

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Nathanaël SENSFELDER

mercredi 31 mars 2021

Analyse et contrôle des interférences liées à la cohérence de cache dans
les multi-coeurs COTS

ED MITT : Réseaux, télécom, système et architecture

Équipe d'accueil ISAE-ONERA MOIS

Mme Christine ROCHANGE Professeure des Universités Université Toulouse III - Présidente
M. Björn BRANDENBURG Professeur des Universités Université de la Sarre - Examinateur

M. Julien BRUNEL Chargé de recherche ONERA - Co-directeur de thèse
Mme Janette CARDOSO Professeure ISAE-SUPAERO - Examinatrice

MI. Sylvain CONCHON Professeur des Universités Université Paris-Sud XI - Examinateuré
Mme Claire PAGETTI Maître de Recherche ONERA - Directrice de thèse

Mme Isabelle PUAUT Professeure des Universités Université de Rennes I - Rapporteure
M. Olivier H. ROUX Professeur des Universités École Centrale de Nantes - Rapporteur

Mme Claire PAGETTI (directrice de thèse)
M. Julien BRUNEL (co-directeur de thèse)

2

3

Abstract
This thesis proposes tools to help in the certification of multi-core processors for use in aeronautical
systems. While the parallel nature of multi-core processors can greatly improve computation speeds,
it also makes them difficult to predict, preventing their use in critical environments. Indeed, in such
processors, the cores share access to nearly all resources and this causes conflicts, or interference,
which lead to seemingly random variation in the execution time. Among the complex mechanisms
prone to interference is cache coherence, which ensures that cores that use a same atomic memory
block cannot blindly override the modifications made by another core and that all cores are made
aware of all modifications. To achieve cache coherence, the processor automatically follows a prede-
termined protocol which defines messages to be generated according to the actions of a core, as well
as the actions to be performed when another core’s message is received.

The focus of this thesis is to identify the interference generated by the cache coherence mech-
anisms and provide a way to predict their effects on the applications, as a first step toward their
mitigation. The first contribution made is to address the ambiguities in the understanding ap-
plicants have of the coherence protocol implemented on their chosen architecture. Indeed, archi-
tecture documentation does not generally offer sufficient details on their cache coherence protocol.
This thesis proposes a formalization of some standard cache protocols and a strategy relying on
micro-benchmarks in order to clarify the implementation details of the architecture’s protocol. This
approach is applied to the NXP QorIQ T4240 architecture. Once the protocol has been correctly
identified, the second contribution consists in the making of a low-level description of the architec-
ture using timed automata in order to adequately represent the micro-behaviors and understand
clearly how the cache coherence protocol acts. In effect, a generic model generation framework has
been developed, capable of handling cache coherence protocols as described by the applicant, and
to support architectures with different configurations in order to better fit the applicant’s chosen
architecture. The third contribution explains how to make use of the timed automata low-level
representation of the architecture to expose interference. It proposes a strategy to detail the causes
and effects of cache coherence interference on the given programs. Starting from a simple analysis
of execution time, the results go down to instruction level, indicating how each instruction generates
and suffers from interference. This is intended to provide sufficient information on cache coherence
interference to the applicant, both for the purposes of certification and to form the base upon which
a mitigation strategy can be started.

In effect, this thesis provides the applicant with the means to understand the cache coherence
mechanisms used by their chosen architecture and to expose the interference they generate.

4

5

Résumé Français
L’objectif de cette thèse est d’offrir des outils d’aide à la certification aéronautique de processeurs
COTS multi-cœurs. Ces architectures sont par nature parallèles et peuvent de ce fait largement
améliorer les performances de calcul. Cependant elles souffrent d’un grand manque de prédictibilité,
au sens où calculer les pires d’exécution même pour des programmes simples est un problème com-
plexe, voire impossible dans le cas général. En effet, les cœurs partagent l’accès à presque toutes
les ressources ce qui provoque des conflits (qualifiés d’interférences) entrainant des variations non
mâıtrisées des temps d’exécutions. Parmi les mécanismes complexes d’un processeur multi-coeur se
trouve la cohérence de caches. Celle-ci assure que tous les cœurs lisant ou écrivant dans un même
bloc mémoire ne peuvent pas aveuglement ignorer les modifications appliquées par les autres. Afin
de maintenir la cohérence de caches, le processeur suit un protocole pré-déterminé qui définit les
messages à envoyer en fonction des actions d’un cœur ainsi que les actions à effectuer lors de la
réception du message d’un autre cœur.

Cette thèse porte sur l’identification des interférences générées par les mécanismes de cohérence
de caches ainsi que sur les moyens de prédiction de leurs effets sur les applications en vue de réduire
les effets négatifs temporels. La première contribution adresse les ambigüıtés dans la compréhension
que les applicants ont de la cohérence de cache réellement présente dans l’architecture. En effet, la do-
cumentation des architectures ne fournit généralement pas suffisamment de détails sur les protocoles.
Cette thèse propose une formalisation des protocoles standards, ainsi qu’une stratégie, reposant sur
les micro-benchmarks, pour clarifier les choix d’implémentation du protocole de cohérence présent
sur l’architecture. Cette stratégie a notamment été appliquée sur le NXP QorIQ T4240. Une fois
le protocole correctement identifié, la seconde contribution consiste à réaliser une description bas-
niveau de l’architecture en utilisant des automates temporisés afin de représenter convenablement les
micro-comportements et comprendre clairement comment le protocole de cohérence de cache agit.
Ainsi, un framework de génération de modèles génériques a été développé, capable de supporter
plusieurs protocoles de cohérence de cache et de représenter différents agencements d’architectures
afin de mieux correspondre à l’architecture choisie par le postulant. La troisième contribution ex-
plique comment utiliser cette représentation de l’architecture pour exhiber les interférences. Elle
propose une stratégie pour détailler les causes et effets de chaque interférence liée à la cohérence de
caches sur les programmes. Commençant par une simple analyse de temps d’exécution, les résultats
descendent jusqu’au niveau des instructions pour indiquer comment chaque instruction génère et
souffre des interférences. L’objectif étant alors de fournir suffisamment d’information à l’appliquant
à la fois pour la certification, mais aussi pour définir une stratégie d’atténuation et de mâıtrise des
effets temporels.

Ainsi, cette thèse fournit l’appliquant des outils pour comprendre les mécanismes de cohérence
de cache présent sur une architecture donnée et pour exhiber les interférences associées.

6

Contents

I Context 13

1 Introduction 15
1.1 Context . 15

1.1.1 Aeronautical Embedded Systems . 15
1.1.2 Multi-core Based Systems Certification . 15

1.2 The Issue of Cache Coherence . 17
1.3 Overview of the Thesis . 17

2 (Timed) Automata 19
2.1 Classical Automata . 19

2.1.1 System Definition . 19
2.1.2 Query Logic Operators and Semantics . 22

2.2 UPPAAL and Networks of Timed Automata . 23
2.2.1 System Definition . 23
2.2.2 Query Logic Operators and Semantics . 27

2.3 Conclusion . 27

3 Fundamentals of Cache Coherence 29
3.1 Components . 29

3.1.1 Memory Elements . 29
3.1.2 Core: Programs & Instructions . 30
3.1.3 Caches . 31
3.1.4 Coherence Manager . 32
3.1.5 Interconnect . 33

3.2 Coherence Protocols . 34
3.2.1 Introduction to the MSI Protocol . 34
3.2.2 Properties to be Verified . 36
3.2.3 Protocol Definition . 37

3.3 Split-Transaction Bus, case of the MSI Protocol . 37
3.3.1 State Naming . 37
3.3.2 Examples . 40

3.4 Variants . 49
3.5 Cache Line Organization . 49

3.5.1 Replacement Policies . 49
3.5.2 Placement Policies . 50

3.6 Conclusion . 54

7

8 CONTENTS

4 Objective 55
4.1 Tasks Required of the Applicant . 55

4.1.1 Coherence Protocol Identification . 55
4.1.2 Measuring the Impact of Interference of the Software 56

4.2 Proposed Solution . 57
4.2.1 Hypotheses and Limitations . 57
4.2.2 Framework Overview . 59

4.3 Conclusion . 60

II Related Works 61

5 Micro-Stressing Benchmarks 63
5.1 Detecting Component Correlation . 64

5.1.1 Evaluating Interference Through Resource-Stressing 64
5.1.2 Architecture and Application Characterization 67

5.2 Analyzing Cache Performance . 69
5.2.1 Cost of Cache Coherence . 69
5.2.2 Cache Performance Analysis . 71

5.3 Finding Elusive Hardware Monitors . 74
5.4 Conclusion . 75

6 Handling Cache Interference in Safety-Critical Systems 77
6.1 Through Restrictions . 77

6.1.1 Shared Cache Partitioning . 77
6.1.2 Cache Coloring to Curtain Interference . 78
6.1.3 Limited Shared Resources . 78
6.1.4 Isolated Communications Through Scheduling 79

6.2 Through Hardware Modifications . 80
6.2.1 Predictable MSI . 80
6.2.2 Limited Cacheability . 82
6.2.3 On-Demand Cache Coherence . 83
6.2.4 Dynamic Verification of Cache Coherence . 84

6.3 By Accepting It . 85
6.3.1 Instruction Cache Analysis . 85
6.3.2 Data Cache Analysis . 88

6.4 Conclusion . 89

7 Analyzing Performance Through Formal Methods 91
7.1 Single-Core Processors . 91

7.1.1 METAMOC . 91
7.1.2 WUPPAAL . 94

7.2 Multi-Core Processors . 96
7.2.1 Modeling Shared Buses . 96
7.2.2 Multi-Core Analysis using only UPPAAL . 98

7.3 Conclusion . 100

CONTENTS 9

III Contributions 103

8 Identifying Cache Coherence 105
8.1 Identification Strategy . 106

8.1.1 Defining the Hypothetical Cache Coherence Protocol 106
8.1.2 Defining the Observable Cache Coherence Protocol 106
8.1.3 Naive Exploration of the Observable Protocol 108
8.1.4 State Exploration & Reachability . 109
8.1.5 Matching Observed States with Hypothetical States 109
8.1.6 Activity Comparison . 111
8.1.7 Exploration Guided by Hypothetical Protocol 112

8.2 Benchmark Implementation . 113
8.2.1 The NXP QorIQ T4240 . 113
8.2.2 Naught . 114
8.2.3 Initializing the Caches (Lines 1 & 2 of Figure 8.4) 115
8.2.4 Enabling the Performance Monitors (Line 3 of Figure 8.4) 116
8.2.5 Performing Instructions (Lines 4 & 5 of Figure 8.4) 117
8.2.6 Data Recording (Lines 6 & 7 of Figure 8.4) 117

8.3 Hypothetical Split-Transaction MESI Protocol . 118
8.3.1 Strategy Application for a MESI Protocol . 120
8.3.2 Coherence State Matching . 120
8.3.3 Coherence Activity Matching . 121

8.4 Hypothetical Split-Transaction MESIF Protocol . 122
8.4.1 Strategy Application for a MESIF Protocol 124
8.4.2 No store Optimization on F . 124
8.4.3 Odd Results with evict on M . 125
8.4.4 Better Coherence Manager . 125

8.5 Conclusion . 126

9 Modeling Cache Coherence 127
9.1 Modeling Strategy . 127
9.2 Synchronization Channels . 129
9.3 Models of Core and Programs . 132
9.4 Model of the Caches . 134

9.4.1 Initialization . 135
9.4.2 Cache Lines . 136
9.4.3 Modeling the LRU policy . 137
9.4.4 Handling Requests . 137
9.4.5 Handling Messages . 139
9.4.6 Modeling Actions . 140

9.5 Models of FIFOs . 141
9.5.1 Query FIFO . 141
9.5.2 Data FIFO . 142

9.6 Model of the Interconnect . 143
9.6.1 Data Bus . 144
9.6.2 Query Bus . 144

9.7 Model of the Coherence Manager . 146
9.7.1 Modeling Actions . 149

10 CONTENTS

9.8 Model of the Memory . 149
9.9 Switching Coherence Protocol . 151
9.10 Step-by-Step Simulation . 152
9.11 Conclusion . 153

10 Exposing Interference 155
10.1 Overview of the Analyses . 155
10.2 Analyzing Impact on Program Execution Time . 158
10.3 Analyzing Impact on Hit & Miss . 159

10.3.1 Hit and Miss in the Model . 160
10.3.2 Instruction Characterization . 161
10.3.3 Memory Element Accuracy Analysis . 163

10.4 Defining Impact of External Queries . 164
10.4.1 Minor Interference . 165
10.4.2 Demoting Interference . 166
10.4.3 Expelling Interference . 166
10.4.4 Protocol Annotations . 167

10.5 Analyzing Impact of Intructions on Instruction . 170
10.6 Model Checking Scalability Considerations . 174
10.7 Conclusion . 175

IV Conclusions & Perspectives 177

11 Conclusion 179
11.1 Identifying the Protocol . 179

11.1.1 Summary . 179
11.1.2 Limitations . 180
11.1.3 Future Works . 180

11.2 Modeling the Architecture . 181
11.2.1 Summary . 181
11.2.2 Limitations . 181
11.2.3 Future Works . 182

11.3 Exposing the Interference . 182
11.3.1 Summary . 182
11.3.2 Limitations . 183
11.3.3 Future Works . 183

11.4 General Future Works . 184

12 Résumé en Français 185
12.1 Introduction . 185

12.1.1 Contexte . 185
12.1.2 Contributions . 186
12.1.3 Vue d’ensemble du résumé . 187

12.2 Notions préliminaires . 188
12.2.1 Automates temporisés . 188
12.2.2 Fonctionnement des caches . 190
12.2.3 Cohérence de cache . 192

CONTENTS 11

12.3 État de l’art . 194
12.3.1 Micro-stressing benchmarks . 194
12.3.2 Gestion des interférences . 195
12.3.3 Approches formelles . 197

12.4 Identifier la cohérence de cache . 197
12.4.1 Définir le protocole hypothétique . 198
12.4.2 Exploration näıve du protocole observable . 198
12.4.3 Exploration d’état et atteignabilité . 199
12.4.4 Correspondance entre état observé et hypothétique 199
12.4.5 Comparaison des activités . 199
12.4.6 Exploration guidée par le protocole hypothétique 200
12.4.7 Application au NXP QorIQ T4240 . 200

12.5 Modéliser la cohérence de cache . 201
12.5.1 Stratégie de modélisation . 201
12.5.2 Changer de protocole de cohérence . 202

12.6 Analyser la cohérence de cache . 203
12.6.1 Analyse de l’impact sur le temps d’exécution 204
12.6.2 Catégorisation des accès au cache . 206
12.6.3 Catégorisation de l’interférence . 206
12.6.4 Révéler les interférences liées à la cohérence de cache 207

12.7 Conclusion . 207

A False Sharing 209

B Model Parameters 211

12 CONTENTS

Part I

Context

13

Chapter 1

Introduction

1.1 Context
1.1.1 Aeronautical Embedded Systems
The ever increasing complexity of aircraft and the market’s depreciation of single-core processors
are motivating the introduction of multi-core processors in aeronautical systems.

The operation of a safety critical system requires its certification by the relevant authorities.
The entity applying to obtain this certification is refered to as the applicant in thesis. Indeed, this
certification is obtained through a process in which an applicant argues for the compliance of that
system with regulation. The introduction of a new category of hardware in such a system renders this
process particularly difficult, as it implies a lack of preexisting process for the generation of a proof
of compliance. Furthermore, the link between this new hardware and the high level certification
objectives may not be obvious.

1.1.2 Multi-core Based Systems Certification
This thesis is part of the Phylog project. The objective of the Phylog project is to provide tools
that will help building a strong case for applicants attempting to pass the certification process of an
aeronautical computer system. These systems are assumed to be commercial off-the-shelf (COTS)
products, meaning processors not manufacted solely for this specific use. The requirements that
the applicants must prove this computer system passes include those listed in the CAST-32A ([17]).
This document focuses on the particularities of multi-core processors and the way these particular-
ities complicate the demonstration of both safety and performance standard objectives fulfillment.
Among the requirements listed in the CAST-32A figures Resource Usage 3, which requires the com-
plete identification of all interference and its effects with the chosen configuration: The applicant has
identified the interference channels that could permit interference to affect the software applications
hosted on the MCP cores, and has verified the applicant’s chosen means of mitigation of the inter-
ference. The Phylog project translated this requirement into an assurance case, which can be seen
in Figure 1.1. To help applicants fulfill this objective, this thesis focuses on interference generated
by a prevalent feature of multi-core processors: cache coherence.

Definition 1 (Interference) An interference is the unwarranted modification of the execution time
of an application because of the actions of another.

15

16 CHAPTER 1. INTRODUCTION

(RU3) Identification of
interference and veri-

fied means of mitigation

(E1) Design of adequate means
of mitigation for interference

(W2) Check all identified interference are mitigated (∀i ∈ I, i mitigated)

(E2) Classification of inter-
ference effects (∀i ∈ I, c(i))

(W3) Safety analysis

(E4) Identification
of all interference I

Given: Configu-
ration settings Cs

(E5) Identification of i effects (G3) Configuration settings
Cs and temporal constraints
on applications (e.g. WCET)

Architecture mastery

(E3) i mitigated
(e.g. prevention / blocking
with run-time mechanism;
impossible due to usage

domain restriction; tolerance)

Figure 1.1 – Assurance Case Corresponding to RU3

Data FIFO 0 Query FIFO 0 Data FIFO 1 Query FIFO 1

Figure 1.2 – Example of Interference

Example 1 (Example of Interference) In a system in which two cores, with one cache each,
both attempting to send a query to load data simultaneously, the interconnect will end up having to
choose one of the two queries to send first, and will put the other query in waiting. This waiting
lengthens the execution time of the associated instruction and would not occur if there was no con-
current query, thus making it an interference. Figure 1.2 illustrates this example, by having Cache
1’s query be prevented access to the interconnect during the other query’s propagation, meaning that
the application running on Core 0 is interfering with the one running on Core 1.

1.2. THE ISSUE OF CACHE COHERENCE 17

1.2 The Issue of Cache Coherence
When multiple cores make use of the same memory elements, separate copies of these memory
elements find themselves in different caches. As these copies are separate, changes made to a copy
are not reflected on the other copies. This makes parallel computing difficult: a core might not be
using the most up-to-date value of the shared memory elements and the modifications it performs
might be blindly overridden by another core.

Cache coherence refers to mechanisms that will ensure all these separate copies stay consistent.
In effect, it will ensure that there is never an ambiguity on the current value of memory elements,
and that any core accessing a memory element is using this most up-to-date value.

Achieving cache coherence requires caches to coordinate with each other. This is done through
shared buses, on which caches send queries to communicate needs and receive data messages in reply.
These buses in themselves are thus a heavily used shared resource, making it a source of interference.
However, the main cause of cache coherence interference is that, to maintain coherence, these queries
can force caches to lose access to some of their content. As a result, the actions of another core will
determine whether a core can find the memory element it wants through a quick cache access or if
this will require a time consuming fetch.

These cache coherence mechanisms are generally fully automated, meaning that the application
developers do not directly control when cache queries are made. This makes predicting the emission
and effects of these queries difficult. Indeed, the emission of a query is determined by both program
instruction and the content of the cache, and the latter is subject to uncontrolled modifications by
queries emitted from other caches. This makes cache coherence a source of important execution
time variations and a challenge to certification.

1.3 Overview of the Thesis
This thesis starts by introducing prerequisites: timed automata (Chapter 2) and cache coherence
(Chapter 3). Once these have been presented, the focus of this thesis can be explained in full
(Chapter 4). Indeed, The purpose of the thesis is to develop a framework to ensure the applicant
is made aware of the interference generated by cache coherence in their chosen COTS multi-core
processor.

To determine the state of the art and what specifically needs to be developed, a whole part is
dedicated to the relevant existing literature. First is architecture profiling, for which existing solu-
tions relying on benchmarks are presented in Chapter 5, including works with a focus on caches. The
current practices with regards to the use of caches in multi-core employed in critical environments
are detailed in Chapter 6. Since the solution proposed in this thesis relies on formal methods, a
number of existing works that have a similar approach to the study of architectures are presented
in Chapter 7.

After clarifying what is left to be done to achieve a full framework that will help with the cache
coherence part of the certification, this thesis proposes three contributions: a strategy to properly
identify an architecture’s cache coherence protocol, a model template for multi-core architectures
with cache coherence support, and analyses to be performed on instantiated models in order to
expose the interference.

• The first contribution, presented in Chapter 8, is meant to ensure the applicant is fully aware of
all the peculiarities of the cache coherence protocol implemented by the multi-core architecture
of their choice. To achieve this, the applicant is asked to start by formalizing what they
believe the cache coherence protocol to be, in a fashion that leaves no possible ambiguity.

18 CHAPTER 1. INTRODUCTION

This hypothetical cache coherence protocol is then validated against the architecture through
observations made with micro-benchmarks.

• Using the previous contribution, the applicant obtained an ambiguity-free cache coherence
protocol corresponding to the one used by the targeted multi-core architecture. However, the
analysis of the protocol by itself does not reveal much. The second contribution, presented
in Chapter 9, proposes the model of a multi-core architecture to the applicant. This model,
made of networked timed automata, is meant to be instantiated to fit the applicant’s chosen
architecture, and can automatically be made to use the aforementioned ambiguity-free cache
coherence protocol.

• The instantiated model created using the previous contribution can be used to perform an
analysis of interference occurring in the system. This third contribution, presented in Chap-
ter 10, shows how model checking can be employed to expose the causes and effects of cache
coherence interference in the system. The analyzes include worst-case execution time esti-
mation, as well as the identification of how each program instruction is affected by and/or
generates interference.

Chapter 2

(Timed) Automata

This chapter presents the concept of timed automata, which is the formal model used in this thesis,
and an associated formal method: reachability analysis through model checking. In the first section,
the main concepts behind classical automata are introduced, with some fairly common additions:
the use of variables, having conditions and actions in transitions, and synchronization. A definition
of the temporal logic operators used in this thesis is also given in the classical automata section.
Timed automata are introduced in a second section. As this thesis does not dwell into the theory of
automata, but simply uses them as a modeling tool, many details (such as their precise semantics, the
language theory or the details of how model checking is achieved) are omitted. Indeed, the objective
of the chapter is for the reader to have an understanding of the models of cache coherence presented
in later chapters, as well as the operators being used to query on them. Since the aforementioned
details are not directly related to the work presented in this thesis, they are considered to be outside
of the scope of this chapter.

2.1 Classical Automata
This section is meant as a reminder on classical automata. Readers looking for in-depth information
on the subject are encouraged to read [3], [33], or [8].

2.1.1 System Definition
Definition 2 (Syntax of Constraints and Actions) Given a set of variables Var, the grammar
used when writing constraints and actions in transitions is as follows, with ident standing for a
variable in Var:
lop ::= ∧ | ∨
cop ::=< | ≤ | = | ≥ | >
mop ::= +| − | ∗ | /
mexpr ::= mexpr mop mexpr | ident | Z
abexpr ::= mexpr cop mexpr | true | false
bexpr ::= ¬bexpr | bexpr lop bexpr | abexpr
assign ::= assign; assign | ident := mexpr | if (bexpr) {assign} | nop

Definition 3 (Classical Automata System) A classical automata system A is a tuple 〈Q, sinit,
B, E , Var, Act, 〉 where:

19

20 CHAPTER 2. (TIMED) AUTOMATA

• Q is a finite set of states.

• sinit is the initial state (sinit ∈ Q).

• Var is a finite set of integer variables, taking their value on a finite subset DVar of integers.

• E = Eα ∪ Esync is a finite set of labels, with Esync corresponding to labels meant for synchro-
nization and Eα being regular labels. The labels in Esync affixed by either ‘?’ or ‘!’, with ‘?’
denoting a reception on a “channel”, and ‘!’ an emission.

• B = bexpr(Var), as defined in Definition 2.

• Act = assign(Var), as defined in Definition 2.

• ⊆ Q× B × E × Act×Q is the transition relation.

Note that we use both a set Q of states and a set Var of integer variables, in order to be close to the
framework of UPPAAL, which we are using in the rest of the thesis.

The semantics of A is given via its set of valid transitions (see Definition 14) and its execution
traces (see Definition 6).

Definition 4 (Valuation) Valuations map variables to their value: v : Var → DVar. Given a
valuation v, and a guard c ∈ B, we note v |=PL c to indicate that c is true under the valuation v.

Similarly, given a ∈ Act, v[a] denotes the valuation obtained from v by the application of the
action a, were all variables updated by a have their new value and all other variables keep their
previous value.

Definition 5 (Transition) Given an automaton A = 〈Q, sinit,B, E , Var, Act, 〉, we define Step,
which indicates all valid transitions that can be performed from 〈s, v〉, with s ∈ Q and v a valuation:
Step(〈s, v〉) , {〈s′, v′〉|∃〈s, c, l, a, s′〉 ∈ s.t. ((v |=PL c) ∧ v′ = v[a])}

Definition 6 (Path & Trace) We consider a path to be a maximal sequence of states/transitions
〈s1, v1〉 → 〈s2, v2〉 → · · · such that for each i, 〈si+1, vi+1〉 ∈ Step(〈si, vi〉). The sequence is maximal
in the sense that it is either infinite or of length N and such that Step(〈sN , vN 〉) is empty. A path
starting from 〈sinit, v0〉 (where v0 is the initial valuation) is called a trace.

Example 2 (Classical Automata) Figure 2.1 shows two automata modeling a client (on the left)
that fetches a number of files from a server (on the right). In this scenario, the system loops
infinitely, with the client initiating a request for files (request files), and counting (fetched) their
arrival (new file) until the server indicates that all were transfered (done). On each request, the
server sends exactly 386 files (as counted by sent).

Example 3 (Traces) Here are some examples of traces for the client automaton from Example 2:

• 〈S0, {〈fetched, 0〉}〉 err−−→ 〈SE , {〈fetched, 0〉}〉

• 〈S0, {〈fetched, 0〉}〉 request files!−−−−−−−−→
fetched:=0

〈S1, {〈fetched, 0〉}〉 err−−→ 〈SE , {〈fetched, 0〉}〉

And for the server automaton:

• 〈S0, {〈sent, 0〉}〉 err−−→ 〈SE , {〈sent, 0〉}〉

2.1. CLASSICAL AUTOMATA 21

S0start S1

SE

request files!
fetched := 0

err

done?

err ne
w

fil
e?

fe
tc

he
d

:=
fe

tc
he

d
+

1

S0start S1

SE

request files?
sent := 0

err

done!
sent = 386 err

ne
w

fil
e!

se
nt
<

38
6

se
nt

:=
se

nt
+

1

Figure 2.1 – Example of two classical automata

• 〈S0, {〈sent, 0〉}〉 request files?−−−−−−−−→
sent:=0

〈S1, {〈sent, 0〉}〉 new file! sent<386−−−−−−−−−−−→
sent:=sent+1

〈S1, {〈sent, 1〉}〉 new file! sent<386−−−−−−−−−−−→
sent:=sent+1

· · · new file! sent<386−−−−−−−−−−−→
sent:=sent+1

〈S1, {〈sent, 386〉}〉 done! sent=386−−−−−−−−−→ 〈S0, {〈sent, 386〉}〉 err−−→ 〈SE , {〈sent, 386〉}〉

Definition 7 (Synchronized automata) Given n automata Ai = 〈Qi, siniti,Bi, E i, Vari, Acti,
 i〉, and a synchronization constraint Synccon ⊆ (E1 ∪ {−}) × · · · × (En ∪ {−}), we can define
a new automaton As = 〈Qs, sinits,Bs, Es, Vars, Acts, 〉, corresponding to the synchronized product
of the Ai automata according to Synccon, with the following rules:

• Qs = Q1 × · · · ×Qn

• sinits = 〈sinit1, · · · , sinitn〉

• Bs = B1 × · · · × Bn

• Es = (E1∪{−})×· · ·× (En∪{−}). We extend the labels with − to mark that a sub-automaton
does not perform any transition.

• Vars = Var1 ∪ · · · ∪ Varn, with ∀i, j ∈ 1..n, (i 6= j) =⇒ (Vari ∩ Varj = ∅).

• Acts = Act1 × · · · × Actn

• s ⊆ Qs × Bs × Es × Acts ×Qs, with

〈〈o1, · · · , on〉, 〈c1, · · · , cn〉, 〈l1, · · · , ln〉, 〈a1, · · · , an〉, 〈d1, · · · , dn〉〉 ∈ s

⇐⇒

{
〈l1, · · · , ln〉 ∈ Synccon

〈∀i ∈ 1..n : oi, ci, li, ai, di〉 ∈ i ∨ (oi = di ∧ li = − ∧ ci = true ∧ ai = nop)

Synccon is implicitely defined by the labels in E1..n: for any transition with a label in Eα, there is
an entry in Synccon with no other simultaneous transition allowed (indicated by −, which means the
particular sub-automaton does not perform a transition). For any transition chan in Esync, Synccon
has an entry for each possible chan!, chan?, − label combination such that there is a single chan!
label and a single chan? label. This convention was introduced in CCS ([37]).

22 CHAPTER 2. (TIMED) AUTOMATA

Definition 8 (Synchronized Automata Semantics) As the product of synchronized automata
is itself a classical automaton, its semantics is the same as those from Definition 6.

〈S0, S0〉

start

〈S1, S1〉

〈S0, SE〉 〈SE , S0〉

〈S1, SE〉 〈SE , S1〉

〈SE , SE〉

〈request
files!,request

files?〉
〈fetched

:=
0,sent:=

0〉

〈t
ru

e,
se

nt
=

38
6〉

〈d
on

e?
,d

on
e!
〉

〈−, err〉

〈err,−〉

〈err,−〉

〈−, err〉

〈−, err〉

〈err,−〉

〈err,−〉

〈−,
err
〉

〈new file?,new file!〉
〈fetched := fetched + 1, sent := sent + 1〉

Figure 2.2 – Example of synchronized automaton

Example 4 Figure 2.1 is in fact a network of automata, which is one way of representing synchro-
nization between automata. Figure 2.2 shows another representation, with a single automaton result-
ing from the synchronized product of the automata from Figure 2.1. In this case, Synccon is defined
as: {〈request files!, request files?〉, 〈done?,done!〉, 〈new file?,new file!〉, 〈err,−〉, 〈−, err〉}.

2.1.2 Query Logic Operators and Semantics
Given an automaton A and an initial valuation v0, we can define the satisfaction relation for a
property φ. We assume φ to be a formula in bexpr(Var) written in the subset of CTL ([19])
temporal operators described below. Readers interested in the details of how these are actually
verified are encouraged to read on model-checking (for example, [20]). The satisfaction of 〈s, v〉 |= φ
is defined using the following decomposition:

〈s, v〉 |= ψ , v |=PL ψ, where ψ is an expression in abexpr(Var).

〈s, v〉 |= ¬φ , 〈s, v〉 6|= φ

〈s, v〉 |= φ ∧ ψ , (〈s, v〉 |= φ) and (〈s, v〉 |= ψ)

〈s, v〉 |= AF φ ,
For all paths starting from 〈s, v〉, there is, within the path, a 〈s′, v′〉, such that 〈s′, v′〉 |= φ

2.2. UPPAAL AND NETWORKS OF TIMED AUTOMATA 23

〈s, v〉 |= EF φ ,
There is a path starting from 〈s, v〉 in which is found a 〈s′, v′〉, such that 〈s′, v′〉 |= φ

〈s, v〉 |= AG φ ,
For all paths starting from 〈s, v〉, all 〈s′, v′〉 of the path verify 〈s′, v′〉 |= φ

〈s, v〉 |= EG φ ,
There is a path starting from 〈s, v〉, such that all 〈s′, v′〉 verify 〈s′, v′〉 |= φ

〈s, v〉 |= φ --> ψ ,
For all paths starting from 〈s, v〉, any sub-path starting from a 〈s′, v′〉 such that v′ |=PL φ also
contains at least one 〈s′′, v′′〉 such that v′′ |=PL ψ.

Example 5 Examples of reachability analysis that would be relevant for the system used in Exam-
ple 2 include:

• Ensuring the count of transferred files is always within what we expect: AG fetched ≥ 0 ∧
fetched ≤ 386 ∧ sent ≥ 0 ∧ sent ≤ 386

• Checking consistency between the number of sent and fetched files: AG fetched = sent

• Verifying that all files always end up being received: AF fetched = 386

2.2 UPPAAL and Networks of Timed Automata
This section summarizes the differences brought by timed automata and networks of timed automata
to the classical automata described previously. The features presented here are those found within
UPPAAL, a modeling tool for networks of timed automata introduced in [7]. The addition of time
leads to states in which a new type of variables, clocks, evolve even when no transition is activated.
To account for this, states are now referred to as locations instead. Transitions are all instantaneous.
Readers looking for further information on timed automata are encouraged to check out the papers
in which they were first described ([1] and [2]), or a more in-depth introductory course on the subject
([14] and [45]).

2.2.1 System Definition
Definition 9 (Clocks) Timed automata feature a special type of variable, called clocks, which
model the passing of time. Transitions are instantaneous, can reset clocks (but not set them to
a specific value), and have guards referring to the clock’s current value. Within a location, however,
time passes at the same rate for all clocks in the system.

Definition 10 (Syntax of Constraints and Actions) Given a set of variables Var, and a set of
clocks Clocks, the grammar used when writing constraints and actions in transitions is as follows,
with ident standing for a variable in Var, and clk standing for a clock in Clocks:
lop ::= ∧ | ∨
cop ::=< | ≤ | = | ≥ | >
mop ::= + | − | ∗ | /
val ::= ident | Z
mexpr ::= mexpr mop mexpr | val
bexpr ::= ¬bexpr | bexpr lop bexpr |mexpr cop mexpr | clk cop val | clk−clk cop val | true | false

24 CHAPTER 2. (TIMED) AUTOMATA

iexpr ::= iexpr ∧ iexpr | clk cop val | clk− clk cop val | true
assign ::= assign; assign | ident := mexpr | if (bexpr) {assign} | clk := 0 | nop

Definition 11 (Locations) Unlike in classic automata, states are referred to as locations, since a
state is now defined by a location and a value for each clock (and a value for each integer variable
in our framework). Time related attributes can be applied to locations:

urgent: This location must be left before any time passes.

committed: This location must be left before any time passes, and only transition leaving a committed
location are enabled.

Invariant in iexpr: Locations can feature an invariant on clocks, which must be verified in order
for the location to exist.

The difference between an urgent and a committed location is only meaningful if there are
multiple automata. Example 7 uses a network of automata to illustrate the difference between these
two attributes.

Definition 12 (Timed Automata System) A timed automata system A is a 〈Q, InvQ, sinit,B,
E , PrioE , Var, Clocks, Act, 〉 tuple, where:

• Q is a finite set of locations. Qugt ⊆ Q denotes the urgent locations, and Qcmt ⊆ Q the
committed ones. Qugt ∩Qcmt = ∅.

• InvQ : Q→ iexpr indicates the invariant of each location.

• sinit is the initial location (sinit ∈ Q).

• Var is a finite set of variables.

• Clocks is a finite set of clocks.

• E = Eα ∪ Esync is a finite set of labels, with Esync corresponding to labels meant for synchro-
nization and Eα being regular labels, with Esync ∩ Eα = ∅. The labels in Esync affixed by either
‘?’ or ‘!’, with ‘?’ denoting a reception on a “channel”, and ‘!’ an emission. In addition,
synchronization labels can be further categorized into Eugt ⊆ Esync corresponding to the urgent
channels, and Ebrd ⊆ Esync corresponding to the broadcast ones.

• PrioE : Esync → set(Esync) indicates, for any label, which labels have a strictly lower priority.
It satisfies the following properties: ∀l1, l2 ∈ Esync, (l1 /∈ PrioE(l1)) ∧ (l2 ∈ PrioE(l1)) =⇒
(l1 6∈ PrioE(l2) ∧ PrioE(l2) ⊂ PrioE(l1)).

• B = bexpr(Var, Clocks), as defined in Definition 10.

• Act = assign(Var, Clocks), as defined in Definition 10.

• ⊆ Q× B × E × Act×Q is the transition relation.

The semantics of A is given via its valid transitions (see Definition 14) and its execution traces (see
Definition 15).

Definition 13 (Clock Valuation) Clocks are kept separate from standard variables, including in
the definition of the valuation. h : Clocks→ R+ is the function mapping each clock to its valuation.
As a shorthand, the increment of the value of all clocks in h by t units of time is written (h + t).

2.2. UPPAAL AND NETWORKS OF TIMED AUTOMATA 25

Definition 14 (Transition) Let A = 〈Q, InvQ, sinit,B, E , PrioE , Var, Clocks, Act, 〉 be an au-
tomaton. Given a location s ∈ Q, a valuation v, a clock valuation h, a duration t and a tran-
sition 〈s, c, l, a, s′〉 ∈ , we define the set of the reachable states (without considering priorities)
Reach(〈s, v, h〉, 〈s, c, l, a, s′〉, t) , {〈s′, v′, h′〉|〈v, (h+t)〉 |=PL c∧v′ = v[a]∧h′ = (h+t)[a]∧〈v, h〉 |=PL

InvQ(s) ∧ 〈v′, h′〉 |=PL InvQ(s′)}.
We now define Step, which indicates all valid transitions that can be performed, and takes into

account that no transition with higher priority is doable.
Step(〈s, v, h〉, t) , {〈s′, v′, h′〉|∃〈s, c, l, a, s′〉〉 ∈ s.t. (〈s′, v′, h′〉 ∈ Reach(〈{s, v, h〉, t) ∧

∀〈sb, cb, lb, ab, s′b〉 ∈ , if l ∈ PrioE(lb) then Reach(〈{s, v, h〉, 〈sb, cb, lb, ab, s′b〉, t) is empty.)}

Definition 15 (Path & Trace) We consider a path to be a maximal sequence of states/transitions
〈s1, v1, h1〉 →t1〈s2, v2, h2〉 →t2 · · · such that ∀i〈si+1, vi+1, hi+1〉 ∈ Step(〈si, vi, hi〉, t). The sequence
is maximal in the sense that it is either infinite or of length N and such that Step() is empty for
any t ∈ R. A path starting from 〈sinit, v0, h0〉 (where v0 is the initial valuation and h0 associates
each clock with 0) is called a trace.

S0start S1

S2 S3

chan0!

chan1?chan2!

chan3?
S4start S5

S6 S7

chan0?

chan1!chan2!

chan3?

S8start

chan3!

chan2?

Figure 2.3 – Example of Network of Timed Automata

Example 6 (Urgent and Committed Locations) Consider the network of timed automata shown
in Figure 2.3. Without any attributes on locations, the following path is legal: 〈〈S0, S4, S8〉, {}, {〈C0, 0〉}〉
〈chan0!,chan0?,−〉−−−−−−−−−−−−→

75
〈〈S1, S5, S8〉, {}, {〈C0, 75〉}〉 〈chan3?,−,chan3!〉−−−−−−−−−−−−→

39
〈〈S3, S5, S8〉, {}, {〈C0, 114〉}〉 Let

us now consider S1 as urgent. The previous 〈〈S1, S5, S8〉, {}, {〈C0, 75〉}〉 〈chan3?,−,chan3!〉−−−−−−−−−−−−→
39

tran-
sition is no longer legal, as a maximum of 0 units of time is now allowed to be stayed at S1. If
we instead considered S5 to be committed, that transition would still not be allowed to occur after
more than 0 units of time, but in addition, it would also be illegal because it does not involve a tran-
sition from a committed location (neither S1 nor S8, the two locations involved in the transition,

26 CHAPTER 2. (TIMED) AUTOMATA

are committed). Performing 〈〈S1, S5, S8〉, {}, {〈C0, 75〉}〉 〈−,chan3?,chan3!〉−−−−−−−−−−−−→
0

instead would be legal
(although the resulting state is different).

Definition 16 (Channel Attributes) In UPPAAL, all synchronizations have a single emitter
transition, but the number of receivers depends on the type of channel: standard channels have
exactly one receiver, and broadcast channels activate any automaton able to perform a reception
on that channel (even allowing the emitter to transition alone if no receiver is available). It should
be noted that available receivers for the channel are forced to transition.

Communication channels can have attributes related to time. Indeed, the urgent attribute in-
dicates that, if a transition featuring this channel is able to occur, it must do so before any time
passes.

In a network of automata, the PrioE function is shared by all automata. Thus, the priority of
channels is the same accross all automata.

Example 7 (Urgent and Broadcast Channels) Consider the network of timed automata shown
in Figure 2.3. Without any attributes on channels, the following paths are legal:

• 〈〈S0, S4, S8〉, {}, {}〉
〈chan0!,chan0?,−〉−−−−−−−−−−−−→

75
〈〈S1, S5, S8〉, {}, {}〉

〈chan3?,−,chan3!〉−−−−−−−−−−−−→
39
〈〈S3, S5, S8〉, {}, {}〉

〈−,chan3?,chan3!〉−−−−−−−−−−−−→
42
〈〈S3, S7, S8〉, {}, {}〉

• 〈〈S0, S4, S8〉, {}, {}〉
〈chan2!,−,chan2?〉−−−−−−−−−−−−→

23
〈〈S2, S4, S8〉, {}, {}〉

• 〈〈S0, S4, S8〉, {}, {}〉
〈−,chan2!,chan2?〉−−−−−−−−−−−−→

0
〈〈S0, S6, S8〉, {}, {}〉

〈chan2!,−,chan2?〉−−−−−−−−−−−−→
78
〈〈S2, S6, S8〉, {}, {}〉

Let us now consider chan0 as urgent. 〈〈S0, S4, S8〉, {}, {}〉
〈chan0!,chan0?,−〉−−−−−−−−−−−−→

75
is no longer a legal

transition: as the synchronization on chan0 is able to occur, it must do so before any time passes.
The transition would be legal if 75 was 0 instead. Furthermore, the transition 〈〈S0, S4, S8〉, {}, {}〉
〈chan2!,−,chan2?〉−−−−−−−−−−−−→

23
is also not legal, for the same reason: despite chan0 not being synchronized on,

it was still an available synchronization and so no time must pass while the chan0 synchronization
is available. Replacing 23 by 0 makes this a legal transition. The third proposed path is still allowed
when chan0 is marked as urgent: on the first transition, chan0 can be synchronized on, but no
time passes prior to the transition occuring; on the second transition, chan0 can no longer be
synchronized on, and so its urgent attribute is not taken into account.

Let us now consider chan3 as a broadcast channel. 〈〈S1, S5, S8〉, {}, {}〉
〈chan3?,−,chan3!〉−−−−−−−−−−−−→

39
is not

longer a legal transition: S5 is able to synchronize on chan3 as well, and thus must do so. On the

other hand, a previously illegal transition is now possible:〈〈S1, S5, S8〉, {}, {}〉
〈chan3?,chan3?,chan3!〉−−−−−−−−−−−−−−−→

39
.

Perhaps more surprisingly, the following path is legal: 〈〈S0, S4, S8〉, {}, {}〉
〈−,−,chan3!〉−−−−−−−−→

3
〈〈S0, S4, S8〉, {}, {}〉

〈−,−,chan3!〉−−−−−−−−→
89

. Indeed, all automata able to synchronize (none) do so. Note that only the receiving
label can have any number of occurrences in the transition, there is always a single emitting label.
Thus, setting chan2 as a broadcast channel instead would not cause any change in legal paths.

Example 8 In an evolution from Example 2, Figure 2.4 shows a network of automata modeling the
exact same scenario, but with the addition temporal behaviors. The server now takes between 32

2.3. CONCLUSION 27

S0start S1

request files!
first fetched := 0;C0 := 0

done?
first := ⊥

ne
w

fil
e?

fe
tc

he
d

:=
fe

tc
he

d
+

1

S0start S1

C1 ≤ 64

request files?
sent := 0;C1 := 0

done!
sent = 386

ne
w

fil
e!

se
nt
<

38
6
∧
C

1
≥

32
se

nt
:=

se
nt

+
1;
C

1
:=

0

Figure 2.4 – Another example of timed automata

and 64 time units before providing each file. Transfer times are thus able to be modeled. To avoid
having both automata wait forever in their S0 location, we consider the request file channel as being
urgent. Similarly, the done channel needs to be made urgent for the S1 locations to be left as soon
as all files were transfered. Instead of having the request file channel be urgent, another solution
would be to mark the client’s S0 location as urgent. This would also lead to a deadlock after all
transfers have been done.

2.2.2 Query Logic Operators and Semantics
UPPAAL uses the temporal operators described in Section 2.1.2. In this case however, φ is a
bexpr ::= ¬bexpr | bexpr lop bexpr | mexpr cop mexpr | clk cop val | clk − clk cop val
| true | false | deadlock | sub-automaton.location, with deadlock being true if and only if no
transition is able to occur and time is not allowed to pass, and sub-automaton.location being
true if and only if said sub-automaton is currently in the given location.

In addition to these temporal operators, UPPAAL features operators that seek the extremum of
either a clock or a variable, with the possibility of an invariant delimiting the system locations in
which the value is considered. Given either a variable or a clock t, sup{φ} : t , maximum value for
t across all traces, such that this value has been reached in a state satisfying φ.
The inf operator is the equivalent for finding the minimum value.

Example 9 In Example 8, computation of the WCET for file fetching can now be achieved through
model checking: sup{client.S1} : C0. This query looks for the maximum value reached by C0 when
the client automaton is in the S1 location. Considering max to be the returned value, a trace leading
to that value could be obtained by using UPPAAL to query for AG ¬((C0 = max) ∧ client.S1)

2.3 Conclusion
Timed automata can be used to model complex systems featuring real-time constraints. Through
the use of queries verified using formal methods such as model checking, these models are then used
to validate properties for the systems, such as ascerting its correct behavior or computing running
time for some of its components.

In the next chapter, cache coherence mechanics are described. The behavior of cache coherence
protocols is defined using (classical) automata. Because of the large size of such automata, a matrix
representation is used instead. In this representation, lines correspond to locations, and columns

28 CHAPTER 2. (TIMED) AUTOMATA

correspond to labels and guards. For example, the client automaton described in Figure 2.1 would
have the matrix representation shown in Figure 2.5.

Location request files! done? err new file?
S0 fetched := 0, S1 SE
S1 S0 SE fetched := fetched+ 1
SE

Figure 2.5 – Example of matrix automaton representation

Chapter 3

Fundamentals of Cache Coherence

This chapter presents all the notions related to cache coherence required for the understanding of
the thesis. The content described is based on [49].

Notations Seq(A) indicates a finite sequence, potentially empty, composed of type A elements.
Sequences are thus defined as

Seq(A) =
{

[]
A :: Seq(A)

The addition of an element e at the head of a sequence S is written push(e,S), standing for e :: S.
The retrieval and removal of the head of a sequence S is written pop(S), returning head(S) prior
to applying S ← tail(S). Lastly, isEmpty(S) indicates whether S is an empty sequence, and is
equivalent to testing if S = [].

3.1 Components
In this section are presented the various components involved in maintaining cache coherence in a
multi-core architecture. Figure 3.1 shows how the components presented in this section are intercon-
nected, with Figure 3.1a providing an overview and Figure 3.1b making the involved FIFO queues
more apparent.

Architectures generally feature instruction, data, as well as caches holding both. Instruction
caches are not affected by cache coherence and thus not considered in this chapter.

3.1.1 Memory Elements
The memory of a system is partitioned into addressable blocks. That is, there are blocks of a certain
size for which performing any access operation on its content requires performing an operation on
the block in its entirety.

Cache coherence is maintained over a cache line. Cache lines form another partitioning of the
system’s main memory, such that all cache lines contain the same amount of addressable blocks.
Thus, even without accounting for the possibility of multiple addresses pointing to the same atomic
block, there may be multiple addresses pointing to different parts of a same cache line. The content
of each cache line is made of contiguous memory blocks. Thus, if a cache line of 16 elements starts
with a block of address 42, it will also have the blocks of addresses 43 through 57. If ignored,

29

30 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Interconnect

Core

Cache
Controller

requests hit

data replies
FIFOs

queries
FIFOs

data replies
FIFOs

queries
FIFO

Coherency
Manager

Main
Memory

read,
write

(a) Overview

Interconnect

Cache

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

Main Memory
D

ata F
IF

O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager

read,
write

P
rog

ram
 Instr.

(out)

Core

(b) Showcasing the FIFOs

Figure 3.1 – Components involved in cache coherence

this mismatch between blocks used for cache coherence and for program instructions can lead to
unexpected results, such as false sharing (see Appendix A).

To avoid unwarranted complications, this thesis merges the two partitioning types into one:
memory elements. In effect, we consider that memory elements are cache lines with the size of a single
addressable block, but change the term so that this simplification remains explicit. Furthermore,
since there is only a single address per memory element, a memory element and its address can be
used interchangeably to refer to one another.

Definition 17 (Memory Element) The set of all memory elements is defined as Addr ⊆ N.

3.1.2 Core: Programs & Instructions

Cache coherence is only affected by programs accessing the memory. As a result, only the instructions
related to the writing (store), reading (load), and the eviction (evict) of memory elements are
of any considered while examining cache coherence. All other instructions are assimilated into the
no operation instruction (nop). As a result, when observed through the lens of cache coherence,
cores are executing programs by adding instructions into a FIFO queue, without any possibility for
branching or jumping. Each of these instructions being applied to a single memory element.

The resolution of each instruction by its cache is signaled instantly to the core, bypassing the
need for a dedicated queue.

Definition 18 (Instruction) The set of all operators is defined as OPs = {load, store, evict, nop},
and instructions are defined as Instr = OPs× Addr

Definition 19 (Program) Programs are sequences of instructions, thus InstrQueue = Seq(Instr).

3.1. COMPONENTS 31

3.1.3 Caches
Definition 20 (Cache) The set of all caches in the system is defined as Ccs. Some components
are present in both the caches and the coherence manager. We define Ccs+ = Ccs∪{mgr} to add the
coherence manager (mgr). Furthermore, we define nc, not included in Ccs, to indicate the absence
of a cache where one could be. The caches can also be referred to using naturals from 1 to cc, with
cc = |Ccs| − 1.

Caches are tasked with obtaining copies of memory elements able to fulfill the memory accesses
that are requested of them by their core. This requires keeping track of permission for each copy
of memory element they own, as well as keeping track of operations (steps of the resolution of an
instruction) that are in progress. To do so, all caches assign a single state to each of their memory
element copies. These states are split into two categories: stable states, solely denoting that the
cache has a certain permission for that memory element, and transient states, which indicate that
the resolution of a core’s request is in progress and still awaiting either the broadcast of a previously
prepared query, or the reception of a data message (or both).

Definition 21 (States in Caches) Sc
s is the set of all stable states defined by the cache coherence

protocol, and Sc
t is the set of the transient ones. To shorten some notations, we also define Sc =

Sc
s ∪ Sc

t, the set all cache states. States cannot be both transient and stable, thus Sc
s ∩ Sc

t = ∅.

To acquire new permissions, caches send queries on the interconnect. Each of these queries
pertains to a single memory element and leads to at most a single reply being received by the
emitter. For most types of data replies, a copy of the memory element is part of the message. The
types of queries that can be sent are dependent on the actual cache coherence protocol. However,
the protocols used in this thesis all rely on the same ones: demand a read-only copy of a memory
element (GetS, likely following a load instruction), demand a read-and-write copy (GetM, likely
following a store instruction), and signal the eviction of a potentially modified copy (PutM, likely
following an evict). Similarly, the types of replies that can be exchanged are also dependent on
the coherence protocol. For those described in this thesis, only three types are required: a message
containing the memory element (data), one also indicating that no other cache currently has access
to that memory element (data-e), and a message indicating that no copy of the memory element is
going to be sent (no-data).

Definition 22 (Query) The categories of queries are defined as Query = {GetS, GetM, PutM}. A
query message is an element of MSGquery : Query× Addr× Ccs, which indicates the type of query, the
memory element being targeted, and the query’s emitter.

Definition 23 (Reply) The categories of reply messages are defined as Reply = {data, data-e,
no-data}. A reply message is an element of MSGdata : Reply×Addr×Ccs+, which indicates its cate-
gory, relevant memory element, and targeted cache (or mgr, when targeting the coherence manager).

Depending on what the cache coherence protocol allows, it is possible for caches to receive queries
they are in charge of replying to, despite not yet having the data to do so. To handle such cases,
caches can associate the identifier of another cache with each address. By doing so, they are able
to send the data reply at a later date. As there is always at most one cache in charge of providing
a reply for any query, this can lead to caches waiting on a reply, from a cache itself waiting on a
reply, also receiving a query to which they are supposed to be providing an answer. As the protocols
ensure that there is always exactly one component charged with replying for each memory element,
this cannot lead to a deadlock.

32 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Definition 24 (Information in Caches) Each cache associates a state to each memory element,
and can also associate with it the identifier of another cache. We define Cs : Ccs → Addr → Sc
as the function indicating the state associated with a given memory element by a given cache, and
r : Ccs → Addr → (Ccs ∪ {nc}) is the function indicating the cache (or lack thereof) expecting a
data reply in the future for a given memory element in a given cache.

Each cache has four FIFO queues, each one handling either incoming or outgoing queries or data
messages, as seen in Figure 3.1b.

Definition 25 (Cache FIFOs) The four FIFOs of each cache are defined as: Din : Ccs+ →
Seq(MSGdata) and Dout : Ccs+ → Seq(MSGdata) for the incoming and outgoing data message queues;
Qin : Ccs+ → Seq(MSGquery) and Qout : Ccs → Seq(MSGquery) for the incoming and outgoing query
message queues.

