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Abstract

Keywords: data assimilation, eigenpair approximation, limited memory preconditioners, low-
rank approximation, nonlinear least-squares, randomized algorithms.

Randomized methods for computing approximate singular value/eigenvalue decompositions
have gained a lot of attention during the past decades. These methods have proven to perform
well, are computationally efficient, and are well suited for large scale applications. In this re-
gard, recent researches have proposed successful applications of randomized algorithms in data
assimilation, where the huge size of the problems is prohibitive for a large number of standard
approaches. In this thesis, we propose three interconnected contributions in randomized meth-
ods for low-rank approximation, extraction of eigenpairs, and preconditioning within variational
data assimilation.

First, we propose a general error analysis of randomized low-rank approximation in Frobenius
and spectral norms. This generalization extends the possibilities of analysis to a larger class of
randomized methods by allowing general covariance matrices and non-zero mean for the Gaussian
sample matrix. Particularization of our bounds to the Randomized Singular Value Decomposition
(RSVD) shows that we improve the reference error bounds due to Halko, Martinsson and Tropp
(2011).

Then, we develop randomized algorithms to address specific eigenvalue problems that natu-
rally arise in data assimilation. The proposed methods are versatile, and generalize the contri-
butions from Saibaba, Lee and Kitanidis (2016) and Daužickaitė et al. (2021). We then provide
a theoretical analysis of the methods, which gives insights regarding the number of subspace
iterations, number of random samples, and optimal covariance matrix of the Gaussian sample
matrix. Numerical illustrations on a data assimilation test problem confirm the potential of our
algorithms.

Finally, we propose a class of randomized spectral limited memory preconditioners for varia-
tional data assimilation. We provide such preconditioners for two given Krylov subspace methods:
an inverse-free approach in the primal space introduced by Guröl (2013) and a dual space method
proposed by Gratton and Tshimanga (2009). The reduced dimension of the dual space makes
this latter approach computationally efficient both in terms of cost and storage. Our randomized
spectral limited memory preconditioners are based on appropriate expressions identified by Gürol
(2013) where we replace expensive computations of exact eigenpairs by approximations obtained
with a randomized procedure. Illustrations on a benchmark four-dimensional variational data as-
similation problem prove that our randomized preconditioners perform well, opening interesting
perspectives.





Résumé

Mots-clefs : approximation de rang faible, approximation spectrale, assimilation de données,
méthodes aléatoires, moindres carrés non-linéaires, préconditionnement à mémoire limitée.

Les méthodes aléatoires pour le calcul approché de décomposition aux valeurs singulières/va-
leurs propres ont suscité beaucoup d’intérêt au cours des dernières décennies. Ces méthodes
se sont avérées performantes, efficaces en termes de coût de calcul et particulièrement bien
adaptées aux problèmes de grande taille. À cet égard, des recherches récentes ont proposé
des applications de ces méthodes en assimilation de données, où la taille des problèmes est
prohibitive pour un grand nombre d’approches classiques. Dans cette thèse, nous proposons
trois contributions interconnectées aux méthodes aléatoires pour l’approximation de rang faible,
l’extraction d’information spectrale et le précondition-
nement en assimilation de données variationnelle.

Premièrement, nous proposons une analyse générale de l’erreur d’approximation de rang faible
aléatoire en norme de Frobenius et en norme spectrale. Cette généralisation étend les possibilités
d’analyse à un plus grand nombre de méthodes aléatoires en autorisant des matrices de covari-
ance générales et un vecteur de moyenne non nulle pour la matrice gaussienne d’échantillonnage.
La particularisation de nos bornes à la méthode dite de Randomized Singular Value Decomposi-
tion (RSVD) montre que nous améliorons les bornes d’erreur de référence proposées par Halko,
Martinsson et Tropp (2011).

Ensuite, nous présentons des algorithmes aléatoires pour la résolution de problèmes aux
valeurs propres spécifiques qui apparaissent notamment en assimilation de données. Les méthodes
proposées sont polyvalentes et généralisent les contributions de Saibaba, Lee et Kitanidis (2016)
et Daužickaité et al. (2021). Nous fournissons ensuite une analyse théorique de nos méthodes qui
éclaire sur la sensibilité de l’erreur au nombre d’itérations de sous-espace, au nombre d’échantillons
aléatoires et à la matrice de covariance pour la matrice gaussienne d’échantillonnage. Des illus-
trations numériques sur un problème d’assimilation de données confirment le potentiel de nos
algorithmes.

Enfin, nous proposons une classe de préconditionnement à mémoire limitée aléatoire dédiée
à l’assimilation de données variationnelle. Nous proposons ces préconditionnements pour deux
méthodes de Krylov en particulier: une approche dite inverse-free dans l’espace primal introduite
par Guröl (2013) et une méthode d’espace dual proposée par Gratton et Tshimanga (2009). La di-
mension réduite de l’espace dual rend cette dernière approche plus intéressante à la fois en termes
de coût de calcul et de stockage. Les préconditionnements aléatoires proposés sont basés sur des
expressions adaptées identifiées par Gürol (2013) pour lesquelles les calculs coûteux d’information
spectrale exacte sont remplacés par des approximations obtenues avec une procédure aléatoire.
Des illustrations sur un problème d’assimilation de données variationnel quadridimensionnel de
référence démontrent le potentiel de nos préconditionnements aléatoires, ouvrant ainsi des per-
spectives intéressantes.
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CHAPTER 1

Introduction

Context. Data assimilation is a general framework where observations and a priori information
are coupled to estimate the underlying state of a complex dynamical system. Initially, the
research in data assimilation was driven by practitioners in the field of weather prediction and
ocean modelling [23, 40], but it has since been used in many more domains such as, among others,
geosciences [21] and mechanical engineering [3]. With the increasing complexity of the models
and the growing number of observations [9], solving data assimilation problems has become
particularly challenging from a numerical perspective. Practically, there are mainly two different
approaches to get a solution: either sequential or variational [5]. The sequential approach corrects
the model state estimate whenever the observations are available, but will not be considered in
this thesis. Instead, we will focus on the variational approach, where the model fitting problem is
converted into an optimization problem. This optimization problem is traditionally solved using
descent algorithms, typically a truncated Gauss-Newton method [34, 45]. With this method,
the successive descent directions are obtained as the solution of linear systems involving linear
operators (matrix-free) of very large size.

Solving a data assimilation problem with the variational approach [5, Chapter 2] thus reduces
to solving a sequence of large scale linear systems involving symmetric positive definite opera-
tors. This can be efficiently achieved using preconditioned Krylov subspace methods [69, Chapter
2]. For symmetric positive definite linear systems, the Krylov subspace method of choice is the
conjugate gradient method [55] whose convergence rate can be improved by the use of a pre-
conditioner [73, 92]. In data assimilation, the problem structure yields a natural preconditioner,
which is generally improved using so-called two-level preconditioners [81] such as the limited
memory preconditioner [66]. This class of preconditioners integrates eigeninformation to further
improve the convergence rate of the conjugate gradient method. Given the large size of data
assimilation problems, the eigeninformation is never computed with dedicated eigensolvers, but
is rather replaced by Ritz pairs computed from Krylov subspaces [39] associated to the previous
linear systems. This technique has proven to perform well in data assimilation [89] but has cer-
tain drawbacks. First, the number of approximate eigenvectors is constrained by the number of
preconditioned conjugate gradient method iterations. Then, since the eigeninformation is related
to a previous system, the obtained preconditioner is not perfectly adapted to the current system,
in particular in the beginning of the optimization process. Finally, updating the approximate
eigeninformation along the sequence is far from trivial.

In the last decades, randomized methods have gained a lot of importance in the numerical
linear algebra community and have been identified as one of the key elements for future advances
in numerical linear algebra [19]. The principle of randomization is to construct a sketch [93]
of a matrix using random sampling. The sketch acts as a reduced dimension surrogate of the
matrix hopefully containing most of the information. The idea is then to compute quantities
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of interest on the sketch, at a lower computational cost, to deduce information on the original
matrix. In this regard, a relevant sketch provides quantities of interest that are close to the
ones of the original matrix/linear operator. To efficiently sketch a matrix, the distribution of the
random samples is crucial and generally integrates information related to the relative importance
of the columns/rows/coefficients of the matrix [1, 18]. In contexts where the matrix is not
available and is replaced by a black-box linear map, sketching amounts to apply the linear map
to random sample vectors, usually standard Gaussian vectors. The essential of the arithmetic
cost induced by such algorithms thus concentrates in these matrix-vector products which can
easily be parallelized. This characteristic makes randomized methods structurally scalable.

Randomized methods using sketching have proven to perform well on a number of fundamen-
tal numerical linear algebra problems such as least-squares problems [6, 29], matrix factorizations
[63, Section 16] and low-rank approximations [2]. The flagship method for this latter is the ran-
domized singular value decomposition method introduced in [94] and popularized in [53]. In light
of the Eckart–Young–Mirsky theorem [30], this algorithm addresses the problem of computing
a low rank approximation of a general matrix via the computation of an approximate truncated
singular value decomposition. Beyond its performance, the interest for this method was also
popularized by the rigorous theoretical analysis of the resulting low rank approximation error
proposed in [53, Section 9 and 10]. This analysis gave important theoretical guarantees, and
was later completed by results focusing more on the approximate singular vectors/values accu-
racy [49, 77]. These analysis identified key elements monitoring the randomized singular value
decomposition performance such as the number of random samples and the singular value distri-
bution. The key ideas behind this algorithm have then been widely exploited to design random-
ized methods tackling more sophisticated singular value/eigenvalue problems such as generalized
Hermitian eigenvalue problems [80] and generalized singular value decomposition [78].

Altogether, the properties of randomized methods make them particularly adapted to the
computationally intensive context of data assimilation. In this regard, recent researches have
proposed randomized procedures for solving problems in variational data assimilation. In [17],
the authors proposed the randomized incremental optimal technique, which uses randomized low
rank approximations to approximately compute the new descent directions. The objective of
this approach is to replace the iterative Krylov subspace method by a fully parallel randomized
procedure. More recently, the authors in [24] proposed an alternative, where the preconditioned
conjugate gradient is maintained and the randomized low rank approximation is rather used
to construct a limited memory preconditioner. The idea is to construct the two-level precon-
ditioner using approximate eigenpairs obtained from the randomized method instead of exact
eigenpairs. Here, the use of randomized methods within the Krylov subspace method allows to
maintain theoretical guarantees on the overall convergence process. The results obtained on a
toy data assimilation problem confirmed that such randomized approaches behave similarly to
the preconditioner constructed using exact eigenpairs.

Scope and goals. The existing randomized methods for variational data assimilation are
essentially limited to formulations involving symmetric positive definite matrices. Practically,
this requires the availability of matrix factorizations that may not be affordable in operational
contexts. In the absence of such factorizations, alternative formulations have been proposed
which implies the use of dedicated Krylov subspace methods. In this thesis, we will focus on
two of them. The first one is referred to as the inverse-free preconditioned conjugate gradient
[50, Section 3.1], and has been proposed to solve data assimilation problems in the absence
of a particular operator inverse. The second one is referred to as the augmented restricted
preconditioned conjugate gradient [48] and is based on the dual formulation of the problem. The
interest in the dual formulation is that the dual space (i.e. the observation space) has a reduced
dimension, yielding significant improvements in the overall arithmetic cost and storage. For
these Krylov subspace methods, specific formulations of the limited memory preconditioner have
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been proposed [50]. These variants require to compute eigenpairs of specific eigenvalue problems
involving operators that are no longer symmetric with respect to the standard inner product.

The main objective of this thesis is to propose and study randomized methods for computing
approximate eigenpairs notably adapted to the preconditioning of the inverse-free and the aug-
mented restricted preconditioned conjugate gradient. We propose a rigorous theoretical analysis
of the two proposed randomized methods based on a generalization of the randomized singu-
lar value decomposition analysis. Then, we propose specific implementations of our methods
adapted to the construction of spectral limited memory preconditioners for both Krylov sub-
space methods. The obtained algorithms are flexible and could for instance be combined with
usual deterministic strategies such as Krylov subspace recycling methods. The numerical ex-
periments conducted on a toy test problem showed that the randomized preconditioners have
similar performance as the exact spectral limited memory preconditioner, which suggests that
such method could become an efficient component in operational variational data assimilation.

Outline. This thesis contains four main chapters.
In Chapter 2, we introduce the background material. We begin with defining and recalling

elementary notions in linear algebra. Then, we introduce the conjugate gradient method and
the notion of preconditioning. Next, we present the essential material related to randomized
numerical linear algebra. We also introduce the variational data assimilation problem in the
framework of weighted nonlinear least-squares problems. In the end, we describe the randomized
approaches that have been proposed in this context.

Chapter 3 is devoted to a general error analysis of randomized low rank approximation meth-
ods. First, we propose a refined deterministic analysis for the low rank approximation error
in Frobenius and spectral norms that is then used to derive bounds both in expectation and
probability. The novelty is that the proposed stochastic bounds are tighter and hold for general
Gaussian matrices. Then, we specialize our bounds to the analysis of the randomized singular
value decomposition, which demonstrates that our analysis both generalizes and improves the
reference error bounds proposed in [53]. Finally, we propose numerical illustrations on an in-
structional test problem where our bounds are compared to both the reference bounds and to
the empirical error.

In Chapter 4, we develop randomized algorithms to address two related generalized eigenvalue
problems in a non-Euclidean inner product. Such specific eigenvalue problems notably arise in
the data assimilation formulations of interest in Chapter 5. Our algorithms are based on the
randomized subspace iteration, and use the Rayleigh-Ritz method to extract the approximate
eigenpairs. We propose two different extraction methods, a direct one, and an inverse one that
can be related to the harmonic Rayleigh-Ritz analysis. Based on the general analysis presented
in Chapter 3, an average-case analysis of our algorithms is proposed in both weighted spectral
and Frobenius norms. A comparison between our bounds and prior bounds is also proposed.
Finally, we investigate the performance of our algorithm in terms of eigenpair accuracy on a
three-dimensional variational data assimilation test problem.

Then, in Chapter 5, we use the randomized algorithms introduced in Chapter 4 to propose ran-
domized spectral limited memory preconditioners for the inverse-free and augmented restricted
preconditioned conjugate gradient methods. Variants are proposed depending on the availabil-
ity of a first-level preconditioner. Numerical experiments on the Lorentz-95 model demonstrate
the potential of the proposed randomized preconditioners. Several sets of parameters are used,
considering different number of observations, and in all cases, our randomized preconditioners
behave competitively compared to the exact spectral and Ritz limited memory preconditioners.

Finally, we conclude and give some perspectives in Chapter 6.
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Notation

‖ · ‖2 Euclidean norm for vectors, spectral norm for matrices

‖ · ‖F Frobenius norm

〈·, ·〉 Euclidean inner-product

In Identity matrix of order n

AT Transpose of the matrix A

A−1 Inverse of the matrix A when defined

A† Moore-Penrose pseudo-inverse of the matrix A

R(S) Subspace spanned by the columns of the matrix S

λi(A) i-th largest eigenvalue of the square matrix A
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Chapter 2. Background material

Abstract

In this first chapter, we introduce the fundamental notions and background material
that will be helpful throughout the manuscript.

Section 2.1 is intended to recall basic linear algebra notions. Its main objective
is to go through standard definitions of norms, orthogonal projectors, orthogonality
when the underlying inner product is non-Euclidean.

In Section 2.2, we introduce and derive the conjugate gradient method. We recall
the relations between the conjugate gradient method and the Lanczos procedure to de-
rive approximate eigenpairs, and theoretical results related to its convergence. Then,
we recall basic elements on the notion of preconditioning, and we present the pre-
conditioned conjugate gradient method algorithm. Finally, we introduce a particular
class of preconditioners that are the Limited Memory Preconditioner.

Next, we introduce in Section 2.3 the key notions and algorithms in the randomized
numerical linear algebra literature. We present the randomized subspace iteration,
aimed at approximating the range of general matrices, and then the Randomized
Singular Value Decomposition method. Then, we recall key results on the analysis of
these methods. We finish by introducing the Nyström method, which is a randomized
method dedicated to symmetric positive definite matrices.

Finally, in Section 2.4, we present the mathematical framework of variational data
assimilation, i.e. the weighted nonlinear least-squares problem. We then introduce
relevant deterministic and stochastic preconditioning strategies.

2.1 Preliminaries

2.1.1 Norm induced by a non standard inner product
In this thesis, we will make an intensive use of non-Euclidean inner products. Let W ∈ Rn×n be
a symmetric positive definite matrix. The matrix W defines an inner product on Rn denoted by
〈·, ·〉W and defined as

∀x, y ∈ Rn, 〈x, y〉W = xTWy.

The corresponding norm is thus defined as

‖x‖W =
√
〈x, x〉W =

√
xTWx.

We will refer to this norm as the W-norm.
Remark 2.1. With this definition, the Euclidean norm corresponds to ‖ · ‖In

. Nevertheless, we
will avoid this notation and rather maintain the usual notation ‖ · ‖2.

In the following, our objective is to briefly introduce the usual notions related to inner prod-
ucts, such as symmetry or orthogonality when considered with inner products of the form 〈·, ·〉W.

W-symmetry. A matrix A ∈ Rn×n is said to be W-symmetric if it is self-adjoint with respect
to the inner product defined by W, that is if it satisfies

∀x, y ∈ Rn, 〈Ax, y〉W = 〈x,Ay〉W.

In a matrix form, this definition implies that A satisfies WA = ATW. Accordingly, a matrix
A is W-symmetric if and only if the matrix WA is symmetric in the usual Euclidean way. The
notions of positiveness and definiteness can thus be extended similarly by verifying whether WA
is positive and/or definite.
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Orthogonality with respect to W. Another fundamental notion that can be extended is the
notion of orthogonality. Two vectors x, y ∈ Rn are said to be W-conjugate if they satisfy

〈x, y〉W = 0.

From this, we define the notion of conjugation of a set of vectors. A set of vectors {x1, . . . , xk}
of Rn is said to be W-conjugate if it satisfies

i 6= j =⇒ 〈xi, xj〉W = 0 ∀ 1 ≤ i, j ≤ k.

If we denote X = [x1 · · · xk] ∈ Rn×k, then the W-conjugation of {x1, . . . , xk} can be written in
matrix form as

XTWX = diag(α1, . . . , αk).

By definition, it is clear that αi = ‖xi‖2W for all 1 ≤ i ≤ k. Then, the counterpart of orthogonal
matrices can be obtained by imposing to a set of W-conjugate vectors to also be of unit W-norm.
Therefore, a matrix X ∈ Rn×k is said to be W-orthogonal if it satisfies

XTWX = Ik.

In this case, the set of columns of X are orthonormal with respect to the inner product induced by
W. With this definition, orthogonal matrices in Rn×n are In-orthogonal. Finally, let X ∈ Rn×k1

and Y ∈ Rn×k2 be two matrices and let us denote X = R(X) and Y = R(Y ) the respective
spanned subspaces. Then we note

X ⊥W Y ⇐⇒ XTWY = 0k1,k2 ,

where 0k1,k2 ∈ Rk1×k2 is the zero matrix.

2.1.2 Orthogonal projector
Orthogonal projectors are a fundamental class of linear maps which naturally arise when solving
distance minimization problems. Let S ⊂ Rn denote a k dimensional subspace of Rn. The
orthogonal projection of a vector x ∈ Rn onto S, denoted by π(S)(x), is defined as the unique
solution of

π(S)(x) = argmin
y∈S

‖x− y‖2. (2.1)

The map x 7→ π(S)(x) is a linear map of rank k = dim(S) called the orthogonal projector onto
S. Let S ∈ Rn×k denote a full column rank matrix such that S = R(S). Then the matrix form
of π(S) reads

π(S) = S(STS)−1ST. (2.2)

Remark 2.2. The full rankness assumption on S can be relaxed, if we replace the inverse of STS
by its Moore-Penrose pseudo inverse.

By definition, the orthogonal projector π(S) is only determined by S. Accordingly, the matrix
representation of π(S) remains unchanged when performing a change of basis for S. In particular,
if the columns of S form an orthonormal basis for S, then the matrix form of π(S) simplifies to
just SST.
Remark 2.3. In this thesis, we will manipulate matrices more than linear subspaces. Accordingly,
and for convenience, if S is a column vector matrix, we will denote π(S) the orthogonal projector
onto R(S).
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The definition of the orthogonal projector given in (2.1) can be straightforwardly generalized
to non-Euclidean inner products. Let W be a symmetric positive definite matrix. We define the
W-orthogonal projector onto S as the unique solution of the problem

πW(S) = argmin
y∈S

‖x− y‖W.

In a similar manner, if the columns of the matrix S form a basis if S, then one has the following
matrix representation

πW(S) = S(STWS)−1STW. (2.3)

Here we note that this expression simplifies if the columns of S form a W-orthogonal basis of S.

2.1.3 Angle between subspaces
The notion of angle between subspaces has been introduced in [25] to quantify the separation
between subspaces. It generalizes the notion of geometrical angles between vectors to the case
of linear subspaces. The theory has been developed and is now referred to as the Closeness-
Separation (CS) decomposition. We refer the interested reader to [71] for an historical review on
this topic. Here, we will not need the CS decomposition in itself, and we rather focus on defining
the principal angles between subspaces.

