4.a visually represents this
factorization.

The algorithm can be explicitly summarized as follows:
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Algorithm 1 Arnoldi algorithm
Input: n × n Matrix A, initial vector v1 of norm 1, number of steps m ≤ n
Output: Vm, H , r, residual norm β

H = [ ]
V1 = [v1]
for k=1:m-1 do

r = A vk

h = V T r
r = r − V h
β = ‖r‖

H =

[
H h
0 β

]

vk+1 = r/β
Vk+1 = [V vk+1]

end for
r = Avm

h = V T
m r

H =
[
H h

]

The procedure ends by computing the eigenpairs of H and finally the eigenvalues and eigenvectors
of A are approaximated by (λA, xA) ≃ (λH , VmxH ). However, the Krylov subspace dimension m

required to ensure the convergence of a given number of eigenvalues, may be too large when using
the Arnoldi method. This can yield to very large matrices that exceed the available memory and
considerably increase the cost of computing Hm-eigenpairs (the cost grows with m3).

2.3.2 The Krylov–Schur algorithm

The Krylov–Schur method is an extension of the Arnoldi algorithm since it incorporates an effective
restarting scheme, which fixes the dimension of the Krylov-subspace, and iteratively applies the Arnoldi
factorization. More precisely, if k eigenpairs are needed, the Krylov subspace dimension is fixed so that
m > k, the m-Arnoldi factorization is called. If k eigenpairs have not converged yet, the unwanted part
of the factorization is discarded in order to restart the process with the remaining eigenvectors as the
new initial Krylov subspace [47, 65, 98]. The discarding process is achieved after two transformations:
a Schur decomposition and a reordering.

The main steps of the algorithm can be described as follows:
Inputs: n × n matrix A, initial unitary vector v1, order of the decomposition (dimension of the Krylov
subspace) m < n, desired eigenpairs k < m.

1. Compute the m-Arnoldi factorization getting Vm, H and check if enough eigenpairs have
converged, if not, continue to step 2

2. Compute a QR factorization finding Q1, orthogonal matrix, such that B̃ = Q1H QT
1 is in real

Schur form (see figure 2.4.b). The approximation (2.14) becomes

AVmQT
1 = VmQT

1 Q1H QT
1︸ ︷︷ ︸

B̃

+r eT
mQT

1︸ ︷︷ ︸
b̃T

. (2.14)

3. The eigenpairs of B̃ are divided in two subsets: the k “wanted”(those with largest module
eigenvalues) and the m − k “unwanted” eigenpairs.
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Truncating/
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Figure 2.4 – Matrix representation of the Krylov–Schur algorithm.

4. Matrix B̃ is transformed by another orthogonal matrix Q2, B = Q2B̃QT
2 , in order to have the

“wanted” Ritz pairs on the top of B (see figure 2.4.c). At this stage the problem has the following
form:

AVmQT
1 QT

2 = VmQT
1 QT

2 Q2Q1H Q1Q2︸ ︷︷ ︸
B

+r eT
mQT

1 QT
2︸ ︷︷ ︸

bT

(2.15)

AVmQT
1 QT

2 = VmQT
1 QT

2


Bwanted ∗

0 Bunwanted


+ r

[
bT

wanted ∗
]

. (2.16)

5. The Krylov–Schur decomposition is truncated, discarding the “unwanted” (smallest module
eigenvalues) part (see figure 2.4.d).

AṼk = ṼkBwanted + r bT
wanted (2.17)

where Ṽk corresponds to the first k < m columns of VmQ1Q2.
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Figure 2.5 – Schematic representation of Arnoldi and Krylov–Schur algorithms.

6. Recall the Arnoldi factorization from k to m, with starting vector vk = r and initial orthogonal
basis Ṽk .

7. Compute the eigenpairs (λi, xi)B and check convergence for a given tolerance threshold:

‖AVmxi − VmBxi‖ = ‖AVmxi − λiVmxi‖
=
∥∥∥vm+1bT

m+1xi

∥∥∥

< tol.

(2.18)

8. If enough eigenpairs have not converged, restart from step 2.

A schematic representation of the algorithm is given in figure 2.5.

2.3.3 Matrix-free formulations

The matrix-free formulation can be used in Arnoldi-based algorithms since an explicit representation of
the Jacobian matrix, whose eigenvalues are to be calculated, is not necessary. Indeed, only matrix-vector
products are needed for the construction of the Krylov subspace. There are mainly two ways for easily
achieving this formulation within a CFD code and calculate the Jacobian eigenpairs [43]:

• Jacobian-free method
The Taylor series expansion (1.4) is applied to the NS equations around the steady state qb.
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Figure 2.6 – Spectrum of the uniform flow test case.

Therefore, the matrix vector product (i.e. the application of the Jacobian matrix onto a given
vector) is computed through a finite difference formulation (in this case first order)

L q′ =
N (qb + ǫq′) − N (qb)

ǫ
. (2.19)

Higher order finite difference schemes can be implemented as well. This method is usually coupled
with the Newton method for computing a stationary solution [19, 58].

• Time-stepping exponential transformation
We now consider the analytic solution of system (2.9), already introduced in section 1.4.2:

q′(τ) = Mq′(0) (2.20)

with the propagator M . For a strictly constant operator L , M is the exponential propagator
M = eL τ . If L varies, instead, M is an average propagator M = eL̄ τ . The algorithm
can be applied on M instead of L , where the matrix-vector product Mq′ corresponds to the
perturbation at a certain time t = τ . In Chiba’s method [23, 24, 104], Mq′ is approximated as
follows:

Mq′ =
qτ

+ − qτ
−

2ǫ
(2.21)

where qτ
+ and qτ

− are the DNS solutions corresponding to the initial conditions (qb + ǫq′) and
(qb − ǫq′) integrated until τ . The same numerical parameters used for the base state computation,
like the Courant-Friedrichs-Lewi coefficient (CFL), and numerical schemes (third-order RK and
fourth-order centered schemes) have been used for the computation of qτ

+ and qτ
−.
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The Krylov sequence takes the following form:

{q′(0), Mq′(0), M 2q′(0), M 3q′(0), ..}
={q′(0), q′(τ), Mq′(τ), M 2q′(τ), ..}

...

={q′(0), q′(τ), q′(2τ), q′(3τ), ..}.

(2.22)

Once the eigenpairs (λM , xM )=(µ, q̃M ) of M are computed, the eigenpairs of L (λL , xL )=(ω, q̃L )
can be obtained by inverting the exponential transformation:

ω =
log|µ| + i arg(µ)

τ

q̃L = q̃M .
(2.23)

An easier exponential transformation can be performed having access to a linearized NS equations
solver. In this case the application of M onto a given vector simply corresponds to the time-
marching of the linearized solver [7, 65].

Applying Arnoldi-based algorithms on M instead of L is usually preferable, since Arnoldi-based
algorithms converge toward the eigenvectors associated with the eigenvalues of largest modulus, that
may not correspond to the most amplified modes, i.e. the eigenvalues with the largest real part5. In
figure 2.6 the complete spectrum of a uniform flow test case is presented with the parts of the spectrum
computed by the Jacobian and the propagator approach. It can be seen that the two approaches
converge toward a different part of the spectrum. Those calculated from the propagator, using the
time-stepping approach and relation (2.23), correspond to the most amplified modes, unlike when the
method is directly applied to the Jacobian using the Jacobian-free method.

The choice between Jacobian-free and time-stepping exponential transformation can be made for the
analysis of primary instabilities, but not for that of secondary instabilities. As introduced in 1.4.2, the
Floquet analysis used for computing secondary instabilities requires the evolution of the perturbation
after each period T and results in the computation of the eigenvalues of matrix M . Therefore the
time-stepping exponential transformation allows to perform Floquet analysis, while the Jacobian-free
method does not. In this work, the time-stepping exponential transformation approach has been used
for studying both primary and secondary instabilities.

In this formulation, two specific numerical parameters have to be tuned, apart from those of the
CFD solver: ǫ and τ . The finite difference parameter ǫ has to be large enough to avoid round-off errors,
but not too large to prevent non-linear effects. There is no general rule to set this parameter. For
example, Tezuka et al. [104] use ǫ ∈ [0.01; 1] whereas De Pando et al. [36] recommend ǫ ∈ [10−8; 10−5].
Other authors, like An et al. [2] and Mack et al. [67] instead, set ǫ as a function depending on both the
base state and the perturbation. In our simulations, we have set ǫ ≈ 10−6. Regarding the parameter τ ,
it depends on whether we are computing the primary or secondary instability:

• for primary instabilities, where the base state is a stationary solution, i.e. fixed point solution
computed by the SFD method 2.2, τ must be smaller than half the oscillation period of the mode,
in order to avoid aliasing effects, and large enough to filter out numerical disturbances;

• for secondary instabilities, which develop on the periodic Von Kármán street, the base state is

5Considering for example two real eigenvalues λ1 = −3 and λ2 = 1, the algorithm first converge to λ1 even if the
leading eigenvalue is λ2. The exponential transformation (propagator) ensures that the less stable eigenvalue is the one
with the largest modulus (eλ1 = e−3 < e1 = eλ2 ).
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taken as the periodic DNS solution of the NS equations (1.1) and τ = T , where T is the oscillation
period of the base state.

2.3.4 Stability analysis with IC3

The time-stepping matrix-free exponential transformation using full6 DNS has been implemented by
coupling the software library SLEPc with our CFD solver IC3. This library solves large scale sparse
eigenvalue problems and has been shown to perform better than ARPACK [47]. In addition, this
library allows a matrix-free implementation, using the so called SHELL Matrix and defining a new
operation, MatMult, for a generic product computation y = Ax, where x is the input and y the output
of the MatMult function. In our case the product is finite difference (2.21).

MatMult is called iteratively for the construction of the Krylov subspace. Except for the first
iteration, the input x in MatMult corresponds to the normalized output y of the previous iteration.
These calls are entirely managed by the library and the perturbation vector is a read-only variable,
therefore, it cannot be modified. It would have been useful to have access on this variable in order to
modify it, since the normalization performed by the library is done through the L2-norm. The main
problem is that, in the vector, all the conservative variables are concatenated ( q′ = [ρ′T ρu′T ρe′T ]T ),
therefore, the proper norm should be

∥∥N−1q
∥∥

2, where

N =




ρ∞ 0 0

0 ρ∞u∞ 0

0 0 ρ∞u2
∞


 (2.24)

In order to address this problem, we have decided to compute a normalized Krylov subspace. This
corresponds to the application of the method to the normalized flow N−1q, but, as we will see later on,
this can be achieved implicitly, avoiding the computation of the normalized flow. In fact, computing
the normalized flow would have been overly demanding, since it would have implied the modification
of the viscosity and of the gradients calculation in order to be conform to the normalization process.

The main steps of the MatMult operation and the Krylov subspace construction7 are the following:

1. the initial perturbation q′
0 = q′

0(x, y, z) is a white noise;

2. normalization of q′
0 by L2 norm q̂′

0 = q′
0

‖q′
0‖2

and K = [q̂′
0];

3. q̂′
0 is the input of the MatMult operation;

4. computation of q0
+ = qb + ǫN q̂′

0 and q0
− = qb − ǫN q̂′

0;

5. q0
+ and q0

− are set as initial conditions for the IC3 time integration and advanced in time until τ ,
obtaining qτ

+ and qτ
−. The same boundary conditions than those for the computation of the base

state are used;

6. computation of M N q̂′
0 using equation (2.21);

7. the result is normalized: q′
1 = N−1M N q̂′

0 is the output of MatMult;

8. normalization of q′
1 by L2 norm q̂′

1 = q′
1

‖q′
1‖2

and K = [K q̂′
1];

6Full here refers to the fact that it is a DNS of the non-linear NS equations, instead of a DNS of the linearized NS
equations.

7Orthonormal basis of the Krylov sequence 2.22
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Figure 2.7 – Cutoff effect of τ on the spectrum of the LDC at Re = 200 and M ∞ = 0.05.

9. q̂′
1 is the input of the MatMult operation. Restart the process from step 3, considering q̂′

1 instead
of q̂′

0.

Another point that we have taken into account concerns the calculation of the primitive perturbation
variables. In order to compute the perturbation pressure and temperature fields, we have linearized
the following equations:

u =
ρu

ρ

e =
ρE

ρ
− 0.5u2

T =
e

cv

P = ρRT

(2.25)

Therefore, remembering that ·′ variables refer to the perturbation, we obtain:

u′ =
(ρu)′

ρ
− ρu

ρ2
ρ′

e′ =
(ρE)′

ρ
− ρE

ρ2
ρ′ − u · u′

T ′ =
e′

cv

P ′ = ρ′RT + ρRT ′

(2.26)

2.4 Code validation and parameters dependence

The stability solver has been validated against three two-dimensional test cases presented in this
subsection: the lid-driven cavity (LDC), the flow past a circular cylinder and the NACA0012 airfoil
at 16° angle of attack. The dependence on the temporal parameters (CFL and τ) and on the Krylov
subspace dimension (m) is analyzed on the LDC, while the dependence on the finite difference parameter
(ǫ) and the convergence tolerance (toll) is investigate on the circular cylinder.
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2.4.1 Lid-driven cavity

The lid-driven cavity (LDC) consists of a square box of size L whose upper wall is a moving isothermal
no-slip wall with constant tangential velocity U∞ while the three other sides are fixed adiabatic no-slip
walls.

−0.5 0.0 0.5

−6

−4

−2

0

ωi

2π

ωr

CFL = 0.1
CFL = 0.5
CFL = 1.0

−0.2 −0.1 0.0 0.1 0.2
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ωi

2π

ωr
Mode 6

Mode 9

(a) (b)

Figure 2.8 – (a) Effect of CFL number on the spectrum of the LDC with τ = 0.625 at Re = 200 and
M ∞ = 0.05 and (b) close-up view on the most relevant part of the spectrum.

All LDC simulations have been performed at Re = 200 and M ∞ = 0.05 in order to compare our
results with those of Gómez et al. [42], who investigated the efficiency of the time-stepping approach
on the incompressible LDC. To perform grid refinement analysis, three different meshes have been
tested. The coarsest M1, medium M2 and finest M3 meshes have 48 × 48, 64 × 64 and 94 × 94 elements,
respectively. In figure 2.7, the spectra obtained with mesh M2 and two different values of τ are
presented. The cutoff frequency fc given by

|fc| =
∣∣∣∣
ωic

2π

∣∣∣∣ =
1
2τ

(2.27)

for a given τ is clearly visible on this figure. Here, there are no mode with frequencies greater than |fc|
(|fc| = 3.33 for τ = 0.15 and |fc| = 0.8 for τ = 0.625).

In figure 2.8.a, the spectra obtained for different values of CFL number show that the time step
does not influence the results, especially for the largest growth rates, as it can be seen in the close-up
view of the spectrum displayed in figure 2.8.b. The two stationary modes labelled Mode 6 and Mode 9
are those described in Gómez et al. [42] and are used for validation. Their growth rates are reported in
table 2.1 for the different meshes and are in close agreement with those obtained by Gómez et al. [42].

M1 M2 M3 Gómez et al.
Mode 6 -0.3258 -0.3281 -0.3301 -0.3322
Mode 9 -0.5476 -0.5527 -0.5536 -0.5437

Table 2.1 – Growth rate of Mode 6 and Mode 9 obtained with the three different meshes in comparison
with the results of Gómez et al. [42].

Figure 2.9 presents the mesh convergence based on the growth rate of these two modes together with
the asymptotic value as given by the Richardson extrapolation. The values obtained with mesh M3
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Figure 2.9 – Mesh convergence on the growth rate of (a) Mode 6 and (b) Mode 9. The red dots
correspond to the asymptotic values obtained from Richardson extrapolation.
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Figure 2.10 – ρ̃ux/ max (|ρ̃ux|) and ρ̃uy/ max (|ρ̃uy|) isocontours of (a) Mode 6 and (b) Mode 9. The
first row corresponds to the results of [42] and second row to the present results. 21 levels of contours
in the range [−1; 1] are plotted.

are correctly converged and the corresponding order of convergence is p=1.5 and p=6.3 for Mode 6
and Mode 9, respectively. Moreover, the values obtained with mesh M2 differ from the Richardson
extrapolation by 1.2% for Mode 6 and by 0.1% for Mode 9. The structures of the modes are presented
in figure 2.10 for mesh M2 and compared with those obtained by Gómez et al. [42]. The different
isocontours accurately match.

In figure 2.11.a, we consider the influence of both the integration time τ and the CFL number on
the growth rate of Mode 6, for a Krylov subspace of dimension m = 50. We can see that, whatever
the CFL, large values of τ are required to reach convergence, i.e. τ > 0.6. In figure 2.11.b, instead,
the convergence of the growth rate of Mode 6 is presented for different values of the Krylov subspace
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Figure 2.11 – Convergence of the growth rate of Mode 6 with respect to τ for (a) different CFL and
m = 50 and (b) for different m and CFL = 1.

dimension m at CFL = 1. For low values of τ , the growth rate is very dependent on the Krylov
subspace dimension which is no longer true for higher values of τ .
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Figure 2.12 – Mesh convergence on the growth rate of the most unstable eigenmode at Re = 100
and M ∞ = 0.05. The red dot corresponds to the asymptotic value obtained from the Richardson
extrapolation.

2.4.2 Circular cylinder

We now analyze the effect of compressibility on the stability of the two-dimensional flow around a
circular cylinder for different Reynolds numbers and compare our results with those of Canuto & Taira
[20]. In their work, the complex frequency of the most unstable mode was obtained by tracking the
early time evolution of the lift coefficient of the unstable steady state, computed with the SFD filtering
technique and initially perturbed by a small numerical perturbation.

We firstly performed a mesh and domain sensitivity analysis. Figure 2.13 presents the mesh
convergence for the growth rate of the most unstable mode with the asymptotic value as given by the
Richardson extrapolation. The value obtained with mesh M3 is correctly converged and differs from
the Richardson extrapolation by less than 0.5%.
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Figure 2.13 – (a) Growth rate and (b) frequency of the most unstable eigenmode with respect to the
Mach number at Re = 50 for two domain sizes. Results of Canuto & Taira [20] are also reported.
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Figure 2.14 – (a) Growth rate and (b) frequency of the most unstable eigenmode with respect to
Mach number for different Reynolds numbers. Results of Canuto & Taira [20] have been reported for
comparison (grey lines).

Two domains have been considered: a 40D × 90D and a 40D × 175D domain where D is the
diameter of the cylinder which is taken as the characteristic length scale, i.e. L = D. In figure 2.13.a,
the difference observed for the growth rates at M ∞ = 0.2 and M ∞ = 0.3 is liekly to be due to a lack of
convergence for the results of Canuto & Taira as indicated by the non monotonic behaviour of their
curve. Nevertheless, the characteristics of the most unstable mode obtained with both domains are in
good agreement with the overall trend of the reference, in which the domain considered is a 40D × 60D

with a sponge zone of 10D applied at the outlet. For this reason, the simulations used to validate the
compressibility effect have been performed on the 40D × 90D domain. Moreover, the value of τ has
been set to half of the characteristic time and the Krylov subspace dimension to m = 300.