The behavior of a cache is described through a transition system focused on a single memory
element E and reacting to events (Definition 27). The available actions within a transition for a
cache C are as follows:

• Stalling: stalling, written as stall, is a special action indicating that the event cannot be
processed while the memory element is in this state. In effect, the event that led to this
action being taken (be it an instruction from the core, an incoming query, or an incoming data
message) is not removed from its queue and stays ready to be re-evaluated in any state where
stall is no longer an action it leads to.

• Completing a core’s request: the hit indicates the cache has fulfilled one of its core’s
ongoing request for E. In some cases, multiple requests of different types (load, store, evict)
may have be ongoing in parallel, leading the operator being fulfilled by the hit to be made
explicit (e.g. store hit).

• Preparing a query: a cache C performing Q? is pushing a query of type Q for the memory
element E in its outgoing query queue. Qout(C)← push(〈Q,E,C〉, Qout(C)).

• Changing state: The state attributed to E is changed by writting N , with N being the new
state. This corresponds to performing Cs(C,E)← N .

• Preparing a data reply: when sending a data message, there are three possible targets:
the emitter of an incoming query (s), the coherence manager (m), and a previously memorized
cache (r). T !D indicates that a data message of type D is added to the outgoing data queue,
with T being its target. Dout(C)← push(〈D,E, T 〉, Dout(C))

• Memorizing a cache: if an incoming query from C2 is expected to be replied to by C, yet C
is not currently able to provide data, the C2 is memorized so that C knows to send data to C2
when able. This is indicated by r← s, which is equivalent to r(C,E)← C2. Although it does
not impact the workings of cache coherence, the protocols shown in this thesis also indicate
whenever the memorized cache can be cleared (r← nc, which is the same as r(C,E)← nc.

3.1.4 Coherence Manager
Maintaining cache coherence requires the caches to coordinate with each other. Depending on the
protocol, this may require some information to be accessible to all caches. The coherence manager
is a representation of this information. This may not match any single one physical component of

3.1. COMPONENTS 33

the system (for example if there is no shared last level cache), as with certain protocols, its behavior
may be implemented through direct communication channels between the caches. The role of the
coherence manager is to act when none of the caches is able to provide an answer to a cache’s query.
In order to detect such queries, the coherence manager also assigns a state to each memory element.
In effect, the coherence manager acts as an intermediary between the caches and the system’s main
memory. Furthermore, the coherence manager keeps track of which cache, if any, is in charge of
replying to queries.

Definition 26 (Coherence Manager) Let Sm the set of states that can be attributed by the co-
herence manager, Ms : Addr → Sm is the function indicating which state is attributed to each
memory element. The cache (or lack thereof) associated with each memory element is defined as
o : Addr→ (Ccs ∪ {nc}).

Much like the caches, the coherence manager uses FIFO queues to handle incoming and outgoing
messages. It has one less queue however, as the coherence manager never sends any query. This can
be seen in Definition 25, where all but one of the types of FIFO queues are shared with the caches.

For a memory element E, the coherence manager’s behavior can be defined through the following
actions:

• Stalling: the coherence manager may sometimes not be able to properly react to an incoming
event. Just like caches, it can then use the special stall action to indicate that the event
should not be processed while E is in this state, leaving the event (either a query or a data
message) untouched in its queue.

• Changing state: as with the caches, the state attributed to E by the coherence manager is
changed by writing N , with N being the new state. This corresponds to Ms(E)← N .

• Preparing a data reply: the coherence manager replies to incoming cache queries by sending
data. With the cache that emitted the query being referred to as s, the coherence manager
can send a data message of type D by performing T !D. This is equivalent to Dout(mgr) ←
push(〈D,E, T 〉, Dout(mgr))

• Memorizing the current owner: the coherence manager keeps track of which cache is
currently in charge of distributing data for each memory element, if there is one. Similarly to
the memorizing of a cache by another, having a cache C2 be considered to have this role is
done by o ← s, which corresponds to o(E) ← C2. This value can also be cleared by having
C2 = nc.

3.1.5 Interconnect
The interconnect links all caches together, as well as the coherence manager. It broadcasts queries
from the caches to all the components it is linked to, including the original query emitter. The
replies, however, are targeted, and thus only received by a single component.

Transfers between components are not instantaneous. Instead, outgoing message queues are used
to wait for access to the interconnect to become available. Conversely, the interconnect deposits
messages in incoming message queues so that it does not have to synchronize with each component.
Depending on the system, some restrictions on how the interconnect behave can be present. Indeed,
not only is there generally an access policy controlling the order in which outgoing messages are
being sent (Round-Robin being commonly used), but it is also possible for the interconnect to not
allow a new query to be broadcasted until the previous one has been resolved (such interconnects are

34 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

called atomic), whereas other interconnects allow the interleaving of queries (split-transaction, where
data and query use separate channels). This thesis focuses on split-transaction buses architectures,
as atomic buses are not found in contemporary architectures.

In effect, the actions performed by the transitions of an automaton corresponding to the inter-
connect are as follows:

• Query Broadcast: Given a cache C0 such that ¬isEmpty(Qout(C0)), a query broadcast takes
a query Q out of C0’s outgoing query queue (Q = pop(Qout(C0))) and adds it to every incoming
query queues, including C0’s (Qout(C1)← push(Q, Qout(C1))).

• Data Transfer: Given C0, either a cache or the coherence manager, such that ¬isEmpty(Dout(C0)),
a data transfer for 〈D,E, T 〉 = pop(Dout(C0)) adds the corresponding data message to T ’s in-
coming data messages queue (Din(T)← push(〈D,E, T 〉, Din(T))).

3.2 Coherence Protocols
When definiting the protocols, the behavior of the caches and the coherence manager is given in the
form of a classical automata (see Chapter 2), and limited to a single memory component.

3.2.1 Introduction to the MSI Protocol
The archetypal cache coherence protocols are those belonging to the MSI protocol family. In their
basic version, these protocols feature three stable states from which the MSI name is derived:

• Modified: When a cache assigns the Modified state to a memory element, it indicates that
this cache performed at least one write to that memory element. While in this state, it can
freely read and write to that memory element. This corresponds to being the Single Writer
from Property 2.

• Shared: When a cache assigns the Shared state to a memory element, it indicates that this
cache is able to freely read that memory element but not write to it. This corresponds to being
one of the Multiple Readers (and potentially the only one) of Property 2.

• Invalid: When a cache assigns the Invalid state to a memory element, it is no longer consid-
ered to be holding a copy of that memory element, thus absolving this cache from verifying
Property 1. Not having a copy, the cache can neither read nor write to the memory element.

To keep it simple, the protocol presented in this section does not use any FIFO queue. Instead,
all exchanges are done synchronously. The only elements taken into account are the state of the
memory elements and the points of synchronization (i.e. instruction and message exchanges). Thus,
the notations on the automata of this section are not the notations presented in the previous section,
but are instead based on CCS (Calculus of Communicating Systems, [37]): a ? marks the reception
of a signal, and ! marks its sending. Queries are still sent to all components, and data only to
a single one. Furthermore, only a single transaction (that is, the resolution of an instruction) can
occur at any moment. This is reflected by transitions featuring multiple synchronizations, as no
other actions would be permitted to be interleaved.

Figure 3.2 shows the two automata corresponding to this simplified protocol. Each of these
automata pertains to a single memory element, with states corresponding to what the component
attributes to that memory element.

3.2. COHERENCE PROTOCOLS 35

I S

M

load?GetS!data?

store?GetM!data?

evict?

GetM?

st
or

e?G
et

M!d
at

a?

load?

Ge
tM

?d
at

a!

Ge
tS

?da
ta

!da
ta

!ev
ic

t?
Pu

tM
!d

at
a!

load?
store?

(a) Cache

IM
GetM?data!

GetS?data!

PutM?data?

GetS?data?

(b) Coherence Manager

lo
ad

!

st
or

e!

evict!
(c) Core

Figure 3.2 – Overview of the MSI Protocol

36 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

In the case of the coherence manager (Figure 3.2b), the two states simply correspond to whether
or not the coherence manager is in charge of providing the current value for that memory element:
M indicates that one of the caches is currently in the M state, meaning that the value stored in
the system’s main memory may be out of date; I indicates that the main memory’s value for that
element is up-to-date, leaving (in the MSI protocol) the coherence manager in charge of propagating
copies as the caches demand them.

Example 10 (Simple MSI Transition) Consider a system with two caches, CA and CB, and a
single memory element E, such that, initially, CA holds no copy of E (I state) and CB holds one
in the S state, the coherence manager has the I state assigned to E. Were CA to receive a store
request, it would broadcast a GetM to itself, CB, and the coherence manager. Upon receiving the
GetM, CB would have to abandon the S state for I in order to maintain Property 2. The coherence
manager would react to receiving the GetM by sending a copy of E from the system’s main memory
to CA (data!) before moving to M so as to memorize that the most up-to-date value for E is now
held by CA. This data reply allows CA to move to the M state, thus completing its transition.

3.2.2 Properties to be Verified
A system maintaining cache coherence is a system in which the application of each read and write
instruction on the same memory elements across multiple caches holds the same results as if these
caches shared a permanent single copy of each of those memory elements.

One possible strategy to achieve cache coherence is to enforce Properties 1, 2, and 3. Other
approaches may also be possible, but this is the one considered in this thesis.

Property 1 (Caches Have the System-Wide Value) At any point, for each memory element,
all copies of that memory element being held in a cache have the value that was last written to that
memory element, regardless of which cache performed the writing.

Property 2 (Single Writer or Multiple Readers) At any point, for each memory element, there
is either a single cache being able to write to that memory element while the others can neither read
nor write to it, or there is any number of caches being able to read the memory element and none
able to write to it.

Property 3 (Forget Me Not) If a memory element has no copy held in cache, then the system’s
main memory has the value that was last written to that memory element.

Cache coherence protocols can be split into categories according to whether they are directory-
based or snooping-based, and write-back or write-through.

As this thesis only considers snooping-based protocols, the component descriptions provided in
Section 3.1 are unlikely to fit a directory-based protocol. Indeed, in directory-based protocols, cache
queries are not broadcasted to every cache but instead addressed to a component that, much like
the coherence manager, keeps track of which component may need to see this query and sends a
copy of that query to them. In snooping-based protocols, the caches and the coherence manager all
receive every query, and do so in the same order.

Write-through protocols ensure that any modification made to a memory element’s copy in a
cache is also applied to the original in the system’s main memory. Conversely, write-back protocols
delay the modification of the original until the cache loses the write permissions on its own copy. As
it happens, the protocols studied during this thesis are all write-back ones.

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 37

3.2.3 Protocol Definition
Protocols are customarily defined by the behavior they require of caches (and the coherence manager,
if it is used) for a single memory element according to its currently attributed state in the component
and the type of incoming event.

Definition 27 (Event) Events for a single memory element are defined as Evts = MSGquery ∪
Instr ∪ MSGdata

Definition 28 (Protocol) A protocol is thus defined as two functions: ProCC = Sc → Evts →
set(Actions), which defines the behavior of cache controllers, given the state of memory element and
an incoming event; and ProCMGR = Sm → Evts → set(Actions), the coherence manager equivalent.
Actions corresponds to the actions described in each component’s sub-section.

Definition 29 (System State) For the definition of a cache coherence protocol, only a single
memory element needs to be considered. Indeed, the behavior is the same for any address, and
thus defining it for one is defining it for all. This can be exploited to shorthand the notation of
memory element states across the system: Given E the memory element arbitrarily chosen for the
protocol’s definition, a system 〈CC1, . . . , CCn, CM〉 denotes one in which Ms(E) = CM ∧ ∀c ∈
0..cc, Cs(c, E) = CCc. The set of all possible systems states is denoted System.

Definition 30 (Stable System Transitions) To allow reasoning more simply over state changes,
another shorthand notation is introduced: reach : System → Instrcc → set(System) which, given
a system state and instructions to apply on each cache, returns the set of all possible next system
states composed solely of stable states that can be reached.

3.3 Split-Transaction Bus, case of the MSI Protocol
Section 3.2.1 provides an overview of the MSI protocol without considerations for the possibility of
interleaving or even asynchronous communications. This section presents an MSI protocol featuring
all of those. This leads a large number of additional states and transitions, so instead of using
graphs to represent the automata, we use matrices (see Figure 3.3 for the cache controllers, and
Figure 3.4 for the coherence manager). The columns in these matrices correspond to the events from
Definition 27. Bear in mind that this corresponds to how the caches and the coherence manager act
for each memory element, according to the state currently assigned to that state (first column). The
Own Query column in the cache’s table corresponds to when it processes one of its own queries
(from its incoming query queue) for that memory element. In the coherence manager’s table, the
behavior upon reception of a query may differ according to whether the emitter is the owner (as
defined by the o function) or not.

3.3.1 State Naming
Invalid (I), Shared (S), and Modified (M) are the three stable states of the MSI protocol, the other
states are transient.

Reception of a request that requires use of the interconnect will usually lead to a XYBD transient
state, which means that the cache controller is handling a transition between the stable states X
and Y, with B indicating that this transition requires the acquisition of the interconnect and D the
reception of a related data reply (regardless of whether it comes from an other cache controller or
the memory).

38 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

XYD usually follows XYBD if the cache controller sees its own query before receiving a reply. If the
reply is seen first, then the memory element goes into the XYB state instead. While the former is
more likely, the latter may occur because, despite processing all queries in the same order, not all
cache controllers take the same time to do so.

It is also possible an external query to lead to a change of state, especially when in the XYD state.
Indeed, at that point, the system pretty much considers that the cache controller is in the Y state,
and thus has the responsibilities that the Y state would imply. This makes it possible for a cache
controller to see a query it needs to act upon before being actually ready to do so (e.g. observing
a GetM query while waiting for data). The states thus reached have either a XYDV pattern, with V
being a stable state, indicating that the external query would have required this memory element
to be assigned the V state if it were currently in the Y state. Thus, this state is used to memorize
that, after sending the data, the cache is expected to perform the appropriate change of state. It is
possible for the Y state to also be susceptible to external queries. Thus, there are also XYDYZ states,
indicating that the final state is now Z.

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 39

State Core Request Own
Query

Data
Reply Received Queries

load store evict GetS GetM PutM

I
GetS?
ISBD

GetM?
IMBD - - -

ISBD stall stall stall ISD ISB - - -
ISB stall stall stall S - -
ISD stall stall stall S - ISDI
ISDI stall stall stall I - -
IMBD stall stall stall IMD IMB - - -
IMB stall stall stall M - - -

IMD stall stall stall M
r← s
IMDS

r← s
IMDI

IMDI stall stall stall
r!data

I - -

IMDS stall stall stall
r!data
m!data

I
- IMDSI

IMDSI stall stall stall
r!data
m!data

I
- -

S hit
GetM?
SMBD I - I

SMBD hit stall stall SMD SMB - IMBD

SMB hit stall stall M - IMB

SMD hit stall stall M
r!data
SMDS

r!data
SMDI

SMDI hit stall stall
r!data

I - -

SMDS hit stall stall
r!data
m!data

S
- SMDSI

SMDSI hit stall stall
r!data
m!data

I
- -

M hit hit
PutM?
MIB

m!data
s!data

S

s!data
I

MIB hit hit stall
m!data

I

m!data
s!data

IIB

s!data
IIB

IIB stall stall stall I - - -
Handling Requests Handling Queries

Figure 3.3 – Split-Transaction MSI Automaton for Cache Controllers

40 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

State Received Queries Data Reply
GetS GetM PutM (Owner) PutM (Other) data

I s!data
s!data
o← s

M
-

ID stall stall stall - I

IB o← nc
I - o← nc

I -

M
o← nc

ID o← s
o← nc

ID - IB

Figure 3.4 – Split-Transaction MSI Automaton for Coherence Manager

3.3.2 Examples
Example 11 (Simple Read) In this example a single cache is moving from not having any access
to a memory element to having a read-only copy. This is one the simplest example of transaction
and is meant to show how messages are exchanged. This example is illustrated as a sequence in
Figure 3.5.

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 41

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: I

@42: I
o: nc

(a) CA holds the memory ele-
ment in the I state. As no cache
holds any copy, its value must be
provided by the main memory.
Thus, Cmgr considers the mem-
ory element to be in the I state.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: ISBD

@42: I
o: nc

GetS
@42
CA

(b) CA’s core now issues a load
instruction on 42. This leads CA

to move to the ISBD state, and
to prepare a GetS query in its
outgoing query queue.

Interconnect

Cache Controller
D

ata F
IF

O

(in) (out) Q
uery F

IF
O

(in) (out)

CA

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: ISBD

@42: I
o: nc

GetS
@42
CA

GetS
@42
CA

(c) The interconnect broadcasts
outgoing queries from caches to
all the incoming query queues:
CA’s GetS is added to both its
own and Cmgr’s incoming query
queue.

42 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: ISD

@42: I
o: nc

data
@42
CA

(d) Consuming the message in
its incoming query queue, CA

confirms it has processed all
other prior queries and now as-
sociates the ISD state to 42,
which indicates that a data re-
ply is now expected. Similarly,
Cmgr consumes the GetS query,
and, since the main memory is
in charge of replying prepares a
data message for CA.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: ISD

@42: I
o: nc

data
@42
CA

(e) The interconnect transfers
the data message from Cmgr to
CA.

Interconnect

Cache Controller
D

ata F
IF

O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
D

ata F
IF

O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: S

@42: I
o: nc

(f) By receiving the data mes-
sage, CA has obtained a read-
only copy of 42, making it switch
to the S state and completing its
core’s request.

Figure 3.5 – Illustrations for Simple Read

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 43

Example 12 (Reaching S) This example is meant to showcase how exchanges between cache con-
trollers are assumed to take place. To keep things simple, we only consider two cores and a single
memory element (whose address is 42). This example is illustrated as a sequence in Figure 3.6.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: M@42: I
r: nc

@42: M
o: CB

(a) CA holds that memory element in the I state,
while the other, CB , holds it in the M state. As
CB may have modified the memory element, Cmgr

considers the memory element to be in the M state.
Furthermore, Cmgr has memorized that CB is cur-
rently in charge of that particular memory element
(o: CB).

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: M@42: ISBD

r: nc

@42: M
o: CB

GetS
@42
CA

(b) Next, we consider that CA’s core issued a load
instruction on 42. This leads CA to move to the
ISBD state, and to issue a GetS query to its outgoing
query queue.

44 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: M@42: ISBD

r: nc

@42: M
o: CB

GetS
@42
CA

GetS
@42
CA

GetS
@42
CA

(c) The interconnect broadcasts outgoing queries
from caches to all the incoming query queues. As
CA is the only one with an outgoing query, the GetS
is added to both its own and CB ’s incoming query
queue, as well as the coherency manager’s.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: S@42: ISD

r: nc

@42: ID

o: nc

data
@42
CA

data
@42
mgr

(d) Consuming the message in their incoming query
queues, CA, CB and Cmgr change state, moving to
ISD, S, and ID respectively. In addition, CB adds
a reply for the query to its outgoing data queue,
as well as a data message to inform the coherence
manager and the main memory of @42’s new value.
As it is about to receive the updated value, Cmgr

no longer considers CB to be responsible for that
memory element.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: S@42: ISD

r: nc

@42: ID

o: nc

data
@42
mgr

data
@42
CA

(e) Data messages are not broadcasted, but in-
stead only added to the incoming data queue of
a targeted cache controller (or the coherence man-
ager’s). Thus, the first reply is moved from CB ’s
outgoing reply queue to CA’s incoming one.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: S@42: ISD

r: nc

@42: ID

o: nc

data
@42
CA

data
@42
CA

(f) The data message meant for the coherence man-
ager follows, being added to Cmgr’s incoming data
queue.

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 45

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: S@42: S
r: nc

@42: I
o: nc

(g) Finally, CA and Cmgr consume the message in
their incoming data queue. Thus, CA changes its
state for to S and fulfilling its core’s request, and
Cmgr assigns the I state to @42, denoting that it is
responsible for providing its value in future queries.

Figure 3.6 – Illustrations for Reaching S

Example 13 (Parallel Stores) Figure 3.7 illustrates what happens when a cache processes a query
it must reply to yet cannot at the moment.

46 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: I@42: I
r: nc

@42: I
o: nc

(a) In this initial phase, no cache holds a copy of
the memory element (i.e. both are in the I state).
The coherence manager reflects that state by also
having the I state assigned to that memory ele-
ment.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMBD@42: IMBD

r: nc

@42: I
o: nc

GetM
@42
CA

GetM
@42
CB

(b) Next, we consider that both cores issue simulta-
neous store instructions on their respective cache.
This leads the caches to move to the IMBD state, and
to prepare a GetM query in their outgoing query
queue.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMBD@42: IMBD

r: nc

@42: I
o: nc

GetM
@42
CB

GetM
@42
CA

GetM
@42
CA

GetM
@42
CA

(c) The interconnect’s access policy dictates which
query is broadcasted first. In this example, CA’s
GetM is broadcasted to all incoming query queues
(includings CA’s).

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMBD@42: IMD

r: nc

@42: M
o: CA

data
@42
CA

GetM
@42
CB

(d) CA, CB , and the coherence manager consume
CA’s query next. CA simply updates its associated
state accordingly. CB does not change anything as,
in its current state, it behaves to external queries
as if it was in the I state. The coherence manager
reacts by preparing a data reply for CA, memo-
rizing that CA is now responsible for the memory
element’s propagation, and updating its associated
state.

3.3. SPLIT-TRANSACTION BUS, CASE OF THE MSI PROTOCOL 47

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMBD@42: IMD

r: nc

@42: M
o: CA

data
@42
CA

GetM
@42
CB

GetM
@42
CB

GetM
@42
CB

(e) The coherence manager’s data may take a while
to be read off the main memory, so we’ll see what
happens if CB ’s GetM is broadcasted next.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: CB

@42: IMD@42: IMDI
r: nc

@42: M
o: CB

data
@42
CA

(f) CB reacts to consuming its own query exactly
as CA did in 3.7d. The coherence manager simply
updates which cache is now assumed to be able to
perform modifications on the memory element. It
does not prepare data for CB . CA must act as if
it already had modified the memory element and
is responsible for providing CB with data. As it is
currently unable to do so, it memorizes CB needs
the data and sets its associated state to reflect the
effects of receiving a GetM when in M.

48 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: CB

@42: IMD@42: IMDI
r: nc

@42: M
o: CB

data
@42
CA

(g) The data message meant for CA ends up in CA’s
incoming data queue.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMD@42: I
r: nc

@42: M
o: CB

data
@42
CB

(h) Upon receiving data, CA completes its core’s re-
quest, prepares a data message with the new value
meant for CB , and moves to the I state, as it can-
not hold a copy of the memory element while CB

may modify it.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: IMD@42: I
r: nc

@42: M
o: CB

data
@42
CB

(i) The data message moves from one core’s outgo-
ing data queue to the other’s incoming one.

Interconnect

Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CA
Cache Controller

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

CB

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager
Cmgr

r: nc
@42: M@42: I
r: nc

@42: M
o: CB

(j) Upon reception of data, CB simply completes
its core’s request.

Figure 3.7 – Illustrations for Parallel Stores

3.4. VARIANTS 49

3.4 Variants
This section presents the most common variants of the MSI. In effect, the main factor of a cache
coherence protocol’s efficiency is how frequently it needs to fetch or write data to the main memory.
As a result, it is unsurprising to see that all of these optimizations are focused on removing that
necessity in certain common scenarios. Each of them adds a new stable state, corresponding to a
new permission or new responsibility, and each one can be combined with the others to form a new
variant (forming for example, the MESI, MOESI, and MESIF protocols).

Exclusive State The Exclusive state (E) is equivalent to the S state, with the added information
that no other cache currently holds any copy of the memory element. As a result, the cache modifying
the value of its copy of the memory element without broadcasting for new permission does not violate
Properties 1 and 2. It does, however, mean that the coherence manager must be able to detect that
no caches hold any copy of the memory element, which implies some change in how caches evict
from the S state, as they otherwise need not do inform any other component.

Owned State The Owned state (O) allows a cache to keep its modified copy of a memory element
without having to perform a write-back when another cache asks for a read-only copy of that memory
element.

Forward State The Forward state (F) is equivalent to an S state where the cache is also in charge
of providing a copy of the memory element to any cache that demand it.

3.5 Cache Line Organization
Caches hold a finite amount of cache lines. Thus, at some point, the need for a new cache line when
none are available may arise. Deciding which cache line to evict in order to store the new one has
a very important impact on performance. This is typically decided by two factors: its placement
policy and its replacement policy. These two policies interact: the placement policy determines
which group of cache lines are considered by the replacement policy.

3.5.1 Replacement Policies
The cache eviction policy is the algorithm used to determine which line to evict when there is no
more room. The optimal strategy would ensure that the line that is evicted is the one that would
not be used for the longest time. However, being able to determine which line this is would require
explicit management of the caches.

Since it is commonly assumed that data recently accessed is likely to be accessed again soon (a
principle known as locality of reference), the most common replacement strategy is to choose the
least recently used cache line as the one to evict. This is referred to as the LRU policy. However,
keeping accurate track of which line was accessed last is costly in both space and time, and so, in
practice, a less precise approach, the Pseudo-LRU (or PLRU) is implemented instead. The principle
behind PLRU is similar to having a binary tree, with the leaves corresponding to cache lines. Each
node of the tree has a single bit. This bit indicates which of the two children to follow to find a cache
line that was not recently used. When using any of the cache lines, all nodes in the path leading to
it are set so that they point to a node not also in the path.

50 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Other replacement policies include FIFO, in which the cache line that was the least recently
allocated is evicted, and cache line uses have no impact; using frequency of use instead of date, in
something similar to the LRU policy (called LFU, for Least-Frequently Used); and random replace-
ment (RR).

These policies are applied to a set of cache lines. Exactly what lines are part of this set is
determined by the placement policy.

Cache Line 0: A [3]

Cache Line 1: B [2]

Cache Line 2: C [1]

Cache Line 3: D [0]

=⇒

Cache Line 0: E [0]

Cache Line 1: B [3]

Cache Line 2: C [2]

Cache Line 3: D [1]

=⇒

Cache Line 0: E [1]

Cache Line 1: B [3]

Cache Line 2: C [0]

Cache Line 3: D [2]

Figure 3.8 – Example of LRU Replacement Policy

Figure 3.8 is an example of LRU replacement policy in action: in a cache of four lines, the
memory elements A, B, C, and D were initially loaded, in that order. In the figure, the rightmost
number in each cache line indicates its index for the LRU replacement policy. The figure shows what
happens when a memory element E is loaded, then the memory element C is accessed. Because A
was the least-recently used element, it is the one that was evicted upon insertion of E. As it was
just added, the element E is considered as having been accessed, and all other indices are updated
accordingly. The figure then shows what happens when C is loaded: all indices strictly below C’s
are increased by one, then the index of C is set to 0, marking it as the most recently used cache line.

3.5.2 Placement Policies
Placement policies determine where a memory element can be stored within the cache, according to
the memory element’s address. There are three common strategies: allow it to go anywhere; allow
it to go only at one location; and allow it to go anywhere within a group of cache lines;

A cache in which memory elements can be placed anywhere is called a fully associative cache.
This makes the replacement policy able to perform at its best, since it applies to the whole cache at
once. However, locating a cache line is costly, since it can effectively be anywhere in the cache. An
example of fully associative cache organization is shown in Figure 3.9.

A cache in which each address maps to a single cache line is called a direct-mapped cache. This
effectively negates the need for a replacement policy. Access to a cache line is very fast. Depending
on the mapping algorithm and the accesses made, this can end up being very efficient. However, even
a very frequently accessed memory element is at risk of being evicted if another memory element that
maps to same cache line is also accessed. Furthermore, this may lead to cache lines being evicted
even when other cache lines remain unused. An example of directly mapped cache organization is
shown in Figure 3.10.

3.5. CACHE LINE ORGANIZATION 51

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

Cache Line 4

Cache Line 5

Cache Line 6

Cache Line 7

Address 8

Address 9

Address 10

Address 11

Address 12

Address 13

Address 14

Address 15

Figure 3.9 – Example of Fully Associative Cache Organization

A cache in which a mix of both strategies is used is called a set-associative cache. This is
equivalent to having the cache be split into equally sized groups of cache lines, and applying the
direct mapping to groups instead of single cache lines: each address is mapped to a group, but
the memory element can end up anywhere within that group. The replacement policy is then
only applied within the relevant group, which is much cheaper than a cache-wide implementation.
Additionally, more frequently used memory elements sharing a set with other memory elements are
less likely to get evicted. The issue of cache lines being evicted despite having potentially unused
cache lines is still there, but only if these unused cache lines are not part of the group to which the
newly allocated cache line belongs. An example of set associative cache organization where each set
has two lines is shown in Figure 3.11.

52 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

Cache Line 4

Cache Line 5

Cache Line 6

Cache Line 7

Address 8

Address 9

Address 10

Address 11

Address 12

Address 13

Address 14

Address 15

Figure 3.10 – Example of Directly Mapped Cache Organization

3.5. CACHE LINE ORGANIZATION 53

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

Cache Line 4

Cache Line 5

Cache Line 6

Cache Line 7

Address 8

Address 9

Address 10

Address 11

Address 12

Address 13

Address 14

Address 15

Figure 3.11 – Example of Set Associative Cache Organization

54 CHAPTER 3. FUNDAMENTALS OF CACHE COHERENCE

3.6 Conclusion
This chapter ensured readers have sufficient knowledge of cache coherence mechanisms to understand
the concepts shown in this thesis. Indeed, it provided a formalization and examples in order to allow
the readers to familiarize themselves with the MSI protocol.

It should be noted that the MSI protocol presented here is a very basic cache coherence protocol,
even in its split-transaction bus adaptation. Despite its primitive nature, the complex behaviors it
allows to result from seemingly simple sequences of instructions make the analysis of its impact on
software execution difficult to estimate. Especially when considering that, outside of the content of
these sequences of instructions, all the behaviors are done automatically and outside of the user’s
control.

While its predictability is an issue, the benefits of using cache coherence on an architecture to
exchange data between concurrent software are too important to simply go without. The next part
presents existing solutions proposed to tackle this problem.

Chapter 4

Objective

The general objective of this thesis is to provide tools that will expose cache coherence interference
to an applicant seeking the certification of system with multi-core processor, thereby contributing
to the resolution of the Resource Usage 3 requirement. Indeed, that requirement asks that the
applicant identifies all interference and its impact on the applications.

As the necessary notions have now been introduced, the problem statement from Section 1.2 and
the proposed solution can be presented in more details. Thus, this chapter clarifies the scope of this
thesis and provides an explanation of how its contributions form a framework that exposes cache
coherence interference.

4.1 Tasks Required of the Applicant
To fulfill the RU3 objective, the applicant has to catalog all interference channels, as well as all
interference, and to mitigate them so that they do not prevent the applications from otherwise
fulfilling other requirements. To determine where the interference is and how much of an impact
they could potentially have, an understanding of the architecture’s mechanisms is required. When
the mechanisms that generate them are not removed all together, the applicant must be able to
quantify their impact on the running software.

4.1.1 Coherence Protocol Identification
Ideally, the solution would simply be to consult the architecture’s documentation, where the mech-
anisms would be described in details and, hopefully, so would all interference inducing behaviors.
However, actual documentation for COTS processors do not generally include details on cache co-
herence. This is the first issue addressed in this thesis: how can one be sure of their understanding
of the architecture’s cache coherence mechanisms? On this topic, the contribution this thesis makes
is to point out a missing preliminary step, and propose a strategy for it. Indeed, instead of focusing
on the already resolved issue of measuring the time required to perform an access, or the bandwidth
such accesses would have, the issue of incorrect assumptions on the architecture’s cache coherence
mechanisms is addressed. In effect, because the documentation of the implemented cache coherence
mechanisms is not precise, there is a strong risk of mismatch between what the architecture actu-
ally performs and what is being tested, for why would one test the performance of something they
understand not to be present?

55

56 CHAPTER 4. OBJECTIVE

For example, if a MESI architecture was benchmarked as if it were a MSI one, the interference
generated by having two caches each perform an initial read on a memory would, for one of the
two caches, not be the same as with a true MSI architecture. Not realizing this would lead the
applicant to wrongly characterize the architecture. They could incorrectly underestimate the cost of
simultaneous reading, if the measures happened to be done on the second cache to complete reading,
as the data would then be provided by the first cache. Since this is happens only in special cases with
the MESI protocol, to consider this measure representative of the general case of parallel reading
would lead to a completely incorrect analysis of the effects of interference. Since these special cases
are not found within the MSI cache protocol, the applicant would not know to be wary of them.

Ensuring that the architecture’s cache coherence mechanisms have properly been identified and
their characteristics measured is a necessary step for the analysis of the architecture. It is however
not sufficient to infer what interference the architecture’s mechanisms will generate, nor how it will
affect the execution of the applications.

4.1.2 Measuring the Impact of Interference of the Software
Definition 31 (Impact of Interference) The impact of an interference is a quantification of the
temporal effects of interference on an application’s execution. More precisely, it is the amount of
additional CPU cycles required to execute a given fragment of the application compared its execution
in isolation.

Data FIFO 0 Query FIFO 0 Data FIFO 1 Query FIFO 1

Figure 4.1 – Second Example of Interference

Example 14 (Impact of Interference) The interference from Example 1, by itself, may not be
noticeable by Core 1 if it lasts less than a cycle. However, an impact could be measured in a follow-
up interference: once Cache 0’s query reaches the main memory, it stays busy for an appreciable
amount of time before becoming available once again (see Figure 4.1). Here also, Cache 1’s query
ends up delayed. In effect, if the main memory stays busy for 12 CPU cycles before Cache 1’s query
is considered, then the impact of that interference is the 12 CPU cycles delay.

Even when the architecture’s mechanisms have been fully identified, predicting the impact of
interference on the execution of programs is not an issue currently resolved by the existing literature.
Restricting this issue to caches in which coherence has been disabled still does not lead to a perfect

4.2. PROPOSED SOLUTION 57

solution. Indeed, this was already problematic in single core systems in which multiple applications
share a same cache. The issue being that some aspects of the architecture will still remain slightly
ambiguous, and so the exact order in which events occur cannot be determined. Depending on the
placement and replacement policies of the cache, this makes it difficult to know the content of the
cache at any given time. Cache coherence adds to the number of events that can occur, and make
the content of other caches decide whether events occur, thus tremendously complexifying the issue.
Ignoring the effects of such mechanisms would quickly lead to either incorrect or unusable execution
time estimations, as any memory access would have a seemingly random temporal cost as the then
invisible coherence states would influence it. The existing literature offers compromises: either
analyzing strategies that will yield overly pessimistic WCET, or restrictions to eliminate sources of
interference so that their effects need not be taken into account. The available analysis strategies do
not address cache coherence. Some of the approaches using restrictions do take cache coherence into
account, but only through hardware modifications, which is not deemed acceptable in an aeronautical
context. This thesis proposes an approach to analyze the effects of cache coherence. The idea is to
have an accurate representation of all mechanisms that are known and use formal methods to ensure
all possible behaviors of the mechanisms for which ambiguities remain are explored.

4.2 Proposed Solution
In effect, this thesis proposes to tackle the issue of interference generated by cache coherence by
first ensuring complete understanding of the architecture’s cache coherence mechanisms through the
proposed identification strategy, then using existing approaches to measure the timing characteristics
of these mechanisms, to finally use formal methods on a model based on what is presented in this
thesis in order to infer the effects of the interference on the running software.

4.2.1 Hypotheses and Limitations
This section presents the hypotheses made on the context in order to limit the scope of this thesis,
as well as the reason behind these limitations and, when applicable, how these could be removed in
future works.

The first scope restrictions stem from the aeronautical context. Indeed:

• Only COTS architectures are considered. The use of self-made hardware is not deemed ac-
ceptable in critical systems such as avionics.

• Uses cache coherence. Using multi-core processors without cache coherence prevents any gain
they would otherwise provide over single-core processors when running application with parallel
processing.

• Snooping-based cache coherence. This is the more common approach to cache coherence
in COTS, and thus makes for a good starting point. Extending this thesis to also handle
directory-based cache coherence would require the creation of a different architecture model.

Other restrictions are more related to what the thesis’ time constraints permitted. The focus
stayed on cache coherence itself, since this is what the existing literature consistently avoids. Thus,
elements that are already explored in other numerous works have not been expended upon past
the bare minimum. An example of architecture complying with these restrictions can be seen in
Figure 4.2.

58 CHAPTER 4. OBJECTIVE

Data FIFO 0 Query FIFO 0 Data FIFO 1 Query FIFO 1 Data FIFO 2 Query FIFO 2

Figure 4.2 – Typical profile of the targeted architecture

• No cache hierarchy. The coherence is studied within a single level of cache, there is no issue
of memory element propagation across L1, L2, or L3 caches. Adding proper support for cache
hierarchy to the tools presented in this thesis would require a large number of modifications.

• One core per cache. The solution proposed in this thesis does not properly handle multiple
cores per cache, as the model fails to account for the originator of each request in at least one
of its functionalities. Unless as of yet unknown issues arise, this limitation should be fairly
easily removed.

• Fully associative cache placement policy. Supporting the segregation of cache lines would add a
layer of complexity without being a fundamental change in what the tools prove to be possible.
Allowing configuration by the user so that other placement policies may be used should be
straight forward, and is only absent because of its low priority.

• LRU cache replacement policy. While a replacement policy had to be chosen, the most popular
one, PLRU, was not the one implemented. LRU is easier to debug, which is why it was chosen.
Here also, adding support for other policies would not constitute a major change in the model,
but neither was it considered a high priority feature.

• Simplified program representation. The focus is really put on cache coherence. No matter
how complex, programs only interact with cache coherence through memory accesses. Thus,
only sequences of memory accesses are represented and, by default, instruction jumping and
branching is not supported. Technically, this can already be bypassed by creating a new
automaton for each of the more complex program, however, automation of the automaton
creation is required before such a solution can be considered reasonable.

Lastly, the tools proposed in this thesis only constitute part of the solution needed to properly
analyse multi-core processors for use in avionics:

• Results focused on cache coherence only. For accurate measurement of the effects of interfer-
ence on applications running in a multi-core, the separate analysis of sources of interference
is inadequate as not only are these sources not independent, but the effects of each source

4.2. PROPOSED SOLUTION 59

interference can, by definition, alter the behavior of the application and thus lead to the other
sources of interference having a different effect on the application. Assuming a worst case for
each source of interference does not ensure that the global worst case is measured (a principle
known as timing anomaly). Thus, the contributions made in this thesis would need to be
integrated into an all-encompassing framework in order to allow adequate estimation of the
WCET.

4.2.2 Framework Overview
Figure 4.3 presents the general framework proposed in this thesis for the analysis of the impact of
cache coherence on software running on a multi-core COTS system.

Given an architecture, the applicant performs an identification of the cache coherence mecha-
nisms. This removes any ambiguities that may be lingering in the description of the cache coherence
protocol from the architecture’s documentation. This process is described in Chapter 8 and involves
the use of performance monitors in order to observe the behavior of the architecture’s cache coher-
ence mechanisms and compare it with that of a hypothetical cache coherence protocol. If the two
match, the applicant thus obtains an ambiguity-free cache coherence protocol description for the
architecture.

Using this ambiguity-free cache coherence protocol, the temporal cost of each operation is quan-
tified through benchmarks. Indeed, now that all relevant coherence states and behaviors are known,
the applicant can be sure their measures are not missing important results. This step is not ex-
panded upon by the thesis, as the existing literature already covers it (see Chapter 5). With these
measures, a profile of the architecture’s cache coherence mechanisms has been obtained.

To evaluate the impact of cache coherence on the execution of software, this thesis proposes the
use of formal methods. This requires the creation of a model for the architecture (see Chapter 9),
as well as the definition of the appropriate queries in order to retrieve information that can be used
by the applicant through model checking (see Chapter 10).

60 CHAPTER 4. OBJECTIVE

Architecture
Cache Coherence Identification

(Chapter 8)
Cache Coherence

Protocol

Benchmarking
(Chapter 5)

Cache Coherence
Performance

Application UPPAAL Analysis
(Chapters 9 and 10)

Cache Coherence
Impact

Figure 4.3 – Approach Overview

4.3 Conclusion
This chapter concludes the context part of the thesis by clearly defining the objective of this thesis
and curtailing its target application.

The next part of the thesis presents a selection of the existing literature relevant to this thesis. It
starts with a chapter focused on benchmarking (Chapter 5), providing a description of approaches
that can be used to measure the performance of the architecture’s cache coherence mechanisms once
the protocol has been identified.

Literature around the broader issue of using a multi-core processor’s caches in a critical real-time
environment is then presented (Chapter 6). None of the existing solutions allow the use of cache
coherence within an aeronautical context, but there are ways to still benefit from caches by adhering
to restrictions on their use.

Lastly, the related works part of this thesis features a chapter on approaches similar to that
presented in this thesis for the use of formal methods to analyze an architecture (Chapter 7). It
shows that the use of timed automata eases the creation of both readable and modular models.

Part II

Related Works

61

Chapter 5

Micro-Stressing Benchmarks

This chapter presents strategies relying on benchmarks to figure out the characteristics of an archi-
tecture, be it its speed, the capacity of its components, or other information not sufficiently detailed
in the architecture’s documentation. Having properly characterized the architecture is a necessary
preliminary step to the analysis of interference. Indeed, to understand the effects the interference
has on running software, a quantification of the architecture’s components capabilities is necessary,
as determining which parallel accesses would interfere with one another is otherwise impossible.

In the contributions made by this thesis, the objective of the benchmarks is not only to measure
the maximum performance of the cache coherence mechanisms, but also ascertain that they are
fully understood by the user. This is a vital part of the characterization process, and solutions
for mechanisms much simpler than cache coherence have already been explored. For example, the
first section of this chapter showcases two papers proposing solutions to detect hidden correlations
between components.

Once the mechanisms have been understood, then the performance measurements can proceed,
as the user is now fully aware of what is being measured. The second section of this chapter is thus
about papers on the use of benchmarks for the performance analysis of cache coherence.

Lastly, this chapter presents a paper on the use of benchmarks to remedy a lack of performance
monitors. Such an approach could be used to implement the solution proposed in Chapter 8 if the
user cannot find the appropriate performance monitors.

Because the terms are recurrently used thorough this chapter, definitions for execution time,
overhead, and bandwidth are provided below.

Definition 32 (Configuration) A configuration is defined as the combination of the mapping of
programs on each core, the hardware’s settings, and the initial state of the architecture prior to
program execution.

Example 15 (Configuration) Running a sequence of instructions in isolation, and running that
same sequence of instructions while other programs are running on other cores correspond to two
separate configurations.

Definition 33 (Execution Time) The execution time of a list of instructions on a certain con-
figuration is the time between the emission of the first of the instructions and the last instruction of
the list being seen as completed by the emitter.

63

64 CHAPTER 5. MICRO-STRESSING BENCHMARKS

Example 16 (Execution Time) In the case of two successive loads, the execution time corre-
sponds to the time elapsed between core emitting the first load instruction to its cache, and the cache
providing the data for the second load instruction.

Definition 34 (Overhead) Given TA and TB two execution times of a same list of instructions
from two separate arbitrary configurations A and B, such that TB ≥ TA, The overhead O of being
in configuration B over configuration A is defined as:

O = TB − TA

Example 17 (Overhead) If the two configurations of Example 15 yielded an execution time of 5
CPU cycles and 13 CPU cycles respectively, the overhead incurred because of the other programs
running in parallel would be 13− 5 = 8 CPU cycles.

Definition 35 (Bandwidth) Bandwidth is the amount of data (e.g. bits, bytes, words) that can be
transferred from one component to another within a given time frame.

Example 18 (Bandwidth) A CPU attempting to write a sequence of data with a size of 512MB
in the memory would have to pass the information through all the mechanisms between itself and the
memory. The amount of data that went through all the mechanisms within either a CPU cycle or a
microsecond is considered to be the bandwidth.

5.1 Detecting Component Correlation

5.1.1 Evaluating Interference Through Resource-Stressing
[44] presents a strategy to characterize the sensibility of a shared resource to temporal interference.
The general idea behind the approach is to perform a stressing benchmark on an architecture’s
resource with only that single thread running (i.e. running in isolation), and compare the result with
the same test in which multiple threads of the stressing benchmark run in parallel, in a metric called
slowdown factor (see Definition 36).

Definition 36 (Slowdown Factor) Given a benchmark targeting a specific component, its appli-
cation using a single thread in isolation resulting in a execution time n, and its application while
other threads are stressing components (potentially the same one) yielding a execution time of m,
the slowdown factor f is defined as:

f = n

m

This slowdown factor indicates how sensible the component targeted by the measured benchmark
is to interference, and thus how large the execution time variations caused by parallel access to that
component will be. By having the other threads target different components, correlation between
them can be exposed: if the slowdown factor is higher than 1.0, some interactions occur between
these components, and the other components are able to generate interference on any application
using the component targeted by the measured thread.

The benchmarks of [44] are implemented following the pattern shown in Figure 5.1: a simple loop
applying the appropriate instruction numerous times. For memory access benchmarking, a slightly
different strategy is used (see Figure 5.2): each loaded memory element contains the address of the
next memory element to load, a principle known as pointer chasing.

5.1. DETECTING COMPONENT CORRELATION 65

Line Source code Explanation
001 movl %1, %ecx initialize loop counter ecx (%1 is an input parameter)
002 label intAdd: beginning of the loop
003 add %eax, %ebx target instruction
004 add %ebx, %eax target instruction

...

...
252 add %ebx, %eax target instruction
253 decl %ecx decrement loop counter
254 cmp %ecx, $0 compare loop counter with 0
255 jne label intAdd if (counter != 0) jump to the beginning of the loop

Figure 5.1 – intAdd Benchmarking Code (taken from [44])

1 f o r (cnt =0; cnt < a r r a y s i z e ; cnt+=s t r i d e) {
2 i f (cnt<a r r a y s i z e−s t r i d e) {
3 // Each array element conta in s the address o f . . .
4 // . . . the f o l l o w i n g array element we want to a c c e s s .
5 array [cnt] = (i n t)&array [cnt+s t r i d e] ;
6 }
7 e l s e {
8 // The l a s t acce s s ed element in the array po in t s . . .
9 // . . . to the f i r s t element o f the array that we a c c e s s .

10 array [cnt] = (i n t) array ;
11 }
12 }

Figure 5.2 – Memory Benchmark Initialization Code (taken from [44])

Figure 5.3 – Slowdown factor on the Intel Atom Z530 (taken from [44])

66 CHAPTER 5. MICRO-STRESSING BENCHMARKS

Figure 5.3 shows the approach of [44] working at its best. This is the result on an Intel Atom
Z530, which features a single core capable of running two parallel threads. The lines correspond to
the benchmark being measured, the columns correspond to the target of the benchmark being used
as a source of interference.

Figure 5.4 – The Intel Core2Quad architecture (taken from [44])

Figure 5.5 – Slowdown factor on the Intel Core2Quad within the same cluster (taken from [44])

The application on a multi-core processor, however, is not as informative: Figure 5.5 shows
the same experiment performed within a cluster of an Intel Core2Quad (two separate cores that
share the same L2 cache, see Figure 5.4). The results indicate no unexpected slowdowns from the
simultaneous use of components. Information on slowdown due to simultaneous use of caches points
is still relevant and points to running two parallel cache intensive programs being slower than one
after the other.

Figure 5.6 – Standard benchmark interference on the Intel Core2Quad (taken from [44])

5.1. DETECTING COMPONENT CORRELATION 67

[44] does not provide the analysis of potential interference channels with more than two com-
ponents in use simultaneously, but it does analyze the slowdown factor suffered by some standard
benchmark applications running on one core when other components are being stressed by all the
other core. The results are shown in Figure 5.6. The observed slowdown factors are very small,
regardless of the components being stressed by the other cores. This points to the use of standard
benchmarks being poor indicators of the worst slowdown that can be suffered because of interference.
Indeed, none of these results reflect the high slowdown factor that was obtained when even just two
cores stressed the same L2 cache. Thus, the effects of interference on an application that uses the
L2 cache more than those standard benchmarks is likely to be much higher than what the results
from Figure 5.6 would lead to believe.

To summarize, the strategy employed here forms the basis of covert interference channel iden-
tification, as it exposes potentially unknown links between components, but it also provides some
quantification of the architecture’s capabilities through the slowdown factor, and argues for the use
of micro-stressing benchmarks over that of standard ones for a true observation of the maximum
impact of interference, including for interference related to the use of caches.

The next paper expands on this approach, by using performance monitors to measure more than
cycle counts, and thus learn more about how components interact.

5.1.2 Architecture and Application Characterization
The approach presented in [11] can be seen as a follow up to the one of [44]: the correlations between
components that were exposed are used to tailor the benchmarks performed on the application. The
process is summarized in Figure 5.7.

When profiling the architecture, the objective is to characterize the hardware itself, in order to
identify shared hardware resources (including some that may be missing from the architecture’s doc-
umentation), determine their behavior when in contention, potentially uncover unsuspected interac-
tions between hardware components, measure pertinent execution times and maximum bandwidths.
To do so, the approach starts with a comparison of each benchmark running in isolation and running
with other copies of itself running in parallel, as in the approach from Section 5.1.1 (the top-left
diagonal in Figure 5.3). In a second step, benchmarks targeting different features are launched
together. This provides information on which parallel resource accesses affect one another. Here
also, the approach is similar to the one in Section 5.1.1 (all cases other than the top-left diagonal in
Figure 5.3). Note that this similarity with the previous section is to be expected, as both approaches
make similar assumptions on the availability of standard monitoring resources. The main difference
being the use of hardware monitors other than the cycle counter in [11], where performance counters
such as “number of L1 hits” are also used in order to obtain a clearer understanding of the archi-
tecture, and thus of the causes of the interference instead of just observing its effects. This can be
used to uncover relations between components despite not having measured a change of slowdown
factor upon their concurrent benchmarking.

Hardware monitors are counters that can be set to increase on the occurrence of a given event,
such as an access to the interconnect, a cache miss, a cache eviction, and many other. The architec-
ture’s documentation generally provides a list of events that can be monitored. These monitors can
be reset, temporarily frozen, or set to track another type of event during the execution of programs,
making them a very useful debugging and analysis tool.

[11] proposes using this information to limit the analysis made on programs to what is truly neces-
sary. Indeed, the architecture characterization phase having already determined which combinations
of benchmarks are redundant for the analysis of interference between tasks, only a subset needs to
be employed to fully understand the impact of resource sharing on the timing of the applications.

68 CHAPTER 5. MICRO-STRESSING BENCHMARKS

hardware monitors

hw hw hw hw

hw hw hw hw

stressing benchmarks
pipeline i/ o

devices
memory
hiearchy

SBSBSBSBSBSB SBSB
SBSBSBSB

ar
ch
it
ec
tu
re

ch
ar
ac
te
ri
za
ti
on ident ify the shared

hardware resources

learn undisclosed
architecture features

select adhoc hardware
monitors and stressing
benchmarks subsets

monitors and stressing
benchmarks subsets

hw hw

hw

SB SB

SB SB

applicat ion
D running
standalone

ap
pl
ic
at
io
ns A B C

D E F

G H I
ap
p
lic
at
io
n

ch
ar
ac
te
ri
za
ti
on

select
one

ident ify the hardware
resources required by
applicat ion D

quant ify the ressource
usage

compute the necessary
resource quota prior
to t ime degradat ion

Figure 5.7 – Strategy overview for [11] (Figure taken from the paper)

This subset of benchmark combinations is then used to analyze how much usage of a particular
resource is needed before an application slows down. In effect, this indicates the minimal share of
each resource needed for an application to not suffer drastic worst case execution time slowdowns,
and thus helps effective scheduling of applications on a multi-core processor.

1 LOOP (i =0; i<N; i++)
2 {
3 FREEZE Counter () ;
4 INITIALIZE Counter () ;
5 CONFIGURE Counter () ;
6 UNFREEZE Counter () ;
7 {Benchmark execut ion . . . }
8 FREEZE Counter () ;
9 COLLECT Counter () ;

10 }

(a) Performance Counter Management

1 LOOP (i =0; i<TABLESIZE−1; i+=STRIDE∗UNROLLED)
2 {
3 ACCESS TABLE(i ,OPERATION)
4 NOP
5 ACCESS TABLE(i+STRIDE,OPERATION)
6 NOP
7 . . .
8 ACCESS TABLE(i +(STRIDE∗(UNROLLED−1)) ,OPERATION)
9 NOP

10 }

(b) Benchmark execution

Figure 5.8 – Benchmark algorithm used in [11] (extracted from [10])

While [11] does not provide any code extracts, the algorithm can be found in the associated
thesis ([10]). Figure 5.8 shows an overview of algorithm used by [11]. Figure 5.8a indicates how
the performance monitors are handled. The use of a loop to perform multiple measures of the same
experiment allow capture of the result’s variability. The benchmarked operations take the form
shown in Figure 5.8b: it features an unrolled loop (with UNROLLED corresponding to the size of
that inner loop) within another loop, all performing the same operation (writing or reading). The

5.2. ANALYZING CACHE PERFORMANCE 69

only reason for there to be an unrolled loop within the primary loop is to reduce the amount of
computations made during the iteration: the combination of both loops simply makes the operations
be performed across the whole TABLESIZE addresses. The STRIDE parameter corresponds to the gap
between accesses, which is there to control the number of times the same cache line is accessed. [10]
indicates that the use of the NOP parameter is there to have idle time between accesses: it corresponds
to a varying number of nop operations, and can thus be used to see the effect of temporally spacing
out the accesses.