The principal angles between subspaces can be defined whenever there exists an inner product.
Here, we immediately define them in the generalized setting of non-Euclidean inner product as
introduced in [58]. Let F ∈ Rn×k and G ∈ Rn×p be two full column rank matrices with p ≥ k
and let W ∈ Rn×n be a symmetric positive definite matrix. Let us consider the eigenvalue
decomposition of the symmetric positive semidefinite matrix

FTW(In − πW(G))F = UΛUT,

with U ∈ Rk×k an orthogonal matrix and Λ = diag(λ1, . . . , λk) ∈ Rk×k a diagonal matrix with
λ1 ≥ · · · ≥ λk ≥ 0. Then by definition one has

sin(θj)2 = λj , 1 ≤ j ≤ k.

where θ1, . . . , θk are the principal angles between R(F ) and R(G). In a similar manner, the
eigenvalues µj of the symmetric positive semidefinite matrix FTWπW(G)F with 0 ≤ µ1 ≤ · · · ≤
µk are such that

cos(θj)2 = µj , 1 ≤ j ≤ k.

The principal angles are therefore accessible by two means, either via their cosine or sine.
Of course getting one immediately yields the other since sin(θj)2 + cos(θj)2 = 1. In practice,
we favor the sine measures because they quantify the distance between two linear subspaces.
Indeed, if sin(θ1) = · · · = sin(θk) = 0, then it implies that R(F ) ⊂ R(G).

An important property satisfied by the principal angles, which might not be obvious at first
sight from the above definition, is that they only depend on R(F ) and R(G) and not on the
particular basis. This is a consequence of the fact that we can define them by means of projections
only (see [39, Section 2.3]). This operator definition is more abstract and more general but will
not be needed here, which is the reason why we decided to focus on the matrix definitions.

2.1.4 Miscellaneous
We introduce several concise results or definitions that do not deserve a full section on their own.
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Partial ordering on symmetric matrices

Let A,B ∈ Rn×n be two symmetric matrices. We write A 4 B if the matrix B − A is positive
semidefinite. This relation defines a partial ordering on symmetric matrices referred to as the
Loewner order. Here, we will focus on a few properties and we refer the reader to [57, Section
7.7] for a detailed study of this ordering relation.

Let us assume that A 4 B, then one has

1. ‖A‖2,F ≤ ‖B‖2,F (Monotonicity).

2. QTAQ 4 QTBQ, ∀Q ∈ Rm×n (Conjugation rule).

Remark 2.4. The first item is actually true for any Schatten norm.

Gaussian matrices

Gaussian matrices will play an important role through this thesis, in particular in Chapter 3 where
this distribution is at the core of the theoretical analysis. We will consider Gaussian matrices
Z ∈ Rn×p whose columns are independent Gaussian vectors. Thus, let z1, . . . , zp ∈ Rn be the
Gaussian vectors such that Z = [z1 · · · zp]. Then each Gaussian vector is fully characterized by
its mean vector and covariance matrix [51, Theorem 4.1]. Therefore, we use the classical notation

zi ∼ N (ẑi, Cov(zi)), 1 ≤ i ≤ p,

where ẑi ∈ Rn is the mean vector and Cov(zi) ∈ Rn×n the covariance matrix of zi. From
elementary properties of Gaussian vectors (e.g. [51, Theorem 3.1]), one can write

zi = ẑi + Cov(zi)
1
2 gi, with gi ∼ N (0, In), 1 ≤ i ≤ p.

Here Cov(zi)
1
2 refers either to the positive definite square root of Cov(zi) if Cov(zi) is positive

definite or to the unique positive semidefinite square root of Cov(zi) if Cov(zi) is positive
semidefinite [57, Theorem 7.2.6].

If we further assume that the covariance matrices of each Gaussian vector are identical, that
is Cov(z1) = · · · = Cov(zp), then one can write

Z = Ẑ + Cov(Z) 1
2G, (2.4)

where Ẑ = [ẑ1 · · · ẑp] ∈ Rn×p, Cov(Z) = Cov(z1) and G = [g1 · · · gp] ∈ Rn×p. In this case, Z
is entirely determined by Ẑ and Cov(Z) and we thus write by analogy that

Z ∼ N (Ẑ, Cov(Z)).

With this notation, we say that a matrix G ∈ Rn×p is a standard Gaussian matrix if G ∼
N (0, In).

2.2 The conjugate gradient method
Let us now consider the solution of a linear system of the form

Ax = b (2.5)

where A ∈ Rn×n is a symmetric positive definite matrix and b ∈ Rn the right-hand side. In
the context of this thesis, the linear systems that will arise are of very large size, so that A
is not explicitly stored as matrix, but is rather a black-box linear transformation that can be
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interacted with only via the map y 7→ Ay. Direct methods for the solution of linear systems [26]
are thus ineffective, and we must turn to iterative methods. Iterative methods substitute the
exact computation of the solution with the computation of a series of approximate solutions
hopefully converging towards x = A−1b. Although very old (see [76] for a must-see historical
review), the study of iterative methods for the solution of linear systems remains an active area
of research, and we refer the reader to [69] for an overview of the existing methods.

An efficient class of iterative methods are Krylov subspace methods. Krylov subspace methods
compute the i-th iterate as an approximate solution of (2.5) sought within the affine space
x0 +Ki(A, r0) where x0 ∈ Rn is the initial guess, r0 = b−Ax0 the initial residual and

Ki(A, r0) = span
{
r0, Ar0, . . . , A

i−1r0

}
, (2.6)

the i-th order Krylov subspace. If there is no ambiguity, we will denote the Krylov subspace
by Ki instead of Ki(A, r0). Due to the Cayley-Hamilton theorem, it is known that x − x0 is a
polynomial in A applied to r0. Consequently, searching an approximate solution within Ki is
natural since elements y in Ki are of the form

y =
i−1∑
j=0

αjA
jr0 = p(A)r0,

with p a polynomial of degree at most i− 1 with p(0) = 1. Krylov subspaces form an increasing
sequence of subspaces, that is

Ki(A, r0) ⊂ Ki+1(A, r0).
Also, if y ∈ Ki(A, r0), then Ay ∈ Ki+1(A, r0). Both statements can be verified straightforwardly.

2.2.1 Derivation of the method
Krylov subspace methods differ from one another in the criterion used to select the i-th iterate
within x0 +Ki [69, Section 1.2]. For instance, computing xi such that b−Axi ⊥ x0 +Ki(A, r0)
defines the well-known Generalized Minimum Residual method [69, Section 1.2.5]. When A is
symmetric positive definite, the Krylov subspace method of choice is the conjugate gradient
method, initially introduced by the authors in [55]. The conjugate gradient method is defined
such that the i-th iterate satisfies

xi = argmin
y∈x0+Ki(A,r0)

‖y − x‖A

= x0 + argmin
z∈Ki(A,r0)

‖z − (x− x0)‖A.
(2.7)

Remark 2.5. It can readily be deduced from (2.7) that this method for solving linear systems is
closely related to the constrained minimization of the convex quadratic function y 7→ ‖y − x‖2A.
This explains why the term gradient appears in the name of the method [43, Section 11.3.1].

As a norm minimization problem, the solution of (2.7) is obtained as the A-orthogonal pro-
jection of x− x0 onto Ki, that is

xi = x0 + πA (Ki) (x− x0). (2.8)

Assuming that a basis for Ki is available, xi can be computed explicitly using the matrix form
of πA(Ki) as in (2.3). As already mentioned, the matrix form of πA(Ki) can be simplified if we
choose a matrix Pi whose columns are A-conjugate and form a basis for Ki. This would avoid
forming and inverting the reduced matrix PT

i APi. Since Ki ⊂ Ki+1, such an A-conjugate basis
can be computed incrementally by successive augmentation, that is,

Pi+1 =
[
Pi pi+1

]
, with pi+1 ∈ Ki+1 ⊥A Ki = R(Pi).
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Let us thus assume for the moment that such a basis is available, and let p1, . . . , pi ∈ Rn denote
the basis vectors such that Pi = [p1 · · · pi]. Then one can rewrite (2.8) as

xi = x0 + Pi(PT
i APi)−1PT

i A(x− x0)

= x0 +
i∑

j=1

pT
j r0

pT
j Apj

pj , (2.9)

where we have used that A(x − x0) = r0. Assuming that the basis Pi is indeed constructed by
successive augmentation, one has Pi = [Pi−1 pi] which in turn implies that

xi = xi−1 + αipi, with αi = pT
i r0

pT
i Api

.

This results in a simple recurrence relation.
Due to (2.9), ri = b−Axi satisfies

ri = r0 −APi(PT
i APi)−1PT

i r0 = r0 −
i∑

j=1

pT
j Ar0

pT
j Apj

Apj .

By construction, we readily obtain that PT
i ri = 0, meaning that the i-th residual satisfies ri ⊥ Ki.

We also have a simple recurrence relation between the residuals which reads

ri = ri−1 − αiApi.

By definition of the Krylov subspace (2.6), it is also clear that since xi − x0 ∈ Ki, then ri ∈
Ki+1(A, r0). Therefore, the i-th residual is a natural candidate to augment the Krylov subspace
basis from Pi to Pi+1. However, to maintain the A-conjugation of Pi, one cannot augment Pi with
ri directly. Instead, we augment Pi with the A-orthogonal projection of ri onto Ki+1(A, r0)⊥,
that is we compute

pi+1 =
(
In − πA(Pi)

)
ri = ri −

i∑
j=1

pT
j Ari

pT
j Apj

pj .

Here, since ri ∈ Ki+1(A, r0) and πA(Pi)ri ∈ Ki(A, r0), we verify that one has indeed pi+1 ∈
Ki+1(A, r0).

So far, we have obtained a one term recurrence for both the iterates and the residuals.
However, it seems that computing the new basis vector pi+1 requires a full recurrence over all
the previous basis vectors pj , j ≤ i. Counter intuitively, this is not the case since all the terms
in the sum actually cancel out except for j = i. This is a consequence of the two properties,
namely: (i) ri ⊥ Ki, and (ii) Apj ∈ Kj+1 since pj ∈ Kj . This implies that

pT
j Ari = 〈Apj , ri〉 = 0 ∀ j < i.

In the end, we obtain

pi+1 = ri − βipi, with βi = pT
i Ari
pT
i Api

.

This short term recurrence is a fundamental property of the conjugate gradient method which
makes it numerically attractive. It implies that the conjugate gradient method does not require
large memory requirements, since a fixed number of vectors must be stored for the algorithm
to be performed. This is for instance a major difference with the generalized minimum residual
method, where the full basis of the Krylov subspace must be kept, thus increasing the storage
at each iteration.
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The overall procedure is given in Algorithm 2.1. We point out that the implementation
slightly differs from the theoretical derivation because of additional simplifications that can be
performed to improve the numerical efficiency, especially for computing αi and βi. We refer the
reader to [43, Section 11.3] for further details on the derivation of the conjugate gradient method
and additional algorithmic considerations.

Algorithm 2.1: Conjugate gradient method

Input: Symmetric positive definite matrix A ∈ Rn×n, right-hand side b ∈ Rn, initial
guess x0 ∈ Rn, and tolerance ε > 0.

1 r0 = b−Ax0
2 ρ0 = rT

0 r0
3 p0 = r0
4 while convergence is not reached do
5 qi = Api
6 αi = ρi/q

T
i pi

7 xi+1 = xi + αipi
8 ri+1 = ri − αiqi
9 ρi+1 = rT

i+1ri+1
10 if ‖ri+1‖2 ≤ ε ‖r0‖2 then
11 Stop the method.
12 end
13 βi = ρi+1/ρi
14 pi+1 = ri+1 + βipi
15 end

Output: Final iterate xf such that ‖Axf − b‖2 ≤ ε ‖Ax0 − b‖2.

2.2.2 Convergence analysis of the conjugate gradient method
The convergence of the conjugate gradient method has been well-studied [90] since the early 50’s.
In particular, refined analysis have been proposed which related the conjugate gradient method
convergence to the convergence of the Ritz values (see Section 2.2.5). In particular, different
phases in the convergence have been identified [7, 10]. Nevertheless, we will not enter the details
of the refined convergence analysis, and rather focus on two main results that give a general idea
of the convergence properties. Both results relate the convergence behavior to the eigenvalue
distribution of A.

The first result we want to highlight is related to the clustering of the eigenvalue distribution of
A. It has been shown [84, Theorem 38.5] that if A ∈ Rn×n has exactly d ≤ n distinct eigenvalues,
then the conjugate gradient method converges in at most d iterations. Consequently, a clustered
spectrum is a very desirable feature to achieve fast convergence.

Then, let us rapidly introduce the probably best known convergence bound. The conjugate
gradient method is dedicated to the minimization of the direct error in the A-norm, that is the
i-th iterate minimizes ‖y − x‖A. Accordingly, it is natural to look at the decrease of this error
along the iterations. From (2.8), we obtain that

‖xi − x0‖A = min
z∈Ki

‖z − (x− x0)‖A.

15



Chapter 2. Background material

Using the definition of Ki and recalling that A(x− x0) = r0 we have

z − (x− x0) =
i∑

j=1
ajA

j−1r0 − (x− x0)

=
i∑

j=1
ajA

j(x− x0)− (x− x0)

=

 i∑
j=1

ajA
j − In

 (x− x0)

= q(A)(x− x0),

where q is a polynomial of degree i satisfying q(0) = −1. Let us denote Pi the set of such
polynomials. Then the minimum over z ∈ Ki can be replaced by the minimum over p ∈ Pi.
Then, it can be shown [39, Theorem 2.54] that

‖xi − x0‖A = min
p∈Pi

‖p(A)(x− x0)‖A ≤ min
p∈Pi

nmax
i=1

∣∣p(λi(A))
∣∣ ‖x− x0‖A.

The min-max problem can be solved using the appropriately scaled and shifted Chebyshev
polynomials yielding the well-known asymptotic convergence bound of the conjugate gradient
method

‖xi − x‖A ≤ 2
(√

κ2(A)− 1√
κ2(A) + 1

)i
‖x0 − x‖A,

where κ2(A) is the 2-norm condition number of A. This bound tells us that the condition
number, and therefore the clustering of the eigenvalue distribution, monitors the asymptotic
convergence of the conjugate gradient method. Nevertheless, whenever κ2(A) � 1, this bound
becomes ineffective. In particular, since a moderate number of iterations is generally performed,
this asymptotic bound is not of great practical use. However, it suggests that the eigenvalue
distribution of A has an important effect, yielding the introduction of preconditioners, which we
discuss next.

2.2.3 Preconditioning
The notion of preconditioning is deeply connected to iterative methods [73, 92]. This consists in
modifying the linear system such that the iterative method exhibits a faster convergence on the
modified linear system. Formally, a preconditioner for the linear system in (2.5) is a symmetric
positive definite operator M ∈ Rn×n, which can be used in several ways:

1. Left preconditioning: MAx = Mb.

2. Right preconditioning: AMy = b with x = My.

3. Split preconditioning: LTALz = LTb with LLT = M and x = Lz.

In the three different approaches the system matrices are similar and therefore enjoy the
same eigenvalue distribution. Applying M as a split preconditioner requires a factorization of
M , and allows us to apply the conjugate gradient method directly since the new system matrix
remains symmetric positive definite. However, this is no longer the case with either left or
right preconditioning, where the system matrix is no longer symmetric. For those approaches,
the conjugate gradient method cannot be applied directly and one must derive an alternative
variant.
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The variant for left preconditioning is the most common one and is referred to as the Pre-
conditioned conjugate gradient. The idea is to remark that although MA is not symmetric, it
is M−1-symmetric. It turns out that the theoretical derivation of the preconditioned conjugate
gradient method can be performed analogously. The Krylov subspace is now Ki(MA,Mr0),
and the direct error is still minimized in the A-norm since M−1MA = A which yields the same
expression for the iterates. However, the expression for the residual is modified and now reads

zi = Mb−MAxi = M(b−Axi) = Mri.

This suggests to first compute ri as in the conjugate gradient method, before computing
zi = Mri. The modification of the residual modifies the expression of ρi which now reads rT

i zi.
The overall procedure is given in Algorithm 2.2. The change in the inner product implies that
the preconditioned residuals zi are now M−1-conjugate instead.

Algorithm 2.2: Preconditioned conjugate gradient method adapted from [69, Algo-
rithm 1.4].

Input: Symmetric positive definite matrix A ∈ Rn×n and preconditioner M ∈ Rn×n,
right-hand side b ∈ Rn, initial guess x0 ∈ Rn, tolerance ε > 0.

1 r0 = b−Ax0
2 z0 = Mr0
3 ρ0 = rT

0 z0
4 p0 = z0
5 while convergence is not reached do
6 qi = Api
7 αi = ρi/q

T
i pi

8 xi+1 = xi + αipi
9 ri+1 = ri − αiqi

10 zi+1 = Mri+1
11 ρi+1 = rT

i+1zi+1
12 if ‖ri+1‖M ≤ ε ‖r0‖M then
13 Stop the method.
14 end
15 βi = ρi+1/ρi
16 pi+1 = zi+1 + βipi
17 end

Output: Final iterate xf such that ‖Axf − b‖M ≤ ε ‖Ax0 − b‖M .

The variant related to right preconditioning can be obtained similarly, remarking that AM is
M -symmetric. This approach is less considered in the literature because it entails an additional
application of M per iteration. Consequently we do not present this variant here. However, it
turns out that this right preconditioning variant is central in data assimilation as discussed in
Chapter 5.

2.2.4 The Limited Memory Preconditioner
The design of efficient preconditioners is a vast problem and generally uses additional knowledge
of the underlying problem. Depending on the applications, relevant classes of preconditioners
have been developed such as multigrid [88] or domain decomposition methods [83] which are
particularly efficient when the system arises from discretized partial differential equations. In
this thesis we will not address the problem of multilevel preconditioners. We will assume that
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an efficient preconditioner M for the linear system (2.5) is readily available from the application.
This is indeed the case in variational data assimilation, as will be discussed in Section 2.4.3.

Let us thus denote M a symmetric positive definite preconditioner for (2.5). In general, the
action of M has a known effect on the eigenvalue distribution of MA and typically yields a large
cluster of eigenvalues around 1. In this thesis, we consider a class of two-level preconditioners [81]
called Limited Memory Preconditioners [47, 66] whose expression reads

P =
[
In − S(STAS)−1STA

]
M
[
In −AS(STAS)−1ST

]
+ S(STAS)−1ST. (2.10)

Here, M is referred to as the first-level preconditioner, and S ∈ Rn×k is a full column rank
matrix. The limited memory preconditioner is used to further improve the preconditioner M
and is entirely determined by S. In practice, using P can improve the eigenvalue clustering when
the columns of S are approximate eigenvectors of MA associated to the eigenvalues left out by
M . Such approximations can be computed either using dedicated methods, or using Ritz vectors
(see Section 2.2.5). Indeed, observing that

PA =
[
In − πA(S)

]
MA

[
In − πA(S)

]
+ πA(S),

it is clear that PAS = S, which means that the columns of S are eigenvectors of PA associated to
the eigenvalue 1. This implies that PA has a cluster of at least k eigenvalues at 1. Consequently,
assuming that MA already has an important cluster of eigenvalues around 1, the LMP will
be efficient if S contains eigenvectors associated to the left out eigenvalues. In this case, we
expect P to perform significantly better that M . In addition, the limited memory preconditioner
has the non-expansion of the spectrum property that has been identified in [46, Theorem 3.4].
This property implies that, apart from the eigenvalues clustered at 1 due to S, the remaining
eigenvalues lie within the spectrum of MA. Consequently, the eigenvalue clustering is never
worsen whenever 1 was already in the spectrum of MA.
Remark 2.6. Interestingly, the expression (2.10) have emerged from various fields. In [66], it is
obtained as a block BFGS update of M , when approximating the inverse of A, while in [44] it
appears as the solution of an optimization problem. It has also been proposed in the domain
decomposition community as the balancing Neumann-Neumann preconditioner [62].

2.2.5 Eigenvalue approximations from the conjugate gradient method
Krylov subspaces can also be used to compute approximate eigenpairs of A. This is at the core
of the Lanczos procedure which was first introduced by Lanczos in [59] to address the solution
of the eigenvalue problems for symmetric positive definite matrices. The connections between
the Lanczos procedure and the conjugate gradient method lead Lanczos to propose in [60] a
method to solve linear systems with symmetric positive definite matrices which turned out to be
mathematically equivalent to the conjugate gradient method.

The method consists in iteratively constructing an orthonormal basis of the Krylov subspace.
In this process, the symmetric positive definite matrix A is reduced to a tridiagonal form, which is
used to obtained approximate eigenpairs of A. In this regard, the Lanczos method is a particular
case of the Arnoldi’s method [4] when applied to symmetric positive definite matrices. In the
general case, the matrix A is rather reduced to an upper Hessenberg form.

Let us present how to recover the Lanczos relation from the preconditioned conjugate gradient
method (Algorithm 2.2). Assume that l iterations of the preconditioned conjugate gradient
method have been performed and let us define the matrix

Zl =
[
z0√
ρ0

· · · zl√
ρl

]
∈ Rn×(l+1),
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where zi ∈ Rn and ρi ∈ R are defined in Algorithm 2.2. Then Zl is M−1-orthogonal and its
columns form a basis of Ki+1. It can then be shown [42, Section 10.2.5] that

MAZl = ZlTl −
√
βl
αl

zl+1e
T
l , (2.11)

where el is the l-th vector of the canonical basis of Rl, and Tl ∈ R(l+1)×(l+1) a symmetric
tridiagonal matrix whose coefficients can be computed using the sequences of αi, βi and ρi for
i ≤ l (see [75, Relation 6.103]). From the M−1-orthogonality of Zl, we obtain in particular that

ZT
l AZl = Tl. (2.12)

Let us consider the eigenvalue decomposition Tl = UΛUT with U = [u1 · · · ul+1] ∈ R(l+1)×(l+1)

orthogonal and Λ = diag(µ1, . . . , µl+1). Then we define the matrix

Vl = ZlU =
[
v0 · · · vl

]
.