In figure 2.14.a, the growth rate and frequency of the most unstable eigenmode are reported with
respect to Mach number for different Reynolds numbers together with the results of Canuto & Taira
[20] in grey lines. Overall, relatively good agreement is shown between both data sets. The stabilizing
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Figure 2.15 – (a) Growth rate and (b) frequency of the most unstable eigenmode with respect to the
perturbation amplitude at Re = 100 and M ∞ = 0.05.

effect of the Mach number is clearly observed for all the Reynolds numbers considered, with growth
rates decreasing as M ∞ increases. The mode frequency decreases as well with respect to the Mach
number (see figure 2.14.b) and this is found to be correlated with the elongation of the recirculation
region that forms behind the cylinder, as observed in the base state, corroborating previous results by
Canuto & Taira [20].

This test case has also been used for validating the choice made both on the value of ǫ and the
algorithm tolerance parameters. The parameter ǫ is used in the finite difference for the perturbation
amplitude in equation (2.21) and its effect on the growth rate and mode frequency dependence can
be seen in figure 2.15. We can remark that their values do not vary for 10−6 < ǫ < 10−2. Moreover,
the relative error using an amplitude smaller or greater by one order of magnitude, i.e. ǫ = 10−8 and
1, is found to be less than 0.2% with respect to values obtained within the range 10−6 < ǫ < 10−2.
Setting ǫ ≤ 10−10, the finite difference (2.21) becomes close to a roundoff-error quotient, while using
ǫ ≥ 1, the perturbed state vector (qb ± ǫq′) may be not physical, with possibly negative densities. The
growth rate and mode frequency dependence on the algorithm tolerance parameter used in equation
(2.18) is shown in figure 2.16. The convergence is obtained for tol ≈ 10−4, nevertheless, the maximum
relative error using tol = 10−1 is found to be less than 1%. The algorithm tolerance dependence has
been performed with a Krylov subspace dimension m = 40 and the relative error using tol = 10−1 is
found to decrease when the Krylov subspace dimension is increased.

2.4.3 NACA0012 at 16° angle of attack

The third test case is represented by the NACA0012 at 16° angle of attack. The configuration of the
current simulations and those presented in Chapter 3 is depicted in figure 2.17. The upstream velocity
is imposed as U = U∞ cos α ex+U∞ sin α ey, where α is the angle of attack. The airfoil closes at chord
C = 1, with a sharp trailing edge, and the chord is taken as the characteristic length scale, i.e. L = C.
Both the upper and lower edges of the domain are divergent to allow simulations at different angles
of attack. Table 2.2 summarizes the growth rate and mode frequency of the most unstable modes,
obtained at different Reynolds numbers for the incompressible case at α = 16° and compared to the
results of Zhang & Samtaney [116]. The authors have performed a biglobal stability analysis on the
incompressible flow around a NACA0012 profile at α = 16°, studying both the 2D and 3D cases by
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Figure 2.16 – (a) Growth rate and (b) frequency of the most unstable eigenmode with respect to the
algorithm tolerance at Re = 100 and M ∞ = 0.05.

Figure 2.17 – Domain details for simulations around the NACA0012 profile.

varying the transverse wavenumber value. They also conducted a 2D DNS tracking the early time
evolution of the cross-stream velocity when the filtered base state is perturbed by a small amplitude
perturbation. The comparison shows a good agreement between present results and the reference. For
the stability analysis, the value of τ has been set to 0.1 characteristic time and a Krylov subspace of
dimension m = 300 has been considered.

Re Current work 2D DNS [116] Biglobal analysis [116]
400 0.2591 + 0.4555i 0.2754 + 0.4549i 0.2956 + 0.4285i

600 0.5164 + 0.4468i 0.5363 + 0.4459i 0.5126 + 0.4264i

800 0.6393 + 0.4261i 0.6625 + 0.4247i 0.6202 + 0.4085i

1000 0.6949 + 0.4012i 0.7160 + 0.3994i 0.6783 + 0.3860i

Table 2.2 – Growth rate and frequency (ωr + ωii) with respect to Reynolds number at angle of attack
α = 16° compared with reference results.
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2.5 Résumé

Ce chapitre est consacré aux méthodes numériques permettant le au calcul de l’état de base et l’analyse
de la stabilité globale de cet état.

La validité de l’hypothèse du milieu continu est démontrée dans le §2.1. Le nombre de Knudsen Kn,
défini comme le rapport du libre parcours moyen des particules sur l’échelle de longueur caractéristique,
détermine si le fluide peut être considéré comme un milieu continu ou non : la mécanique des milieux
continus, et donc les équations de NS, peuvent être utilisées si Kn . 0,01, inversement, l’écoulement
est en milieu raréfié et la mécanique statistique est nécessaire pour le modéliser. Dans la plage des
nombres de Reynolds et de Mach considérée dans ce travail, le nombre de Knudsen maximal est de
0,007 < 0,01 et l’hypothèse du milieu continu est donc valide.

La section §2.2 présente les méthodologies de calcul de l’état de base stationnaire ainsi que les
équations de Navier–Stokes modifiées pour le calcul de l’état de base filtré. L’écoulement de base
est obtenu avec le solveur numérique IC3, un code compressible compact d’ordre élevé développé au
DAEP à l’ISAE-SUPAERO. IC3 est un code parallèle basé sur les volumes finis avec un schéma de
Runge–Kutta (RK) explicite pour l’intégration temporelle. Dans ce travail, le schéma RK du troisième
ordre et le schéma centré du quatrième ordre ont été utilisés respectivement pour la discrétisation
temporelle et spatiale. En dessous du seuil critique de la première bifurcation, l’écoulement de base
correspond à une solution stable des équations de NS qui est directement obtenue à partir des simulations
numériques directes (DNS). Au-dessus du seuil critique, par contre, l’écoulement simulé numériquement
est naturellement instable et il existe deux types d’écoulement de base qui peuvent être utilisés pour
l’analyse de stabilité. Soit il peut être choisi comme la moyenne temporelle de la solution instationnaire,
soit la stationnarité de la solution numérique peut être imposée. Le choix de l’état de base est d’une
importance cruciale, puisque les réponses de l’analyse de stabilité sont différentes en fonction de
l’écoulement de base considéré. En effet, les moyennes temporelles d’écoulements oscillant à une
fréquence quasi-monochromatique sont marginalement stables en proximité des paramètres critiques
[8, 96, 107], ce qui rend l’identification du seuil de bifurcation très difficile, alors que la fréquence du
mode correspond à la fréquence naturelle. D’autre part, l’analyse de stabilité effectuée sur d’autres
états de base (obtenus soit par filtrage, soit en imposant des conditions de symétrie), permet une
identification claire du seuil critique, mais la fréquence de mode diverge de celle observée lorsqu’on
passe au-dessus du seuil de bifurcation. Comme ce travail de thèse se focalise sur l’influence de la
compressibilité sur les bifurcations, nous optons pour la seconde option et recourons à une technique de
filtrage pour calculer une solution de type point fixe des équations de Navier–Stokes. Cette technique,
appellée « Selective Frequency Damping » (SFD) [1], amortit la fréquence temporelle la plus élevée
au moyen d’un filtre passe-bas introduit dans les équations de Navier–Stokes, comme indiqué dans le
systeme (2.2).

La section §2.3 se concentre sur l’analyse de stabilité et la résolution de problèmes aux valeurs
propres de grande dimension. Étant donné le problème aux valeurs propres (1.9), le spectre de la matrice
Jacobienne L doit être calculé afin de trouver les modes dominants qui régissent le comportement
asymptotique de la perturbation. Néanmoins, l’assemblage explicite de la matrice Jacobienne de
systèmes dynamiques de grande taille peut être très coûteux en ressources de calcul et en temps. C’est
pourquoi les approches dites « matrix-free » deviennent très populaires aujourd’hui : les coefficients
de la matrice jacobienne ne sont pas calculés explicitement, mais on y accède plutôt en évaluant des
produits matrice-vecteur. La méthode de Krylov–Schur [98], qui permet une implémentation de type
« matrix-free », a été choisie dans ce travail. Cette méthode est une amélioration de l’algorithme
d’Arnoldi et appartient à la classe des méthodes de projection de Krylov dont le but est de trouver
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une approximation des valeurs propres de plus grand module et des vecteurs propres associés d’une
matrice, en projetant le problème originel sur une base orthonormée du sous-espace de Krylov (2.11).
En introduisant la matrice du propagateur M = eL t, il est généralement préférable d’appliquer les
algorithmes basés sur Arnoldi sur M plutôt que sur L , car ceux-ci convergent vers les vecteurs propres
associés aux valeurs propres de plus grand module, qui peuvent ne pas correspondre aux modes les plus
amplifiés, c’est-à-dire les valeurs propres ayant la plus grande partie réelle, comme montré sur l’image
2.6. Pour cette raison, le « time-stepping exponential transformation » a été utilisée pour le calcul des
produits matrice-vecteur. Les méthodes numériques et le développement du code sont validés dans la
section §2.4 pour la « lid-driven cavity », le cylindre circulaire et le NACA0012 à incidence α = 16°,
montrant des résultats en bon accord avec des travaux de la littérature pris comme références.
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Chapter 3

NACA0012 airfoil: primary two-dimensional
instability

Abstract: In this chapter, we investigate the two-dimensional linear stability of the NACA0012 airfoil
wake, whose configuration and validation has been presented in §2.4.3. In §3.1, the state of the art of
compressibility effects on the aerodynamics and the two dimensional primary instability of bluff bodies
is presented. First, in §3.2 the influence of the angle of attack and Reynolds number is treated in the
incompressible regime, then the compressible case is considered in §3.3. In section §3.4, a comparison
between the stability analysis response on the filtered and the time-averaged base flow is presented. In
§3.5, we summarize the present chapter in French. The most part of this chapter is the object of a
paper published in the AIAA Journal [109].
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3.1 State of the art

Recently, some studies have been conducted on the effect of compressibility on the stability of low
Reynolds number flows [20, 72, 92]. In their global stability analysis of axisymmetric two-dimensional
wake flows, Meliga et al. [72] reported contrasted effects of compressibility in the subsonic regime (up
to M ∞ = 0.7), depending on the base flow configuration. In the case of an axisymmetric afterbody
flow at zero angle of attack, focusing on the secondary Hopf bifurcation, they observed an increase
of the critical Reynolds number at which the secondary oscillating helical mode becomes unstable
with respect to the Mach number, hence, a stabilizing effect of compressibility. Conversely, they
observed a decrease of the same critical Reynolds number with respect to the Mach number, up to
M ∞ ≈ 0.63, for the flow around a sphere. Through an adjoint-based sensitivity analysis, they related
this stabilizing/destabilizing behaviour to a change in the longitudinal advection of the perturbation by
the base flow within the recirculation zone in the lee of the body. Their analysis questions the previous
hypothesis of Bouhadji & Braza [18], who attributed the destabilizing effect of compressibility to an
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Chapter 3. NACA0012 airfoil: primary two-dimensional instability

increase of the length of the recirculation bubble, whereas this last effect (increase of the recirculation
zone) was observed for both the afterbody and the sphere in the work of Meliga et al. [72].

The increase of the recirculation length with growing Mach number has also been documented by
Canuto & Taira [20] for the flow around a circular cylinder and by Sansica et al. [92] for the sphere,
with a stronger elongation as the critical Reynolds number is approached. In the latter case, the
recirculation length is significantly reduced as M ∞ increases above unity (see also Nagata et al. [78, 79]).
The size variation of the separation regions behind bodies influences the natural frequency of the flow
[39, 64, 78, 79], as well as the frequency of the most unstable mode [92]. In both [20] and [92], the
frequency of the most amplified eigenmode is found to decrease as the recirculation length increases.

Sansica et al. also extended the stability analysis of Meliga for the sphere up to low supersonic
regime at M ∞ = 1.2, for Reynolds numbers between Re = 200 and Re = 370. Considering a three-
dimensional base flow, they confirmed the non monotonic effect of compressibility but observed a
destabilization only in the low subsonic regime up to M ∞ ≈ 0.3. For higher Mach numbers, the helical
oscillating mode is progressively damped until its complete stabilization in the high subsonic regime
(M ∞ ≈ 0.7 for Re = 280). They attributed this difference to the base flow axisymmetry assumption
used by Meliga et al. [72].

This specific regime of compressible low-Reynolds number flows has also been investigated experi-
mentally in the Mars Wind Tunnel at Tohoku University. Anyoji et al. [3] compared the aerodynamic
characteristics of a flat plate and a NACA0012-34 airfoil at Reynolds numbers Re ∈ [4 300; 41 000] in
the low subsonic regime, up to M ∞ = 0.6. Effects of compressibility on the aerodynamic coefficients at
Reynolds numbers in the range Re ∈ [100; 10 000] have been also studied in [31, 77, 101, 115] for flat
plates, cambered and triangular airfoils. From these studies, it can be concluded that for Reynolds
numbers up to Re ≈ 10 000, the influence of compressibility on the drag and lift coefficients is not the
same for the different angles of attack tested. In particular, the dynamics of the separated leading edge
shear layer at high angles of attack is highly dependent on the Mach number, which affects leading edge
vortex formation and the resulting aerodynamic force. Unique features related to the displacement of
the shock foot away from the airfoil surface were also put into evidence in the transonic regime [31].

3.2 Incompressible case

3.2.1 Influence of the angle of attack
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Figure 3.1 – Evolution of the mean values of CD, CL and associated Strouhal number St with the angle
of attack at Re = 1000. Black marks show results of the present work and light gray those of Kurtulus
[60].

The incompressible case has been simulated using a Mach number of 0.05. We first consider the
unfiltered base flow whose mean aerodynamic coefficients CD, CL and corresponding Strouhal number
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Figure 3.2 – Growth rate as a function of frequency of the most unstable mode (a) and length of the
recirculation region and streamwise location of maximal intensity in the spatial structure of the most
unstable mode (b), at Re = 1000, varying the angle of attack.

St are reported in figure 3.1 for different angles of attack at Re = 1000. The results are in very good
agreement with those of Kurtulus [60]. It can be observed from the St vs α plot that, at this Reynolds
number, the onset of vortex shedding occurs at α = 8°. The Strouhal number initially reaches values
of the order of 0.9 before decreasing as α increases. This decrease shows that St scales with C × sin α,
where it is reminded that C is the chord of the profile. This quantity corresponds to the vertical
distance between leading and trailing edge separated shear layers and hence represents a characteristic
length scale for shear layers, cross-wake interactions. The onset of vortex shedding is found to be
correlated with an increase in CL which reflects the separation and roll-up of the leading edge shear
layer and the influence of subsequent leading edge vortex formation on the upper surface of the airfoil.
Note that this trend of CL as a function of α is different to that observed at higher Reynolds number,
where leading edge separation is generally associated with lift stall. Accordingly, since the leading edge
vortex generates a pressure force that acts normal to the surface, CD is also found to increase greatly
for values of α above 8°.

In figure 3.2.a the growth rate versus frequency of the most unstable mode at different angles of
attack is presented for Re = 1000. It shows a non monotonic behaviour of the growth rate ωr with
respect to α : a sharp increase as the angle of attack increases from 8° to 14° where ωr is maximal,
followed by a decrease for α ≥ 14°. The frequency of the mode ωi, instead, constantly decreases. While
this appears to correlate with the evolution of the natural frequency (see figure 3.1), we stress the
fact that stability analysis is here performed on the filtered base flow. As a consequence, for such a
base flow, the frequency of the most unstable mode does not accurately match the vortex shedding
frequency away from the stability threshold.

The decrease in ωi can be correlated with an increase in size of the recirculation region of the base
flow, both in the streamwise and transverse directions, hence an increase in the wake characteristic
length scale, as depicted in figure 3.3. The length of the recirculation region is here identified using zero
streamwise velocity isoline. Moreover, the streamwise wavelength of the most unstable mode increases
with the thickening of the recirculation region associated with the increase of the angle of attack. The
corresponding streamwise wavenumber is found to be proportional to the mode frequency, leading to
a relatively constant phase velocity vφ ≈ 0.8 with respect to α. This value scales with the base flow
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Figure 3.3 – ||ρ̃u||/max(||ρ̃u||) isocontours at different angles of attack, Re = 1000 and M ∞ = 0.05. 5
levels of contours in the range [0.5; 1] are plotted. The base flow streamlines are in light gray and the
solid black line corresponds to the isocontour ux = 0. Red circles indicate the streamwise position of
the peak intensity of the mode. The parameters L and H used for the “closing angle” calculation are
shown for α = 20°.

46



3.2. Incompressible case

8 10 12 14 16 18 20

2.5

3.0

3.5

4.0

α[◦]

L
H

Figure 3.4 – L/H ratio at different angles of attack, Re = 1000 and M ∞ = 0.05.

mean velocity measured in the wake at a large distance downstream of the recirculation bubble.

Figure 3.3 further shows that the spatial structure of the most unstable mode exhibits larger
intensities in the wake downstream of the recirculation region for all angles of attack. The streamwise
positions of maximal intensities of the mode are indicated by the red circles and are calculated
considering the position of maximal amplitude of the envelope of the signal, i.e. the modulus of
the complex signal. Yet, it is observed that the relative position of the peak intensity with respect
to the recirculation region strongly varies with α. For α = 8°, largest intensities are observed far
downstream of the recirculation region, quite similarly to what can be observed behind bluff bodies
at Reynolds numbers slightly above the stability threshold, i.e. slightly above the critical Reynolds
number corresponding to the first Hopf bifurcation [69, 116]. The base flow in this region is nearly
parallel and the instability can be explained by deficits of streamwise velocity in the wake and the
associated inflection points in their cross-stream distribution. The location of maximal intensity in the
spatial structure of the most unstable mode and the tail end of the base flow recirculation region get
closer as α increases.

This is further highlighted on figure 3.2.b, which plots the streamwise position of the trailing point
of the recirculation region and the one of the peak intensity in the spatial structure of the most unstable
mode. It is shown that the two regions first exhibit strong correlation at α ≈ 12° − 14°, where the
trend of the peak intensity position changes and starts increasing with respect to α, then both curves
join at α = 18°. The two regions seem uncorrelated below α = 14° and strongly correlated above. For
α ≥ 14°, the most unstable mode is preferentially located in the non parallel region of the base flow
and hence the mechanism driving the instability may differ from that at lower values of α. We note
that α = 14° also corresponds to maximal growth rate of the unstable mode (see figure 3.2.a), but it
remains unclear at this point whether or not the decrease of growth rate observed for α ≥ 14° is due to
the interaction between the recirculation region and the mode.