The cache coherence identification part of this thesis (Chapter 8) uses an algorithm similar to
the one shown in Figure 5.8a to observe the behavior of caches. In effect, Chapter 8 is a specialized
part of the learn undisclosed architecture features section of the architecture characterization process
shown in Figure 5.7. Instead of simply detecting interaction It goes beyond the analysis of simple
interactions to really understand

5.2 Analyzing Cache Performance
The previous section showed approaches to the detection of potential interference channels that
could be applied to any component, but whose genericity ran the risk of failing to detect compli-
cated relations between components. This section focuses on approaches that use benchmarks to
characterize cache coherence performance and/or interference channels.

5.2.1 Cost of Cache Coherence
[39] places itself in a context similar to this thesis: the issues of interference in multi-core architecture
preventing their use in avionics. More precisely, the paper proposes an analysis of an architecture
through benchmarks to ensure that tasks running in parallel can correctly be time partitioned. The
tasks in question involve mixed-criticality, meaning that some tasks are more important than others,
and thus lower importance tasks must not impede higher importance ones.

The studied architecture is a NXP QorIQ P4080, featuring eight single-thread cores with their
own L1 and L2 caches, and interconnected through a CoreNet Fabric implementing the MESI cache
coherence protocol. There are also two L3 caches accessible through the interconnect.

The main sources of interference studied in [39] are simultaneous accesses to the interconnect
and the main memory, as well as the latencies induced by cache coherence. The idea is to have
one core act as the active observer, meaning that it is where time is measured, but it also performs
some operation. The other cores only act as a source of interference, and multiple benchmarks are
performed to see how increasing the number of secondary cores influences the time measured by the
observer core. This is similar to the approaches presented in the previous section, with the difference
being that instead of targetting a specific component, the benchmarks are solely focused on memory
access, and the comparison is made on cores performing either read or write on memory elements.

For the evaluation of the latencies induced by cache coherence, three categories of cache coherence
benchmarks are considered:

• disabled: No cache coherence enabled (i.e. the baseline), where its mechanisms are disabled
and the cores do not target any of the same memory elements.

• static: Cache coherence mechanisms are enabled, but the cores still do not target any of the
same memory elements.

• dynamic: Cache coherence enabled, and cores only target shared memory elements.

70 CHAPTER 5. MICRO-STRESSING BENCHMARKS

This is made possible by the fact that the architecture supports disabling cache coherence all to-
gether. For all three categories, sub-benchmarks are performed, in which the observer core either
reads or writes memory elements while the secondary core also perform either reading or writing
(thus resulting in four combinations for each category of cache coherence: read read - rr, read -
write, rw, wr, and ww).

1 f o r (i =0; i<NMEAS; i ++){
2 f l u s h c a c h e s () ;
3 sync () ;
4 time () ;
5 meas loop (OPERATION, NBYTES, GAP) ;
6 time () ;
7 }
8
9 #d e f i n e a sm wr i t e l oop gap64 \

10 a sm meas in i t \
11 \
12 ”mr addr , %0; \
13 \
14 1 : \
15 stb wr va l , 0x000 (addr) ; \
16 stb wr va l , 0x040 (addr) ; \
17 stb wr va l , 0x080 (addr) ; \
18 stb wr va l , 0x0c0 (addr) ; \
19 stb wr va l , 0x100 (addr) ; \
20 stb wr va l , 0x140 (addr) ; \
21 stb wr va l , 0x180 (addr) ; \
22 stb wr va l , 0x1c0 (addr) ; \
23 add . addr , addr , gap ; \
24 cmpw 7 , nbytes , addr ; \
25 bgt 7 , 1b ; ” \
26 \
27 asm meas c lean

Figure 5.9 – Algorithm overview for [39] (taken from the paper)

Figure 5.9 shows the algorithm used by [38]. Prior to each measurement, the caches are flushed,
then the cores synchronize with each other. Time is recorder using utilities from the cores, which
avoids making time() be a source of interference. The measured operation takes three parameters:
OPERATION corresponds to either reading or writing, NBYTES is the number of bytes accessed in a
measurement, GAP is the distance between the accesses made in order to target separate cache lines
and thus ensure that all accesses are cache misses. The number of measures is controlled by NMEAS.
The asm write loop gap64 corresponds to a meas loop for a writing operation with a gap of 64 bytes.

The results of these benchmarks are shown in Figure 5.10.

Comparing Disabled and Static Cache Coherence: Static cache coherence (mechanisms en-
abled, but each core access different memory elements) does have an overhead compared to no cache
coherence at all when performing read operations, regardless of the operation being performed by
the other cores. For writing, this overhead is much lower. This is interesting, as the static bench-
marks are the same experiment as the disabled cache coherence, meaning that effectively measures
the minimal overhead induced by having cache coherence mechanisms active, regardless of how their
are used. Thus, even when not having any use for it, keeping cache coherence mechanisms enabled

5.2. ANALYZING CACHE PERFORMANCE 71

co
he

re
nc

y

op
er

at
io

n

0 1 2 3 4 5 6 7
di

sa
bl

ed rr 69 70 69 70 70 71 71 72
rw 69 69 71 89 86 83 83 84
wr 60 62 62 62 63 63 64 64
ww 60 60 75 91 92 93 94 97
rr 82 83 84 86 87 90 94 101
rw 81 82 85 99 95 97 101 105
wr 60 62 64 66 68 71 75 81
ww 60 62 77 94 97 101 105 111

st
at

ic
dy

na
m

ic rr 82 83 86 88 89 93 95 98
rw 82 82 84 84 86 87 89 90
wr 158 146 130 114 111 107 103 99
ww 158 158 157 156 156 155 155 155

execution time depending on number of active cores [us]

Figure 5.10 – Observed execution times depending on cache coherence and number of active cores
(adapted from [39])

does lead to a increase in execution times. This makes an argument for taking extra steps and
disabling cache coherence for memory elements that are not shared.

Comparing Static and Dynamic Cache Coherence: Dynamic cache coherence (cache co-
herence enabled, and accesses made to only shared memory elements) leads to the reverse: read
operations yield better execution time compared to writes. The best execution times are obtained
by reading while the other cores write, and the worst by writing while other cores are writing as
well. This is a surprising result (wr and ww being slower than rr and rw), but these benchmarks
do not take coherence state of memory elements into account. The order in which cores get to
perform their operation changes that coherence state, and thus it changes the cache’s response to
other cores’ operations, which in turn changes the execution time results. Because of this, the results
for dynamic cache coherence analysis cannot be exploited for a precise measurement of the effects
of cache coherence on running software.

To summarize, [39] does provide an interesting metric, which is found by comparing the execu-
tion time between the disabled and static benchmarks. The overhead caused by unrequited cache
coherence queries are considered to be a form of interference. Indeed, this corresponds to the minor
interference of Chapter 10 (see Definition 60).

The lack of information on coherence states prevent the dynamic benchmarks from being reused
in the context of this thesis. However, a more appropriate form of benchmarking for cache coherence
mechanisms with shared memory elements is explored in the next section.

5.2.2 Cache Performance Analysis
[38] is a paper on benchmarks performed on the Intel Nehalem architecture (see Figure 5.11), which
uses the MESIF cache coherence protocol and has an inclusive cache hierarchy. For clarification’s
sake, the cache coherence protocol is active below the L3 cache, meaning that this dual processor
architecture effectively results in only two caches being made coherent through MESIF.

72 CHAPTER 5. MICRO-STRESSING BENCHMARKS

Nehalem Quadcore

Core 0

Shared Level 3 Cache

IMC
(3 Channel)

QPI

L1

Core 1 Core 2 Core 3

L2 L2L2L2

I/O Hub

L1L1L1

Nehalem Quadcore

Core 4

Shared Level 3 Cache

QPI

L1

Core 5 Core 6 Core 7

L2 L2L2L2

L1L1L1

D
D

R
3

A

IMC
(3 Channel)

D
D

R
3

C

D
D

R
3

B

D
D

R
3

D

D
D

R
3

F

D
D

R
3

E

Figure 5.11 – Interconnected Intel Nehalem processors (extracted from [38]).

To perform the benchmarks comparing the effect of coherence states of memory element on
writing and reading performance, their benchmark library makes it so they are able to put data in
the desired stable coherence state in the cache they want, potentially using the other processor to
attain the desired state. In effect, this allows control of the coherence states of the system prior
to the start of the benchmark. To reach the desired state in the caches of core N , the following
strategy is employed:

Modified Core N writes the data.

Exclusive Core N writes the data (thus invalidating the other cores’ data), flushes, then reads the
data.

Shared Core N reaches the Exclusive state, then another core reads the same data.

There is an interesting omission: the Forward state is not considered. The authors indicate
expecting the Forward state to only become an improvement for systems in which there are more
than two processors and is thus assumed not to have any effect on the benchmarks of their dual
processor architecture. This is incorrect, but, as explained later, the effects of the Forward are not
seen in their results, since the benchmarks which would have been affected were also omitted.

On the other hand, the strategy to reach a selected state for core N described above is still valid,
even when ignoring the Forward. Indeed, with this process, the Forward state only appears when
reaching the Shared state, but it is reached by the core that “reads the same data”, not core N .
In reality, having a Forward state in an architecture with only two caches does actually have some
benefits: if the two caches have read certain data, then one wants to write to it. Without Forward
state, the cache wanting to write will have to fetch data in RAM, whereas with the Forward state
available, it might be provided by the other cache or simply ot have to fetch it in RAM (depending
on which cache performed a write first, and choices of implementation). Similarly, it has an impact
if a cache line is read by both caches, but the cache not in the Forward cache evicts it at some
point, them re-acquires it. This would have had an observable result when measuring the writing
execution time. Indeed, writing when core N is in the Shared state and another core is in the
Forward state should result in faster execution time than when the other core is in the Shared state.
Since The paper does not feature a table proving a list of execution time when writing, but only for

5.2. ANALYZING CACHE PERFORMANCE 73

benchmarks that reading, this difference cannot be seen and one might erroneously assume that the
Forward state does indeed have no impact on systems with coherence maintained between only two
caches.

1 thread 0 : warm−up TLB
2 i f (N>0): sync o f thread 0 and N
3 thread N: a c c e s s data (−> E/M/S)
4 i f (N>0): sync o f thread 0 and N
5 a l l threads : f l u s h caches (op t i ona l)
6 thread 0 : measure execut ion time

(a) Latency benchmarks

1 a l l threads : a c c e s s data (−> E/M)
2 a l l threads : f l u s h caches (op t i ona l)
3 a l l threads : b a r r i e r synchron i za t i on
4 thread 0 : d e f i n e s t a r t t i m e in fu tu r e
5 a l l threads : wait f o r s t a r t t i m e
6 a l l threads : measure t b e g i n
7 a l l threads : a c c e s s data (read / wr i t e)
8 a l l threads : measure t end
9 durat ion = max(t end) − min(t b e g i n)

(b) Bandwidth benchmarks

Figure 5.12 – Algorithm overview for [38] (taken from the paper)

Figure 5.12a shows an overview of the algorithm used by [38] to measure execution times. The
steps described are more about what is done prior to the measurements themselves. Warming up
the transaction look-aside buffer means pre-loading all entries in order to avoid this loading being
taken into account in the resulting execution time. The accesses made for the measured part of the
benchmark correspond to a pointer chasing algorithm, just like in [44] (see Figure 5.8b).

The bandwidth benchmarking algorithm is shown in Figure 5.12b. Synchronization between the
threads is more thoroughly controlled in this one: by memorizing the exact window upon which
each thread made its accesses, the window corresponding to the period in which all threads were
performing accesses can be obtained. The bandwidth can then be obtained from the number of
accesses successfully performed within this window.

Exclusive cache lines Modif ed cache lines Shared cache lines
Source L1 L2 L3 L1 L2 L3 L1 L2 L3 RAM

Local 1.3 (4) 3.4 (10) 13.0 (38) 1.3 (4) 3.4 (10)
13.0 (38)

1.3 (4) 3.4 (10) 13.0 (38)
65.1

Core1 (on die) 22.2 (65) 28.3 (83) 25.5 (75) 13.0 (38)

Core4 (QPI) 63.4 (186) 102 - 109 58.0 (170) 106.0

Figure 5.13 – Latencies of reading from Core 0, results in “nanoseconds (cycles)” (Figure taken from
[38])

Figure 5.13 shows the results of benchmarks measuring the time required for the core 0 to
read data held in various locations, according to the state of the data in the remote location.
Unsurprisingly, accesses made to the local L1 and L2 caches was not impacted by the state of the
data in the L3 cache. It appears this also holds true for the local L3 cache itself. Access to data held
in the caches of another core on the same processor does vary depending on the coherence state.
According to [38], this is explained by the L3 cache having to check on the L2 and L1 caches of that
other core, as, unless the state is Shared, the L1 and L2 cores may hold a more up-to-date value. For
data held in the other processor, the results are as expected, with the cost of traversing the bridge
between both processors being added when accessing memory elements in either the Exclusive or
Shared state, but also having a higher cost when accessing Modified memory elements: as explained
in [38] and Chapter 3, Modified memory elements are wrote back to the memory prior to being sent
as a reaction to a GetS query.

74 CHAPTER 5. MICRO-STRESSING BENCHMARKS

Exclusive Modif ed
L1 L2 L3 L1 L2 L3 RAM

Local 45.6 31.1 26.2 45.6 31.1
26.2 10.1

Core1 19.3 19.7 9.4 13.2

Core4 9.0 9.2 5.6 6.3

Exclusive Modif ed
L1 L2 L3 L1 L2 L3 RAM

45.6 28.8 19.9 45.6 28.8
19.9 8.4

23.4 22.2 17.6 9.4 13.0

9.0 8.3 9.6 5.5

Reading Writing

Figure 5.14 – Bandwidth for access from Core 0, results in GB/s (Figure taken from [38])

[38] does however perform more analyses on the performance of cache accesses. The second half
of the paper is dedicated to bandwidth analysis, of which the results are shown in Figure 5.14.
These results are coherent with their equivalent in the execution time benchmarks. They do provide
more information than what was available in the documentation however, such as actual maximum
bandwidth instead the theoretical maximal one.

The approach presented in [38] is a good solution for the benchmark part of the framework
described in Section 4.2.2. Indeed, by taking into account the coherence state of the targeted
memory elements, [38] ensures the system state that led to the recording of the execution time is
understood and thus, that the correct execution time will be expected when attempting to predict
the architecture’s behavior.

5.3 Finding Elusive Hardware Monitors

Figure 5.15 – Trace collection process (extracted from [40])

[40] presents a case study for the profiling of architectures where performance monitors are not
available. This is interesting, because architecture profiling usually assumes that they are available.
Having a way to profile architectures without would extend the range of architectures that can be
considered for critical real-time contexts.

The architecture being studied in [40] is system-on-chip with a dual-core processor. While it
does not have performance monitors, it does have some hardware debugging features, which can be
accessed using a JTAG port.

These hardware debugging features can snoop the messages passing through the interconnect,
as well as the instructions executed by each core (and their program counter). In the approach
proposed by [40], the platform is configured so that these two sources of information are stored into
circular buffers (within the chip). The JTAG connection is used to continuously copy these buffers

5.4. CONCLUSION 75

into an external analysis platform (see Figure 5.15). The speed at which these buffers are filled is
higher than that of the JTAG connection, meaning that information would be lost if the programs
were running normally. Thus, the GRMON script takes control of the execution once the section of
the programs under analysis is reached, and proceeds to running the applications in a step-by-step
manner, which ensures no information is lost.

Once this event capture is completed, the post-processing steps begin, starting with a clean-up
phase (Trace Merging), which clears out redundant data. Then comes the Event Counting phase,
which matches instructions to bus events in order to recognize patterns that fit known events. For
example, data cache load misses are identified by seeing a load instruction be performed by a core
one cycle after seeing the matching query go through the interconnect.

Thus, instead of relying on performance counters, it is possible to obtain an accurate description
of the behavior of the platform through capture and analysis of execution traces. Such strategies
extend the range of platforms upon which profiling is possible, including for the purpose of identifying
cache coherence using the process described in Chapter 8.

5.4 Conclusion
The approach shown in Section 5.2.2 is adequate for the second step of the framework presented
in this thesis (see Section 4.2.2), in which the performance of the architecture’s cache coherence
mechanisms are measured in order to feed them to a model. Indeed, it does provide interesting
information about single instruction execution time according to the type of instruction being per-
formed (load or store) and the cache coherence state. It does not, however, attempt to analyze
the internals of the cache coherence mechanisms used by the architecture. In fact, some of them are
explicitly ignored (Forward state). Thus, while being an important step, it remains insufficient to
provide the user with enough information to understand what interference could be generated by
cache coherence mechanisms, unless the identification step proposed in this thesis is applied.

Furthermore, approaches such as the one described in Section 5.3 can be used to apply the
framework presented in this thesis to architectures with more restricted monitoring facilities.

76 CHAPTER 5. MICRO-STRESSING BENCHMARKS

Chapter 6

Handling Cache Interference in
Safety-Critical Systems

This chapter explores existing solutions to the issue of the interference generated by cache coherence
in safety-critical systems. Three approaches are considered: Limiting either the capabilities of either
the architecture or the software running on it in order to limit the generation of these interference
(Section 6.1); Modifying the architecture’s hardware or adding new hardware components in order
to lessen the unpredictability (Section 6.2); and lastly, solutions that involve running software in
safety-critical systems by showing that the effects of the interference remain acceptable.

6.1 Through Restrictions
The crudest approach to the handling of interference generated by cache coherence is to not have any
because all caches are disabled. While this solution tremendously improves the predictability of the
system, it also tremendously decreases its execution speed, to the point where it may be preferable
to use a single-core architecture with caches instead.

One step above is a solution in which the caches are enabled, but their content is locked, making
their usefulness severely limited but without compromising the system’s predictability.

In this section are presented strategies that allow the use of caches in a limited manner in order
to achieve reasonable execution speed while keeping the system as predictable as possible.

6.1.1 Shared Cache Partitioning
[29] presents two algorithms for a condition sufficient to prove schedulability, it is meant for tasks with
time and cache space constraints in the context of a shared L2 cache in which space is partitioned in
order to avoid contentions. Thus, this work is more about proving that the measures taken in order
to address interference are sufficient rather than a strategy to control the interference itself. For
these schedulability tests, the tasks are assumed to be non-preemptive and to have a fixed priority.

The paper’s first algorithm is based on constraint programming. It basically considers that there
is a task missing its deadline, which implies that either all cores are being used, or that too little
cache space is available. Intervals at which either of these conditions is true are searched for in order
to find their maximal impact of the hypothetical task that missed its deadline. If this maximum
impact is lower than the slack (longest affordable delay) of this hypothetical task, then the tasks are

77

78 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

schedulable. The second algorithm is very similar, but simplifies the constraints by simply assuming
the worst possible interference from the other tasks in all criteria with much less regard for whether
the configuration leading to this interference is actually possible. This effectively creates a more
scalable schedulability test, at the cost of being much more pessimistic.

6.1.2 Cache Coloring to Curtain Interference

TASK 1 VTABLE

2

1

0

TASK 2 VTABLE

1

0

MEMORY

CACHE

BLOCK
1

BLOCK
1

BLOCK
0

BLOCK
1

BLOCK
1

BLOCK
1

BLOCK
0

BLOCK
1

Figure 6.1 – Cache coloring aware scheduling, from [13]

When using a set-associative cache, the cache is divided in equal sets of cache lines. The memory
element’s physical address determines which of these sets of cache lines it will go to. The cache
eviction policy then applies solely inside that set. The idea behind cache coloring is to exploit this,
by determining which memory element will find itself in which set of lines, and assigning virtual
addresses to physical addresses in a manner that will ensure a maximum of virtual addresses will
find themselves in the cache.

[13] uses cache coloring in the opposite manner. It instead assigns a single color (thus, set of
cache lines) per program. While this is not an efficient use of the cache for any one program, it
means that each program is effectively curtained into the set of caches of its color. Using careful
scheduling, the number of programs running in parallel that share the same colors can be reduced
(see Figure 6.1), thus removing the interference they can inflict on one another.

6.1.3 Limited Shared Resources
One approach to dealing with cache coherence in multi-core processors for environments requiring
certification is to simply use the caches in a manner that cancels the need for such a feature. Indeed,
since the applications for single core are already available, it stands to reason plenty of them could run
on multi-core processors without the need for shared memory elements. For example, [34] presents
Marthy (see Figure 6.2), a hypervisor aiming to enforce robust partitioning between applications
running on a COTS multi-core processor. This hypervisor permanently lives in the cache of each
core, using cache locking mechanisms to avoid being inadvertently removed, and makes use of the
MMU to take over whenever an instruction triggers a cache miss, stalling that instruction until
access to the system’s shared resources (i.e. any shared component, not just memory) is exclusively
granted to the core by a TDMA. All shared memory elements must be read-only, which does indeed
remove the need for cache coherence mechanisms.

6.1. THROUGH RESTRICTIONS 79

Figure 6.2 – System running Marthy (Control Software in the figure), a figure extracted from [27].

6.1.4 Isolated Communications Through Scheduling
In [12], careful scheduling is used to make calculating the worst-case execution time easier. This
scheduling requires programs running on each cores to have been sliced into computation blocks and
communication ones. Computation blocks are built so that while a core is in one, the other cores
cannot access the same data (or only as a read-only copy if all tasks are only reading this data).
Communications nodes indicate fetching and writing periods (no computation), which are similarly
limited by any task currently performing a computation block. The paper provides a strategy to
automatically slice the programs intended for a core into a scheduling of these types of blocks.
Figure 6.3 shows an example of two cores having their tasks scheduled in this manner. White blocks
indicate time reserved for computation; grey blocks are for flushes; and black blocks are for fetches.

Because they do not access any shared resource, calculating the worst-case execution time of the
computation blocks is equivalent to doing so on a single core processor. [12] proposes a solution for
the calculation of the worst-case time of communication blocks, including the possibility for them
to occur in parallel with other communication blocks from other cores. It relies on the creation
of a UPPAAL model to account for all possible interleavings of any communications that may
occur during that particular communication block. The aforementioned scheduling ensures that all
communications that can happen at that time are known.

Core 1

Core 2

t im e 0 2 4 6 8 10

Figure 6.3 – Overview of the strategy presented in [12] (taken from the paper)

80 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

6.2 Through Hardware Modifications
6.2.1 Predictable MSI
While not exactly a hardware modification per se, the use of a coherence protocol designed for its
predictability is not likely to be available on COTS hardware, which is why the work presented in
[32] is included in this section.

[32] exposes the sources of unpredictability in the MSI protocol, and proposes a solution for
each one of them. These solutions require some parts of the hardware connected to cache coherence
mechanisms to be predictable. Combined with, PMSI (Predictable MSI), the coherence protocol
they introduce, these solutions are indicated as sufficient to allow calculation of the worst case
delays that may be incurred by each instruction.

Translated to the formalism from Chapter 3, the restrictions imposed on the hardware are as
follow:

1. Access to the interconnect is regulated by time slots. Caches may only send queries to the
interconnect during their assigned time slot.

2. For a same memory element, the coherence manager sends replies to queries in the order of
their arrival.

3. Caches reply to queries in the order of their arrival. This is equivalent to imposing Dout to be
a FIFO queue.

4. A write request to a cache for a memory element that it does not currently hold with read-
and-write permissions can only occur during that cache’s time slot.

5. Writing to a memory element not currently held with read-and-write permissions requires all
other caches’ pending queries for that memory element to be processed first. Basically, the
write is stalled if there are any queries in Qin for that memory element.

6. Caches are predictible in the ordering of their processing of instructions and external queries.
Adapting PMSI to fit Chapter 3 is made easy by the fact that they also based their description

on the notations introduced in [49]. Figure 6.4 shows how the cache controller behaves for each
memory element. This figure is almost identical to the one found in the paper presenting PMSI, with
the following modifications:

• A single Own Query event is used instead of having one per type of query. This makes the table
more compact, as there is never any state in which multiple categories of query have a different
behavior when it comes to the handling observing their own queries on the interconnect.

• The Upg query type, used to move from S to M, has been merged into GetM, as the differentiation
did not appear to have any relevance to the protocol’s behavior.

• Emission of a PutM has been added as an action when receiving data in either IMDI and IMDS,
as it would otherwise be impossible to exit the state they lead to. The need for this has been
confirmed during exchanges with the authors.

[32] does not include a table for the coherence manager, which is instead simply described as servicing
the oldest pending query for a memory element every time it receives data. Figure 6.5 shows a
coherence manager that would implement this behavior.

By comparison to the MSI protocol described in Section 3.3, PMSI features much fewer transient
states. This is because the restrictions imposed on the system have removed:

6.2. THROUGH HARDWARE MODIFICATIONS 81

State Core Request Own
Query

Data
Reply Received Queries

load store evict GetS GetM PutM

I
GetS?
ISD

GetM?
IMD - - -

S hit
GetM?
SMW I - I

M hit hit
PutM?
MIWB

PutM?
MSWB

PutM?
MIWB

ISD stall stall stall S - ISDI
IMD stall stall stall M - IMDI

SMW stall stall stall
m!data

I IMDS IMDI

MIWB hit hit stall
m!data

I - -

MSWB hit hit MIWB m!data
S - MIWB

IMDI stall stall stall
PutM?

store hit
MIWB

- -

IMDS stall stall stall
PutM?

store hit
MSWB

- IMDI

ISDI stall stall stall
load hit

I - -

Figure 6.4 – Split-Transaction PMSI Automaton for Cache Controllers

State Received Queries Data Reply
GetS GetM PutM (Owner) PutM (Other) data

I s!data
s!data
o← s

M
- -

ID stall stall - I

IB
o← nc
s!data

I

o← s
s!data

M

o← nc
I -

M stall stall
o← nc

ID - IB

Figure 6.5 – Possible Split-Transaction PMSI Automaton for the Coherence Manager

82 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

• The possibility of receiving a reply to a query not yet handled: ISBD, ISB, IMBD, IMB, SMBD, and
SMB.

• Cache to cache data messages, which merge cases that were separated because of whether data
was sent only to another cache or also to the main memory: IMDSI, SMDSI.

• Sending data as a reaction to seeing another cache’s query: IIB (now undistinct from MIB,
which is now MIWB).

In PMSI, receiving data for a memory element currently held in a cache that may have modified it
(e.g. M state) always requires waiting for that cache’s time slot in the TDMA, as it will not perform
a write back without first broadcasting its own query indicating that it is about to do so. The
cache then sends a data message to the system’s main memory, which only then is able to reply
to the original demand. While this is clearly penalizing in terms of performance, it does lessen the
variability in time required for acquisition of data.

In conclusion, [32] addresses the issue of the predictability of memory access latency by replacing
the cache coherence protocol and performing some other hardware modifications in order to have a
generally slower but more easily computed and less fluctuating memory access time. No modification
of the software is required.

6.2.2 Limited Cacheability
One approach to the control of interference generated by cache coherence is to limit which memory
elements are affected by it. [5] argues for letting developers indicate, upon memory allocation,
whether to allow the new memory elements to be either cacheable as usual, not cacheable at all, or
only cacheable in caches shared by all cores (refered to as INC-OC). Figure 6.6 summarizes where
memory elements can be stored depending on the attribute they have been given. INC-OC, which is
the main contribution of the paper, is intended to remove these memory elements from the cache
coherence while not having to suffer the full cost of a cacheless system upon their access. This
does indeed result in more easily predicted memory accesses for these particular memory elements,
as they now behave as they would in a single core system running concurrent programs: another
core/program may still evict them (either directly, or by allocating more memory and triggering
the automated eviction policy), but the possibles system-wide states of those restricted memory
elements (and thus possible access latencies) are much fewer that they would otherwise be. This
can thus allow approaches for the analysis of memory latencies in single-core system to be applied
to these memory elements, a problem for which the available literature is more prominent than for
multi-core systems, with the added issue of bandwidth sharing between the cores for access to that
last-level cache.

Core Main
Memory

Core

Cache

Cache

Shared
Cache

Cacheable

INC-OC

Uncacheable

Figure 6.6 – Cacheability Levels

6.2. THROUGH HARDWARE MODIFICATIONS 83

As for limitations, the most oblivious one is that this is only applicable to systems which do
indeed implement a last-level cache being accessed by every core. Furthermore, the addition of a
new type of memory leads to hardware modifications: translation look-aside buffers need to take
into consideration a new attribute, and so do all sent memory access queries. The authors argue
that some of these hardware modifications can sometimes be minimized through the use of the
architecture’s instructions, and that this approach has the advantage of being entirely orthogonal
to the cache coherence mechanisms, thus not requiring any modification of the admittedly complex
coherence controllers.

In effect, the approach presented in [5] requires some hardware, as well minor operating system
and hypervisor, modifications, in order to let designers simplify the analysis, and lower the variation,
of the access time for any memory elements they choose. This does come at the cost of the speed
at which these memory elements are accessed, and it does require the designer make a decision as
to which memory elements should be handled this way.

6.2.3 On-Demand Cache Coherence
[42] presents ODC2 (On-Demand Coherent Cache), a strategy to limit the interference of cache
coherence on the execution of real-time software (see Figure 6.7). The general idea is to have
software delimit sections during which they access shared data (Shared Mode), and to have that
shared data be evicted from the cache as soon as the software leaves the section (Restore Procedure).
Any new data loaded during Shared Mode is marked as being shared in the cache line, making
their Shared data cannot be accessed outside of these sections, which makes the code outside these
coherence enabled sections (called Private Mode), much simpler to analyze.

A follow-up paper, [43], performs the WCET analysis of some well established algorithms (Di-
jkstra algorithm, Fast Fourier Transform, Matrix Multiplication) by modifying an existing WCET
computation framework (OTAWA) to add support to ODC2. The resulting WCET is compared
with the ones obtained when using no caches, when using Magic (cache coherence without any cost,
which represents the best theoretical performance), and an approach that simply invalidates the full
cache upon entering any synchronization point. The results show, somewhat unsurprisingly, ODC2

obtains a lower computed WCET than the other approaches, Magic excepted.

Figure 6.7 – Overview of ODC2, as seen in [42].

84 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

6.2.4 Dynamic Verification of Cache Coherence
[15] proposes a strategy to implement fault detection in cache coherence systems, addressing both
permanent and temporary issues by adding hardware (See Figure 6.8) that replicates a simplified
version of the cache coherence logic and tests it for consistency with the real one.

The approach proposed by [15] recommends the addition of a new interconnect dedicated to
the validation of the cache coherence protocol, to avoid disrupting the existing one. This new
interconnect is solely used by caches to broadcast that they entered a stable state for a given
memory element so as to allow the other caches to check that their local state for that memory
element is not in conflict with the broadcasted one. For example, if a cache broadcasts that it has
reached the M state for a memory element, then all other caches seeing that broadcast would test
that they do not have that memory element in any state other than I.

This new verification performed on each cache partaking in the coherence protocol requires the
addition of some hardware to each cache. In addition to checking for consistency with the other
caches through broadcasts, this new hardware maintains a simplified version of the coherence state
of each memory element. It does not incorporates transient states and, since it only considers
state changes and whether they allow a given instruction to be performed, the resulting coherence
protocol is that of one operating on an atomic interconnect with atomic operations (such as the one
in Section 3.2.1). In effect, the simplified protocol only sees events once the transaction they were
part of has been completed. At that point, it receives address, event, initial and final stable state
and compares these with its own record. To detect timeout issues, a watchdog is also added to the
caches.

Thus, while it requires rather complex hardware modifications, [15] does provide a way to detect
the occurrence of errors in the cache coherence protocol’s behavior.

6.3. BY ACCEPTING IT 85

$/Bus
Controller

(Full Protocol)

$

Tags P

Checker
(Simple
Protocol)

Cmd

LD/ST
Data

Addr

State Changing Operation:
Cmd/BusReq, Base States, Address

D
ata

A
ddre

ss

C
ontrol

C
heck A

ddress

B
ase S

tate T
ransition

Diagnosis/
Recovery

Logic

External Error

Internal E
rror D

etected

From Other
Node(s)

Figure 6.8 – Overview of the altered cache, as seen in [15].

6.3 By Accepting It
The most common approach to the analysis of interference in caches relies on the static analysis
and abstract interpretation approach originating from [24], which categorized accesses to caches
depending on whether they always found the value, never did, or if that could not be determined.
This was then taken into account account for the computation of the WCET. The publications that
followed usually propose the addition of a new categorization, or remark on the incorrectness or
incompleteness of the way these categorizations evolve during the analysis of the program’s CFG,
and propose corrections for mistakes made on previous attempts at doing so (up to, and including,
what has been presented in [24]). While otherwise prevalent, this particular approach is not the one
focused on in this thesis, and thus only very few of these papers have been included in this section.
Readers interested in learning more about this subject are encouraged to read [50], and especially
its well presented related works section.

6.3.1 Instruction Cache Analysis
Most papers handling WCET analysis on multi-cores only consider instruction caches, bypassing
the need to address cache coherence by indicating that instructions cannot be modified. While this
makes them slightly outside the scope of this thesis, the sheer prevalence of this restriction in WCET
papers would make their complete omission feel amiss.

WCET analysis

[31] proposes a way to compute WCET for multi-core architectures, with considerations for shared
instruction caches with multiple levels of hierarchy. It also tries out a bypassing scheme, which
relies on the identification of single-use program blocks within shared instruction caches to compile
programs in a way that reduces interference between tasks.

The proposed WCET computation strategy is based on existing approaches for multi-levels in-
struction caches in single core processors. It uses static analysis to categorizes all accesses as either:

86 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

Shared

Memory

Static Single
Usage
Identification

SSU

Cache Access
Classification

with bypass

X

(shared cache
multi−core)

To other

Tasks

From other

Tasks

CHMC

CHMC

+

Cache Access
Classification

Cache Block
Conflict Number

Cache Block
Conflict Number

(CCN)

(CCN)

Cache Access
Classification

Integration in
shared cache
analysis

ACS

Cache Analysis

ACS

Cache Analysis

Shared

references

Level ℓ

Level ℓ

Level ℓ

Level ℓ

Identification
of SSU blocks

Figure 6.9 – Overview of the strategy presented in [31] (taken from the paper)

always-miss, always-hit, first-miss (first access is unknown, but all following accesses will hit), and
not classified (for accesses that fail to be categorized in the other patterns). This categorization
(referred to as CHMC in the paper) is done for every cache level. Furthermore, the likeliness of
an access actually reaching a level is also evaluated and categorized with similar labels (always ac-
ceded, never, always after the first access, unknown). Moving this strategy to multi-core processors
is indicated as having the potential of changing some always-hit and first-miss into first-miss and
not classified. Accesses made by different tasks on the same level where the categorization indicates
that the access is not never done are considered as interfering with one another (regardless of when
the accesses are made). This is then used to re-evaluate the hit/miss categorization so that it has
the interference taken into account. The result of the interference identification analysis is referred
to as Cache block Conflict N umber. To improve the precision of the result, the possibility of having
code shared among tasks (such as libraries) is taken into account. An overview of the whole process
for a given cache level ` is shown in Figure 6.9.

The decisions made in what to cache generally follow the locality of reference principle, where
the proximity of elements in memory is assumed to translate to a proximity is usage times, and that
processors receptively access the same elements within short time periods. In [31], static analysis is
used to find elements which are only used once (called Static S ingle U sage), in order to avoid having

6.3. BY ACCEPTING IT 87

them pollute caches and risk being considered as a source of interference needlessly. This relies on
a bypass mechanism, that allows fetching data without altering the caches: if it is not found within
any cache, the value is retrieved but not added to any cache; if it is found within a cache, the caches
in-between do not get any copy, and the copy that was used is not updated to indicate a recent
access.

Unified WCET Analysis Framework

[18] presents a framework for WCET analysis on multi-core platforms, which distinguishes itself
from other solutions by the number of features it takes into consideration. Indeed, the framework
accounts for shared caches, pipelines, and branch prediction. It also does not require the assumption
of a timing-anomaly-free architecture. An architecture free of timing anomalies are architectures
for which performing an operation faster on a core cannot result in a longer execution time for the
program compared to if that operation took longer. The oppose would, for example, if the instruction
activates cache coherence mechanisms which would not have been necessary if the in faster execution
of that instruction. Readers interested in more possible causes for timing anomalies are encouraged
to read [46]). Figure 6.10 provides an overview of the approach. The assumptions that it does
are as follow: use of a TDMA-based round-robin arbitration policy, cores each have a private L1
cache. Data and instructions are assumed to be fully separated (separate caches, separate buses).
Only instruction caches are taken into account (no cache coherence, no possibility of modifications).
Caches are assumed to be non-inclusive and to use the LRU replacement policy.

The approach analyzes the WCET for each core separately. Using abstract interpretation, mem-
ory accesses are categorized according to whether they always hit, always miss, or are marked as
being unclassified. This is done for both the L1 and L2 caches. The L2 cache can be a shared one,
in which case accesses susceptible to inter-core interference may move from always hits to unclas-
sified. This inter-core interference appears to be the only considered direct interference from other
cores, due to the assumptions made on the architecture. Speculative execution, the result of branch
prediction, may also have effects on the contents of the L1 and L2 caches, as well as the pipeline’s
behavior. A model of the shared bus’s TDMA is taken into account when creating the pipeline’s
model, adding a latency to certain stages. This pipeline model creation process appears to be fairly
complex, proceeding in an iterative manner to compute the WCET of each basic computation block.
Having the WCET of each basic block, a model of the branch prediction mechanics and that of the
TDMA are used in the definition an linear optimization objective that will return the WCET of the
whole program.

88 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

Figure 6.10 – Overview of the strategy presented in [18] (taken from the paper)

6.3.2 Data Cache Analysis
Bypass Heuristics

[35] uses a similar approach to [31], this time focusing on data caches instead. Cache coherence
protocols are not considered. Indeed, all accesses to shared data is assumed to bypass private caches
(something that could be implemented by [5], for example) and all shared-caches are assumed to be
write-through. Data and instructions are assumed to not interfere with each other. In effect, the
main change from what is presented in [31] is how accesses to a memory bock are determined: in the
case of an instruction cache, a single instruction always points to the same memory blocks; whereas
in data caches, the relation between instruction and memory block is murkier, as addresses may
be aliased. This makes the detection of Static Single Usage cache blocks, which were the target of
bypass mechanisms in [31], much more complex. Multiple heuristics on which elements to bypass at
shared cache level ` are provided: any instruction for which none of the targeted memory references
have statically been detected to be leading to a sure hit in ` in the future; any instruction for which
the target cannot be statically computed, in order to increase determinism; and one that bypasses
any access of a task until it only occupies a given number of cache ways, which allows for conflict
reduction through control of the maximum occupied space by each task.

Write-Back Data Caches

[51] tackles the issue of WCET computation in multi-core processors that use data (or unified) shared
caches with write-back policies. Although not explicitly stated in the paper, this approach does not
consider separate caches of the same hierarchy: all caches are shared by all cores that could access
the data they contain. Ergo, no cache coherence, but a cascade of non-inclusive shared caches.

In addition to the standard categorization of a cache line in a particular cache level (always hits,
never hits, and so on. . .), the dirtiness is also modeled. The possible values are: dirty (i.e. has been
written to, but changes were not yet propagated), clean, or possibly dirty. The main challenge is
then to estimate when the write back will occur. [51] indicates how to take this new attribute into

6.4. CONCLUSION 89

account when performing the usual cache static analysis, and the constraints it adds to the linear
optimization problem representation of the WCET computation.

6.4 Conclusion
The approaches presented in Section 6.1 are improvements on the predictability of the system, but
at the cost of its performance. Those from Section 6.2 do not generally influence the system’s
performance in order to make it more predictable, but, by their very nature, are not compatible
with the need to use existing, commercial off-the-shelf architectures. Lastly, Section 6.3 presented
existing strategies to determine when the interference inherent to the use of a multi-core processor
does not lead to unacceptable execution times. This last section is what this thesis contributes to.
Indeed, none of the existing approaches tackle cache coherence, and are instead focused the sharing
of caches. The strategy chosen in this thesis for determining the impact of interference caused by
cache coherence on the system’s performance is the use of formal methods.

90 CHAPTER 6. HANDLING CACHE INTERFERENCE IN SAFETY-CRITICAL SYSTEMS

Chapter 7

Analyzing Performance Through
Formal Methods

The most common use of formal methods in relation to cache coherence is to validate protocol
correctness (i.e. that a protocol verifies the properties set in Section 3.2.2). Indeed, the use of
model checking for that purpose is the source of many publications. For example, [21] describes a
parameterized model checker by focusing on the verification of a cache coherence protocol, by taking
its description from yet another paper using model checking to verify it ([6]) and thus allowing a
comparison between the approaches.

However, proving the correctness of a cache coherence protocol is not the subject of this thesis.
We assume the protocols to be correct, and are instead interested by the impact the cache coherence
has on the real-time properties of the system. Thus, in chapter, we look at real-time systems using
formal methods to analyze the real-time properties of an architecture. As this is a fairly restrictive
criterion, the results include approaches meant for single-core processors in addition to those for the
more on-topic multi-cores.

7.1 Single-Core Processors

7.1.1 METAMOC
The first tool that made use of UPPAAL for the computation of WCET by modeling hardware was
Modular Execution Time Analysis using Model Checking (METAMOC), introduced in [22]. The
general idea behind the approach is shown in Figure 7.1. The modularity can clearly be seen in how
the models for the cpu pipeline, main memory, and cache specifications are kept separate in order
to facilitate their replacement when analyzing for a different processor. The other input is that of
the analyzed executable, directly in its binary form, albeit with some annotations regarding loop
bounds.

Given these inputs, METAMOC generates a control flow graph for the program, which is in fact
yet another UPPAAL model to combine to the ones representing the architecture. The value analysis
statically determines the address of memory elements, and is disabled if the modeled architecture
does not feature any data cache.

The pipeline model corresponds to a collection of automata, one for each stage: fetch, decode,
execute, memory, and writeback. The parallel nature of pipelines translates fairly well into a network

91

92 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

(UPPAAL model)
Main memory Cache

specifications

Control Flow Graph
(UPPAAL model)

Complete model
(UPPAAL model)

Caches
(UPPAAL models)

combine

model check
(UPPAAL)

WCET

generate
(cache−gen)

executable
Annotated

value analysis
(WALi)

Assembly

disassemble
(objdump, Dissy)

(UPPAAL model)
Pipeline

(Assembly−to−UPPAAL)
generate

Figure 7.1 – Using METAMOC to compute WCET (from [22])

of automata communicating through channels, making the writing of such automata accessible for
the user wanting to add their own in hopes of modeling another architecture. The main challenges
then come in determining what can stall the pipeline on the real architecture and how long each
stage should take. Indeed, the authors of [22] indicate that the documentation for the processor
they modeled explicitly states that it does not contain an exhaustive list of all possible stalls.

The default model for caches considers separate instructions and data caches, matching the
architecture they made their approach around. Caches are set-associative, and implement an LRU
eviction policy.

Figure 7.2 shows one half of the automaton modeling a cache in METAMOC. The complete
automaton has a second half mirroring this one, with read instead of write. Upon receiving a request
for a cache write, the automaton determines from its internal state whether the request is a cache
hit or if the instruction must be added to the cache. This corresponds to cache contents(instrArd) being
equal to -1 (cache miss) or not (cache hit). In the case of a cache hit, a delay corresponding to the
time spent writing in the cache is introduced (controlled by the CACHEFETCH clock). write hit wait
corresponds to the number of main memory accesses to be performed. Such accesses can still occur
even after a cache hit, if a write-through policy is in place. In the case of a cache miss, a number
of accesses to the main memory are performed. This number can be higher than one if a cache line
had to be evicted and the cache follows a write-back policy. Once all accesses are performed, the
cache synchronizes on instructionCacheWrite to indicate that the request was completed.

Figure 7.3 shows an example fragment of an automaton corresponding to a program after pro-
cessing by METAMOC. The fragment in question corresponds to a loop, and shows how METAMOC
supports branching and iterating. The loop counter 1 and loop bound 1 variables ensures that its
execution terminates. The bounds of such loops have to be annotated in the program’s source code.

Their solution to limit search-space explosion is to put a caveat stating that the architectures
are assumed to be time-anomaly free, which lets them consider only the locally worst time for some

7.1. SINGLE-CORE PROCESSORS 93

instructionCacheWrite!
instructionCacheWrite?

x <= CACHEFETCH

initCaches?

x == CACHEFETCH

instructionCacheMainMemory!

instructionCacheMainMemory?

write_hit_wait == 0

write_hit_wait −= 1

initialiseDataCache()

update(instrAdr, 1), x = 0insert(instrAdr,1)

write_hit_wait != 0 ||
x == CACHEFETCH

write_hit_wait == 0 &&
x < CACHEFETCH

A

cache_contents(instrAdr) == −1 cache_contents(instrAdr) != −1

write_hit_wait >= 1

Figure 7.2 – Half of Cache in METAMOC (adapted from [23])

operations, instead of having to explore all possible timings in case a better local time leads to a
globally worse one.

94 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

i0x4c_pop_lr_

i0x24_cmp_r2_30

i0x20_add_r2_r2_1

i0x1c_mov_ip_0

fetch!

fetch!

fetch!

fetch!

fetch!

LOOP BODY

instradr[PFS] = 68,
instrtype[PFS] = INSTR_OTHER,
...

instradr[PFS] = 72,
instrtype[PFS] = INSTR_OTHER,
...
loop_counter_1 = 0

instradr[PFS] = 32,
instrtype[PFS] = INSTR_OTHER,
...

instradr[PFS] = 28,
instrtype[PFS] = INSTR_OTHER,
...

i0x44_mov_r1_r0

i0x48_bne_20_

instradr[PFS] = 72,
instrtype[PFS] = INSTR_BRANCH,
...
loop_counter_1++

loop_counter_1 < loop_bound_1

loop_counter_1 == loop_bound_1

Figure 7.3 – Fragment of Program Automaton in METAMOC (from [23])

7.1.2 WUPPAAL

[16] describes WUPPAAL, another approach to using UPPAAL in order to compute the WCET of a
program running on a single-core processor. The main novelty of [16] is that it combines simulated
execution with the model checking. Indeed, as can be seen in Figure 7.4, it allows UPPAAL to
interact with qemu (an architecture simulation tool) through gdb (a debugging tool) and libgdbuppaal
(a library of their own making). The pre-analysis step shown in the figure corresponds to the
annotation of a binary program with information in order to help the extraction its Control Flow
Graph. This approach aims at improving the memory usage of model checking, as well as making
the approach fit other architectures very easily (by just changing qemu parameters).

These annotations allow the generation of an over-approximation of all valid program runs from
the CFG. This has some surprising results, such as deterministic programs having multiple separate
runs because the over-approximation does not consider actual values for any computation involving
input parameters. Instead, all outcomes are considered, even if some sequences of outcomes cannot
follow one another (e.g. the exact same test failing once, then succeeding). For such runs to be finite,
loops cannot be controlled by input parameters (i.e. all loops have a known amount of iterations).

7.1. SINGLE-CORE PROCESSORS 95

bin.elf

pre-analysis

bin.annotatedHW.xml

Uppaal libgdb2uppaal gdb qemu

Figure 7.4 – Overview of WUPPAAL’s components (taken from [16])

Figure 7.5 – Automaton interacting with libgdb2uppaal (taken from [16])

UPPAAL is used to perform queries among all possible execution paths. However, in WUPPAAL,
the automaton corresponding to the program is not a purely UPPAAL one. Figure 7.5 shows the
automaton in question. It does not store full program states, and instead only keeps an identifier
and the annotations for current instruction. The function calls seen on the automaton actually
trigger another component from Figure 7.4: libgdbuppaal. This component is where program states
are stored. libgdbuppaal uses qemu to compute the program state resulting from the application of
the instruction, as well as all possible next execution nodes. The program state inserted back in
UPPAAL indicates whether the instruction was found in the cache and how long its execution stage
lasts.

UPPAAL is then involved in the computation of the WCET for these annotated traces. Indeed,
it models the pipelines, with one automaton per stage, as well as a main memory automaton and
an instruction cache one (see Figure 7.6), to model their access times. Since the information about
whether the instruction cache contains the instruction or not is already in the annotated execution
trace, these last two automata are kept very simple.

96 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

Figure 7.6 – WUPPAAL Instruction Cache Automaton (taken from [16])

Figure 7.6 shows the automaton corresponding to an instruction cache in WUPPAAL. The
initial state is the top one. Upon receiving a request for reading on InstructionCacheReadStart
(considering the rest of the variables, writing likely uses the same channel), the automaton checks if
the information is already in the cache. If not it performs as many synchronizations with the main
memory automaton as is needed (indicated by PMT), then waits a time corresponding to that of a
cache access before using InstructionCacheReadEnd to signal the completion of the request.

7.2 Multi-Core Processors
7.2.1 Modeling Shared Buses
The approach proposed by [36] combines abstract interpretation and model checking to compute
WCET in multicore, with a special focus on the interconnect. The abstract interpretation is found
in the analysis of the caches, which is done in a fashion similar to those presented in Section 6.3,
including in its remarks of a previous approach being unsafe and in its omission of data caches (and
thus, of cache coherence). The overall strategy for this approach is shown in Figure 7.7.

The resulting model considers program instructions only as their categorization (Always Hits,
Always Misses, First time Misses, Not Categorized). The paper proposes an automaton for each
category (see Figure 7.8), indicating how an instruction of this category will use the interconnect.
Models for program are thus constructed by replacing each instruction in the control flow graph
by the automaton corresponding to its synchronization with the interconnect (TA Construction in
Figure 7.7). An example of resulting automaton can be seen in Figure 7.9.

To showcase how modular the approach is in its modeling of the interconnect, [36] provides both
a model for a TDMA bus and for a FCFS (First Come, First Served, which means requests are
completed in the order of their arrival) bus.

Figure 7.7 mentions an ILP model being computed as well, however, the paper does not make
any mention of it.

7.2. MULTI-CORE PROCESSORS 97

Program
Binaries

CFG
Reconstruction

CFG

Cache Analysis
by AI

CFG + CHMC

Program TA

TA
Construction

User Input

Flow
Information

Bus Config.

TA for Buses

Model
Compilation

UPPAAL Model

Bus
Modeling

Cache Config.

ILP Model

Constraint
Generation

CPLEX/
lp_solve

WCET Estimations

UPPAAL

WCET Estimations

Figure 7.7 – Overall strategy for [36] (taken from the paper)

PreNode Node1 PostNode
c[0]=0

c[0]<=L1Hit+InstTime

c[0]==L1Hit+InstTime
C

Node1 Node2 Node3
c[0]=0

c[0]<=InstTime

c[0]==InstTime

accessBus[0]! accessBus[0]?

PostNode

C

Node1

Node2

Node3

Node4 PostNode

c[0]<=InstTime

c[0]==InstTime

c[0]==L1Hit

c[0]<=L1Hit

c[0]=0

fmflag[i]==0

fmflag[i]=0
fmflag[i]==1

accessBus[0]!

accessBus[0]?
c[0]=0

C

Node1

Node2

Node3

Node4 PostNode

c[0]<=InstTime

c[0]==InstTime

c[0]==L1Hit

c[0]<=L1Hit

c[0]=0

accessBus[0]!
accessBus[0]?

c[0]=0

c[0]=0 c[0]=0

(a) AH instruction (b) AM instruction

(c) FM instruction (d) NC instruction

Figure 7.8 – Program Model Building Blocks (taken from [36])

98 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

AM

NC

AM

FM

CStart

C

C

C

Terminate

C

C

C

C

C

C

c[0]=0, flag=1
accessBus[0]!

c[0]=0
accessBus[0]?

c[0]<=InstTime

c[0]==InstTime

c[0]=0

c[0]=0
c[0]=0

flag=0

c[0]<=InstTime

c[0]==InstTime

accessBus[0]!

accessBus[0]?c[0]==L1Hit

c[0]<=L1Hit

c[0]=0

c[0]<=L1Hit+InstTime

c[0]==L1Hit+InstTime

accessBus[0]!

accessBus[0]?
c[0]=0

c[0]<=InstTime

c[0]==InstTime

c[0]=0

accessBus[0]!
fmflag[0]==1

fmflag[0]=0

fmflag[0]==0

c[0]=0

c[0]=0
accessBus[0]?

c[0]<=L1Hit+2*InstTime

c[0]==L1Hit+2*InstTime

c[0]<=2*L1Hit+
2*InstTime

C[0]==2*L1Hit+
2*InstTime

c[0]=0

c[0]<=L1Hit+InstTime

c[0]==L1Hit+InstTime

Figure 7.9 – Program Example (adapted from [36])

7.2.2 Multi-Core Analysis using only UPPAAL

The authors [30] present an approach using UPPAAL to perform computation of the worst-case
execution time for software running on multi-core processors. While it does not feature cache

7.2. MULTI-CORE PROCESSORS 99

coherence, it does support hierarchical (and shared) caches, as well as some sort of instruction
pipelining.