The vectors v0, . . . , vl ∈ Rn and scalars µ1, . . . , µl+1 are respectively referred to as the Ritz
vectors and Ritz values [65, p.8]. Plugging the definition of the Ritz pairs in (2.11) and (2.12)
then yields

MAVl = VlΛ−
√
βl
αl

zl+1e
T
l U and V T

l AVl = Λ. (2.13)

To compute the Ritz pairs from an application of the preconditioned conjugate gradient
method, it is needed to store the sequence of residuals zi, and the sequences of scalars ρi, αi and
βi. This procedure thus slightly increases the memory requirements of the method, but it allows
us to obtain approximate eigeninformation at a reasonable cost.

2.3 Randomized numerical linear algebra
In this section, we introduce the minimal fundamental material related to randomized numerical
linear algebra. Therefore, although randomized methods have been developed to address a large
class of numerical linear algebra problems, we focus here on introducing the methods addressing
the approximation of singular value/eigenvalue decompositions. We refer the reader to [63] for
a recent review of the existing methods.

2.3.1 The Randomized Singular Value Decomposition
Let us begin with the Randomized Singular Value Decomposition (RSVD) algorithm introduced
in [94] and popularized in [53]. Let A ∈ Rn×m be any rectangular matrix satisfying m ≤ n. The
singular value decomposition of A reads

A = UΣV T,

with U ∈ Rn×n, V ∈ Rm×m orthogonal matrices and Σ ∈ Rn×m a diagonal matrix. For a given
k ≤ m, one can partition the SVD of A as follows,

A =
[
Uk Uk

] [Σk
Σk

][
V T
k

V T
k

]

with Uk ∈ Rn×k, Uk ∈ Rn×(n−k), Vk ∈ Rm×k, Vk ∈ Rm×(m−k), Σk ∈ Rk×k and Σk ∈
R(n−k)×(m−k). We also set Ak = UkΣkV T

k and Ak = UkΣkV T
k so that A = Ak +Ak.
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The randomized singular value decomposition method has been proposed to address the low
rank approximation problem. For a given value k ≤ rank(A), the low rank approximation
problem consists in finding a rank k matrix Ãk such that A is close to Ãk in a given norm. In
the randomized linear algebra literature, this problem is generally addressed in the spectral or
Frobenius norms. The Eckart-Young theorem [30] states that the optimal rank-k approximation
of A is given by Ak = UkU

T
k A = π(Uk)A.

The objective of the randomized singular value decomposition is to compute an approximation
of Uk using a randomized procedure. Such methods are generally referred to as range-finder
methods, since Uk contains the dominant left singular vectors and can thus be interpreted as
an approximate range of A. The most elementary procedure to get such an approximation
is the subspace iteration scheme. The idea is to consider approximations of Uk of the form
Y = (AAT)qAΩ with Ω ∈ Rm×k a random matrix. Here we notice that in [63, Algorithm 9] the
randomized subspace iteration rather considers Y = (AAT)qΩ with Ω ∈ Rn×k, but there is no
fundamental difference in the algorithm structure. This procedure, referred to as the randomized
subspace iteration is given in Algorithm 2.3.

Algorithm 2.3: Randomized subspace iteration adapted from [63, Algorithm 9]

Input: Matrix A ∈ Rn×n, target rank k, number of subspace iterations q.
1 Draw a random matrix Ω ∈ Rm×k
2 Perform the thin QR factorization AΩ = QR and set Z = Q
3 for i = 1, . . . , q do
4 Compute Z = (AAT)Z
5 Perform the thin QR factorization Z = QR and set Z = Q

6 end
Output: Orthogonal matrix Z ∈ Rn×k.

Algorithm 2.3 produces an approximation Z of Uk, from which the low rank approximation
π(Z)A = ZZTA for A can be computed. The method to construct the low rank approximation
of A given an approximate range is called the randomized singular value decomposition and is
presented in Algorithm 2.4. More sophisticated approaches than the randomized subspace iter-
ation method have been proposed to approximate the range of A, based on the use of Krylov
subspaces and referred to as the Krylov range finder [63, Algorithm 10]. However, the improve-
ments brought by these methods appear when several applications of A are affordable. This is
out of the scope in this thesis, since applying A in the targeted applications in data assimilation
is very expensive.

Practically, several points must be clarified. The random matrix Ω is generally drawn from a
standard Gaussian distribution. However, as highlighted in [70], the performance of the algorithm
is fairly insensitive to the choice of the distribution. In this regard, alternative distributions can
be preferred to improve the computational efficiency (see [63, Section 9]). Then, Algorithms 2.3
and 2.4 use the matrix A only via matrix multiplications to a block of p vectors. This routine is
highly optimized when A is a matrix, but can easily be parallelized also when A is a black-box
linear operator. Finally, we observe that the matrix Z in Algorithms 2.3 tends to be highly ill-
conditioned since the columns will mostly be aligned in the direction of the dominant eigenmodes
of AAT. Consequently, the orthogonalization step must be performed using a numerically stable
algorithm [43, Chapter 5]. In case of very large scale problems, it is also worth mentioning
the existence of communication-avoiding parallel methods for performing QR factorization such
as [27, 82, 96].
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Algorithm 2.4: Randomized Singular Value Decomposition [63, Algorithm 8]

Input: Matrix A ∈ Rn×m, orthogonal matrix Z ∈ Rn×p obtained for instance using
Algorithm 2.3, target rank k ≤ p.

1 Compute C = ZTA ∈ Rp×m

2 Perform the SVD C = ŨΣV T with Ũ ∈ Rp×p and V ∈ Rm×m two orthogonal matrices
and Σ ∈ Rp×m a diagonal matrix containing the singular values in decreasing order

3 Remove the last p− k columns of Ũ and of Σ
4 Remove the last m− k rows of V T and of Σ
5 Compute U = ZŨ ∈ Rn×k

Output: Orthogonal matrices U ∈ Rn×k, V ∈ Rm×k and diagonal matrix Σ ∈ Rk×k
such that A ≈ UΣV T.

2.3.2 Theoretical analysis of the Randomized Singular Value Decom-
position

The theoretical analysis of the randomized singular value decomposition can be conducted in
two different ways. The first approach consists in looking at the corresponding low rank approx-
imation error, that is

‖A− ZZTA‖2,F = ‖[In − π(Z)]A‖2,F . (2.14)

In [53, Theorem 10.5 and 10.6], Halko, Martinsson and Tropp have proposed popular error bounds
in expectation and in probability for the low-rank approximation error (2.14). The bounds in
probability are derived from the bounds in expectation, so we focus on the bounds in expectation.
Let Z = AΩ with Ω ∈ Rm×p a standard Gaussian matrix, then Theorem 10.5 [53] states that for
all k ≤ p− 2 one has

E
[
‖[In − π(Z)]A‖F

]
≤
(

1 + k

p− k − 1

) 1
2

‖Σk‖F .

Similarly, let Z = (AAT)qAΩ with Ω ∈ Rm×p a standard Gaussian matrix, then for all k ≤ p− 2
one has from [53, Corollary 10.10]

E
[
‖[In − π(Z)]A‖2

]
≤


1 +

√
k

p− k − 1

 1
2

‖Σ2q+1
k ‖2 +

e
√
p

p− k
‖Σ2q+1

k ‖F


1

2q+1

,

where e = exp(1). The second approach consists in directly measuring the sine of the principal
canonical angles θ1, . . . , θk betweenR(Z) andR(Uk). This has notably been done in [49] and [77].
In [77, Theorem 6], the following result has been obtained

E
[

sin(θj)
]
≤

γ2q+1
j ce√

1 + γ4q+2
j c2e

, 1 ≤ j ≤ k

with γj = σk+1/σj and the constant ce defined as

ce =

√
k

p− k − 1 +
e
√
p(n− k)
p− k

.
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The main message behind those bounds is that the accuracy of the randomized singular
value decomposition, regardless of the quantity of interest, is monitored by: (i) the number
of random samples p; (ii) the number of random subspace iterations q; (iii) the singular value
distribution. These considerations lead to the heuristic that randomized methods for the low
rank approximation problems perform well on matrices whose singular values decay rapidly.

2.3.3 The Nyström method
In the particular case of symmetric positive definite matrices A ∈ Rn×n, the notion of singular
vectors and eigenvectors merges. Indeed, in this case the eigenvectors of A are equal to both its
the left and right singular vectors. In this particular case, the matrix Uk has both orthonormal
and A-conjugate columns. Consequently, we observe that

π(Uk) = πA(Uk) = πA(Uk)T.

This suggests that in this particular case, a rank k approximation of A can rather be obtained
considering either πA(Z)A or πA(Z)TA. It turns out that only the latter is symmetric, which
is desirable since A is. Consequently, for a given approximation Z of Uk, the Nyström method
consists in constructing rather the low rank approximation of the form

ANys. = πA(Z)TA = AZ(ZTAZ)−1ZTA. (2.15)

Interestingly, although A appears several times in (2.15), ANys. can be formed with only one
application of A to Z, and is therefore no more expensive than the randomized singular value
decomposition. Also, ANys. can be well defined even when A is semidefinite. In this case, one
must ensure that R(Z) ∩N (A) = {0}.

Error bounds for ‖A−ANys.‖2,F can be obtained by observing that

ANys. = A
1
2π(A 1

2Z)A 1
2 .

Then, one has
A−ANys. = A

1
2

[
In − π(A 1

2Z)
]
A

1
2 ,

which in turn yields

‖A−ANys.‖2,F = ‖A 1
2

[
In − π(A 1

2Z)
]
A

1
2 ‖2,F

= ‖
[
In − π(A 1

2Z)
]
A

1
2 ‖22,F .

From this identity, it is possible to derive an average-case analysis for the Nyström method using
the average-case analysis of the randomized singular value decomposition. The obtained error
bounds are stated in [86, Theorem 4.1] and in the particular case of real matrices one has

E
[
‖A−ANys.‖∗

]
≤
(

1 + k

p− k − 1

)
‖Σk‖∗,

and
E
[
‖A−ANys.‖2

]
≤ ‖Σk‖2 + k

p− k − 1‖Σk‖∗,

where ‖ · ‖∗ is the nuclear norm [43, Section 2.3.2]. The Nyström method for symmetric positive
definite matrices is given in Algorithm 2.5. We point out here that a variant for symmetric
positive semidefinite matrices has been proposed (see [63, Algorithm 16]). This variant provides
a numerically stable algorithm.
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Algorithm 2.5: Nyström method [53, Algorithm 5.5]

Input: Symmetric positive definite matrix A ∈ Rn×m, orthogonal matrix Z ∈ Rn×p
obtained for instance using Algorithm 2.3, target rank k ≤ p.

1 Compute Y = AZ ∈ Rn×p
2 Compute C = ZTY ∈ Rp×p
3 Perform the Cholesky factorization C = LLT

4 Compute B = Y L−1 ∈ Rn×p

5 Perform the thin SVD B = UΣV T with Ũ ∈ Rn×p and V ∈ Rp×p two orthogonal
matrices and Σ ∈ Rp×p a diagonal matrix containing the singular values of B in
decreasing order

6 Remove the last p− k columns of U and Σ
7 Remove the last p− k rows of Σ
8 Set Λ = Σ2

Output: Orthogonal matrix U ∈ Rn×k and diagonal matrix Λ ∈ Rk×k such that
A ≈ UΛUT.

2.4 The weighted nonlinear least-squares problem
Nonlinear least-squares problems naturally arise when observations of a dynamical system are
used to estimate its true under-lying state. This is a common problem in data fitting and optimal
control. The idea is to find the parameters of a model that best fit the observations made on the
physical system described by the model.

2.4.1 Presentation
Let us assume that a given dynamical system is described by a set x1, . . . , xn of parameters,
that we gather in the state vector x = [x1, . . . , xn] ∈ Rn. Let us denote y1, . . . , ym a set of
observations of this dynamical system, obtained for the different time steps t1, . . . , tm. We
consider that a prediction model H : Rn 7→ Rm is available, allowing to map the state vector x
to the observations, that is

y = H(x, t).

The prediction model is generally nonlinear. The model fitting problem then consists in simul-
taneously minimizing each individual error

di(x) = yi −H(x, ti),

for all 1 ≤ i ≤ m. In this regard, we define d(x) = [d1(x), . . . , dm(x)] ∈ Rm, the residual vector
gathering all the residuals. Fitting the observations to the model parameters reduces to solving
the unconstrained optimization problem

min
x∈Rn

f(x) = 1
2‖d(x)‖22.

In concrete applications, the observations can be noisy, yielding an uncertainty on the residual
vector d(x). To model the noise, we consider a symmetric positive definite matrix Γo ∈ Rm×m
playing the role of the observation error covariance matrix. Consequently, the optimization
problem should be transformed into

min
x∈Rn

f(x) = 1
2‖d(x)‖2Γ−1

o
,
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Here we focus on the under-determined setting, that is the number of observations m is smaller
than the number of parameters n. In turn, there is no longer uniqueness of the solution. To
tackle the non-uniqueness, it is common to add a regularization term, typically a Tikhonov
regularization. Let xc ∈ Rn be the center vector. This vector is problem-dependent and generally
contains a priori information on the true state parameters. Again, this a priori can be noisy,
which motivates the introduction of the center vector covariance matrix Γb ∈ Rn×n, assumed to
be symmetric positive definite. The resulting regularized optimization problem takes the form

min
x∈Rn

f(x) = 1
2‖d(x)‖2Γ−1

o
+ 1

2‖x− xc‖
2
Γ−1

b

. (2.16)

Remark 2.7. Here, we have deviated from the notation generally adopted in variational data
assimilation, where the observation error covariance matrix is usually denoted by R instead of
Γo and the center vector error covariance matrix B instead of Γb. This is a deliberate choice to
avoid conflicts in notation, especially in Chapter 4.

2.4.2 The Gauss-Newton method
Solving (2.16) can be done with various approaches, and we refer the interested reader to [68,
Section 10] for a detailed overview. Since the targeted applications are in operational data
assimilation, we are going to focus on the (truncated) Gauss-Newton method which has proven
to be efficient for such problems [45]. It is an iterative method where the increment sj at the j-th
iteration is obtained from the minimization of a convex quadratic subproblem. Let us denote xj
the current iterate of the Gauss-Newton. A linearization around xj yields

d(xj + s) ≈ dj −Hjs,

with dj = d(xj) ∈ Rm and Hj ∈ Rm×n denotes the Jacobian of H at xj . The obtained
subproblem to be solved is thus

min
x∈Rn

qj(s) = 1
2‖Hjs− dj‖2Γ−1

o
+ 1

2‖s+ xj − xc‖2Γ−1
b

, (2.17)

whose solution sj ∈ Rn is computed from the normal equations

Ajsj = bj . (2.18)

where Aj = Γ−1
b + HT

j Γ−1
o Hj and bj = Γ−1

b (xc − xj) + HT
j Γ−1

o dj . The next iterate is then
obtained via xj+1 = xj + sj . Applying the Gauss-Newton then yields to the solution of a
sequence of symmetric positive definite linear systems, whose dimensions can be extremely large
in operational applications where the dynamical system is complex.

2.4.3 Solving the linearized subproblem with the preconditioned con-
jugate gradient method

The solution of (2.18) is generally obtained using iterative methods since the concrete problems
are of very large scale. Nevertheless, alternative approaches have been proposed such as low-rank
approximation-based methods [35]. Since the system matrix is symmetric positive definite, the
solution is usually obtained using the preconditioned conjugate gradient method (Algorithm 2.2).
To prevent any ambiguity, the iterations of the Gauss-Newton method will be referred to as the
outer-loop iterations, while the conjugate gradient method iterations will be referred to as the
inner-loop iterations. In practical applications, few iterations of the preconditioned conjugate
gradient method are performed because first, the problems are so large that the computational
resources consumption rapidly becomes important and second, the solution of (2.18) need not
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be computed precisely for the Gauss-Newton method to converge. Consequently, an efficient
preconditioner for Aj should result in fast convergence of the preconditioned conjugate gradient
method in the first iterations.

The structure of (2.18) suggests that a natural candidate for a preconditioner is Γb. Indeed,
ΓbAj = In + ΓbHT

j Γ−1
o Hj is a rank m update of the identity, meaning that the eigenvalue

distribution of ΓbAj enjoys a nice cluster of n −m eigenvalues at 1, the remaining eigenvalues
being larger than one. This is particularly appealing whenever m� n, which is frequent in data
assimilation applications where the number of model parameters largely exceeds the number of
observations.

Preconditioning with deterministic limited memory preconditioners

Given the particular eigenvalue distribution of ΓbAj , using a limited memory preconditioner on
top of Γb seems natural to try capturing the large eigenvalues left out by the action of Γb. Also,
such preconditioners are well suited for sequences of linear systems since it allows to update
the preconditioner along the sequence. However, alternatives based on updating (incomplete)
factorizations have been proposed [11, 12]. Particular forms of the limited memory preconditioner
have been derived depending on the content of S.

Spectral LMP. Let us define S = [s1 · · · sk] ∈ Rn×k and Λ = diag(λ1, . . . , λk) with
s1, . . . , sk ∈ Rn eigenvectors of ΓbAj associated to the eigenvalues λ1, . . . , λk. Plugging S into
the expression of the LMP (2.10) yields the so-called spectral LMP [47, Section 4.2.1] whose
expression reads

Psp = Γb + V (Λ−1 − Ik)V T. (2.19)

Ritz LMP. In practice, the computation of exact eigenpairs is generally out of reach. However,
we have already evoked in Section 2.2.5 that approximate eigenpairs can be obtained almost for
free. Let V ∈ Rn×k denote the matrix whose columns are the Ritz vectors and Λ ∈ Rk×k the
diagonal matrix containing the corresponding Ritz values. Plugging the relations satisfied by
V and Λ given in (2.13) in the expression of the LMP yields an alternative form for the LMP,
referred to as the Ritz LMP [47, Section 4.2.2] whose expression reads

PRitz = Γb + V (Λ−1 − Ik)V T + zk+1ω
TV + V ωzT

k+1 − V ωωTV, (2.20)

where
ω =

√
βk
αk

Λ−1Uek ∈ Rk.

The main disadvantage of this variant is that, thus constructed, PRitz is defined using approx-
imate eigenpairs of Aj , but is intended to be used as a preconditioner for the next linear system
involving Aj+1. In practice, this is not problematic when the systems are slowly varying, that is
Aj+1 ≈ Aj , and this strategy has proven to perform well and is commonly used in operational
data assimilation codes [89].

2.4.4 Solving the linearized subproblem with randomized methods
Let us now present the randomized methods that have been proposed in the literature to address
variational data assimilation problems. The first one, called the Ritzit method and proposed
in [24] consists in forming a spectral LMP as in (2.19) replacing true eigenpairs by approxima-
tions computed using a randomized procedure. The second one is the Randomized Incremental
Optimal Technique introduced in [17]. Here, low rank approximations using the Nyström method
are used to directly approximate the solution of (2.18).
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The Ritzit method

The construction of limited memory preconditioners based on randomized methods have been
proposed recently in [24]. The idea is to construct Psp as in (2.19) with approximate eigenpairs
instead of exact eigenpairs, that are computed using randomized methods. Doing so, all the
properties of the LMP are theoretically lost. However, if the approximate eigenpairs are accurate
enough, one may expect the resulting preconditioner to behave similarly as the exact spectral
limited memory preconditioner. This fact has been observed in [89] and theoretically quantified
in [47, Theorem 4.5] when the approximate eigenpairs are Ritz pairs. With this approach, the
resulting LMP is constructed with eigeninformation of the current linear system, and is therefore
no longer dependent on the fact that Aj+1 ≈ Aj . Also, the number of approximate eigenvectors
to compute is defined by the user, while for the Ritz LMP it is dependent on the number of
preconditioned conjugate gradient method iterations performed.

The different randomized approaches considered in [24] all rely on randomized methods for
symmetric positive definite matrices. Consequently, this imposes to have access to the symmetric
preconditioned matrix Γ1/2

b AjΓ1/2
b , and thus implies that a square root Γ1/2

b of Γb is available.
This is a reasonable assumption since such factorizations can indeed be available in certain data
assimilation problems.

The first approach consists in using the Nyström method (Algorithm 2.5). The matrix Z in
Algorithm 2.5 is obtained by performing an orthogonalization of the matrix Γ1/2

b AjΓ1/2
b Ω, with

Ω ∈ Rn×p a standard Gaussian matrix. Constructing Z requires one application of Γ1/2
b AjΓ1/2

b ,
and performing the Nyström method requires another application of Γ1/2

b AjΓ1/2
b . If we denote

U ∈ Rn×k and Λ ∈ Rk×k the output of Algorithm 2.5 obtained with this configuration, then the
authors consider the following preconditioner:

PNys. = In + U(Λ−1 − Ik)UT.

In addition to the Nyström method, the authors in [24] have also proposed another random-
ized approach called Ritzit, given in Algorithm 2.6. The Ritzit method is rather based on the
approximation of eigenpairs of the symmetric positive definite matrix A2 instead of A. This
approach appeared to perform well on a four-dimensional variational data assimilation problem,
and has the advantage of requiring only one application of Γ1/2

b AjΓ1/2
b .

Algorithm 2.6: Ritzit method from [24, Algorithm 5]

Input: Symmetric positive definite matrix A ∈ Rn×n, number of random samples p,
target rank k ≤ p.