For the flow past square and circular cylinders, Mao & Blackburn [69] attributed the maximum
growth rate to the base flow being most parallel at the end of the recirculation region. A measure of
parallelism in this region was provided by the “closing angle” of the recirculation region, quantified by
the ratio between the streamwise distance from the widest point to the end of the recirculation region
(L), and its maximum width (H), as it is shown in figure 3.3. In figure 3.4, we also find that this ratio
is maximal (i.e. the flow is most parallel at the end of the recirculation region) when the growth rate is
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Figure 3.5 – Evolution of the mean values of CD, CL and associated Strouhal number St with the
Reynolds number at α = 20°.
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Figure 3.6 – Growth rate as a function of frequency of the most unstable mode (a) and length of the
recirculation region and streamwise location of maximal intensity in the spatial structure of the most
unstable mode (b), for α = 20°, varying the Reynolds number.

maximal, which seems to corroborate previous observations of Mao & Blackburn. However, we will see
in the next section that this correlation may not strictly hold for all cases.

3.2.2 Influence of Reynolds number

We first consider the unfiltered base flow whose mean aerodynamic coefficients CD, CL and corresponding
Strouhal number St are reported in figure 3.5 for different Reynolds numbers at α = 20°. Due to a
decrease of the viscous contribution, the drag coefficient CD first decreases with increasing Reynolds
number up to Re = 400. Beyond, it increases because of the growing contribution of the pressure drag.
The lift coefficient increases, while the associated Strouhal number presents a maximum at Re ≈ 700.

The evolution of ωr as a function of ωi for the most unstable mode at different Reynolds numbers
and for α = 20° is displayed in figure 3.6.a. The mode frequency slightly increases close to the stability
threshold, i.e. from Re = 200 to Re = 300; this is probably due to the thinning of the shear layers,
caused by the decrease of viscosity, which at those very low Reynolds numbers may impact the frequency
more than the elongation of the recirculation region. Beyond Re = 300, instead, the mode frequency
decreases, and the growth rate exhibits a non monotonic trend with a maximum observed around
Re = 800.
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Figure 3.7 – ||ρ̃u||/max(||ρ̃u||) isocontours at different Reynolds numbers, α = 20° and M ∞ = 0.05. 5
levels of contours in the range [0.5; 1] are plotted. The base flow streamlines are in light gray and the
solid black line corresponds to the isocontour ux = 0. Red circles indicate the streamwise position of
the peak intensity of the mode.
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It can be observed from figure 3.7 that the recirculation region extends further downstream with
increasing Re, which is in line with previous observations on circular and square cylinders [69] and on
the NACA0012 airfoil at α = 16° [116]. This supports the idea that the characteristic length scale of
the recirculation region drives ωi. The evolution of the streamwise wavenumber with respect to Re is
also in line with the results of Mao & Blackburn [69] for the square cylinder: it slightly increases close
to the stability threshold and drops as the Reynolds number is further increased. The wavenumber is
proportional to the mode frequency, leading to a constant phase velocity vφ ≈ 0.8, which is similar to
what has been observed at constant Re = 1000 for the different angles of attack. Overall, figures 3.6.b
and 3.7 indicate that the evolution of the most unstable modes with Re is somewhat similar to that
with α.

Figure 3.7 further shows that the end of the recirculation region and the streamwise abscissa
of maximal intensity in the spatial structure of the mode, indicated by the red circles, are clearly
separated at Re = 200 and then get closer to one another as Re is increased. Figure 3.6.b shows that
the Reynolds number at which both locations first exhibit strong correlation is Re ≈ 400 − 500, but the
peak intensity joins the recirculation region at Re = 800, which corresponds to the maximum growth
rate. This suggests that the interaction between the recirculation region and the far wake instability
is a necessary condition, but not (solely) responsible for the change in the trend of ωr as we move
away from the stability threshold. The relation between the maximum growth rate and the abscissa
of maximum intensity has been confirmed by further calculations at lower angles of attack. As for
the α = 20° case, the maximum growth rate has been reached when the peak intensity of the mode
becomes coincident with the end of the recirculation region (see Appendix C). On the other hand, we
find again that the maximum growth rate is obtained when the base flow is most parallel at the end of
the recirculation region, as measured by the “closing angle” defined previously.

WI

RBI

Figure 3.8 – Growth rate isocontours for the most unstable mode in the plane (α, Re). The dashed
line corresponds to the maximum growth rate at each Re. The thick red line separates regions of
Wake Instability (WI) from the region of Recirculation Bubble Instability (RCI). The thick blue line
corresponds to the maximum L/H ratio.

Figure 3.8 summarizes these results in the form of contours of ωr in the plane (α, Re). WI and RBI
labels are added to denote regions of the parameter space where the dominant instability is located
far downstream (Wake Instability) or at the end of the recirculation region (Recirculation Bubble
Instability) of the base flow. The thick red line delimits the two regions and is obtained by considering
when the length of the recirculation region and the location of the mode peak intensity first exhibit
strong correlation. The dashed black line marks the maximum growth rate obtained at each Re (as α
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is varied). For this range of Reynolds number and angles of attack, the maximum growth rate is always
reached within the RBI region. The blue thick line indicates when the base flow is most parallel at the
end of the recirculation zone, measured by the maximum L/H ratio at each Re. This maximum is
relatively close to that of the growth rate within the range of Re and α tested. Hence, figure 3.8 shows
that ωr reaches a maximum for all Re and that the angle of attack at which this value is obtained
increases as Re decreases. Accordingly, the angle of attack at which the mode transitions from the WI
to the RBI type increases as Re decreases. Moreover, it appears that within this range of Reynolds
numbers, ωr does not reach a maximum for all α and additional cases at higher Re should be computed
to clarify whether ωr continuously rises with Re or drops at some point. We note that the continuous
increase in ωr with Re is in line with previous results of Zhang & Samtaney [116] obtained on the
NACA0012 airfoil at α = 16° and Re ∈ [400 − 1000]. Finally, it can be observed that the variability of
ωr with α increases with the Reynolds number.

3.3 Compressibility effects in the subcritical regime
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Figure 3.9 – Drag coefficient CD, lift coefficient CL and Strouhal number St as a function of the angle
of attack at Re = 1000 and for various values of the Mach number.
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Figure 3.10 – Most unstable mode evolution in the complex plane (a) with respect to α and Mach
number at Re = 1000 and (b) with respect to Re and Mach number at α = 16°. Dashed lines represent
the interpolation curves at iso-Mach number.
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Figure 3.11 – ||ρ̃u||/max(||ρ̃u||) isocontours at different Mach numbers, α = 16° and Re = 1000.
Contours are from 0.5 to 1 across 5 levels. The base flow streamlines are in light gray and the solid
black line corresponds to the isocontour ux = 0.
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Figure 3.12 – Compressibility effects on the most amplified mode in the (α, Re) plane. The solid
black line separates regions where compressibility has a stabilizing (S) effect from those where it has a
destabilizing (D) effect. The dashed lines correspond to the critical Reynolds number at M ∞ = 0.05
and M ∞ = 0.5.

The effect of compressibility on the aerodynamic coefficients is shown in figure 3.9 for a Reynolds
number of Re = 1000 and various angles of attack. Both the drag and lift coefficients increase with the
Mach number. This increase is more noticeable at high angles of attack and steepens with the Mach
number, as expected. The Strouhal number, instead, decreases with the increase of M ∞ for all the
tested angles of attack, except for α = 20° for which it increases with respect to the Mach number.

In figure 3.10.a, the growth rate of the most amplified mode is shown as a function of its frequency
at Re = 1000 for different angles of attack α and Mach number varying between 0.05 and 0.5. First, the
frequency ωi of this oscillatory mode decreases with α for all M ∞, which generalizes previous results
on the incompressible case to the compressible one. In addition, ωi decreases with M ∞ for all α. As
discussed previously in the incompressible case, there is no strict correlation between the evolution of
St and that of ωi with respect to the Mach number, which can be attributed to our approach based on
the filtered base state (rather than on the time-averaged base state). The decrease in ωi with increasing
M ∞ is consistent with previous works on bluff bodies [20, 72, 78, 79, 92] and can again be related to
the elongation of the recirculation region. As illustrated in figure 3.11 for α = 16°, the recirculation
region of the base flow, depicted by the zero streamwise velocity contour in thick black line, elongates
as the Mach number is increased.

On the other hand, the influence of compressibility on the growth rate of the most unstable mode
depends on the angle of attack. For α = 8° and 9°, the growth rate increases with the Mach number,
indicating a destabilizing effect of compressibility that is clearly less pronounced for α = 9° than for
α = 8°. At α = 10°, compressibility does not change the growth rate, while further increasing the angle
of attack leads to a decrease of the growth rate with increasing Mach number, hence a stabilizing effect
of compressibility. This figure further shows that the maximum growth rate (as α is varied) decreases
with increasing M ∞ and it is achieved at slightly lower angles of attack compared to the incompressible
case. The transition between the stabilizing and destabilizing effects of compressibility is also shown
in figure 3.10.b, where the characteristics of the leading mode are presented at α = 16° for different
Reynolds numbers. Compressibility has a stabilizing effect at Re = 1000, 600 and 400 while it has a
destabilizing effect at Re = 300, i.e. as one gets closer to the critical Reynolds number (Rec ≈ 285)
corresponding to the first Hopf bifurcation. Figure 3.12 summarizes the effect of compressibility on the
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Figure 3.13 – Neutral stability curves in the (M ∞, Re) plane for (a) α = 8°, (b) α = 12°, (c) α = 16°
and (d) α = 20° .

most amplified mode in the plane (α, Re). The solid black line separates regions where compressibility
has a stabilizing (S) effect from those where it has a destabilizing (D) effect. This limit goes from high
to low Reynolds numbers as the angle of attack is increased and it also shows that the destabilizing
effect of the upstream Mach number is observed close to the critical threshold only.

In figure 3.13, the critical Reynolds number Rec is presented as a function of the Mach number.
Compressibility brings the first Hopf bifurcation forward for all the angles of attack considered here.
Nevertheless, the intensity of the destabilization (the variation of ∆Rec with M ∞) weakens as α

increases: ∆Rec = Rec(M ∞ = 0.5) − Rec(M ∞ = 0.05) represents 15%, 8% and 3% for α = 8°, 12° and
16° respectively, up to α = 20° where compressibility does not influence the transition (∆Rec ≈ 0).

The analysis of the incompressible regime in section 3.2 has shown a correlation between the
variation of the growth rate of the most unstable mode and the relative position between the peak
intensity of the mode and the end point of the recirculation region, as well as with the “closing angle”.
We now examine whether these two properties of the base flow can similarly be responsible for the
growth rate variation in the compressible regime, and thus explain the stabilizing/destabilizing effect
of compressibility.

As the compressibility lengthens the recirculation region, the abscissa of maximal intensity is also
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Figure 3.14 – Length of the recirculation region and streamwise location of maximal intensity in the
spatial structure of the most unstable mode, with boundaries between WI and RBI regions (a) and
L/H ratio (b) at different angles of attack, Re = 1000 and three different Mach numbers M ∞ = 0.05
(red), 0.3 (yellow) and 0.5 (blue).

found to move downstream for all the angles of attack, as it can be seen in figure 3.14.a for three
different Mach numbers. In particular, the peak of maximal intensity of the mode joins the recirculation
region at higher angles of attack when the Mach number is increased: at α = 18° for M ∞ = 0.05 and
α = 20° for M ∞ = 0.3, while for M ∞ = 0.5 it has not reached the recirculation region yet within the
range of α explored here.

As defined in section 3.2.1, we consider that the angle of attack at which the recirculation region
and the far wake instability first exhibit strong correlation corresponds to the change in trend of the
abscissa of maximal intensity of the mode. This specific angle of attack is seen to slightly decrease when
the Mach number increases: α ≈ 10° − 12° for M ∞ = 0.5, against the α ≈ 12° − 14° for M ∞ = 0.05, as
indicated by the dashed black separation lines in figure 3.14.a. We can remark that, when increasing
the Mach number, the downstream shift of the abscissa of maximal intensity of the mode compared to
the lengthening of the recirculation region, is stronger at low angles of attack (WI region). In other
words, when increasing the Mach number, the relative distance between the peak of maximal intensity
of the mode and the end of recirculation region increases more strongly in the WI region than in the
RBI one. Nevertheless, the destabilizing/stabilizing effect of compressibility changes at α = 10°, which
is in the WI region. Hence, this criterion does not seem to explain the stabilizing/destabilizing effect of
compressibility.

However, looking at the effect of the angle of attack for a given Mach number, the growth rate is
observed to reach its maximum value at α ≈ 14° for all the Mach numbers considered here (see figure
3.10.a), which corresponds to the RBI region. Therefore, the interaction between the recirculation
region and the far wake instability is a necessary but not sufficient condition to explain the change in
the trend of ωr, for a constant Mach number, as in the compressible regime.

The lengthening of the recirculation region induced by compressibility also increases the “closing
angle” for each angle of attack, as we can see in figure 3.14.b where the L/H ratio is shown for three
different Mach numbers. This suggests that the “closing angle” criterion cannot be used to explain
the destabilizing/stabilizing effect of compressibility, since there is no difference in its variation with
the Mach number between angles of attack α < 10° and α > 10°. Furthermore, as the Mach number
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α = 8◦

α = 10◦

α = 16◦

(a) (b)

Figure 3.15 – Momentum variation of the base state with respect to the Mach number for different
angles of attack at M ∞ = 0.5 and Re = 1000. Streamwise component ∂ρux/∂M ∞ in column (a) and
cross-stream component ∂ρuy/∂M ∞ in column (b). The solid black line corresponds to the isocontour
ux = 0. ||ρ̃u||/max(||ρ̃u||) isocontours are shown from 0.5 to 1 across 5 levels.

increases, the maximum L/H ratio is observed for values of the angle of attack greater than that for
which the maximum growth rate is measured: α = 14° for M ∞ = 0.05 and α = 16° for M ∞ = 0.5 to
be compared with α ≈ 14°. The explanation of the maximum growth rate by the degree of parallelism
of the base flow at the end of the recirculation region, is no longer valid in the compressible regime.

Through an adjoint-based sensitivity analysis, Meliga et al. [72] have analyzed the stabilizing/
destabilizing effects of the Mach number on axisymmetric wake flows (sphere and afterbody) by
considering the competition between the production, cross-stream and streamwise advection of the
disturbance by the base flow. In particular they have hypothesized that the destabilization is governed
by the streamwise advection and is promoted when blockage effects are strong, i.e. when the width of
the recirculation region is large compared to the characteristic length of the body. Yet, in our case,
we find that blockage increases with α and that the intensity of destabilization (with increasing M ∞)
decreases, see figure 3.13.

Nevertheless, the relation between blockage and the role of streamwise and crosswise advection
may not be as straightforward. Figure 3.15 shows the spatial distribution of the base flow momentum
variation with respect to the Mach number at Re = 1000. The streamwise momentum variation is
negative downstream of the recirculation region, which promotes advection of the instability toward the
recirculation bubble (destabilizing effect) for all the angles of attack. Its absolute value increases with
α. The cross-stream momentum variation, instead, is significant only close to the recirculation bubble
and tends to convect the instability away from the recirculation region (stabilizing effect). Looking
at the location of the unstable mode relatively to the base flow recirculation region, the cross-stream
momentum variation is likely to induce a stabilizing effect for α > 10° since the structure of the leading
eigenmode is localized close to the recirculation region, even if at α = 10° they do not exhibit strong
correlation yet. Conversely, for lower angles of attack, the instability is located far downstream of
the recirculation region and is presumably not affected by such stabilizing effects. In a similar way,
stabilizing effects due to crosswise advection may not play a significant role at Reynolds numbers close
to stability threshold, where the unstable mode is located far downstream of the recirculation region,
at least for α < 20°.
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Figure 3.16 – Frequency of the most unstable mode of the filtered (SFD) and of the time-averaged
base flow (AVG) at Re = 1000 and M ∞ = 0.05 for different angles of attack (a). Percentage difference
between vortex shedding frequency (St) and frequency of the most unstable mode of the filtered base
flow with respect to the gap from the stability threshold for three Mach numbers and four angles of
attack (b).

3.4 Filtered vs time-averaged base flow

The response of the stability analysis has been seen to depend on the base flow choice [8, 68, 92, 96].
In some cases, the time-averaged flow has been found to be marginally stable, i.e. the growth rate of
the most unstable mode being close to zero ωr ≈ 0 above the stability threshold, while its frequency
accurately predicts the one of the nonlinear periodic flow. Therefore, its use is not adequate for
determining numerically the critical Reynolds number. Conversely, performing stability analysis on
fixed point solutions enables the identification of the critical threshold, but the frequency of the most
unstable mode diverges from the natural one as the Reynolds number is increased above the stability
threshold.

The different responses of stability analysis performed on the fixed point solution and on the
time-averaged flow have been described by Mantič-Lugo et al. [68], for the two dimensional cylinder,
through the saturation process of the vortex shedding, i.e. the evolution from the fixed point solution
to the periodic solution, and by Turton et al. [107]. The latter showed that those different responses
between fixed point and time-averaged flow, were characteristic of systems with traveling wave solutions,
i.e. quasi-monochromatic frequency oscillating flows. On the contrary, in systems with standing waves
solutions, the time-averaged flow was found to be unstable and the predicted frequency differed from
the natural one, as it has been observed for open cavities [96].

The present results for the NACA0012 airfoil confirms that the frequency of the most unstable
mode given by the stability analysis for the fixed point solution, diverges from the nonlinear vortex
shedding frequency, while stability analysis on the time-averaged base state leads to a mode frequency
that accurately matches the vortex shedding one. This is shown in figure 3.16.a, where the mode
frequency predicted by the stability analysis performed on both the filtered and the time-averaged base
flow, are compared with the nonlinear Strouhal number for different angles of attack at Re = 1000 in
the incompressible regime. The stability analysis performed on the time-averaged base flow accurately
captures the variation of the Strouhal number with an increasing angle of attack, while the one
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Figure 3.17 – ||ρ̃u||/max(||ρ̃u||) isocontours at two different Mach numbers, α = 16° and α = 8° at
Re = 1000 for the filtered (SFD) and time-averaged (AVG) base flows. Contours are from 0.5 to 1
across 5 levels. The base flow streamlines are in light gray and the solid black line corresponds to the
isocontour ux = 0.

performed on the filtered base flow only approaches the Strouhal number for α = 8°. This is due to the
fact that the chosen value of the Reynolds number Re = 1000 is very close to the critical Reynolds
number of α = 8°, which is Rec ≈ 980.

The relative error between the mode frequency of the filtered base flow and the Strouhal number of
the nonlinear solution, (St − ωi/2π)/St ∗ 100, is reported in figure 3.16.b as a function of the distance
from the critical Reynolds number, ∆Re = (Re − Rec) = (1000 − Rec), for various angles of attack
α = 8°, 12°, 16° and 20° and Mach numbers M ∞ = 0.1, 0.3 and 0.5. The relative error is found to be
quadratic with respect to ∆Re at iso-Mach number, while it increases linearly with the Mach number
for a given angle of attack. Nevertheless, the way the frequency predicted by the stability analysis
on the filtered solution diverges from the vortex shedding frequency, is found to be case dependent.
Sansica et al. [92] have reported a difference of approximately 3% for ∆Re = 40 in the case of the
flow around a sphere, which is much lower than the difference of 25% measured in the case of the
two-dimensional cylinder [8, 92] for the same ∆Re. In our case, the interpolation for α = 8° in figure
3.16.b yields to a difference close to 2% for ∆Re = 40.