Figure 7.10 – Program Automaton (taken from [30])

In [30], programs are represented by their own automata (See Figure 7.10), sending instructions
through shared variables by synchronizing with a core on a dedicated channel. This approach allows
programs to feature branching and non-memory-related instructions, by simply adding numerical
variables and making the automaton more than a simple sequence of states. In Figure 7.10, the
framed part corresponds to where the program’s instruction graph should be. The id variable
targets a particular core on which to execute the instruction, and set access info populates the
global variables characterizing the instruction: instr address for the address of the instruction in the
modeled memory, data address for the address of any data being accessed, data access to indicate
if this instruction accesses data, and write data to differentiate between a read and a write access.
The Terminating Synchronization part is here to ensure the task is not considered completed until
it has indeed completed all accesses for its final instruction (and not just sent the instruction).

Cores are modeled as automata that go through the pipeline required for an instruction to be
completed, which includes accessing the instruction cache as well as, potentially, the data cache.
Interestingly enough, this model does not use one automaton per stage of the pipeline. Instead the
whole core logic is modeled in a single automaton.

Each L1 instruction cache has its own automaton, managing the possibility for instructions to
have already been cached or sending a request for that instruction to the L2 cache. The L1 data
caches are similar (see Figure 7.11), with the added possibility of writing data to a memory element,
which invalidates it from every other L1 data cache.

The automaton for the L2 cache is very straightforward, a simple loop going over each request,
determining whether the data is supposed to be in the L2 cache or not, and delaying the reply
accordingly.

Unsurprisingly, the hampering factor is scalability when the number of modeled cores is increased.
There appear to have very little in the way of synchronicity between the cores (such as using a round-
robin for L2 cache accesses), which is likely to be aggravating the issue.

100 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

Signal_Done

Delay

tCache<=cache_hit_time[hit?2:3]

Idle

tCache>=cache_hit_time[hit?2:3]

access_cache_s_done!

access_cache_s?
hit=access_cache_L2(),
tCache=0

init_cache()

L2 Cache

Invalidate

tCache<=invalidation_delay[0]

Signal_Done

Check_write

Wait_for_L2

Hit_delay

tCache<=cache_hit_time[1]

!hit_go_to_L2

Check_hit

Idle

wait_for_data[id]=false

tCache>=invalidation_delay[0]
invalidate_L1(id)

access_data[id].write
tCache=0,
calc_access_info_for_level(
i d, 1, true, fal se)

!access_data[id].write

tCache>=cache_hit_time[1]

access_cache_s_done?
update_cache_L1_data(id)

access_cache_s!
shared_caller=id,
shared_call_data=true

hit
tCache=0

!hit
calc_access_info_for_level(id,2,
t rue, fal se)

access_D[id]?
hit=access_cache_L1_data(id)

init_cache(id)

L1 Data Cache

Figure 7.11 – Cache Automata (taken from [30])

7.3 Conclusion

The use of timed automata to analyze the real-time properties of an architecture has already been
done in a few publications, both for single-core and for multi-core processors. The two main ad-
vantages of these approaches is the certainty that all scenarios are taken into account, and the
modularity of the models, which facilitates their adaptation to most architectures.

However, these approaches have a tendency to suffer from combinatorial explosion, which limits
the size of the models they can be used on. In addition, none of the existing literature exploits timed

7.3. CONCLUSION 101

automata to model the effects of cache coherence on the system. Instead, as in the analyses of the
previous chapter, cache coherence is assumed to be disabled.

This last point is remediated in this thesis, by the proposition of a multi-core architecture model
with a focus on cache coherence. For the model to be accurate however, the details of what is
modeled need to be known. This information is obtained through benchmarks (Chapter 5) and a
proper identification of the cache coherence protocol, which is the subject of the next chapter and
first contribution of this thesis.

102 CHAPTER 7. ANALYZING PERFORMANCE THROUGH FORMAL METHODS

Part III

Contributions

103

Chapter 8

Identifying Cache Coherence

The first step toward the analysis and the control of interference caused by the use of cache coherence
is to ensure that the mechanisms of cache coherence used on the targeted architecture are well
understood.

Chapter 5 presented papers on benchmark-based strategies to expand the information available on
the architecture beyond what the documentation provides. That chapter was limited to performance
(namely, execution time and bandwidth) analysis. In this chapter, benchmarks are used to clarify
and expand the information available to the user about the architecture’ cache coherence protocol.

This chapter includes the results of applying this strategy to the NXP QorIQ T4240 architecture.
This architecture is documented as implementing a MESI cache coherence protocol, and as able to
perform cache intervention. The application of the cache coherence protocol identification strategy
on this architecture reveals a MESIF protocol. The work presented in this chapter has been published
in [48].

The identification strategy uses benchmarks to identify a cache coherence protocol by comparing
them with the protocol the user believes it to be. In order to so, it is important to distinguish the
following three notions:

Definition 37 (The Architecture’s Coherence Protocol) The actual coherence protocol im-
plemented by the architecture, which is the one the applicant needs to identify. It may not be directly
observable.

Definition 38 (The Observed Coherence Protocol) The observed cache coherence protocol
is the partial view of the architecture’s coherence protocol that is observed by performing a given
set of benchmarks. As these benchmarks cannot be exhaustive, the observed coherence protocol is
potentially incomplete.

Definition 39 (The Hypothetical Coherence Protocol) The user believes the architecture to
be implementing a certain protocol. This corresponds to the hypothetical cache coherence protocol.
It originally comes from the user’s understanding of the architecture’s documentation.

The purpose of the identification strategy is to show that the hypothetical protocol is indeed the
architecture’s cache coherence protocol. This verification is done by resolving the observed cache
coherence protocol and analyzing it through comparison with the hypothetical protocol.

The chapter starts by a presentation of the strategy itself, in an architecture-agnostic manner
(Section 8.1), then follows up with its application to the NXP QorIQ T4240 architecture: Section 8.2

105

106 CHAPTER 8. IDENTIFYING CACHE COHERENCE

presents how the benchmarks were implemented, Section 8.3 presents a hypothetical MESI protocol
implementation, Section 8.3.1 shows the result of applying the strategy until the point where the
protocol is found to be a mismatch, Section 8.4 presents a hypothetical MESIF protocol implemen-
tation, and Section 8.4.1 shows the results pointing out the slight discrepancies in implementation
choices.

8.1 Identification Strategy
This section presents the strategy used to identify the cache coherence protocol of an architecture. As
a reminder from Chapter 3, cache coherence protocols are defined around a single memory element.
Thus, the identification strategy only considers a single memory element in its process. Moreover,
the following hypotheses are made:

• The architecture encodes stable cache states using binary flags attached to each cache line (see
Definition 46).

• The user is able to observe cache line attributes (at least the aforementioned binary flags and
the associated memory element address).

In effect, this identification strategy tests whether, as far as the user’s observation capabilities
allow, the architecture’s cache coherence protocol implements all (and only) the behaviors of the
hypothetical cache coherence protocol. The identification strategy is split in several steps, described
hereafter.

8.1.1 Defining the Hypothetical Cache Coherence Protocol
The first step is to define the hypothetical cache coherence protocol using the notation presented in
Chapter 3. A good starting point is to use the information available in the architecture’s documen-
tation in order to know which cache coherence protocol to define.

Taking for example the NXP QorIQ T4240 architecture, the user would consult the architecture’s
documentation [26]. This document does not indicate the cache coherence protocol in use on the
architecture. However, it does mention cache intervention: queries which generate a cache hit on
another cache can be made to provide the data reply. Reading on the core’s documentation [25],
the L2 cache coherency model is indicated to be the MESI protocol. As a result, in this case, the
hypothetical cache coherence protocol would be a MESI protocol.

8.1.2 Defining the Observable Cache Coherence Protocol
The observable cache coherence protocol is the amalgam of the results from each performed bench-
mark. This subsection defines each relation involved in the observable protocol, and points out
their equivalent from Chapter 3, when applicable. Indeed, the definitions from Chapter 3 cannot be
re-used as-is for the observed cache coherence protocol, because the observations are done on binary
flags and performance monitors, whereas the notations in Chapter 3 are more abstract.

Definition 40 (Observable Coherence State) On a real architecture, each line of a cache or
coherence manager has k binary flags providing information on its state. We can then define CB :
Ccs → Addr → Bk, which indicates the valuation of these binary flags for a given memory element
(see Definition 17) in a given cache (see Definition 20), and MB : Addr→ Bk the coherence manager
equivalent.

8.1. IDENTIFICATION STRATEGY 107

Example 19 (Observable Coherence State) In an architecture with two caches (CC1 and CC2),
an observable coherence manager, k = 3, and 42 being the address of a memory element, observations
may reveal CB(CC1, 42) = 〈true, true, false〉 at some point.

If the caches and the coherence manager do not use the same number of binary flags to encode
states, k is considered to be the maximum of the two, with the extra flags being set to false.

Definition 41 (Observable System State) An analogue to System (see Definition 29) can be
made for the observed cache coherence. Given an arbitrary memory element E and cc being the
number of caches in the system, Systemb is the set of all 〈CC1, . . . , CCcc, CM〉 such that: MB(E) =
CM ∧ ∀c ∈ 1..cc, CB(c, E) = CCc.

Example 20 (Observable System State) In the system of Example 19, an example of plausible
observable system state would be:
〈〈true, true, false〉, 〈false, false, false〉, 〈true, false, false〉〉

Definition 42 (Observable System Transitions) reachb is the analog to reach (see Defini-
tion 30) and is declared as reachb : Systemb → Instrcc → set(Systemb).

Example 21 (Observable System Transitions) In the system of Example 19, an example of
plausible observation transition would be:
reachb(〈〈false, false, false〉, 〈true, false, false〉, 〈false, false, false〉〉, 〈load, evict〉) =
{〈〈true, false, false〉, 〈false, false, false〉, 〈false, false, false〉〉}
In this case, all benchmarks performing a load on the first cache and an evict on the second, when
the system was in the given state, only yielded a single resulting system state.

Definition 43 (Monitorable Activity) The architecture’s documentation lists activities that can
be monitored through performance monitors. The activities that can be monitored solely depend on
the architecture, with some architectures not capable of monitoring any activities (see Section 5.3).
The meaning behind each monitored activity is assumed to be understood by the user. The activity
observed on an architecture does not strictly correspond to what is defined as either an event (see
Definition 27) or an action (see Definition 28) in Chapter 3, it might include elements from both,
but is usually something that refers to the outcome of actions.

Example 22 (Monitorable Activity) “L1 Cache Miss” and “External Query” are two examples
of activities that may be monitorable on an architecture.

Definition 44 (Performance Monitors) The observation of the architecture’s activity is done
through performance monitors. A performance monitor holds a number that counts the occurrences
of a certain monitorable activity. Each core is assumed to have its own monitors. With PerfMon the
set of monitors available on every core, ActMon : Systemb → Instrcc → PerfMon → Ncc indicates,
for each core, the number of occurrences of each monitorable activity when performing the given
instructions from a given system state.

Example 23 (Performance Monitor Event) Still considering the system from Example 19, the
following is a plausible example of performance monitors valuation:
ActMon(〈〈true, true, false〉, 〈false, false, false〉, 〈false, true, false〉〉, 〈store, nop〉,
L2 Cache Hits) = 〈1, 0〉
In this case, the benchmark indicates that having the first core perform a store leads to a L2 Cache
Hit in its cache (confirming that the value is there). The other core, which performed nothing,
observes no L2 Cache Hits activity.

108 CHAPTER 8. IDENTIFYING CACHE COHERENCE

8.1.3 Naive Exploration of the Observable Protocol
We have defined how the observable protocol will be described, we now need to construct the partial
view of the architecture protocol. To do so, the first benchmark steps perform a state exploration
on the architecture by executing a single instruction at a time.

The general algorithm for these steps can be seen in Figure 8.1. Starting from the initial situation
where all cache controllers consider the memory element to be invalid (init), it explores observable
system states (see Definition 41) by applying a single instruction on one of the cache and recording
both the resulting observable system states and a count of the monitorable activities on each cache
(see Definition 44).

The steps being performed at each iteration of this naive exploration correspond to the functions
state search (Step 1), decode (Step 2), and monitors (Step 3). In order to facilitate readability, these
functions are defined in their respective sub-section following this one.

i n i t s t a t e s e a r c h ()
i n i t d e c o d e ()

DstStates ← {init}
WaitList ← {init}
while (WaitList 6= ∅) :

S rcState ∈WaitList ;
WaitList ←WaitList \ SrcState ;
foreach k ∈ 1 . . cc

foreach i n s t r ∈ {load, store, evict}
S y s I n s t r u c t i o n ← s i n g l e i n s t r u c t i o n o n (i n s t r , k)
〈DstState , PerformanceCounters〉 ← benchmark(SrcState , S y s I n s t r u c t i o n)

h a n d l e s t a t e s e a r c h (SrcState , Sys In s t ruc t i on , DstState) // Step 1
handle decode (SrcState , Sys In s t ruc t i on , DstState) // Step 2
handle monitors (SrcState , Sys In s t ruc t i on , PerformanceCounters) // Step 3

i f DstState 6∈ DstStates
DstStates ← DstStates ∪ {DstState}
WaitList ← WaitList ∪ {DstState}

Figure 8.1 – General State Exploration Algorithm

Definition 45 (The Benchmark Function) The benchmark function, benchmark : Systemb →
Instrcc → (Systemb × (PerfMon → Ncc)), corresponds to a benchmark being performed on the ar-
chitecture and returns a pair containing the resulting observable stable system state, as well as a
valuation for each of the performance monitors.

Example 24 (The Benchmark Function) An example of result for the benchmark function could
be:
benchmark(〈〈true, true, false〉, 〈false, false, false〉, 〈false, true, false〉〉, 〈store, store〉) =
〈〈〈false, false, false〉, 〈true, true, false〉, 〈false, true, false〉〉,
〈〈L2 Cache Hits, 〈1, 0〉〉, 〈L2 Pushes, 〈1, 0〉〉, 〈L2 Reloads, 〈0, 1〉〉〉 This would indicate that performing
a store instruction on both cores when the system is in the
〈〈true, true, false〉, 〈false, false, false〉, 〈false, true, false〉〉 state results in the system ending
up in the
〈〈false, false, false〉, 〈true, true, false〉, 〈false, true, false〉〉 state, that this also results in the

8.1. IDENTIFICATION STRATEGY 109

first core to observe one L2 cache hit and one L2 Push, whereas the other core observes one L2
reload instead.

While the hypotheses made ensure that cache lines are observable, the coherence manager might
not be. In such cases, all valid coherence manager states must be considered, which can result in
multiple reachable system states. When dealing with this special case, the sequence of instructions
that led to reaching SrcState is used to infer the expected state of the coherence manager when calling
benchmark. This resolves the issue, as it again ensures a single possible reached system state.

8.1.4 State Exploration & Reachability
Step 1 catalogs the observable coherence states (see Definition 46), as well as the valid system
coherence states (see Definition 41).

Definition 46 (Valid Observable Coherence State) It is likely not all combinations of valua-
tions for Bk are valid states (i.e. some combinations may not correspond to any state and are thus
never used, making them invalid). Vs ⊆ Bk denotes the set of all valid states. This makes Vs the
codomain of both CB and MB.

Step 1 (Reachability) To compute Vs, the algorithm shown in Figure 8.1 records all observed
system and coherence states. reachb is built according to the transitions observed during the state
exploration. This is handled by the init state search and handle state search procedures, defined as
follows:
def i n i t s t a t e s e a r c h ()

Vs ← t u p l e t o s e t (init)
Systemb ← {init}

def h a n d l e s t a t e s e a r c h (SrcS ta te , S y s I n s t r u c t i o n , D s t S t a t e)
reachb (SrcS ta te , S y s I n s t r u c t i o n) ← {D s t S t a t e }
i f D s t S t a t e 6∈ Systemb

Vs ← Vs ∪ { t u p l e t o s e t (D s t S t a t e)}
Systemb ← Systemb ∪ {D s t S t a t e}

8.1.5 Matching Observed States with Hypothetical States
The states and transitions observed in Step 1 are then compared with those expected to be observed
on an architecture implementing the hypothetical protocol. Step 2 binds the observed coherence
states with the stable states from the hypothetical protocol, thus creating decode (see Definition 47).

Definition 47 (Decode Relation) With Sc
s ∪ Sm being the set of all hypothetical stable coherence

states (see Definitions 21 and 26 from Chapter 3), a relation to link Vs and hypothetical stable
coherence states can be defined as: decode ⊆ Vs × (Sc

s ∪ Sm). This relation matches elements of Vs
to their corresponding element in Sc

s ∪ Sm. This can, in turn, be used to link Cs (see Definition 24)
and Ms (see Definition 26) to CB and MB, respectively.

Example 25 (Decode Relation) In a system tested for an MSI protocol, with k = 3 the following
is a possible decode relation:
decode = {〈〈false, false, false〉, I〉, 〈〈true, false, false〉, S〉, 〈〈true, true, false〉, S〉,
〈〈true, true, true〉, M〉, 〈〈true, false, true〉, M〉}

110 CHAPTER 8. IDENTIFYING CACHE COHERENCE

Definition 48 (Injective Relation) A relation R ⊆ A×B is said to be injective iff:
∀x ∈ A, ∀y ∈ B, ∀z ∈ A, (〈x, y〉 ∈ R ∧ 〈z, y〉 ∈ R) =⇒ (x = z)

Part of the flags in Vs may be unrelated to the coherency state of the memory element. As a
result, multiple elements of Vs distinguished only by these flags unrelated to cache coherence can be
associated with the same hypothetical coherence state. Thus, decode is not necessarily an injective
relation (see Definition 48), and whether it is nor not does not invalidate the hypothetical protocol.

Step 2 (Observed Coherence State Decoding) The matching between observed and hypothet-
ical states is done during the state exploration algorithm described in Figure 8.1, by constructing
decode according to what the hypothetical protocol indicates should be the system state upon appli-
cation of the given instruction on the already decoded initial system state. The system starts in a
state where no cache holds the memory element, nor does the coherence manager. Thus, the init
state can already be decoded. This step is performed by the init decode and handle decode procedures,
defined below:
def i n i t d e c o d e ()

decode← 〈init, < I, . . . , I >〉

def h a n d l e d e c o d e (SrcS ta te , S y s I n s t r u c t i o n , D s t S t a t e)
〈SrcSta te , DecodedSrcState 〉 ∈ decode
{DecodedDstState } ← reach(DecodedSrcState , S y s I n s t r u c t i o n)
decode← decode ∪ {〈DstSta te , DecodedDstState〉}

Definition 49 (Surjective Relation) A relation R ⊆ A×B is said to be surjective iff:
∀b ∈ B, ∃a ∈ A s.t. (〈a, b〉 ∈ R)

Property 4 (Decode must be surjective) In any successful match, decode must be surjective
(see Definition 49).

In a successful match, the hypothetical protocol cannot feature stable coherence states that are
not found on the architecture. In other words, decode has to be surjective (Property 4).

Definition 50 (Functional relation) A relation R ⊆ A×B is said to be functional iff:
∀x ∈ B, ∀y ∈ A, ∀z ∈ B, (〈x, y〉 ∈ R ∧ 〈x, z〉 ∈ R) =⇒ (y = z)

Property 5 (Decode is functional) In any successful match, the decode relation also needs to
be functional (see Definition 50).

Furthermore, for the identification to be successful, the decode relation also needs to be functional
(Property 5). Indeed, a same element of Vs pointing to more than one element of Sm∪Sc is indicative
of a transition not leading to the same destination stable coherence state in the observed protocol
compared to the hypothetical protocol. In other words, it would prove there is a mismatch.

Property 6 (Reachability simulation) In any successful match, reach must simulate reachb
through decode.
∀i ∈ Instrcc, ∀s ∈ Systemb, ∀d ∈ Systemb, ∀s′ ∈ System, (d ∈ reachb(s, i)) ∧ (〈s, s′〉 ∈
decode) =⇒ ∃d′ ∈ System s.t. ((〈d, d′〉 ∈ decode) ∧ (d′ ∈ reach(s′, i)))

At this point, the identification strategy may be able to detect a mismatch between the two
protocols:

8.1. IDENTIFICATION STRATEGY 111

• If decode does not bind any observed stable cache state to one of the hypothetical stable states,
despite the hypothetical protocol allowing this state to have been reached by the algorithm
of Figure 8.1 given the used means of observation. This corresponds to a violation of either
Property 4 or Property 6.

• If decode binds the same observed stable cache state to multiple hypothetical stable states, a
violation of Property 5. This is because of the hypotheses of cache states being fully encoded
through observable binary flags, and of not having redundant hypothetical stable states. In-
deed, this observed stable cache state would need to behave as all the hypothetical states it
matches, despite them being assured to each behave differently in some way.

If Properties 4, 5, and 6 are verified, no mismatch has been detected so far. However, bi-simulation
between reach and reachb through decode cannot be ensured at this point, as many of the transi-
tions of reach have not been explored due to the restriction to a single instruction per benchmark.

8.1.6 Activity Comparison
To confirm the matching between observed and hypothetical coherence states, the activities detected
for each of the observed stable states have to be compared to the ones expected from the hypothetical
cache coherence protocol, according to the available performance monitors. Once the user has
determined the expected results (see Definition 51), Step 3 compares them to those observed on the
architecture.

Definition 51 (Performance Monitor Oracles) ActHyp
Mon : System → Instrcc → PerfMon →

Ncc is the analogue of ActMon applied to the hypothetical cache coherence protocol. ActHyp
Mon thus

serves as an oracle, indicating what ActMon is expected to yield for the cache coherence protocols to
match.

Example 26 (Performance Monitor Oracles) Testing for the MSI protocol defined in Chap-
ter 3 on a system with two caches and a coherence manager, an example of performance monitor
oracle would be:
ActHyp

Mon(〈I, I, I〉, 〈load, nop〉,External Queries) = 〈0, 1〉 This would correspond to the second core
observing one external query (and the first core observing none) when performing a load on the first
cache when the system is in the 〈I, I, I〉 state.

Step 3 (Activity Matching) To compute ActMon, the exploration algorithm queries the perfor-
mance monitors after each transition, as they hold the number of occurrences of each monitored
activity. This step is performed by the handle monitors procedure, defined below:
def h a n d l e m o n i t o r s (SrcS ta te , S y s I n s t r u c t i o n , PerformanceCounters)

ActMon (SrcS ta te , S y s I n s t r u c t i o n) ← PerformanceCounters

Property 7 (Activity Simulation) In any successful match, the observed performance monitor
values correspond to what the hypothetical cache coherence protocol would generate:
∀o ∈ Systemb, ∀act ∈ Instrcc, ∀mon ∈ PerfMon, ∀o′ ∈ System, 〈o, o′〉 ∈ decode =⇒
ActMon(o, act,mon) = ActHyp

Mon(o′, act,mon).

The results of Step 3 should verify Property 7. For any monitor contradicting this property, the
user must either find the reason behind the mismatch, or consider the hypothetical cache coherence
protocol as disproved.

112 CHAPTER 8. IDENTIFYING CACHE COHERENCE

As decode is not required to be an injective relation, it is possible for Property 7 to be verified
by some observed stable states, despite other observed stable states bound to the same hypothetical
state state violating the property. This is still sufficient to disprove the hypothetical protocol.
Indeed, in such cases, if the monitored activity is relevant to cache coherence, the violating observed
stable states actually correspond to a different stable state than the one they are bound to. This
other stable state might even not be any of the one currently found in the hypothetical protocol.

By the end of Step 3, if the hypothetical protocol has not been disproved, the hypothetical
protocol replicates all observed coherence behaviors. This completes the first naive exploration
of the architecture’s cache coherence mechanisms. To confirm that the architecture implements
the hypothetical protocol’s behaviors, the next step will perform a follow-up exploration, this time
guided by the hypothetical coherence protocol.

8.1.7 Exploration Guided by Hypothetical Protocol
Definition 52 (Stable State Change Path) A stable state change path is a path between two
stable states of the cache controller protocol definition table. It is formed of a stable state followed by
a cycle-free sequence of transient states terminated by a stable state, with an event (see Definition 27)
separating every state. The two stables states in a path may in fact be the same one. Transitions
without any action (cells noted − in the tables) are not allowed within a path.

Example 27 (Stable State Change Path) An example of stable state change path for the MSI
protocol defined in Chapter 3 is: M evict−−−→ MIB GetM−−→ IIB Qryown−−−→ I

This next step of the identification process verifies whether the architecture’s cache coherence
protocol replicates all of the hypothetical protocol’s behaviors. It relies on an exhaustive list of
hypothetical stable state change paths (see Definition 52), which can be generated by the tool
described in Section 9.9. The general idea is simple: reproduce each of these paths on the architecture
and compare the observations with what the hypothetical protocol indicated should have happened.
On the other hand, implementation of this step is more difficult: the user has to perform benchmarks
that will reproduce a sequence of events in the right order. Unlike in the naive exploration:

• Multiple instructions may be used simultaneously in order to generate the desired events.
Furthermore, each benchmark may involve sequences of instructions, instead of just applying
a single instruction and observing the results.

• The analysis is focused on a single cache, not the whole system. Instead, the other caches are
used to generate the appropriate events.

• The exploration is not blind: the set of benchmarks to perform comes from the hypothetical
protocol. The main difficulty lies in obtaining the correct sequence of events when implement-
ing the benchmark.

Step 4 (Complex Behaviors Validation) For each stable state change path, implement and per-
form a benchmark. Record the resulting system state, and performance monitors. Compare the results
with what the hypothetical protocol indicates should be found.

Once this exploration is completed, if all the hypothetical behaviors have successfully been repli-
cated on the architecture, then the architecture’s cache coherence protocol is guaranteed to imple-
ment all of the hypothetical cache coherence mechanisms. Combined with the results from the naive

8.2. BENCHMARK IMPLEMENTATION 113

exploration showing that all the observed behaviors are implemented by the hypothetical coher-
ence protocol, this strategy ensures the user has a good understanding of the coherence protocol
implemented by the architecture.

One possibility is for the benchmarks performed in this guided exploration to have revealed new
observable states. If such is the case, the fact that these states were not found previously in no
way prove that they will invalidate the hypothetical coherence protocol. Neither can they simply be
assumed to be exactly what the hypothetical protocol expects them to be. Indeed, the behavior of
such new observed states must still be compared to what the hypothetical protocol expect. In effect,
the steps of the naive exploration have to be applied to these newly discovered observable states in
order to validate that they match the hypothetical states the guided exploration would bind them
to. If no mismatch occurs at that point, the identification process is completed.

The next section applies this strategy to the NXP QorIQ T4240 architecture, where performing
the naive exploration reveals a mismatch between hypothetical and observed protocol.

8.2 Benchmark Implementation
This section explains how the strategy presented in Section 8.1 has been implemented on the NXP
QorIQ T4240 architecture.

8.2.1 The NXP QorIQ T4240

CoreNet Coherency Fabric

Real-Time Debug

Security
5.0

Pattern
Match
Engine

2.0

RMAN

DCE
1.0

Queue
Mgr.

Buffer
Mgr.

Peripheral Access

Management UnitPAMU PAMU PAMU PAMU

16-Lane 10 GHz SerDes 16-Lane 10 GHz SerDes

64-bit DDR3/3 L

Memory Controller

64-bit DDR3/3 L

Memory Controller

64-bit DDR3/3 L

Memory Controller

512 KB CoreNet®

Platform Cache

512 KB CoreNet

Platform Cache

512 KB CoreNet

Platform Cache

Parse, Classify,

Distribute

Frame Manager

1GE

1GE

HiGig DCB

1GE

1GE

1GE

1/
10G

1/
10G

1GE

Parse, Classify,

Distribute

Frame Manager

1GE

1GE

HiGig DCB

1GE

1GE

1GE

1/
10G

1/
10G

1GE

2 x USB 2.0 w/PHY

Security Monitor

Security Fuse Processor

IFC

Power Management

SD/MMC

4 x DUART

4 x I2C

SPI, GPIO

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

2 MB Banked L2

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

Core Complex (CPU, L2, L3 Cache) Basic Peripherals and Interconnect Accelerators and Memory Control Networking Elements

S
R

IO

S
R

IO

P
C

Ie

P
C

Ie

P
C

Ie
®

P
C

Ie

Watchpoint
Cross

Trigger

Perf.

Monitor
Trace

Aurora

S
A

T
A

 2
.0

S
A

T
A

 2
.0

In
te

rla
ke

n
LA

-1

3 x

DMA

RapidI O

Message

Unit

T1 T2

Power
Architecture®

e6500

T1 T2

Power
Architecture

e6500

T1 T2

Power
Architecture

e6500

T1 T2

Power
Architecture

e6500

Figure 8.2 – Architecture Block Diagram (Figure taken from [26])

Figure 8.2 gives an overview of the NXP QorIQ T4240 architecture, a PowerPC featuring twelve
e6500 cores, each of which is capable of running two simultaneous threads. The cores are equally

114 CHAPTER 8. IDENTIFYING CACHE COHERENCE

distributed among three clusters, with one shared 2MB L2 cache per cluster. These three L2
caches coordinate and access memory through a complex interconnect called the CoreNet Coherency
Fabric. According to their processor’s documentation, [25], these clusters implement the MESI
cache coherence protocol. The architecture’s documentation, [26] indicates that the caches are able
to perform cache intervention (caches may provide a data reply if they hold the relevant memory
element).

CoreNet Coherency Fabric

64-bit DDR3/3 L

Memory Controller

32 KB
I-Cache

Real-Time Debug

Perf.

Monitor

T1

Power
Architecture®

e6500

2 MB Banked L2

Figure 8.3 – Components used in the Identification Process

In order to limit the mechanisms observed to the L2 cache coherence, the architecture’s L1 Data
caches were deactivated during this process. Furthermore, only a single core (and execution thread)
per cluster (and thus, per L2 cache) was considered. In an attempt at reducing the impact of
instruction fetching, the L1 Instruction caches stayed enabled. Lastly, the system only used a single
memory controller. Thus, the resulting configuration resembled the one shown in Figure 8.3, the
remaining hardware configuration having been left to what it is by default.

Limitation 1 (No Observation Available from the Coherence Manager) The coherence man-
ager, if one is present, cannot be observed directly through the available means.

8.2.2 Naught
To perform the benchmarks, a small bare-metal library was created: Naught1. It simplifies access
to the architecture’s performance monitors by providing C functions equivalent to those used in
the algorithm of Figure 5.8a. Naught offers a very crude implementation of barriers, making it
possible to synchronize the code running on each core. It also has a similarly crude implementation
of semaphores, ensuring that any output made by the software does not end up garbled.

After some testing, the architecture’s monitors were found to be slightly imprecise: even with all
monitors of a core being set to track the same activities, they would yield slightly different results
(staying generally within a difference of 10 recorded occurrences). In order to address this issue, and

1https://github.com/nsensfel/naught

https://github.com/nsensfel/naught

8.2. BENCHMARK IMPLEMENTATION 115

to reduce the impact of the extra activities performed by Naught’s code logic (loop iterator increase,
for example), the benchmarks are applied over a set of 8000 memory elements.

All cores access these same 8000 memory elements. Each memory element has a size correspond-
ing to that of a cache line, and is properly aligned so as to be fully stored within one (i.e. no false
sharing is occurring, see Appendix A).

1 SrcSta t e s = [STATE A, STATE B, STATE C] ;
2 r e a c h s t a t e s (co r e id , S r cS ta t e s) ;
3 s t a r t m o n i t o r s () ;
4 S y s I n s t r u c t i o n = [INSTR A , INSTR B , INSTR C] ;
5 perform (i n s t r u c t i o n s [c o r e i d]) ;
6 j o i n (b a r r i e r) ;
7 s t o r e m o n i t o r r e s u l t s () ;

Figure 8.4 – Implementation of the benchmark function

The benchmark being run on the architecture corresponds to an implementation of the benchmark
function (see Definition 45), and is executed by all cores of the architecture in parallel. In effect, this
corresponds to a single iteration of the inner loop from Figure 8.1. Figure 8.4 provides an overview
of the benchmark implementation.

[I , I , I]start SrcStates [?, ?, ?]reach state perform

Figure 8.5 – Evolution of caches coherence states

The architecture starts in its initial state (init), and must thus reach the SrcStates prior to
the instructions being executed (see Figure 8.5). This is done by reach states and explained in
Section 8.2.3. Once the caches have reached the relevant states, the start monitors function enables
the performance monitors, as detailed in Section 8.2.4. The relevant instructions (SysInstruction) can
then be executed. The chosen assembly instructions are explained in Section 8.2.5. A barrier is used
to ensure all cores have completed their instructions before results are reported. store monitor results
is explained in Section 8.2.6, and is how the performance monitors and resulting system state are
retrieved by the user.

8.2.3 Initializing the Caches (Lines 1 & 2 of Figure 8.4)
SrcStates indicates, for each of the three caches, the stable coherence state that the memory element
must be in before the measures start. There are two possible cases:

• The SrcStates is [INVALID, INVALID, INVALID], and nothing needs to be done.

• SrcStates was previously reached somehow, and a sequence of instructions for each core leading
to it is thus known and was added to the reach states function.

In effect, the reach states function follows similar idea to the one from Section 5.2.2: the different
cores cannot simply reach their target state by themselves, and must thus be coordinated.

116 CHAPTER 8. IDENTIFYING CACHE COHERENCE

The reach states initially does nothing, and instructions are added as new system states are reached
so that they may be reached again from the init ([INVALID, INVALID, INVALID]) state. Let us now
consider the reach states function as it is defined after the application of the identification process on
the T4240 has completed.

1 ope ra t i on a () ;
2 j o i n (b a r r i e r a) ;
3 ope ra t i on b () ;
4 j o i n (b a r r i e r b) ;
5 o p e r a t i o n c () ;
6 j o i n (b a r r i e r c) ;

Figure 8.6 – Overview of the reach states function

Figure 8.6 provides an overview of the reach states function. This function is performed by each
core, but the operation a(), operation b(), operation c() are defined depending on both the executing
core’s target SrcStates and its left neighbor’s.

At the end of the identification process, the reach states function was defined with to the following
rules. If the core has to:

• Reach Modified: operation a() writes the memory elements, the other operations do nothing.

• Reach Exclusive: operation a() reads the memory elements, the other operations do nothing.

• Reach Shared: operation a() reads the memory elements, the other operations do nothing.

• Reach Forward: operation a() and the others do nothing, but operation b() reads the memory
elements.

• Reach Invalid: Given the state of the cache on the left (computed using modulo(core id − 1, 3)):

– Modified: nothing is done.
– Exclusive: nothing is done.
– Shared: operation b() reads the memory elements and operation c() empties the cache.
– Forward: operation a() reads the memory elements and operation c() empties the cache.
– Invalid: nothing is done.

8.2.4 Enabling the Performance Monitors (Line 3 of Figure 8.4)
Property 8 (T4240 Performance Counters) Below is a list of the monitorable activities of in-
terest, as well as their meaning based on what I understand them to be.

• L2 Data Accesses Accesses made to the L2 cache.

• L2 Snoop Hits External queries on a memory element held by this cache.

• L2 Snoop Pushes Replies given to snooped queries.

• External Snoop Requests External queries.

• L2 Reloads From CoreNet Replies received.

8.2. BENCHMARK IMPLEMENTATION 117

• L2 Snoops Causing MINT Replies to a snooped query when holding the memory element
in a dirty (modified) state.

• L2 Snoops Causing SINT Replies to a snooped query when holding the memory element in
a clean (unmodified) state.

• CPU Cycles

The start monitors() operation configures each of the available performance counters of the core to
track the occurrence of different monitorable activities (see Property 8), then resets their value and
activates them. Unlike with the papers in Chapter 5, all cores record the activities, not just a single
one. Since there are 8 different activities to monitor and each core has four performance monitors,
two runs of each benchmark is necessary in order to capture all the relevant information.

8.2.5 Performing Instructions (Lines 4 & 5 of Figure 8.4)
The perform(instructions[core id]) call will perform either load, store, or evict on each of the 8000
memory elements, depending on which instruction was set for core id in the SysInstruction array.

The NXP QorIQ T4240 architecture does not feature the evict instruction. The closest avail-
able instruction (dcbi, Data Cache Block Invalidate) results in the element being evicted from all
the caches, which is significantly different, unless that element has been marked as ignored by cache
coherence (which is then pointless for the purposes of cache coherence identification). Since the
benchmarks employed here are very small programs dealing almost exclusively with the set of exper-
imental memory elements, the application of an evict on all of the memory elements was replaced
by a simple invalidation of the whole local cache, which still does involve cache coherence.

The store is implemented using stw (Store Word), which writes a zero to the memory element.
The load is implemented using lwz (Load Word and Zero), which writes a reads the memory

element’s value and stores it into an otherwise unused register.

8.2.6 Data Recording (Lines 6 & 7 of Figure 8.4)
Once every core has completed their operations and join(barrier), the store monitor results () prints the
number of recorded values for each type of monitorable activity on each core. This data is retrieved
through a serial connection.

Property 9 (T4240 Observable Flags) Cache flags can be observed using CodeWarrior, the of-
ficial debugging suite for this architecture. The observed cache line Boolean flags have the following
names: Dirty, Valid, Share, Exclusive, and LastReader.

Using CodeWarrior, the state of the caches is also recorded and stored in files, so that the flags
can be analyzed afterwards. Because the cache replacement policy comes into play, the content of
each cache is not simply that of the 8000 memory elements. Furthermore, the caches can seemingly
contain multiple lines for the same memory element, as long as at most one indicates a state other
than INVALID. The flags (see Property 9) are easily extracted using a simple Python script, as
CodeWarrior allows exporting the content of all caches to plain-text CSV files.

This observable information is exactly what is needed for the new entries of both Systemb and
ActMon.

The next section starts a description of the application of the identification strategy on the NXP
QorIQ T4240 using this benchmark implementation.

118 CHAPTER 8. IDENTIFYING CACHE COHERENCE

8.3 Hypothetical Split-Transaction MESI Protocol

Cache Controller

State Core Request Interconnect
Access Data Reply Received Queries

load store evict data data-e GetS GetM PutM
I GetS?, ISBD GetM?, IMBD hit - - -
ISBD stall stall stall IEoSD ISB IEB - - -
ISB stall stall stall S - -

ISD stall stall stall
r← nc,

S

r!data,
m!no-data,
r← nc, S

- ISDI

IEoSD stall stall stall S E r← s, ISD r← s, ISDI

ISDI stall stall stall
load hit,
r← nc,

I

load hit,
r← nc,
r!data,

m!no-data,
I

- -

IMBD stall stall stall IMD IMB - - -
IMB stall stall stall M - - -
IMD stall stall stall M r← s, IMDS r← s, IMDI

IMDI stall stall stall
store hit,
r!data,

r← nc, I
- -

IMDS stall stall stall

store hit,
r!data,
m!data,

r← nc, S

- IMDSI

IMDSI stall stall stall

store hit,
r!data,
m!data,

r← nc, I

- -

S hit GetM?, SMBD hit, I - I
SMBD hit stall stall SMD SMB - IMBD

SMB hit stall stall M - IMB

SMD hit stall stall store hit, M r← s, SMDS r← s, SMDI

SMDI hit stall stall
store hit,
r!data,

r← nc, I
- -

SMDS hit stall stall

store hit,
r!data,
m!data,

r← nc, S

- SMDSI

SMDSI hit stall stall

store hit,
r!data,
m!data,

r← nc, I

- -

M hit hit PutM?, MIB m!data,
s!data, S s!data, I

MIB hit hit stall m!data, I
m!data,

s!data, IIB s!data, IIB

IIB stall stall stall I - - -

E hit hit, M
PutM?
EIB

m!no-data,
s!data, S s!data, I

IEB stall stall stall E - - -

EIB hit hit, MIB stall m!no-data, I
m!no-data,
s!data, IIB s!data, IIB

Figure 8.7 – Description of the cache controller for the MESI protocol

Following the information available in documentation of the architecture ([26] and [25]), the

8.3. HYPOTHETICAL SPLIT-TRANSACTION MESI PROTOCOL 119

Coherence Manager

State Received Queries Data Reply

GetS GetM
PutM

(Owner)
PutM

(Other) data no-data

I read, s!data-e, o← s, M s!data, o← s, M -
M o← nc, SD o← s o← nc, ID - write, IoSB IoSB

ID stall stall stall - write, resume, I resume, I
SD stall stall stall - write, resume, S resume, S
IoSB o← nc, S o← s o← nc, I -
S read, s!data s!data, o← s, M -

Figure 8.8 – Description of the coherence manager for the MESI protocol

first step is to define an ambiguity-free description of the MESI protocol (Figures 8.7 and 8.8).
Introduced in [41], the MESI protocol adds a fourth stable state, Exclusive, which indicates that not
only does the cache controller have read-only permissions, but also that no other cache currently
holds any permission to access the memory element. This allows the cache controller to upgrade to
read-and-write permissions without having to perform a costly communication. Just as it is used to
keep track of whether a cache holds a read-and-write copy of a memory element in the MSI protocol,
this definition of the MESI protocol uses the coherence manager to detect when a cache can be said
to be the sole owner of a memory element.

This version of the MESI protocol uses three types of data replies: data, data-e, and no-data.
data indicates that the value associated with the memory element is sent. By sending a no-data
reply, cache controllers can indicate to the coherence manager that the memory element has been
discarded (its value is not part of the reply). The coherence manager can send data-e replies, which
are equivalent to data, with the added information that the recipient is its sole owner.

Here are some examples of remarkable behaviors exhibited by this definition of the MESI protocol.

Example 28 (Reaching E) To hold a memory element in the E state, a cache must be the only
one to have a copy of that memory element. The caches rely on the coherence manager to know when
it is the case. The coherence manager uses its I state to mark memory elements that are sure not to
be in any caches. Thus, if no cache controllers hold the memory element and the coherence manager
is in I, whenever a core loads the data it becomes E in its cache, receiving the data message leads
it to the E state instead of the S state.

It is important to notice that it is not easy for the coherence manager to detect whether a cache
controller is the sole owner. Indeed, the coherence manager is not always able to know that all caches
have evicted their copy of a memory element: in Figure 8.7, the cache controller’s table indicates
that an eviction from S does not lead to any message. The only way for the coherence manager to
return to the I state is for a cache to evict its copy of a memory element in either the E or M state
without another cache asking for a copy.

Example 29 (Sharing from E) From the coherence manager’s point of view, there is no difference
between a cache controller owning a memory element in the E state and one in the M state. Thus,
if there is a cache owning a copy of a memory element in the E state, the coherence manager will
assume that this cache may have modified the value and that the main memory no longer holds the
correct value. As a result, the cache holding the Exclusive copy of the memory element will transfer
it to any other cache that asks for it. If this is caused by another cache demanding a read-only copy
(GetS), the coherence manager will expect an update on the value of the memory element. This

120 CHAPTER 8. IDENTIFYING CACHE COHERENCE

update can come in two forms: either the cache that exclusively held the memory element made a
modification (in which case it would have moved to the Modified state) and sends a data message, or
it has not and it sends a no-data message.

8.3.1 Strategy Application for a MESI Protocol
This section presents the application of the naive exploration of the strategy being applied to the
NXP QorIQ T4240 architecture. The steps presented here have a slight deviation from those indi-
cated in the strategy description. Indeed, the strategy saw an improvement between its application
as described here and its addition to the thesis: at the time, the absence of observable coherence
manager led to its state being ignored rather than it being assumed to match the hypothetical proto-
col. The updated strategy detects mismatches faster. In this application of the strategy, a mismatch
in coherence manager behavior is likely to only be detected during the guided exploration.

8.3.2 Coherence State Matching

〈Load,-,-〉 〈Store,-,-〉 〈Evict,-,-〉

Origin Destination Destination Destination
Observ Match Observ Match Observ Match

〈Ib,Ib,Ib〉 〈Eb,Ib,Ib〉 〈E,I,I〉

〈Mb,Ib,Ib〉 〈M,I,I〉

〈Ib,Ib,Ib〉 〈I,I,I〉〈Eb,Ib,Ib〉 〈Eb,Ib,Ib〉 〈E,I,I〉
〈Mb,Ib,Ib〉 〈Mb,Ib,Ib〉 〈M,I,I〉
〈Ib,Ib,Mb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,Mb〉 〈I,I,M〉
〈Ib,Ib,Eb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,Eb〉 〈I,I,E〉
〈ϕb,Ib,Ib〉 〈ϕb,Ib,Ib〉 〈S,I,I〉 〈Ib,Ib,Ib〉 〈I,I,I〉
〈χb,ϕb,Ib〉 〈χb,ϕb,Ib〉 〈S,S,I〉 〈Ib,ϕb,Ib〉 〈I,S,I〉
〈χb,χb,ϕb〉 〈χb,χb,ϕb〉 〈S,S,S〉 〈Ib,χb,ϕb〉 〈I,S,S〉
〈ϕb,χb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,χb,χb〉 〈I,S,S〉
〈ϕb,χb,Ib〉 〈ϕb,χb,Ib〉 〈S,S,I〉 〈Ib,χb,Ib〉 〈I,S,I〉
〈Ib,Ib,ϕb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,ϕb〉 〈I,I,S〉
〈χb,Ib,Ib〉 〈χb,Ib,Ib〉 〈S,I,I〉 〈Ib,Ib,Ib〉 〈I,I,I〉
〈Ib,Ib,χb〉 〈ϕb,Ib,χb〉 〈S,I,S〉 〈Ib,Ib,χb〉 〈I,I,S〉
〈Ib,ϕb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,ϕb,χb〉 〈I,S,S〉
〈Ib,χb,χb〉 〈ϕb,χb,χb〉 〈S,S,S〉 〈Ib,χb,χb〉 〈I,S,S〉
〈χb,χb,Ib〉 〈χb,χb,Ib〉 〈S,S,I〉 〈Ib,χb,Ib〉 〈I,S,I〉

Figure 8.9 – T4240 L2 Cache state transitions
.

Applying Step 1 of Figure 8.1 on the T4240 yields the stable state transitions summarized in the
Origin and Observ columns of Figure 8.9. The Origin column corresponds to the observed system
state in Systemb prior to the operation being performed, and each Observ corresponds to the element
of Systemb observed upon application of the given instruction (see top row) on the first cache. The
figure covers all the possible sets of stable states for the coherence of a single memory element on
the system’s clusters, since the permutation of two clusters does not impact the cache coherence’s
mechanisms. The transitions, however, are limited to those relevant when only a single operation is
applied across the whole system. Furthermore, this does not account for any state of the coherence
manager, as these cannot be observed, as explained in Limitation 1.

8.3. HYPOTHETICAL SPLIT-TRANSACTION MESI PROTOCOL 121

Once these observations are completed, Step 2 can start: the observed states can be matched
with the hypothetical ones: the observed Mb, Eb, and Ib states perfectly match their M, E, and I
counterparts from the MESI protocol. The S state, however, seems to match our observations of
both the ϕb and Ib states. Indeed, starting from 〈Ib,Ib,Mb〉 and performing a load operation on
the first cluster, leads to two different states, ϕb and χb, where the S state equivalent would have
been expected. The same occurs when starting from 〈Ib,Ib,Eb〉. By itself, this observation is not
sufficient to conclude that there is a discrepancy between hypothetical protocol and the observed
one. Indeed, the two observed states are marked as separate, their difference may very well not
be related to cache coherence (e.g. hint for cache eviction) and the two states may actually simply
correspond to our S state. It is only by comparing how those now exposed two states differ, if at all,
in their behavior that we may conclude whether they represent an inconsistency.

As we go through the different transitions from one stable state to another, we observe that
performing an evict on either ϕb or χb does not affect the other caches’ state, which means that
reaching either 〈χb,Ib,Ib〉 or 〈ϕb,Ib,Ib〉 (or any permutation of these clusters) is possible. In
addition, the previous step showed that there is no way to have a system in which two clusters hold
the same memory element in the ϕb state: the first cluster to reach the ϕb moves to the χb state
upon seeing the other’s query. Neither is it possible to have all three clusters in the χb state: the last
cluster to load from Ib always enters ϕb, and there is no way to reach ϕb other than doing exactly
that.

State Dirty Valid Share Exclusive LastReader
Mb X X
Eb X X
Ib

ϕb X X
χb X X

Figure 8.10 – Observable Coherency Cache States of the T4240 L2 Caches Protocol

A benefit of using CodeWarrior is that the fields defining the state of a cache line are labelled.
Figure 8.10 indicates the fields corresponding to each observed cache state.

8.3.3 Coherence Activity Matching
While having both χb and ϕb mapped to the S state does not contradict the hypothetical protocol,
it does raise suspicions of a protocol mismatch. This suspicion is confirmed by the activity analysis
(Step 3 of Figure 8.1).

Figure 8.11 shows the non-null values returned by the performance monitors when loading a
dataset of 8000 unique memory elements from the Ib state on a cluster, depending on the coherence
state for these memory elements on another cluster. The upper table indicates what is recorded on
the cluster performing the load operations and the bottom table corresponds to what is recorded
on the farthest cluster, hence the symmetry between the two tables of the Origin state column and
that of operation performed. The activity analysis results for 〈Ib,Ib,Ib〉 are given as a reference
point. Indeed, as it was so far assumed that χb and ϕb are equivalent to an S state, the results ought
to have been the same in all the lines of this first table.

The first surprising observation is that the amount of L2D accesses is consistently twice the
expected number. While it is odd and I have not found the reason behind this discrepancy, I chose

122 CHAPTER 8. IDENTIFYING CACHE COHERENCE

〈load, -, -〉

Origin Behavior
Expected Observed

〈Ib,Ib,Ib〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
1166700 CPU Cycles

〈Ib,Ib,ϕb〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
850600 CPU Cycles

〈Ib,Ib,χb〉
8000 L2D Accesses,
8000 Reloads From CoreNet

16000 L2D Accesses,
8000 Reloads From CoreNet,
1172600 CPU Cycles

〈-, -, load〉

Origin Behavior
Expected Observed

〈Ib,Ib,Ib〉 8000 External Snoop Requests 8000 External Snoop Requests

〈ϕb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 L2 Snoop Pushes ,

8000 External Snoop Requests,
8000 SINTs

〈χb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 External Snoop Requests

Figure 8.11 – Focusing on the Activities of ϕb and χb

to not consider it to be a sufficient contradiction of hypothetical protocol, as this factor holds true
for every single one of the benchmarks.

Much more interesting is the hint of truly unexpected activity found in the upper table, where
the 〈Ib,Ib,ϕb〉 benchmark is performed using less CPU cycles than the others. Looking at what
happens on the bottom table for the symmetrical line, it can be seen that the cache holding the
memory elements in the ϕb is actually providing them to the demanding cluster. This is in clear
contradiction with the hypothetical protocol. Furthermore, this is not simply a case of having
different activity for what should be the S state: the 〈χb,Ib,Ib〉 line of the bottom table indicates
that no such thing is happening for memory elements in the χb state. This proves that ϕb and χb are,
in fact, two completely separate stable states. In other words, the NXP QorIQ T4240 architecture
does not actually use MESI as its coherence protocol.

8.4 Hypothetical Split-Transaction MESIF Protocol
As the hypothetical protocol has been invalidated, a new one matching the observations must be
defined. The difference of behavior between ϕb and χb points to a MESIF protocol.

Figures 8.12 and 8.13 show a formal definition of the MESIF protocol. Introduced in [28],
this protocols adds a Forward stable state, which is equivalent to a Shared state with the added
constraint of being responsible for the propagation of the memory element’s current value. This

8.4. HYPOTHETICAL SPLIT-TRANSACTION MESIF PROTOCOL 123

Cache Controller

State Core Request Interconnect
Access Data Reply Received Queries

load store evict data data-e GetS GetM PutM
I GetS?, IFBD GetM?, IMBD hit - - -
IFBD stall stall stall IEoFD IFB IEB - - -
IFB stall stall stall F - -
IEoFD stall stall stall F E r← s, ISD r← s, ISDI

ISD stall stall stall
r?data,
r← nc,

S

r?data,
m?no-data,
r← nc, S

- ISDI

ISDI stall stall stall

load hit,
r?data,
r← nc,

I

load hit,
r?data,
r← nc,

m?no-data,
I

- -

IMBD stall stall stall IMD IMB - - -
IMB stall stall stall M - - -
IMD stall stall stall M r← s, IMDS r← s, IMDI

IMDI stall stall stall
store hit,
r?data,

r← nc, I
- -

IMDS stall stall stall

store hit,
r?data,
m?data,

r← nc, S

- IMDSI

IMDSI stall stall stall

store hit,
r?data,
m?data,

r← nc, I

- -

S hit GetM?, SMBD hit, I - I
F hit GetM?, FMB PutM?, FIB s?data, S s?data, I
SMBD hit stall stall SMD SMB - IMBD

FMB hit stall stall M
s?data,

SMBD
s?data,

IMB

SMB hit stall stall M - IMB

SMD hit stall stall store hit, M r← s, SMDS r← s, SMDI

SMDI hit stall stall
store hit,
r?data,

r← nc, I
- -

SMDS hit stall stall

store hit,
r?data,
m?data,

r← nc, S

- SMDSI

SMDSI hit stall stall

store hit,
r?data,
m?data,

r← nc, I

- -

M hit hit PutM?, MIB m?data,
s?data, S s?data, I

MIB hit hit stall m?data, I
m?data,

s?data, IIB s?data, IIB

IIB stall stall stall I - - -

E hit hit, M PutM?, EIB m?no-data,
s?data, S s?data, I

IEB stall stall stall E - - -

EIB hit hit, MIB stall m?no-data, I
m?no-data,
s?data, IIB s?data, IIB

FIB hit stall stall I s?data, IIB s?data, IIB

Figure 8.12 – Description of the cache controller for the MESIF protocol

124 CHAPTER 8. IDENTIFYING CACHE COHERENCE

Coherence Manager

State Received Queries Data Reply

GetS GetM
PutM

(Owner)
PutM

(Other) data no-data

I read, s?data-e, o← s, M s?data, o← s, M -
M o← s, FD o← s o← nc, ID - write, IoFB IoFB

ID stall stall stall - write, resume, I resume, I
FD stall stall stall - write, resume, F resume, F
IoFB o← s, F o← s o← nc, I - write -
S read, s?data, F s?data, o← s, M -
F o← s o← s, M o← nc, S - write, IoFB IoFB

Figure 8.13 – Description of the coherence manager for the MESIF protocol

makes it possible to avoid reading from the system’s main memory even when multiple caches hold
the same memory element. However, unlike the Exclusive state, it does not allow the cache to
upgrade to a Modified state by itself, since the other caches still do have to be informed that their
copies are out-of-date.