1 Draw a standard Gaussian matrix G ∈ Rn×p
2 Perform the thin QR factorization G = QGRG
3 Compute Y = AQG ∈ Rn×p
4 Perform the thin QR factorization Y = QYRY
5 Form the matrix K = RGR

T
G ∈ Rp×p

6 Perform the eigenvalue decomposition K = WΛ2WT with W ∈ Rp×p orthogonal and
Λ ∈ Rp×p diagonal containing the eigenvalues in decreasing order

7 Remove the last p− k columns of W and of Λ
8 Remove the last p− k rows of Λ
9 Form U = QYW ∈ Rn×k

Output: Orthogonal matrix U ∈ Rn×k and diagonal matrix Λ ∈ Rk×k such that
A ≈ UΛUT.
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The Randomized Incremental Optimal Technique method

Another randomized approach for solving the sequence of linear systems (2.18) has been proposed
in [17]. The Randomized Incremental Optimal Technique (RIOT) provides a method where the
iterations of the conjugate gradient method are replaced with a fully parallel randomized ap-
proach. The method is dedicated to solve symmetric positive linear systems. Let us assume that
Mj is a first-level preconditioner for the j-th linear system (2.18) used as a split preconditioner,
then the algorithm addresses the solution of

M
1
2
j AjM

1
2
j y = M

1
2
j bj ,

with xj = M
1
2
j y. Thus, one can apply the Nyström method to obtain an approximate eigenvalue

decomposition as
M

1
2
j AjM

1
2
j ≈ UΛUT,

where U ∈ Rn×k is orthogonal and Λ ∈ Rk×k is diagonal. This allows us to compute an
approximate solution of (2.18) as

x ≈ UΛ−1UTM
1
2
j bj .

Another way to obtain an approximate solution relies on the spectral limited memory precondi-
tioner as in (2.19). This preconditioner can indeed be interpreted as an approximate inverse of
A, that is Psp ≈ A−1. Hence, another approximate solution can be computed as

x ≈
(
In + U

[
Λ−1 − Ik

]
UT
)
M

1
2
j bj .

The authors in [17] have proposed a criterion to select between the two methods depending on
the obtained approximate eigenvalues. The overall method is given in Algorithm 2.7.

In practice, Γb is used to precondition the first linear system, that is M1 = Γb. Then the
preconditioners for the next linear systems are computed as

Mj = Mj−1 + U (Ik + Λ)−1
UT, ∀ j > 1.

2.5 Conclusions
In this chapter, we have presented the essential material required for the rest of the manuscript.
In particular, we have recalled the main algorithms of randomized numerical linear algebra that
are at the core of the randomized methods proposed recently in variational data assimilation.
These methods rely on the proven ability of randomized methods to efficiently capture domi-
nant eigenmodes and use the approximate eigeninformation either to precondition the conjugate
gradient method (Ritzit method), or to construct low rank approximations to directly get ap-
proximate descent directions (RIOT method). However, both methods are essentially limited to
the cases where the problem can be formulated in terms of symmetric positive definite operators,
which may not be always possible.

In this thesis, we explore aspects that are at the interface of randomized numerical linear
algebra and preconditioning. Our objective is to present randomized methods to construct lim-
ited memory preconditioners adapted to formulations of variational data assimilation where the
operators are no longer symmetric positive definite with respect to the Euclidean inner prod-
uct. Although they ended up being fairly general, the developments proposed in this thesis were
initially motivated by needs and constraints of variational data assimilation. Consequently, we
will mostly propose numerical illustrations of the proposed algorithms in such a setting. Simi-
larly, the algorithmic discussions will be systematically oriented towards operational aspects and
computational complexity.
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Algorithm 2.7: Cycle of Randomized Incremental Optimal Technique
Input: Factorization Γb = LbL

T
b , boolean precond and rotation, number of random samples k and

number of Gauss-Newton steps J
1 Set x0 = xc, v0 = 0 and P ′0 = In.
2 for j = 1, . . . , J do
3 Integrate and store trajectory H(xj−1)
4 Compute and store the innovation vector dj−1 = H(xj−1)− y ∈ Rm

5 Define Â0 = LT
bH

T
j−1Γ−1

o Hj−1Lb ∈ Rn×n with Hj−1 the linearization of H around xj−1

6 if precond then
7 if k ≥ 2 then

8 P ′j−1 = In + Ṽj−1

(
Λ̃−

1
2

j−1 − Ik
)
Ṽ T
j−1

9 P ′−1
j−1 = In + Ṽj−1

(
Λ̃

1
2
j−1 − I

)
Ṽ T
j−1

10 Pk = P ′0 . . . P
′
j−1

11 P−1
k

= P ′−1
j−1 . . . P

′−1
0

12 Âk = PT
k Pk − In + PT

k Â0Pk
13 else
14 Âk = Â0
15 Pk = P ′0
16 end
17 Draw Ωk ∈ Rn×m ∼ N (0, In)
18 for i = 1, . . . ,m do
19 ωi = Ωk(:, i)
20 if k ≥ 2 and precond and rotation then
21 Compute the SVD [P1Ṽ1, . . . , PkṼk] = UkDZ

T
k

22 ωi = P−1
k

(In − UkUT
k )ωi

23 end
24 end
25 for i = 0, . . . ,m do
26 if i = 0 then
27 Compute the gradient bj = PT

k L
T
bH

T
j−1Γ−1

o dj−1

28 else
29 yi = Âkωi
30 end
31 end
32 Form Y = [y1, . . . , ym]
33 Perform the thin QR factorization Y = QR

34 Solve for K in KQTΩ = QTY

35 Perform the eigenvalue decomposition K = ZΛZT with Λ = diag(λ1, . . . , λk)
36 Compute Ṽk = QZ

37 Λ̃k = Λ + Ik
38 if λk > 1 then

39 sj = −
(∑m

i=1
1

1+λi
uiu

T
i

)
(bj + vj−1)

40 else

41 sj = −
(
In −

∑m

i=1
λi

1+λi
uiu

T
i

)
(b+ vj−1)

42 end
43 vj = vj−1 + sj
44 xj = xj−1 + LbPksj
45 end
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This chapter is based on a preprint available at https://arxiv.org/abs/2206.08793v2.
Complements have been added and are spotted by a red line in the left margin as:

Example of complementary material.

Abstract

In this chapter, we are interested in generalizing the theoretical analysis of the ran-
domized low rank approximation error. We begin with deriving deterministic error
bounds in spectral and Frobenius norms, from which we obtain stochastic bounds
both in expectation and in probability. The obtained error bounds generalize the ex-
isting bounds to Gaussian matrices with non-zero mean term and general covariance
matrix. An application of our general analysis to the Randomized Singular Value De-
composition shows that our bounds improve the reference error bounds from Halko,
Martinsson and Tropp (2011). Finally, we propose a numerical illustration on an in-
structional test problem aimed at demonstrating the tightness of the proposed error
bounds. This generalization allows us to extend the theoretical analysis to a larger
class of randomized methods. In particular, it will be at the core of the average-case
analysis of the algorithms introduced in the next chapter.

3.1 Introduction
Low-rank approximation of large-scale matrices is a key ingredient in numerous applications in
data analysis and scientific computing. These applications include principal component analy-
sis [74], data compression [61] and approximation algorithms for partial differential and integral
equations [52], to name a few. Namely, let A ∈ Rn×m be a rectangular matrix satisfying n ≥ m
and Z ∈ Rn×p any full column rank random matrix (with p ≤ rank(A) ≤ m). If π(Z) denotes
the orthogonal projection onto the range of Z and In ∈ Rn×n the identity matrix of order n, we
aim at analyzing the general quantity of interest

‖[In − π(Z)]A‖2,F , (3.1)

where ‖.‖2,F represents a shortcut for either the spectral norm (‖.‖2) or the Frobenius norm
(‖.‖F ), respectively.

In our analysis, we will consider the standard Singular Value Decomposition (SVD) of A, i.e.,
A = UΣV T, where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices containing the left and
right singular vectors of A respectively and Σ ∈ Rn×m is a diagonal matrix containing the singular
values of A denoted as σ1, . . . , σm (sorted in decreasing order, i.e. σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0).
For a target rank k ∈

{
1, . . . , rank (A)

}
, which is assumed to be much smaller than n, a central

decomposition appearing in the error analysis is then given by

A =
[
Uk Uk

] [Σk
Σk

][
V T
k

V T
k

]
, (3.2)

with Uk ∈ Rn×k, Uk ∈ Rn×(n−k), Vk ∈ Rm×k, Vk ∈ Rm×(m−k), Σk ∈ Rk×k and Σk ∈
R(n−k)×(m−k). We also set Ak = UkΣkV T

k and Ak = UkΣkV T
k so that A = Ak +Ak.

The Eckart-Young theorem [30] states that the optimal rank-k approximation of A is given
by Ak = π(Uk)A. In practice, for large-scale applications, computing Uk can be computationally
challenging or too expensive. In this context, randomized algorithms for approximating Uk have
become increasingly popular [53, 63] in the past few years. They have been proved to be easy
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to implement, computationally efficient and numerically robust. The general idea of randomized
subspace iteration methods is to use random sampling to identify a subspace that approximates
the range of a given matrix. In this chapter, we propose a general error analysis related to the
low-rank approximation to a given real matrix in the spectral and Frobenius norms.

3.1.1 Related research
The error analysis of randomized algorithms for low-rank approximation to a given matrix has
been extensively considered in the literature; see, e.g., the survey papers [53, 61, 63, 93] for a
general overview. This theoretical analysis takes into account the distribution of the random
matrix to derive either error bounds in expectation or tail bounds of the error distribution. The
case of standard Gaussian matrices is usually considered, even though alternative theoretical
results exist, based on either random column selection matrices [18] or Subsampled Random
Fourier Transform matrices [53]. Halko, Martinsson and Tropp have developed a reference error
analysis in expectation [53, Theorems 10.5 and 10.6] in the Frobenius and spectral norms for
Z = AΩ, Ω being a standard Gaussian matrix. Later, Gu has refined these error bounds [49,
Theorem 5.7]. More recently, Saibaba [77] has proposed a complementary average case error
analysis in terms of principal angles between appropriate subspaces that is available in any
unitarily invariant norm.

3.1.2 Contributions
In certain situations, a priori knowledge of Z (or of the corresponding projection subspace) may
be available. This naturally arises when considering, e.g., the solution of large-scale nonlinear
systems of equations, requiring the solution of a sequence of linear systems of equations. Ap-
proximate spectral information based on Ritz or Harmonic Ritz vectors can be easily retrieved
to form such a subspace. Exploiting this a priori knowledge is thus of primary interest to de-
sign fast, robust and efficient low-rank approximation algorithms. Hence we aim at developing
a general theoretical error analysis of randomized algorithms for the low-rank approximation,
assuming the existence of a non-trivial mean and of a general covariance matrix for Z.

In this chapter, for a given target rank, we propose to analyze theoretically the low-rank
approximation to a given matrix in both the spectral and Frobenius norms, when Z is drawn
from a non-standard Gaussian distribution. Namely, we will first derive in Theorems 3.4 and 3.8
deterministic error bounds that hold with some minimal assumptions. Second, we will derive
error bounds in expectation in the non-standard Gaussian case (with a non-trivial mean value
and a general covariance matrix) in Theorems 3.18, 3.20 and 3.21, respectively. Our analysis
simultaneously generalizes and improves the error bounds for spectral and Frobenius norms pro-
posed in [53]. We specialize our error bounds to the Randomized Singular Value Decomposition
(RSVD) in Corollaries 3.33, 3.35 and 3.36, respectively and provide numerical experiments on a
synthetic test case that illustrate the tightness of the obtained error bounds.

Section 3.2 introduces specific results useful later in our analysis. Section 3.3 details our error
analysis related to the low-rank approximation of the matrix A. First, in Section 3.3.1, we derive
deterministic error bounds that hold with some minimal assumptions. Then, in Section 3.3.2, we
derive error bounds in expectation, with Z drawn following a non-standard Gaussian distribution.
In Section 3.4, we specialize our error bounds to the Randomized Singular Value Decomposition.
In Section 3.5, we provide detailed numerical illustrations, including a broad comparison with
reference error bounds. Conclusions are finally drawn in Section 3.6.

3.2 Preliminaries
We first introduce notations used throughout the chapter and remind specific results.
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Sherman-Morrison formula

Let M ∈ Rm×n and N ∈ Rn×m such that In + NM is nonsingular. Then, Im + MN is also
nonsingular and one has [43, Section 2.1.4]

(Im +MN)−1 = Im −M(In +NM)−1N. (3.3)

Strong submultiplicativity of Frobenius and spectral norms

The strong submultiplicativity of the spectral and Frobenius norms [56, Relation(B.7)] reads

∀M ∈ Rn×p,∀N ∈ Rp×q,∀Q ∈ Rq×m, ‖MNQ‖2,F ≤ ‖M‖2 ‖N‖2,F ‖Q‖2. (3.4)

3.3 Error bounds for the low-rank approximation of a ma-
trix

Our main objective is to derive error bounds related to an approximation of rank k to A using
the orthogonal projection π(Z) where Z ∈ Rn×p and k ∈ {1, . . . , p}, p ≤ rank(A). First, in
Section 3.3.1, we consider the general case with the minimal assumption that Z is full column
rank. In this case, we are able to derive deterministic error bounds using a systematic approach.
Second, in Section 3.3.2, we focus on error bounds that are tractable now from a stochastic
point of view, where we assume that the matrix Z corresponds to a general Gaussian matrix.
Namely, Z ∈ Rn×p will be drawn as a Gaussian full column rank matrix of mean Ẑ ∈ Rn×p
and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)). In this case, we develop an error
analysis in expectation with respect to the random variable Z.

3.3.1 Deterministic analysis
Without loss of generality, we aim at deriving error bounds for the following quantity

‖[In − π(Z)]A‖22,F − ‖[In − π(Z)]Ak‖22,F , (3.5)

where Z ∈ Rn×p is a full column rank matrix (with p ≤ rank(A)). Since ‖[In − π(Z)]Ak‖22,F ≤
‖Ak‖22,F , we note that (3.5) is an upper bound of

‖[In − π(Z)]A‖22,F − ‖Ak‖22,F , (3.6)

a quantity which is frequently considered in the analysis of low-rank approximation methods, see,
e.g., [53]. In this sense, our error bounds will naturally cover existing bounds from the literature.
The next lemma will be helpful to derive the deterministic error bound for (3.5).

Lemma 3.1. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a full column rank matrix with
p ≤ rank(A). For a given k ∈ {1, . . . , p}, set Ωk = UT

k Z ∈ Rk×p and Ωk = UT
k Z ∈ R(n−k)×p

such that Ωk is full row rank (i.e., rank(Ωk) = k). Then, one has

UT
k [In − π(Z)]Uk 4 ST

k Sk 4 TT
k Tk, (3.7)

with Tk = ΩkΩ†k ∈ R(n−k)×k and Sk = (In−k + TkT
T
k )− 1

2Tk ∈ R(n−k)×k.

Proof. By assumption, Ωk has full row rank and therefore has a right multiplicative inverse Ω†k.
Hence Z̄k = ZΩ†k satisfies the two relations

UT
k Z̄k = Ik and UT

k Z̄k = Tk.
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Moreover, we haveR(Z̄k) ⊂ R(Z). Hence, by applying [53, Proposition 8.5], one gets In−π(Z) 4
In − π(Z̄k). By using the conjugation rule ((1)) and the identity UkUT

k +UkU
T
k = In, we obtain

UT
k [In − π(Z)]Uk 4 UT

k [In − π(Z̄k)]Uk = UT
k

(
In − Z̄k(Z̄T

k Z̄k)−1Z̄T
k

)
Uk,

= Ik − UT
k Z̄k(Z̄T

k Z̄k)−1Z̄T
kUk,

= Ik − (Z̄T
k Z̄k)−1,

= Ik −
(
Z̄T
k (UkUT

k + UkU
T
k )Z̄k

)−1
,

= Ik −
(
Ik + TT

k Tk

)−1
,

= TT
k

(
In−k + TkT

T
k

)−1
Tk,

where the last equality is obtained using the Sherman-Morrison formula. Then we observe
that TT

k

(
In−k + TkT

T
k

)−1
Tk = ST

k Sk and
(
In−k + TkT

T
k

)−1
4 In−k. We conclude the proof by

applying the conjugation rule to deduce ST
k Sk 4 TT

k Tk.

Remark 3.2. In the particular case of Z = AΩ (Ω ∈ Rn×p), we have Ωk = Σk(V T
k Ω), Ωk =

Σk(V T
k Ω) and Tk = Σk(V T

k Ω)(V T
k Ω)†Σ−1

k . With the notation of [53], this gives Ωk := Σ1Ω1,
Ωk := Σ2Ω2 and Tk := Σ2Ω2Ω†1Σ−1

1 , respectively. We therefore point out that our notation is
related but not directly equivalent to the one employed in [53].
Remark 3.3. We note that the positive singular values of Tk represent the tangent of the canonical
angles betweenR(ZΩ†k) andR(Uk) [97, Theorem 3.1 and Remark 3.1], while the positive singular
values of Sk represent the sine of the canonical angles between the same subspaces. Hence we
stress this information in the notation and refer the reader to [77] for a theoretical analysis of
low-rank approximation methods in terms of subspace angles.

Let θ1, . . . , θk denote the principal canonical angles betweenR(Z) andR(Uk), and θ̄1, . . . , θ̄k
the ones between R(ZΩ†k) and R(Uk) (see Section 2.1.3). The statement of Lemma 3.1
can be rephrased geometrically as

sin(θi)2 ≤ sin(θ̄i)2 = tan(θ̄i)2

1 + tan(θ̄i)2
≤ tan(θ̄i)2, 1 ≤ i ≤ k.

Less formally, the forthcoming analysis is based on how close R(Uk) and R(ZΩ†k) are,
while the truly computed error rather concerns how close R(Z) is from R(Uk). Since the
latter is of dimension p, while R(ZΩ†k) is of dimension k, it is clear that the looseness of
the derived bounds will increase with p.

The next theorem introduces unified deterministic error bounds for the quantity of interest (3.5).

Theorem 3.4. (Deterministic error bounds in Frobenius and spectral norms) Let A ∈ Rn×m
such that n ≥ m and Z ∈ Rn×p a full column rank matrix with p ≤ rank(A). For a given
k ∈ {1, . . . , p}, set Ωk = UT

k Z ∈ Rk×p and Ωk = UT
k Z ∈ R(n−k)×p such that Ωk is full row rank

(i.e., rank(Ωk) = k). Then, one has

‖[In−π(Z)]A‖22,F−‖[In−π(Z)]Ak‖22,F ≤ ‖[In−π(Z)]Ak‖22,F ≤ min
{
‖Sk‖22,F ‖Σk‖22, ‖TkΣk‖22,F

}
,

(3.8)
where Tk = ΩkΩ†k ∈ R(n−k)×k and Sk = (In−k + TkT

T
k )− 1

2Tk ∈ R(n−k)×k.
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Proof. Using the identity AAT = AkA
T
k +AkA

T
k , we obtain for the spectral norm case

‖[In − π(Z)]A‖22 = ‖[In − π(Z)]AAT[In − π(Z)]‖2,
= ‖[In − π(Z)][AkAT

k +AkA
T
k ][In − π(Z)]‖2.

Hence we obtain

‖[In − π(Z)]A‖22 ≤ ‖[In − π(Z)]Ak‖22 + ‖[In − π(Z)]Ak‖22.

Thus, by using the unitarily invariance of the spectral norm, we get

‖[In − π(Z)]A‖22 − ‖[In − π(Z)]Ak‖22 ≤ ‖[In − π(Z)]UkΣk‖22. (3.9)

Moreover, using Lemma 3.1 and the conjugation rule, we get

ΣT
kU

T
k [In − π(Z)]UkΣk 4 ΣT

kS
T
k SkΣk 4 ΣkTT

k TkΣk. (3.10)

Hence, since [In − π(Z)]2 = In − π(Z), we obtain

‖[In − π(Z)]UkΣk‖22 = ‖ΣT
kU

T
k [In − π(Z)]UkΣk‖2 ≤ ‖ΣT

kS
T
k SkΣk‖2 ≤ ‖ΣT

kT
T
k TkΣk‖2,

or equivalently,
‖[In − π(Z)]UkΣk‖22 ≤ ‖SkΣk‖22 ≤ ‖TkΣk‖22.

Using the strong submultiplicativity of the spectral norm, the latter inequality implies

‖[In − π(Z)]UkΣk‖22 ≤ min
{
‖Sk‖22‖Σk‖22, ‖TkΣk‖22

}
. (3.11)

Combining (3.9) and (3.11) completes the proof for the spectral norm case.
For the Frobenius norm, similar arguments are used. In fact, we have

‖[In − π(Z)]A‖2F = tr
(

[In − π(Z)]AAT[In − π(Z)]
)
,

= tr
(

[In − π(Z)][AkAT
k +AkA

T
k ][In − π(Z)]

)
,

= tr
(

[In − π(Z)]AkAT
k [In − π(Z)]

)
+ tr

(
[In − π(Z)]AkAT

k [In − π(Z)]
)
,

= ‖[In − π(Z)]Ak‖2F + ‖[In − π(Z)]Ak‖2F .

Thus,
‖[In − π(Z)]A‖2F − ‖[In − π(Z)]Ak‖2F = ‖[In − π(Z)]UkΣk‖2F . (3.12)

Using (3.10), we obtain

‖[In − π(Z)]UkΣk‖2F = tr
(

ΣT
kU

T
k [In − π(Z)]UkΣk

)
≤ tr

(
ΣT
kS

T
k SkΣk

)
≤ tr

(
ΣT
kT

T
k TkΣk

)
.

Hence we obtain

‖[In − π(Z)]UkΣk‖2F ≤ min
{
‖Sk‖2F ‖Σk‖22, ‖TkΣk‖2F

}
. (3.13)

Combining relations (3.12) and (3.13) completes the proof for the Frobenius norm case.