Figure 3.17 compares the spatial structure of the most unstable mode of the time-averaged base
flow with the one of the filtered base flow for two angles of attack at Re = 1000 and Mach numbers of
M ∞ = 0.05 and 0.5. In the incompressible case (M ∞ = 0.05), the spatial structures of the modes at
α = 8° are similar to each other whereas they significantly differ for α = 16°. This is due to the fact
that the filtered and the time-averaged base flow are very different at α = 16°, which is not the case
for α = 8°. Indeed, the recirculation region of the filtered solution expands downstream as the angle of
attack increases, in contrast with the one of the time-averaged flow which, instead, shortens. Since
the decrease of the mode frequency is related to the lengthening of the recirculation zone, this may
explain why the mode frequencies of the filtered base flow are substantially smaller than the natural
ones. Furthermore, the lengthening of the recirculation region also limits the asymmetry of the filtered
base flow with respect to the streamwise direction, which is in contrast with the strong asymmetry of
the time-average base flow. The difference in the base flows structure is also transferred to the mode
structure. Indeed, the mode structure is almost symmetric with respect to the streamwise direction
for the filtered case, while it is asymmetric and expands obliquely for its time-average counterpart.
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Nevertheless, there are some similarities between the two cases. First, the mode switches from a
WI type to a RBI type when the angle of attack is increased from α = 8° to α = 16°. Second, the
compressibility induces an extension of the mode structure along the streamwise direction in both
cases.

59



Chapter 3. NACA0012 airfoil: primary two-dimensional instability

3.5 Résumé

Dans ce chapitre, nous effectuons l’analyse de stabilité linéaire de l’écoulement bidimensionnel autour
d’un profil NACA0012, dont la configuration et la validation ont été présentées au paragraphe §2.4.3.
La plupart des résultats de ce chapitre font l’objet d’un article publié dans le AIAA Journal [109].

Dans la section §3.1, l’état de l’art des effets de la compressibilité sur l’aérodynamique et l’instabilité
primaire bidimensionnelle du sillage de corps émoussés est présentée. Quelques études récentes ont été
menées à propos de l’influence de la compressibilité sur la stabilité des écoulements à faible nombre de
Reynolds [20, 72, 92]. Dans leur analyse de stabilité globale d’écoulements de sillage bidimensionnels
axisymétriques, Meliga et al. [72] ont rapporté des effets contrastés de la compressibilité dans le régime
subsonique (jusqu’à M ∞ = 0.7), selon l’écoulement considéré. Dans le cas de l’écoulement axisymétrique
autour d’une ogive à culot droit, en se concentrant sur la bifurcation de Hopf secondaire, ils ont observé
une augmentation du nombre de Reynolds critique auquel le mode hélicoïdal oscillant secondaire
devient instable lorsque le nombre de Mach augmente, ce qui correspond à un effet stabilisateur de la
compressibilité. Inversement, ils ont observé une diminution du même nombre de Reynolds critique en
augmentant le nombre de Mach, jusqu’à M ∞ ≈ 0.63, pour l’écoulement autour d’une sphère. Grâce à une
analyse de sensibilité basée sur l’opérateur adjoint, ils ont relié ce comportement stabilisant/déstabilisant
à un changement dans l’advection longitudinale de la perturbation par l’écoulement de base dans la
zone de recirculation se développant directement à l’aval du corps. Sansica et al. ont étendu l’analyse
de stabilité de Meliga pour la sphère jusqu’au régime supersonique à M ∞ = 1.2, pour des nombres de
Reynolds compris entre Re = 200 et Re = 370. En considérant un écoulement de base tridimensionnel,
ils ont confirmé l’effet non monotone de la compressibilité mais ont observé une déstabilisation seulement
dans le régime subsonique jusqu’à M ∞ ≈ 0.3. Pour des nombres de Mach plus élevés, le mode oscillant
hélicoïdal est progressivement amorti jusqu’à sa stabilisation complète dans le régime subsonique élevé
(M ∞ ≈ 0.7 pour Re = 280). Ils ont attribué cette différence à l’hypothèse d’axisymétrie de l’écoulement
de base utilisée par Meliga et al. .

Dans la section §3.2, l’influence de l’incidence et du nombre de Reynolds est traitée dans le régime
incompressible. La variation de l’incidence à un nombre de Reynolds constant et la variation du nombre
de Reynolds à incidence constante révèlent un comportement non monotone sur le taux de croissance
du mode le plus instable. À Re = 1000, le taux de croissance du mode augmente fortement lorsque
l’incidence passe de 8° à 14° où il atteint sa valeur maximale, suivi d’une diminution pour α ≥ 14° (voir
figure 3.2.a). La fréquence du mode ωi, en revanche, diminue constamment, en raison de l’allongement
de la bulle de recirculation. De même en variant le nombre de Reynolds à incidence fixe α = 20° (figure
3.6.a), le taux de croissance présente une évolution non monotone avec un maximum observé autour de
Re = 800. La fréquence du mode augmente légèrement à proximité du seuil de stabilité, c’est-à-dire
de Re = 200 à Re = 300 ; ceci est probablement dû à l’amincissement des couches de cisaillement,
causé par la diminution de la viscosité qui, à ces nombres de Reynolds très bas, peut avoir un impact
sur la fréquence plus important que l’allongement de la zone de recirculation. Au-delà de Re = 300,
au contraire, la fréquence du mode diminue. Dans les deux cas, le taux de croissance maximal est
atteint lorsque l’écoulement de base est le plus parallèle à la fin de la zone de recirculation. De plus, on
constate que le taux de croissance maximal, en variant le nombre de Reynolds, est observé lorsque le
point d’intensité maximale du mode coïncide avec la fin de la bulle de recirculation.

Le cas compressible est considéré dans la section §3.3. Comme synthétisé par la figure 3.12, un effet
stabilisant ou déstabilisant de la compressibilité est observé en fonction de l’angle d’incidence et du
nombre de Reynolds. Pour α < 20°, la compressibilité a un effet déstabilisant près du seuil critique, qui
se traduit par une bifurcation de Hopf plus précoce, tandis que l’augmentation du nombre de Mach
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entraîne toujours une diminution du taux de croissance du mode lorsqu’on se situe bien au delà du
seuil critique. Comme suggéré par Meliga et al. [72], nous avons lié l’effet stabilisant/déstabilisant
de la compressibilité à une modification de l’écoulement de base, plus particulièrement en lien avec
la distribution spatiale de la variation de la quantité de mouvement de l’écoulement de base par
rapport au nombre de Mach. La variation de quantité de mouvement longitudinale est négative en aval
de la région de recirculation, ce qui favorise l’advection de l’instabilité vers la bulle de recirculation
(effet déstabilisant), ce quelle que soit l’incidence. La variation de la quantité de mouvement verticale,
au contraire, n’est significative qu’à proximité de la bulle de recirculation et à pour effet d’éloigner
l’instabilité de la zone de recirculation (effet stabilisant). Si l’on considère l’emplacement du mode
instable par rapport à la région de recirculation de l’écoulement de base, la variation de quantité de
mouvement verticale est susceptible d’induire un effet stabilisant pour α > 10° puisque l’instabilité
est proche de la région de recirculation. Inversement, pour des incidences plus faibles, l’instabilité est
située loin en aval de la région de recirculation et n’est vraisemblablement pas affectée par de tels effets
stabilisants.

Dans la section §3.4, une comparaison entre la réponse de l’analyse de stabilité sur l’état de base
filtré et l’état de base moyenné temporellement est présentée. L’analyse de stabilité sur l’écoulement
de base moyenné dans le temps capture bien la variation du nombre de Strouhal, alors que celle sur
l’écoulement de base filtré, ne s’approche du nombre de Strouhal qu’à α = 8° (figure 3.16), incidence
pour laquelle le nombre de Reynolds considéré Re = 1000 est très proche du nombre de Reynolds
critique Rec ≈ 980. La différence entre la fréquence prédite par l’analyse de stabilité sur l’écoulement
de base SFD et celle de l’écoulement non-linéaire s’avère augmenter quadratiquement par rapport à
∆Re = Re − Rec à iso-nombre de Mach, tandis que, pour chaque incidence, cette différence augmente
linéairement en augmentant le nombre de Mach. Des différences sont également observées sur la
structure du mode. En particulier, la forte asymétrie de l’écoulement de base moyenné dans le temps
à α = 16° se transpose sur la structure du mode qui se développe de manière oblique dans le sillage
(figure 3.17).
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Chapter 4

Three-dimensional secondary instabilities

Abstract: In this chapter, we investigate the three-dimensional linear stability of bluff bodies periodic
wakes. In §4.1, prior knowledge on the process that leads to the three-dimensionalization of the wake
is introduced and discussed, with a description of modes A and B secondary instabilities of the circular
cylinder periodic wake. In §4.2 the influence of Reynolds and Mach numbers on the two-dimensional
periodic wake of the circular cylinder and on the properties of modes A and B is assessed. Section
§4.3 presents a comparison between the stability analysis response on the filtered, time-averaged and
periodic base flows for the circular cylinder wake. In section §4.4 preliminary results on compressibility
effects on the three-dimensionalization of the NACA0012 airfoil periodic wake at 20◦ angle of attack
are introduced. Section §4.5 summarizes the present chapter in French.

Contents:

4.1 Three-dimensionalization of the wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 3D circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Comparison between filtered, time-averaged and periodic base states . . . . . . . . . . 82

4.4 3D NACA0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Three-dimensionalization of the wake

Within the periodic regime, the amplitude of the oscillation increases when increasing the Reynolds
number. Then, a second bifurcation occurs, which triggers the three-dimensionalization of the flow.
The three-dimensional structures are due to the deformation of the von Kármán vortex street in
the near wake [63, 105, 112]. The three-dimensional transition involves two consecutive steps, each
characterized by a discontinuity in the Strouhal–Reynolds numbers relationship that can be seen in
figure 4.1 at points 2 and 3 for the circular cylinder. These discontinuities are caused by the emergence
of the so called mode A and mode B secondary three-dimensional instabilities, respectively, whose time
periodicity is the same of the base state [37, 111, 113]. These modes can be characterized by their
symmetry properties [15, 17], characteristic spanwise wavelengths and their structure with respect to
the base flow. Indeed, two different regions can be identified in the two dimensional flow, as shown in
figure 4.2: the elliptic and the hyperbolic regions, that are related to the instability mechanisms of
these two modes.

63



Chapter 4. Three-dimensional secondary instabilities

0 100 200 300
0.10

0.12

0.14

0.16

0.18

0.20

0.22

Re

St

Williamson 1989

STATIONARY UNSTATIONARY

TWO DIMENSIONAL THREE DIMENSIONAL

MODE A

MODE B

1

2

3

Rec1

Rec2

Figure 4.1 – Reynolds-Strouhal relation at low Reynolds numbers for the cylinder wake.
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Figure 4.2 – Vorticity field with streamlines of the two-dimensional cylinder wake showing the elliptic
and hyperbolic regions.

The first one, mode A, appears around Re ≈ 180 − 190 and is associated with an elliptic instability
of the primary vortex cores [62, 105], which start to deform along the spanwise direction pulling
back the base flow spanwise vorticity upstream at some points [112] (see figure 4.3), leading to the
development of large scale transverse structures of characteristic wavelength λz ∼ 4D.

Moreover, this mode preserves the half-period symmetry, Hu(x, t) = u(x, t), of the base state,
expressed in terms of velocity and vorticity as follows:

H(ux, uy, uz)(x, y, z, t) = (ux, −uy, uz)(x, −y, z, t +
T

2
)

H(ωx, ωy, ωz)(x, y, z, t) = (−ωx, ωy, −ωz)(x, −y, z, t +
T

2
)

(4.1)

The second one, mode B, which arises around Re ≈ 230−260, is instead associated with a hyperbolic
instability. It develops in the stretched braid region, which develops in between two-consecutive counter-
rotating von Kármán vortices and is related to the formation of finer scale structures of characteristic
wavelength λz ∼ 1D. This mode breaks the half-period symmetry of the base state:

Hu(x, t) = −u(x, t) (4.2)

In figure 4.4 the iso-surfaces of the three vorticity components show, for mode A, a concentration
of vorticity in the vortex cores that persist downstream, also visible in the (x, y)-plane, while mode
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Figure 4.3 – Vorticity iso-surfaces of the two dimensional flow (a) compared to the first stage mechanism
of vortex deformation with base flow spanwise vorticity pulled back upstream (b). DNS at Re = 250.

B vorticity is concentrated in the braid region and does not persist downstream as far as mode A.
Nevertheless, both modes involve the generation of vorticity located in the braid connecting the primary
von Kármán vortices. Yet, in accordance with the half-period symmetry, the streamwise and spanwise
vorticity of mode A change sign passing from a primary vortex to the next. Conversely, for mode B, the
streamwise and spanwise vorticity have the same sign between two consecutive primary vortices. We
can also remark that both mode A and mode B present the same transverse shift of λz/4 of spanwise
vorticity ω̃z with respect to ω̃x and ω̃y which are instead in phase.

Passing from mode A to mode B, the instability shifts from the vortex core towards the braid
(i.e. from the elliptic to the hyperbolic region). This has also been observed in round jets and mixing
layers and is actually a typical feature of open shear flows1 [6, 71, 80, 84].

At higher Reynolds number Re ≈ 380 [17], a third secondary mode is found to become unstable,
this mode is referred to as the Quasi-Periodic (QP) mode, whose characteristic wavelength lies in
between those of modes A and B and whose time-periodicity is almost twice the one of the base state
[17]. This mode will not be addressed in this work but is worth to be mentioned here to give a complete
view.

Although the occurrence of modes like A, B and QP in the three-dimensionalization process of the
circular cylinder wake can be thought to represent the generic transition to three-dimensional motions
of any von Kármán vortex street, this seems to be true only for flows with Z2 × O(2) symmetry2, and
only looking at these modes with respect to their symmetry properties [15, 17]. Indeed, in Z2 × O(2)
symmetric flows, the correlation between preserving/breaking symmetry and large/short wavelength
instabilities, as observed in case of the cylinder, is not generic. Considering these modes with respect
to their symmetry properties rather then their physical characteristics (such as their wavelength),
provides a more general statement: flows with a Z2 × O(2) symmetry bifurcate to a three-dimensional
state via the emergence of two synchronous (same time periodicity as the base state) modes, one
preserving the base state H-symmetry and one breaking it, together with a quasi-periodic mode. In

1This only refers to the transition from large scale structures localized in the vortex core to small scale structures
localized in the braid, not to symmetric/antisymmetric properties, since these characteristics are related to the time
periodicity

2Z2 refers to half-period spatio-temporal symmetry, while O(2) refers to the fact that the wake is symmetric for
arbitrary translations or reflections.
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Figure 4.4 – Mode vorticity ω̃/max(||ω̃||) of mode A and mode B with wavelength λz = 3D at
Re = 250 and 0.75D at Re = 300, respectively: (a) streamwise, (b) cross-stream and (c) spanwise
component. Three-dimensional iso-surfaces at levels ±0.1 (positive in red, negative in blue) superposed
to translucent iso-surfaces at level ±0.01 of base flow vorticity. Spatial variation on the (x, y)-plane at
two different spanwise locations (z = 1.4D and z = 1.4D + λz/4) superposed to base flow vorticity
contour at ±0.05 (black line).

fact, other Z2 × O(2) symmetric flows have been found to transition to a three-dimensional state with
the same type of modes (in terms of symmetries) but they can correspond to different wavelengths,
or their chronology in the flow history may be different to what has been observed in the circular
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cylinder case [17, 70, 89]. For example, the flow past a square cylinder flow has been found to become
three-dimensional via the occurrence of the same types of modes: the first mode to emerge is a long
wavelength one, λz ≈ 5.03L, which preserves the base flow symmetry, the second is a short wavelength
one, λz ≈ 1.11L, which breaks the base flow symmetry and the third one is a quasi periodic one [85].
However, for the wake developing downstream a flat plate, the two synchronous modes have similar
wavelength [56]. In the flow past a high aspect ratio elliptic cylinder at zero angle of attack, instead,
the symmetry-breaking mode has been found to become unstable before the symmetry-preserving
one [62]. Moreover, the wavelengths of both modes are found to increase with the aspect ratio of the
elliptic cylinder3. Finally, in the non-autonomous driven cavity, the chronology differs under certain
conditions4: either the QP mode or the symmetry-breaking mode, which in this case corresponds
to large wavelengths (unlike the cylinder case), appears first while the symmetry-preserving mode,
corresponding to short wavelengths, emerges later [15, 16, 17].

Before linking the three-dimensionalization process of the cylinder wake to that of generic time-
periodic wake flows5, some clarifications are needed. The flow around the cylinder belongs to the class
of Z2 × O(2) flows and therefore satisfies the symmetry about the half-period T/2 (H-symmetry) given
by expression (4.1). As a consequence, the Floquet analysis can be performed for the half-period T/2
instead of the full period T [15, 17]. Thereby, the symmetry-preserving mode would become unstable
by crossing the unit circle in the complex plane with a Floquet exponent µH = 1, the QP mode with
a complex one µH and the symmetry-breaking mode with µH = −1, which corresponds to a period
doubling bifurcation (see figure 1.10) of the base flow half-period, resulting in a period T . Hence,
one may consider that the symmetry-preserving mode has a period of T/2, but this periodicity only
refers to the H-symmetry. Applying the half-period H-symmetry twice, which corresponds to a Floquet
analysis on the whole period, we obtain the following identity:

u(x, t) = H2u(x, t) = Iu(x, t + T ) = u(x, t + T ) (4.3)

which correspond to a T -periodicity. Hence, the Floquet multipliers µP obtained by considering the
whole period T are the square of those obtained by the Floquet analysis performed on the half-period:
µP = (µH)2. Therefore, both modes A and B become unstable by crossing the unit circle with a Floquet
exponent µP = µ2

H = 1, which corresponds to T -periodic modes.

For flows past canonical bodies which do not satisfy the half-period symmetry, Floquet analysis
can only be performed for the whole period T . For these flows, a different instability may arise [90, 94].
In particular, the so-called mode C, has been observed and found to be the leading three-dimensional
mode in several configurations [21, 54, 94, 114]. Mode C is a period doubling mode corresponding
to a marginal Floquet multiplier of µ = −1, hence, its periodicity is twice that of the base state. In
the last section of this Chapter, where the three-dimensionalization of the NACA0012 airfoil is briefly
addressed, we will refer to this mode as the period doubling mode instead of mode C.