As with any stable state that gives a cache the responsibility of propagating the memory element’s
current value, the challenge lies in determining when a cache can enter that state, and making sure
that the responsibility is properly transferred when the cache leaves it. The coherence manager keeps
track of which cache holds memory elements in the Forward state. As this cache cannot actually
make modifications while in this state, informing the coherence manager that it was left does not
require sending any kind of data message: a simple PutM query broadcast is sufficient.

A cache moving from Forward to Modified still has to broadcast a GetM query and process all
the queries that preceded before proceeding. This is unclear in the definitions of the protocol I
have seen so far, but this version of the protocol assumes that if the cache still is responsible for
the propagation of the memory element when it sees its own GetM query (meaning that it stayed
in the FMB state), then it should be able to simply move to the Modified state without receiving
any data reply. However, if the responsibility was lost (because of either an external GetS or GetM
query), then it will need to re-acquire the current value of the memory element as a data reply
before entering the Modified state.

8.4.1 Strategy Application for a MESIF Protocol
Using the new hypothetical protocol, the identification process can continue. ϕb is now identified as
matching the F state, and it thus renamed Fb. Likewise, the χb state is now named Sb, as it does
appear to correspond to the S state.

Overall, the benchmark results confirm a MESIF protocol, albeit differing in some of the imple-
mentation choices, as explained below.

8.4.2 No store Optimization on F

The hypothetical MESIF protocol considers that performing a store on F does not require a data
reply if no other query occurs simultaneously, since that particular cache is the one in charge of
distributing the value. However, the performance monitors on the T4240 show that the memory
elements are actually received again (CoreNet Reloads) and that the cache holding the memory
elements in the Fb state is not sending them to itself (which would lead to Snoop Pushes activities

8.4. HYPOTHETICAL SPLIT-TRANSACTION MESIF PROTOCOL 125

being observed). As indicated in Section 8.4, whether this optimization is part of the protocol or
not is unclear. This is exactly the kind of difference between implemented and hypothetical protocol
that needs to be known by the architecture’s user when looking for interference causes.

〈store,-,-〉

Origin Behavior
Expected Observed

〈Eb,Ib,Ib〉 8000 L2D Accesses 16000 L2D Accesses,
248532 CPU Cycles

〈Fb,Ib,Ib〉 8000 L2D Accesses
16000 L2D Accesses,
8000 CoreNet Reloads,
252900 CPU Cycles

8.4.3 Odd Results with evict on M

Eviction from Mb yields surprising results. Indeed, if not for the absence of any External Snoop
Requests, these values are what one would expect to see when a cache in the M state sees another
cache’s GetM query. The number of L2D Accesses are not significant in this benchmark since, the
evict instruction is not implemented as a single access but rather as a general eviction of all lines
in that particular cache.

〈evict, -, -〉

Origin Behavior
Expected Observed

〈Eb,Ib,Ib〉 8000 L2D Accesses 42 L2D Accesses,
22400 CPU Cycles

〈Mb, Ib, Ib〉
8000 L2D Accesses,
8000 Snoop Pushes

42 L2D Accesses,
8000 Snoop Hits,
8000 Snoop Pushes,
8000 MINTs,
65700 CPU Cycles

8.4.4 Better Coherence Manager
Because the state of the coherence manager was ignored during the naive exploration in this applica-
tion of the strategy, the behaviors that cannot be reach through naive exploration when observable
system states are considered to be only defined by their caches have yet to be analyzed.

The guided exploration still ensures these behaviors are indeed analyzed, however. Indeed, this
corresponds to both of the following stable state paths:

• I load−−−→ ISBD Qryown−−−→ IEoSD data-e−−−−→ E

• I load−−−→ ISBD data-e−−−−→ IEB Qryown−−−→ E

While the coherence manager cannot be directly observed, attempting to expose the issue men-
tioned in Example 28 would reveal if it shares the same limitations as the one from the hypothetical

126 CHAPTER 8. IDENTIFYING CACHE COHERENCE

protocol. As it happens, the benchmarks show that the Eb state is reached after a load, even if all
caches just performed an eviction of the memory element from either a Sb or Fb state. Thus, the
architecture either features a better coherence manager than the one described in the hypothetical
protocol, or some other co-ordination strategy is used to detect the possibility of reaching the Eb
state.

8.5 Conclusion
This chapter presented an approach to the identification of the cache coherence mechanisms imple-
mented by an architecture. Such a step is necessary to expose and resolve any ambiguities the user
may have on those mechanisms. It does not perform an exhaustive profiling of speed and band-
width offered by the cache coherence, but instead ensures that the user has a complete list of the
mechanisms for which to perform this profiling.

The application of this approach on the NXP QorIQ T4240 fully vindicated the need for this
additional step in the profiling of an architecture. Indeed, the results showed that the difference
between what I believed the architecture to implement and what it actually does are far beyond the
level of negligible detail: an additional coherence state was found. Without realizing that this state
exists, the speed and bandwidth analysis may have obtained false results by attributing performance
measurements to the wrong state and thus incorrectly profiling the architecture without realizing it.

There were in fact multiple contributions in this chapter: the approach itself, which is the main
contribution; the NXP QorIQ T4240 example, which serves as a warning not to overlook the necessity
of such a step; and the formalization of two protocols, which are minor contributions in themselves.

Having reached the end of this chapter, the issue of detecting sources of interference in the cache
coherence mechanisms is resolved. Being able to determine the effects of this interference on a
running program will require tools. The approach chosen in this thesis is to rely on models. The
next chapter thus introduces how a model of the system is created.

Chapter 9

Modeling Cache Coherence

This chapter presents a UPPAAL model1 for the analysis of the effects of cache coherence in multi-
core processors. The goal is to create a formal model in order to perform automatic analyses (which
are described in Chapter 10), while ensuring that:

• The model is as generic as possible in how it models the coherence protocol, making it easy to
switch protocol.

• The protocols are modeled in detail, taking into account all transient states and being defined
for split-transaction buses.

The approach chosen is similar to the papers presented in Chapter 7: use a network of small
timed automaton, each representing a component, so that the model of the system ends up easily
readable, modular, and re-usable.

The chapter starts by an overview of the modeling strategy (Section 9.1). The model is then
seen through its communication channels in Section 9.2, which provides an understanding of how
the components interact. The sections that follow each provide a precise description of each com-
ponent’s automaton. Once all components have been covered, Section 9.9 presents a tool to allow
the coherence protocol being used by the model to be automatically changed to another.

9.1 Modeling Strategy
To create a model for the architecture, the chosen strategy was to base it on the principles explained
in Chapter 3. In effect, the architecture is reduced to elements directly relevant to cache coherence.
The assumption is that any user requiring more detail on (or the addition of) a specific component’s
model can either adapt it from another UPPAAL representation of architecture (such as the ones
described in Chapter 7), or port the cache coherence mechanisms modeled here to that other model.
The coherence protocol to be modeled is chosen outside of the UPPAAL model, using CoProSwi,
a Java program I made in order to make protocol switching trivial (see Figure 9.1). This tool is
explained in more details in Section 9.9.

Each component has its own automaton. These automata are designed around the synchroniza-
tions they perform with other automata. As a result, automaton transitions are mainly present
for the purposes of synchronizing, with coherence behaviors being modeled solely using the C-like

1Available at https://github.com/nsensfel/phylog-cache-coherence

127

https://github.com/nsensfel/phylog-cache-coherence

128 CHAPTER 9. MODELING CACHE COHERENCE

Cache Coherence
Protocol B

Model with Protocol A CoProSwi Model with Protocol B

Figure 9.1 – Co(herence) Pro(tocol) Swi(tcher) utility

UPPAAL language (and thus not directly visible on the automata). This results in smaller, more
readable automata.

Data FIFOQuery FIFO

Data BusQuery Bus

Data FIFO

Supports
Multiple

Instances

Urgent
Handler

Query FIFO

Figure 9.2 – Overview of the Model’s Automata

Figure 9.2 shows all the automata defined in the model. Compared to the archetype target archi-
tecture presented in Chapter 4, the differences are minor. Indeed, the split-transaction interconnect
has been split into its two composing parts: a query bus and a data bus. Additionally, a data FIFO
automaton has been added, which is shared by the coherence manager and the main memory. Lastly,
an Urgent Handler automaton is present. It does not correspond to any component, but is simply
here as an utility for urgent synchronization.

To facilitate communications, a unique identifier is assigned to some components (namelly caches,
cores, the coherence manager, the main memory, and the query bus). This identifier is used to select
the correct sub-channels in some synchronizations, as well as identifying the sender and recipient of
a message. Furthermore, in the model’s system declaration, automata can be linked by being given
as parameters the identifier of the automata they should contact (e.g. a query FIFO and its cache).

Data transfers between automata is done by synchronizing on any channel, the sender sets a
dedicated shared variable with the content of the message, including the sender field. The other

9.2. SYNCHRONIZATION CHANNELS 129

fields correspond to recipient id, type of transfer (equivalent to type of event, using the definition
from Chapter 3), and the address of the relevant memory element (if applicable). During the
synchronization, the recipients copy the shared variable into their local variables, ensuring that the
message is not overridden by a future transition from another automaton.

The model is designed following the assumptions made in Section 4.2.1, and can be further
tailored to fit the relevant architecture by modifying the model parameters described in Appendix B.

9.2 Synchronization Channels
Figure 9.3 shows how synchronizations between the automata are organized. Some synchroniza-
tions, only intended to ensure the proper function of the model, are omitted from the figure, namely
SYS INIT, which initializes each automaton, FORCE URGENT and FORCE EXTRA URGENT,
which are used to make a transition urgent and increase its priority. These last two synchronizations
are performed using the automaton shown in Figure 9.4.

The synchronization channels shown in the figure can be categorized as follows.

Query Transfer:
• QUERY BROADCAST: urgent, broadcast channel used to synchronize with automata

waiting for an incoming query.

• QUERY TO BUS: urgent channel used to send a query to the query bus. One sub-channel
per component ID. The ID corresponds to the query’s emitter, and is used to ensure that the
bus only accepts the synchronization if it comes from the current bus master.

• QUERY IN: urgent channel used by query FIFOs to send a query to their associated cache.
One sub-channel per component ID. The ID corresponds to the receiving component.

• QUERY OUT: urgent channel used by caches to send a query to their associated query
FIFO. One sub-channel per component ID. The ID corresponds to the component emitting
the query.

Data Transfer:
• DATA IN: urgent channel used by data FIFOs to send a data message to their associated

cache. One sub-channel per component ID. The ID corresponds to the receiving component.

• DATA TRANS: urgent channel used by the data bus to a data message to a data FIFO.
One sub-channel per component ID. The ID corresponds to the receiving component.

• DATA OUT: urgent channel used by caches to send a data message to their associated data
FIFO. One sub-channel per component ID. The ID corresponds to the data emitter.

• DATA TO BUS: urgent channel used by data FIFOs to send a data message to the data
bus.

Instruction Transfer:
• CPU REQ: urgent channel used by cores to send a request to a given cache. One sub-channel

per component ID. The ID corresponds to the target cache.

• CPU ACK: urgent channel used by caches to confirm completion of a request to a given
core. One sub-channel per component ID. The ID corresponds to the target core.

130 CHAPTER 9. MODELING CACHE COHERENCE

Core 0 Cache 0

Query FIFO 0 Data FIFO 0

Data Bus

Query Bus Query FIFO Mgr Data FIFO Mem

Coherence Manager Memory

CP U REQ[0]

CP U ACK[0]

QUERY
IN [0]

QUERY
OUT [0] DATA

IN [0]

DATA
OUT [0]

Q
U

E
R

Y
T

O
B

U
S[0]

Q
U

E
R

Y
B

R
O

A
D

C
A

S
T

DATA
TO

BUS

DATA
TRANS[0]

DATA
TO

BUS

DATA
TRANS[M

EM
ID]

MEM READ

MEM W RIT E

D
A

T
A

IN
[M

E
M

ID
]

D
A

T
A

O
U

T
[M

E
M

ID
]

QUERY BROADCAST

Q
U

E
R

Y
I
N

[M
G

R
I
N

]

D
A

T
A

O
U

T
[M

E
M

I
D

]

Figure 9.3 – Recurring Synchronizations in the Model

Figure 9.4 – Purely Utilitarian Automaton

9.2. SYNCHRONIZATION CHANNELS 131

Main Memory Access:

• MEM READ urgent channel used by the coherence manager to communicate the need to
read to the memory.

• MEM WRITE urgent channel used by the coherence manager to communicate the need to
write to the memory.

Two additional categories of channels are not shown in the figure, as they are either only used
for initialization, or only there to manage clocks and transition priorities:

Initialization:

• ADD BUS MASTER: channel used by query FIFOs to register on the query bus as users.

• SYS INIT: urgent, broadcast channel used to signal the last step of the initialization pro-
cess.

Model Utility:

• FORCE URGENT: urgent channel used to make a transition urgent.

• FORCE EXTRA URGENT: urgent channel used to make a transition urgent, but also
increase its priority.

• MAX PRIORITY broadcast channel used to give a transition the maximum priority.

1 d e f a u l t p r i o r i t y <
2 QUERY IN, DATA IN, MEM WRITE, MEM READ, QUERY TO BUS, QUERY BROADCAST <
3 FORCE URGENT <
4 QUERY OUT, CPU REQ <
5 CPU ACK <
6 FORCE EXTRA URGENT <
7 MAX PRIORITY;

Figure 9.5 – Channel Priorities

To reduce irrelevant interleaving and prevent problematic executions, the channel priorities listed
in Figure 9.5 are set. The removal of these interleaving also reduces time and memory consumption
when performing model checking. Not all interleaving can be avoided, as adding more priorities may
lead to valid executions being cut off. Thus, the chosen priorities were set so that, as far as I know,
no valid execution was removed. The reasoning being each priority is as follows:

• The MAX PRIORITY priority is used to bypass an UPPAAL limitation. Indeed, locations
with an invariant cannot have exiting transitions that synchronize on an urgent channel.
Considering nearly all communication channels are urgent, this means that synchronizing
from a location is very restricted. This limitation is mitigated by ensuring that a non-urgent
transition leads from the location that has an invariant to one that does not, and that this
transition has the highest priority.

132 CHAPTER 9. MODELING CACHE COHERENCE

• The FORCE EXTRA URGENT priority is used to perform transitions that should be done as
soon as possible, but do not allow clocks to progress. This is used to prioritize transitions
which do not involve synchronization with other automata (other than the Priority Handler
automaton).

• CPU REQ < CPU ACK is here to ensure the CPU acknowledges completed requests before send-
ing new ones.

• FORCE URGENT < QUERY OUT ensures that bus masters that need to use the bus indicate that
need before the bus checks for it.

• default priority < QUERY IN, DATA IN, MEM WRITE, MEM READ, QUERY TO BUS forces automata
to enter waiting locations as soon as possible.

Workarounds for UPPAAL synchronization limitations:

• Synchronizations on broadcast channels do not require receivers to be able to synchronize. As
a result, making a broadcast QUERY BROADCAST without ensuring that all automata
that are meant to receive a query are ready to do so would risk some of the automata not
getting all queries. Indeed, one possiblity is for an incoming query queue to be full. To address
this issue, a Boolean table, is ready for bus is shared by all automata. It has as many slots as
there are component IDs, and all slots start with true as value. Whenever a component which
is supposed to receive queries is unable to do so, it sets its dedicated is ready for bus slot to
false , thus informing all other automata that synchronization on QUERY BROADCAST
should not occur.

• It is not possible to have a transition that depends on another automata not being able to
synchronize. This is an issue when attempting to synchronize with a specific automaton unless
that automaton is unable to do so, as is the case with the query bus when it attempts to
receive a query from the current bus owner. To revolve this, a has need for bus array is used,
with one slot per component ID. Those slots start with the value false , and the automata use
their dedicated slot to inform the query bus that they have at least one query to send. The
query bus is thus able to know if the current bus master needs the bus or if the next bus master
should be served instead.

9.3 Models of Core and Programs
This section presents the automaton used to model a core, and the manner in which programs are
modeled.

Programs are sequences of instructions, without any jumps or branchings. The available opera-
tors are INSTR LOAD (load), INSTR STORE (store), INSTR EVICT (evict), and INSTR END (signal-
ing the end of the program). Each operator targets a memory element, specified by its address.

Definition 53 (Instruction Model) Instructions are modeled by 〈instr, addr, min calc time,
max calc time〉 tuples, with instr corresponding to the operator, addr the targeted memory el-
ement, and min calc time and max calc time define the interval during which the core is busy
following the instruction, with 0 indicating that the default CPU cycle time should be used (a value
set in the model parameters indicated in Appendix B).

9.3. MODELS OF CORE AND PROGRAMS 133

1 const p rog ram l in e t program 101 [7] =
2 {
3 {INSTR LOAD, 4 , 0 , 0} ,
4 {INSTR LOAD, 5 , 0 , 0} ,
5 {INSTR STORE, 6 , 0 , 0} ,
6 {INSTR LOAD, 6 , 0 , 0} ,
7 {INSTR STORE, 4 , 0 , 0} ,
8 {INSTR EVICT , 4 , 0 , 0} ,
9 {INSTR END, 0 , 0 , 0}

10 } ;

Figure 9.6 – Example of Program

Example 30 (Instruction Model) {INSTR STORE, 42, 3, 9} would indicate a store applied to the
memory element 42, and that after emitting this request, the core would become unavailable for
between 3 and 9 time units.

Figure 9.6 shows an example of program model.
All cores share the same automaton template, model’s system description initializes each core

by passing as a parameter an integer corresponding to the program they are to run. The program
number 0 is reserved, and indicates a program made of random instructions.

Figure 9.7 – Automaton for a Core

Figure 9.7 shows the automaton representing a core.
A core automaton has the following internal variables and clocks:

Clocks & Variables for Core

• clk is a clock used to control the time spent being busy once an instruction has been sent.

• runtime is a clock measuring time since the moment the core performed its initialization.

• program counter is an integer corresponding to the index of the next instruction in the program’s
array. It is updated by emit next instruction().

• current program line contains a copy of the current instruction line. Indeed, each program is
stored in its own array, and since pointers are not available in UPPAAL, finding the current

134 CHAPTER 9. MODELING CACHE COHERENCE

instruction line requires a chain of if /else tests so that the right array is selected before the
program counter can be used as index. Thus, to optimize, the instruction line is search for once,
then copied to current program line. This variable is updated and used by all functions of this
automaton.

• current max calc time and current min calc time correspond to the maximal and minimal time the
core remains inactive after sending an instruction.

• received acks is a count of the number of the acknowledgments received from caches, which
indicate that an instruction sent has been completed.

• has taken random instruction indicates whether the current instruction line was randomly gener-
ated. This is used by both all functions in the T3 transition.

The automaton in Figure 9.7 starts in the S0 location, wherein it awaits the SYS INIT broad-
cast.

Transitions for Core

S0
T0−→ Ready Upon synchronization on the SYS INIT broadcast channel, the core resets the runtime

clock and sets the current program line variable to the value of the first instruction of the program
and also updates the current max calc time and current min calc time variables accordingly.

Ready T1−→ S1 For the T1 transition to be available, the next instruction has to correspond to a
memory access (i.e. load, store, evict). Furthermore, if the model requires all previous
requests of a core to be completed prior to sending new ones, received acks must be equal to
program counter. The T1 transition sets the information passing shared variable to match the
current instruction, then synchronizes the core’s target cache CPU REQ sub-channel, thus
transmitting the request to the cache. The core automaton also increment the program counter
and updates its local variables with the data from the next instruction line.

S1
T2−→ Ready After having sent an instruction, the core automaton stays waiting in the S1 location

for a time in the interval defined by current max calc time and current min calc time.

Ready T4−→ Ready The core’s cache will synchronize on the core’s CPU ACK sub-channel to signal
completion of a request. This simply increments the received acks counter.

Ready T3−→ Ready A special case is when the program is random. The next instruction is randomly
chosen by the T3 transition. The current max calc time and current min calc time are kept to their
default value. Furthermore, the has taken random instruction ensures that once a random instruc-
tion has been chosen, it is acted upon before a new one is chosen.

Ready T5−→ Terminated If the next instruction indicates the end of the program (INSTR END), and
all sent requests have been acknowledged as completed. The core automaton uses the T5 to
enter the Terminated location, which completes its execution.

9.4 Model of the Caches
This section presents the automaton that corresponds to a cache.

9.4. MODEL OF THE CACHES 135

This is where the table defining the cache’s behavior in the cache coherence protocol description is
implemented. However, this table corresponds to the cache’s behavior for a single memory element,
whereas the cache has to handle a great number of them. As a result, the automaton presented in
this section does not resemble the one described in a cache coherence protocol table. In effect, the
transitions of this automaton are focused on what corresponds to events in the table, and actions
that lead to such events being emitted.

Figure 9.8 – Automaton for a Cache

Figure 9.8 shows the automaton corresponding to a cache. This is by far the most complex
automaton in the model.

9.4.1 Initialization
Cache automata feature the following clock:

136 CHAPTER 9. MODELING CACHE COHERENCE

Clocks & Variables for Cache Initialization

• clk is a clock used to manage times during which the cache automaton is to be considered
inactive.

The automaton starts in the S0 location.

Transitions for Cache Initialization

S0
T0−→ S1 The automaton starts by synchronizing with the query bus on the ADD BUS MASTER

in order to be added to the list of components that can emit queries on that bus. This uses
the information transmission shared variable in order to communicate to the other automaton
the component ID of this cache. After this, the automaton enters the S1 location in order to
wait the SYS INIT broadcast.

S1
T1−→ Ready Upon synchronization on the SYS INIT channel, the automaton sets all its internal

variables to sane default values. For example, all cache lines are set to the Invalid state. Each
cache line has its last use value set to its index in the cache lines array.

9.4.2 Cache Lines
In cache automata, cache lines are modeled using the following variables:

Clocks & Variables for Cache Lines

• cache lines is an array of LINES PER CACHE elements containing the information pertinent to
every cache line (see Definition 54).

• current line is the index of the cache line relevant to whatever operation is in progress. Thus,
the line only needs to be found once, and its index can be used across multiple transitions of
the automaton.

These two variables are used in just about every function of the automaton, as they are, in effect,
modeling the cache’s current state.

Definition 54 (Cache Line Model) Caches lines are defined as 〈addr, c state, last use, reply to〉
tuples, with addr corresponding to the address of the memory element being held, c state its co-
herence state (including transient states), last use indicating how many lines were accessed more
recently than this one, and reply to being the identifier of a cache (r from Definition 24, Chapter 3).

Example 31 (Cache Line Model) A cache line with a value of 〈91,MODIFIED, 31, 3〉 corre-
sponds to a copy of the memory element 91, in the Modified state. 31 cache lines have been accessed
since this one was last accessed. The cache with component ID 3 has been associated with this
memory element.

Caches frequently have to find the cache line corresponding to a particular memory element.
This is done either to consult the current state of the memory element in this state, or to change it
to a new one. The cache line index returned when trying to find a memory element corresponds to
either:

• The cache line currently holding the targeted memory element.

9.4. MODEL OF THE CACHES 137

• The first cache line for which the coherence state is INVALID, if the targeted memory element
is not held by the cache.

• A special value (−1) if the targeted memory element is not held by the cache, and there is no
cache line in the INVALID state.

When attempting to consult the current state of the targeted memory element, that last case will
be considered to yield INVALID, since the memory element is not in the cache. When attempting to
change the state associated with the targeted memory element however, having neither the memory
element nor any cache line in the INVALID state means that a cache line has to be evicted. This thus
triggers the LRU eviction policy.

9.4.3 Modeling the LRU policy
The LRU policy uses this local variable from the cache automata:

Clocks & Variables for Cache Replacement Policy

• least recently used line keeps track of the least recently used cache line’s index. This variable is
used whenever an automated eviction occurs (and those are triggered by parse request()), and
updated whenever an access is made to a cache line (which is the case in parse request() and
the unstalling functions).

Definition 55 (Cache Line Access) A cache line is considered to be accessed when either a store
or a load request is applied to it. Thus, evict is not counted as an access.

As indicated in Definition 54, each cache line has an integer corresponding to the number of
cache lines that were accessed since it itself was last accessed. To maintain this, any access to a
cache line leads to the algorithm shown in Figure 9.9 being executed.

th r e sho ld ← c a c h e l i n e s [l i n e b e i n g u s e d] . l a s t u s e
i ← 0
while (i < LINES PER CACHE)

i f (c a c h e l i n e s [i] . l a s t u s e < th r e sho ld)
c a c h e l i n e s [i] . l a s t u s e ← c a c h e l i n e s [i] . l a s t u s e + 1

i f ((c a c h e l i n e s [i] . l a s t u s e == (LINES PER CACHE − 1)) && (i != l i n e b e i n g u s e d))
l e a s t r e c e n t l y u s e d l i n e ← i

c a c h e l i n e s [l i n e b e i n g u s e d] . l a s t u s e ← 0

Figure 9.9 – LRU Algorithm

In effect, cache lines that were already less recently used than the line currently being accessed
are untouched. The cache lines that were more recently used have their last use value incremented
by one, while the one being accessed has it set to zero. This does indeed ensure that last use still
indicates how many cache lines were accessed since the one at line being used was accessed.

9.4.4 Handling Requests
The handling of requests is managed using the following local variables:

138 CHAPTER 9. MODELING CACHE COHERENCE

Clocks & Variables for Request Handling

• pending requests is an array of REQ BUFFER SIZE pending requests (see Definition 56). It cor-
responds to requests from cores that have not been fully completed yet. It may also hold an
automatically generated evict request.

• completed requests is another array of REQ BUFFER SIZE pending requests. This time, it corre-
sponds to requests that are already completed, but for which acknowledgment has yet to be
given.

• blocked request is a pending request. This variable is used whenever an incoming request requires
the replacement policy to evict a cache line. In such cases, blocked request is set to value of the
new request, and an evict for the least recently used line is handled instead, the blocked request
being considered only after that evict completes.

• current request keeps track of the index of the element from pending requests being handled.

• current query is a variable containing the data for a query to send out.

Definition 56 (Pending Request Model) Pending requests are defined as 〈requester, addr, cmd〉
tuples, with requester being the identifier of the component that made the request, addr being the
memory element targeted, and cmd being the instruction to apply.

Example 32 (Pending Request Model) A pending request with a value of 〈3, 91, load〉 corre-
sponds to a request from the component of ID 3 making a load on the memory element 91.

Transitions for Request Handling

Ready T11−−→ S6 The T11 transition corresponds to the reception of a request from a core. The request
is obtained by synchronizing on the CPU REQ sub-channel corresponding to the cache’s
identifier. For this transition to be allowed, the pending requests must have at least two free
slots. The extra slot is required in case an automatic eviction must be added to the array.
Reception of a request makes the cache unavailable for a small amount of time, hence clk being
set to zero.
Upon reception of the request, the cache line corresponding to the relevant memory element
is located. If no cache line is available, the request is put into blocked request and the execution
continues as if the new request had been an evict emitted by this very cache for the memory
element held in the least recently used line cache line.
The addr of the cache line that was chosen is set to the address targeted by the request. This
ensure that if it was an unused cache line, the stored address is the right one.
The actions then performed as those indicated by the cache protocol for the reception of a
request of that type, on a memory element with the coherence state currently held in the
identified cache line (see Section 9.4.6 for more details). If the actions do not include a hit,
the request is then added to the pending requests array as if in a queue. Otherwise, the hit will
have added it to the completed requests array.

S6
T15−−→ S5 The cache becomes active after having waited the REQUEST HANDLING TIME delay

caused by the reception of a demand from the core, and is now able to complete the han-
dling of the new request.

9.4. MODEL OF THE CACHES 139

S5
T7−→ S5 If the request being handled had an action that required it to send a query (current query

targets a memory element other than NULL), the sending is done by this transition. It syn-
chronizes on the QUERY OUT sub-channel corresponding to this cache’s identifier in order
to communicate the query in current query to the cache’s query FIFO automaton.

S5
T8−→ S5 If no query have to be sent because of the handled request, all actions for this request that

needed to be done at this point have been done. However, if the state of the targeted memory
element has changed, there may be some older pending request for that memory element that
could be un-stalled. If this older request has actions other than stall when the memory
element is in its current coherency state, then that older request becomes the current request
and those actions are applied (here also, the actions are described in Section 9.4.6). If this is
not the case, the current request is unchanged, and the T9 transition is ready to be taken.

S5
T9−→ Ready If neither the T7 transition nor the T8 one can be taken, the T9 transition simply resets

all the internal variables that were used to quickly access whatever array line was relevant (e.g.
current line). The cache automaton is then able to return to its Ready state.

Ready T13−−→ Ready If there is an element in the completed requests array, whose requestor ID is not
that of this cache, a synchronization on the CPU ACK sub-channel of the requestor is used
to inform of the completion of a request. The information transmission shared variable is set
to contain the request, although this information is not actually used by the core automaton
in this model. As it has been communicated, the request is removed from the completed requests
array

Ready T12−−→ S5 If the top element in the completed requests array has a requestor ID corresponding
to that of this cache, it means it was for an automatic eviction, which is now completed,
and that a request is waiting in blocked request. This transition removes the top element of
completed requests, then loads the internal variables as if the request from blocked request just
arrive. In effect, it acts as T11, but obtaining the request from blocked request instead of the
information sharing global variable.

9.4.5 Handling Messages

Messages are handled using the following local variables:

Clocks & Variables for Data & Query Handling

• should send data to mem flag is a Boolean indicating if a data message should be sent to the
coherence manager.

• data to mem contains the type of data to send to the coherence manager.

• data to reply contains the type of data to send to a cache.

• should send data as reply flag is a Boolean indicating if a data message should be sent as a reply
to the cache that sent the message currently being handled.

140 CHAPTER 9. MODELING CACHE COHERENCE

Transitions for Data & Query Handling

Ready T2−→ S2 Upon synchronization with the QUERY IN sub-channel corresponding to this cache’s
identifier, an incoming query for the this cache’s query FIFO is retrieved. The corresponding
cache line is located. If there is no such line, the coherence state for this line is considered
to be Invalid. No line is allocated for the memory element, and so there cannot be any auto-
mated cache eviction occurring. The actions prescribed by the cache coherence protocol upon
reception of the communicated type of query when in this memory element’s coherence state
are applied. Refer to Section 9.4.6 for details on how each action is modeled.

S2
T3−→ S3 Parsing an incoming query makes the cache inactive for QUERY HANDLING TIME. Once

this period is elapsed, the actions performed in reaction to the query that interact with other
components (namely sending data messages) can be performed.

Ready T10−−→ S4 T10 is the analogue of T2, but for data messages instead of queries.

S4
T14−−→ S3 T14 is the analogue of T3, but for data messages instead of queries, so the waiting period

is DATA HANDLING TIME instead.

S3
T4−→ S3 If should send data as reply flag is set to true, but should send data to mem flag is set to false,

a data message of the type indicated in data to reply for the relevant memory element is
generated, targeting the ID of the sender of whatever message led to this location being
reached. The data message is transferred to this cache’s data FIFO outgoing queue through
a synchronization on the DATA OUT sub-channel corresponding to the ID of this cache.
should send data as reply flag is then set to false. Sending the reply after any data message
meant for the memory is a modeling choice in order to reduce possible executions. Unfortu-
nately, this has an impact on timing. Prioritizing one or the other should be done by the user
so as to avoid having the model checking explore executions where the order changes.

S3
T5−→ S3 If should send data to mem is set to true, a data message of the type indicated in data to mem

for the relevant memory element is generated, targeting the coherence manager. It is added
to this cache’s outgoing data FIFO queue through synchronization on the DATA OUT sub-
channel corresponding to the ID of this cache. should send data to mem is then set to false.

S3
T6−→ S5 If there is no (longer any) data to send, the incoming message is considered to have been

handled. Since the actions performed may have change the state of the memory element, an
un-stalling process of pending requests similar to the one from transition T8 takes place.

9.4.6 Modeling Actions
This subsection describes how each action defined in Section 3.1.3 is performed by this automaton.

• Stalling: In the context of the un-stalling process, this has no other effect than preventing
the un-stalling process from continuing. Otherwise, the request is simply put in the pending
request queue (pending requests), same as any request that is not the target of a hit action.

• Completing a core’s request: The oldest request for this memory element that matches
the given type of instruction is pulled out of the pending request queue (pending requests), and
added at the end of the completed request queue (completed requests).

9.5. MODELS OF FIFOS 141

• Preparing a query: This can only be performed as a reaction to a request, and only a single
query can be sent per request. This limitation is explained in Section 11.2.2. By setting the
current query targeted memory element to anything but the NULL address, the should emit query()
from T7 becomes true. The type of the query to send is also stored in current query, and since
its targeted memory element is set to the one from current line , it will not be NULL.

• Changing state: The cache line at current line has its c state field set to the new value.

• Preparing a data reply: This can only be performed as a reaction to either an incoming
query or data message, and only a single data reply can be sent per message. This limita-
tion is explained in Section 11.2.2. The category of data reply is stored in data to reply, and
should send data as reply flag is set to true.

• Preparing a data message to the coherence manager: This can only be performed as
a reaction to either an incoming query or data message, and only a single such message can
be sent per incoming message. This limitation is explained in Section 11.2.2. The category of
data message is stored in data to mem, and should send data to mem is set to true.

• Memorizing a cache: The value of the reply to field of the cache line at current line is set to
the last received message’s emitter ID. If this was a reset, the ID is set to a special component
ID corresponding to NULL.

9.5 Models of FIFOs
This section presents the automata corresponding to message FIFOs. Having the FIFOs kept sepa-
rate from the components greatly simplifies the components’ automata. Indeed, it would otherwise
be needed for every state of the components’ automata to be ready for a synchronization related
to message exchanges. Instead, two very similar automata are used, both having an incoming and
outgoing message queue. The automata are given the component ID of the component they act for,
instead of a dedicated one.

9.5.1 Query FIFO

Figure 9.10 – Automaton for a Query FIFO

Figure 9.10 shows the automaton for transfer of queries. It simply maintains two arrays of queries
with first-in-first-out access policies. These two arrays are the variables defined as follows:

142 CHAPTER 9. MODELING CACHE COHERENCE

Clocks & Variables for Query FIFO

• in queries is an array of IN QUERY BUFFER SIZE useable slots, which contains incoming query
messages, and is maintained in a FIFO order.

• out queries is an array of OUT QUERY BUFFER SIZE useable slots. It stores outgoing query
messages in a FIFO order.

The Query FIFO automaton starts in the S0 location, wherein it awaits a broadcast on the
SYS INIT.

Transitions for Query FIFO

S0
T4−→ Ready Upon synchronization on the SYS INIT, both in queries and out queries have their

slots set to a default value which indicates that the slot is available.

Ready T3−→ Ready If out queries has available spots, the cache associated with this query FIFO can
synchronize on the QUERY OUT sub-channel corresponding to the cache’s component ID.
This transition will retrieve the query that the cache put in the information sharing global vari-
able and insert it at the back of the out queries queue. In addition, the slot of the has use for bus
global variable corresponding to the cache’s component ID is set to true, allowing the query
bus to know that this FIFO has content to send.

Ready T1−→ Ready If out queries is not empty, the automaton synchronizes with the query bus using
the QUERY TO BUS sub-channel corresponding to the cache’s component ID. The query
bus will only allow the synchronization if this FIFO is the current bus master. This transition
removes the oldest element of out queries and puts it in the information sharing global variable
to communicate it to the bus.

Ready T2−→ Ready One would expect to see a in queries not full () guard on this transition, however, the
QUERY BROADCAST channel is set to broadcast, meaning that preventing this transition
from firing does not prevent the broadcast from being made. Thus, it would lead to the query
never being received by this FIFO. Instead, the is ready for bus global variable is used to ensure
that all components that need to see queries are ready. Thus, if the transition occurs, the
in queries queue is sure not to be full.
Upon synchronization on the QUERY BROADCAST channel, the query held in the infor-
mation sharing global variable is copied to the back of the in queries queue. In addition, the
slot of the is ready for bus global variable allocated to this FIFO’s component’s ID is set to true
if in queries is not full, and to false otherwise.

Ready T0−→ Ready If the in queries queue is not empty, synchronization on the QUERY IN sub-
channel corresponding to this FIFO’s component’s ID leads to the oldest element of in queries
being removed and placed in the information sharing global variable. Furthermore, the
is ready for bus slot relevant for this FIFO is set to true, as a free spot has just been created.

9.5.2 Data FIFO
Figure 9.11 shows the automaton corresponding to a Data FIFO. It works like the one for the queries,
but is simpler, as it does not have to handle any broadcast synchronizations. Thus, there is no need
to handle is ready for bus updates. These two arrays variables are thus also present, but defined as
follows:

9.6. MODEL OF THE INTERCONNECT 143

Figure 9.11 – Automaton for a Data FIFO

Clocks & Variables for Data FIFO

• in data is an array of IN DATA BUFFER SIZE useable slots, which contains incoming data mes-
sages, and is maintained in a FIFO order.

• out data is an array of OUT DATA BUFFER SIZE useable slots. It stores outgoing data messages
in a FIFO order.

Transitions for Data FIFO

S0
T0−→ Ready Upon synchronization on the SYS INIT broadcast channel, both in data and out data

have their slots set to a default value which indicates that the slot is available.

Ready T4−→ Ready If out data has available spots, the component associated with this data FIFO can
synchronize on the DATA OUT sub-channel corresponding to the component’s ID. This
transition will retrieve the data message that the component put in the information sharing
global variable and insert it at the back of the out data queue.

Ready T2−→ Ready If out data is not empty, the automaton synchronizes with the data bus using the
DATA TO BUS sub-channel corresponding to this FIFO’s component’s ID. This transition
removes the oldest element of out data and puts it in the information sharing global variable to
communicate it to the bus.

Ready T3−→ Ready Since the synchronization on DATA TRANS is not a broadcast, there is no need
for a global variable to control whether this transition can be fired. Instead, the guard allows
the transition whenever the in data queue is not full. This transition takes the data message
held in the information sharing global variable and puts it at the back of the in data queue.

Ready T1−→ Ready If the in data queue is not empty, synchronization on the DATA IN sub-channel
corresponding to this FIFO’s component’s ID leads to the oldest element of in data being
removed and placed in the information sharing global variable.

9.6 Model of the Interconnect
This section presents the automata corresponding to the interconnect. As the split-transaction bus
architectures are the target, it is unsurprising that the model of the interconnect finds itself also
split into two parts: a query bus, and a data bus.

144 CHAPTER 9. MODELING CACHE COHERENCE

9.6.1 Data Bus

Figure 9.12 – Automaton for the Data Bus

Figure 9.12 shows the automaton used for the data bus. It uses a single variable and a single
clock:

Clocks & Variables for Data Bus

• clk is a clock controlling the time the data bus stays inactive before transmitting a data message
to its target.

• msg is a message to communicate.

As it does not have need for an initialization transition, the Ready location is the initial one.

Transitions for Data Bus

Ready T0−→ S0 Upon any automaton synchronizing on the DATA TO BUS channel, the message
in the information sharing global variable is copied to msg and clk is set to zero, as the data
transfer waiting period starts.

S0
T1−→ S1 As soon as the DATA TRANSFER TIME period is elapsed, the automaton moves to the S1

in order to synchronize with the message’s target automaton.

S1
T2−→ Ready By synchronizing on the DATA TRANS sub-channel that corresponds to the ID

of the recipient of msg, the data bus automaton stores msg in the information sharing global
variable so that the other automaton is able to receive it. Once this is done, the data bus
automaton becomes once again available for a new data message transfer.

9.6.2 Query Bus
Figure 9.13 shows the automaton used for the query bus. It is considerably more complex than the
data one, as it features an access policy. The access policy it models is a simple round-robin one,
with the order being defined once prior the SYS INIT signal being emitted, then followed during
the whole execution. The round-robin policy is not strict: if the next bus user in line does not need
to use the bus, its turn is skipped.

The query bus automaton has the following clock and variables:

9.6. MODEL OF THE INTERCONNECT 145

Figure 9.13 – Automaton for the Query Bus

Clocks & Variables for Query Bus

• clk is a clock controlling the time the query bus stays inactive before broadcasting a new query.

• msg is a copy of the message to broadcast.

• bus master order is an array indicating the order in which components can use the bus. It stores
component IDs.

• owner is the index for bus master order corresponding to the current bus owner.

The query bus has a fairly complex initialization procedure, as it needs to define its access policy
before the model is fully initialized. It starts in the S0 location.

Transitions for Query Bus

S0
T0−→ S1 The query bus automaton initializes many global variables in this transition: the default

value of the information passing global variable is set; the has use for bus array is initialized
with false in every slot; and the is ready for bus array is initialized with true in every slot.
The local variable owner is set to zero. The bus master order array is filled with the component
ID of the query bus, a sane value to use as default.
Once all these variables have been set to sane defaults, the query bus is ready to register bus
masters.

S1
T1−→ S1 By synchronizing on the ADD BUS MASTER channel, other automata (namely cache

automata), can register as bus master. There is no order defined for these synchronizations to
take place: automata seeking to be added as bus master are all attempting to do so simulta-
neously. Since this is not a broadcast channel, a non-deterministic order is chosen and will be
followed for the rest of the automata’s execution.
This transition copies the component ID of the emitter of the message in the information
transmission global variable, and stores it in the next available bus master order slot. The owner
variable is used to keep track of how many slots have been used so far.

146 CHAPTER 9. MODELING CACHE COHERENCE

S1
T2−→ Ready Completion of the bus master selection is detected by seeing that the number of slots

allocated in bus master order, as indicated by owner, has reached CORE COUNT.
Once this happens, owner is set back to zero and the SYS INIT broadcast occurs, leading all
other automata to perform their final initialization step. Likewise, the query bus automaton
becomes ready to accept incoming queries.

Ready T4−→ S3 The query bus awaits an incoming query from its current bus owner (bus master order[owner]).
Thus, that component’s automaton has to synchronize on its dedicated QUERY TO BUS
sub-channel. This synchronization leads the query bus to copy the content of the information
sharing global variable to msg, set clk to zero and start waiting for the query transfer time.

S3
T6−→ S2 Once the query bus has stayed inactive in S3 for a duration of QUERY\ TRANSFER\ TIME,

it immediately moves to the S2 location in order to broadcast the query held in msg.

S2
T5−→ Ready To be able to perform this transition without risking the query not reaching one of

the automata that needs to receive it, the guard ensures that all slots of is ready for bus hold
true.
As soon as this is the case, the content of the query in msg is put in the information sharing
global variable and broadcasts on the QUERY BROADCAST channel.
During this transition, the owner variable is incremented by one, or set back to zero if it had
reached the end of the bus master order array. The query bus is then once again ready to accept
a query, this time from the new bus master.

Ready T5−→ Ready But if the current bus master has not set true in its dedicated slot in has use for bus,
yet some other component has set true in their dedicated slot, the query bus uses this transition
to increment the owner variable so that it points to the next bus owner. Since the destination
location is unchanged, this process is repeated until a component with a need for the bus is
chosen as bus master.
Note that ensuring that at least one component needs the query bus is crucial, as the transition
would otherwise be activated ad infinitum once all programs have completed.

9.7 Model of the Coherence Manager
This section presents the model for the coherence manager. Since, like the cache, it implements the
behavior as defined by the coherence protocol across all memory elements, it is a rather complex
automaton.

Figure 9.14 shows the automaton corresponding to the coherence manager.

Definition 57 (Coherence Manager Line Model) A coherence manager line is defined as 〈addr,
m state, owner〉 tuple, with addr being the address of the memory element, m state its state in the
coherence manager (including transient states), and owner being the component ID attributed to it
(see o in Definition 26 from Chapter 3).

Example 33 (Coherence Manager Line Model) The entry 〈93,Shared, 8〉 would indicate that
the memory element 93 is considered as Shared by the coherence manager, and that its owner is the
component for which the ID is 8.

9.7. MODEL OF THE COHERENCE MANAGER 147

Figure 9.14 – Automaton for the Coherence Manager

As with the caches, the automaton does not directly correspond to the one used to define the
behavior of the coherence manager in the protocol definition, it is instead reproducing the behavior
of that automaton for each memory element.

The coherence manager automaton has the following variables:

Clocks & Variables for Coherence Manager

• cache line status is an array of coherence manager lines of a size equal to the sum of the size of
all caches’ cache lines arrays.

• current line is the index of the coherence manager line being currently in use.

• stalled query is the variable in which a stalled query can be put. As indicated in Chapter 3, the
coherence manager can stall queries, but since it is an action taken only after the query has
been parsed and thus has left its FIFO, it needs a place to remain until queries are once again
allowed.

• is stalling indicates that incoming queries should not be handled for now.

• was stalling indicates whether the coherence manager just stopped stalling and should thus act
upon the query stored in stalled query .

• reply data type indicates the type of data reply that should be emitted next.

• should act flag indicates if a data reply should be sent.

• should mem flag indicates if the coherence manager should require the memory controller per-
forms an action (either reading or writing).

The coherence manager’s automaton starts in the S0 location.

148 CHAPTER 9. MODELING CACHE COHERENCE

Transitions for Coherence Manager

S0
T0−→ Ready Upon synchronization on the SYS INIT channel, the coherence manager sets its

internal variable to sane defaults: all cache line status indicate the Invalid state, there is no
stalled query , was stalling and is stalling are both false , reply data type is an arbitrary default
value, should act flag and should mem flag are both set to false .
The coherence manager is then ready to handle incoming messages.

Ready T2−→ S2 If the coherence manager is not stalling (is stalling set to false) and is not supposed
to handle what is stored in stalled query (was stalling set to false), then it may handle incoming
queries.
To retrieve a pending incoming query, the coherence manager synchronizes with its query
FIFO’s dedicated QUERY IN sub-channel. This transition retrieves the incoming query from
the information sharing global variable and applies actions according to what is prescribed by
the coherence protocol. Section 9.7.1 describes the effect of each actions in details.
Three outcomes are possible: no output is required, a data reply should be sent by the coher-
ence manager, or a data reply should be sent by the memory controller after reading.

S2
T6−→ Ready If no output is required (should act flag is set to false), the coherence manager simply

returns to the Ready location. It is possible for this transition to have been selected because
the query lead to a stall. In such cases, query handling has been disabled until the next
resume action.

S2
T7−→ Ready If a data message must be sent, but no read action was handled, then the coher-

ence manager can send the data reply without consulting the memory. This corresponds to
should act flag set to true and should mem flag set to false .
To send a message, the coherence manager sets the information sharing global variable so
that it contains a data message of the type indicated in reply data type for the memory element
that is relevant to the handled query. Synchronization on the DATA OUT sub-channel
corresponding to the memory controller’s ID allows the correct data FIFO to handle the
outgoing data message.

S2
T8−→ Ready If a data message must be sent and a read action was handled, then the coherence

manager has to rely on the memory controller to send the data message. This corresponds to
both should act flag and should mem flag set to false set to true.
In this case also, the coherence manager sets the information sharing global variable so that it
contains a data message of the type indicated in reply data type for the memory element that is
relevant to the handled query. However, the synchronization on the MEM READ channel,
making it one that is also performed by the memory controller’s automaton and not by a data
FIFO. The memory controller will retrieve the data message and send it to the data FIFO
once the appropriate waiting period has elapsed.

Ready T3−→ S1 Unlike queries, data messages cannot be stalled by the coherence manager. Thus, the
only reason for the transition that pulls from the incoming data messages to not be allowed to
fire is if was stalling has been set to true. Indeed, if a stalled query has just been un-stalled, it
is handled before anything else.
By synchronizing on the DATA IN sub-channel corresponding to the memory controller’s
component ID, the oldest pending data message can be retrieved from the information sharing

9.8. MODEL OF THE MEMORY 149

global variable. This leads to the actions prescribed by the coherence protocol being performed.
As with query handling, these actions are described in Section 9.7.1.
There are two possible outcomes, depending on whether data should be written in the main
memory or not.

S1
T4−→ Ready If there is no need for data to be written (should mem flag set to false), all actions related

to the data message have been completed, and so the coherence manager simply returns to
being able to handle the next message.

S1
T5−→ Ready If there is a need for data to be written (should mem flag set to true), a synchronization on

the MEM WRITE channel ensures that the memory controller stays busy for the approriate
amount of time. The coherence manager immediately becomes available for the next message
however.

Ready T1−→ S1 A special case of “next message” is when the handling of a data message led to a
resume action. Indeed, this indicates that, if there is a query held in stalled query , the coherence
manager is now able to act on it. The was stalling variable being set to true indicates that the
resume action has just occured.
Handling the stalled query is done in the same way as that of a query being pulled from
the query FIFO: the actions are performed according to what is prescribed by the coherence
protocol (see Section 9.7.1). The difference being that, once the actions have been performed,
stalled query is set back to its default value, and was stalling is set to false .

9.7.1 Modeling Actions
• Stalling: The query is stored in stalled query and the is stalling variable is set to true. The

query will only be processed upon a resume action for the relevant memory element. No other
query will be considered in the meantime.

• Changing state: The m state field of cache line status [current line] is set to the new value.

• Preparing a data reply: The value of reply data type is set to the requested data type, and
should act flag is set to true in order to indicate that a data reply ought to be sent.

• Memorizing the current owner: The owner field of cache line status [current line] is set to the
component ID of the sender of the message that led to this action being taken. The special
component ID NULL is used if this field is to be reset.

• Reading and Writing: It is assumed that reading and writing never both occur as the
result of the same message: queries can lead to a read, and data messages can lead to a
write. Thus, setting should mem flag to true indicates that a synchronization with the memory
controller should be performed as soon as possible. The type of synchronization performed
depends on whether this was a query or a data message.

9.8 Model of the Memory
This section presents the model for the system memory. Its purpose is to model reading and writing
times.

Figure 9.15 shows the automaton corresponding to the memory. It uses the following variables:

150 CHAPTER 9. MODELING CACHE COHERENCE

Figure 9.15 – Automaton of the Memory Controller

Clocks & Variables for System Memory

• clk is the clock controlling periods of inactivity that emulate either reading or writing times.

• msg is a copy of the message that must be sent once the waiting period is over.

The memory controller automaton starts in the S0 location.

Transitions for System Memory

S0
T0−→ Ready Upon synchronization on the SYS INIT broadcast channel, msg takes an arbitrary

default value. The memory controller is then ready to synchronize with the coherence manager.

Ready T1−→ S3 Upon synchronization on the MEM WRITE channel, clk is set to zero in order to
prepare an inactivity period corresponding to a write.

S3
T2−→ Ready As soon as the RAM WRITE TIME period has elapsed, the memory controller becomes

available to the coherence manager again.

Ready T3−→ S1 Upon synchronization on the MEM READ channel, clk is set to zero in order to
prepare an inactivity period corresponding to a read. Additionally, the message held in the
information sharing global variable is stored in msg so that it can be sent once the inactivity
period is over.

S1
T4−→ S2 As soon as the RAM READ TIME period has elapsed, the memory controller enters a

location from which it will attempt to send the message held in msg.

S2
T5−→ Ready Upon synchronization on the DATA OUT sub-channel corresponding to the memory

controller’s component ID, the value of msg is put in the information sharing global variable
in order to have it be received by the data FIFO automaton, which will add it to its outgoing
data message queue.
Once this is done, the memory controller is once again available for the coherence manager to
synchronize with.

9.9. SWITCHING COHERENCE PROTOCOL 151

9.9 Switching Coherence Protocol
To make the model more easily adapted to a different architecture, it is accompanied by a tool called
CoProSwi, that makes it possible to switch to a different cache coherence protocol automatically.

This tool takes as input the model and a description of the target cache coherence protocol under
the form of a text file describing the tables that define the behavior of caches and of the coherence
manager (as in Figures 3.3 and 3.4).

Protocols described for CoProSwi indicate:

• A list of data message types. For example, (add data type DATA MSG).

• A list of query message types. For example, (add data type GET SHARED).

• A definition of the cache controller’s behavior.

• A definition of the coherence manager’s behavior.

A notable omission are the instructions: CoProSwi assumes all protocols are defined around the
load, store, and evict instructions. The Qryown event is also implicitely declared.

When defining either the behavior of either the cache controller or the coherence manager:

• Each coherence state is declared. These declarations indicate whether the state is transient or
stable. For example, (add state stable MSI INVALID) declares the Invalid stable state.

• The default coherence state for memory elements is also indicated. It is considered to be the
Invalid state’s representation. For example, (set default state MSI INVALID) sets MSI INVALID
as the Invalid state. The state must have been declared beforehand.

• For each state, the list of actions to performed upon observation of an event is then defined.
In the case of the coherence’s manager definition, a if is owner operator is added, allowing the
definition of two different action lists according to whether the message received came from
the component currently set as the memory element’s owner or not.