Remark 3.5. We have shown in Theorem 3.4 that

‖[In − π(Z)]A‖22,F − ‖[In − π(Z)]Ak‖22,F ≤ ‖SkΣk‖22,F ≤ ‖TkΣk‖22,F . (3.14)

Hence, ‖SkΣk‖22,F definitively represents a sharper upper bound in the deterministic case. Nev-
ertheless we have decided to use the submultiplicativity to bound ‖SkΣk‖22,F , since only this
formulation authorizes a possible treatment in the stochastic setting as detailed in Section 3.3.2.
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Remark 3.6. In the particular case of Z = AΩ (Ω ∈ Rn×p), with the notation of [53], we
have ‖TkΣk‖2,F := ‖Σ2Ω2Ω†1‖2,F , a quantity which precisely appears in the reference upper
bound [53, Theorem 9.1]. We note that our error bound (3.8) is tighter whenever ‖Sk‖22,F ‖Σk‖22 <
‖TkΣk‖22,F . Hence Theorem 3.4 either recovers or improves the reference error bound [53, The-
orem 9.1] in this setting.
Remark 3.7. Using ‖[In − π(Z)]Ak‖22,F ≤ ‖Ak‖22,F and

√
a2 + b2 ≤ a + b for any real positive

scalars a and b, we note that Theorem 3.4 implies [28, Theorem 3.3] when stated in the spectral
and Frobenius norms. As [28, Theorem 3.3], Theorem 3.4 can be extended to the case of any
Schatten-p class of norms.

If we target to bound ‖[In−π(Z)]A‖22−‖Ak‖22 instead of ‖[In−π(Z)]A‖22−‖[In−π(Z)]Ak‖22,
we are able to improve the result given in Theorem 3.4. This is detailed next.

Theorem 3.8. (Improved deterministic error bound in spectral norm) Let A ∈ Rn×m such that
n ≥ m and Z ∈ Rn×p a full column rank matrix with p ≤ rank(A). For a given k ∈ {1, . . . , p}, set
Ωk = UT

k Z ∈ Rk×p and Ωk = UT
k Z ∈ R(n−k)×p such that Ωk is full row rank (i.e., rank(Ωk) = k).

Then, one has

‖[In − π(Z)]A‖22 − ‖Ak‖22 ≤ min
{
‖Sk‖22‖Σ̂k‖22, ‖TkΣ̂k‖22

}
, (3.15)

where Σ̂k =
(

Σ2
k − σ2

k+1Ik

) 1
2 ∈ Rk×k, Tk = ΩkΩ†k ∈ R(n−k)×k and Sk = (In−k + TkT

T
k )− 1

2Tk ∈
R(n−k)×k.

Proof. First, we note that ‖Ak‖22 = σ2
k+1. Then, by definition of σk+1 and Σk, one has ΣkΣT

k 4
σ2
k+1In−k. Thus, we obtain

AAT 4 UkΣ2
kU

T
k + σ2

k+1UkU
T
k ,

4 UkΣ2
kU

T
k + σ2

k+1(In − UkUT
k ),

4 UkΣ̂2
kU

T
k + σ2

k+1In.

Hence,

‖[In − π(Z)]A‖22 = ‖[In − π(Z)]AAT[In − π(Z)]‖2,

≤ σ2
k+1‖In − π(Z)‖2 + ‖[In − π(Z)]UkΣ̂2

kU
T
k [In − π(Z)]‖2,

≤ ‖Ak‖22 + ‖[In − π(Z)]UkΣ̂k‖22.

Then, using (3.11) with Σ̂k instead of Σk, the rest of the proof follows straightforwardly.

By definition of Σ̂k, one has Σ̂k 4 Σk. Thus we deduce that if we target to bound ‖[In −
π(Z)]A‖22−‖Ak‖22, then the error bound (3.15) is tighter than (3.8). To the best of our knowledge,
Theorem 3.8 is new and provides an improved error bound in the spectral norm for a fairly general
choice of Z.

Finally, we emphasize that both Theorems 3.4 and 3.8 will play a key role for deriving new
improved error bounds in expectation for the low-rank approximation to a given matrix. This is
detailed next.

3.3.2 Analysis in expectation
We now provide error bounds in expectation and consider the case where Z ∈ Rn×p is drawn as a
Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)),
with 2 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. For k ∈ {1, . . . , p − 2}, we define Ωk ∈ Rk×p
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and Ωk ∈ R(n−k)×p as Ωk = UT
k (Z − Ẑ) and Ωk = UT

k (Z − Ẑ), respectively. The condition
p ≤ rank (Cov(Z)) ensures that Z − Ẑ has full column rank with probability one [31]. We
assume that Ωk has full row rank in this section.

This general approach offers several advantages but rises additional technical difficulties. In
particular, Ωk and Ωk are now stochastically dependent on the distribution law of Z. Thus,
before stating our main results in Section 3.3.2, we provide in Section 3.3.2 preparatory lemmas
that extend existing probabilistic results to the non-standard Gaussian case. In this section, we
consider the following block partitioning of the projected covariance matrix UT Cov(Z)U

UT Cov(Z)U =
[
UT
k

UT
k

]
Cov(Z)

[
Uk Uk

]
=
[

Covk(Z) Cov⊥,k(Z)T

Cov⊥,k(Z) Covk(Z)

]
,

with
Covk(Z) = UT

k Cov(Z)Uk ∈ Rk×k,

Cov⊥,k(Z) = UT
k Cov(Z)Uk ∈ R(n−k)×k,

Covk(Z) = UT
k Cov(Z)Uk ∈ R(n−k)×(n−k).

(3.16)

Preparatory lemmas

Given that Ωk = UT
k (Z − Ẑ) and Ωk = UT

k (Z − Ẑ), then by using elementary properties of
Gaussian vectors, one gets that Ωk ∼ N (0,Covk(Z)) and Ωk ∼ N (0, Covk(Z)). We note that,
although Ωk and Ωk are centered Gaussian matrices, the conditional law of Ωk with respect to
Ωk follows a Gaussian distribution that is not necessarily centered [67, Theorem 1.2.11]. We
therefore adapt this result to our setting in the next lemma.

Lemma 3.9. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian full column rank
matrix of mean Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)) satisfying
2 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. For a given k ∈ {1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈
Rk×p, Ωk = UT

k (Z − Ẑ) ∈ R(n−k)×p such that Ωk is full row rank (i.e. rank(Ωk) = k). If the
projected covariance matrix Covk(Z) is nonsingular, then the random matrix Ωk conditioned by
Ωk follows a Gaussian distribution of mean

E
[

Ωk | Ωk
]

= Cov⊥,k(Z)[Covk(Z)]−1Ωk, (3.17)

and of covariance matrix given by

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T, (3.18)

where Covk(Z) = UT
k Cov(Z)Uk, Cov⊥,k(Z) = UT

k Cov(Z)Uk and Covk(Z) = UT
k Cov(Z)Uk.

Remark 3.10. When Cov (Z) = AAT, we note that Cov⊥,k(Z) = 0, which yields
E
[

Ωk | Ωk
]

= 0 and Cov
(
Ωk | Ωk

)
= Covk(Z).

The next two lemmas aim at proposing key results about Gaussian matrices in the non-
standard case. In particular, we extend [53, Propositions 10.1 and 10.2] to the case of a non-
standard Gaussian matrix with general covariance matrix and potentially nonzero mean term.

Lemma 3.11. Let N ∈ Rp×p be a given matrix and M ∈ Rk×p be a Gaussian matrix such that
M ∼ N (M̂,Cov(M)) with mean M̂ ∈ Rk×p and covariance matrix Cov(M) ∈ Rk×k. Then

E
[
‖MN‖2

]
≤ ‖M̂N‖2 + ‖Cov(M) 1

2 ‖2‖N‖F + ‖Cov(M) 1
2 ‖F ‖N‖2, (3.19)

and
E
[
‖MN‖2F

]
= ‖M̂N‖2F + ‖Cov(M) 1

2 ‖2F ‖N‖2F . (3.20)
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Proof. Using the definition of a non-standard Gaussian matrix (2.4), we have M = M̂ +
Cov(M) 1

2G with G ∈ Rk×p a standard Gaussian matrix (i.e. G ∼ N (0, Ik)). Thus, by ap-
plying the triangle inequality in the spectral norm, we get

‖MN‖2 = ‖(M̂ + Cov(M) 1
2G)N‖2 ≤ ‖M̂N‖2 + ‖Cov(M) 1

2GN‖2.

Then, by applying [53, Proposition 10.1] to obtain an upper bound of E
[
‖Cov(M) 1

2GN‖2
]
,

we deduce (3.19). In the Frobenius norm, we have

‖MN‖2F = ‖M̂N+Cov(M) 1
2GN‖2F = ‖M̂N‖2F+‖Cov(M) 1

2GN‖2F+2 tr(NTM̂T Cov(M) 1
2GN).

Taking the expectation and using [53, Proposition 10.1], we get

E
[
‖MN‖2F

]
= ‖M̂N‖2F + ‖Cov(M) 1

2 ‖2F ‖N‖2F + 2 E
[

tr(NTM̂T Cov(M) 1
2GN)

]
.

By using the linearity of the expectation and the fact that E [G ] = 0, we remark that

E
[

tr(NTM̂T Cov(M) 1
2GN)

]
= tr

(
NTM̂T Cov(M) 1

2 E [G ]N
)

= 0.

This concludes the proof.

In the next lemma, we show how to bound (in expectation) the quantity ‖M†N‖2 or ‖M†N‖2F ,
where N ∈ Rk×k is a given fixed matrix and M ∈ Rk×p follows a centered Gaussian distribution.

Lemma 3.12. For a fixed integer k > 1, let N ∈ Rk×k be a given matrix and M ∈ Rk×p (with
p > k+1) be a centered Gaussian matrix M ∼ N (0,Cov(M)). If the covariance matrix Cov(M)
is nonsingular, then

E
[
‖M†N‖2F

]
= ‖(N

T[Cov(M)]−1N) 1
2 ‖F

p− k − 1 and E
[
‖M†N‖2

]
≤

e
√
p

p− k

√
‖NT[Cov(M)]−1N‖2,

where e denotes exponential of 1, i.e., e = exp(1).

Proof. Since M is a random matrix with p independent columns, where each column is a multi-
variate Gaussian distribution with zero mean and covariance matrix Cov(M), the matrix MMT

follows a Wishart distribution of the form Wk(p,Cov(M))[67, Definition 3.1.3]. One has also
‖M†N‖2F = tr(NT[(M†)TM†]N) = tr(NT[MMT]−1N), where the second equality holds with
probability one since p > k + 1. In fact, if Cov(M) is nonsingular, the matrix MMT is nonsin-
gular almost surely, see [67, Theorem 3.1.4]. In this case, according to [67, Theorem 3.2.12] for
p > k + 1, one has, for any matrix N ∈ Rk×k,

E
[
NT[MMT]−1N

]
= NTE

[
[MMT]−1

]
N = NT Cov(M)−1N

p− k − 1 .

Hence,

E
[

tr(NT[MMT]−1N)
]

= tr(NT Cov(M)−1N)
p− k − 1 = ‖(N

T Cov(M)−1N) 1
2 ‖F

p− k − 1 ,

which concludes the proof for the Frobenius norm. In the spectral norm, using (2.4), we have
M = Cov(M) 1

2G with G ∈ Rk×p following a standard Gaussian distribution. If Cov(M) is
nonsingular, then one has M† = G†Cov(M)− 1

2 and thus, for any matrix N ∈ Rk×k, we have

‖M†N‖2 = ‖G†Cov(M)− 1
2N‖2 ≤ ‖G†‖2‖Cov(M)− 1

2N‖2 = ‖G†‖2
√
‖NT Cov(M)−1N‖2.

Then, we take the expectation and apply [53, Proposition 10.2] to bound the quantity E
[
‖G†‖2

]
,

which concludes the proof.
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We now introduce a final lemma based on Lemmas 3.9, 3.11 and 3.12, which is central in the
derivation of our error bounds in expectation.

Lemma 3.13. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean
Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤
min

{
rank(A), rank(Cov(Z))

}
. For a given k ∈ {1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p,
Ωk = UT

k (Z − Ẑ) ∈ R(n−k)×p such that Ωk is full row rank (i.e. rank(Ωk) = k) and Tk = ΩkΩ†k.
If the covariance matrix Covk(Z) is nonsingular, then, for any matrix N ∈ Rk×k, one has

E
[
‖TkN‖2

]
≤ c tot

2 (Cov(Z), N) := c dep
2 (Cov(Z), N) + c2(Cov(Z), N), (3.21)

and

E
[
‖TkN‖2F

]
= c tot

F (Cov(Z), N) := c dep
F (Cov(Z), N)2 + cF (Cov(Z), N)2. (3.22)

The (positive) constants are defined as

c dep
2,F (Cov(Z), N) = ‖Cov⊥,k(Z)[Covk(Z)]−1N‖2,F , (3.23)

c2(Cov(Z), N) =
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖(NT[Covk(Z)]−1N) 1

2 ‖F√
p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(NT[Covk(Z)]−1N) 1

2 ‖2,
(3.24)

and

cF (Cov(Z), N) =
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(NT[Covk(Z)]−1N) 1

2 ‖F√
p− k − 1

, (3.25)

where Covk(Z) = UT
k Cov(Z)Uk, Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk and

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Proof. In the spectral norm, Lemma 3.11 gives, for any matrix N ∈ Rk×k,

E
[
‖ΩkΩ†kN‖2 | Ωk

]
≤ ‖E

[
Ωk | Ωk

]
Ω†kN‖2 + ‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖Ω†kN‖F

+ ‖Cov
(
Ωk | Ωk

) 1
2 ‖F ‖Ω†kN‖2.

(3.26)

From Lemma 3.9, one has for any matrix N ∈ Rk×k,

E
[

Ωk | Ωk
]

Ω†kN = Cov⊥,k(Z)[Covk(Z)]−1ΩkΩ†kN = Cov⊥,k(Z)[Covk(Z)]−1N,

which is a deterministic constant. Hence, taking the total expectation of (3.26) leads to

E
[
‖TkN‖2

]
= E

[
‖ΩkΩ†kN‖2

]
= E

[
E
[
‖Ω⊥Ω†kN‖2 | Ωk

] ]
,

≤ ‖Cov⊥,k(Z)[Covk(Z)]−1N‖2 + ‖Cov
(
Ωk | Ωk

) 1
2 ‖2E

[
‖Ω†kN‖F

]
+ ‖Cov

(
Ωk | Ωk

) 1
2 ‖FE

[
‖Ω†kN‖2

]
.

Finally, by using Lemma 3.12, one has

E
[
‖Ω†kN‖F

]
≤ E

[
‖Ω†kN‖

2
F

] 1
2 = ‖(N

T[Covk(Z)]−1N) 1
2 ‖

1
2
F√

p− k − 1
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and
E
[
‖Ω†kN‖2

]
≤

e
√
p

p− k
‖(NT[Covk(Z)]−1N) 1

2 ‖2.

This concludes the proof in the spectral norm case. The proof related to the Frobenius norm
can be derived similarly.

Remark 3.14. We note that both c dep
2 (Cov(Z), N) and c dep

F (Cov(Z), N) do depend on
Cov⊥,k(Z), which is the term related to the statistical dependence between Ωk and Ωk. Those
two terms cancel out whenever Ωk and Ωk are independent. By contrast, c2(Cov(Z), N) and
cF (Cov(Z), N) will not cancel out if Ωk and Ωk are independent, but do approach zero as the
number of samples p increases.

Remark 3.15. Following Theorem 1 in [77], Lemma 3.13 could serve to generalize the
analysis of the singular vector accuracy.

Error bounds in expectation

We are now able to provide a first key result. Given Z ∼ N (Ẑ,Cov(Z)), we aim at bounding
(in expectation) the quantity ‖Sk‖2,F , where Sk = (In−k + TkT

T
k )− 1

2Tk and Tk = ΩkΩ†k. We
recall that the positive singular values of Sk represent the sine of the canonical angles between
R (ZΩ†k) and R (Uk). This will make our proposed error bounds accurate in the presence of large
canonical angles, compared to [53] where the analysis is based on the tangent of the canonical
angles (via the matrix Tk). We highlight this result in the next proposition.

Proposition 3.16. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean
Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤
min

{
rank(A), rank(Cov(Z))

}
. For a given k ∈ {1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p,
Ωk = UT

k (Z − Ẑ) ∈ R(n−k)×p such that Ωk is full row rank (i.e. rank(Ωk) = k), Tk = ΩkΩ†k ∈
R(n−k)×k and Sk = (In−k+TkT

T
k )− 1

2Tk ∈ R(n−k)×k. Let ϕ : x 7→ x/
√

1 + x2 for x ≥ 0. We have

E
[
‖Sk‖2

]
≤ ϕ

(
c tot
2 (Cov(Z), Ik)

)
and E

[
‖Sk‖F

]
≤
√
kϕ

(
1√
k

√
c tot
F (Cov(Z), Ik)

)
,

where the positive constants c tot
2 (Cov(Z), Ik) and c tot

F (Cov(Z), Ik) are given in Lemma 3.13
(with N = Ik).

Proof. We define σ1(Tk) ≥ · · · ≥ σk(Tk) (resp. σ1(Sk) ≥ · · · ≥ σk(Sk)) as the positive singular
values of Tk (resp. Sk). Since ϕ is an increasing map, one has1

σi(Sk) = σi(Tk)√
1 + σi(Tk)2

= ϕ
(
σi(Tk)

)
, i ∈ {1, . . . , k} . (3.27)

Then, we obtain
‖Sk‖2 = σ1(Sk) = ϕ

(
σ1(Tk)

)
= ϕ(‖Tk‖2). (3.28)

Taking the expectation then leads to

E
[
‖Sk‖2

]
≤ ϕ

(
E
[
‖Tk‖2

])
≤ ϕ

(
c tot
2 (Cov(Z), Ik)

)
,

1Since the positive singular values of Tk represent the tangent of the canonical angles between R(ZΩ†
k
) and

R(Uk), relation (3.27) shows that the positive singular values of Sk are the sine of the canonical angles between
the same subspaces.
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where the first inequality relies on both the concavity of ϕ and Jensen’s inequality, while the
second one uses (3.21) of Lemma 3.13 and the fact that ϕ is an increasing map. In the Frobenius
norm, one has

‖Sk‖2F = tr(ST
k Sk) =

k∑
i=1

σi(Sk)2 =
k∑
i=1

σi(Tk)2

1 + σi(Tk)2 .

We note that the scalar map ψ : x → x

1 + x
is concave (for all x ≥ 0). Thus, the Jensen’s

inequality yields

1
k
‖Sk‖2F = 1

k

k∑
i=1

ψ
(
σi(Tk)2

)
≤ ψ

1
k

k∑
i=1

σi(Tk)2

 =
[
ϕ

(
1√
k
‖Tk‖F

)]2

. (3.29)

Then, by taking the expectation and exploiting both the concavity of ψ and (3.22) of Lemma 3.13,
we finally obtain the result.

By exploiting key projection perturbation results from [28], we are now able to extend our
analysis to the general setting, where Z is drawn from a Gaussian distribution of mean Ẑ ∈ Rn×p
and of covariance matrix Cov(Z). This is the second key result of our stochastic analysis
proposed next.
Proposition 3.17. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean
Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤
min

{
rank(A), rank(Cov(Z))

}
. Let π(Z) and π(Z − Ẑ) denote the orthogonal projections onto

the vector spaces spanned by the columns of Z and Z − Ẑ, respectively.
Then, for any k ∈ {1, . . . , p− 2}, one has

E
[
‖[In − π(Z)]A‖2,F − ‖[In − π(Z)]Ak‖2,F

]
≤ e
√
r

r − p
‖Ẑ‖2√
λr
‖Ak‖2,F + E

[
‖[In − π(Z − Ẑ)]Ak‖2,F

]
,

where r denotes the rank of Cov(Z) and λr the smallest nonzero eigenvalue of Cov(Z).
Proof. First, we begin with the trivial observation that

‖[In − π(Z)]A‖2,F − ‖[In − π(Z)]Ak‖2,F ≤ ‖[In − π(Z)]Ak‖2,F .

Let us define W = Z−Ẑ, which is a centered Gaussian matrix with covariance matrix Cov(W ) =
Cov(Z). It yields

‖[In − π(Z)]Ak‖2,F = ‖[In − π(W ) + π(W )− π(Z)]Ak‖2,F ,
= ‖[In − π(W )]Ak + [π(W )− π(Z)]Ak‖2,F ,
≤ ‖[In − π(W )]Ak‖2,F + ‖[π(W )− π(Z)]Ak‖2,F ,
≤ ‖[In − π(W )]Ak‖2,F + ‖[π(W )− π(Z)]‖2‖Ak‖2,F ,
= ‖[In − π(W )]Ak‖2,F + ‖[In − π(Z)]π(W )‖2‖Ak‖2,F ,

where the last inequality follows from [28, Lemma 1.5]. Then, adapting the proof of [28, Theorem
2.2], we observe that

[In − π(Z)]π(W ) = [In − π(Z)]WW †,

= [In − π(Z)](W − Z + Z)W †,
= [In − π(Z)](W − Z)W † + [In − π(Z)]ZW †,
= [In − π(Z)](W − Z)W †.
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Therefore, taking the spectral norm and using the submultiplicativity yields

‖[In − π(Z)]π(W )‖2 ≤ ‖W − Z‖2‖W †‖2 = ‖Ẑ‖2‖W †‖2.