In symmetric flows, since µP = (µH)2, the only way to obtain a period doubling mode, µP = −1,
i.e. a mode whose period is 2T , would be with µH = ±i, i.e. a quadrupling of the half period. However,
as pointed out in section 1.4.2, this solution is in resonance with the period doubling µH = −1 solution
(the symmetry-breaking mode). This explains why, in general, the period doubling mode is suppressed
in symmetric flows [102], while it can emerge in non-symmetric ones.

3Leontini et al. [62] give other names to these modes (Â and B̂ modes respectively) which they justify by the increase
of their wavelength and the slight differences observed on the structures, even if their symmetries are the same as modes
A and B.

4In particular changing the length of the cavity
5The limit cycle solution of these flows is not necessarily symmetric, while periodic solutions of Z2 × O(2) represent a

symmetric limit cycle.
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Brief discussion on the period doubling mode

It is reasonable to wonder if the period doubling mode of non-symmetric flows can be seen as the
equivalent of either the symmetry-breaking mode or the QP mode arising in symmetric flows. In
symmetric flows such as the circular cylinder wake, the first instability that appears (mode A) breaks
the spanwise homogeneity (transition from a 2D to a 3D flow), while the second instability (mode
B), which in the half period corresponds to a period doubling bifurcation, breaks the spatio-temporal
half-period symmetry given by equation (4.1). For non-symmetric flows, the first mode to appear (at
least at high angles of attack) is the period doubling one, which breaks both the spanwise homogeneity
and time periodicity of the base flow, likewise the mode B with respect to the half-period in the case of
the cylinder flow.

For the elliptic cylinder or the non-autonomous driven cavity [17, 62], changing other parameters
than the Reynolds number, such as the aspect ratio or the cavity length, gives rise to a different
chronology in the occurrence of the modes. For example, decreasing the angle of attack in the flow
around a NACA airfoil or other symmetric bodies would induce a more symmetric flow and the
emergence of a synchronous mode as the first secondary instability. This has been shown for the square
cylinder wake by varying the angle of attack [14, 95] and for the wake of two circular cylinders in
staggered arrangements by varying their relative position [21], while it has not been explored so far for
NACA airfoils. Nevertheless, He et al. [45], in their stability analysis of flows around different NACA
airfoils, reported the emergence of a synchronous long wavelength instability (λz ≈ 2πC), much less
unstable that the period doubling mode, but they attributed this mode to numerical artifacts, while
Deng et al. [29] attributed this mode to mode A.

On the other hand, a complex mode has been also observed for NACA airfoil wakes [45, 73], but
associated with a Floquet exponent not close to µ = ±|µ|i as for the circular cylinder6. For the
NACA0015 airfoil, for example, µ ≈ |µ|e±iω̄i0.1 at Re = 500 7 [45]. Nevertheless, when increasing the
Reynolds number, the ratio between the frequency of the complex mode and the one of the base flow
increases to ≈ 0.15 (this ratio should be ≈ 0.25 if it corresponds to a period quadrupling, i.e. a complex
mode with µ = ±i). Therefore, one may think that it would be interesting to perform a Floquet
analysis over two periods of the base flow (intersection with the Poincaré section every 2T ) at higher
Reynolds number to see if a period doubling (doubling of 2T , hence 4T ) is observed. But, in this case
the Floquet multiplier of such a mode would be the square of the one given by the Floquet analysis
performed on a single period of the base flow. A preserving periodicity mode µ = (−1)2 = 1 would
appear together with a mode with a period of 8T , i.e. a Floquet exponent of µ = ±i, in resonance
with the −1 mode, corresponding to the 4T period mode. This process corresponds to the period
doubling cascade to chaos. These successive period doubling bifurcations can be identified in the power
spectra of time series of both the lift [33] and velocities [87]. In particular, Pulliam et al. [87] observed
this phenomenon up to 32 periods for the NACA0012 airfoil at α = 20°. They also measured the
limit of the ratio between each bifurcation (Rec ≈ 1400 for 4T , Rec ≈ 1525 for 8T , Rec ≈ 1575 for

16T and Rec ≈ 1580 for 32T ) finding a Feigenbaum number8 of δ = Rec,n−1−Rec,n−2

Rec,n−Rec,n−1
≈ 4.5 and a first

accumulation point at Re ≈ 1583. Above this Reynolds number, the system response presents “a
series of chaotic states interspersed with period windows” [87] . Each periodic window is characterized
by another period doubling cascade which ends, again, in an accumulation point. In particular the

6And for this reason it has not been refered to as a QP mode in [45], while in [73] the mode is refered to as QP.
7The 0.1 value at the exponent corresponds to the the ratio between the period of the base flow T and that of the

complex mode, while ω̄i = 2π/T .
8The Feigenbaum number takes its name from the physicist Mitchell J. Feigenbaum, who first demonstrated that the

successive period doubling bifurcations presented an accumulation point, with a limit of the ratio between successive
bifurcations that he found to be constant (δ ≈ 4.67) for many nonlinear systems.
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Figure 4.5 – Mean drag coefficient and Strouhal number of the two-dimensional flow. Dashed line
superposed to the drag coefficient curves are the theoretical predictions given by the Prandtl–Glauert
transformation for Re = 200 and 350.

successive three periodic windows are period-doubling cascades of 14, 10 and 6 periods, respectively.

4.2 3D circular cylinder

In order to perform three-dimensional stability analysis, the 3D mesh and base flow have been generated
by extruding the two-dimensional grid and the DNS solution along the spanwise direction. The mesh
convergence study is reported in Appendix D.

4.2.1 Base flow characterization

The mean drag coefficient and Strouhal number of the two-dimensional flow, used as base state for the
stability analysis, are reported in figure 4.5 for the range of Reynolds and Mach numbers considered in
this chapter. The drag coefficient increases when increasing the Reynolds number9 and, as previously
found for Reynolds numbers up to Re = 100 [20], it also increases due to compressibility effects as the
Mach number is increased. In their work on compressibility effects on the two-dimensional flow around
a circular cylinder up to Re = 100, Canuto & Taira [20] observed that, for a Reynolds number equal to
20, the Prandtl–Glauert theoretical prediction

CD (M ∞) =
C

D,M ∞=0.05√
1 − M 2

∞

(4.4)

overestimates the drag coefficient when increasing the Mach number, but the overestimation decreases
when the Reynolds number is increased up to Re = 100, where the Prandtl–Glauert transformation
gives a correct approximation of the drag increase. Figure 4.5 shows that, in the range of Reynolds
numbers considered here i.e. Re ∈ [200; 350], the Prandtl–Glauert provides a good estimation of the
drag coefficient up to a given Mach number, which decreases with increasing Reynolds number (from
M ∞ = 0.4 at Re = 200 to M ∞ = 0.3 at Re = 350), before diverging from the real values with an
underestimation increasing with Re.

9This trend is different to the one observed at lower Reynolds numbers, where the decrease of the viscous drag term is
stronger than the increase of the pressure drag term, which results in a decrease of the drag coefficient with the Reynolds
number.
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Figure 4.6 – Structure of the time-averaged base flow. Streamlines are shown in gray color and red
line is the isocontour of time averaged longitudinal velocity ūx = 0. Characteristic lengths of the
recirculation region are indicated for Re = 250 and M ∞ = 0.5. Black, orange and blue frames indicate
different structure types.

The Strouhal number exhibits a monotonic decrease with the increase of the Mach number, up to
Re = 250. This trend is similar to the one reported for lower Reynolds numbers [20], with a decreasing
relative difference: (StM ∞=0.05 − StM ∞=0.5)/StM ∞=0.05 = 8% at Re = 50, 3.5% at Re = 100 and
1.5% at Re = 200. For Reynolds numbers higher than Re = 250, the Strouhal number decreases for
low Mach number values, before increasing with compressibility. A similar trend has been observed for
the NACA0012 airfoil wake at Re = 1000 by increasing the angle of attack, see figure 3.9. Since the
percentage of variation is less than 2%, a further investigation at higher Reynolds numbers is needed
to confirm this trend.

The structure of the time-averaged flow, reported in figure 4.6 which shows the streamlines and the
zero longitudinal velocity contour, is found to strongly vary within the range of Reynolds and Mach
numbers considered. This mainly depends on three steps of the vortex shedding: the development of
an opposite sign vorticity region, the vorticity pulled upstream by the forming vortex and the vorticity
rolled up/entrained by the opposite sign main vortex [39]. Three different mean flow structures can be
hence identified:

• The first structure (type 1), which corresponds to cases with Re = 200 and M ∞ ∈ [0.05; 0.3],
exhibits a unique recirculation region downstream of the cylinder with two time averaged counter-
rotating symmetrical vortices (figure 4.6 with black frame). Instantaneous vorticity flow fields in
figure 4.7.a, show that vorticity with opposite sign to the one of the forming vortex is stagnating
at the base of the cylinder (t = T/8). This vorticity is due to the interaction between the
forming vortex and the cylinder wall at t = 0, which is indicated by the arrow at t = T/2 for the
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Figure 4.7 – Evolution of both the instantaneous positive (red) and negative (blue) vorticity saturated
at 10% of the maximum and the isocontour of longitudinal velocity ux = 0 (black line) during the
first half-period of vortex shedding. The corresponding time-averaged vorticity is given at the extreme
right for comparison. (a) Structure of type 1 for Re = 200 and M ∞ = 0.1, (b) Structure of type 2 for
Re = 300 and M ∞ = 0.3, (c) Structure of type 3 for Re = 350 and M ∞ = 0.5.
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Figure 4.8 – Evolution of the time-averaged flow characteristic lengths with respect to the Mach number
for the different the Reynolds numbers. Black, orange and blue symbols indicate the different base flow
structures (type 1, 2 and 3) as illustrated in figure 4.6.

opposite sign forming vortex. This vorticity region, which stagnates at the rear of the cylinder
(t = T/8, T/4, 3T/8) until it is feed by the same sign vortex at t = T/2, is not that strong to
produce a mean recirculation region.

• The second structure (type 2), which corresponds to cases from Re = 200 and M ∞ = 0.4 to
Re = 300 and M ∞ = 0.4 and Re = 350 and M ∞ ∈ [0.05; 0.3], exhibits a mean second recirculation
region downstream of the cylinder (figure 4.6 with yellow frame), with two additional counter-
rotating vortices in the time-averaged flow. The induced vorticity and the feeding by the forming
vortex (figure 4.7.b at t = T/8) are stronger compared to the first case.

• The third structure (type 3) corresponds to cases at Re = 300 and M ∞ = 0.5 and Re = 350 and
M ∞ ∈ [0.4; 0.5] (figure 4.6 with blue frame). In this case, the induced vorticity and the feeding
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Figure 4.9 – Floquet multiplier µ of the secondary instabilities as a function of the spanwise wavelength
λz for different Reynolds numbers. For comparison, the red lines correspond to results from Leontini
et al. [62] at Re = 300. Dashed lines represent the interpolation curves for a given Reynolds number.

by the forming vortex are stronger compared to the previous cases (figure 4.7.c at t = T/8).
Moreover, the entrainment of the vortices (figure 4.7.c at t = T/2) produces positive signed
velocity in a more extended area, in particular enlarging the second recirculation zone. This
makes the two mean recirculation regions to approach one another until they split in three distinct
regions.

We can define two main characteristic lengths from the time average flow to characterize the recirculation
region: the streamwise extent of the recirculation region (L2) and the cross-stream separation distance
between the two main counter-rotating vortices (d), as indicated in figure 4.6 for Re = 250 and
M ∞ = 0.5. Their variation with respect to the Reynolds and Mach numbers is reported in figure
4.8, with the different time-averaged flow structures indicated by the respective colors. We can see
that both the length of the recirculation region and the vortex separation distance decrease when
the Reynolds number is increased. The length of the recirculation region is also decreasing with
increasing compressibility. The length reduction is more pronounced for the higher Reynolds numbers
and particularly when the time-averaged base flow switches from a type 2 to a type 3 structure. The
separation distance between the main vortex centers is affected by compressibility at Reynolds number
above Re = 300 and its reduction due to compressibility is more pronounced when the time-averaged
base flow switches from a type 2 to a type 3 structure. Interestingly, the change in trend of the
Strouhal number at Re = 300 and 350 (figure 4.5) also occurs when switching from type 2 to type 3
structure. We will see that these characteristic length scales might also correlate with the characteristic
wavelengths of the three-dimensional instabilities.

4.2.2 Incompressible regime

In figure 4.9 the Floquet multipliers µ of the secondary instabilities are reported as a function of the
spanwise wavelength λz for different Reynolds numbers. In this case, since both mode A and mode
B have positive real Floquet multiplier, |µ| coincides with its real part. Results for Re = 300 show a
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Figure 4.10 – Vorticity ω̃/max(||ω̃||) of mode A for a spanwise wavelength of λz = 4D at different
Reynolds numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Red and blue iso-
surfaces correspond respectively to positive and negative values of ±0.1. The translucent iso-surfaces
represent the base flow vorticity at level ±0.01.

good agreement with previous analysis by Leontini et al. [62]. For the Reynolds numbers considered,
we see that mode B becomes unstable at a Reynolds number between Re = 250 and Re = 30010,
while mode A has already emerged at Re = 200, with a wavelength of λz ≈ 3.8D. Both modes A and

10Experimentally mode B is observed at lower Reynolds numbers, since it develops on mode A.
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Figure 4.11 – Mode vorticity ω̃/max(||ω̃||) of mode B for a spanwise wavelength of λz = 0.8D at
different Reynolds numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Same
conventions as in figure 4.10.

B have their growth rate which increases and spans a wider range of unstable spanwise wavelength
when the Reynolds number is increased. Regarding mode A, the wavelength of maximum Floquet
multiplier slightly moves toward lower values with increasing Reynolds number, passing from λz ≈ 3.8D

at Re = 200 to λz ≈ 3.2D at Re = 350. The most amplified wavelength for mode B, instead, remains
constant around λz ≈ 0.8D. Mode B is more sensitive to the increase of the Reynolds numbers since
its Floquet multiplier grows faster than the one of mode A: µB experiences an increase of 80% from
Re = 300 to 350, while µA only increases by 10%. Therefore, mode B becomes the dominant mode for
Reynolds numbers above Re = 300.

Figures 4.10 and 4.11 display iso-surfaces of streamwise, cross-stream and spanwise vorticity of
modes A and B, respectively, superimposed on the iso-surfaces of the base flow vorticity magnitude.
As visible on the three vorticity components of the modes, the localization of both instabilities is
progressively concentrated in the most upstream part of the two-dimensional wake as the Reynolds
number is increased. Looking at the distribution of each component, one can see that there is a strong
anisotropy for mode A, the cross-stream vorticity component being the less intense and the spanwise
component the most intense, while for mode B, the three components have comparable intensities. As
shown in Appendix E, the choice of the initial instant within the period of the base flow does not affect
these general considerations on the mode characteristics.

As also evidenced in figure 4.4, the structure of mode A is localized both in the braid region and in
the vortex core of the base flow while the structure of mode B is essentially distributed in the braid
region. If the streamwise and spanwise vorticity components of mode A are localized in both regions of
the base flow, the cross-stream vorticity component progressively concentrates in the vortex core as the
wavelength increases, as visible in figure 4.12, where the mode vorticity is reported for two different
wavelengths. Moreover, the cross-stream vorticity presents dipoles in the vortex core at low wavelegths
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Figure 4.12 – Mode vorticity ω̃/max(||ω̃||) of mode A for two spanwise wavelengths of λz = 4D and
λz = 3D at Reynolds numbers Re = 250 and 300: (a) streamwise, (b) cross-stream and (c) spanwise
component. Same conventions as in figure 4.10.

that are not present at higher ones.

4.2.3 Compressible regime

In figure 4.13, compressibility effects on the Floquet multiplier µ as a function of the spanwise
wavelength is shown for the different Reynolds numbers. Likewise in the incompressible case, mode A
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Figure 4.13 – Floquet multiplier µ of the secondary instabilities as a function of the spanwise wavelength
λz at Reynolds number Re = 200 (a), Re = 250 (b), Re = 300 (c) and Re = 350 (d) for different Mach
numbers. Dashed lines represent the interpolation curves for a given Mach number.

is the only unstable mode at Reynolds Re = 200 and 250 when the Mach number is increased up to
M ∞ = 0.5. At these Reynolds numbers, compressibility has a stabilizing effect on mode A, delaying
the three-dimensional transition, so that at Re = 200 and M ∞ = 0.5 the flow has not transitioned yet.
At this Reynolds number, the spanwise wavelength relative to the maximum Floquet multiplier does
not change with the Mach number and remains the same as its value in the incompressible regime,
i.e. λz ≈ 3.8D. At Re = 250, compressibility has also a stabilizing effect, but the critical threshold
has been reached even for M ∞ = 0.5 and the most amplified wavelength is slightly shifted toward a
smaller value for M ∞ = 0.5, i.e. λz ≈ 3.2D. At Re = 300, compressibility does not change the level of
amplification for mode A but rather induces a progressive shift of the unstable range toward smaller
wavelengths, with the most amplified wavelength going from λz ≈ 3.5D at M ∞ = 0.05 to λz ≈ 2.9D at
M ∞ = 0.5. Finally at Re = 350, compressibility has a destabilizing effect on mode A with a substantial
increase of the maximum Floquet multiplier together with a similar shift of the unstable range of
wavelengths.

Regarding mode B, it becomes unstable at low Mach numbers for Reynolds numbers above
Re = 300, indicating that the incompressible critical threshold lies in between Re = 250 and Re = 300.
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Figure 4.14 – Values of Floquet multipliers shown in figure 4.13, for all the Reynolds and Mach
numbers considered, as a function of the wavelength normalized by the characteristic lengths of the
time-averaged base flow: (a) L, (b) L2 and (c) d. The different symbols indicate the Mach numbers
with the same convention as in figure 4.13.

Compressibility has a stabilizing effect on this mode since the amplification levels are significantly
reduced as the Mach number is increased, the mode becoming marginally stable at M ∞ = 0.3. However,
the most amplified wavelength is not sensitive to the change in Mach number, with a constant value
of λz ≈ 0.8D as in the incompressible regime. The effect of compressibility on mode B remains quite
similar at Re = 350, except that mode B is now unstable up to M ∞ = 0.4 and that the most unstable
wavelength is slightly decreased going from λz ≈ 0.8D at M ∞ = 0.05 to λz ≈ 0.6D at M ∞ = 0.4.

When normalizing the mode A wavelengths by the different characteristic lengths of the time-
averaged base flow introduced in 4.2.1 rather than by the cylinder diameter D, the Floquet multipliers
exhibit a maximum at an almost constant wavelength of λz ≈ 2.7L − 3L and λz ≈ 6.8d − 7.2d, while a
constant low wavelength cut-off is observed at λz ≈ 3.8L2 when normalized by L2.