• If no actions are to be taken, the (none) action must be indicated. Indeed, the tool assumes
that if a case is missing, it is because of an user error, and not because no actions are to be
taken.

• The coherence manager only handles query and data message events, not instructions nor
reception of its own query (since it assumed to be unable to send any).

CoProSwi takes care of all the otherwise tedious aspects of describing the protocol directly
in UPPAAL, such as generating separate actions to be performed during the un-stalling process
in caches (in order to correctly manage request queues). In effect, no knowledge of the model’s
inner workings is needed to describe the protocol or to use CoProSwi in general, since the protocol
definition only uses notions from Chapter 3.

The modification of the model file is done through simple search and replace: only the automata’s
actions and variables needs to be modified. Locations and transitions are neither added nor removed.
Thus, the model’s file contains tags that points to the code that needs modification by the tool upon
switching of protocol.

Figure 9.16 provides an example of tagged code section. This particular snippet corresponds
to the coherence manager’s states declaration. When changing the coherence protocol, CoProSwi
replaces the content found between the CMGR STATES DECLARATION tags so that it matches the

152 CHAPTER 9. MODELING CACHE COHERENCE

1 /∗ [CMGR STATES DECLARATION]∗/
2 const mem state t MEM I = 0 ;
3 const mem state t MEM I D = 1 ;
4 const mem state t MEM S = 2 ;
5 const mem state t MEM I O S B = 3 ;
6 const mem state t MEM S D = 4 ;
7 const mem state t MEMM = 5 ;
8 /∗ [/CMGR STATES DECLARATION]∗/

Figure 9.16 – Example of Tagged UPPAAL Code

new protocol. As a result, the UPPAAL file can be easily modified by the user without having to
wonder what will break compatibility with CoProSwi. Furthermore, this means there is no master
template: the output of CoProSwi can be re-used as-is if the protocol needs to be changed again.

In addition to being able to modify the model, CoProSwi is also able to list all stable state
change paths. This is useful when applying the coherence protocol identification process described
in Chapter 8.

9.10 Step-by-Step Simulation
UPPAAL provides a model simulations tool, allowing the user to generate model executions by
selecting each transition to take. This can be used to assert that a particular execution is indeed
a valid trace of the model. It also helps to understand and debug the model. Furthermore, when
using UPPAAL’s model checker, the generated counter-examples can be explored in the step-by-step
simulation tool. This helps understanding exactly what allowed the counter-example to be reached.

It should be noted that using the extremum operators (sup or inf, described in Section 2.2.2)
in a model checking query never generates a counter-example: the property is always considered
as having been verified. The resulting value is simply given to the user in the form of a pop-up
dialog. To obtain a trace in the step-by-step simulator that would yield this extremum, the user
has to perform a new verification. Indeed, a solution is then to ask UPPAAL to verify that the
system never reaches a state in which the target clock or variable has the extremum value. This will
generate a counter example, and thus one trace for which the model reaches this value.

Figure 9.17 shows UPPAAL’s step-by-step simulation interface. Using this, the user is able to
simulate an execution of the model for which they are able to decide the order of any transition:
the available transitions in the current state are displayed in (A); those that were previously taken
are shown in (B) and the system can be reverted to any of them with a simple click; the valuation
of each variable and the current clock constraints are displayed in (C); the current location of each
automaton is displayed in (D); and the synchronizations that have occurred so far are displayed in
(E).

9.11. CONCLUSION 153

Figure 9.17 – UPPAAL Step-by-Step Simulation Interface

9.11 Conclusion
This chapter presented a way to model a multi-core architecture with a focus on cache coherence
mechanisms.

The use of a network of timed automata proved to be effective in allowing a readable and
modular description of the system. Indeed, each component can be modeled independently, with
only synchronizations with other components needing to be accounted for.

The model presented in this chapter can be configured to match the user’s architecture through
easily configurable parameters. The addition of an arbitrary number of cores with their caches and
FIFOs is also supported and is made easy by UPPAAL’s automaton template features.

The coherence protocol is defined outside of the model, solely using the notions from Chapter 3.
This makes it possible for the user to change the resulting model’s cache coherence protocol without
having to understand the way it is modeled. Furthermore, switching from one protocol to another
can be done automatically using the provided tool, making the whole process very approachable.

Once the platform has been modeled, formal analyses can be performed. The next chapter not
only explores the results that can be obtained with the model as described here, but also introduces
definitions for the interference generated by cache coherence and explains how the model can be
used to expose them.

154 CHAPTER 9. MODELING CACHE COHERENCE

Chapter 10

Exposing Interference

The previous chapter described a model of multi-core architecture with a focus on cache coherence.
This chapter explores the ways this model can be analyzed through formal methods in order to
expose and quantify the impact of cache coherence interference. Part of the work presented in this
chapter was published in [47].

10.1 Overview of the Analyses

WCET
Analysis

(Section 10.2)

Slowdown
Factors

WCET of
Programs

Without Shared
Variables

Impact of
Interference
on WCET

Hit & Miss
Analysis

(Section 10.3)

Instantiated
Model

Instruction
Accuracy

Mem. Element
Accuracy

Interference
Categorization
(Section 10.4)

Cache Coherence
Protocol

Annotated
Protocol

Instruction Impact
Analysis

(Section 10.5)

Relation Between
Instruction &
Interference

Figure 10.1 – Overview of Analyses in Chapter 10

Figure 10.1 provides an overview of the analyses performed in this chapter. Rectangles with

155

156 CHAPTER 10. EXPOSING INTERFERENCE

a gray background correspond to analyses and those without background are main results. Nodes
without borders are auxiliary results, meant to provide extra information. Rectangles with dashed
borders are intermediary results, which are not meant to be used on their own.

For the analyses presented in this chapter to provide relevant information to the user, the model
from Chapter 9 has to be instantiated to match the user’s chosen architecture (Instantiated Model
in the figure). This instantiation corresponds to setting the model parameters listed in Appendix B
according to the results of architecture profiling benchmarks. Examples of such benchmarks have
been listed in Chapter 5.

Data FIFOQuery FIFO

Data BusQuery Bus

Data FIFO

Urgent
Handler

Query FIFO

Data FIFOQuery FIFO

Core1 Core2

Cache2Cache1

QFIFO1 DFIFO1 QFIFO2 DFIFO2

QBUS DBUS

QFIFOMem DFIFOMem

CMGR Mem

Figure 10.2 – Overview of the Instantiated Model

1 {INSTR STORE, 1 , 0 , 0} ,
2 {INSTR STORE, 2 , 0 , 0} ,
3 {INSTR LOAD, 1 , 0 , 0} ,
4 {INSTR STORE, 1 , 0 , 0} ,
5 {INSTR LOAD, 3 , 0 , 0} ,
6 {INSTR STORE, 2 , 0 , 0} ,
7 {INSTR LOAD, 1 , 0 , 0} ,
8 {INSTR STORE, 1 , 0 , 0} ,
9 {INSTR LOAD, 2 , 0 , 0} ,

10 {INSTR STORE, 2 , 0 , 0} ,
11 {INSTR END, 0 , 0 , 0}

(a) Program Model for Core 1

1 {INSTR STORE, 1 , 0 , 0} ,
2 {INSTR STORE, 3 , 0 , 0} ,
3 {INSTR LOAD, 3 , 0 , 0} ,
4 {INSTR STORE, 2 , 0 , 0} ,
5 {INSTR LOAD, 1 , 0 , 0} ,
6 {INSTR STORE, 2 , 0 , 0} ,
7 {INSTR LOAD, 3 , 0 , 0} ,
8 {INSTR STORE, 1 , 0 , 0} ,
9 {INSTR LOAD, 2 , 0 , 0} ,

10 {INSTR STORE, 3 , 0 , 0} ,
11 {INSTR END, 0 , 0 , 0}

(b) Program Model for Core 2

Figure 10.3 – Program Models

The instantiated model chosen to illustrate the analyses of this chapter is shown Figure 10.2. The
model of each program can be seen on Figure 10.3, with Core1 running the program from Figure 10.3a

10.1. OVERVIEW OF THE ANALYSES 157

and Core2 the one from Figure 10.3b. The model uses its default parameters, as listed in Figure B.1.
It uses the MESI protocol from Section 8.3.

Instantiated models still allow many different executions. For example, the order in which caches
access the query bus remain undecided, leaving all possible combinations as a source of divergence
between valid executions. These valid executions are analyzed using of model checking, providing
information on the modeled system. In effect, each analysis is made of a number of formulas written
using the syntax detailed in Section 2.2.2. The result of each analysis is an interpretation of the
results of these model checking queries.

WCET Analysis
In Section 10.2, analyses are made on the instantiated model to seek worst-case program execution
times. The first result taken from these analyses is the execution time of each program with cache
coherence taken into account. While deviating from interference analysis, this also makes it possible
to compare architecture configurations (see Definition 32) and their respective slowdown factors (see
Definition 36). There is a particular configuration which should be studied regardless of its validity
on the real system: running the programs without any shared variables. While this result is likely
to be of use on its own, comparing it with the results from the analysis that has shared variables
quantifies the impact of interference on the execution time of the programs.

With knowledge only about program execution times, the applicant would not be sufficiently
informed to address the issue of cache coherence interference. As a result, the other analyses focus
on program instructions. Namely, how interference affects them, and how they generate interference.

Hit & Miss Analysis
Section 10.3 uses the instantiated model to categorize each of the programs’ instruction according
to whether it finds the memory element in the cache or not (cache hit or cache miss, referred to as
accuracy thorough this chapter). This provides the user with an understanding of which instructions
are likely to have been impacted by cache coherence and points out which ones have execution times
that may vary because of it. An auxiliary analysis looks at the accuracy of memory elements, which
might point out particularly troublesome memory elements.

Interference Categorization
These accuracy analyses do not properly expose cache coherence interference. Indeed, while the
effects of the interference are found within the categorization of instruction accuracy, the causes of
the interference are not. Section 10.4 proposes a categorization of the effects of cache coherence
interference. This makes it possible to annotate the cache coherence protocol with the transitions
that can cause interference and the type of interference they generate.

Instruction Impact Analysis
Using this annotated cache coherence protocol and the instantiated model, Section 10.5 describes
analyses that point out to the applicant exactly which instructions can generate interference, what
category of interference they generate, which instructions can be affected, and whether this occurs
on all possible executions or only some of them. This provides the information on instructions that
was missing from the analyses of Section 10.3 and thus expose all cache coherence interference to
the applicant with sufficient details to be the basis on which mitigation can be planned.

158 CHAPTER 10. EXPOSING INTERFERENCE

10.2 Analyzing Impact on Program Execution Time
This first analysis looks at the effects of interference on the programs themselves by computing their
worst-case execution time. Note that when using the limited representation of the programs and of
the architecture in the model proposed in Chapter 9, the execution times resulting from the analyses
performed in this chapter are unlikely to be those of the real applications and should therefore only
be used in comparisons with other similarly obtained execution times. Indeed, such results can be
used to compare the execution time of programs in different configurations, such as for computation
of slowdown factors (see Definition 36). Additionally, it is possible to obtain an estimate of the
execution time that is due to cache coherence interference by comparing the execution time of each
program with that of a configuration in which there are no shared variables. This configuration
might not be viable in the real system, but its analysis provides valuable information as a reference
point, since it corresponds to the programs neither benefiting nor suffering from cache coherence
while still having to account for concurrent accesses to the system’s main memory.

When looking at the execution time of programs without shared variables, the results do not
include much of the interference from cache coherence, but still has the cost of concurrent memory
accesses. This particular cost may actually be lowered by cache coherence. Indeed, having programs
running in parallel and sharing data using cache coherence can lead to run-times increasing because
cache permissions are lost, but it can also lead to run-times decreasing because more values are
available in caches and may thus be retrieved faster than when those are only in the main memory.

By removing the execution time obtained by the analysis of each programs without shared
variables from their execution time with those shared variables, the time lost or gained because of
cache coherence is obtained. More precisely, given Ws the execution time of a program running in
parallel with other programs and having shared variable and Wp the equivalent without any shared
variables, Tcc = Ws −Wp corresponds to the execution time added by cache coherence interference.

To compute the Ws and Wp using the model described in Chapter 9, UPPAAL’s model checking
is made to find the maximum value of the runtime clock of a core automaton outside of the Terminated
location (e.g. sup{not Core1.Terminated}: Core1.runtime for Core1).

Example 34 (Slowdown Factors on the Model from Section 10.1) Figure 10.4 shows differ-
ent worst case execution times for the model from Section 10.1. The first line corresponds to the
result of sup{not Core1.Terminated}: Core1.runtime and the second is the equivalent for the other core.
The Shared Variables results are obtained by simply making this query on the instantiated model
from Section 10.1 as-is, with both programs running in parallel unmodified. The No Shared Vari-
ables results are obtained by shifting all addresses from the program running on Core2 in order to
avoid sharing any address between the two cores. In this case, all addresses from Figure 10.3b are
increased by 3. Tcc corresponds to the execution time which is due to by cache coherence interference.
Lastly, an example of alternative configuration in which each program runs alone on the platform
is also analyzed: the Isolation configuration is achieved by replacing the other program with one
composed only of a single INSTR END instruction.

Shared Variables No Shared Variables Tcc Isolation
Core1 2652 1102 1550 702
Core2 2452 1452 1000 904

Figure 10.4 – WCET Analysis of Model from Section 10.1

The results of the analysis are as follows:

10.3. ANALYZING IMPACT ON HIT & MISS 159

• Core1 suffers a slowdown factor of 2652/702 = 3.77 when running in parallel with Core2,
compared to in isolation.

• Core2 suffers a slowdown factor of 2452/904 = 2.71 when running in parallel with Core1,
compared to in isolation.

• Running the two programs in isolation one after the other has a maximum execution time of
702 + 904 = 1606.

• Running the two programs with their shared variables in parallel has a maximum execution
time of max(2652, 2452) = 2652.

• Running the two programs without shared variables in parallel has a maximum execution time
of max(1102, 1452) = 1452.

• Approximately (1550/2652) ∗ 100 = 58.44 percent of Core1’s worst execution time is caused by
cache coherence interference.

• Approximately (1000/2452) ∗ 100 = 40.78 percent of Core2’s worst execution time is caused by
cache coherence interference.

The following observations can thus be made:

• The programs in this example greatly interfere with each other.

• Running the two programs in isolation one after the other actually leads to a WCET lower
than running both in parallel with shared variables: 1606 < 2652. As a result, if the nature of
the programs allow it, running the programs one after the other is preferable.

• Running the two programs in parallel but with no shared variables is preferable to running them
in isolation one after the other (1452 < 1606). This is also a result which is only exploitable
if the nature of the programs allow them to be transformed into an alternative that either uses
separate copies of the shared variables or uses less shared variables altogether.

Thus, comparing WCET in different configurations of the architecture provides the user with
an understanding of how much interference is affecting the programs because of cache coherence.
However, this WCET analysis shows the accumulation of all interference. In order to better control
this interference, a more precise analysis of the causes of this interference has to be performed. This
starts with determining which instructions are impacted by interference.

10.3 Analyzing Impact on Hit & Miss
The most impactful effect interference can have on instructions is to prevent them from being able
to retrieve memory elements that would otherwise be present in the cache. Thus, one way to look
at the causes behind the WCET of a program is to see, for each instruction, whether retrieving the
memory element they access from the cache requires the cache to fetch it or not.

The analyses in this section provide the user with an understanding of which instructions cause
caches to have to fetch memory elements (a time consumming operation), whether this fetching
always has to happen, never does, or sometimes does (see Section 10.3.2). It also shows how the
model can be used for a similar purpose, but focused on memory elements themselves instead of
each instruction (see Section 10.3.3). In effect, these analyses point out what part of the programs
should be the focus of attempts at execution time improvements.

160 CHAPTER 10. EXPOSING INTERFERENCE

The same idea is employed in Section 6.3, which presented papers that use abstract interpretation
in a way that makes all accesses be categorized as either always-hit, always-miss, first-miss, or
uncategorized. However, these papers did not account for cache coherence. Using our model, this
categorization can be performed even on systems featuring cache coherence.

To avoid any ambiguity, the definition of both cache hit and cache miss used in this chapter is
provided below. The reason for stall actions being mentioned in those definitions is that as long
as an event has not led to any transition other than ones which have a stall action, the component
is not considered to have acknowledged the event’s existence.

Definition 58 (Cache Hit) A request is considered to have resulted in a cache hit if, according
to the cache coherence protocol, the first triggered transition not featuring a stall action features a
hit action.

Definition 59 (Cache Miss) A request is considered to have resulted in a cache miss, according
to the cache coherence protocol, the first triggered transition not featuring a stall action does not
features a hit action.

Example 35 (Cache Hit and Miss) In the MESI protocol from Figure 8.7 (Section 8.3), a store
instruction results in a cache hit for a memory element currently held in the E, M or even MIB state.
If the memory element is held in the S or the I state, the store would result in a cache miss. Lastly,
if the memory element is in the IMD state, the categorization of the store instruction would not be
determined until some other state is reached because of the stall action.

The model, as presented in Chapter 9, does not have any notion associated with either a cache
miss or a cache hit. This makes it impossible to simply use UPPAAL’s model checking in order to
detect them. The model has thus been modified to allow these analyses to be performed. These
additions are detailed in the next sub-section.

10.3.1 Hit and Miss in the Model
Hitherto unmentioned are some aspects of the model ensuring that each cache hit and cache miss is
kept track of. Indeed, the cache automaton from Section 9.4 was made so that:

Cache Automata:

• The structure corresponding to a core request in the cache automata gets two extra fields,
is cache hit and instruction addr, described below.

• The is cache hit field defaults to true, and will, once the request is completed, indicate whether
than request was a cache hit or a cache miss. Thus, a request representation can be modified
to be a cache miss, but not the reverse.

• The instruction addr field keeps track of which program line this request stems from. Indeed,
requests may be completed out of order, so this index is necessary to trace the resulting
categorization back to the program itself.

• There is a cache miss action, which marks the current request as being a cache miss.

• An array, cache local address infos , is part of the local variables, and has one cell per memory
element. This array keeps track of the number of both hit and miss observed by this cache for
each memory element.

10.3. ANALYZING IMPACT ON HIT & MISS 161

• When acknowledging the completion of a request, cache local address infos is updated according
to whether the request for that memory element was a cache hit or a cache miss.

The added cache miss action is not explicitly part of the cache coherence protocol. Instead, the
protocol switching tool presented in Section 9.9 adds it automatically. Upon generating the actions
for the cache automata, the cache miss action is added to any action list that contains neither a
stall nor a hit.

With these variables in the model, UPPAAL’s model checking can be used to analyze cache hits
and cache misses.

10.3.2 Instruction Characterization
The instruction characterization analysis assigns to each instruction a category among always-hit,
always-miss, and uncategorized. The first-miss category, which was present in Chapter 6.3 cannot
currently be detected by the model, as programs do not feature loops, meaning that each instruction
is only performed once. As a result, instructions that would otherwise be characterized as first-miss
are indistinguishable from always-miss ones.

This categorization allows the user to determine which instructions are mostly unaffected by
interference (all always-hit), which ones are strongly affected (which are among the always-miss),
and which ones are likely to cause variation in execution time (all uncategorized).

This analysis requires a minimum of one model checking query per instruction, and a maximum
of two per instruction (if the first one is inconclusive). The UPPAAL queries corresponding to the
verification of an always-hit or an always-miss can be written for the 10th instruction of Core1 as
follows:

• Always Hits:
AG(Cache1.completed requests[0].instruction addr = 9 imply Cache1.completed requests[0]. is cache hit)

• Always Misses:
AG(Cache1.completed requests[0].instruction addr = 9 imply (not Cache1.completed requests[0]. is cache hit))

The idea being that all requests completed by a cache are guaranteed to be in completed requests[0]
(i.e. the top of their cache’s completed request queue) at one point or another, making it an ideal
variable to analyze. Cache1 corresponds to the cache being analyzed, as the completed requests variable
is local to each cache automaton. 9 is the index of the 10th instruction. Thus, these queries check
whether the completion of the 10th instruction in Cache1 always (or never, in the case of the always-
miss) results in a cache hit.

This analysis does not separate the cache misses caused by cache coherence and those that are
innate to the program itself (e.g. the first access to a memory element is sure to be a cache miss).
However, the analysis proposed in Section 10.5 provides a way to determine what categorization is
the direct result of interference.

Attempting to compare the results of this analysis with the system in different configurations
(namely, in isolation compared to with shared variables) in order to figure out which cache misses
are caused by cache coherence is in no way assured to work. Indeed, the interference can cause
cache evictions, which in turn change the effects of the cache’s replacement policy: if a cache line
is freed because of interference, the cache will have one extra available slot at this point in the
program compared to the run in isolation, causing a divergence that is likely to void the relation
between categorization in isolation and categorization with shared variables. Indeed, this may even
cause instructions to be more accurate with shared variables than in isolation if an interference
ends up evicting a memory element never to be accessed later and causes a memory element that

162 CHAPTER 10. EXPOSING INTERFERENCE

is accessed later to not be removed by the cache replacement policy because of the freed cache
line. Nevertheless, even without distinction of which cache misses are caused by interference, the
categorizing the accuracy of instructions provides useful information.

Example 36 (Application to the Model of Section 10.1) Applying the instruction character-
ization to the model of Section 10.1 yields the results shown in Figure 10.5. AM denotes always-miss,
AH stands for always-hit, and UN is for all other uncategorized cases. In this very small example,

1 {INSTR STORE, 1 , 0 , 0} i s AM (AM)
2 {INSTR STORE, 2 , 0 , 0} i s AM (AM)
3 {INSTR LOAD, 1 , 0 , 0} i s UN (AH)
4 {INSTR STORE, 1 , 0 , 0} i s UN (AH)
5 {INSTR LOAD, 3 , 0 , 0} i s AM (AM)
6 {INSTR STORE, 2 , 0 , 0} i s AM (AH)
7 {INSTR LOAD, 1 , 0 , 0} i s AH (AH)
8 {INSTR STORE, 1 , 0 , 0} i s AM (AH)
9 {INSTR LOAD, 2 , 0 , 0} i s UN (AH)

10 {INSTR STORE, 2 , 0 , 0} i s UN (AH)
11 {INSTR END, 0 , 0 , 0}

(a) Program Characterization for Core1

1 {INSTR STORE, 1 , 0 , 0} i s AM (AM)
2 {INSTR STORE, 3 , 0 , 0} i s AM (AM)
3 {INSTR LOAD, 3 , 0 , 0} i s AH (AH)
4 {INSTR STORE, 2 , 0 , 0} i s AM (AM)
5 {INSTR LOAD, 1 , 0 , 0} i s AM (AH)
6 {INSTR STORE, 2 , 0 , 0} i s UN (AH)
7 {INSTR LOAD, 3 , 0 , 0} i s AH (AH)
8 {INSTR STORE, 1 , 0 , 0} i s AM (AH)
9 {INSTR LOAD, 2 , 0 , 0} i s UN (AH)

10 {INSTR STORE, 3 , 0 , 0} i s AM (AH)
11 {INSTR END, 0 , 0 , 0}

(b) Program Characterization for Core2

Figure 10.5 – Example of Program Characterizations

the cache replacement policy does not activate, which means that the performing the analysis in iso-
lation is able to provide a reference that will indicate which instructions are cache misses because of
interference and which are not. Indeed, in the figures, the first indicated characterization on each
line corresponds to that obtained in the configuration with the other program running in parallel.
The second one, between parentheses, is the result of the analysis in isolation. The following results
can be observed:

• In the program on Core1, only the instruction at line 7 is sure to not be negatively affected by
cache coherence (always-hit).

• The execution time variability of the program on Core1 is caused by the instructions at lines
3, 4, 9, and 10 (uncategorized).

• For the program on Core2, the instructions at lines 3 and 7 are never negatively affected by
cache coherence.

• The execution time variability of the program on Core2 is only caused by the instructions at
lines 6 and 9.

• The result of the analysis in isolation shows that the first access for each memory element is
always a cache miss, and all subsequent accesses are always cache hits.

The result of the analysis in isolation are unsurprising, because those first accesses obtain all the
permissions for the memory elements required by the subsequent accesses. A different result would be
observed if the first access what a load and a subsequent store was present: both would be classified
as always-miss. Note that this particular example does not feature any evict instruction nor does
it trigger the caches’ replacement policy. As indicated, the latter would impact the results of the
analysis in isolation. Considering the amount of interference in this example, the program running
on Core2 is surprisingly predictable.

10.3. ANALYZING IMPACT ON HIT & MISS 163

At this point, the user has a better understanding of how each instructions affect the program’s
execution time. Section 10.3.3 provides an auxiliary analysis, which focuses on the accuracy of
memory elements instead.

10.3.3 Memory Element Accuracy Analysis
In addition of characterizing each instruction, the overall accuracy of accesses made to each memory
elements can also be quantified in each cache. As with the instructions, this analysis reveals which
memory elements are the cause of time variation, which are not affected by interference, and which
are frequent causes of cache misses. Furthermore, some information on uncategorized instructions
can sometimes be obtained by looking at the accuracy of memory elements.

Instead of categorizing the memory elements, this analysis looks at the minimum and maximum
of cache hits and cache misses for each memory element in each cache. The UPPAAL queries to
determine either the maximum or minimum of cache hits for the memory element at address 3 on
Cache1 are as follow:

• Maximum Number of Cache Hits:
sup: Cache1.cache local address infos [3]. hit

• Minimum Number of Cache Hits:
inf{Core1.Terminated and Core2.Terminated}: Cache1.cache local address infos[3].hit

The Core1.Terminated and Core2.Terminated formula parameter used when calculating the minimum
number of cache hits ensures that only values from after both programs have successfully com-
pleted are considered. Otherwise, the result would always be 0, as it is the initial and lowest value
on all traces.

Combined with the categorization of instructions, this analysis can provide information on the
uncategorized instructions accessing a memory element. Indeed, by removing the accesses pertain-
ing to instructions classified as always-hit or always-miss from the results, the remaining numbers
indicate the range of cache hits and cache misses distributed among all uncategorized instructions
for this memory element.

Example 37 (Application to the Model of Section 10.1) Using UPPAAL to query the ex-
trema of both cache hits and cache misses on each cache for the model of Section 10.1 yields the
results shown in Figures 10.6a and 10.6b. The first number in each cell corresponds to the result of
the analysis for all accesses. The number between parenthesis subtracts the accesses which are not
from uncategorized instructions according to Example 36.

Cache1 Cache2
Hit Miss Hit Miss

Address 1 3 (2) 4 (2) 0 (0) 3 (0)
Address 2 2 (2) 4 (2) 1 (1) 2 (1)
Address 3 0 (0) 1 (0) 2 (0) 2 (0)

(a) Maximum

Cache1 Cache2
Hit Miss Hit Miss

Address 1 1 (0) 2 (0) 0 (0) 3 (0)
Address 2 0 (0) 2 (0) 1 (1) 2 (1)
Address 3 0 (0) 1 (0) 2 (0) 2 (0)

(b) Minimum

Figure 10.6 – Cache Hit/Miss Extrema for each Memory Element

The results of this analysis can be read as follows:

164 CHAPTER 10. EXPOSING INTERFERENCE

• On Cache1, the address 1 has 1 always-hit and 2 always-miss instructions. Thus, the number
corresponding to the accesses from uncategorized instructions are obtained by removing 1 from
the Hit columns and 2 from the Miss columns.

• For address 2, the program that uses Cache1 has 2 always-miss instructions, which are thus
removed from the Miss columns.

• Address 3 has no uncategorized accesses, so there is nothing remaining.

• Address 1 on Cache2 is only accessed by 3 always-miss, which are thus removed. This leaves
0 hit or miss for uncategorized accesses, as expected since there are none in Example 36.

• Address 2 on Cache2 only removes a single always-miss.

From these results, the following observations can be made:

• The memory element at address 1 is the main cause of cache misses.

• The memory element at address 3 is the least problematic one.

• The results of the analyses for Cache2 show the same values for both minimum and maxi-
mum cache hits and misses. This adds information to the categorization done in Example 36.
Indeed, this means that despite being neither always-hit nor always-miss, the uncategorized
instructions of Cache2 never both hit (minimum and maximum of 1 hit on any execution for
uncategorized instructions) nor both miss (minimum and maximum of 1 miss on any execution
for uncategorized instructions) on the same execution.

• On Cache1, the uncategorized accesses to address 1 can both be miss or hit on the same exe-
cution. Further analysis would be required in order to determine if every execution has them
both hit or both miss.

• This also holds true from the uncategorized accesses to address 2 on Cache1.

This auxiliary analysis provided some additional information on which memory elements should
be the focus of the user when attempting to mitigate the interference generated by cache coherence.
It also provided a way to obtain a bit more information on uncategorized instructions.

In order to understand what causes instructions to result in cache misses when cache coherence
is active, the next section studies the external queries received by caches.

10.4 Defining Impact of External Queries
This section looks at how external queries interfere with caches and, consequently, with instructions
using these caches. The results of the analyses performed in this section are not likely to be of direct
interest to the user, since they have little control over queries themselves. However, this section
introduces the concepts that define the interference generated by cache coherence and the analysis
of queries is key to the more exploitable results of Section 10.5.

The characterization of the effects of each query on a cache provides information about what
causes an instruction to result in a cache miss or to be delayed (which is not observable in the
analyses of Section 10.3). In effect, two of the three proposed categories of interference specify
which permissions are lost, which correlates to which instructions would miss if executed after the
interference.

10.4. DEFINING IMPACT OF EXTERNAL QUERIES 165

10.4.1 Minor Interference
No handling of an event by a cache is instantaneous: every time a cache has to process an incoming
query, there is a very small amount of time during which it cannot be used by its core. As a result,
all external queries lead to some kind of interference. This small delay being the least disruption
that can be caused. While the effect of each delay is so small as to be considered negligible, their
accumulation most definitely is not. The name minor interference is proposed for this unavailability
period.

Definition 60 (Minor Interference) Minor interference occurs whenever a cache becomes un-
available for core requests because it is handling an external bus query, yet the handling of that query
had not effect.

Example 38 (Minor Interference) Figure 10.7 shows an example of minor interference. The
figure indicates the current coherence state of the memory element involved for both caches, as well
as their outgoing query queue. In that example, Cache2 has to process Cache1’s GetS broadcast,
despite that message not requiring any reply or coherence state update from Cache2.

Core1

Cache1

Cache2

Interconnect

Figure 10.7 – Minor Cache Coherence Interference

Detection of this interference by the model is simply done by each cache considering any ob-
served external query as an occurrence of minor interference. If the observed external query is later
considered to be a different type of interference, it is removed from the count of minor interferences.

For a minor cache coherence interference to be considered to have had an impact, it must delay
a request from a core. More specifically, the request has to become available for transmission from
the core to the cache, but the cache be unavailable because it is already processing the interfering
query. It is considered as having an impact solely on that delayed instruction.

While counting the number of occurrences is easily done, detecting that a minor interference
had an impact on the program’s execution would correspond to detecting that a synchronization
for either data or request with a cache automaton (see Section 9.4) could not be performed because
that automaton was in its S2 location (waiting for the query handling time to pass). Doing so might
be possible, but requires numerous changes in the model’s automata, and is thus not currently
supported. As a result, all occurrences of minor interferences are counted, but the model does not
let the user know if they had an impact.

166 CHAPTER 10. EXPOSING INTERFERENCE

10.4.2 Demoting Interference
As explained in Section 3.2.2, cache coherence protocols do not allow a cache to hold a memory
element with writing permissions while another cache holds that same memory element with reading
permissions. Thus, acquisition of a copy the memory element by another cache leads to any cache
currently holding it with writing permissions to lose them. The name demoting interference is
proposed for this type of interference.

Definition 61 (Demoting Interference) Demoting interference corresponds to the loss of writ-
ing permission for a memory element by a cache because of an external query, while reading permis-
sions are kept.

Example 39 (Demoting Interference) Figure 10.8 shows an example of demoting interference:
Cache2, receiving a demand for read access on that memory element from Cache1, has to update the
value from the main memory and go from read-and-write permissions to read-only permissions.

Core1

Cache1

Cache2

Interconnect

Figure 10.8 – Demoting Cache Coherence Interference

In order for a demoting interference to have had an impact, it must be followed by a store
instruction, with any number of load in-between, but no evict. The demoting interference is only
considered to have had an impact on that store instruction, not on the other instructions in-between
nor on future instructions.

To detect demoting interference, the cache coherence protocol has to be annotated. Are anno-
tated as demoting interference all transitions which make a memory element move from a coherence
state in which store is a hit to one where it is not. To detect that a demoting interference had
an impact on execution time, the model uses cache local address infos to keep track of which memory
elements have been affected by a demoting interference since they were last accessed for a store. If
a store occurs on a memory element currently marked as such, the demoting interference is counted
as having had an impact.

10.4.3 Expelling Interference
When a cache acquires writing permissions on a memory element, all other caches holding a copy of
that memory element must discard it. The name expelling interference is proposed for this type of
interference.

10.4. DEFINING IMPACT OF EXTERNAL QUERIES 167

Definition 62 (Expelling Interference) Expelling interference corresponds to the removal of a
memory element from a cache following an external query.

Core1

Cache1

Cache2

Interconnect

Figure 10.9 – Expelling Cache Coherence Interference

Example 40 (Expelling Interference) Figure 10.9 shows an example of expelling interference:
Cache2, receiving a demand for read-and-write access from Cache1, is forced to relinquish its read-
only copy of the memory element.

An expelling interference has an impact on the very first next instruction that is either a store
or a load (not evict), and not any future instructions.

As with the previous type of coherence interference, detection of expelling interference is done
by annotating the coherence protocol. This time, the annotation is done on transitions which
make a memory element move from a coherence state in which load is a hit to one where it is
not. Detection of expelling interference that affected the program’s run-time is also done by using
cache local address infos to keep track of which memory elements have been affected by an expelling
interference since they were last accessed. The interference is considered to have had an impact
on execution time if either load or store occurs on a memory element currently marked as having
been forcefully evicted. This may result in over-pessimism, as the store might not have been a hit
regardless (e.g. expelling interference occurring in the S state, followed by store).

10.4.4 Protocol Annotations
Figure 10.10 shows the proposed interference annotation for the 3 coherence protocols presented in
this thesis: MSI, MESI, and MESIF.

Explanations for the Demoting annotations:

• Receiving GetS external query for a memory element in the IMD state will prevent the cache
from keeping the write permissions after the current store for this memory element completes,
hence the Demoting annotations.

• In the M and E states, observing a GetS external query will result in the immediate loss of
writing permissions for that memory element, which is why these transitions are marked with
Demoting annotations.

168 CHAPTER 10. EXPOSING INTERFERENCE

State Received Query
GetS GetM PutM

I Mi. Mi. Mi.
ISBD Mi. Mi. Mi.
ISB Mi. Mi.
ISD Mi. Ex.
ISDI Mi. Mi.
IMBD Mi. Mi. Mi.
IMB Mi. Mi. Mi.
IMD De. Ex.
IMDI Mi. Mi.
IMDS Mi. Ex.
IMDSI Mi. Mi.
S Mi. Ex.
SMBD Mi. Ex.
SMB Mi. Mi.
SMD De. Ex.
SMDI Mi. Mi.
SMDS Mi. Ex.
SMDSI Mi. Mi.
M De. Ex.
MIB Ex. Ex.
IIB Mi. Mi. Mi.

(a) MSI

State Received Query
GetS GetM PutM

I Mi. Mi. Mi.
ISBD Mi. Mi. Mi.
ISB Mi. Mi.
ISD Mi. Ex.
IEoSD Mi. Ex.
ISDI Mi. Mi.
IMBD Mi. Mi. Mi.
IMB Mi. Mi. Mi.
IMD De. Ex.
IMDI Mi. Mi.
IMDS Mi. Ex.
IMDSI Mi. Mi.
S Mi. Ex.
SMBD Mi. Ex.
SMB Mi. Mi.
SMD De. Ex.
SMDI Mi. Mi.
SMDS Mi. Ex.
SMDSI Mi. Mi.
M De. Ex.
MIB Ex. Ex.
IIB Mi. Mi. Mi.
E De. Ex.
IEB Mi. Mi. Mi.
EIB Ex. Ex.

(b) MESI

State Received Query
GetS GetM PutM

I Mi. Mi. Mi.
IFBD Mi. Mi. Mi.
IFB Mi. Mi.
IEoFD Mi. Ex.
ISD Mi. Ex.
ISDI Mi. Mi.
IMBD Mi. Mi. Mi.
IMB Mi. Mi. Mi.
IMD De. Ex.
IMDI Mi. Mi.
IMDS Mi. Ex.
IMDSI Mi. Mi.
S Mi. Ex.
F Mi. Ex.
SMBD Mi. Ex.
FMB Mi. Mi.
SMB Mi. Mi.
SMD De. Ex.
SMDI Mi. Mi.
SMDS Mi. Ex.
SMDSI Mi. Mi.
M De. Ex.
MIB Ex. Ex.
IIB Mi. Mi. Mi.
E De. Ex.
IEB Mi. Mi. Mi.
EIB Ex. Ex.
FIB Mi. Mi.

(c) MESIF

Interference Type: Minor Expelling Demoting

Figure 10.10 – Interference Annotations

Explanations for the Expelling annotations:

• Observing a GetM query for a memory element in the ISD, IMD, SMD, IEoSD, IEoFD, or SMDS state
leads to states that ensure the memory element is evicted once this cache’s current transaction
for the memory element is completed. They are thus annotated as Expelling interference.

• Similarly, receiving a GetM query for a memory element in the S, M, E, or F leads to that memory
being immediately evicted (and thus are also annotated as Expelling interference).

• The Expelling interference annotations on the transitions for MIB and EIB come from the fact
that, until it observes any query for that memory element, the cache still has both read and

10.4. DEFINING IMPACT OF EXTERNAL QUERIES 169

write permissions. These states were reached because the cache is already evicting the memory
element, which makes considering its eviction an interference something that can be argued
against. I chose to consider the permissions for future requests and not the result of past ones,
hence the annotation.

Example 41 (Impact of External Queries on the Model from Section 10.1) As previously
stated, the direct application of the analyses proposed in this section are unlikely to produce exploitable
results. Nevertheless, in order to illustrate the concepts, this subsection proposes an analysis of the
queries generated by the example of Section 10.1.

By using counters for occurrences of potential interference and those which had an impact, using
model checking to obtain extrema may provide results that can be compared to those from Section 10.3.
For example, the maximum number of occurrences for minor interference related to the memory
element at address target addr on Cache1, the following query can be used:
sup: Cache1. cache local address infos [target addr]. potential interference count [INTERFERENCE MINOR].

Cache1 Cache2
Minor Demoting Expelling Minor Demoting Expelling

Address 1 1 (-) 1 (1) 2 (1) 1 (-) 1 (1) 2 (2)
Address 2 0 (-) 1 (1) 2 (2) 1 (-) 1 (0) 2 (1)
Address 3 1 (-) 0 (0) 1 (0) 0 (-) 1 (1) 0 (0)

(a) Maximum

Cache1 Cache2
Minor Demoting Expelling Minor Demoting Expelling

Address 1 0 (-) 1 (1) 1 (0) 0 (-) 0 (0) 2 (1)
Address 2 0 (-) 0 (0) 1 (1) 1 (-) 0 (0) 1 (1)
Address 3 1 (-) 0 (0) 1 (0) 0 (-) 1 (1) 0 (0)

(b) Minimum

Figure 10.11 – Interference occurrence count extrema for each memory element, in parenthesis is the
number of occurrences that had an impact on execution times

Figure 10.11 shows the number of occurrences of each interference category, for each cache and
each address. Two values are provided: the number of occurrences themselves and, in parenthesis,
the number of occurrences that had an impact on execution time. As indicated in Section 10.4.1, the
model is unable to determine which occurrences of minor interference had an impact on execution
time, hence the lack of number for that category in the figure.

The results of Example 37 showed that the interference affected Cache2 only for the memory
element at address 2, and that it led to one of two instructions being a cache hit in every execution
where the other was a miss. The results from Figure 10.11 offer some further details, by showing
that this is due to an expelling interference. Indeed, there is no variation between Figure 10.11a and
Figure 10.11b for the number of occurrences of interference that had an impact on address 2.

Surprisingly, there is a variation for the number of expelling interference that can have an impact
on address 1 in Cache2. This is not visible in the categorization from Figure 10.5b, as all accesses
made to address 1 are either always-hit or always-miss. The reason for the extra interference not
preventing this categorization is that, in effect, it had not impact. Indeed, performing a store on
a memory element in the Invalid or Shared state both result in a cache miss. However, if an

170 CHAPTER 10. EXPOSING INTERFERENCE

external query evicted the memory element while it was in the Shared state, this forced eviction is
still considered as having had an impact on the store by the model.

Looking at the results for Cache1 and the address 1, the difference between Figure 10.11a and
Figure 10.11b only indicates a single expelling interference not always occurring. In Figure 10.5a
however, the categorization for accesses to the address 1 failed on two instructions. From the fact that
there is only this single expelling interference that can vary in all executions, these two instructions
are either both affected or neither is. In effect, they are either both a cache hit, or both a cache miss.

The results for address 2 on the Cache1 show that there are two impactful instances of interference
that may or may not happen in executions. Since the category of interference are not the same for
the two instances, the results presented here are insufficient to determine a meaningful pattern.
To resolve this, further model checking queries would have to be made in order to see if the two
interference occurrences are somehow related.

In order to render the analysis of query interference more exploitable, the user would need to be
made aware both with instruction was affected and which instruction generated the query. This is
achieved in the next Section.

10.5 Analyzing Impact of Intructions on Instruction
The previous section defined the interference generated by cache coherence, and showed how the
model could be used to expose it. However, knowing where and when the interference occurs isn’t
something that can readily be exploited.

This section proposes instead to perform analyses that will indicate for each program instruction
which other instruction causes interference on it, and what kind. In effect, this corresponds to
finding the sets SA and SE composed of 〈Io, E, It〉 triplets, such that Io corresponds to an instruction
that causes an interference of type E on the instruction It. SA contains all triplets for which the
interference occurs in all executions, whereas SE contains the triplets for which the interference
occurs in at least one possible execution.

Combined with the results from Section 10.3.2, this provides a nearly complete understanding
of the effects of cache coherence interference on instructions. The only missing information being
some complex relations between occurrences of interference.

Obtaining such results using the model features indicated in Section 10.4 can be achieved by
propagating an identifier for each instruction that generates a query all the way to the instruction
that is affected by the interference of that query.

In effect, a triplet 〈Io, E, It〉 is included in SE if, and only if, given Co and Ct the caches handling
Io and It respectively:
E<>(

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e == Io

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e t y p e == E
)

with instruction addr being the line of the affected instruction, interference origin indicating an cache
(author) from which the interference comes from, as well as the line (iline) of the instruction that
generated it. interference type determines if this is a demoting or expelling interference. As with the
analyses of Section 10.3.2, the relevant information is stored in the representation of the request held
in the cache Ct, and every request handled by a cache is assured to be found in its completed requests[0]
after it has been fully processed.

10.5. ANALYZING IMPACT OF INTRUCTIONS ON INSTRUCTION 171

To determine if a triplet also belongs in SA if, the following formula is used:
A [] (

(Ct . c omple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
imply (

Ct . c omple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co

and Ct . c omple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e == Io

and Ct . c omple t ed reques t s [0] . i n t e r f e r e n c e t y p e == E
)

)

Analyzing Strategy Optimization
Testing these two formulas for every possible triplets would lead to a combinatorial explosion. The
following strategy is proposed to reduce the search space:

1. Instructions It not affected by interference can be removed from consideration. In effect,
instructions It for which the interference origin stayed to its default nil value are removed from
the search space. Testing for removal can be done using:
A [] (

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It) imply
(Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author <= 0)

)

interference origin .author = 0 being UPPAAL’s initial value for that variable, and -1 the value
used to represent nil.

2. At this point, all remaining It instructions are sure to be part of the results. For each of
these It instructions, the other components of their tuple(s) have to be found. The relevant
Io instructions for each It instruction are those for which the associated Co is author of the
interference. Thus, for each It, only Co that are author of an interference that affected It are
kept. These Co verify:
E<>(Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co)

3. At this point, the relevant Co caches for each It instructions are known. The search for the
appropriate Io instructions can be shortened by only considering those within a range obtained
using the sup and inf operators. Indeed, the following query looks for the minimum line number
for Io instructions that generated an interference on It:
i n f {

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
and (Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co)

} : (Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e

By replacing inf with sup, the highest line number for an instruction Io that generated an
interference on It can be obtained.

4. At this point, the relevant It and Co associations are known, but the Io instructions still have
a number of candidates which might not all be part of the result. Thus, each Io candidate has
to be tested individually in order to ensure it verifies:
E<>(

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e == Io

)

172 CHAPTER 10. EXPOSING INTERFERENCE

5. At this point, the relevant It, Co, and Io are associated, and all that remains is to determine
the type of interference E for each such association. As there are only two possible values for
E, both should be tested in turn:
E<>(

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e == Io

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e t y p e == E
)

6. At this point, all remaining associations form the tuples that constitute SE . Checking if those
tuples also belongs to SA is done by testing:
A [] (

(Ct . comple t ed reques t s [0] . i n s t r u c t i o n a d d r == It)
imply (

Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . author == Co

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e o r i g i n . i l i n e == Io

and Ct . comple t ed reques t s [0] . i n t e r f e r e n c e t y p e == E
)

)

Example 42 (Instruction Interference on the Model from Section 10.1) Figure 10.12 shows
the interference between the instructions of the model from Section 10.1. The edges go from the in-
struction generating the interference to the one being affected. EX stands for Expelling interference
and DE stands for Demoting. The dashed lines indicate interference that occurs only on some of the
possible executions. The column on the left corresponds to the instructions of Core1’s program. The
column on the right corresponds the equivalent for Core2. The results from Example 36 have been
copied to the figure in order to ease readability.

The interference generated by cache coherence in the model from Section 10.1 can thus be under-
stood to be affecting the instructions on Core1 as follows:

• The first instruction on Core1 is always-miss, but not because of cache coherence. It can affect
the fifth instruction on Core2 by generating an expelling interference on the memory element
at address 1.

• The second instruction on Core1 is also always-miss, and does not generate or suffers inter-
ference other than minor one.

• The third instruction on Core1 is uncategorized as it can be affected by the first instruction
on Core2 through an expelling interference. It is likely that this interference is linked to the
one that can be generated by the first instruction of Core1, and that only one occurs in any
execution.

• The fourth instruction on Core1 is also uncategorized, yet is not the target of any interference.
This implies the accuracy of this instruction is determined by whether the third instruction
is affected by interference or not. Since cache hits do not generate interference (as they do
not generate queries), the potential expelling interference generated by this instruction can only
occur if the third instruction was affected by interference. It is unclear whether the interference
is generated whenever this fourth instruction is a miss or if it can be a miss yet not generate
it.

10.5. ANALYZING IMPACT OF INTRUCTIONS ON INSTRUCTION 173

1. store 1 (AM)

2. store 2 (AM)

3. load 1 (UN)

4. store 1 (UN)

5. load 3 (AM)

6. store 2 (AM)

7. load 1 (AH)

8. store 1 (AM)

9. load 2 (UN)

10. store 2 (UN)

1. store 1 (AM)

2. store 3 (AM)

3. load 3 (AH)

4. store 2 (AM)

5. load 1 (AM)

6. store 2 (UN)

7. load 3 (AH)

8. store 1 (AM)

9. load 2 (UN)

10. store 3 (AM)

EX

EX

DE

EX

EX

EX

EX

EX

EX

DE

DE

Figure 10.12 – Interference Between Instructions on Model from Section 10.1

174 CHAPTER 10. EXPOSING INTERFERENCE

• The fifth instruction on Core1 is an always-miss that cannot be caused by interference. It
always causes an interference for the tenth instruction on Core2, as it forces the permissions
acquired by Core2’s third instruction to be restricted.

• The sixth instruction on Core1 is an always-miss, as it always suffers from an expelling in-
terference caused by Core2’s fourth instruction. This instruction can affect Core2’s ones in
two places, either its sixth or its ninth. It is unclear whether it may also not generate any
interference in some executions.

• The seventh instruction on Core1 is an always-hit, thus neither suffering from, nor generating
interference.

• the eighth instruction on Core1 is an always-miss, as it always suffers from a demoting in-
terference from Core2’s fifth instruction. It can cause an expelling interference on the eighth
instruction of Core2.

• The ninth instruction on Core1 is uncategorized, as it may suffer from an expelling interference
from Core2’s sixth instruction.

• The tenth and final instruction on Core1 is also uncategorized, as it can suffer from a demoting
interference caused by the ninth instruction of Core2.

Thus, the effects of interference on instructions are fully exposed. However, some uncertainties
remain concerning the relation between each generated interference. For example, can the first
instruction of both core generate interference in the same execution? This particular case can be
easily intuited, but using model checking to ensure that any such relation is made known to the user
is seemingly beyond UPPAAL’s capabilities. Indeed, this would require the ability to write a formula
checking that, for any given occurrences of interference, all can be found within the same execution.
Since the detection of an interference requires a temporal formula, this would be a temporal formula
containing a conjunction of temporal formula, which UPPAAL’s query language does not support.

10.6 Model Checking Scalability Considerations
The analyses presented in this chapter rely on model checking. To validate that the model verifies a
property, model checking gradually generates and explores all possible traces from the model. The
time required for this exploration is the main limiting factor of the analyses of the chapter.

Indeed, checking the model described in Chapter 9 can become unreasonably time consuming.
A part of the issue stems from the fact that, despite the efforts to reduce the amount of undesired
non-determinism described in the previous chapter, some of it remains.

Instead of going over each property presented in this chapter, it uses the property that requires
the largest exploration: In all traces, there is a state in which all cores have completed their program.
This corresponds to the following formula:
A<>(Core1 . terminated and Core2 . terminated)

Figure 10.13 shows the execution time of the model checking process with varying number of
cores in the modeled architecture. The 2 cores column corresponds to the model described in
Section 10.1. The cores added for the 3 and 4 cores benchmarks are clones of the second core. The
results clearly show that increasing the number of cores will quickly reach execution times beyond
usable levels. This is not unexpected: even useful non-determinism such as the order of arbitration

10.7. CONCLUSION 175

Cores 2 3 4
Execution time (s) 0.593 12.453 425.109

Figure 10.13 – Model Checking execution time relative to number of cores

Program Size 10 20 30 40
Execution time (s) 0.593 1.297 1.906 2.266

Figure 10.14 – Model Checking execution time relative to length of programs

for the interconnect generate by itself a number of traces exponential to the number of cores (since
all possible orders are explored).

Figure 10.14 shows how long model checking takes on the dual core from Section 10.1 depending
on the number of instructions for the program on each core. 10 instructions corresponds to the
original number of instructions. In order to add more instructions, the programs were extended by
appending a copy of all their current instructions. The results show that increasing the length of
programs does not lead to a rapid increase of model checking times.

10.7 Conclusion
This chapter has shown how UPPAAL’s model checking capabilities can be exploited to analyze the
interference caused by cache coherence on the model from Chapter 9.

This analysis starts by a computation of the WCET for each program. Useful in itself, this
analysis is extended by that of the WCET for these programs with the architecture in different
configurations in order to extract more information about how much of the execution time is caused
by interference.

In order to more precisely understand what determine the WCET and to provide the user with
information about elements of the program that can directly be manipulated, the analysis proceeds
by an categorization of the accuracy of each instruction. This indicates which instructions are
unaffected by the interference, which instructions are always time-consuming, and which instructions
take a varying amount of time depending on the execution. By looking at the accuracy of all
accesses made on each memory element, patterns for these instructions of varying execution time
can sometimes be found, which results in a more predictable system.

The determining factor for the accuracy of instructions is then properly defined. This corresponds
to a categorization of all external queries depending on their effects on the permissions held by a
cache, and whether a loss of permission led to an instruction taking additional time. Thus, three
categories of interference are defined: minor (no change of permission, but loss of time due to query
processing), demoting (loss of writing permission), and expelling (loss of all permissions).

Finally, analyses are performed in order to determine how each instruction interfere with the
other instructions. This results in a graph showing, for each instruction, which instruction can
generate interference that will directly impact it, the category of this interference, and whether this
interference occurs on all possible executions or not.

This provides the user with a clear understanding of the causes and effects of cache coherence
interference on the programs’ instructions, opening the way to finding means of mitigation for this
interference.

176 CHAPTER 10. EXPOSING INTERFERENCE

Part IV

Conclusions & Perspectives

177

Chapter 11

Conclusion

The introduction of multi-core processors in critical avionic systems requires the ability to sufficiently
predict their behavior so that certification of the system is achievable. Indeed, the parallel nature
of multi-core processors leads to numerous interactions that do not strictly pertain to the objective
of the applications being ran. This large amount of unprompted interactions render execution times
difficult to predict and subject to large variations. Among the main causes of large time variations
is cache coherence, the mechanism ensuring that data modifications performed by programs running
in parallel are properly propagated. While cache coherence can be implemented with predictability
in mind (see Section 6.2), this requires hardware modifications, precluding such solutions in an
aeronautical context. Unfortunately, the available strategies to predict worst-case execution time of
applications running on multi-core Commercial Off-The-Shelf processors require cache coherence to
be deactivated (see Section 6.3 and Chapter 7).

This thesis proposes solutions to begin addressing the issue of cache coherence predictability in an
aeronautical context. To do so, it provides the applicant with tools that can expose and explain the
interference generated by cache coherence. In this chapter is provided a summary, the limitations,
and suggestions of future improvements for each contribution made in this thesis.