Overall, we have

‖[In − π(Z)]Ak‖2,F ≤ ‖[In − π(W )]Ak‖2,F + ‖Ẑ‖2‖W †‖2‖Ak‖2,F .

Since W ∈ Rn×p is full column rank, one has W † = (WTW )−1WT and due to the unitarily
invariance of the spectral norm,

‖W †‖2 = ‖(WTW )− 1
2 ‖2 =

√
‖(WTW )−1‖2.

Given r = rank(CovZ), the covariance matrix Cov(Z) has the following thin eigendecomposi-
tion, Cov(Z) = QrΛrQT

r where Qr ∈ Rn×r is an orthogonal matrix containing the first λr eigen-
vectors of Cov(Z) and Λr = diag(λ1, . . . , λr) contains the corresponding nonzero eigenvalues
sorted in decreasing order, i.e. λ1 ≥ · · · ≥ λr > 0. Then, using (2.4), one has W = Cov(Z) 1

2G
with G ∈ Rn×p such that G ∼ N (0, In). Thus,

WTW = GT Cov(Z)G = GTQrΛrQT
rG = Y T

r ΛrYr < λrY
T
r Yr,

where Yr = QT
rG ∼ N (0, Ir). Then, (WTW )−1 4 λ−1

r (Y T
r Yr)−1 leading to

‖W †‖2 ≤
1√
λr

√
‖(Y T

r Yr)−1‖2 = 1√
λr
‖Y †r ‖2 = 1√

λr
‖(Y T

r )†‖2,

with Y T
r ∈ Rp×r (with p ≤ r by assumption) and Y T

r ∼ N (0, Ip). We then take the expectation
and apply Lemma 3.12 (with N = Ir) to deduce an upper bound of E

[
‖(Y T

r )†‖2
]
, which

completes the proof.

We are now able to state the main theorems concerning the error bounds in expectation.
Namely, given Z ∼ N (Ẑ,Cov(Z)), we target to bound the following quantity

E
[
‖[In − π(Z)]A‖2,F − ‖[In − π(Z)]Ak‖2,F

]
.

The proof of the next two theorems can be straightforwardly obtained by using the inequality√
a2 + b2 ≤ a+b for any real positive scalars a and b, and then by taking the expectation of (3.8)

of Theorem 3.4. The right-hand side terms are bounded using Lemma 3.13 (with N = Σk) and
Propositions 3.16 and 3.17, respectively. We first state our error bound in the Frobenius norm
case.

Theorem 3.18. (Average analysis error bound in Frobenius norm) Let A ∈ Rn×m such that
n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix Cov(Z),
that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. Let π(Z) denote

the orthogonal projection onto the vector space spanned by the columns of Z. For a given k ∈
{1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p, Ωk = UT
k (Z − Ẑ) ∈ R(n−k)×p such that Ωk is full

row rank (i.e. rank(Ωk) = k). Let ϕ : x 7→ x/
√

1 + x2 for x ≥ 0.
If the covariance matrix Covk(Z) is nonsingular, then one has

E
[
‖[In − π(Z)]A‖F − ‖[In − π(Z)]Ak‖F

]
≤

e
√
r

r − p
‖Ẑ‖2√
λr
‖Ak‖F + min

{
√
ak,
√
k ϕ

(
1√
k

√
bk

)
‖Σk‖2

}
,

(3.30)
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where r denotes the rank of Cov(Z), λr the smallest nonzero eigenvalue of Cov(Z) and

ak = ‖Cov⊥,k(Z)[Covk(Z)]−1Σk‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖2F

p− k − 1 ,

bk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖[Covk(Z)]− 1

2 ‖2F
p− k − 1 ,

with Covk(Z) = UT
k Cov(Z)Uk, Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk and

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Remark 3.19. We note that in the case of Ẑ = 0, we are able to improve the tightness of our
error bound in the Frobenius norm. More precisely, we have

E
[
‖[In − π(Z)]A‖2F − ‖[In − π(Z)]Ak‖2F

]
≤ min

{
ak, k ϕ

(
1√
k

√
bk

)2
‖Σk‖22

}
,

where ak and bk are defined in Theorem 3.18.
Similarly, we state our error bound in the spectral norm next.

Theorem 3.20. (Average analysis error bound in spectral norm) Let A ∈ Rn×m such that
n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix Cov(Z),
that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. Let π(Z) denote

the orthogonal projection onto the vector space spanned by the columns of Z. For a given k ∈
{1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p, Ωk = UT
k (Z − Ẑ) ∈ R(n−k)×p such that Ωk is full

row rank (i.e. rank(Ωk) = k). Let ϕ : x 7→ x/
√

1 + x2 for x ≥ 0.
If the covariance matrix Covk(Z) is nonsingular, then one has

E
[
‖[In − π(Z)]A‖2 − ‖[In − π(Z)]Ak‖2

]
≤ e
√
r

r − p
‖Ẑ‖2√
λr
‖Ak‖2 + min

{
ck, ϕ(dk)‖Σk‖2

}
,

(3.31)
where r denotes the rank of Cov(Z), λr the smallest nonzero eigenvalue of Cov(Z) and

ck = ‖Cov⊥,k(Z)[Covk(Z)]−1Σk‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖F√

p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖2,

dk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖[Covk(Z)]− 1

2 ‖F√
p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖[Covk(Z)]− 1

2 ‖2,

with Covk(Z) = UT
k Cov(Z)Uk, Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk and

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

As in Section 3.3.1, if we target to bound the quantity of interest E
[
‖[In − π(Z)]A‖2

]
−‖Ak‖2

instead of E
[
‖[In − π(Z)]A‖2 − ‖[In − π(Z)]Ak‖2

]
, it is then possible to significantly improve

the error bound given in Theorem 3.20. The proof is similar to the proof of Theorem 3.20,
exception made that we take the expectation of the result given in Theorem 3.8 and that the
right-hand side terms are now bounded using Lemma 3.13 with the choice N = Σ̂k. We give this
result in the next theorem.
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Theorem 3.21. (Average analysis error bound in spectral norm, improved bound) Let A ∈ Rn×m

such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix
Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 2 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. Let

π(Z) denote the orthogonal projection onto the vector space spanned by the columns of Z. For a
given k ∈ {1, . . . , p− 2}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p, Ωk = UT
k (Z − Ẑ) ∈ R(n−k)×p such that

Ωk is full row rank (i.e. rank(Ωk) = k). Let ϕ : x 7→ x/
√

1 + x2 for x ≥ 0.
If the covariance matrix Covk(Z) is nonsingular, then, one has

E
[
‖[In − π(Z)]A‖2

]
− ‖Ak‖2 ≤

e
√
r

r − p
‖Ẑ‖2√
λr
‖Ak‖2 + min

{
ĉk, ϕ(d̂k)‖Σ̂k‖2

}
, (3.32)

where Σ̂k =
(

Σ2
k − σ2

k+1Ik

) 1
2 , r denotes the rank of Cov(Z), λr the smallest nonzero eigenvalue

of Cov(Z) and

ĉk = ‖Cov⊥,k(Z)[Covk(Z)]−1Σ̂k‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖(Σ̂T

k [Covk(Z)]−1Σ̂k) 1
2 ‖F√

p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(Σ̂T

k [Covk(Z)]−1Σ̂k) 1
2 ‖2,

d̂k = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖[Covk(Z)]− 1

2 ‖F√
p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖[Covk(Z)]− 1

2 ‖2,

with Covk(Z) = UT
k Cov(Z)Uk, Cov⊥,k(Z) = UT

k Cov(Z)Uk and Covk(Z) = UT
k Cov(Z)Uk

and Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Remark 3.22. Since ‖Σ̂k‖2 ≤ ‖Σk‖2 and due to the partial ordering property, we deduce that
ĉk ≤ ck and remark that d̂k = dk. Hence if one targets to bound E

[
‖[In − π(Z)]A‖2

]
− ‖Ak‖2,

then the error bound (3.32) is tighter than (3.31). Hence Theorem 3.21 provides a new error
bound in the spectral norm in a fairly general setting.

We provide in Section 3.5 numerical illustrations to highlight the potential of the error bounds.

3.3.3 Analysis in probability

To complement the theoretical analysis given in Section 3.3.2, we provide probabilistic error
bounds in both the Frobenius and the spectral norms. Then we consider the Randomized
Singular Value Decomposition and detail in Section 3.4 the new constants involved in the
probabilistic error bounds. Preparatory technical lemmas are first given.

Preparatory lemmas

The first two lemmas generalize Propositions 10.3 and 10.4 of [53] to the non-standard
Gaussian case. We first provide a result related to concentration inequalities for functions
of a non-standard Gaussian matrix.

Lemma 3.23 (Concentration for functions of a non-standard Gaussian matrix). Let h be
a real function on matrices in Rk×p satisfying the following Lipschitz condition for a given
positive constant L ∣∣h(X)− h(Y )

∣∣ ≤ L ‖X − Y ‖F , ∀ X,Y ∈ Rk×p.
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Let M ∈ Rk×p be a Gaussian matrix such that M ∼ N (M̂,Cov(M)) with mean M̂ ∈
Rk×p and covariance matrix Cov(M) ∈ Rk×k. Then for all t ≥ 0 one has

P
{
h(M) ≥ E

[
h(M)

]
+ L

√
‖Cov(M)‖2 · t

}
≤ e−t

2/2. (3.33)

Proof. By the definition of a non-standard Gaussian matrix (2.4), we have M = M̂ +
Cov(M) 1

2G with G ∈ Rk×p a standard Gaussian matrix (i.e. G ∼ N (0, Ik)). We define
the real function g on matrices in Rk×p such that g : X 7→ h(M̂ + Cov(M) 1

2X), implying
that g(G) and h(M) have the same distribution. Since h is L-Lipschitz by assumption, we
have∣∣g(X)− g(Y )

∣∣ ≤ L ‖Cov(M) 1
2 (X − Y )‖F ≤ L ‖Cov(M) 1

2 ‖2‖X − Y ‖F , ∀ X,Y ∈ Rk×p.

This shows that g is a L ‖Cov(M) 1
2 ‖2-Lipschitz function. Applying [53, Proposition 10.3]

to g then gives ((3.33)).

Secondly, we state a result related to large deviation bounds for the norm of a pseudo-
inverted non-standard Gaussian matrix.

Lemma 3.24 (Norm bounds for a pseudoinverted non-standard Gaussian matrix). Let
N ∈ Rk×k be a given matrix and let M ∈ Rk×p with p ≥ k + 4 be a Gaussian matrix such
that M ∼ N (0,Cov(M)) with covariance matrix Cov(M) ∈ Rk×k. Then if Cov(M) is
invertible, the spectral (resp. Frobenius) norm of a pseudoinverted non-standard Gaussian
matrix satisfies for all t ≥ 1,

P
{
‖M†N‖2 ≤

√
‖NT Cov(M)−1N‖2

e
√
p

p− k + 1 t
}
≥ 1− t−(p−k+1), (3.34)

and

P

{
‖M†N‖F ≤

√
‖NT Cov(M)−1N‖2

√
3k√

p− k + 1
t

}
≥ 1− t−(p−k), (3.35)

respectively.

Proof. We write M = Cov(M) 1
2G with G ∈ Rn×k a standard Gaussian matrix and use

the invertibility of Cov(M) to obtain

‖M†N‖2,F ≤ ‖G†‖2,F ‖Cov(M)− 1
2N‖2 = ‖G†‖2,F

√
‖NT Cov(M)−1N‖2.

Applying [53, Proposition 10.4] to ‖G†‖2,F allows us to deduce ((3.34)) and ((3.35)), re-
spectively.

Then we are now able to provide a probabilistic counterpart of Lemma 3.13.

Lemma 3.25. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of
mean Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying
4 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. For a given k ∈ {1, . . . , p− 4}, set Ωk = UT

k (Z −
Ẑ) ∈ Rk×p, Ωk = UT

k (Z− Ẑ) ∈ R(n−k)×p such that Ωk is full row rank (i.e. rank(Ωk) = k)
and Tk = ΩkΩ†k.

45



Chapter 3. A general error analysis for randomized low-rank approximation methods

If the covariance matrix Covk(Z) is nonsingular, then, for any matrix N ∈ Rk×k and
all u, t ≥ 1, it holds with probability of failure at most e−u2/2 + t−(p−k+1)

‖TkN‖2 ≤ c tot
2 (Cov(Z), N) + c prob

2 (Cov(Z), N) · tu (3.36)

with

c prob
2 (Cov(Z), N) = ‖Covk(Z) 1

2 ‖2‖(NT[Covk(Z)]−1N) 1
2 ‖2

e
√
p

p− k + 1 . (3.37)

Similarly, for all u, t ≥ 1, it holds with probability of failure at most e−u2/2 + t−(p−k)

‖TkN‖F ≤
√

c tot
F (Cov(Z), N) + c prob

F (Cov(Z), N) · tu, (3.38)

with

c prob
F (Cov(Z), N) = ‖Covk(Z) 1

2 ‖2‖(NT[Covk(Z)]−1N) 1
2 ‖F

√
3k√

p− k + 1
, (3.39)

where the positive constants c tot
2 (Cov(Z), N) and c tot

F (Cov(Z), N) are defined in Lemma 3.13,
respectively.

Proof. We first consider the case of the spectral norm. We define the following event for
t ≥ 1

Et =
{

Ωk | ‖Ω†kN‖2 ≤ ‖(N
T[Covk(Z)]−1N) 1

2 ‖2
e
√
p

p− k + 1 · t
}
.

Using relation (3.34) of Lemma 3.24, we obtain P(Et) ≥ 1− t−(p−k+1). We define the func-
tion h on matrices in R(n−k)×p such that h : Y 7→ ‖Y Ω†kN‖2. In order to use Lemma 3.23,
we must compute the Lipschitz constant related to h and E

[
h(Ωk)

]
. Using the reverse

triangle inequality, we get∣∣h(Y1)− h(Y2)
∣∣ ≤ ‖(Y1−Y2)Ω†kN‖2 ≤ ‖Ω

†
kN‖2‖Y1−Y2‖2 ≤ ‖Ω†kN‖2‖Y1−Y2‖F , ∀Y1, Y2 ∈ R(n−k)×p.

Therefore, h is at least a ‖Ω†kN‖2-Lipschitz function. The application of Lemma 3.13 gives

E
[
h(Ωk)

]
≤ c tot

2 (Cov(Z), N).

Since Ωk ∼ N (0, Covk(Z)), applying Lemma 3.23 gives for all u ≥ 1

P
{
‖TkN‖2 ≥ c tot

2 (Cov(Z), N) + ‖Covk(Z) 1
2 ‖2‖Ω†kN‖2 · u

}
≤ e−u

2/2.

The law of total probability then reads

P
{
‖TkN‖2 ≥ c tot

2 (Cov(Z), N) + ‖Covk(Z) 1
2 ‖2‖Ω†kN‖2 · u | Et

}
P {Et} ≤ e−u

2/2.

We then define c prob
2 (Cov(Z), N) as in ((3.37)).Under the event Et, we have

‖Ω†kN‖2 ≤ ‖(N
T[Covk(Z)]−1N) 1

2 ‖2
e
√
p

p− k + 1 · t,
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which leads to

P
{
‖TkN‖2 ≥ c tot

2 (Cov(Z), N) + c prob
2 (Cov(Z), N) · tu | Et

}
P {Et} ≤ e−u

2/2.

We use the law of total probability to remove the conditioning and finally obtain

P
{
‖TkN‖2 ≥ c tot

2 (Cov(Z), N) + c prob
2 (Cov(Z), N) · tu

}
≤ e−u

2/2 + P {Ect } ,

≤ e−u
2/2 + t−(p−k+1).

The proof for the Frobenius norm follows similar arguments using the event for t ≥ 1

Et =
{

Ωk | ‖Ω†kN‖F ≤ ‖(N
T[Covk(Z)]−1N) 1

2 ‖2
√

3k√
p− k + 1

· t

}
,

and the following function h defined on matrices in R(n−k)×p such that Y 7→ ‖Y Ω†kN‖F .
Using successively Hölder’s inequality and Lemma 3.13 then gives

E
[
h(Ωk)

]
≤ E

[
h(Ωk)2

] 1
2 =

√
c tot
F (Cov(Z), N). (3.40)

We end this section by stating a final proposition which later allows us to derive the
error bounds in probability in the next section.

Proposition 3.26. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of
mean Ẑ ∈ Rn×p and covariance matrix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying
4 < p ≤ min

{
rank(A), rank(Cov(Z))

}
. For a given k ∈ {1, . . . , p− 4}, set Ωk = UT

k (Z −
Ẑ) ∈ Rk×p, Ωk = UT

k (Z− Ẑ) ∈ R(n−k)×p such that Ωk is full row rank (i.e. rank(Ωk) = k)
and Tk = ΩkΩ†k and Sk = (In−k + TkT

T
k )− 1

2Tk. Let ϕ : x 7→ x/
√

1 + x2 for x ≥ 0.
If the covariance matrix Covk(Z) is nonsingular, then for any t, u ≥ 1 it holds with

probability of failure at most e−u2/2 + t−(p−k+1)

‖Sk‖2 ≤ ϕ
(

c tot
2 (Cov(Z), Ik) + c prob

2 (Cov(Z), Ik) · tu
)
, (3.41)

and with a probability of failure at most e−u2/2 + t−(p−k)

‖Sk‖F ≤
√
k ϕ

(
1√
k

[√
c tot
F (Cov(Z), Ik) + c prob

F (Cov(Z), Ik) · tu
])

. (3.42)

The positive constants c tot
2 and c tot

F are given in Lemma 3.13 (with N = Ik), while c prob
2

and c prob
F are given in Lemma 3.25 (with N = Ik), respectively.

Proof. We first consider the case of the spectral norm. Due to Lemma 3.25 (relation
((3.36)) with N = Ik), the inequality

‖Tk‖2 ≤ c tot
2 (Cov(Z), Ik) + c prob

2 (Cov(Z), Ik) · tu
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holds with probability of failure at most e−u2/2 + t−(p−k+1). Then, we use the relation
((3.28)) and the fact that ϕ is an increasing and bijective map to obtain ((3.41)). In the
Frobenius case, we deduce the following inequality from relation ((3.29))

‖Sk‖F ≤
√
k ϕ

(
1√
k
‖Tk‖F

)
.

The proof then follows similar arguments as in the spectral norm case, by first bounding
‖Tk‖F using Lemma 3.25 (relation ((3.38)) with N = Ik).

Error bounds in probability

We now provide the corresponding probabilistic error bounds related to Theorems 3.18, 3.20
and 3.21, respectively. The probabilistic error bounds can be easily derived from Lemma 3.25
and Proposition 3.26. Probabilistic error bounds for the approximation error in the Frobe-
nius norm are provided in Theorem 3.27, which extends Theorem 3.18.

Theorem 3.27. Probabilitic error bound in Frobenius norm Let A ∈ Rn×m such that
n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix
Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 4 < p ≤ min

{
rank(A), rank(Cov(Z))

}
.

For a given k ∈ {1, . . . , p− 4}, set Ωk = UT
k (Z − Ẑ) ∈ Rk×p, Ωk = UT

k (Z − Ẑ) ∈ R(n−k)×p

such that Ωk is full row rank (i.e. rank(Ωk) = k) and Tk = ΩkΩ†k.
If the covariance matrix Covk(Z) is nonsingular, then, for all u, t ≥ 1, it holds with

probability of failure at most e−u2/2 + t−(p−k)

‖[In − π(Z)]A‖F − ‖[In − π(Z)]Ak‖F ≤

min
{
√
ak + αk tu,

√
k ϕ

(
1√
k

[
√
bk + βk tu]

)
‖Σk‖2

}
,

where

ak = ‖Cov⊥,k(Z)[Covk(Z)]−1Σk‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖2F

p− k − 1 ,

bk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖[Covk(Z)]− 1

2 ‖2F
p− k − 1 ,

αk = ‖Covk(Z) 1
2 ‖2‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖F

√
3k√

p− k + 1
,

βk = ‖Covk(Z) 1
2 ‖2‖[Covk(Z)]− 1

2 ‖F
√

3k√
p− k + 1

.

with Covk(Z) = UT
k Cov(Z)Uk, and Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk,

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Probabilistic error bounds for the approximation error in the spectral norm are provided
in Theorems 3.28 and 3.29, respectively. They are extensions of Theorems 3.20 and 3.21,
respectively.

Theorem 3.28. Probabilitic error bound in spectral norm Let A ∈ Rn×m such that n ≥ m
and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance matrix Cov(Z), that
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is, Z ∼ N (Ẑ,Cov(Z)), satisfying 4 < p ≤ min
{

rank(A), rank(Cov(Z))
}

. For a given
k ∈ {1, . . . , p− 4}, set Ωk = UT

k (Z − Ẑ) ∈ Rk×p, Ωk = UT
k (Z − Ẑ) ∈ R(n−k)×p such that

Ωk is full row rank (i.e. rank(Ωk) = k) and Tk = ΩkΩ†k.
If the covariance matrix Covk(Z) is nonsingular, then, for all u, t ≥ 1, it holds with

probability of failure at most e−u2/2 + t−(p−k+1)

‖[In − π(Z)]A‖2 − ‖[In − π(Z)]Ak‖2 ≤ min
{
ck + θk tu, ϕ (dk + δk tu) ‖Σk‖2

}
,

where

ck = ‖Cov⊥,k(Z)[Covk(Z)]−1Σk‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖F√

p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖2,

dk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖[Covk(Z)]− 1

2 ‖F√
p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖[Covk(Z)]− 1

2 ‖2,

θk = ‖Covk(Z) 1
2 ‖2‖(ΣT

k [Covk(Z)]−1Σk) 1
2 ‖2

e
√
p

p− k + 1 ,

δk = ‖Covk(Z) 1
2 ‖2‖[Covk(Z)]−1) 1

2 ‖2
e
√
p

p− k + 1 ,

with Covk(Z) = UT
k Cov(Z)Uk, and Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk,

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Theorem 3.29. Probabilitic error bound in spectral norm, improved bound Let A ∈ Rn×m
such that n ≥ m and Z ∈ Rn×p a Gaussian matrix of mean Ẑ ∈ Rn×p and covariance ma-
trix Cov(Z), that is, Z ∼ N (Ẑ,Cov(Z)), satisfying 4 < p ≤ min

{
rank(A), rank(Cov(Z))

}
.