Figure 4.15 and 4.16 display iso-surfaces of streamwise, cross-stream and spanwise vorticity of
mode A and B with wavelength λz = 4D and λz = 0.66D, respectively, superimposed to iso-surfaces of
vorticity magnitude of the base flow for the different Mach numbers at Re = 350. The three components
of vorticity of the modes are normalized by the maximum vorticity magnitude, and contours are set to
±0.1. The vorticity anisotropy of mode A evidenced in the incompressible regime is enhanced when
the Mach number is increased. The intensity of streamwise vorticity component decreases strongly
with the Mach number with levels below ω̃x < 0.1||ω̃|| almost everywhere for M ∞ = 0.4 and 0.5.
In agreement with observations made in the incompressible case (see section 4.2.2), the intensity of
the cross-stream vorticity is weaker than the one of the spanwise vorticity whatever M ∞ and its
contribution to the vorticity magnitude does not depend on the Mach number. Therefore, the vorticity
essentially concentrates into the spanwise component and this concentration gets stronger as the Mach
number is increased. With growing effect of compressibility, the spatial distribution of the spanwise
vorticity component is found to vary within the braid and the vortex core with the formation of opposite
sign vorticity layers mainly concentrated in the base flow hyperbolic region where stretching is intense
due to high velocity and vorticity gradients. However, the strong vorticity anisotropy in favor of the
spanwise component and the formation of the opposite sign vorticity layers when the Mach number is
increased, are only observed at largest wavelength, while they are not promoted at the lowest ones, as
we can see from the evolution of iso-surfaces of streamwise, cross-stream and spanwise vorticity of mode
A with the Mach number at Re = 350, λz = 3D and Re = 250, λz = 3D, 4D reported in Appendix F.

For mode B the vorticity is equally distributed among its three components as in the incompressible
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Figure 4.15 – Vorticity ω̃/max(||ω̃||) of mode A at a wavelength of λz = 4D and Re = 350 for different
Mach numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Same conventions as in
figure 4.10.
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Figure 4.16 – Vorticity ω̃/max(||ω̃||) of mode B at a wavelength of λz = 0.66D and Re = 350
for different Mach numbers: (a) streamwise, (b) cross-stream and (c) spanwise component. Same
conventions as in figure 4.10.

case: the Mach number does not have a significant influence on the spatial structure of the mode.
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4.2.4 Linearized vorticity equation

In order to understand the origin of the different vorticity responses, we investigate the linearized
version of the vorticity equation, which reads

∂ω′

∂t
+

transport︷ ︸︸ ︷
u · ∇ω′ + u′

· ∇ω =

stretching/tilting︷ ︸︸ ︷
ω′

· ∇u+ ω · ∇u′ −
expansion/contraction︷ ︸︸ ︷

ω′(∇ · u) − ω(∇ · u′)

+ b+
1

Reρ

(
∆ω′ − ρ′

ρ
∆ω − φρ − φρ′

)

︸ ︷︷ ︸
diffusion

,
(4.5)

where b is the linearised baroclinic torque:

b =
1
ρ

∇ρ ×
(

1
ρ

∇p′ − ρ′

ρ2
∇p

)
+ ∇

(
ρ′

ρ

)
× 1

ρ
∇p. (4.6)

φρ and φρ′ are diffusion terms involving a coupling between the base flow density field and the
perturbation diffusion and the coupling between the perturbation density field and the base flow
diffusion, respectively. They are defined as follows:

φρ =
1
ρ

∇ρ ×
(

∆u′ +
1
3

∇(∇ · u′) − ρ′

ρ
(∆u+

1
3

∇(∇ · u))
)

, (4.7)

φρ′ = ∇
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We now analyze the different terms of stretching/tilting and expansion/contraction in order to identify
those that may be major contributors to the mode vorticity evolution. The expression of stretch-
ing/tilting, expansion/contraction are derived as follow:
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(4.9b)

Taking into account the two-dimensional nature of the base flow, it is possible to cancel the terms
that are null, i.e. those crossed out in blue in expressions (4.9).

From these equations, we can first consider the incompressible regime, where the expansion/contraction
terms are null. Therefore, the stretching/tilting term is the only active source term. An increase of
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4.2. 3D circular cylinder

the mode spanwise vorticity component due to the stretching term (expressed by the term in the
green box in equation 4.9a) would be associated to an increase of both the mode streamwise and
cross-stream velocity components, whose variation along the spanwise direction produce streamwise and
cross-stream vorticity due to the stretching term (yellow boxes in equation 4.9a). They are associated to
an increase of the mode spanwise velocity whose spanwise gradient produces spanwise vorticity through
the stretching term in green. This (simplified) path, at the origin of the three-dimensionalization
process expresses a circular causality and gives an idea of how, once the instability is triggered, the
mode growth is self-sustained.

In the compressible regime, where the expansion/contraction terms cannot be neglected, we can
hypothesize the following growth mechanism that could explain the vorticity anisotropy in favor of the
spanwise vorticity component observed for mode A when the Mach number is increased. The divergence
term (∇ · u′), which grows in magnitude with increasing compressibility, has an impact only on the
spanwise vorticity of the mode (red box in equation 4.9b). As a consequence, the spanwise vorticity (ω′

z)
would grow and induce a self-sustained growth via the other expansion/contraction term (yellow box
in equation 4.9b. However, it would not directly impact the two other vorticity components, since all
other terms involving ω′

z are null due to the two-dimensional nature of the base flow. Nevertheless, an
increase of the mode spanwise vorticity is correlated to an increase on the streamwise and cross-stream
velocity components, which can produce in return ω′

x and ω′
y due to the stretching terms in yellow

boxes in equation 4.9a.

The observed vorticity anisotropy in favour of the spanwise vorticity component for mode A
at Re = 350, could be explained by the fact that mode A mainly develops in regions where the
expansion/compression terms and the base flow vorticity are higher, i.e. in the vortex cores. For mode
B, which instead develops in the hyperbolic region, the three vorticity component contribute to the
vorticity magnitude even increasing the Mach number. This analysis provides a possible explanation
for the influence of compressibility on the mode structure. A quantitative analysis of the contribution
of each term of equation (4.5) is nevertheless necessary to confirm this analysis and is left for future
work.

4.2.5 Base flow aperiodicity

As introduced in section 1.4.2, the main assumption underlying Floquet theory is the periodicity of the
base state. This assumption allows to consider the periodic limit cycle as a fixed point on the Poincaré
section and therefore to have a constant Jacobian matrix at each period T . In wake flows, such as
the cases discussed in this work, the base state is indeed periodic near the object as a consequence
of vortex shedding, with period T = 1/St. However, in the far wake, where vortex pairing can occur
(figure 4.17.a), the base state may no longer be T -periodic, as shown by the velocity field difference
between the unsteady solution at time t and t + T in figure 4.17.b.
Recently, some works have been devoted on how to overcome this limitation and have a base state
that respects the T -periodicity in the whole domain. This can be achieved by reconstructing the
base flow solution and limiting the downstream domain for the stability calculation [52], as well as
by computing and using phase-averaged or stabilized base flows [53], which are a modification of
the unsteady solution. However, Chiba’s method, adopted in this works for the stability analysis,
limits the use of such approaches, since the base flow is integrated in time with the perturbation (eq.
2.21). Nevertheless, valuable stability analysis can be performed even if the base flow is approximately
periodic. In fact, in order to investigate the effect of the far wake base flow aperiodicity, in figure 4.18
results of Floquet analysis are reported at two Reynolds and Mach numbers using base flows computed
at different periods. These spectra highlight the fact that Mode A and Mode B (µr > 0 and µi = 0)
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(a)

(b)

Figure 4.17 – (a) Base flow velocity magnitude distribution at time t and (b) velocity magnitude field
difference between base flow at time t and t + T .

(a) (b)

Figure 4.18 – Spectra obtained with different base states periods at (a) Re = 300, M ∞ = 0.05 and (b)
Re = 350, M ∞ = 0.3. Solid black line indicates the unitary circle.

are not affected by the the far wake aperiodicity, since Floquet results do not vary for the different
base state and the spatial structures show that these modes arise in the well periodic near wake region.
Conversely, the other part of the spectrum (µr < 0) shows a dependence on the base flows. Their
spatial structures show that these modes, indeed, emerge in the far wake where the base flow is not
T -periodic. Hence, in order to analyze the far wake instabilities, which have not been considered in
this work, approaches like those cited above should be used.

4.3 Comparison between filtered, time-averaged and periodic base

states

Many works have recently been devoted to the three-dimensional stability analysis performed on the
fixed point solution rather than on the periodic limit cycle, among them we can cite [41, 45, 116]. As
done in section 3.4 for the two-dimensional case, we provide an analysis on the differences between
those approaches. First of all, we should remind that three-dimensional stability analysis aims to find
three-dimensional secondary instabilities if performed on the periodic limit cycle (here denoted as VK),
while it aims to find three-dimensional primary instabilities if performed on the fixed point solution
(SFD). Interestingly, Noack et al. [81], found for the circular cylinder, that the fixed point solution
and the periodic solution become three-dimensional simultaneously. We also report comparisons with
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(a) (b)

(c)

(a) (b)

(c)

ω̄i
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Figure 4.19 – Comparison of the spectra obtained when using different base states with τ = T (a) and
τ = T/10 (b) for Re = 300 and M ∞ = 0.05. Comparison of the 3D-SFD response with the 2D case (c).
The transverse length of the domain is fixed to Lz = 4D for all 3D cases.

respect to three-dimensional stability analysis performed on the time-averaged solution (AVG). In this
section, results of the stability analysis are reported in terms of growth rate and mode frequency of the
Jacobian matrix11 instead of Floquet multipliers, since the concept of Floquet analysis is relevant only
for periodic base flows, while the growth rate is more generic12. Since we are interested in a comparison
of the different approaches, rather than the precise computations of the modes, these results have been
obtained with simulations on the coarsest (x, y)-resolution (mesh M1) and ∆z = D/8 (see Appendix
D). The transverse length of the computational domain is Lz = 4D.

In figures 4.19.a and 4.19.b the spectra obtained at Re = 300 and M ∞ = 0.05 with the different base
states are reported for τ = T and τ = T/10, respectively, where T is the shedding period of the periodic
solution. Imposing τ = T , stationary modes appear for the three base states, as indicated by the yellow
arrows in figure 4.19.a, and they all have the same wavelength λz = 4D. Their structures, reported

11As done in Chapter 3, we consider ω = ωr + iωi.
12We could also report results in terms of eigenvalues of the propagator matrix, which in the particular case of τ = T ,

is equivalent to the Floquet multipliers, but whenever τ 6= T it is misleading to call them Floquet multipliers.
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SFD

AVG

VK

Figure 4.20 – Q-criterion contours colored by spanwise vorticity. The slice shows the base state velocity
magnitude.

in figure 4.20, are quite different. In particular, the stationary mode of the SFD base flow develops
at the center of the recirculation region, which extends far downstream similarly to the NACA0012
airfoil, see Chapter 3. The AVG and VK stationary modes also differ from each other, but present
a similar structure on the cylinder surface and same downstream extension. It would be interesting
to time-average the VK stationary mode calculated at different instants of the shedding cycle and
compare it to the AVG stationary mode. Mode B only emerges for the VK base flow (indicated by the
green arrows) with wavelengths λz = 0.8D and λz = 0.66D, while the other stationary mode of the
SFD in again a λz = 4D mode.

With τ = T/10, the VK base flow presents a more unstable stationary mode, but its wavelength
is λz = 2D, different from the one of the mode calculated with τ = T . The SFD, instead, converges
toward the same stationary mode. Indeed, τ does not influence the three-dimensional stability response
of the SFD base flow, as shown in figure 4.19.c where the different spectra of the SFD are presented.
Comparison with the two-dimensional stability response is also shown to distinguish three-dimensional
from two-dimensional modes.

As discussed in the two dimensional analysis, the SFD and AVG base flows present two-dimensional
modes associated with the primary von Kármán instability. The AVG mode frequency coincides with
the natural frequency (St = 0.21, Appendix D), while the one of the SFD is lower. Interestingly, for
this low value of τ , also the VK base flow presents a two-dimensional mode at a frequency close to the
natural one. These modes are indicated by the orange circles in figure 4.19.b. Those indicated by the
orange circles in figure 4.19.a, are also two-dimensional modes. The one corresponding to the SFD
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Figure 4.21 – Absolute values of the Floquet multiplier µ as a function of the wavelength λz at
Reynolds number Re = 500 and Re = 600 at α = 20° for different Mach numbers. Reference values in
red are taken from Meneghini et al. [73].

base flow is the same as the one obtained with τ = T/10, whereas the one obtained for the AVG base
flow has a different structure with respect to the two-dimensional mode found with τ = T/10. Due to
the cut-off frequency imposed by the value of τ (see section 2.4.1 and figure 2.7), it is not surprising
that the stability analysis performed with τ = T has filtered out the AVG two-dimensional mode
associated to the von Kármán instability, which instead appears for τ = T/10. This is not the case for
the SFD base flow, for which the von Kármán instability has not been filtered out since its frequency,
StSF D = 0.076, is lower than half the natural one 1/2T and satisfies the condition for avoiding aliasing
effects τ = T < 1/(2 · StSF D).

Finally, it is worth mentioning that the spectra obtained with τ = T , presents period doubling
modes both for the AVG and VK base flows (ωi/2π = St/2). Two period doubling modes appear for the
AVG base flow at wavelengths of λz = 4D, likewise the stationary mode, and λz = 2D, while the one
corresponding to the VK base flow is two-dimensional and essentially localized in the far wake. This
might be related to the development of the secondary vortex street [34] in the far wake in proximity to
the outflow boundary. We stress that these simulations have been performed on the coarsest mesh,
hence the quantitative values of the modes might be questioned. These modes are unlikely to be the
quasi periodic mode (QP) which usually appears for symmetric flows (as mentioned is section 4.1)
with a wavelength in between those of mode A and mode B, since the critical threshold of this mode is
Rec = 380 for the periodic cylinder wake [17], while the present simulations have been performed at
Re = 300.

4.4 3D NACA0012

In this section, we briefly address preliminary results on the three-dimensional stability analysis of the
periodic wake behind a NACA0012 at angle of attack α = 20°. In order to perform three-dimensional
stability analysis, the 3D mesh and base flow have been generated by extruding the two-dimensional
grid and the DNS unsteady solution along the spanwise direction. The mesh convergence study is
reported in Appendix G.
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(a) (b) (c)
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Figure 4.22 – Vorticity ω̃/max(||ω̃||) of the period doubling mode for a spanwise wavelength λz = 0.66C
at Re = 500, 600 and M ∞ = 0.05, 0.5 : (a) streamwise, (b) cross-stream and (c) spanwise component.
Same conventions as in figure 4.10.

As discussed in section §4.1, periodic wake flows which do not present an half-period symmetry,
have been found to become three-dimensional through a period doubling bifurcation. Examples include
periodic wake flows past airfoils which have been addressed in the incompressible regime [29, 41, 45, 73].
The NACA0012 periodic wake flow has been virtually unexplored using three-dimensional stability
analysis, perhaps with the exception of Meneghini et al. [73] and Tsiloufas et al. [106] who investigated
the stability of the flow past a NACA0012 airfoil at α = 20°.

Figure 4.21 shows the evolution of the Floquet multiplier module13 as a function of the characteristic
wavelength for α = 20°, at two different Reynolds numbers, with Mach numbers in the range [0.05 : 0.5].
Results from Meneghini et al. [73] obtained in the incompressible regime are shown for comparison.
The critical Reynolds number of the incompressible case is Rec ≈ 456 [73]. That is, Reynolds
numbers 500 and 600 addressed in this section are relatively close to the stability threshold in the

13For period doubling modes, the Floquet multipliers are all real negative numbers (see figure 1.10)
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(a) (b) (c)

Figure 4.23 – Spatial variation in the (x, y)-plane of the mode vorticity ω̃/max(||ω̃||) at λz = 0.66C:
(a) streamwise, (b) cross-stream and (c) spanwise component, superposed to base flow vorticity contour
at ±0.01 (black line). Two different spanwise locations separated by a quarter period (i.e. z and
z + λz/4) are shown.

incompressible regime, but may be farther away in the compressible regime. Figure 4.21 indicates that
the Floquet multipliers increase when increasing the Mach number, at both Reynolds numbers and
for all unstable wavelengths. This is in contrast with previous results on the circular cylinder wake
where it was found that compressibility may stabilize or destabilize the flow at different wavelengths,
depending on the Reynolds number. Furthermore, the destabilization of the flow becomes stronger
as the Reynolds number is increased, with a relative increment in the maximum Floquet multiplier (
(µmax(M ∞ = 0.5) − µmax(M ∞ = 0.05))/µmax(M ∞ = 0.05)) of ≈ 40% at Re = 500 against ≈ 70% at
Re = 600. Finally, it is observed that the wavelength of the maximum Floquet multiplier does not
significantly vary with changes in Reynolds and Mach numbers and remains approximately constant at
λz ≈ 0.6C, where C is the airfoil chord. This value of λz = 0.6C has also been found by Meneghini
et al. [73] for the most amplified mode at Rec ≈ 456 in the incompressible regime.

Figure 4.22 displays iso-surfaces of streamwise, cross-stream and spanwise vorticity of the period
doubling mode, superimposed on iso-surfaces of the base flow vorticity magnitude, for Reynolds numbers
500 and 600 and Mach numbers 0.05 and 0.5. The structure and the spatial localization of the mode
are very similar to those of mode B observed for the circular cylinder wake, with the mode mainly
developing in the braids of the base flow. Likewise mode B, the three vorticity components have
comparable intensities and the largest intensities are observed in the hyperbolic regions. There is
nevertheless a difference with mode B of the circular cylinder wake in that streamwise vorticity layers
localized in between two consecutive base flow vortices change sign at each period T 4.23. This is
similar to mode A of the circular cylinder wake where streamwise vorticity layers change sign with
respect to the half period T/2, as shown in figure 4.4.

The localization of the mode is progressively concentrated in the most upstream part of the two-
dimensional wake when both the Reynolds and Mach numbers are increased. This is related to the
destabilization of the mode, as previously observed for both modes A and B for the circular cylinder
wake when increasing the Reynolds number.