11.1 Identifying the Protocol
The details of cache coherence mechanisms provided in an architecture’s documentation do not go
into sufficient details for certification purposes. The documentation can even be vague enough to
cause the applicant to be misled about which protocol is implemented on the architecture. To
remedy this, the first contribution made in this thesis is the cache coherence protocol identification
process described in Chapter 8.

11.1.1 Summary
The proposed cache coherence protocol identification process relies on being able to observe the
binary flags defining the state of cache lines, as well as having sufficient performance monitors to
observe cache coherence related activity (although solutions such as the one presented in Section 5.3
may provide an alternative). The general idea being to use the documentation as a basis for the
creation of a detailed hypothetical cache coherence, then validating it against observations made on
the architecture by performing micro-benchmarks. These benchmarks first perform a reachability

179

180 CHAPTER 11. CONCLUSION

analysis on cache states, then the hypothetical cache coherence is used to generate benchmarks
corresponding to behaviors not exposed by the initial reachability analysis.

Successful application of the proposed strategy results in an ambiguity-free description of the
architecture’s cache coherence protocol (meaning a description following the notations presented
in Chapter 3). This ambiguity-free description of the architecture’s cache coherence protocol is an
important information to have in order to prove that the effects of cache coherence on the system are
under control. Indeed, performing benchmarks to measure access latency or bandwidth without this
information is likely to result in the attribution of characteristics to the application of instructions on
an mistaken system state. For example considering writing speed to be a certain value for memory
elements seemingly in Shared in all caches of the system realizing that the protocol actually has a
Forward state that will improve access speed.

To illustrate the need for cache coherence identification, the case of the NXP QorIQ T4240 is
presented in Chapter 8. This architecture’s documentation files indicate a MESI protocol (in the core
documentation [25]) with cache intervention (in the motherboard family’s documentation [26]). By
applying of the cache coherence protocol identification process, the architecture is shown to imple-
ment a MESIF protocol, which is fair from being obvious from the aforementioned documentation.

11.1.2 Limitations

There are two main limitations to the cache coherence protocol identification strategy: the risk
of an unreasonably large search space during the naive reachability analysis and the possibility of
undetected behaviors.

The proposed naive reachability analysis performs up to 3∗cc, benchmarks per observed system
state (i.e. each instruction on each core, if no caches have the same state). Unfortunately, the
number of observed system states can be needlessly high if the considered binary flags of cache lines
contain quickly changing information not pertinent to cache coherence. For example, if flags meant
to provide information to the cache replacement policy are unwittingly considered, the number of
observed system states is likely to be exceedingly high.

The other limitation is that it is always possible for the architecture to have behaviors that
were not observed by the benchmarks. Indeed, provided the system state is actually defined by
components that cannot be observed, the naive reachability analysis might not encounter them.
Likewise, nothing can be done to ensure the benchmarks guided by the hypothetical protocol would
expose them either.

11.1.3 Future Works

The identification process would greatly benefit from the addition of a step in which the cache’s
binary flags are analyzed in order to remove what has no chance of being related to cache coherence.

The Naught library currently only performs a single benchmark per execution. It should be
possible to improve it in order to have all benchmarks for an observable system state be performed
in a single execution.

Naught could further be improved to perform the complete identification process in a single
execution, if given the ability to look at the binary flags of cache lines. This would render the
application of this identification process trivial and greatly improve its chances at being adopted as
a common practice.

11.2. MODELING THE ARCHITECTURE 181

11.2 Modeling the Architecture
In order to ensure all possible cache coherence interference is taken into account, this thesis relies
on formal methods to explore all possible behaviors of the architecture. This requires the creation
of a model for the architecture and the programs.

11.2.1 Summary

Following the solution chosen by the papers in Chapter 7, the model is created using UPPAAL timed
automata. Thus, Chapter 9 presents the network af timed automata that model an architecture
implementing cache coherence.

Each of the architecture’s components is represented by its own timed automaton, with synchro-
nizations being used to interact with the other automata. This results is a model which is modular
and composed of fairly small and readable automata. The timed automata formalism makes it
very easy to model behaviors governed by time constraints, which is important considering that
disruptions to execution time is effectively what is under study in this thesis.

The model’s modularity makes it easy for the applicant to tailor it to the chosen architecture,
as components can be added and removed without having to understand the model in its entirety.
Furthermore, some of the model’s characteristics can be made to match the architecture through a
collection of parameters listed in Appendix B.

The most complex part of the model is the cache coherence protocol. However, the applicant
does not have to understand how it is modeled in order to modify or replace it. Indeed, this thesis
provides a tool that will transform the model to match a cache coherence protocol described in the
formalism from Chapter 3.

11.2.2 Limitations

The way programs are modeled in Chapter 9 is limited to a sequence of memory accesses with a
minimal and maximal delay to be respected afterwards. This corresponds to the information relevant
to cache coherence, but excludes the modeling of any realistic application. Furthermore, UPPAAL’s
handling of priorities and urgent transitions may prevent the maximal delay from being considered:
while being able to fire transitions with higher priority will indeed prevent lower priorities ones from
firing, any urgent modifier from those blocked lower priorities transitions is still considered to be in
effect. This will thus prevent an automaton from spending more time in a location if it can currently
leave the location using a high priority transition and a lower priority transition with the urgent
modifier is only prevented from being fireable because of priorities. This is not an issue that can be
easily mitigated, as priorities are a necessary and complex aspect of the model.

Another source of limitation was from incorrect assumptions on my part of what cache coherence
protocols could reasonably do. Indeed, Section 6.2.1 presents a cache coherence protocol which emits
queries in reaction to incoming queries and data message. The traditional MSI protocols (MESI,
MESIF, MOSI, MOESI, . . .) only send emit queries because of core requests, and the model exploits
this assumption to simplify the cache’s automaton. As a result, the model is unable to use the
protocol from Section 6.2.1 or other protocols with similarly unconventional features.

The model described in Chapter 9 only has partial support for multiple cores using the same
cache. Indeed, while such configurations can easily be made because of the model’s modularity, they
are not considered to be within the scope defined in Chapter 4. The un-stalling procedure described
in Section 9.4.4 does not account for the possibility of requests being sent by different cores.

182 CHAPTER 11. CONCLUSION

Caches are limited to a single cache placement (fully associative) and replacement (LRU) policy.
While the fully associative cache placement is not unrealistic, the LRU replacement policy is not
generally used on real architectures, a pseudo-LRU policy being the most commonly used policy.

11.2.3 Future Works
It would be interesting to modify the model in order to ensure that any cache coherence protocol
that can be described by the notations from Chapter 3 can also be modeled. This is not a minor
modification: for example, the notations allow any number of queries to be sent during a transition
in the protocol’s cache automaton, but UPPAAL does not have dynamically sized lists.

The papers presented in Chapter 7 create the model for programs directly from that program’s
binary executable. Even with architectures using reduced instructions sets (RISC such as ARM
processors), this requires a considerable amount of work, as the the behavior of each available
assembly instruction must be modeled in UPPAL. It would, however, make the model able to be
used on realistic programs.

The automata for caches can still be improved. For example, all commonly used cache placement
and replacement policies should be added as options. Likewise, the support for multiple cores per
cache would allow more architectures to be modeled.

A more difficult improvement, yet not less important, would be adding support for cache hierar-
chies to the model. Indeed, these are found in just about every architecture.

In its current state, the model only features components directly related to cache coherence.
Components such as the pipelines described in the papers from Chapter 7 are not considered. While
the programs as they are currently modeled would not be able to make use of the addition of models
for the pipelines, the aforementioned improvement to an actual instruction set would benefit from
the addition of pipelines. In effect, the modular nature of UPPAAL timed automata means that
adapting the pipeline models from papers in Chapter 7 to the model from Chapter 9 should not
present a challenge in itself.

The addition of automata for some components which are more rarely used but interact with
cache coherence, such as DMAs, would also benefit the model.

Ideally, the applicant should not have to fiddle with the UPPAAL model directly. Indeed, it
would be much more user-friendly to provide tools of a nature similar to the protocol switcher that
would take an architecture description as input in order to generate a model that matches it.

11.3 Exposing the Interference
By making a model that matches the applicant’s architecture through profiling benchmarks, model
checking can be used to expose the interference generated by cache coherence.

11.3.1 Summary
Chapter 10 proposes analyses to reveal how programs are affected by cache coherence interference,
and what generates it. These analyses start by a simple computation of the execution time for each
program. In order to determine how much of this execution time is caused by cache coherence, an
alternative of each program is created, in which no shared variable exists. This alternative does not
have to correspond to anything that would realistically run on the actual architecture. Indeed, the
point is to obtain the execution time of each of these alternative program and compare it to the
original: the difference indicates how much of this program’s execution time can be attributed to
cache coherence.

11.3. EXPOSING THE INTERFERENCE 183

The chapter proceeds by seeking information on the determining factor of execution time: the
accuracy of instructions performing memory accesses. To do so, it uses model checking to categorize
each instruction as being either always-hit (the data it uses sure to be available in the cache), always-
miss (the data it uses sure to not be available in the cache), and uncategorized (there are executions
in which the data is available, others where it isn’t). This, in effect, points out which instructions
cannot be hoped to perform faster, which should be the focus on improvement, and which cause
execution time variations. An auxiliary analysis is also proposed, providing similar observations
with a focus on the accuracy of memory elements instead.

To determine how cache coherence affected the accuracy of instructions, the chapter follows up
by proposing categories defining the effects of external queries on the permissions held by a cache.
Three categories are proposed: minor interference (no change of permissions, only incurrence of
query processing times), demoting interference (loss of writing permissions, but reading permissions
are kept), and expelling interference (all permissions are lost). The chapter points out where each
category of interference occurs on the MSI, MESI, and MESIF protocols. It also indicates what
should be considered to be an occurrence of interference that has an impact on execution time.

By tracing the source of the external query back to its originating instruction, it becomes possible
to use model checking in order to determine the effects of each instruction on the other instructions.
In effect, this last analyze provides the user with an understanding of, for each instruction, which
instructions can cause an interference, the category (and thus, effects) of this interference, as well
as if this interference occurs on every possible execution or just some of them.

11.3.2 Limitations

This thesis proposes the use of model checking to expose interference. The undeniable limitation
of this approach is scalability. Indeed, the proposed analyses have only been performed on toy
examples. Realistic programs are likely to be at least a hundredfold larger, and so is the number
of cache lines in each cache. The number of possible executions would then result in exponentially
more time and memory consumption for each analysis.

Another barrier to real-world use of the approach is the lack of automation. Indeed, these analyses
require a large number of queries to be performed manually by the user. While the execution time
analysis can reasonably be undertaken on large models, the categorization of each instruction takes
between one and two query per instruction. Worse, obtaining the interference incurred by each
instruction can take up to nm queries, with n being the size of programs, and m the number of
caches.

The available model and model checking formula do not provide the means to expose occurrences
of minor interference that had an impact on execution time.

The results provide information about interference that happens on every possible execution. It
also provides information on interference that happens in at least some executions. However, there
is no established strategy to expose the relations between occurrences of interference that are not
present on every execution. For example, the proposed formula do not provide any means to check
if a set of three arbitrarily chosen occurrences of interference can all happen in the same execution.

11.3.3 Future Works

Creating tools to make all these analyses automatically should be the next step in user-friendliness.
Indeed, UPPAAL can be invoked from the command line, and all the involved files are text-based,
making it possible to parse and create the appropriate results and model checking queries.

184 CHAPTER 11. CONCLUSION

Support for exposing occurrences of minor interference that have an impact on execution time
might be feasible. However, considering the limited effects of minor interference on a singular
instruction, this information is likely superfluous to the user.

On the other hand, being able to indicate the relations between the occurrences of interference
that do not happen on all executions would provide useful information. The model is technically
providing all the necessary variables to write formulas that would indicate such relations. However,
these formula would require temporal operators that can be employed on temporal formula, instead
of the restricted variant of computation tree logic supported by UPPAAL.

11.4 General Future Works
Overall, the framework proposed in this thesis would greatly benefit from further automation. In-
deed, while the cache coherence protocol obtained through the identification process can already be
automatically inserted into the model for analysis, there is still a need for numerous user actions
in every contribution proposed in this thesis. Ideally, the user should only have to provide a de-
scription of the architecture through a dedicated description language and the program binaries.
The framework would then generate a template for the coherence protocol identification in which
only architecture specific instructions would have to be filled in by the user. The model would be
automatically modified to match the architecture’s description. It would also use the programs’
binaries to generate corresponding automata (such as is done in the works presented in Chapter 7).
The cache coherence interference analyzes would then automatically be performed, providing the
user with the results.

Another point which should be the focus of future works is the range of supported architectures.
This would start by taking into account more components in the model, such as the pipelines present
in the approaches from Chapter 7. If programs are analyzed using their binary forms, support for
different instruction sets would become a deciding factor in the usability of the framework.

Lastly, future works could involve the integration of this framework within a more general analysis
of the multi-core architecture, exporting the results on cache coherence interference in a way that
can be exploited by existing tools. For example, being able to interface with OTAWA [4] in order
to compute more accurate WCETs.

Chapitre 12

Résumé en Français

12.1 Introduction
12.1.1 Contexte
La complexité grandissante des fonctionnalités embarquées dans les avions et l’obsolescence progres-
sive des processeurs mono-cœur dans le commerce entrainent un besoin croissant vers l’adoption
de processeurs multi-cœurs dans les systèmes aéronautiques. Or pour voler, un avion doit passer
la certification, ce qui signifie qu’un avionneur postulant – que nous appellerons dans la suite un
applicant – doit présenter un dossier argumentant que le système dans son ensemble est conforme
à la règlementation en vigueur. Le cas des multi-cœurs est assez spécial et nouveau car un nouveau
standard a vu le jour récemment le CAST-32A ([17]). Ce document est focalisé sur les particularités
propres aux processeurs multi-cœurs. Cette thèse a été financée par le projet Phylog [9], dont l’ob-
jectif est de fournir à l’applicant une méthodologie outillée lui permettant de préparer un dossier de
certification pour des systèmes s’exécutant sur des cibles multi-cœurs et donc de répondre au CAST-
32A. Parmi les objectifs du CAST32-A, le Resource Usage 3 (RU3) nous intéresse particulièrement
dans cette thèse. En effet, RU3 correspond au fait que l’applicant a identifié les canaux d’interférence
qui pourraient affecter les applications hébergées sur les cœurs et qu’il a validé sa stratégie pour en
atténuer les effets nocifs. Afin d’aider l’applicant à remplir cet objectif, cette thèse se concentre sur
les interférences générées par la cohérence de cache.

Definition 63 (Interférence) Une interférence est une modification indésirable du temps d’exécution
d’une application provoquée par les actions d’une autre s’exécutant sur un cœur distant.

Afin de répondre à RU3, l’applicant doit identifier les sources d’interférence et quantifier leur
impact sur les applications. Cela nécessite une bonne compréhension des mécanismes présents sur
l’architecture choisie. Idéalement, la solution serait de simplement consulter la documentation du pro-
cesseur, où tous les mécanismes seraient décrits en détails, ainsi que tous les comportements qui indui-
raient de l’interférence. Cependant, la documentation des processeurs COTS n’inclut généralement
pas de détails sur la cohérence de cache. C’est donc une première problématique adressée par cette
thèse. Une fois cette étape d’identification menée, il faut comprendre les effets des interférences.

Definition 64 (Impact associé à une interférence) L’impact d’une interférence est une quan-
tification des effets temporels sur l’exécution d’une application. Plus précisément, il s’agit de la
quantité de cycles processeur requis pour l’exécution d’un fragment de l’application avec des autres
applications s’exécutant en parallèle comparée à son exécution en isolation.

185

186 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

Prédire l’impact d’une interférence sur l’exécution des programmes n’est pas simple et il n’existe à
ce jour aucune méthodologie pour répondre à cette question. La littérature propose soit des stratégies
d’analyse très pessimistes ou soit des restrictions pour l’élimination des sources d’interférence pour
ne pas à avoir à prendre leurs effets en compte. De plus aucune analyse ne prend en charge la
cohérence de cache.

12.1.2 Contributions

Cette thèse porte sur l’identification des interférences générées par les mécanismes de cohérence de
caches ainsi que sur les moyens de prédiction de leurs effets sur les applications en vue de réduire les
effets négatifs temporels. Seules les architectures COTS avec cohérence de cache sont considérées.
De plus, parmi les protocoles de cohérence de cache, nous nous concentrons sur ceux dits snooping
car les plus répandus dans les architectures. D’autres restrictions ont été supposées dans le cadre de
la thèse : pas de hiérarchie de cache, un cache local par cœur, politique de placement associative et
politique de remplacement LRU. Un exemple d’architecture est montrée par la Figure 12.1.

Data FIFO 0 Query FIFO 0 Data FIFO 1 Query FIFO 1 Data FIFO 2 Query FIFO 2

Figure 12.1 – Profil typique d’architecture visée

L’objectif de la thèse est de définir une méthodologie outillée de compréhension et analyse des in-
terférences générées par la cohérence de cache sur une architecture multi-cœur COTS. La Figure 12.2
présente le framework proposé.

La première contribution adresse les ambigüıtés dans la compréhension que les applicants ont de
la cohérence de cache réellement présente dans l’architecture. En effet, la documentation des architec-
tures ne fournit généralement pas suffisamment de détails sur les protocoles. Cette thèse propose une
formalisation des protocoles standards, ainsi qu’une stratégie, reposant sur les micro-benchmarks,
pour clarifier les choix d’implémentation du protocole de cohérence présent sur l’architecture. Cette
stratégie a notamment été appliquée sur le NXP QorIQ T4240.

Une fois le protocole correctement identifié, les techniques existantes de mesure de performance
peuvent être appliquées afin d’obtenir des informations sur la performance des mécanismes de
cohérence de cache identifiés. Cela ne constitue pas une contribution, d’où la coloration différente
de cette étape dans la Figure 12.2.

La seconde contribution consiste à réaliser une description bas-niveau de l’architecture en uti-
lisant des automates temporisés afin de représenter convenablement les micro-comportements et
comprendre clairement comment le protocole de cohérence de cache agit. Ainsi, un framework de
génération de modèles génériques a été développé, capable de supporter plusieurs protocoles de

12.1. INTRODUCTION 187

Architecture
Cache Coherence Identification

(Section 12.4)
Cache Coherence

Protocol

Benchmarking
(Section 12.3.1)

Cache Coherence
Performance

Application UPPAAL Analysis
(Sections 12.5 et 12.6)

Cache Coherence
Impact

Figure 12.2 – Vue d’ensemble de l’approche

cohérence de cache et de représenter différents agencements d’architectures afin de mieux corres-
pondre à l’architecture choisie par l’applicant.

La troisième contribution explique comment utiliser cette représentation de l’architecture pour
exhiber les interférences. Elle propose une stratégie pour détailler les causes et effets de chaque
interférence liée à la cohérence de caches sur les programmes. Commençant par une simple ana-
lyse de temps d’exécution, les résultats descendent jusqu’au niveau des instructions pour indiquer
comment chaque instruction génère et souffre des interférences. L’objectif étant alors de fournir
suffisamment d’information à l’applicant à la fois pour la certification, mais aussi pour définir une
stratégie d’atténuation et de mâıtrise des effets temporels.

12.1.3 Vue d’ensemble du résumé

Ce résumé commence par les préliminaires nécessaires à la compréhension de la problématique
et des solutions proposées : les automates temporisés (Section 12.2.1) et la cohérence de cache
(Section 12.2.2). Une fois ces notions présentées, le résumé présentera rapidement l’état de l’art
(Section 12.3).

Les trois contributions apportées par cette thèse sont ensuite détaillées : une stratégie d’iden-
tification détaillée du protocole de cache utilisé par l’architecture (Section 12.4) ; un template de
modèle d’architecture multi-cœurs supportant la cohérence de cache (Section 12.5) ; et les analyses
à faire sur les modèles instanciés afin déterminer les causes et effets des interférences (Section 12.6).

188 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

12.2 Notions préliminaires
12.2.1 Automates temporisés
Les automates temporisés seront utilisés dans la suite pour réaliser un modèle formel de des architec-
tures. Un automate temporisé est un automate étendu permettant en outre de modéliser le temps,
et ce en ajoutant un nouveau type de variable appelé horloge. On rappelle qu’un automate étendu
est un automate pouvant manipuler des variables entières.

Definition 65 (Horloges) Une horloge est une variable modélisant le passage du temps. La valeur
d’une horloge ne croit que dans les états car les transitions sont instantanées. La valeur d’une horloge
peut être testée sur une garde d’une transition et remise à zéro après franchissement d’une transition.

Definition 66 (Syntaxe des contraintes et des actions) Étant donné un ensemble de variables
Var, et un ensemble d’horloges Clocks, la grammaire utilisée pour l’écriture des contraintes et des
actions de transitions est la suivante, avec ident indiquant une variable dans Var et clk une horloge
dans Clocks :
lop ::= ∧ | ∨
cop ::=< | ≤ | = | ≥ | >
mop ::= + | − | ∗ | /
val ::= ident | Z
mexpr ::= mexpr mop mexpr | val
abexpr ::= mexpr cop mexpr | clk cop val | clk− clk cop val | true | false
bexpr ::= ¬bexpr | bexpr lop bexpr | abexpr
iexpr ::= iexpr ∧ iexpr | clk cop val | clk− clk cop val | true
assign ::= assign; assign | ident := mexpr | if (bexpr) {assign} | clk := 0 | nop

Definition 67 (Automates temporisés) Un automate temporisé A est un tuple 〈Q, InvQ, sinit,
B, E , PrioE , Var, Clocks, Act, 〉 tel que :

• Q est un ensemble fini de localités.
• InvQ : Q→ iexpr indique l’invariant associé à chaque localité.
• sinit est la localité initiale (sinit ∈ Q).
• Var est un ensemble fini de variables.
• Clocks est un ensemble fini d’horloges.
• E = Eα ∪ Esync est un ensemble fini d’étiquettes, avec Esync correspondant aux étiquettes de

synchronisation et Eα aux autres. Esync ∩ Eα = ∅. Les étiquettes dans Esync terminent soit par
par ‘ ?’ qui indique la réception sur un “canal”, ou par ‘ !’ qui indique l’émission.

• B = bexpr(Var, Clocks) est l’ensemble des gardes, utilisant la grammaire de Définition 66.
• Act = assign(Var, Clocks), est l’ensemble des actions, utilisant la grammaire de Définition 66.
• ⊆ Q× B × E × Act×Q est la relation de transition.

La sémantique de A est donnée à travers ses traces d’exécution (voir Définition 71).

Definition 68 (Valuation d’horloge) La fonction h : Clocks → R+ assigne une valuation à
chaque horloge. On note (h+ t) comme abréviation pour indiquer l’incrément de la valeur de toutes
les horloges dans h de t unités de temps.

Definition 69 (Valuation des variables) Les valuations v : Var → N associent aux variables
leur valeur. Étant donné une valuation v et une garde c ∈ B, on note v |=PL c pour indiquer que c

12.2. NOTIONS PRÉLIMINAIRES 189

est vraie selon la valuation v. De même, étant donné a ∈ Act, v[a] correspond à la valuation obtenue
depuis v par l’application de l’action a : toutes les variables changées par a ont leur nouvelle valeur
et toutes les autres gardent leur valeur précédente.

Definition 70 (Transition) Étant donné un automate A = 〈Q, InvQ, sinit,B, E , PrioE , Var, Clocks,
Act, 〉, on définit Step permettant de calculer l’ensemble des transitions valides depuis 〈s, v, h〉,
avec s ∈ Q, v une valuation des variables, h une valuation des horloges et t le temps passé dans la
localité courante : Step(〈s, v, h〉, t) , {〈s′, v′, h′〉|∃〈s, c, l, a, s′〉 ∈ s.t. ((〈v, (h + t)〉 |=PL c) ∧ v′ =
v[a] ∧ h′ = (h + t)[a] ∧ (〈v′, h′〉 |=PL InvQ(s′)) ∧ ¬∃〈sb, cb, lb, ab, s′b〉 ∈ s.t. ((〈v, (h + t)〉 |=PL

cb) ∧ v′′ = v[ab] ∧ h′′ = (h + t)[ab] ∧ (〈v′′b , h′′b 〉 |=PL InvQ(s′b)) ∧ (l ∈ PrioE(lb))))}

Definition 71 (Chemin et trace) Un chemin est une séquence maximale de transitions
〈s0, v0, h0〉 →t0〈s1, v1, h1〉 →t1 · · · telle que pour chaque k, 〈sk+1, vk+1, hk+1〉 ∈ Step(〈sk, vk, hk〉, tk).
La séquence est maximale dans le sens où elle est soit infinie soit de longueur N et telle que
Step(〈sN , vN , hN 〉, t) est vide pour tout t ∈ R+. On appelle trace un chemin partant de l’état initial
〈sinit, v0, h0〉, avec v0 la valuation initiale et h0 la valuation telle que toutes les horloges sont à zéro.

Definition 72 (Produit synchronisé d’automates temporisés) Étant donné n automates tem-
porisés Ai = 〈Qi, InvQi, siniti,Bi, E i, Vari, Clocks, Acti, i〉 et une contrainte de synchronisation
Synccon ⊆ (E1 ∪ {−})× · · · × (En ∪ {−}), le produit synchronisé des automates est l’automate As =
〈Qs, InvQs, sinits,Bs, Es, Vars, Clockss, Acts, 〉 avec :

• Qs = Q1 × · · · ×Qn
• InvQs(Q1 × · · · ×Qn) = InvQ1(Q1) ∧ · · · ∧ InvQn(Qn)
• sinits = 〈sinit1, · · · , sinitn〉
• Bs = B1 × · · · × Bn
• Es = (E1∪{−})×· · ·× (En∪{−}). On ajoute aux étiquettes la notation − pour indiquer qu’un

sous-automate ne fait pas de transition,
• Vars = Var1 ∪ · · · ∪ Varn, avec ∀i, j ∈ 1 . . . n, (i 6= j) =⇒ (Vari ∩ Varj = ∅)
• Clockss = Clocks1 ∪ · · · ∪ Clocksn
• Acts = Act1 × · · · × Actn
• s ⊆ Qs × Bs × Es × Acts ×Qs, avec

〈〈o1, · · · , on〉, 〈c1, · · · , cn〉, 〈l1, · · · , ln〉, 〈a1, · · · , an〉, 〈d1, · · · , dn〉〉 ∈ s

⇐⇒

{
〈l1, · · · , ln〉 ∈ Synccon

〈∀i ∈ 1 . . . n : oi, ci, li, ai, di〉 ∈ i ∨ (oi = di ∧ li = − ∧ ci = true ∧ ai = nop)

La sémantique d’un produit synchronisé est exprimée comme la sémantique d’un automate.

Example 43 (Automates temporisés) La Figure 12.3 montre deux automates modélisant un
client (sur la gauche) qui récupère des fichiers depuis un serveur (sur la droite). Dans ce scénario,
le système boucle infiniment : le client initialise une demande de fichiers (request files) et compte
(fetched) leurs arrivées (new file) jusqu’à ce que le serveur indique que tout a été transféré (done).
A chaque requête, le serveur envoie exactement 386 fichiers (comptés par sent). Le serveur prend
entre 32 et 64 unités de temps pour fournir chaque fichier, ce qui permet de modéliser les temps de
transfert.

Voici un extrait de trace valide pour ce réseau d’automates :

〈〈S0, S0〉, {〈first,>〉, 〈fetched, 0〉, 〈sent, 0〉}, {〈C0, 0〉, 〈C1, 0〉}〉
〈request file !,request file ?〉−−−−−−−−−−−−−−−−−→

23

190 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

S0start S1

request files!
first fetched := 0;C0 := 0

done?
first := ⊥

ne
w

fil
e?

fe
tc

he
d

:=
fe

tc
he

d
+

1

S0start S1

C1 ≤ 64

request files?
sent := 0;C1 := 0

done!
sent = 386

ne
w

fil
e!

se
nt
<

38
6
∧
C

1
≥

32
se

nt
:=

se
nt

+
1;
C

1
:=

0

Figure 12.3 – Exemple de réseau d’automates temporisés

〈〈S1, S1〉, {〈first,>〉, 〈fetched, 0〉, 〈sent, 0〉}, {〈C0, 0〉, 〈C1, 0〉}〉
〈new file !,new file ?〉−−−−−−−−−−−−−→

12

〈〈S1, S1〉, {〈first,>〉, 〈fetched, 1〉, 〈sent, 1〉}, {〈C0, 12〉, 〈C1, 0〉}〉
〈new file !,new file ?〉−−−−−−−−−−−−−→

42

〈〈S1, S1〉, {〈first,>〉, 〈fetched, 2〉, 〈sent, 2〉}, {〈C0, 56〉, 〈C1, 0〉}〉
〈new file !,new file ?〉−−−−−−−−−−−−−→

32

· · ·
〈〈S1, S1〉, {〈first,>〉, 〈fetched, 386〉, 〈sent, 386〉}, {〈C0, 16086〉, 〈C1, 0〉}〉

〈done ?,done !〉−−−−−−−−−→
46

〈〈S0, S0〉, {〈first,⊥〉, 〈fetched, 386〉, 〈sent, 386〉}, {〈C0, 16132〉, 〈C1, 46〉}〉
À la fin de la trace, C0 − C1 correspond au temps de transfert total des fichiers.

Un des intérêts d’une modélisation sous forme d’automates (temporisés ou non) est de donner à
accès à des outils de vérification formelle. Ainsi, on peut définir la relation de satisfiabilité pour une
propriété φ. On suppose que φ est une formule d’un sous ensemble de CTL ([19]). La satisfiabilité
de 〈s, v〉 |= φ est définie en utilisant la décomposition suivante :

〈s, v〉 |= ψ , v |=PL ψ, où ψ est une expression dans abexpr(Var).
〈s, v〉 |= ¬φ , 〈s, v〉 6|= φ
〈s, v〉 |= φ ∧ ψ , (〈s, v〉 |= φ) et (〈s, v〉 |= ψ)
〈s, v〉 |= AF φ ,

Pour tous les chemins partant de 〈s, v〉, il y a, dans le chemin, un 〈s′, v′〉, tel que 〈s′, v′〉 |= φ
〈s, v〉 |= EF φ ,

Il y a un chemin partant de 〈s, v〉 dans lequel il y a un 〈s′, v′〉, tel que 〈s′, v′〉 |= φ
〈s, v〉 |= AG φ ,

Pour tous les chemins partant de 〈s, v〉, tous les 〈s′, v′〉 du chemin vérifient 〈s′, v′〉 |= φ
〈s, v〉 |= EG φ ,

Il y a un chemin partant de 〈s, v〉 tel que tous les 〈s′, v′〉 du chemin vérifient 〈s′, v′〉 |= φ
〈s, v〉 |= φ --> ψ ,

Pour tous les chemins partant de 〈s, v〉, tout sous-chemin partant d’un 〈s′, v′〉 tel que v′ |=PL φ
contient aussi au moins un 〈s′′, v′′〉 tel que v′′ |=PL ψ.

12.2.2 Fonctionnement des caches
Parmi les mécanismes complexes d’un processeur multi-coeur se trouve la cohérence de caches.
Celle-ci assure que tous les cœurs lisant ou écrivant dans un même bloc mémoire ne peuvent pas
aveuglement ignorer les modifications appliquées par les autres. Afin de maintenir la cohérence de

12.2. NOTIONS PRÉLIMINAIRES 191

caches, le processeur suit un protocole pré-déterminé qui définit les messages à envoyer en fonction
des actions d’un cœur ainsi que les actions à effectuer lors de la réception du message d’un autre cœur.
Pour comprendre ce mécanisme, commençons par présenter l’architecture générale et les composants
participant à la cohérence (présentés dans la figure 12.4).

Interconnect

Core

Cache
Controller

requests hit

data replies
FIFOs

queries
FIFOs

data replies
FIFOs

queries
FIFO

Coherency
Manager

Main
Memory

read,
write

(a) Vue d’ensemble

Interconnect

Cache

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in) (out)

Main Memory

D
ata F

IF
O

(in) (out) Q
uery F

IF
O

(in)

Coherence Manager

read,
write

P
rog

ram
 Instr.

(out)

Core

(b) Vue comprenant les FIFOs

Figure 12.4 – Composants ayant un rôle dans la cohérence de cache

Definition 73 (Élément mémoire) La mémoire d’un système est découpée en blocs adressables.
Dans la suite, un élément mémoire correspondra directement à un bloc mémoire. L’ensemble de tous
les éléments mémoire est défini par Addr ⊆ N.

La cohérence de cache est activée lors des accès à des données partagées et donc lors des exécutions
des instructions d’écriture (store), lecture (load) et éviction (evict).

Definition 74 (Programme s’exécutant sur un cœur) Les opérateurs élémentaires sont OPs =
{load, store, evict, nop} et les instructions considérées sont Instr = OPs× Addr. Un programme
est une séquence d’instructions et donc InstrQueue = Seq(Instr).

La notion de séquence sera largement réutilisée dans la suite.

Definition 75 (Séquence) Seq(A) indique une séquence finie (potentiellement vide) composée d’éléments
de type A. Les séquences sont donc définies par :

Seq(A) =
{

[]
A :: Seq(A)

L’ajout d’un élément e en tête de la séquence S est noté push(e,S) et correspond à e :: S. L’extraction
de la tête de la séquence S est notée pop(S), ce qui retourne head(S) avant d’appliquer S ← tail(S).
Enfin, isEmpty(S) indique si S est une séquence vide et est l’équivalent de vérifier si S = [].

192 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

Les caches sont chargés d’obtenir des copies des éléments mémoire afin de répondre aux requêtes
d’accès mémoire de leur cœur.

Definition 76 (Ensemble des caches) L’ensemble des caches du système est défini par Ccs. On
note Ccs+ = Ccs ∪ {mgr} l’ensemble des caches et le gestionnaire de cohérence (mgr).

Pour gérer les requêtes du cœur, le cache doit de stocker les permissions sur chaque élément mémoire
et les opérations en cours. Pour obtenir de nouvelles permissions, un cache envoie des demandes sur
l’interconnect afin de se coordonner avec les autres caches et le gestionnaire de cohérence. Chaque
demande ne concerne qu’un seul élément mémoire. On considèrera les demandes de copie en lecture
seule de l’élément mémoire (GetS, faisant généralement suite à une instruction de load) ; de copie
en écriture et lecture (GetM, faisant généralement suite à une instruction de store) ; et le signa-
lement d’une éviction pour un élément mémoire ayant potentiellement été modifié (PutM, faisant
généralement suite à un evict).

Definition 77 (Demande) Il existe trois catégories de demande Query = {GetS, GetM, PutM}. Un
message envoyé sur l’interconnect pour émettre une demande est défini par MSGquery : Query×Addr×
Ccs, qui indique le type de la demande, l’élément mémoire visé et l’émetteur du message.

Chaque demande fera l’objet d’une réponse. Une réponse peut simplement contenir une copie de
l’élément mémoire (data) ; une réponse peut indiquant qu’aucun autre cache ne possède actuellement
de copie de cet élément mémoire (data-e) ; et une réponse peut informer qu’aucune copie ne sera
envoyée (no-data).

Definition 78 (Réponse) Il existe trois catégories de réponse Reply = {data, data-e, no-data}.
Un message envoyé sur l’interconnect pour émettre une réponse est défini par MSGdata : Reply ×
Addr× Ccs+, qui indique la catégorie, l’élément mémoire en question, et le cache visé.

Il est possible que des caches reçoivent des demandes auxquelles ils doivent répondre alors qu’ils
n’ont pas encore reçu les informations nécessaires. Ils auront donc en charge de gérer toute cette
complexité et répondre à l’ensemble des requêtes et demandes qui leur sont envoyées. Chaque cache
a quatre FIFO, chacune gérant soit la réception ou l’émission des demandes et des réponses, comme
le montre la Figure 12.4b.

Le gestionnaire de cohérence est un élément central, non nécessairement implanté par un compo-
sant unique dans l’architecture, permettant la coordination entre les caches. Tout comme les caches,
il utilise des files FIFOs pour gérer les messages entrant et sortant. L’interconnect connecte no-
tamment les caches et le gestionnaire de cohérence. Il broadcast les demandes des caches à tous
les composants connectés, y compris le cache émetteur. Les réponses, quant à elles, ciblent un seul
composant et ne sont donc reçues que par celui-ci.

12.2.3 Cohérence de cache
Cette partie, inspirée des principes de [49], introduit la cohérence de cache. Un système avec
cohérence de cache est un système dans lequel des applications utilisant des caches séparés ne
perçoivent pas cette séparation lorsqu’elles lisent et écrivent sur les éléments mémoire.
Property 10 Un protole doit vérifier les propriétés suivantes :

1. Les caches ont la valeur système : À tout moment, pour chaque élément mémoire, toutes les
copies du même élément mémoire présentes dans un cache ont la même valeur. Cette valeur
correspond à la dernière qui a été écrite pour cet élément mémoire, quel que soit le cache qui
a fait l’écriture.

12.2. NOTIONS PRÉLIMINAIRES 193

2. Un seul écrivain ou seulement des lecteurs : À tout moment, pour chaque élément mémoire, il
y a soit un seul cache autorisé à écrire et il est aussi le seul à pouvoir lire, soit aucun cache
autorisé à écrire et un nombre indéterminé de lecteurs.

3. Garder le fil : Si un élément mémoire n’a pas de copie en cache, alors la valeur qui se trouve
dans la mémoire principale du système est la dernière à avoir été écrite.

I S

M

load ?GetS!data ?

store?GetM!data?

evict ?

GetM ?

st
or

e ?Ge
tM

!da
ta

?

load ?

Ge
tM

?d
at

a!

Ge
tS

?da
ta

!da
ta

!ev
ic

t
?P

ut
M!

da
ta

!

load ?
store ?

(a) Cache

IM
GetM ?data!

GetS ?data!

PutM ?data ?

GetS ?data ?

(b) Gestionnaire de cohérence

lo
ad

!

st
or

e!

evict!

(c) Cœur

Figure 12.5 – Vue d’ensemble du protocole MSI

Le protocole MSI est le protocole élémentaire de cohérence de cache et les autres protocoles
connus en sont en général des extensions. Le protocole MSI contient trois états stables, qui lui
donnent son nom :

• Modified : Modified indique qu’au moins une écriture a été réalisée sur l’élément mémoire.
Tant qu’il possède une copie dans cet état, le cache peut librement lire et écrire. Cela correspond
à être l’unique écrivain dans la Propriété 10.

• Shared : Shared correspond à un accès en lecture.
• Invalid : Invalid indique que le cache ne possède pas de copie de l’élément mémoire. Il ne

peut donc ni le lire ni le modifier en écriture.

La Figure 12.5 montre les automates correspondant au cache, au gestionnaire et au cœur. Cette
vision est simplifiée notamment car les FIFO ont été abstraites et les échanges sont synchrones. Dans
les faits, il faut distinguer les états stables ceux représentés ici des états transients, qui représentent
des étapes intermédiaires dans la résolution des demandes et des réponses.

Example 44 Considérons un système avec deux caches, CA and CB, et un seul élément mémoire
E tel que, initialement, CA n’a pas de copie de E (état I) et CB a une copie de E dans l’état S.
Le gestionnaire de cohérence considère donc E dans l’état I. Supposons que CA reçoive une requête
de store de son cœur. Dans cette situation, CA envoie une demande GetM, laquelle est broadcastée

194 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

aux autres composants. Voyant le GetM, CB doit alors abandonner sa copie de E afin de maintenir
la Propriété 10. De son côté, le gestionnaire de cohérence réagit au GetM en envoyant une réponse
data à CA et en considérant désormais E dans l’état M. Cette réponse data permet à CA d’obtenir
sa copie de E avec un état M et donc d’exécuter l’instruction du cœur.

12.3 État de l’art
Pour répondre à l’objectif RU3, il faut être capable d’identifier le protocole de cache, de quantifier
son impact et de mâıtriser les interférences associées. L’identification et la quantification reposent
souvent dans la littérature sur l’utilisation de stressing benchmarks qui seront l’objet de la première
sous-partie. La deuxième rappellera brièvement les solutions actuelles pour mâıtr̂ıser les interférences
et la dernière se concentrera sur l’utilisation de méthodes formelles pour l’analyse et la mâıtrise des
interférences.

12.3.1 Micro-stressing benchmarks
Afin d’identifier les caractéristiques d’une architecture, plusieurs travaux reposent sur l’utilisation de
micro-stressing benchmarks. L’idée est de jouer sur des paramètres de configuration et mesurer avec
des moniteurs de performances les effets temporels négatifs (souvent appelés surcoûts ou facteurs de
ralentissement).

Definition 79 (Configuration) Une configuration est définie comme la combinaison du placement
des programmes sur chaque cœur, des valeurs de paramètres matériels, ainsi que l’état initial de la
machine avant que les programmes ne s’exécutent.

Definition 80 (Stressing Benchmark) Un stressing benchmark est une suite d’instruction spécifi-
quement développée pour saturer les capacités d’un composant particulier de l’architecture afin d’en
observer ses limites.

Definition 81 (Temps d’exécution) Le temps d’exécution d’une suite d’instructions sur une cer-
taine configuration est le temps entre l’émission de la première instruction et la complétion (vue par
l’émetteur) de la dernière instruction.

Definition 82 (Surcoût / Facteur de ralentissement) Étant donné TA et TB deux temps d’exécution
de la même suite d’instruction sur deux configurations distinctes A et B tels que TB ≥ TA.

Le surcoût O d’utilisation de la configuration B comparée à A est défini comme : O = TB − TA.
Le facteur de ralentissement f est défini comme : f = TA

TB

[44] présente une stratégie pour la caractérisation de la sensibilité aux interférences d’une res-
source partagée. L’idée générale étant d’effectuer un stressing benchmark sur ladite ressource uni-
quement avec un programme s’exécutant en isolation, puis de comparer le temps d’exécution avec le
même benchmark s’exécutant alors que d’autres programmes sont exécutés en parallèle. Cette ap-
proche forme la base de l’identification de canaux cachés d’interférence puisqu’elle révèle de potentiels
liens cachés entre les composants. Le papier montre qu’il est préférable de faire des micro-stressing
benchmarks (par exemple des séries de lecture ou des séries d’écriture) pour obtenir des résultats
précis plutôt que des suites de benchmarks standards (par exemple MiBench avec des applications
complètes), y compris pour l’interférence liée au partage de caches.

L’approche présentée dans [11] peut être vue comme la continuité de [44] : la corrélation identifiée
entre composants est ensuite utilisée pour déterminer les benchmarks les plus pertinents à faire

12.3. ÉTAT DE L’ART 195

pour déterminer les effets des interférences sur une application précise. Pour cela, au lieu de se
limiter au temps d’exécution, [11] regarde également les corrélations entre composant à travers
des moniteurs de performance. Les moniteurs de performance sont des compteurs qui peuvent être
configurés pour compter le nombre d’occurrences d’un événement donné (par exemple, l’accès à
l’interconnect). La documentation de l’architecture fournit généralement une liste d’événements pour
lesquels les moniteurs de performance peuvent être configurés. Ces moniteurs peuvent être remis à
zéro, temporairement gelés ou configurés pour suivre un autre type d’événement pendant l’exécution
des programmes. Cela en fait un outil d’analyse très utile. [11] propose d’utiliser cette information
pour limiter au strict minimum les analyses à faire sur les programmes. En effet, en observant quels
événements peuvent être causés par interférence depuis un composant connexe (et surtout ceux qui
ne peuvent pas l’être), des benchmarks redondants peuvent être évités.

Les moniteurs de performance ne sont pas présents sur toutes les architectures. [40] présente une
étude de cas pour la caractérisation d’architectures malgré leur absence. Leur plateforme dispose
de certaines fonctionnalités d’analyse qui permettent de capturer les messages passant sur le bus et
les instructions exécutées sur chaque cœur. Par extraction et analyse de cette information pendant
l’exécution des programmes, les auteurs de [40] parviennent à obtenir un compte des événements
semblable à celui de moniteurs de performance. La stratégie d’identification du protocole de cache
proposée dans cette thèse repose sur l’utilisation de moniteurs de performance.

Les travaux présentés jusque là regardent les caches d’assez loin. [39] s’intéresse également aux
problèmes d’interférence dans les multi-cœurs dans l’avionique. Plus précisément, ce papier propose
une analyse de l’architecture à travers des benchmarks pour s’assurer que des tâches exécutées en
parallèle peuvent correctement être temporellement partitionnées. Les analyses de [39] s’intéressent
aux surcoûts induits par la cohérence de cache. L’approche choisie étant de comparer le temps
d’exécution d’instructions load et store selon trois configurations : sans cohérence de cache, avec
cohérence de cache mais sans variables partagées, avec cohérence de cache et variables partagées.
Pour chacune de ses configurations, les résultats sont ceux du temps d’exécution d’un cœur pour la
lecture ou l’écriture pendant qu’un autre cœur effectue des lectures ou des écritures. Ces analyses
permettent en partie de mesurer la performance de la cohérence de cache mais sans tenir compte
des états de cohérence pour les éléments accédés, ce qui rend les résultats incomplets.

[38] tient compte des états de cohérence de cache et présente ainsi des travaux d’analyse de
performance de la cohérence de cache qui permettraient un paramétrage précis du modèle UPPAAL.
La bande passante est aussi mesurée, complétant la caractérisation de la performance de la cohérence
de cache pour l’architecture étudiée. Les auteurs de ce papier affirment cependant que le protocole
MESIF utilisé par leur architecture peut être considéré comme un simple protocole MESI étant
donné qu’il n’agit qu’entre deux caches. Il s’avère que la différence entre les deux protocoles devrait
avoir un effet, et les résultats de benchmark qui devraient le montrer (opérations d’écriture) ne sont
pas présents dans le papier.

12.3.2 Gestion des interférences
Cette section présente les solutions existantes pour faire face aux interférences générées par la
cohérence de cache dans les systèmes critiques. Trois types d’approches sont considérées : impo-
ser des restrictions sur le système, modifier le matériel ou prouver que les effets de l’interférence sont
acceptables.
Approche par restriction. L’approche la plus simple est de désactiver les caches entièrement. Cela
rend le système beaucoup plus prévisible mais au prix d’un très fort impact négatif sur le temps
d’exécution, au point de rendre parfois une exécution mono-cœur préférable. Une légère amélioration
consiste à verrouiller le contenu des caches, ce qui limite fortement leur utilité mais n’entraine pas

196 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

de diminution de la prédictibilité du système. Dans [29], les lignes caches sont tout simplement
partitionnés par cœur, ce qui évite théoriquement que les accès d’un cœur modifient l’espace utilisé
par un autre. Le papier propose deux algorithmes pour prouver la possibilité d’ordonnancer des
taches temps réel avec ces restrictions mises en place.

[13] effectue un partitionnement moins strict des lignes de cache à cache cœur. En effet, l’idée
proposée dans ce papier est d’exploiter la politique de placement en s’assurant que toutes les lignes de
cache utilisées par un cœur soient dans le même ensemble vis-à-vis de la politique de remplacement
(principe proche du cache coloring). En conséquent, l’éviction automatique n’affecte pas les autres
cœurs utilisant le même cache. Grâce à une stratégie d’ordonnancement minutieuse, le nombre de
programmes partageant ces même lignes de caches est gardé à un minimum.

[34] propose d’utiliser les processeurs multi-cœurs pour faire tourner en parallèle des applications
qui étaient jusqu’alors prévues pour des mono-cœurs. L’utilisation des caches est simplifiée, puisque
les données ne sont pas partagées entre les programmes. L’hyperviseur proposé assure un partition-
nement robuste entre les différentes applications et fait usage d’un TDMA pour contrôler les accès
aux ressources partagées, ce qui rend le système plus facile à prédire.

Les travaux de [12] utilisent une stratégie d’ordonnancement minutieuse afin de rendre le calcul du
temps d’exécution des applications sur un multi-cœur plus facile. L’approche consiste à transformer
automatiquement les programmes de manière à avoir des blocs de calculs et des blocs de transferts,
puis de les ordonner de façon à ce que lorsqu’un cœur est dans un bloc de calcul, les autres cœurs ne
peuvent pas faire d’accès aux données qu’il utilise. Ainsi, les calculs ne peuvent pas être perturbés
par les actions des autres cœurs.
Approche par modifications matérielles [32] met en avant les sources de manque de prédictibilité
dans le protocole MSI et propose une solution pour chacune d’entre elles. Ces solutions demandent
à ce que certains composants matériels liés aux mécanismes de cohérence de cache soient rendus
particulièrement prévisibles. Un protocole de cohérence de cache, PMSI (Predictable MSI) est alors
proposé avec des formules pour déduire les pires temps de résolution d’instruction.

[42] introduit la notion de cohérence de caches sur demande (ODC2, On-Demand Coherent
Cache). L’idée étant de délimiter les sections des programmes pendant lesquelles ils peuvent accéder
aux données partagées. Ces données sont marquées comme partagées dans le cache, ce qui nécessite
une modification matérielle. L’analyse des sections durant lesquelles aucune donnée partagée n’est
accédée est donc rendue beaucoup plus simple. L’ajout de cette stratégie au framework OTAWA
est présenté dans [43] et montre que le WCET obtenu avec cette approche est effectivement une
amélioration comparée à une approche sans cache ou une dans laquelle tout point de synchronisa-
tion entrâıne l’invalidation complète des cache.
Approche par acceptation L’approche la plus commune des caches repose sur l’analyse statique
et l’interprétation abstraite en continuation des travaux de [24]. Ainsi, chaque accès mémoire est
catégorisé en fonction de s’il est assuré de trouver la donnée dans le cache (hit), ne pas l’y trouver
(miss), ou si l’analyse ne peut pas le déterminer (unknown). Cette méthode d’analyse n’est pas celle
retenue ici pour la cohérence de caches, puisque cette simplification n’est pas compatible avec la
gestion des états de cohérence.

La plupart des papiers sur le sujet s’intéressent exclusivement aux caches d’instructions, or les
caches contenant des data avec de la cohérence sont ceux qui nous intéressent. A titre d’exemple
sur les caches instruction, [31] propose une stratégie d’analyse WCET en catégorisant les accès à
chaque niveau : est-ce qu’un certain accès atteindra ce niveau à coup sûr ? Jamais ? Pas la première
fois, mais toujours après ? On n’arrive pas à déduire ? Cette catégorisation est alors utilisée pour
déterminer quelles interférences potentielles sont dignes d’êtres analysées. Une approche qualifiée de
bypassing scheme (plan de contournement) est aussi présentée, dans laquelle les données accédées
une seule fois sont identifiées afin d’exploiter un mécanisme de contournement pour que cet accès

12.4. IDENTIFIER LA COHÉRENCE DE CACHE 197

n’utilise pas inutilement de l’espace en cache.
[35] utilise une approche similaire à celle ci-dessus mais pour les caches de données. La principale

différence avec [31] étant la manière de caractériser les accès : les données peuvent avoir des adresses
alias qui rendent la détection des blocs à accès unique plus difficile. Cependant la cohérence de cache
n’est cependant pas considérée et tous les accès aux données partagés sont supposés ne pas utiliser
de caches privés (et il n’y a donc pas besoin de cohérence entre ces caches) et les caches partagés sont
considérés comme write-through (les modifications sont répercutées sur tous les niveaux de caches
jusqu’à la mémoire principale).

12.3.3 Approches formelles
L’approche choisie dans cette thèse repose sur la modélisation en automates temporisés et la vérification
formelle. L’utilisation d’UPPAAL à des fins similaires a déjà fait l’objet de travaux, cependant aucun
ne traite de la cohérence de cache.

Le premier outil à utiliser UPPAAL pour le calcul du WCET est METAMOC [22] (Modular Exe-
cution Time Analysis using Model Checking). L’approche modulaire s’applique sur du mono-cœur :
le pipeline, la mémoire principale et les paramètres du cache sont isolés afin de faciliter leur rempla-
cement en cas d’analyse d’un autre processeur. Les programmes sont analysés directement depuis
leur binaire exécutable avec cependant des notations à ajouter pour la gestion des limites de boucles.
[16] présente WUPPAAL, une autre approche utilisant UPPAAL pour le calcul du WCET d’un pro-
gramme exécuté sur processeur mono-cœur. La principale particularité de cette solution est qu’elle
combine la simulation d’exécution et la vérification de modèles. En effet, WUPPAAL fait en sorte
qu’UPPAAL interagisse avec qemu (un outil de simulation d’architecture) à travers gdb (un outil de
débogage) et libgdbuppaal (une libraire maison). L’intérêt étant de réduire la consommation mémoire
de la vérification de modèles et de supporter différentes architectures (et donc ensembles d’instruc-
tions binaires) très facilement. L’approche proposée par [36] combine l’interprétation abstraite et
la vérification de modèles pour le calcul de WCET sur multi-cœurs, avec une attention particulière
à l’interconnect. L’interprétation abstraite est utilisée pour l’analyse des caches (en tagguant les
caches hit et miss). Ici encore, la cohérence de caches n’est pas prise en compte.

Le modèle présenté dans [30] correspond le plus à ce qui est fait dans cette thèse : UPPAAL est
utilisé pour le calcul de WCET sur un processeur multi-cœurs avec une représentation détaillée de
chaque composant. La cohérence de caches n’est pas prise en compte. En revanche, la hiérarchie de
cache et les caches partagés par plusieurs cœurs, ainsi que les pipelines, sont présents.