For a given k ∈ {1, . . . , p− 4}, set Ωk = UT
k (Z − Ẑ) ∈ Rk×p, Ωk = UT

k (Z − Ẑ) ∈ R(n−k)×p

such that Ωk is full row rank (i.e. rank(Ωk) = k) and Tk = ΩkΩ†k.
If the covariance matrix Covk(Z) is nonsingular, then, for all u, t ≥ 1, it holds with

probability of failure at most e−u2/2 + t−(p−k+1)

‖[In − π(Z)]A‖2 − ‖Ak‖2 ≤ min
{
ĉk + θ̂k tu, ϕ

(
d̂k + δ̂k tu

)
‖Σ̂k‖2

}
,
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where Σ̂k =
(

Σ2
k − σ2

k+1Ik

) 1
2 and

ĉk = ‖Cov⊥,k(Z)[Covk(Z)]−1Σ̂k‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖(Σ̂T

k [Covk(Z)]−1Σ̂k) 1
2 ‖F√

p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖(Σ̂T

k [Covk(Z)]−1Σ̂k) 1
2 ‖2,

dk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2 +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2‖[Covk(Z)]− 1

2 ‖F√
p− k − 1

+
e
√
p

p− k
‖Cov

(
Ωk | Ωk

) 1
2 ‖F ‖[Covk(Z)]− 1

2 ‖2,

θ̂k = ‖Covk(Z) 1
2 ‖2‖(Σ̂T

k [Covk(Z)]−1Σ̂k) 1
2 ‖2

e
√
p

p− k + 1 ,

δk = ‖Covk(Z) 1
2 ‖2‖[Covk(Z)]−1‖2

e
√
p

p− k + 1 .

with Covk(Z) = UT
k Cov(Z)Uk, and Cov⊥,k(Z) = UT

k Cov(Z)Uk, Covk(Z) = UT
k Cov(Z)Uk,

Cov
(
Ωk | Ωk

)
= Covk(Z)−Cov⊥,k(Z)

[
Covk(Z)

]−1 Cov⊥,k(Z)T.

Remark 3.30. Unlike the bounds for the expected low-rank approximation error, the deriva-
tion of the probability bounds required to step aside from the proofs in [53]. Consequently,
we cannot consider the results from Theorems 3.27, 3.28 and 3.29 as generalizations of
Theorems 10.7 and 10.8 in [53].

3.4 Application to the Randomized Singular Value Decom-
position

As an illustration, we consider the Randomized Singular Value Decomposition (RSVD), a popular
algorithm for obtaining a low-rank approximation to a given matrix [53, 63]. In this method,
Z ∈ Rn×p is constructed to approximate the k dominant left singular vectors of A. Given q ∈ N
and Aq = (AAT)qA, the Randomized Singular Value Decomposition considers Z = AqG. In the
single-pass setting (q = 0), error bounds have been notably provided in [53, 54] for the spectral
norm. For q ∈ N?, we provide error bounds which, to the best of our knowledge, are new. As
detailed next, the relation Z ∼ N (0, AqAT

q ) leads to significant simplifications in the expressions
of the error bounds given in Theorems 3.18, 3.20 and 3.21, respectively. Deriving these error
bounds implies to first express the projected covariance matrices defined in (3.16). This is the
main purpose of the next lemma.

Lemma 3.31. Let A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p with 2 < p ≤ rank(A) such that
Z = AqG with Aq = (AAT)qA ∈ Rn×m (q ∈ N) and G ∈ Rm×p a standard Gaussian matrix
(G ∼ N (0, Im)). For a given integer k ∈ {1, . . . , p}, set Ωk = UT

k Z and Ωk = UT
k Z. The

projected covariance matrices are then given by

Covk(Z) = Σ4q+2
k ,

Cov⊥,k(Z) = 0,
Covk(Z) = (ΣkΣT

k )2q+1.

(3.43)
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Then the random matrix Ωk conditioned by Ωk follows a Gaussian distribution of mean

E
[

Ωk | Ωk
]

= 0, (3.44)

and of covariance matrix
Cov

(
Ωk | Ωk

)
= (ΣkΣT

k )2q+1. (3.45)

Proof. A straightforward calculation gives Ωk = Σ2q+1
k V T

k G. Hence Ωk has full row rank with
probability one [31]. Since Z ∼ N (0, AqAT

q ), Cov(Z) = AqA
T
q can be expressed as

Cov(Z) = U(ΣΣT)2q+1UT.

Thus Cov(Z) and A have the same rank and we deduce

Covk(Z) = Σ4q+2
k ,

Cov⊥,k(Z) = 0,
Covk(Z) = (ΣkΣT

k )2q+1.

We apply relations ((3.17)) and ((3.18)) of Lemma 3.9 to deduce

E
[

Ωk | Ωk
]

= 0,
Cov

(
Ωk | Ωk

)
= (ΣkΣT

k )2q+1,

which concludes the proof.

Remark 3.32. From Lemma 3.31, we deduce that the projected covariance matrix Covk(Z) is
nonsingular, allowing us to apply Theorems 3.18, 3.20 and 3.21, respectively. Since Cov⊥,k(Z) =
0, we also note that Ωk and Ωk become statistically independent.

With the help of relations (3.43), (3.44) and (3.45), we specialize the main theorems proposed
in Section 3.3.2 to the setting of the Randomized Singular Value Decomposition. To enhance the
readability of the constants arising in the error bounds, we introduce the singular value ratios
related to the matrix A as

γi = σk+1

σi
, i = 1, . . . , rank (A). (3.46)

3.4.1 Error bounds in Frobenius norm
We first consider the case of the Frobenius norm. A direct application of Theorem 3.18, 3.27
and Lemma 3.31 leads to the following corollaries.

Corollary 3.33. (Average analysis error bound in Frobenius norm, RSVD) Let A ∈ Rn×m such
that n ≥ m and Z ∈ Rn×p with 2 < p ≤ rank(A) such that Z = AqG with Aq = (AAT)qA ∈ Rn×m
(q ∈ N) and G ∈ Rm×p a standard Gaussian matrix (G ∼ N (0, Im)). Let π(Z) denote the
orthogonal projection onto the vector space spanned by the columns of Z. For a given k ∈
{1, . . . , p− 2}, set Ωk = UT

k Z ∈ Rk×p such that Ωk is full row rank (i.e. rank(Ωk) = k). Let
ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, one has

E
[
‖[In − π(Z)]A‖F − ‖[In − π(Z)]Ak‖F

]
≤ min

{
√
ak,
√
k ϕ

(
1√
k

√
bk

)
σ1

}
, (3.47)
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where

ak =
σ2
k+1

p− k − 1

rank (A)∑
i=k+1

1
γ4q+2
i

 k∑
i=1

γ4q
i

 ,

bk = 1
p− k − 1

rank (A)∑
i=k+1

1
γ4q+2
i

 k∑
i=1

γ4q+2
i

 ,

with the singular value ratios γi given in (3.46).

Assume further that p ≥ k + 4, then for any t, u ≥ 1, it holds with probability of failure at
most e−u2/2 + t−(p−k)

‖[In − π(Z)]A‖F − ‖[In − π(Z)]Ak‖F ≤ min

√ak + αk tu,
√
k ϕ

(√
bk + βk tu√

k

)
σ1

 ,

where

αk = σk+1

 k∑
i=1

γ4q
i

 √
3k√

p− k + 1
and βk =

 k∑
i=1

γ4q+2
i

 √
3k√

p− k + 1
.

Remark 3.34. In [15], Boullé and Townsend have considered the low-rank approximation of
partial differential operators in infinite dimension using a zero mean and a general covariance
matrix for the random matrix variable. They have recently improved their error bound to
the finite-dimensional case using the Frobenius norm in [14]. It can be shown that the error
bound (3.47) provided in Corollary 3.33 is always tighter. An illustration is given in Section 3.5.2.

3.4.2 Error bounds in spectral norm
We next consider the case of the spectral norm. A straightforward application of Theorem 3.20
and Lemma 3.31 first leads to the following corollary.

Corollary 3.35. (Average analysis error bound in spectral norm, RSVD) Let A ∈ Rn×m such
that n ≥ m and Z ∈ Rn×p with 2 < p ≤ rank(A) such that Z = AqG with Aq = (AAT)qA ∈ Rn×m
(q ∈ N) and G ∈ Rm×p a standard Gaussian matrix (G ∼ N (0, Im)). Let π(Z) denote the
orthogonal projection onto the vector space spanned by the columns of Z. For a given k ∈
{1, . . . , p− 2}, set Ωk = UT

k Z ∈ Rk×p, such that Ωk is full row rank (i.e. rank(Ωk) = k). Let
ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, one has

E
[
‖[In − π(Z)]A‖2 − ‖[In − π(Z)]Ak‖2

]
≤ min

{
ck, ϕ(dk)σ1

}
, (3.48)

where

ck = σk+1√
p− k − 1

 k∑
i=1

γ4q
i

 1
2

+ σk

rank (A)∑
i=k+1

(
σi
σk

)4q+2
 1

2
e
√
p

p− k
,

dk = 1√
p− k − 1

 k∑
i=1

γ4q+2
i

 1
2

+

rank (A)∑
i=k+1

(
σi
σk

)4q+2
 1

2
e
√
p

p− k
,

with the singular value ratios γi given in (3.46).
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Assume further that p ≥ k + 4, then for any t, u ≥ 1, it holds with probability of failure at
most e−u2/2 + t−(p−k+1)

‖[In − π(Z)]A‖2 − ‖[In − π(Z)]Ak‖2 ≤ min
{
ck + θk tu, ϕ (dk + δk tu)σ1

}
, (3.49)

where
θk = σk+1 γ

2q
k

e
√
p

p− k + 1 and δk = γ2q+1
k

e
√
p

p− k + 1 .

We finally state the improved error bound related to Theorem 3.21 and Lemma 3.31 in the
next corollary.

Corollary 3.36. (Average analysis error bound in spectral norm, improved bound, RSVD) Let
A ∈ Rn×m such that n ≥ m and Z ∈ Rn×p with 2 < p ≤ rank(A) such that Z = AqG with
Aq = (AAT)qA ∈ Rn×m (q ∈ N) and G ∈ Rm×p a standard Gaussian matrix (G ∼ N (0, Im)).
Let π(Z) denote the orthogonal projection onto the vector space spanned by the columns of Z.
For a given k ∈ {1, . . . , p− 2}, set Ωk = UT

k Z ∈ Rk×p, such that Ωk is full row rank (i.e.
rank(Ωk) = k). Let ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, one has

E
[
‖[In − π(Z)]A‖2 − σk+1

]
≤ min

{
ĉk, ϕ(d̂k)

√
σ2

1 − σ2
k+1

}
, (3.50)

where

ĉk = σk+1√
p− k − 1

 k∑
i=1

γ4q
i (1− γ2

i )

 1
2

+
√

1− γ2
` σ`

rank (A)∑
i=k+1

(
σi
σ`

)4q+2
 1

2
e
√
p

p− k
,

d̂k = 1√
p− k − 1

 k∑
i=1

γ4q+2
i

 1
2

+

rank (A)∑
i=k+1

(
σi
σk

)4q+2
 1

2
e
√
p

p− k
,

with

` =



1, (q = 0 or if σk+1
√

1 + 1/(2q) ≥ σ1, (q ∈ N?)),

arg max
i

√1− γ2
i

σ2q
i

,

√
1− γ2

i+1

σ2q
i+1

 , with σk+1
√

1 + 1/(2q) ∈ [σi, σi+1], (q ∈ N?),

k, if σk+1
√

1 + 1/(2q) ≤ σk, (q ∈ N?),
(3.51)

with the singular value ratios γi given in (3.46).

Assume further that p ≥ k + 4, then for any t, u ≥ 1, it holds with probability of failure at
most e−u2/2 + t−(p−k+1)

‖[In − π(Z)]A‖2 − ‖Ak‖2 ≤ min
{
ĉk + θ̂k tu, ϕ

(
d̂k + δ̂k tu

)
‖Σ̂k‖2

}
, (3.52)

where
θ̂k = σk+1 γ

2q
`

√
1− γ2

`

e
√
p

p− k + 1 and δ̂k = γ2q+1
k

e
√
p

p− k + 1 .
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Proof. To deduce the expression of ĉk, we need to obtain ‖(Σ̂T
k [Covk(Z)]−1Σ̂k) 1

2 ‖2. Since

Σ̂T
k [Covk(Z)]−1Σ̂k = diag

(
σ2
i − σ2

k+1

σ4q+2
i

)
, i = 1, . . . , k,

we introduce the map ψ : x 7→ (x − σ2
k+1)/x2q+1 for x ≥ σk+1 > 0 for q ∈ N?. A simple

calculation shows that the extremum of ψ is reached for x = σ2
k+1(1 + 1/(2q)). Hence we deduce

‖(Σ̂T
k [Covk(Z)]−1Σ̂k) 1

2 ‖2 :=
√

1− γ2
`

σ2q
`

,

with ` defined in (3.51). The other quantities arising in ĉk can be obtained straightforwardly.

To the best of our knowledge, we note that the error bounds provided in Corollaries 3.33, 3.35
and 3.36 are new. In Section 3.5.3, we provide numerical illustrations to show the relevance of
the bounds in expectation the context of the Randomized Singular Value Decomposition.

3.5 Numerical illustrations
In this section, we aim at illustrating the numerical behaviour of the error bounds introduced
in Sections 3.3 and 3.4, respectively. We first show the tightness of the error bounds compared
to empirical experimental errors in Section 3.5.1. Then, we propose a detailed comparison with
the state-of-the-art error bounds [53] in Sections 3.5.2 and 3.5.3, respectively. In the following,
we consider a square matrix A (with n = m = 1000) obtained as follows. First, we select
two orthogonal matrices U ∈ Rn×n and V ∈ Rn×n. Each matrix is obtained independently by
drawing a random standard Gaussian matrix and taking its QR factorization. Then, given

Σ = diag(1, . . . , 1︸ ︷︷ ︸
10 times

, 2− 1
2 , 3− 1

2 , . . . , (n− 9)− 1
2 ) ∈ Rn×n,

we conduct all the numerical experiments with A = UΣV T. This test case is directly inspired
from [78, 87]. We consider two different target ranks k (k = 5 and k = 15, respectively) to allow
a variety of results and comments. We believe that performing such an analysis is instructional
since, in practice, we are not aware of the ideal value for the target rank k. The data and the
scripts to reproduce all the numerical results and the resulting figures are publicly available at
https://github.com/a-scotto/R-SVD-Analysis.

3.5.1 Error bounds in expectation versus the empirical error
We first focus on the tightness of the error bounds in expectation, given in Theorem 3.18 for
the Frobenius norm and in Theorem 3.20 for the spectral norm, respectively. To quantify their
tightness, for a given target rank k and for a fixed value of the oversampling parameter %(p) =
p− k, we compare our bounds with the empirical mean error over 100 samples, i.e.,

1
100

100∑
i=1

(
‖[In − π(AGi)]A‖2,F − ‖[In − π(AGi)]Ak‖2,F

)
,

whereGi ∈ Rn×p (1 ≤ i ≤ 100) are 100 independent standard Gaussian matrices (Gi ∼ N (0, In)).
We note that, in this setting, one has Ẑ = 0 and Cov(Z) = AAT.

With respect to the target rank k, Figure 3.1 shows the empirical error as well as our error
bounds (in both norms) with respect to the oversampling parameter %(p) for both target ranks
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(a) Results for k = 5.

2 20 40 60 80 100

Oversampling %(p) = p− k.
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Empirical mean error

Our bound
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Oversampling %(p) = p− k.

100

Frobenius norm

Empirical mean error

Our bound

(b) Results for k = 15.

Figure 3.1: Empirical mean error and our error bounds in expectation with respect to the
oversampling parameter %(p) = p−k. Case of k = 5 (top), k = 15 (bottom), spectral norm (left)
and Frobenius norm (right). Statistics on errors are also shown: empirical mean (circle mark) ±
one standard deviation (grey area).
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(a) Results for p = 32.
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(b) Results for p = 102.

Figure 3.2: Empirical mean error and our error bounds in expectation with respect to the target
rank k. Cases of p = 32 (top) and of p = 102 (bottom), spectral norm (left) and Frobenius
norm (right). Statistics on errors are also shown: empirical mean (circle mark) ± one standard
deviation (grey area).

k = 5 and k = 15, respectively. We remark that, as the number of samples increases, our bounds
predict a smaller error in both norms. We also note that the error bounds in expectation in the
Frobenius norm are relatively accurate compared to the spectral case. In fact, the decrease rate
seems to be slower in the spectral norm compared to the Frobenius norm. This is indeed expected
since our error bounds in the spectral norm have been obtained in a looser way compared to the
Frobenius norm.

With respect to the oversampling parameter %(p), Figure 3.2 shows the empirical error and
our error bounds with respect to the target rank k for two fixed values of the sample parameter
(p = 32 and p = 102, respectively). As expected, the error bounds are found to be more accurate
for a lower target rank. In the spectral norm, for small target ranks, the gap between the
empirical mean error and our error bound does not seem to be as tight as in the Frobenius norm.
We also note that by increasing the value of p, our bound reaches a smaller value for the same
target rank k. For instance, for a target rank of order 20, our bound is of order 100 for p = 102,
while it exceeds 5× 100 in the case of p = 32.
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3.5.2 Error bounds in expectation versus the state-of-the-art
We now compare our error bounds with respect to the reference error bounds [53, Theorems
10.5 and 10.6]. We stress that various reference error bounds exist in the literature but they
can be mostly considered as adaptations2 of the error bounds proposed by Halko, Martinsson
and Tropp [53] in different settings, see e.g., [14]. For simplicity reasons, we later refer to the
Halko, Martinsson and Tropp error bounds [53] by “HMT bound”. We note that the “HMT bound”
corresponds to an upper bound for the following expected error quantity

E
[
‖[In − π(Z)]A‖2,F − ‖Ak‖2,F

]
, (3.53)

where Z = AG with G drawn following a standard Gaussian distribution (G ∼ N (0, In)).
In this case, since ‖[In − π(Z)]Ak‖2,F ≤ ‖Ak‖2,F , we deduce that the error bounds given

in Theorems 3.18 and 3.20 can be also considered as upper bounds of the error quantity (3.53)
with Cov(Z) = AAT. In the spectral norm case, when we consider the error quantity (3.53), we
have been able to derive an improved error bound in Theorem 3.21. We refer to such a bound
as “Improved bound” in the numerical experiments.

Figure 3.3 shows a comparison of the three error bounds for the error quantity (3.53) using two
different target ranks for k in both norms. In the spectral norm case, for k = 5, “Our improved
bound” outperforms by far the other error bounds (i.e., “HMT bound” and “Our bound”). The
“HMT bound” is in particular found to be very loose for small values of the oversampling parameter
%(p). When the target rank k is getting larger (i.e., k = 15), “Our bound” and “Our improved
bound” behave similarly (with a slight advantage for “Our improved bound”). Also, for %(p) ≈
80, we observe a break in the curves related to both bounds. This is mainly due to a change in
the minimum in our bounds. The “HMT bound” is very loose for small value of p, but as far as
the sample parameter gets larger, the bound gets close to our two error bounds.

In the Frobenius norm case, as shown in Figure 3.3, we again notice the clear benefit of “Our
bound” which, compared to “HMT bound”, is leading to a moderate overestimation of the error,
in particular for small values of the oversampling parameter. The asymptotic behaviour of the
error bounds is consistent with the fact that, for a large value of p, “Our bound” reduces to the
“HMT bound” in this norm. For further comparison, we have also plotted the behaviour of the
error bounds proposed by Boullé and Townsend (“BT bound”) [14, Proposition 6] using K = In
in their general setting.

3.5.3 Error bounds for the Randomized Singular Value Decomposition
Finally, we illustrate the relevance of our error bounds in the context of the Randomized Singular
Value Decomposition. We consider the quantity of interest ((3.53)) now with Z = AqG, with
Aq = (AAT)qA for a given q ∈ N and G drawn following a standard Gaussian distribution
(G ∼ N (0, In)). We later consider the single-pass case (i.e., q = 0) and the power scheme for
two different values of the iteration (i.e., q = 1 and q = 2).

We denote the error bound [53, Corollary 10.10] by “HMT bound” in this section. To the
best of our knowledge, in the context of the power iteration scheme for the Randomized Singular
Value Decomposition, the “HMT bound” has been derived only in the spectral norm. We note that
we have been able to provide an error analysis for both the Frobenius and the spectral norms.
Hence, we later denote the error bound given in Corollary 3.33 by “Our bound”. In the spectral
norm case, only “Our improved bound” given in Corollary 3.36 is considered in the following,
since it is found to outperform “Our bound”.

2A noticeable exception is the more involved analysis proposed in [49], which investigates the quality of the
singular value approximation and of the randomized low-rank approximation to a given matrix (see Theorem 5.7
therein, notably). To unify our presentation, we have therefore decided to restrict the comparison to the reference
bounds proposed in [53].
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(a) Results for k = 5.
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(b) Results for k = 15.