It has been observed that a second bifurcation of the periodic wake of NACA airfoils occurs with a
critical wavelength longer than the one of the period doubling mode [41, 45, 73]. For the NACA0012
airfoil, the second bifurcation occurs at Rec ≈ 600 with λz ≈ 2.1C. This mode emerges with a complex
conjugate Floquet multiplier, hence, the flow undergoes a Neimark–Sacke (secondary Hopf) bifurcation,
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but it has not been observed in our preliminary calculations.
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4.5 Résumé

Dans ce chapitre, nous analysons la stabilité linéaire tridimensionelle de l’écoulement periodique
bidimensionnel autour du cylindre circulaire et autour du profil NACA0012 à une incidence de 20◦.
Dans la section §4.1, nous décrivons d’abord le processus conduisant à la tridimensionnalisation de
l’écoulement périodique autour du cylindre, via l’apparition succéssive de deux modes d’instabilité
transverse, communément appelés modes A et B. Le premier mode (mode A) apparaît vers Re ≈ 180−190
et est associé à une instabilité elliptique des tourbillons primaires [62, 105] dont la déformation transverse
résulte d’un déplacement, en certains points, de la vorticité du champs de base vers l’amont [112] (voir
figure 4.3). Cette déformation conduit au développement de structures transversales à grande échelle
de longueur d’onde caractéristique λz ∼ 4D. Le mode A préserve la symétrie de demi-période de l’état
de base, qui peut se traduire par l’équation 4.1.
Le deuxième mode (mode B) apparaît autour de Re ≈ 230 − 260 et est au contraire associé à une
instabilité hyperbolique. Il se forme dans la région hyperbolique qui se développe entre deux tourbillons
de von Kármán contrarotatifs consécutifs et est lié à la formation de structures d’échelle plus fine de
longueur d’onde caractéristique λz ≈ 1D. Ce mode brise la symétrie de demi-période de l’état de base,
qui peut se traduire par l’équation 4.2. A un nombre de Reynolds plus élevé, Re ≈ 380 [17], un troisième
mode secondaire devient instable. Ce mode est communément désigné le mode Quasi-Périodique (QP),
et sa longueur d’onde caractéristique se situe entre celles des modes A et B. Par ailleurs, sa périodicité
temporelle est presque le double de celle de l’état de base.
En général, les écoulements présentant une symétrie Z2 × O(2) bifurquent vers un état tridimensionnel
via l’émergence de deux modes synchrones (même périodicité temporelle que l’état de base), l’un
préservant la symétrie H de l’état de base et l’autre la brisant, et d’un mode quasi-périodique. Pour
les écoulements autour des corps canoniques qui ne vérifient pas la symétrie de demi-période, une
instabilité différente peut apparaître [90, 94]. En particulier, le mode C a été observé et s’est avéré être
le mode tridimensionnel principal dans plusieurs configurations, telles que [54, 94, 114]. Le mode C est
un mode dit de doublement de période correspondant à un multiplicateur de Floquet marginal µ = −1,
i.e. sa périodicité est deux fois celle de l’état de base.

Dans la section §4.2, l’influence des nombres de Reynolds et de Mach sur les propriétés des modes
A et B est analysé. Dans un premier temps, nous caractérisons l’état de base périodique bidimensionnel.
Il apparaît que le coefficient de traînée moyen augmente en augmentant les nombres de Reynolds et
de Mach et que la transformation de Prandtl–Glauert fournit une bonne estimation du coefficient de
traînée jusqu’à un nombre de Mach donné, qui diminue avec l’augmentation du nombre de Reynolds
(voir figure 4.5). Par ailleurs, le nombre de Strouhal diminue de façon monotone avec l’augmentation
du nombre de Mach pour Re ≤ 250, alors qu’il présente une évolution non-monotone pour Re > 250
(avec une diminution puis une augmentation pour un nombre de Mach croissant). Il est observé que
la structure de l’écoulement moyenné dans le temps, représentée sur la figure 4.6, varie fortement
dans la gamme des nombres de Reynolds et de Mach considérés. En particulier, nous identifions
trois types de structure dont les longueurs caractéristiques semblent corrélées aux longueurs d’onde
caractéristiques des instabilités tridimensionnelles. Dans un second temps, nous procédons à l’analyse
de stabilité tridimensionnelle de l’écoulement de base. L’effet du nombre de Reynolds sur les instabilités
tridimensionnelles est d’abord traité dans le régime incompressible. On constate que le support spatial
des modes se déplace vers l’amont lorsque le mode devient plus instable avec l’augmentation du nombre
de Reynolds. De plus, l’analyse de la distribution de chaque composante de vorticité du mode révèle
une forte anisotropie pour le mode A (les composantes de vorticité transversale et verticale étant les
plus et moins intenses, respectivement) alors que des intensités comparables sont mises en évidence
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pour le mode B (figures 4.10 and 4.11).
L’effet de la compressibilité sur les instabilités tridimensionnelles est ensuite abordé. De manière
intéressante, on constate qu’une augmentation du nombre de Mach a toujours un effet stabilisant sur
le mode B, alors qu’il peut avoir un effet stabilisant ou déstabilisant pour le mode A, en fonction du
nombre de Reynolds, voir figure 4.13. En particulier, il est observé que la compressibilité a un effet
stabilisant sur le mode A, près du seuil critique, alors qu’elle a un effet déstabilisant à un nombre de
Reynolds plus élevé, avec un déplacement des longueurs d’onde critiques vers des valeurs plus petites.
L’analyse du champs de vorticité du mode A obtenus pour différents nombres de Mach à Re = 350
(figure 4.15) révèl que la compressibilité accentue l’anisotropie de la vorticité du mode, avec toujours
une principale contribution de la composante transversale à la voriticté totale. Ceci contraste avec le
mode B pour lequel les trois composantes de la vorticité présentent des intensités comparables (figure
4.16).
Dans la section §4.3, une comparaison entre la réponse de l’analyse de stabilité tridimensionelle
conduite sur l’état de base filtré, l’état de base moyenné temporellement et l’état de base periodique de
l’écoulement autour du cylindre de section circulaire est présentée. De manière identique à l’écoulement
de base périodique, avec un temps d’integration τ = T , l’écoulement filtré et l’écoulement moyenné
temporellement sont instables aux perturbations tridimensionnelles. En particulier, un mode stationnaire
apparaît, dont la longueur d’onde est identique à celle obtenue sur l’écoulement de base périodique
(voir figure 4.19). Néanmoins, lorsque le temps d’intégration diminue, l’état de base moyenné dans le
temps ne présente pas de modes instables stationnaires.
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Conclusions

Interest in low-Reynolds-number compressible flows has recently emerged together with prospective
applications like stratospheric flight, Mars exploration and vactrains. Up to date, very few studies
have addressed this peculiar regime and there is a lack of fundamental knowledge on the physics that
drives compressible effects at low Reynolds numbers. In this thesis, the effect of compressibility on
the circular cylinder and NACA0012 airfoil wakes is analyzed using linear stability analysis and direct
numerical simulations.

A global linear stability solver, based on the finite volume spatial discretisation of the compressible
Navier–Stokes equations and Chiba’s time-stepping approach, has been developed. This approach
does not need the linearization of the equations and allows to perform stability analysis on both
stationary and periodic base states. Global stability analysis has been performed to gain insight into
the mechanisms that govern primary and secondary instabilities developing in the two-dimensional
wake behind a NACA0012 airfoil and a circular cylinder in the low Reynolds number compressible flow
regime. Stationary base flows for detecting primary instabilities are obtained through two-dimensional
direct numerical simulations using the Selective Frequency Damping method, while the unfiltered
two-dimensional periodic numerical solutions have been used as base flows for detecting secondary
instabilities emerging on the periodic limit cycle.

First, the two-dimensional primary instabilities behind a NACA0012 airfoil at different angles of
attack and Reynolds numbers have been analyzed, starting with the incompressible case (M ∞ = 0.05).
Our results indicate that the frequency of the most unstable mode decreases as α or Re increases,
which is related to the elongation of the recirculation region of the (filtered) base flow, as previously
observed on bluff bodies. Moreover, it has been observed that the growth rate of the most unstable
mode first increases beyond the stability threshold with α or Re, before eventually decreasing. As α

or Re are increased, the instability is first localized far downstream of the recirculation region and
the position of maximal intensity in the spatial structure of the mode moves upstream closer to the
airfoil, until the mode starts to interact with the recirculation region and then moves back downstream,
following the elongation of the recirculation zone: the mode transitions from a Wake Instability (WI)
to a Recirculation Bubble Instability (RBI). Nevertheless, the relative distance between the end of
the recirculation region and the location of maximal intensity of the mode keeps decreasing. When
Re is varied, the maximum growth rate is obtained when the peak intensity of the mode enters the
recirculation zone. However, this is not as clear when α is varied, as the entry of the peak intensity
into the recirculation zone is observed after the growth rate has reached its maximum value. On the
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other hand, when both α and Re are varied, the maximum growth rate is observed when the base flow
at the end of the recirculation region is most parallel and the instability is of RBI type.
We then have investigated the effects of compressibility up to M ∞ = 0.5. Our results show that the
general trends observed in the incompressible case hold for the subcritical regime. In particular, for all
the Mach numbers investigated, the frequency of the most unstable mode decreases with α and Re,
which is again related to the elongation of the recirculation region of the base flow. Similar observations
are made as M ∞ increases. Peak values in growth rate are found to occur when maximal intensities
in the spatial structure of the most unstable mode are close to or on the recirculation region (RBI
type). Moreover, it has been shown that the Mach number may have a stabilizing or destabilizing
effect depending on α and Re. Following the hypothesis of Meliga et al. [72], we have seen that the
destabilizing effect of compressibility with the Mach number is due to an increase of the negative
streamwise advection (backward) of the disturbance by the base flow, within and downstream the
recirculation region, while the stabilizing effect results from an increase in crosswise advection in the
recirculation region. Consequently, destabilizing effects are always non-negligible, while stabilizing
effects are significant in (or near) the RBI state, hence for Reynolds numbers and angles of attack far
from critical values. This has been further supported by Re vs M ∞ neutral stability curves obtained
at different angles of attack.

Second, the three-dimensional secondary instabilities that arise on the two-dimensional periodic
wake of the circular cylinder and the NACA0012 airfoil have been analyzed. Our attention has first
focused on the circular cylinder wake at Reynolds and Mach numbers up to Re = 350 and M ∞ = 0.5.
The two-dimensional periodic base state is found to exhibit time-averaged properties that substantially
vary within the range of Reynolds and Mach numbers considered. Specifically, three different types of
time-averaged flow structure are identified when varying both Reynolds and Mach numbers.

In the incompressible case, mode A and mode B three-dimensional secondary instabilities are investigated
at different wavelengths and Reynolds numbers. The increase in the Floquet multiplier, i.e. the
destabilizing effect induced by an increase in Reynolds number, is associated with an upstream
displacement toward the cylinder body of the zones of maximum vorticity concentration. At constant
Reynolds number, instead, the vorticity distribution of mode A is found to vary depending on the
wavelength. In particular, the cross-stream vorticity presents dipoles in the vortex core at lower
wavelengths that are not present at higher ones.

In the compressible case, our results indicate that the increase of Mach number has a stabilizing effect
on both the modes close to the critical thresholds, delaying the three-dimensional transition, without
modifying the transverse wavelengths at which the flow becomes unstable. Conversely, above the
critical thresholds, compressibility still has a stabilizing effect on mode B but progressively becomes
destabilizing for mode A as the Reynolds number is further increased. In addition, the range of unstable
wavelengths does not change with M ∞ for mode B, while it shifts toward lower values for mode A
as M ∞ is increased. Interestingly, the normalization of the spanwise wavelengths of the modes with
the characteristic length scales of the time-averaged recirculation region of the base flow highlights a
possible correlation between properties of the unstable modes and those of the time-averaged flow field.
The spatial support of the modes is found to strongly vary with the Mach number at the highest
Reynolds number. In particular, the contributions of streamwise and cross-stream vorticity components
to the overall vorticity magnitude of mode A decrease as the Mach number is increased. In that case
the spanwise vorticity component of mode A exhibits a layered-structure and is the main contributor
to the overall vorticity magnitude of the mode. These characteristics of mode A significantly differ
from those of mode B.

Finally, preliminary results on the three-dimensionalisation of the NACA0012 airfoil periodic wake
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at angle of attack α = 20◦ are discussed. It is shown that compressibility has a destabilizing effect on
the period doubling mode for all the critical wavelengths. The period doubling mode structure has
been found to present similarities with both modes A and B of the circular cylinder wake.

Future works

Based on the results and numerical development of this work, the following directions of research are
recommended for future works.

Numerical improvements and developments

On the numerical aspects, we identify three main points:

• deriving and implementing the adjoint-operator [82]. The enhancement of the existing global
stability solver to a direct/adjoint one would help gain further fundamental insight into the
mechanisms driving the first transitions from stationary to three-dimensional wake flows and
open the path towards efficient flow control strategies;

• extending the investigation of the Krylov–Schur parameters dependence for the solution of the
EVP, in order to find the optimum combination between tolerance, Krylov subspace dimension
and time integration τ ;

• extending the global stability solver to spectral element spatial discretisation, already present in
IC3;

Flow physics

The present thesis provided evidence that compressibility may have a strong effect on the scenario
that leads to the destabilization of bluff body wakes, from a two-dimensional steady state to a three-
dimensional unsteady state. However, further investigations should be provided in order to generalize
present conclusions to a wider variety of fluid flows. In particular :

• the criteria for detecting the threshold between stabilizing and destabilizing effect of compressib-
ility, in the context of primary two-dimensional instabilities, should be clarified. This may be
achieved by refining the boundary between the Wake Instability (WI) and Recirculation Bubble
Instability (RBI) regions, for example through analyzing the global adjoint stability response;

• the influence of compressibility on the three-dimensional instabilities developing on the two-
dimensional filtered base state, as performed by Zhang & Samtaney [116] for the NACA0012
airfoil in the incompressible regime, should be explored. In particular, the investigation of the
link between three-dimensional stationary mode developing on the fixed point solution and those
developing on the periodic solution, which, for the circular cylinder wake, have been found to
simultaneously bifurcate [81], could be of interest;

• in the case of the cylinder wake, extending this work to higher Reynolds numbers Re > 350 could
help generalize our results. In particular, the effect of compressibility on the QP mode developing
on the cylinder wake should be analyzed;

• further extension of this work to supercritical regimes could be addressed, as performed by
Sansica et al. for the flow around a sphere [92].
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• further extension of this work to the three-dimensional stability analysis of other bluff body
wakes, such as the elliptic and square cylinders, the axisymmetric afterbody or other airfoils,
should be addressed.
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Conclusions

De récentes applications impliquant le déplacement d’objet de petite taille à grande vitesse ou le
déplacement d’objet dans des environnements basse pression, telles que le vol stratosphérique et
l’exploration martienne, ont conduit à l’étude des écoulements compressibles à bas nombre de Reynolds.
Ce régime d’écoulement particulier n’a été que très peu abordé dans la litérature scientifique et il
existe manifestement un manque de connaissances fondamentales sur l’influence de la compressibilité
à faible nombre de Reynolds. En ce sens, l’objectif de cette thèse est de contribuer à une meilleure
compréhension des phénomènes physiques mis en jeu dans la transition des sillages de corps canoniques
de type cylindre circulaire et profil NACA0012 en régime compressible, à faible nombre de Reynolds,
par la mise en oeuvre de calcul de stabilité linéaire globale et simulations numériques directes (DNS).

Un code de stabilité linéaire globale, basé sur la discrétisation spatiale en volumes finis des équations
compressibles de Navier-Stokes et l’approche temporelle de Chiba, a été développé. Cette approche
ne nécessite pas la linéarisation des équations et permet d’effectuer une analyse de stabilité sur les
états de base stationnaire et périodique. Une analyse de stabilité globale a été réalisée afin de mieux
comprendre les mécanismes qui régissent les instabilités primaires et secondaires se développant dans le
sillage bidimensionnel à l’aval d’un profil NACA0012 et d’un cylindre de section circulaire, dans le
régime d’écoulement compressible à faible nombre de Reynolds. Les écoulements de base stationnaires
employés pour l’identification des instabilités primaires sont générés par la méthode dite de Selective
Frequency Damping, tandis que les solutions périodiques bidimensionnelles des simulations non-linéaires
(DNS) sont employées pour l’identification des instabilités secondaires du cycle limite périodique

Dans un premier temps, les instabilités primaires bidimensionnelles se développant dans le sillage
d’un profil NACA0012 ont été étudiées, d’abord pour le cas incompressible (M ∞ = 0.05) à différents
angles d’incidence et nombres de Reynolds. Nos résultats indiquent que la fréquence du mode le plus
instable diminue lorsque α ou Re augmente, ce qui est lié à l’allongement de la bulle de recirculation
de l’écoulement de base (filtré), comme cela a été précédemment observé pour les corps émoussés. Par
ailleurs, il a été observé que le taux de croissance du mode le plus instable augmente avec α et Re en
proximité du seuil critique, avant de diminuer. L’instabilité (dont la localisation est définie ici par la
position de l’intensité maximale dans la structure spatiale du mode), d’abord localisée loin en aval de
la bulle de recirculation, se déplace vers l’amont (vers le profil) avec l’augmentation de α ou Re jusqu’à
ce qu’elle intéragisse avec la bulle de recirculation, puis vers l’aval avec l’allongement de la zone de
recirculation : le mode passe d’une instabilité de sillage (WI) à une instabilité de bulle de recirculation
(RBI). Néanmoins, la distance relative entre l’extrémité de la zone de recirculation et l’emplacement de
l’intensité maximale du mode diminue continûment.Avec l’augmentation de Re, le taux de croissance
maximal est obtenu lorsque l’intensité maximale du mode entre dans la zone de recirculation. Cette
corrélation n’est toutefois pas aussi évidente avec l’augmentation de α, l’entrée de l’intensité maximale
dans la zone de recirculation étant observée après que la valeur maximale du taux de croissance ait été
atteinte. Cependant, dans les deux cas, le taux de croissance maximal semble corrélé à la parallélité de
l’écoulement de base à l’extrémité de la zone de recirculation, dans une configuration de type RBI.

Nous avons ensuite étudié les effets de la compressibilité jusqu’à M ∞ = 0.5. Nos résultats montrent
que les tendances générales observées dans le cas incompressible sont valables pour le régime sous-
critique. En particulier, pour tous les nombres de Mach étudiés (i.e. jusqu’à 0,5), la fréquence du
mode le plus instable diminue avec α et Re, ce qui est à nouveau lié à l’allongement de la bulle de
recirculation de l’écoulement de base. Des observations similaires sont faites lorsque M ∞ augmente. On
constate que les valeurs maximales du taux de croissance sont obtenues lorsque les intensités maximales
de la structure spatiale du mode le plus instable sont proches de la zone de recirculation (type RBI).
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De plus, il a été démontré que le nombre de Mach peut avoir un effet stabilisateur ou déstabilisateur
en fonction de α et Re. Suivant l’hypothèse de Meliga et al. [72], nous avons vu que l’effet déstabilisant
de la compressibilité est dû à une augmentation, avec le nombre de Mach, de l’advection longitudinale
négative (vers l’amont) de la perturbation par l’écoulement de base, à l’intérieur et en aval de la zone
de recirculation, tandis que l’effet stabilisant résulte d’une augmentation de l’advection transversale
dans la zone de recirculation. Par conséquence, les effets déstabilisants sont toujours non négligeables,
tandis que les effets stabilisants sont significatifs dans (ou près de) l’état RBI, c’est à dire pour des
nombres de Reynolds et des angles d’incidence éloignés des valeurs critiques. Ceci a été confirmé par
les courbes de stabilité neutre Re vs M ∞ obtenues à différents angles d’incidence.