12.4 Identifier la cohérence de cache
Cette section présente la stratégie d’identification du protocole de cache implémenté par l’archi-
tecture choisie par l’applicant. Ces travaux ont fait l’objet d’une publication [48]. Pour éviter les
confusions, trois protocoles sont définis ci-dessous :

Definition 83 (Le protocole de l’architecture) Le protocole réellement implémenté sur l’archi-
tecture. Celui que l’applicant souhaite identifier. Il n’est probablement pas observable directement.

Definition 84 (Le protocole observé) Le protocole observé est la vue partielle du protocole de
l’architecture obtenue à travers un ensemble de benchmarks. Puisqu’il n’est pas possible d’assurer
que les benchmarks soient exhaustifs, le protocole observé est potentiellement incomplet.

Definition 85 (Le protocole hypothétique) Le protocole défini par l’applicant et qui correspond
à ce qu’il s’attend à trouver d’après la documentation de l’architecture.

198 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

Pour rappel, les protocoles de cache sont definis autour d’un seul élément mémoire. En conséquent,
la stratégie que nous proposons ne considère qu’un seul élément mémoire. De plus, on suppose que
les états stables du protocole de l’architecture sont observables.

12.4.1 Définir le protocole hypothétique

La première étape de cette stratégie d’identification est la définition du protocole hypothétique par
l’applicant. Cette définition devrait utiliser les notations présentées dans la Section 12.2.2. Un bon
point de départ est de se référer à la documentation de l’architecture. Par exemple, pour le NXP
QorIQ T4240, la documentation indique un protocole MESI (dans [25]), avec des optimisations pour
le partage de données déjà en cache (dans [26]).

12.4.2 Exploration näıve du protocole observable

Pour définir le protocole observable, on effectue une exploration des états accessibles. L’algorithme
correspondant à cette exploration se trouve dans la Figure 12.6. En commençant dans un état
où aucun cache ne contient la donnée (init), on explore les états accessibles par l’application d’une
unique instruction à la fois, en notant l’état de cohérence du système une fois l’instruction complétée,
ainsi que les valeurs des différents moniteurs de performance. Les étapes du protocole correspondant
à state search , decode et monitors sont détaillées par la suite.

i n i t s t a t e s e a r c h ()
i n i t d e c o d e ()

DstStates ← {init}
WaitList ← {init}
while (WaitList 6= ∅) :

S rcState ∈WaitList ;
WaitList ←WaitList \ SrcState ;
foreach k ∈ 1 . . cc

foreach i n s t r ∈ {load, store, evict}
S y s I n s t r u c t i o n ← s i n g l e i n s t r u c t i o n o n (i n s t r , k)
〈DstState , PerformanceCounters〉 ← benchmark(SrcState , S y s I n s t r u c t i o n)

h a n d l e s t a t e s e a r c h (SrcState , Sys In s t ruc t i on , DstState) // Step 1
handle decode (SrcState , Sys In s t ruc t i on , DstState) // Step 2
handle monitors (SrcState , Sys In s t ruc t i on , PerformanceCounters) // Step 3

i f DstState 6∈ DstStates
DstStates ← DstStates ∪ {DstState}
WaitList ← WaitList ∪ {DstState}

Figure 12.6 – General State Exploration Algorithm

La fonction benchmark retourne l’état de cohérence des différents composants du système (caches
et gestionnaire de cohérence). Dans le cas où le gestionnaire de cohérence n’est pas observable, on
considère qu’il suit les règles du protocole hypothétique et on définit le protocole observé comme s’il
comportait le même gestionnaire de cohérence.

12.4. IDENTIFIER LA COHÉRENCE DE CACHE 199

12.4.3 Exploration d’état et atteignabilité
L’étape state search catalogue les états stables de cohérence observable dans chaque composant Vs,
ainsi que leurs combinaisons à l’échelle du système (c’est-à-dire l’état de cohérence du système)
Systemb.
def i n i t s t a t e s e a r c h ()

Vs ← t u p l e t o s e t (init)
Systemb ← {init}

def h a n d l e s t a t e s e a r c h (SrcState , Sys In s t ruc t i on , DstState)
reachb (SrcState , S y s I n s t r u c t i o n) ← {DstState }
i f DstState 6∈ Systemb

Vs ← Vs ∪ { t u p l e t o s e t (DstState)}
Systemb ← Systemb ∪ {DstState}

On récupère en fait le graphe de transition des états de cohérence du système.

12.4.4 Correspondance entre état observé et hypothétique
Les états et transitions observés lors de l’étape précédente sont ensuite comparés avec ceux attendus
avec le protocole hypothétique. On associe alors les états de ces deux protocoles en définissant
decode, la relation qui permet de passer d’état observé à état hypothétique. Pour cela, on a besoin
de reach, qui correspond au graphe de transition d’états stables pour le protocole hypothétique.
def i n i t d e c o d e ()

decode← 〈init, < I, . . . , I >〉

def handle decode (SrcState , Sys In s t ruc t i on , DstState)
〈SrcState , DecodedSrcState〉 ∈ decode
{DecodedDstState} ← reach(DecodedSrcState , S y s I n s t r u c t i o n)
decode← decode ∪ {〈DstState , DecodedDstState〉}

Il est possible que plusieurs états observés soient associés au même état hypothétique. En effet,
lorsque l’on observe l’état d’une ligne de cache, il est possible qu’une partie de l’information ne soit
pas liée à la cohérence de cache. En conséquent, plusieurs états observés peuvent en fait correspondre
au même état de cohérence.

Cependant, si le protocole hypothétique correspond effectivement au protocole de l’architecture,
alors il ne doit pas y avoir d’état observé associé à plusieurs états hypothétiques. En effet, cela
indiquerait que certains comportements du protocole hypothétique sont absents de l’architecture. Il
en est de même si l’un des états hypothétiques n’est associé à aucun état observé. Si l’une de ces
deux situations non souhaitées parvient, alors le protocole hypothétique est infirmé.

12.4.5 Comparaison des activités
Si le protocole hypothétique n’est pas infirmé lors de l’étape précédente, les activités observées
sur l’architecture grâce aux moniteurs de performance sont comparées à celles attendues d’après le
protocole hypothétique. Pour cela, l’applicant note le nombre d’événements observés lors de chaque
benchmark dans ActMon.
def handle monitors (SrcState , Sys In s t ruc t i on , PerformanceCounters)

ActMon (SrcState , S y s I n s t r u c t i o n) ← PerformanceCounters

Les résultats obtenus dans ActMon doivent correspondre à ce que le protocole hypothétique génère.
Toute exception doit être étudiée, car elle pourrait indiquer une différence significative entre les deux
protocoles. De plus, si certains états observés n’agissent pas de la même façon vis-à-vis d’événements

200 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

de cohérence alors qu’ils sont associés au même état théorique, alors les deux protocoles ne se
correspondent pas. En effet, le protocole implémenté a dans ce cas plus d’états stables de cohérence
que le protocole hypothétique.

Si, à la fin de cette étape, le protocole hypothétique n’a pas été contredit par les observations,
alors le protocole hypothétique décrit tous les comportements du protocole observé. Pour s’assurer
que le protocole de l’architecture implémente tous les comportements du protocole hypothétique,
l’étape suivante fait une exploration guidée par le protocole hypothétique.

12.4.6 Exploration guidée par le protocole hypothétique
Definition 86 (Chemin de changement d’état stable) Un chemin de changement d’état stable
est un chemin entre deux états stables de la partie “contrôleur de cache” du protocole. Il est formé
d’un état stable suivi d’une séquence d’états transitoires et termine par un état stable, avec une tran-
sition du protocole entre chaque état. Les deux états stables peuvent être les mêmes. Les transitions
sans actions ne sont pas permises.

Cette étape du processus d’identification s’assure que tous les comportements du protocole hy-
pothétique sont présents sur l’architecture. Elle repose sur l’établissement de la liste exhaustive des
chemins de changement d’états stables (voir Définition 86), qui peut être générée automatiquement
par un outil fourni dans le cadre de cette thèse.

L’idée générale est simple : reproduire la séquence de chacun de ces chemins sur l’architecture afin
de s’assurer que les activités observées sur l’architecture correspondent à celles attendues. Cependant,
l’implémentation de ces benchmarks est beaucoup plus difficile que pour les étapes précédentes,
puisque les transitions doivent être faites dans un ordre précis. Comparé aux étapes précédentes :

• Plusieurs instructions peuvent être appliquées simultanément (sur différents cœurs) afin de
générer la séquence désirée. De plus, les benchmarks peuvent comporter des séquences d’ins-
tructions, au lieu d’une seule par cache.

• L’analyse est concentrée sur un seul cache et non l’ensemble du système. À la place, les autres
caches sont utilisés pour causer les bonnes transitions.

• L’exploration n’est pas aveugle : l’espace d’états est maintenant connu. La difficulté repose sur
l’obtention de la séquence souhaitée sur l’architecture.

Une fois cette exploration terminée, si tous les comportements du protocole hypothétique ont
correctement été observés, alors le protocole de l’architecture est garanti de tous les implémenter.
Combiné avec les résultats montrant que le protocole hypothétique décrit correctement le protocole
observé, on peut conclure que cette stratégie d’identification a fourni une bonne compréhension du
protocole implémenté par l’architecture à l’applicant.

12.4.7 Application au NXP QorIQ T4240
L’application de cette stratégie sur le NXP QorIQ T4240 a révélé des résultats intéressants. En
effet, tenter de valider un protocole hypothétique MESI révèle un seul état de cohérence observé
pour chaque état de cohérence hypothétique, sauf pour l’état hypothétique S, qui est associé à deux
états observés (ϕb et χb).

Bien qu’avoir deux états observés pour un même état hypothétique ne soit pas suffisant pour
contredire le protocole hypothétique, la suite du processus d’identification a révélé que ces deux états
observés sont différents du point de vue de la cohérence de cache. En effet, comme montré dans la
Figure 12.7, les états observés ϕb et χb réagissent de manière différente à une demande provenant

12.5. MODÉLISER LA COHÉRENCE DE CACHE 201

〈-, -, load〉

Origine Comportement
Attendu Observé

〈Ib,Ib,Ib〉 8000 External Snoop Requests 8000 External Snoop Requests

〈ϕb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 L2 Snoop Pushes ,

8000 External Snoop Requests,
8000 SINTs

〈χb,Ib,Ib〉
8000 L2 Snoop Hits,
8000 External Snoop Requests

8000 L2 Snoop Hits,
8000 External Snoop Requests

Figure 12.7 – Anomalies pour les états ϕb et χb

d’un autre cache : l’état ϕb entraine une réponse à la demande de la part du cache, alors que l’état
χb ne répond pas. Le comportement attendu pour un état hypothétique S est de ne pas répondre.
Ainsi, les observations montrent que l’architecture a un état stable supplémentaire et n’utilise donc
pas un protocole MESI. Cette état supplémentaire semble correspondre au F d’un protocole MESIF
et, après une seconde application de la stratégie d’identification du protocole, cela s’est confirmé.

12.5 Modéliser la cohérence de cache
Cette section offre un aperçu du modèle UPPAAL1 pour l’analyse des effets de la cohérence de cache
dans les processeurs multi-cœurs. Sont but est de créer un modèle formel afin de pouvoir faire des
analyses automatiques (décrites dans la Section 12.6) tout en assurant que :

• Le modèle est aussi générique que possible dans la façon dont il modélise la cohérence de cache
afin de permettre de facilement passer d’un protocole à un autre.

• Les protocoles sont modélisés en détails, prenant en compte tous les états transitoires et sont
définis pour des bus split-transaction.

L’approche choisie est similaire à celles des papiers présentés dans la Section 12.3.3 : utiliser
un réseau d’automates de tailles modérées, chacun représentant un composant, afin que le système
résultant soit facile à comprendre et modulaire.

12.5.1 Stratégie de modélisation
Le modèle de l’architecture est limité aux éléments directement liés à la cohérence de cache. On
suppose qu’un applicant ayant besoin de composants plus précis ou de composants additionnels
peut soit les prendre depuis une autre solution, soit intégrer les composants de cohérence de cache
présents ici dans cette autre solution.

Chaque composant a son propre automate. Les états et transitions de chaque automate représentent
en premier lieu les communications (via des synchronisations) entre les différents composants. Le
fonctionnement interne de chaque composant, comme les états de cohérence, est décrit via des va-
riables d’états qui sont mises à jour dans des fonctions, qui utilisent une syntaxe proche du C
d’UPPAAL. Cela produite des automates plus petits et plus lisibles, car les transitions sont moins
nombreuses et leur actions sont faites par l’appel à des fonctions au nom significatif.

1Disponible sur https://github.com/nsensfel/phylog-cache-coherence

https://github.com/nsensfel/phylog-cache-coherence

202 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

Data FIFOQuery FIFO

Data BusQuery Bus

Data FIFO

Supports
Multiple

Instances

Urgent
Handler

Query FIFO

Figure 12.8 – Vue d’ensemble des automates du modèle

La Figure 12.8 montre tous les automates définis dans le modèle. On y retrouve les composants
d’une architecture multi-coœurs, plus quelques artefacts de modélisation. En effet, l’interconnect
split-transaction a été divisé en deux composantes : un bus de demande et un bus de réponse. De
plus, un automate de file de messages FIFO pour les réponses a été ajouté et est partagé par le
gestionnaire de cohérence et le contrôleur mémoire. Pour finir, un automate Urgent Handler est
présent, qui ne correspond à aucun composant physique mais permet de faire des synchronisations
urgent.

Les transferts de données entre automates sont faits par synchronisation : l’émetteur stocke la
valeur dans une variable globale, qui est lue par le ou les receveurs. Cette variable globale est définie
de manière à clairement identifier l’émetteur et, s’il y a lieu, le receveur. L’élément mémoire concerné
par l’échange est aussi indiqué dans cette variable globale, ainsi que le type de message (par exemple
GetM). La validité de cette variable globale n’est assurée que le temps de la transition, puisque la
prochaine transition peut en changer le contenu. En conséquent, les automates la recevant vont
garder une copie du message dans une variable locale.

Le modèle est fait de manière à suivre les suppositions de la Section ?? et peut être instancié en
configurant les paramètres listés dans l’Annexe B.

12.5.2 Changer de protocole de cohérence
Afin de rendre le modèle plus facile à adapter à différentes architectures, celui-ci est accompagné par
un outil appelé CoProSwi qui permet de faire un changement automatique du protocole de cache
utilisé.

Comme indiqué dans la Figure 12.9, cet outil prend en entrée un modèle et la description du
protocole de cache sous la forme d’un fichier texte. Cette description correspond aux notations de
la Section 12.2.2 et donc aussi à celles du processus d’identification de la Section 12.4.

12.6. ANALYSER LA COHÉRENCE DE CACHE 203

Cache Coherence
Protocol B

Model with Protocol A CoProSwi Model with Protocol B

Figure 12.9 – L’outil Co(herence) Pro(tocol) Swi(tcher)

En conséquent, les protocoles décrits pour CoProSwi indiquent notamment :

• La définition du comportement du contrôleur de cache.
• La définition du comportement du gestionnaire de cohérence.

CoProSwi suppose que tous les protocoles sont définis autours des instructions load, store et
evict.

Lors de la définition du contrôleur de cache ou du gestionnaire de cohérence :

• Chaque état de cohérence est déclaré. Ces déclarations indiquent si l’état est transitoire ou
stable.

• L’état par défaut des éléments mémoire est aussi indiqué. On considère que cet état correspond
à la représentation de l’état Invalid du protocole.

• Les actions à faire pour chaque état suite à l’observation d’un message ou d’une requête du
cœur sont clairement définies.

CoProSwi prend donc en charge toutes les difficultés liées à l’adaptation du modèle à un pro-
tocole de cohérence de cache différent. Il n’est donc pas nécessaire à l’applicant de comprendre le
fonctionnement interne du modèle pour en faire l’usage. CoProSwi est aussi capable de générer la
liste exhaustive de chemins de changement d’états utilisée dans la Section 12.4.

12.6 Analyser la cohérence de cache
Cette section présente les analyses permettant d’utiliser le modèle de la section précédente pour
mettre en évidence les interférences liées à la cohérence de cache. Une partie de ces travaux ont été
publiés dans [47].

Le modèle présenté dans la section précédente comporte des paramètres (par exemple la durée
d’un accès à la mémoire) qui doivent être instanciés via une campagne de benchmarks afin de
mener les analyses qui sont décrites ici. Ce processus d’instanciation est en dehors du périmètre
de la thèse. La Figure 12.10 fournit une vue d’ensemble des analyses proposées. Les rectangles
avec fond gris correspondent aux analyses et ceux sans arrière plan sont les résultats principaux.
Les éléments sans bordure sont des résultats accessoires. Les bordures en pointillés indiquent les
résultats intermédiaires, qui ne sont pas censés être utiles en eux-mêmes.

Le modèle instancié utilisé pour l’illustration des analyses dans cette section est représenté dans la
Figure 12.11. Celui-ci utilise un protocole MESI dont les détails sont fournis dans la version complète
de la thèse (voir Figure 8.7). Le programme utilisé par chaque cœur est indiqué par les Figures 12.12
et 12.13. Ces modèles instanciés comportent toujours de l’indéterminisme, qui représente ce que l’ap-
plicant ne connâıt pas ou ne peut pas contrôler sur l’architecture. Par conséquent, le modèle instancié
admet toujours plusieurs traces d’exécution possibles. Les analyses étant basées sur l’algorithme de
model checking d’UPPAAL, toutes ces traces sont explorées.

204 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

WCET
Analysis

(Section 12.6.1)

Slowdown
Factors

WCET of
Programs

Without Shared
Variables

Impact of
Interference
on WCET

Hit & Miss
Analysis

(Section 12.6.2)

Instantiated
Model

Instruction
Accuracy

Mem. Element
Accuracy

Interference
Categorization
(Section 12.6.3)

Cache Coherence
Protocol

Annotated
Protocol

Instruction Impact
Analysis

(Section 12.6.4)

Relation Between
Instruction &
Interference

Figure 12.10 – Vue d’ensemble des analyses proposées

12.6.1 Analyse de l’impact sur le temps d’exécution
Cette première analyse regarde les effets de l’interférence sur le temps d’exécution total des pro-
grammes. Notons cependant qu’il s’agit du temps d’exécution calculé sur le modèle qui peut s’éloigner
du temps d’exécution sur l’architecture réelle, notamment en raison des abstractions faites dans la
modélisation ou d’une instanciation du modèle insuffisamment précise. Les valeurs obtenues sont
tout de même intéressantes à comparer avec d’autres analyses de temps sur un modèle similaire, par
exemple pour le calcul de facteurs de ralentissement (voir Définition 82). Par exemple, on peut obte-
nir la proportion du temps d’exécution causée par la cohérence de cache en comparant le modèle avec
une version adaptée du même modèle dans laquelle aucune variable n’est partagée. Bien que cette
version adaptée ne soit probablement pas réaliste, son temps d’exécution peut être utilisé comme
point de référence.

Definition 87 (Impact de la cohérence de cache sur le temps d’exécution) Soit Ws le temps
d’exécution d’un programme sur le modèle instancié, et Wp son temps d’exécution sur une instance du
même modèle dans laquelle toutes les variables ont été rendues privées. La part de Ws correspondant
aux mécanismes de cohérence de cache peut être obtenue avec l’équation suivante : Tcc = Ws −Wp

Pour obtenir les valeurs de Ws et Wp en utilisant UPPAAL, on emploie la vérification de modèle.
En effet, ces valeurs correspondent au maximum d’une horloge mesurant le temps d’exécution du
cœur étudié. Il est donc possible de la récupérer avec une formule semblable à
sup{not Core1.Terminated}: Core1.runtime, qui retourne le maximum pour l’horloge Core1.runtime dans
l’ensemble des états du système pour lesquels l’automate Core1 n’est pas dans la localité Terminated.

Example 45 (Exemple de mesures de temps d’exécution) La Figure 12.14 indique la valeur
maximale du temps d’exécution pour chaque cœur, avec différentes versions de l’exemple du modèle
instancié. Ws correspond à celle du modèle instancié original (et donc avec les variables partagées).
Wp correspond à celle d’un modèle dans lequel toutes les variables ont été rendues privées. Ici, on
incrémente les adresses d’éléments mémoires du programme sur le Cœur 2 par 3 pour éviter tout
partage. Tcc correspond à la part du temps d’exécution de Ws prise par les mécanismes de cohérence
cache. Enfin, pour montrer un exemple de facteur de ralentissement, on étudie aussi le cas où chaque
programme est exécuté en isolation. Les résultats de l’analyse sont donc :

12.6. ANALYSER LA COHÉRENCE DE CACHE 205

Data FIFOQuery FIFO

Data BusQuery Bus

Data FIFO

Urgent
Handler

Query FIFO

Data FIFOQuery FIFO

Core1 Core2

Cache2Cache1

QFIFO1 DFIFO1 QFIFO2 DFIFO2

QBUS DBUS

QFIFOMem DFIFOMem

CMGR Mem

Figure 12.11 – Aperçu de l’exemple de modèle ins-
tancié

1. store 1
2. store 2
3. load 1
4. store 1
5. load 3
6. store 2
7. load 1
8. store 1
9. load 2

10. store 2
11. end

Figure 12.12 –
Modèle de pro-
gramme pour Cœur
1

1. store 1
2. store 3
3. load 3
4. store 2
5. load 1
6. store 2
7. load 3
8. store 1
9. load 2

10. store 3
11. end

Figure 12.13 –
Modèle de pro-
gramme pour Cœur
2

Ws Wp Tcc Isolation
Cœur 1 2652 1102 1550 702
Cœur 2 2452 1452 1000 904

Figure 12.14 – Exemple d’analyse de temps d’exécution

• Cœur 1 souffre d’un facteur de ralentissement de 2652/702 = 3, 77 quand son programme
tourne en même temps que celui de Cœur 2, comparé à son exécution en isolation.

• Cœur 2 souffre d’un facteur de ralentissement de 2452/904 = 2, 71 quand son programme
tourne en même temps que celui de Cœur 1, comparé à son exécution en isolation.

• Exécuter les deux programmes en isolation l’un après l’autre aurait un temps d’exécution maxi-
mum de 702 + 904 = 1606 unités de temps.

• Exécuter les deux programmes en parallèle a un temps d’exécution maximal de max(2652, 2452) =
2652.

• Exécuter les deux programmes en parallèle mais sans variables partagées a un temps d’exécution
maximal de max(1102, 1452) = 1452.

• Approximativement (1550/2652) ∗ 100 = 58, 44% du temps d’exécution de Cœur 1 est causé
par l’interférence liée à la cohérence de caches.

• Approximativement (1000/2452) ∗ 100 = 40, 78% du temps d’exécution de Cœur 2 est causé
par l’interférence liée à la cohérence de caches.

206 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

12.6.2 Catégorisation des accès au cache
Une interférence peut empêcher une instruction de récupérer une valeur dans le cache (parce que son
contenu a été modifié récemment à cause d’une autre instruction). C’est ce qu’on appelle un cache-
miss. Les analyses de cette section s’intéressent à la catégorisation des instructions en fonction des
cache-miss observés. C’est une technique utilisée dans la littérature (voir Section 12.3.2). L’objectif
de cette analyse est donc de classer chaque instruction en tant que always-hit (cache toujours prêt),
always-miss (cache jamais prêt) ou uncategorized (le cache peut être prêt ou ne pas l’être selon
l’exécution). Pour cela, on utilise l’opérateur de logique temporelle AG afin de s’assurer que pour
toute trace d’exécution du modèle, l’instruction donnée :

• Est résolue par le cache immédiatement, dans quel cas l’instruction est classée always-hit.
• N’est pas résolue par le cache immédiatement et donc classée always-miss.
• Sinon, on la classe comme uncategorized.

Example 46 (Catégorisation des accès au cache)

1. store 1 est classé AM.
2. store 2 est classé AM.
3. load 1 est classé UN.
4. store 1 est classé UN.
5. load 3 est classé AM.
6. store 2 est classé AM.
7. load 1 est classé AH.
8. store 1 est classé AM.
9. load 2 est classé UN.

10. store 2 est classé UN.

(a) Catégorisation pour le Cœur 1

1. store 1 est classé AM.
2. store 3 est classé AM.
3. load 3 est classé AH.
4. store 2 est classé AM.
5. load 1 est classé AM.
6. store 2 est classé UN.
7. load 3 est classé AH.
8. store 1 est classé AM.
9. load 2 est classé UN.

10. store 3 est classé AM.

(b) Catégorisation pour le Cœur 2

Figure 12.15 – Exemple de catégorisation des accès cache

La Figure 12.15 montre le résultat de la catégorisation de chaque instruction de notre exemple.
AH correspond à always-hit, AM correspond à always-miss et UN correspond à uncategorized.

Cette catégorisation des instructions permet de déterminer quelles instructions font varier le
temps d’exécution. Cependant, certaines de ces variations ne sont pas liées à la cohérence de cache.
Pour pouvoir répondre au besoin de la certification, il va donc être nécessaire d’analyser l’interférence
elle-même.

12.6.3 Catégorisation de l’interférence
Pour pouvoir comprendre la cause et les effets des interférences générées par la cohérence de cache,
nous proposons de les classifier en fonction de leurs effets sur le cache affecté. Cette section présente
les trois catégories d’interférences proposées dans cette thèse.

Definition 88 (Interférence mineure) On considère qu’un cache subit une interférence mineure
lorsqu’il reçoit une demande en provenance d’un autre cache sans que cette demande ne nécessite
d’actions de sa part. En effet, le cache a alors pris le temps de traiter une demande sans que cela
n’ait eu d’utilité.

12.7. CONCLUSION 207

Example 47 (Interférence mineure) Le protocole MSI simplifié de la Section 12.2.3 présente des
interférences mineures lorsqu’un cache tenant un élément mémoire dans l’état I reçoit des demandes,
ou qu’il reçoit un GetS (demande d’accès en lecture) alors qu’il a l’élément en S.

Definition 89 (Interférence de rétrogradation) On considère qu’un cache subit une interférence
de rétrogradation lorsqu’il perd les permissions d’écriture sur un élément mémoire suite à la demande
d’un autre cache.

Example 48 (Interférence de rétrogradation) Le protocole MSI simplifié de la Section 12.2.3
présente une interférence de rétrogradation lorsqu’un cache tenant un élément mémoire dans l’état
M reçoit une demande GetS de la part d’un autre cache. En effet, il passe alors à l’état S et perd ses
permissions d’écriture.

Definition 90 (Interférence d’expulsion) On considère qu’un cache subit une interférence d’ex-
pulsion lorsqu’il perd toutes ses permissions sur un élément mémoire suite à la demande d’un autre
cache.

Example 49 (Interférence d’expulsion) Le protocole MSI simplifié de la Section 12.2.3 présente
des interférences d’expulsion losrqu”un cache tenant un élément mémoire dans l’état S ou M reçoit
une demande GetM (demande d’accès en lecture et écriture) de la part d’un autre cache. En effet, il
passe alors à l’état I et perd toutes ses permissions.

12.6.4 Révéler les interférences liées à la cohérence de cache
Pour révéler toutes les interférences causées par la cohérence de cache en tenant compte des effets
catégorisés, il suffit de faire en sorte que le modèle détecte les cas où l’interférence a affecté une
instruction. Cela permet alors d’utiliser les outils de model checking d’UPPAAL pour déterminer
quelle instruction cause une interférence sur quelle autre instruction. Ainsi, cette section identifie
les interférences liées à la cohérence de cache en définissant deux ensembles finis SA et SE composés
de triplets 〈Io, E, It〉, tels que Io correspond à l’instruction causant une interférence de type E
sur l’instruction IT . L’ensemble SA contient les triplets pour lesquels l’interférence est certaine de se
produire alors que SE correspond à ceux pour lesquels au moins une exécution présente l’interférence
en question. Combiné avec les résultats de l’analyse de la Section 12.6.2, ceci fournit à l’applicant à
la fois les causes et les effets des interférences liées à la cohérence de cache dans le système modélisé.

Example 50 (Interférences dans notre exemple) La Figure 12.16 montre les interférences entre
les instructions des programmes de l’exemple. Les flèches partent de l’instruction générant l’in-
terférence. Celles qui sont en pointillés indiquent une interférence ne se produisant pas dans cer-
taines des traces d’exécution du modèle. EX correspond à une interférence d’expulsion et DE à une
interférence de rétrogradation. La colonne de gauche correspond au programme de Cœur 1 et celle
de droite à celui de Cœur 2.

12.7 Conclusion
La documentation des architectures ne fournit pas suffisamment de détails sur la cohérence de cache
pour répondre aux besoins de certification et peut même parfois induire en erreur l’applicant. Pour
remédier à cela, nous avons proposé une approche d’identification du protocole de cache réellement
implémenté sur l’architecture. Une fois le protocole identifié, il faut analyser le système dans son
ensemble. L’approche choisie, pour répondre partiellement à cette question, a consisté à modéliser

208 CHAPITRE 12. RÉSUMÉ EN FRANÇAIS

1. store 1 (AM)

2. store 2 (AM)

3. load 1 (UN)

4. store 1 (UN)

5. load 3 (AM)

6. store 2 (AM)

7. load 1 (AH)

8. store 1 (AM)

9. load 2 (UN)

10. store 2 (UN)

1. store 1 (AM)

2. store 3 (AM)

3. load 3 (AH)

4. store 2 (AM)

5. load 1 (AM)

6. store 2 (UN)

7. load 3 (AH)

8. store 1 (AM)

9. load 2 (UN)

10. store 3 (AM)

EX

EX

DE

EX
EX

EX

EX

EX

EX
DE

DE

Figure 12.16 – Interférence dans l’exemple de modèle instancié

le protocole de cohérence de cache sous forme d’un réseau d’automates temporisés, ce qui permet
de modéliser les composants participant à la cohérence en incluant leurs comportements bas niveau.
Dans un souci de généricité, une approche modulaire a été proposée afin de facilement modifier
certains composants et un outil prenant en entrée plusieurs protocoles permet d’instancier le modèle
UPPAAL ad hoc. Un fois le modèle UPPAAL instancié grâce à des paramètres dont les valeurs
sont à obtenir au travers de méthodes existantes, le modèle UPPAAL peut être analysé, à l’aide de
techniques de vérification formelle, pour mieux cerner les interférences liées à la cohérence de cache
dans le système. Il est notamment possible d’explorer toutes les traces d’exécution du modèle afin
d’obtenir des informations sur les effets temporels des interférences dues à la cohérence de cache.

Plusieurs limitations ont été identifiées sur l’approche et les premiers axes d’extension de résultats
seraient de réduire celles-ci. Comment prendre en compte des programmes plus réalistes et non
déterministes ? comment intégrer les modèles UPPAAL uniquement focalisés sur la cohérence de
cache aux frameworks plus généralistes proposant des modèles de cœurs détaillées ? Comment re-
monter ces informations dans le calcul de WCET et les documentations demandées par la certifica-
tion ?

Appendix A

False Sharing

In the context of this thesis, memory is considered to be split into memory elements (see Defini-
tion 17), with a size corresponding to that of a cache line. This means that the minimal size that
can be addressed (i.e. a byte) is that of a cache line. Realistically however, cache lines are generally
able to hold 32, 64, 128 bytes. The false sharing issue stems from the fact that cache lines are the
size of the blocks being loaded into caches, so loading any address within a block of that size loads
data for other addresses.

B 0 B 1 B 2 B 3 B 4 B 5 B 6 B 7
(a) Default Data Placement

B 0 B 1 B 2 B 3 B 4 B 5 B 6 B 7
(b) Insufficient Padding

B 0 B 1 B 2 B 3 B 4 B 5 B 6 B 7
(c) Data Placement Without False Sharing

Figure A.1 – Examples of Data Placements

To understand what false sharing is, let us consider an architecture with two cores, Core0 and
Core1, both having their own cache, Cache0 and Cache1, with cache coherence being active. Let us
consider that these caches have cache lines with a size of contain 4 bytes, and that both cores are
currently making numerous memory accesses to one variable each, Var0 and Var1. Var0 is 1 byte
long, and Var1 is 3 bytes long. Figure A.1 shows how both variables could be placed in memory.

Caches access whole cache lines, meaning that accessing any address between 0 and 3 inclusive
leads to the transfer of all bytes in this interval into the cache.

The placement shown in Figure A.1a corresponds to putting Var0 at address 0, and Var1 at
address 1. This is the most memory efficient solution. However, this configuration, a cache accessing
to either variable also performs an access to the other variable. This is not obvious from a program’s

209

210 APPENDIX A. FALSE SHARING

point of view, as the two variables have separate addresses. The effect is that cache coherence has
to be maintained between both caches upon any operation performed on either variables, despite
the fact that each core never actually addresses the other core’s variable. To avoid this very costly
and unrequited cache coherence, the solution is to add padding: place the variables so that a cache
accessing one does not accesses the other.

Utilities to ensure a given memory block is allocated in memory with sufficient padding for a given
cache line size are available in C/C++ (for dynamic memory allocation) and in popular compilers
(for static memory allocations). Since this alignment is not done by default, this requires that the
programmer is aware of the false sharing issue. Furthermore, it also requires the cache line be known
at compilation time, which is an issue for portable programs. Figure A.1b shows a placement in
which an insufficient padding has been used. By placing Var1 at address 3, the amount of data
transfers is further increased: not only is the false sharing issue still there, but now two cache lines
have to be accessed when accessing Var1.

Figure A.1c shows a padding corresponding to Var1 being placed at address 4, which ensures
that accessing either variable only transfers a single cache line and that no false sharing can occur
between these two variables.

Appendix B

Model Parameters

In order to tailor the model to match the user’s architecture, a number of parameters can be modified:

• LAST ADDR, an integer, which, in effect, corresponds to the number of memory elements used
by the system. The memory element 0 is reserved as a default NULL value.

• CORE COUNT, an integer corresponding to the number of caches present in the system. The
name comes from the limitation to a single core per cache.

• LINES PER CACHE, an integer indicating the number of memory elements that can be held in
each cache.

• COMPONENT COUNT an integer equal to the highest component ID value.

• USE LOCK FREE CACHES is a Boolean controling whether cores can send new instructions
before the previous ones have been resolved. If they are allowed to, the value is set to true.

• REQ BUFFER SIZE is an integer indicating how many pending requests a cache can handle
simultaneously. Because of how automated eviction is handled, the minimal value is 2.

• IN QUERY BUFFER SIZE is the number of slots available in an incoming query FIFO queue.

• OUT QUERY BUFFER SIZE is the number of slots available in an outgoing query FIFO queue.

• IN DATA BUFFER SIZE is the number of slots available in an incoming data FIFO queue.

• OUT DATA BUFFER SIZE is the number of slots available in an outgoing data FIFO queue.

Furthermore, the time required for certain operations can be set:

• RAM READ TIME is the time during which the memory controller is inactive before sending
the queried memory element.

• RAM WRITE TIME is the time during which the memory controller is inactive after having
updated a memory element.

• QUERY HANDLING TIME is the inactivity period of a cache receiving a new query.

• DATA HANDLING TIME is the inactivity period of a cache receiving a new data message.

211

212 APPENDIX B. MODEL PARAMETERS

• REQUEST HANDLING TIME is the inactivity period of a cache receiving a new request from its
core.

• DATA TRANSFER TIME is the delay for transfer through the bus of a data message from one
component to another.

• QUERY TRANSFER TIME is the time needed for a query to be broadcasted by the bus.

• CLOCK CYCLE TIME is how long a core stays inactive after sending an instruction.

By default, the model uses the values indicated in Figure B.1, which do not correspond to any
architecture in particular and were arbitrarily chosen to be small and vaguely realistic in their
proportion to one another.

• LINES PER CACHE = 20

• USE LOCK FREE CACHES = true

• RAM READ TIME = 200

• RAM WRITE TIME = 300

• QUERY HANDLING TIME = 4

• DATA HANDLING TIME = 5

• REQUEST HANDLING TIME = 6

• DATA TRANSFER TIME = 17

• QUERY TRANSFER TIME = 24

• CLOCK CYCLE TIME = 50

• REQ BUFFER SIZE = 3

• IN QUERY BUFFER SIZE = 5

• OUT QUERY BUFFER SIZE = 5

• IN DATA BUFFER SIZE = 6

• OUT DATA BUFFER SIZE = 6

Figure B.1 – Default Model Parameters

Bibliography

[1] R. Alur. Techniques for automatic verification of real-time systems. PhD thesis, Stanford
University, Stanford, CA, USA, 1992.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, April 1994.

[3] André Arnold and John Plaice. Finite Transition Systems: Semantics of Communicating Sys-
tems. Prentice Hall International (UK) Ltd., GBR, 1994.

[4] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa: An open
toolbox for adaptive wcet analysis. In Sang Lyul Min, Robert Pettit, Peter Puschner, and Theo
Ungerer, editors, Software Technologies for Embedded and Ubiquitous Systems, pages 35–46,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[5] Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco Caccamo.
Cache where you want! reconciling predictability and coherent caching, 2019. arXiv:1909.
05349.

[6] Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Parameterized verification of a cache coher-
ence protocol: Safety and liveness. pages 305–308, 04 2002. doi:10.1007/3-540-47813-2_22.

[7] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal: a tool
suite for automatic verification of real-time systems. In Proceedings of the DIMACS/SYCON
Workshop on Hybrid Systems III: Verification and Control: Verification and Control, pages
232–243, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc. URL: http://dl.acm.
org/citation.cfm?id=239587.239611.

[8] Béatrice Berard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure
Petrucci, and Philippe Schnoebelen. Systems and Software Verification: Model-Checking Tech-
niques and Tools. Springer Publishing Company, Incorporated, 1st edition, 2001.

[9] Pierre Bieber, Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Claire Pagetti, Olivier
Poitou, Thomas Polacsek, Luca Santinelli, and Nathanaël Sensfelder. A model-based certifica-
tion approach for multi/many-core embedded systems. In 9th European Congress on Embedded
Real Time Software and Systems (ERTS 2018), 2018.

[10] Jingyi Bin. Controlling execution time variability using COTS for Safety-critical systems. The-
ses, Université Paris Sud - Paris XI, July 2014. URL: https://tel.archives-ouvertes.fr/
tel-01061936.

213

http://arxiv.org/abs/1909.05349
http://arxiv.org/abs/1909.05349
https://doi.org/10.1007/3-540-47813-2_22
http://dl.acm.org/citation.cfm?id=239587.239611
http://dl.acm.org/citation.cfm?id=239587.239611
https://tel.archives-ouvertes.fr/tel-01061936
https://tel.archives-ouvertes.fr/tel-01061936

214 BIBLIOGRAPHY

[11] Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and Alain Merigot. Studying
co-running avionic real-time applications on multi-core cots architectures. In Embedded Real
Time Software and System Conference (ERTS’14), 2014.

[12] Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic execution
model on cots hardware. In Andreas Herkersdorf, Kay Römer, and Uwe Brinkschulte, editors,
Architecture of Computing Systems – ARCS 2012, pages 98–110, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[13] Fabien Bouquillon, Clément Ballabriga, Giuseppe Lipari, and Smäıl Niar. A wcet-aware cache
coloring technique for reducing interference in real-time systems. CoRR, abs/1903.09310, 2019.
URL: http://arxiv.org/abs/1903.09310, arXiv:1903.09310.

[14] P. Bouyer. Lesson: An Introduction to Timed Automata, 2008-2009.

[15] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Dynamic verification of cache coherence
protocols. 2004.

[16] Franck Cassez, Pablo Aledo, and Peter Jensen. WUPPAAL: Computation of worst-case
execution-time for binary programs with UPPAAL, pages 560–577. 07 2017. doi:10.1007/
978-3-319-63121-9_28.

[17] CAST (Certification Authorities Software Team). Position Paper on Multi-core Proces-
sors - CAST-32, 2016. Retrieved from https://www.faa.gov/aircraft/air_cert/design_
approvals/air_software/cast/cast_papers/media/cast-32.pdf.

[18] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter Marwedel,
and Heiko Falk. A unified wcet analysis framework for multicore platforms. ACM Trans. Embed.
Comput. Syst., 13(4s), April 2014. doi:10.1145/2584654.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state concurrent
system using temporal logic specifications: A practical approach. In Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’83,
page 117–126, New York, NY, USA, 1983. Association for Computing Machinery. doi:10.
1145/567067.567080.

[20] E.M. Clarke, O. Grumberg, and D.A. Peled. Model-checking. MIT Press, 1995.

[21] Sylvain Conchon, Alain Mebsout, and Fatiha Zäıdi. Vérification de systèmes paramétrés avec
Cubicle. In Vingt-quatrièmes Journées Francophones des Langages Applicatifs, Aussois, France,
February 2013.

[22] Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and Kim Guld-
strand Larsen. METAMOC: Modular Execution Time Analysis using Model Checking. In
Björn Lisper, editor, 10th International Workshop on Worst-Case Execution Time Analysis
(WCET 2010), volume 15 of OpenAccess Series in Informatics (OASIcs), pages 113–123,
Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. The printed
version of the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-
85403-268-7. URL: http://drops.dagstuhl.de/opus/volltexte/2010/2831, doi:10.4230/
OASIcs.WCET.2010.113.

[23] Andreas Engelbredt Dalsgaard, Mads Chr. Olesen, and Martin Toft. Modular Execution Time
Analysis using Model Checking: METAMOC. PhD thesis, Aalborg Universitet, 2020.

http://arxiv.org/abs/1903.09310
http://arxiv.org/abs/1903.09310
https://doi.org/10.1007/978-3-319-63121-9_28
https://doi.org/10.1007/978-3-319-63121-9_28
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32.pdf
https://doi.org/10.1145/2584654
https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/567067.567080
http://drops.dagstuhl.de/opus/volltexte/2010/2831
https://doi.org/10.4230/OASIcs.WCET.2010.113
https://doi.org/10.4230/OASIcs.WCET.2010.113

BIBLIOGRAPHY 215

[24] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior prediction
for real-timesystems. Real-Time Syst., 17(2–3):131–181, December 1999. doi:10.1023/A:
1008186323068.

[25] Freescale. e6500 core reference manual, rev 0, 2014.

[26] Freescale. T4240 QorIQ: Integrated multicore communications processor family reference man-
ual, 2014.

[27] S. Girbal, X. Jean, J. Le Rhun, D. G. Pérez, and M. Gatti. Deterministic platform software
for hard real-time systems using multi-core cots. In 2015 IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), pages 8D4–1–8D4–15, 2015.

[28] James Goodman and Hhj Hum. Mesif: A two-hop cache coherency protocol for point-to-point
interconnects (2004). 2004.

[29] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and analysis for
multicores. In Proceedings of the Seventh ACM International Conference on Embedded Software,
EMSOFT ’09, page 245–254, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1629335.1629369.

[30] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET
analysis of multicore architectures using UPPAAL. In 10th International Workshop on Worst-
Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages 101–112,
2010. doi:10.4230/OASIcs.WCET.2010.101.

[31] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten wcet estimates
for multi-core processors with shared instruction caches. In Proceedings of the 2009 30th IEEE
Real-Time Systems Symposium, RTSS ’09, page 68–77, USA, 2009. IEEE Computer Society.
doi:10.1109/RTSS.2009.34.

[32] Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Patel. Predictable cache coherence for
multi-core real-time systems. In 2017 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017, pages 235–246, 2017.
doi:10.1109/RTAS.2017.13.

[33] J. E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages and computation.
Addison Wesley, 1979.

[34] Xavier Jean. Hypervisor control of COTS multi-cores processors in order to enforce determinism
for future avionics equipment. Theses, Télécom ParisTech, June 2015. URL: https://pastel.
archives-ouvertes.fr/tel-01341758.

[35] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches Conflicts Reduction
for WCET Computation in Multi-Core Architectures. In 18th International Conference on
Real-Time and Network Systems, page 2283, Toulouse, France, November 2010. URL: https:
//hal.inria.fr/inria-00531214.

[36] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation with model checking
for timing analysis of multicore software. In 2010 31st IEEE Real-Time Systems Symposium,
pages 339–349, Nov 2010. doi:10.1109/RTSS.2010.30.

[37] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg, 1982.

https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1145/1629335.1629369
https://doi.org/10.4230/OASIcs.WCET.2010.101
https://doi.org/10.1109/RTSS.2009.34
https://doi.org/10.1109/RTAS.2017.13
https://pastel.archives-ouvertes.fr/tel-01341758
https://pastel.archives-ouvertes.fr/tel-01341758
https://hal.inria.fr/inria-00531214
https://hal.inria.fr/inria-00531214
https://doi.org/10.1109/RTSS.2010.30

216 BIBLIOGRAPHY

[38] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller. Memory perfor-
mance and cache coherency effects on an intel nehalem multiprocessor system. In Proceedings of
the 2009 18th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’09, page 261–270, USA, 2009. IEEE Computer Society. doi:10.1109/PACT.2009.22.

[39] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in avionics.
2012 Ninth European Dependable Computing Conference, pages 132–143, 2012.

[40] Xavier Palomo, Mikel Fernandez, Sylvain Girbal, Enrico Mezzetti, Jaume Abella, Francisco J.
Cazorla, and Laurent Rioux. Tracing Hardware Monitors in the GR712RC Multicore Plat-
form: Challenges and Lessons Learnt from a Space Case Study. In Marcus Völp, editor,
32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 15:1–15:25, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/
volltexte/2020/12378, doi:10.4230/LIPIcs.ECRTS.2020.15.

[41] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for multiprocessors
with private cache memories. SIGARCH Comput. Archit. News, 12(3):348–354, January 1984.
URL: http://doi.acm.org/10.1145/773453.808204, doi:10.1145/773453.808204.

[42] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. A real-time capable coherent data
cache for multicores. Concurrency and Computation: Practice and Experience, 26(6):1342–
1354, 2014. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3172, arXiv:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3172, doi:10.1002/cpe.3172.

[43] Arthur Pyka, Lillian Tadros, Sascha Uhrig, Hugues Cassé, Haluk Ozaktas, and Christine
Rochange. WCET Analysis of Parallel Benchmarks using On-Demand Coherent Cache (regular
paper). In Workshop on High-performance and Real-time Embedded Systems (HiRES 2015),
Amsterdam, 21/01/15, page (on line), http://www.hipeac.net, janvier 2015. HiPEAC. URL:
http://www.cister.isep.ipp.pt/hires2015/.

[44] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and Fran-
cisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded cots
processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4), January 2012.
doi:10.1145/2086696.2086713.

[45] J.-F. Raskin. Second lecture: Basics of model-checking for finite and timed systems, Artist2
Asian Summer School - Shanghai - July 2008.

[46] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A definition and classification of timing anomalies. In Frank Mueller,
editor, 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, July 4, 2006,
Dresden, Germany, volume 4 of OASICS. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. URL: http://drops.dagstuhl.de/
opus/volltexte/2006/671.

[47] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling Cache Coherence to Expose
Interference. In Proceedings of the 31st Conference on Real-Time Systems (ECRTS’19), 2019.

[48] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. On How to Identify Cache Coherence:
Case of the NXP QorIQ T4240. In Proceedings of the 32nd Conference on Real-Time Systems
(ECRTS’20), 2020.

https://doi.org/10.1109/PACT.2009.22
https://drops.dagstuhl.de/opus/volltexte/2020/12378
https://drops.dagstuhl.de/opus/volltexte/2020/12378
https://doi.org/10.4230/LIPIcs.ECRTS.2020.15
http://doi.acm.org/10.1145/773453.808204
https://doi.org/10.1145/773453.808204
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3172
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3172
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3172
https://doi.org/10.1002/cpe.3172
http://www.cister.isep.ipp.pt/hires2015/
https://doi.org/10.1145/2086696.2086713
http://drops.dagstuhl.de/opus/volltexte/2006/671
http://drops.dagstuhl.de/opus/volltexte/2006/671

BIBLIOGRAPHY 217

[49] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[50] Valentin Touzeau, Claire Mäıza, David Monniaux, and Jan Reineke. Fast and exact analysis
for lru caches. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290367.

[51] Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos. Handling write backs in multi-level
cache analysis for wcet estimation. In Proceedings of the 25th International Conference on Real-
Time Networks and Systems, RTNS ’17, page 208–217, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3139258.3139269.

https://doi.org/10.1145/3290367
https://doi.org/10.1145/3139258.3139269

	I Context
	Introduction
	Context
	Aeronautical Embedded Systems
	Multi-core Based Systems Certification

	The Issue of Cache Coherence
	Overview of the Thesis

	(Timed) Automata
	Classical Automata
	System Definition
	Query Logic Operators and Semantics

	UPPAAL and Networks of Timed Automata
	System Definition
	Query Logic Operators and Semantics

	Conclusion

	Fundamentals of Cache Coherence
	Components
	Memory Elements
	Core: Programs & Instructions
	Caches
	Coherence Manager
	Interconnect

	Coherence Protocols
	Introduction to the MSI Protocol
	Properties to be Verified
	Protocol Definition

	Split-Transaction Bus, case of the MSI Protocol
	State Naming
	Examples

	Variants
	Cache Line Organization
	Replacement Policies
	Placement Policies

	Conclusion

	Objective
	Tasks Required of the Applicant
	Coherence Protocol Identification
	Measuring the Impact of Interference of the Software

	Proposed Solution
	Hypotheses and Limitations
	Framework Overview

	Conclusion

	II Related Works
	Micro-Stressing Benchmarks
	Detecting Component Correlation
	Evaluating Interference Through Resource-Stressing
	Architecture and Application Characterization

	Analyzing Cache Performance
	Cost of Cache Coherence
	Cache Performance Analysis

	Finding Elusive Hardware Monitors
	Conclusion

	Handling Cache Interference in Safety-Critical Systems
	Through Restrictions
	Shared Cache Partitioning
	Cache Coloring to Curtain Interference
	Limited Shared Resources
	Isolated Communications Through Scheduling

	Through Hardware Modifications
	Predictable MSI
	Limited Cacheability
	On-Demand Cache Coherence
	Dynamic Verification of Cache Coherence

	By Accepting It
	Instruction Cache Analysis
	Data Cache Analysis

	Conclusion

	Analyzing Performance Through Formal Methods
	Single-Core Processors
	METAMOC
	WUPPAAL

	Multi-Core Processors
	Modeling Shared Buses
	Multi-Core Analysis using only UPPAAL

	Conclusion

	III Contributions
	Identifying Cache Coherence
	Identification Strategy
	Defining the Hypothetical Cache Coherence Protocol
	Defining the Observable Cache Coherence Protocol
	Naive Exploration of the Observable Protocol
	State Exploration & Reachability
	Matching Observed States with Hypothetical States
	Activity Comparison
	Exploration Guided by Hypothetical Protocol

	Benchmark Implementation
	The NXP QorIQ T4240
	Naught
	Initializing the Caches (Lines 1 & 2 of Figure 8.4)
	Enabling the Performance Monitors (Line 3 of Figure 8.4)
	Performing Instructions (Lines 4 & 5 of Figure 8.4)
	Data Recording (Lines 6 & 7 of Figure 8.4)

	Hypothetical Split-Transaction MESI Protocol
	Strategy Application for a MESI Protocol
	Coherence State Matching
	Coherence Activity Matching

	Hypothetical Split-Transaction MESIF Protocol
	Strategy Application for a MESIF Protocol
	No store Optimization on F
	Odd Results with evict on M
	Better Coherence Manager

	Conclusion

	Modeling Cache Coherence
	Modeling Strategy
	Synchronization Channels
	Models of Core and Programs
	Model of the Caches
	Initialization
	Cache Lines
	Modeling the LRU policy
	Handling Requests
	Handling Messages
	Modeling Actions

	Models of FIFOs
	Query FIFO
	Data FIFO

	Model of the Interconnect
	Data Bus
	Query Bus

	Model of the Coherence Manager
	Modeling Actions

	Model of the Memory
	Switching Coherence Protocol
	Step-by-Step Simulation
	Conclusion

	Exposing Interference
	Overview of the Analyses
	Analyzing Impact on Program Execution Time
	Analyzing Impact on Hit & Miss
	Hit and Miss in the Model
	Instruction Characterization
	Memory Element Accuracy Analysis

	Defining Impact of External Queries
	Minor Interference
	Demoting Interference
	Expelling Interference
	Protocol Annotations

	Analyzing Impact of Intructions on Instruction
	Model Checking Scalability Considerations
	Conclusion

	IV Conclusions & Perspectives
	Conclusion
	Identifying the Protocol
	Summary
	Limitations
	Future Works

	Modeling the Architecture
	Summary
	Limitations
	Future Works

	Exposing the Interference
	Summary
	Limitations
	Future Works

	General Future Works

	Résumé en Français
	Introduction
	Contexte
	Contributions
	Vue d'ensemble du résumé

	Notions préliminaires
	Automates temporisés
	Fonctionnement des caches
	Cohérence de cache

	État de l'art
	Micro-stressing benchmarks
	Gestion des interférences
	Approches formelles

	Identifier la cohérence de cache
	Définir le protocole hypothétique
	Exploration naïve du protocole observable
	Exploration d'état et atteignabilité
	Correspondance entre état observé et hypothétique
	Comparaison des activités
	Exploration guidée par le protocole hypothétique
	Application au NXP QorIQ T4240

	Modéliser la cohérence de cache
	Stratégie de modélisation
	Changer de protocole de cohérence

	Analyser la cohérence de cache
	Analyse de l'impact sur le temps d'exécution
	Catégorisation des accès au cache
	Catégorisation de l'interférence
	Révéler les interférences liées à la cohérence de cache

	Conclusion

	False Sharing
	Model Parameters