Dans un second temps, les instabilités secondaires tridimensionnelles se développant dans le sillage
périodique bidimensionnel à l’aval d’un cylindre de section circulaire et d’un profil NACA0012 ont été
étudiées. Le cas du cylindre circulaire pour une gamme de nombres de Reynolds et de Mach allant
jusqu’à Re = 350 et M ∞ = 0.5 a d’abord été considéré. Les résultats ont mis en évidence la dépendance
des propriétés moyennes de l’état de base périodique bidimensionnel aux nombres de Reynolds et de
Mach. En particulier, trois types différents de structures d’écoulements moyens ont été observés.
Dans le cas incompressible, la structure des modes A et B a été analysée pour différentes longueurs
d’onde et différents nombres de Reynolds. L’augmentation du multiplicateur de Floquet, c’est-à-dire
l’effet déstabilisant induit par une augmentation du nombre de Reynolds, est associée à un déplacement
vers l’amont des zones de concentration maximale de vorticité. Au contraire, à nombre de Reynolds
constant, la distribution de la vorticité du mode A varie en fonction de la longueur d’onde. En particulier,
il a été observé que la vorticité verticals du mode s’organise en dipôles au cœur des tourbillons du
champs de base pour les faibles longueurs d’onde, ce qui n’est pas observé aux plus grandes longueurs
d’onde.

Dans le cas compressible, nous avons constaté que l’augmentation du nombre de Mach a un effet
stabilisateur sur les modes A et B proche des seuils critiques, retardant la transition du sillage vers un
état tridimensionnel, sans modifier les longueurs d’onde transversales auxquelles l’écoulement devient
instable. Inversement, plus loin des seuils critiques, la compressibilité a toujours un effet stabilisant sur
le mode B mais devient progressivement déstabilisante pour le mode A avec l’augmentation du nombre
de Reynolds. Si la gamme des longueurs d’onde instables ne change pas avec M ∞ pour le mode B, celle
des longueurs d’onde instables pour le mode A se déplace vers des valeurs plus faibles. Par ailleurs, la
normalisation des longueurs d’onde transverses des modes A et B par les longueurs caractéristiques
de la zone de recirculation moyenne du champs de base a révélé une corrélation entre les propriétés
des modes transverses et celles du camps de base moyenné en temps. Il a pu également être mis en
évidence la dépendance de la distribution spatiale de la vorticité du mode A au nombre de Mach, pour
le nombre de Reynolds le plus élevé. En particulier, les contributions des composantes de vorticité
longitudinale et verticale à la vorticité totale diminuent avec l’augmentation du nombre de Mach. La
composante de voriticité transverse présente alors une structure en feuillets et constitue le principale
contirbution à la vorticité totale, ce qui diffère notablement du mode B.

Enfin, les résultats préliminaires sur la tridimensionnalisation du sillage périodique du profil
NACA0012 à angle d’incidence α = 20◦ montrent un effet déstabilisant de la compressibilité sur le
mode de doublement de période pour toutes les longueurs d’onde critiques. La structure du mode de
doublement de période présente des similitudes avec les modes A et B du sillage du cylindre de section
circulaire.
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Perspectives

Sur la base des résultats et du développement numérique de ce travail, les directions de recherche
suivantes sont recommandées pour les travaux futurs.

Améliorations et développements numériques

Sur les aspects numériques, nous identifions trois points principaux :

• dériver et implémenter l’opérateur adjoint [82]. L’amélioration du code de stabilité globale
existant vers un code direct/adjoint conduira à une meilleure compréhension des mécanismes
fondamentaux qui régissent les premières transitions conduisant un écoulement stationnaire vers
un état instationnaire tridimensionnel ;

• investiguer de manière plus approfondie la dépendance de la solution du problème aux valeurs
propres aux paramètres de Krylov–Schur, afin de trouver la combinaison optimale entre tolérance,
dimension du sous-espace de Krylov et intégration temporelle τ ;

• étendre le code de stabilité globale à la discrétisation spatiale par éléments spectraux, déjà présent
dans le code IC3 ;

Physique des écoulements

Ce travail a permis de mettre en évidence l’influence de la compressibilité dans le processus de déstabili-
sation d’un sillage de corps émoussé, d’un état stationnaire vers un état instationnaire tridimensionnel.
Toutefois, des investigations plus approfondies doivent être conduite en vue d’évaluer dans quelle
mesure ces résultats sont généralisables à une plus grande variété d’écoulements. En particulier :

• les propriétés physiques de l’écoulement responsables de la transition entre l’effet stabilisant et
déstabilisant de la compressibilité, dans le contexte des instabilités primaires bidimensionnelles,
doivent être clarifiées. Mieux caractériser la frontière entre les régions d’instabilité de sillage (WI)
et d’instabilité de bulle de recirculation (RBI) peut aider en ce sens, par exemple via l’analyse de
la réponse globale de l’opérateur adjoint ;

• l’influence de la compressibilité sur les instabilités tridimensionnelles se développant sur l’état
de base filtré bidimensionnel, comme présenté par exemple par Zhang & Samtaney [116] pour
le NACA0012 dans le régime incompressible, devrait être explorée. En particulier, l’étude du
lien existant entre le mode stationnaire tridimensionnel se développant sur la solution du point
fixe et ceux se développant sur la solution périodique, qui, pour le sillage du cylindre de section
circulaire, se sont avérés devenir simultanément instables [81], pourrait être intéressante ;

• dans le cas du sillage du cylindre, étendre ce travail à des nombres de Reynolds plus élevés
Re > 350 permettrait de généraliser nos résultats. En particulier, l’effet de la compressibilité sur
le mode QP se développant sur le sillage du cylindre devrait être analysé ;

• l’extension de ce travail aux régimes supercritiques pourrait également être considérée, comme
abordé par Sansica et al. pour l’écoulement autour d’une sphère [92].

• l’extension de l’analyse de stabilité tridimensionnelle de sillages d’autres corps émoussés, tels que
les cylindres de section elliptiques et carrés, l’arrière-corps axisymétrique ou différents profils
d’aile, pourrait également être considérée.
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Appendix A

Floquet multipliers and frequency perturbation

µ = eωT = e(ωr+iωi)T =

µr︷ ︸︸ ︷
eωrT cos (ωiT ) +i

µi︷ ︸︸ ︷
eωrT sin (ωiT )

ω̄i =
2π

T

There are different mode types:

• µ is real and positive: 



µr > 0

µi = 0





eωrT cos (ωiT ) > 0

eωrT sin (ωiT ) = 0




ωiT ∈ [−π
2 ; π

2 ] + 2kπ, k ∈ Z

ωiT = kπ





ωi ∈ [− ω̄i

4 ; ω̄i

4 ] + kω̄i

ωi = k ω̄i

2

• µ is real and negative:





µr < 0

µi = 0





eωrT cos (ωiT ) < 0

eωrT sin (ωiT ) = 0





ωiT ∈ [π
2 ; 3π

2 ] + 2kπ

ωiT = kπ





ωi ∈ [ ω̄i

4 ; 3ω̄i

4 ] + kω̄i

ωi = k ω̄i

2

• µ is complex:





µr < 0, µr > 0

µi 6= 0





eωrT cos (ωiT ) < 0, eωrT cos (ωiT ) > 0

eωrT sin (ωiT ) 6= 0





ωiT ∈ [−π; π] + 2kπ

ωiT 6= kπ





ωi ∈ [− ω̄i

2 ; ω̄i

2 ] + kω̄i

ωi 6= k ω̄i

2
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Appendix B

Selective frequency damping

The linearized system of equations (2.2) can be cast into the following matrix form:


q̇

′

˙̄q′


 =


L − χI χI

I
∆ − I

∆




︸ ︷︷ ︸
D


q

′

q̄′


 (B.1)

In order to understand the effect of the SFD, we should now compute the eigenpairs (λ,ψ) of the
modified matrix D , therefore the solutions of

Dψ − λψ = 0 (B.2)

Let us now consider (ω,φ) the eigenpairs of matrix L . The form of matrix D suggests that the
eigenvectors ψ = [φ; αφ] [1]. From equation (B.2) and considering the form of ψ, we obtain:





Lφ− χφ− λφ+ αχφ = 0
1
∆φ− ( 1

∆ + λ)αφ = 0
(B.3)

As already said (ω,φ) are the eigenpairs of matrix L , therefore Lφ = ωφ. This yields to the following:





ω − χ − λ + αχ = 0
1
∆ − ( 1

∆ + λ)α = 0
(B.4)

From the second one:
λ =

1
∆

(
1
α

− 1
)

(B.5)

Substituting in the first one, we derive an expression for α

ω − χ − 1
α∆

+
1
∆

+ αχ = 0

α∆ω − αχ∆ − 1 + α + ∆χα2 = 0

∆χ︸︷︷︸
a

α2 + α (1 − χ∆ + ∆ω)︸ ︷︷ ︸
b

− 1︸︷︷︸
c

= 0

α± =
−1 + χ∆ − ∆ω ±

√
(1 − χ∆ + ∆ω)2 + 4χ∆
2χ∆

=
−b ±

√
b2 − 4ac

2a
(B.6)
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We now substitute α± in (B.5):

λ =
1
∆

(
2a

−b ±
√

b2 − 4ac
− 1

)

=
1
∆

(
2a + b ∓

√
b2 − 4ac
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√

b2 − 4ac
· −b ∓

√
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−b ∓
√

b2 − 4ac

)

=
1
∆


−b · (2a + b) ∓

√
b2 − 4ac · (2a + b − b) +

√
b2 − 4ac

2

b2 − b2 + 4ac




=
1
∆

(
−2ab − b2 ∓

√
b2 − 4ac · 2a + b2 − 4ac

4ac

)

=
1
∆

(
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√
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4ac

)

=
1
∆

a

(
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√
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2ca

)

=
a

∆

(
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√
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c2a

)

=
a

∆

(
−b − c
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− α±

c

)

=
∆χ

∆

(−1 + χ∆ − ∆ω + 1
−∆χ

+ α±

)

=ω − χ(1 − α±)
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Appendix C

Influence of the Reynolds number at α = 14°

and 18°
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Figure 3.1 – Growth rate as a function of frequency of the most unstable mode (a) and length of the
recirculation region and streamwise location of maximal intensity in the spatial structure of the most
unstable mode (b), for α = 14°, 18° and 20°, varying the Reynolds number.

We performed additional stability calculations at two lower values of the angle of attack: α = 18°
and α = 14°. The results given in figure 3.1.a show a similar evolution of the mode characteristics
with the Reynolds number than the one obtained at α = 20°, the only difference is that the largest
growth rate is obtained for an increasing Reynolds number when the angle of attack is decreased,
i.e. Re ≈ 1000 for α = 18° and Re ≈ 1500 for α = 14°. As illustrated in figure 3.1.b, this maximal
growth rate occurs, again, when the abscissa of the peak of maximal intensity of the mode coincides
with the end of the base flow recirculation region.
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Appendix D

Mesh convergence for the three-dimensional
cylinder
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Figure 4.1 – Convergence on drag coefficient CD and Strouhal number St with respect to 5 different
meshes at Re = 300. M1 is the coarsest, M5 the most refined. M∞ (red dots) represent the asymptotic
value as given by Richardson extrapolation. Henderson [46] reported CD ≈ 1.4

Figure 4.1 shows the two-dimensional flow convergence on coefficient CD and Strouhal number St
with respect to the grid characteristic size (1/Ncells) of five different meshes, from M1 the coarsest to
M5 the most refined. M3 has been chosen for the two dimensional resolution showing less then 0.5%
of error with respect to the extrapolated value (red dot) on the drag coefficient and a 0.1% error on
the Strouhal number. In the convergence study of Kanaris et al. [57], they reported a convergence of
the three-dimensional flow at a spanwise cell length of ∆z = 0.2D, hence, we started with a spanwise
discretisation of ∆z = 0.125D. Values of the Floquet exponent µ with respect to the two-dimensional
((x, y) plane) discretisation and ∆z = 0.125D are shown in figure 4.2. Results obtained with mesh M3
differ by less than 1% for the mode A and 3% for mode B. In table 4.1 results for modes A and B at
other wavelengths are also reported, including the influence of the spanwise discretisation. The relative
error for mode A between mesh M2 with ∆z = D/4 and M4 with ∆z = D/16 is ≈ 0.5%, while that for
mode B between mesh M2 with ∆z = D/4 and M4 with ∆z = D/32 is ≈ 3%. The higher relative error
of mode B is due to the shorter wavelength of this mode compared to the one of mode A. Based on
these results, mesh M3 with ∆z = D/8 has been chosen.
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xy refinement
M1 M2 M3 M4 M5

Mode A λz = 4D ∆z = D/8 1.635 1.721 1.736 1.742 1.743

Mode A λz = 3D

∆z = D/4 - 1.710 - - -
∆z = D/8 - - 1.711 - -
∆z = D/16 - - - 1.718 -
∆z = D/32 - - - - -

Mode B λz = 0.8D ∆z = D/8 1.629 1.889 1.902 1.924 1.938

Mode B λz = 0.75D

∆z = D/4 - 1.868 - - -
∆z = D/8 - - 1.836 - -
∆z = D/16 - - - 1.811 -
∆z = D/32 - - - - 1.835

Table 4.1 – Floquet exponents for mode A at a wavelength λz = 4D, 3D and mode B at λz = 0.8D, 0.75D
with respect to different resolutions at Re = 300 and M ∞ = 0.05.
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1.90
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(a) (b)

Figure 4.2 – Convergence on the Floquet exponents for (a) mode A at a wavelength λz = 4D and (b)
mode B at a λz = 0.8D with respect to 5 different (x, y)-resolutions and ∆z = 0.125D at Re = 300
and M ∞ = 0.05. Red dots correspond to the Richardson extrapolation.
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Appendix E

Base flow starting point influence
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Figure 5.1 – Time variation of drag and lift coefficient at Re = 300 and M ∞ = 0.05. Red dots are four
different instants corresponding to the four stability analysis calculation.

The mode structure resulting from the Floquet stability analysis depends on the starting base flow
instant. For this reason, we show in figure 5.2 and 5.3 the mode structure evolution with respect to the
base flow, in a complete shedding cycle. The base flow instants of the different simulations are shown
on the drag and lift signals in figure 5.1, indicated by red dots as a shift in phase θ.
We can remark that the general characteristics of the mode structure (like the downstream extension
or vorticity intensities) do not change that much with respect to the base flow starting instant, only
the mode adaptation on the base flow starting instant presents remarkable changes. In particular we
can notice that the cross-stream vorticity is present in the braid region close to the cylinder, only when
the vortex is about to detach from the body. This is coherent to the fact that at that instant the strain
rate in the braid region close to the cylinder is is the maximal. Moreover in the streamwise vorticity we
notice that there are intermediate primary vortexes in which mode streamwise vorticity has strongly
decreased (the ±0.1 isosurfaces are not present).
The influence of the initial instant of base flow on the Floquet multiplier, on the other hand, seems
to give the multiplier a sinusoidal behavior that follows that of the drag coefficient (presenting two
periods in a complete shedding). However, its fluctuations are less than 0.5% around the mean value.
These specific simulations have been performed on the coarsest mesh M1 with ∆z = D/8.
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(a) (b) (c)

θ = 0

θ =
π
2

θ = π

θ =
3π
2

Figure 5.2 – Vorticity ω̃/max(||ω̃||) of mode A with wavelength λz = 4D at Re = 300 and M ∞ = 0.05
for different base flow instants θ: (a) streamwise, (b) cross-stream and (c) spanwise component. Iso-
surfaces at levels ±0.1 (positive in red, negative in blue) superposed to translucent iso-surfaces of base
flow vorticity at level ±0.01.
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Figure 5.3 – Vorticity ω̃/max(||ω̃||) of mode B with wavelength λz = 0.8D at Re = 300 and M ∞ = 0.05
for different base flow instants θ: (a) streamwise, (b) cross-stream and (c) spanwise component. Iso-
surfaces at levels ±0.1 (positive in red, negative in blue) superposed to translucent iso-surfaces of base
flow vorticity at level ±0.01.
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Appendix F

Mach evolution of mode A vorticity

ω̃x/max(||ω̃||) ω̃y/max(||ω̃||) ω̃z/max(||ω̃||)

Mode A

M∞ = 0.1

M∞ = 0.3

M∞ = 0.5

Figure 6.1 – Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 3D and Re = 350.
Iso-surfaces at levels ±0.1 (positive in red, negative in blue) superposed to translucent iso-surfaces of
base flow vorticity at level ±0.01.

Figure 6.1 and 6.2 show iso-surfaces of streamwise, cross-stream and spanwise vorticity of mode A at
wavelength λz = 3D and Re = 250, 350. Conversely to largest wavelengths (figure 6.3), the contribution
of the streamwise and cross-stream components to the vorticity magnitude does not change with the
increase in Mach number and spanwise vorticity layers observed at λz = 4D are not visible.
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ω̃x/max(||ω̃||) ω̃y/max(||ω̃||) ω̃z/max(||ω̃||)

Mode A

M∞ = 0.1

M∞ = 0.3

M∞ = 0.5

Figure 6.2 – Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 3D and Re = 250.
Same convention as in figure 6.1.
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M∞ = 0.5

Figure 6.3 – Mach evolution of mode A vorticity ω̃/max(||ω̃||), with wavelength λz = 4D and Re = 250.
Same convention as in figure 6.1.
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Appendix G

Mesh convergence for the three-dimensional
NACA0012 airfoil
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Figure 7.1 – Convergence on mean drag, lift and Strouhal coefficients with respect to 4 different meshes
for the NACA0012 airfoil at α = 20°, Re = 1000 and M ∞ = 0.05. M1 is the coarsest, M4 the most
refined. M∞ represents the asymptotic value, computed thought a Richardson extrapolation.

Figure 7.1 shows the two-dimensional flow convergence on the drag and lift coefficients as well as
on the Strouhal number with respect to the grid characteristic size (1/Ncells) for four different meshes,
from M1 the coarsest to M4 the most refined. When using mesh M3, the two-dimensional resolution
shows less than 1% of error with respect to the extrapolated value (red dot) on each quantity. Values of
the Floquet exponent µ with respect to the two-dimensional (x, y) discretisation and different spanwise
resolutions ∆z are reported in table 7.1 for the period doubling mode with wavelength λz = 0.66C,
where C indicates the airfoil chord. We can remark that the two-dimensional refinement has much
more influence than ∆z, with a maximum relative error with mesh M4 and the different spanwise
discretizations of ≈ 1.6%. Based on these results, mesh M4 with ∆z = D/16 has been chosen. It is

(x, y) refinement
M1 M2 M3 M4

PD λz = 0.66C

∆z = 1/8 -1.2361 - - -1.5896
∆z = 1/16 - -1.4127 -1.5950 -1.6164
∆z = 1/32 - -1.4056 -1.5898 -1.6114
∆z = 1/64 - -1.4015 -1.5865 -

Table 7.1 – Floquet exponents for the period doubling (PD) mode of wavelength λz = 0.66D with
respect to different resolutions at α = 20°, Re = 600 and M ∞ = 0.05. Reference value from Meneghini
et al. [73] is µ ≈ −1.64.
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worth mentioning, that a stronger impact of spatial refinement on stability results compared to that on
the aerodynamic coefficients is observed. This issue has been examined in [35].
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