Figure 3.3: Comparison of different bounds for the error quantity (3.53) using two different target
ranks k = 5 (top) and k = 15 (bottom), spectral norm (left) and Frobenius norm (right).
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Figure 3.4: Randomized Singular Value Decomposition: comparison of different bounds for the
error quantity (3.53) for two different target ranks k = 5 (top) and k = 15 (bottom), spectral
norm (left) and Frobenius norm (right).
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Figure 3.4 shows the comparison between the different bounds related to the error quan-
tity (3.53), in the context of the Randomized Singular Value Decomposition. First, as expected,
we clearly identify that increasing the value of q in the power iteration scheme does lead to a
strong improvement in the tightness of all the error bounds. In fact, while the error bounds are
above 100 when q = 0, they become much smaller when q ≥ 1. In the spectral norm case, the
advantage of “Our improved bound” over the “HMT bound” is clear. We also note that for a
large value of the target rank (i.e., k = 15), the gap between the two error bounds gets smaller
when q ≥ 1. In the Frobenius norm case, we observe that the power iteration scheme is indeed
very profitable, in particular for the large rank case, i.e., k = 15. A value of q = 1 seems to be
sufficient to get optimal error bounds, since the convergence towards the optimal value ‖Ak‖F
is almost immediate. In terms of computational cost, our numerical experiments suggest that
performing only q = 1 iteration is a very satisfactory trade-off in this test case.

3.6 Conclusions and perspectives
We have analyzed theoretically the low-rank approximation to a given matrix in both the spectral
and Frobenius norms. First, we have derived in Theorems 3.4 and 3.8 deterministic error bounds
that hold with some minimal assumptions. Second, we have derived error bounds in expectation
and in probability in the non-standard Gaussian case, assuming a non-trivial mean and a general
covariance matrix for the random matrix variable (Theorems 3.18, 3.20 and 3.21). This analysis
generalizes and improves the error bounds proposed in [53]. Then, we have applied our analysis
to the Randomized Singular Value Decomposition and have deduced the related error bounds
in expectation (Corollaries 3.33, 3.35 and 3.36). Numerical experiments on a synthetic test case
have shown the tightness of the new error bounds.

In a near future, we plan to apply the contributions from this chapter to generalize the analysis
of the randomized subspace iteration method (Alg. 2.3) proposed in [77]. Such a complementary
analysis would provide an analysis of the accuracy in terms of singular vectors and singular
values for a larger class of randomized subspace iteration methods. Plus, it would be beneficial
in applications where the accuracy in terms of singular vectors and singular values.

The randomized methods for low rank approximation have recently been considered in the
infinite dimensional case [15]. In this setting, the Frobenius norm is replaced by an Hilbert-
Schmidt norm and Gaussian matrices by Gaussian processes. This generalization required to
extend the appropriate technical lemmas in [53] to the infinite dimensional case. Consequently,
investigating whether the preparatory lemmas presented in Section 3.3.2 can also be extended
to the infinite dimensional setting could yield the generalization of the proposed analysis to any
Hilbert space.

Finally, in this chapter, we have compared our bounds in expectation with the state-of-the-art
error bounds. Consequently, understanding how the proposed error bounds in probability given
in Corollaries 3.33, 3.35 and 3.36 behaves compared to the reference bounds in [53, Theorem
10.7 and 10.8] seems also important. In particular, the error bounds in probability are no longer
generalizations of the ones in [53], since the proof of Lemma 3.25 differs from [53, Proposition
10.3]. Consequently, at this point, it is not clear which bound is tighter, and under which
conditions.
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Abstract

In this chapter, we propose and study randomized methods to address two related
generalized eigenvalue problems (GEP) involving matrices with non-Euclidean sym-
metry. Our interest in such specific eigenvalue problems is notably motivated by later
applications in preconditioning within variational data assimilation (see Chapter 5).

Our algorithms compute an approximate dominant eigenspace using randomized
subspace iteration. Then, getting the approximate eigenpairs is handled using the
Rayleigh-Ritz method. For each GEP we propose two variants depending on whether
the Rayleigh-Ritz method is applied to the GEP directly, or to an equivalent formu-
lation based on the inverse. In phase with the theoretical derivation, we propose a
numerically robust implementation for each algorithm. We detail the related com-
putational costs and memory requirements, and outline the relations with existing
methods, especially from [80] and [24].

Based on the general analysis developed in Chapter 3, we propose an average-
case error analysis of the methods in both weighted Frobenius and spectral norms.
The obtained bounds give insights regarding the number of subspace iterations, the
number of random samples, and the distribution of the Gaussian sample matrix. Our
analysis in spectral norm surpasses the state-of-the-art error bounds in [80, Theorem
1], while the analysis in Frobenius norm, to the best of our knowledge, is new.

Finally, we investigate the performance of the proposed algorithms in terms of
approximate eigenpair accuracy on a variational data assimilation problem.

4.1 Introduction

Let Υ ∈ Rn×n be a symmetric positive definite matrix defining an inner product on Rn. In this
chapter, we are interested in solving the generalized eigenvalue problem (GEP)

Av = λB v, (4.1)

where A,B ∈ Rn×n are Υ-symmetric matrices, B is invertible and v ∈ Rn is non zero. The
pair {A,B} in (4.1) is called a matrix pencil. The study of this class of eigenvalue problems is
motivated by their applications in preconditioning presented in Chapter 5. Similarly, we are also
interested in addressing the related eigenvalue problem

AB−1u = λu, (4.2)

where it can readily be seen that u = Bv. In the preconditioning terminology, if B−1 is inter-
preted as a preconditioner for A, then solving (4.1) (resp. (4.2)) would be interpreted as finding
eigenpairs of the left (resp. right) preconditioned matrix. From now on, we will refer to (4.1) as
the GEP in initial form, and to (4.2) as the GEP with basis transformation.

The eigenvalue problem (4.1) can be transformed into a generalized Hermitian eigenvalue
problem by left-multiplying (4.1) by Υ,

ΥAv = λΥB v. (4.3)

Here, ΥA and ΥB are indeed symmetric due to the Υ-symmetry of A and B. Thus, we ob-
tain that the eigenvalues are real, and that the eigenvectors are ΥB-orthogonal [72, Theorem
15.3.3]. Similarly, noting that AB−1 is ΥB−1-symmetric, left-multiplying (4.2) by ΥB−1 yields
the equivalent generalized Hermitian eigenvalue problem

ΥB−1AB−1 v = λΥB−1 v. (4.4)
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with analogous consequences.
Here, we focus on the case ΥB (or equivalently ΥB−1) is symmetric positive definite, which is

less restrictive than it might look at first sight. Indeed, if ΥB is not symmetric positive definite,
then there exist real scalars α, β such that αΥA + βΥB is symmetric positive definite, and we
thus rather study the matrix pencil {A,αA+ βB}, where we notice that αA + βB remains Υ-
symmetric. The eigenvectors are identical, and if µ denotes an eigenvalue of the modified pencil,
then the eigenvalues of the initial pencil can be recovered via λ = βµ/(1−αµ), given that αµ 6= 1.

Another important assumption that we make is that solving linear systems involving B can
be performed accurately. Again, this might seem restrictive, but if B−1 is interpreted as a
preconditioner for A, then B−1 is generally directly available as an operator. In this case,
accurately solving linear systems involving B reduces to simply apply B−1. When B−1 is not
available, then applications of B−1 can be replaced by an iterative procedure. This setting is
out of the scope of this thesis, although results in the deterministic and non-symmetric case [36]
suggest that it could still be viable.

4.1.1 Related research
There are several deterministic methods for solving a generalized Hermitian eigenvalue problem
given as (4.3). A first possibility is to use direct methods, which requires to perform the Cholesky
factorization of ΥB [43, Theorem 4.2.7] as ΥB = LLT. (4.3) can then be transformed into the
following standard Hermitian eigenvalue problem

L−1ΥAL−T ṽ = λ ṽ, (4.5)

where ṽ = LTv. Then, solving (4.5) can be performed using standard methods such as Lanczos
of subspace iteration method (see [8, Chapter 4]). However, such factorization for ΥB is out
of reach in our context for two main reasons. First, we target large-scale applications where
the worst-case O(n3) algorithmic complexity of the Cholesky factorization becomes prohibitively
expensive. Second, ΥB is a product of matrices that is neither formed nor stored explicitly,
making direct methods unusable. On the other hand, iterative methods (see [8, Chapter 5]) can
be directly applied on (4.3). However, they require to accurately solve linear systems involving
ΥB, which might neither be affordable nor possible.

Randomized algorithms have been proposed to compute approximate eigen/singular informa-
tion. These methods have proven to be robust, and particularly efficient when the eigen/singular
values are rapidly decaying. They are also matrix-free, in that they do not need to access the
matrix coefficients, but only matrix-vector products with the involved matrices to block of vec-
tors.

A first valid option to address would thus be to use randomized SVD (Algorithm 2.4), to
compute approximate dominant singular vectors/values of B−1A. However, one can show that if
w ∈ Rn is a singular vector of B−1A, then its eigenvectors can be recovered via v = (ΥB)−1/2w.
Thus, it would require a factorization of ΥB, which is excluded. This motivated the authors
in [80] to propose three dedicated randomized methods to approximately solve (4.3) in the par-
ticular case Υ = In. Their algorithms directly provide B-orthonormal approximate eigenvectors,
and an average-case analysis in weighted spectral norm has been provided (see Theorem 1) for
one of the methods. Nevertheless, since their algorithms require applications of A, B and B−1,
the solution of (4.3) would especially require to apply (ΥB)−1, which might not always be possi-
ble. Finally, randomized methods for computing an approximate truncated generalized singular
value decomposition (GSVD) in the sense of [91, Definition 3] have been proposed in [78, Algo-
rithm 3]. Nevertheless, the method proposed in [78] leads to very expensive algorithms, because
the power iterations are fundamentally different for rectangular and square matrices.
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4.1.2 Contributions
In this chapter, we derive randomized methods for computing approximate dominant eigenvectors
and eigenvalues of (4.1) and (4.2) under the assumption that ΥB is symmetric positive definite.

The existing methods in the literature all require either solving linear systems involving ΥB
or factorizations of ΥB, and our intention in this chapter is to show that algorithms can be
derived without these requirements.

Our algorithms rely on the randomized subspace iteration (Algorithm 2.3) to compute an
approximate dominant eigenspace. Then, we propose two different extraction methods to obtain
the approximate eigenpairs based on the Rayleigh-Ritz method. Thus, Algorithms 4.1 and 4.2
address the solution of (4.1) and Algorithms 4.3 and 4.4 the solution of (4.2).

The proposed algorithms are versatile and allow us to recover several existing methods such as
the Nyström (Algorithm 2.5) and Ritzit (Algorithm 2.6) methods. In particular, Algorithms 4.1
and 4.2 are generalizations of [80, Algorithms 6, 7 and 8]. However, our implementations avoid
applications of B and are thus more efficient computationally.

Theoretically, we propose an average-case error analysis of the algorithms in both weighted
Frobenius and spectral norms. The obtained bounds directly stem from Theorems 3.18 and 3.20
proposed in Section 3.3.2. Theorems 4.9, 4.10 and 4.11 provide an analysis of Algorithms 4.1
and 4.2, and Theorems 4.13, 4.14 and 4.15 an analysis of Algorithms 4.3 and 4.4. To the best
of our knowledge, the bounds obtained in weighted Frobenius norm are new. The bounds in
weighted spectral norm are not, but they generalize and improve over the ones proposed in [80,
Theorem 1].

4.2 Preliminaries
Let us begin with introducing additional material that will be helpful throughout this chapter.

Schur complement

Let M ∈ Rn×n be a symmetric matrix and let 1 ≤ k ≤ n. Assume M has the following block
partitioning

M =
[
M1,1 M1,2

MT
1,2 M2,2

]
,

where M1,1 ∈ Rk×k, M1,2 ∈ Rk×(n−k) and M2,2 ∈ R(n−k)×(n−k). If M1,1 is nonsingular, then the
Schur complement of the block M1,1 of the matrix M is defined as

M2,2/M1,1 = M2,2 −MT
1,2M

−1
1,1M1,2.

Remark 4.1. Here the notation is not standard, but it makes the quantity arising in the error
bounds much lighter, hence this choice.

4.3 Derivation of the algorithms

Let Υ ∈ Rn×n be a symmetric positive definite matrix and let A,B ∈ Rn×n be two Υ-symmetric
matrices. In this section, given Assumptions 1 and 2, we propose randomized methods to solve

B−1Av = λv and AB−1u = λu,

where v, u ∈ Rn are non zero. We briefly recall the derivation of the Rayleigh-Ritz method
in Section 4.3.1. Then, we derive our algorithms for both the GEP and the GEP with basis
transformation.
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4.3.1 The Rayleigh-Ritz method
The Rayleigh-Ritz method [39, Section 2.5] is a natural framework to derive approximations of
eigenvalue problems. Let us briefly introduce the procedure.

Let M ∈ Rn×n be any given matrix, and S be a linear subspace in which the approximate
eigenvectors of M are sought. This subspace is thereby usually referred to as the search space. For
any vector x ∈ S and scalar µ ∈ C, we define the residual vector associated to the approximate
eigenpair (x, µ) of M as

r(x, µ) = Mx− µx.

To derive the approximation, we impose a Galerkin condition on the residual, that is an
orthogonality condition with respect to S ⊂ Rn. Performing the Rayleigh-Ritz method consists
in finding x ∈ S and µ ∈ R such that

r(x, µ) ⊥ S. (4.6)

Remark 4.2. In our context, the orthogonality will be considered with respect to a non-Euclidean
inner-product.

Let S be a matrix whose columns form a basis of S. For any x ∈ S, there exists some vector
y of appropriate dimension such that x = Sy. Accordingly, (4.6) can be written in a matrix form
as

STMS y = µSTS y. (4.7)

If (y, µ) is a solution of (4.7), then (Sy, µ) is called a Ritz pair of M associated to S [72,
Section 11.3].

4.3.2 Algorithms for the generalized eigenvalue problem in initial form
We focus on the GEP in its initial formulation, that is as in (4.1). Let us rewrite it as

B−1Av = λv. (4.8)

To derive the Ritz approximation, we must first construct the search space. Several methods
are available in the randomized linear algebra literature to construct relevant search spaces
(see [63, Section 11] for a review). Here, and as mentioned in the introduction, we consider
the randomized subspace iteration method. We therefore consider search spaces of the form
S = R(Vq) with Vq = (B−1A)qΩ, with Ω ∈ Rn×p a full column rank random matrix satisfying
1 ≤ p ≤ rank(A), and q ∈ N.
Remark 4.3. Although one of the simplest approach, the random subspace iteration is very well
suited when the emphasis is made on approximating dominant eigenvectors, which is precisely
what will be needed in Chapter 5. However, it is worth noticing that by this choice, we limit de
facto the range of applications of our algorithms.

Direct approach

For this first approach, we directly apply the Rayleigh-Ritz method on (4.8) with S = Vq. Since
B−1A is ΥB-symmetric, the orthogonality in the Galerkin condition is considered with respect
to the ΥB inner product. Altogether, we obtain

V T
q ΥAVq y = µV T

q ΥBVq y.

Let us now assume that q ≥ 1. In this case, one has by definition of Vq that BVq = AVq−1.
Therefore, we can rewrite the projected eigenvalue problem as

V T
q ΥAVq y = µV T

q ΥAVq−1 y. (4.9)
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Here, we observe that forming (4.9) no longer requires B. Assuming q ≥ 1 only excludes the
case where we consider a search space of the form Ω with Ω being a random matrix. Since very
poor performance can be expected from such a search space, assuming q ≥ 1 is reasonable.
Remark 4.4. Avoiding the use of B can be important in applications where this matrix is not
explicitly available such as in certain variational data assimilation settings [50, Section 3.1].

Finding Ritz pairs (µ, y) satisfying (4.9) is thus equivalent to solving a reduced generalized
symmetric eigenvalue problem. Let us denote T = V T

q ΥAVq and Φ = V T
q ΥAVq−1. By as-

sumption, ΥB is symmetric positive definite and Vq is full column rank. Consequently, Φ is
symmetric positive definite, and there exist a Φ-orthonormal matrix W ∈ Rp×p and a diagonal
matrix ∆ ∈ Rp×p such that

TW = ΦW∆, and WTΦW = Ip.

The approximate eigenvectors Ṽ and approximate eigenvalues Λ̃ of (4.8) are then obtained
via Ṽ = VqW and Λ̃ = ∆.
Remark 4.5. We notice that WTV T

q ΥBVqW = WTΦW = Ip, meaning that the obtained ap-
proximate eigenvectors are ΥB-orthonormal. Here, we remark that their ΥB-orthonormality is
entirely determined by the Φ-orthonormality of W . This implies that the reduced eigenvalue
problem must be solved accurately to ensure a satisfactory ΥB-orthonormality of the resulting
approximate eigenvectors.

The procedure is summarized in Algorithm 4.1. Algorithmic considerations are discussed in
Section 4.3.5.

Algorithm 4.1: Direct approach for the GEP in initial form (4.1).

Input: Matrices A,B ∈ Rn×n that are Υ-symmetric, number of random samples
1 ≤ p ≤ rank(A), number of approximate eigenpairs 1 ≤ k ≤ p to provide,
number of subspace iterations q ≥ 1.

1 Draw a random matrix Ω ∈ Rn×p, and set V = Ω
2 for j = 1, . . . , q do
3 Compute X = AV ∈ Rn×p
4 Perform the thin QR factorization B−1X = QR and set V = Q

5 end
6 Compute Z = ΥV ∈ Rn×p and form Φ = R−TXTZ ∈ Rp×p
7 Compute X = AV ∈ Rn×p and form T = XTZ ∈ Rp×p
8 Solve the generalized Hermitian eigenvalue problem TW = ΦW∆ with W ∈ Rp×p a

Φ-orthogonal matrix and ∆ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
decreasing order

9 Remove the last p− k columns of W and ∆
10 Remove the last p− k rows of ∆
11 Set Ṽ = VW ∈ Rn×k and Λ̃ = ∆ ∈ Rk×k.

Output: Matrices Ṽ ∈ Rn×k and Λ̃ ∈ Rk×k such that B−1AṼ ≈ Ṽ Λ̃ with
Ṽ TΥBṼ = Ik and Λ̃ diagonal.
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Inverse approach

The particular form of Vq allows us to address (4.8) from another perspective. Let us temporarily
assume that A is nonsingular. Hence, we can rather consider the standard eigenvalue problem

A−1Bv = θv, (4.10)

where θ = 1/λ. Since A−1B is ΥB symmetric, the Rayleigh-Ritz method applied to (4.10) with
Vq yields

V T
q ΥBA−1BVq y = θ V T

q ΥBVq y.
The inverse of A is not available in practice. However, assuming again that q ≥ 1, we have
A−1BVq = Vq−1 along with BVq = AVq−1. In addition with the Υ-symmetry of A and B, one
can rewrite the projected eigenvalue problem as

V T
q−1ΥAVq−1 y = θ V T

q ΥAVq−1 y. (4.11)

This resulting reduced eigenvalue problem no longer depends on either A−1 or B. Thus, although
we assumed A nonsingular to derive (4.11), this projected eigenvalue problem can be formed and
solved even in the case A is singular. The procedure is summarized in Algorithm 4.2. Although
different, this approach is connected to the harmonic Rayleigh-Ritz method (see the discussion
in Section 4.3.4).

Algorithm 4.2: Inverse approach for the GEP in initial form (4.1).

Input: Matrices A,B ∈ Rn×n that are Υ-symmetric, number of random samples
1 ≤ p ≤ rank(A), number of approximate eigenpairs 1 ≤ k ≤ p to provide,
number of subspace iterations q ≥ 1.

1 Draw a random matrix Ω ∈ Rn×p, and set V = Ω
2 Perform the thin QR factorization of AV = QR and set X = Q
3 for j = 1, . . . , q − 1 do
4 Compute V = B−1X
5 Perform the thin QR factorization of AV = QR and set X = Q

6 end
7 Compute Z = ΥX ∈ Rn×p and form T = R−TV TZ ∈ Rp×p
8 Compute V = B−1X ∈ Rn×p and form Φ = V TZ ∈ Rp×p
9 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

10 Remove the last p− k columns of W and Θ
11 Remove the last p− k rows of Θ
12 Set Ṽ = VW ∈ Rn×k and Λ̃ = Θ−1 ∈ Rk×k.

Output: Matrices Ṽ ∈ Rn×k and Λ̃ ∈ Rk×k such that B−1AṼ ≈ Ṽ Λ̃ with
Ṽ TΥBṼ = Ik and Λ̃ diagonal.

4.3.3 Algorithms for the generalized eigenvalue problem with basis
transformation

Let us now propose two randomized algorithms for the eigenvalue problem with basis transfor-
mation, that is,

AB−1u = λu. (4.12)
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Again, deriving the Ritz approximation requires to determine the appropriate search space. With
the basis transformation, the randomized subspace iteration considers matrices of the form Uq =
(AB−1)qΩ, where Ω ∈ Rn×p is a full column rank random matrix satisfying 1 ≤ p ≤ rank(A),
and q ∈ N.

Direct approach

To apply the Rayleigh-Ritz method, we recall that AB−1 is ΥB−1-symmetric, which defines the
inner product with respect to which the Galerkin condition is imposed. Altogether, we obtain

UT
q ΥB−1AB−1Uq y = µUT

q ΥB−1Uq y. (4.13)

Here, we remark that B does not appear in (4.13), without any further assumption on q.
In particular, this means that the method can be derived without requiring B also for q = 0.
However, as already mentioned, we expect poor performance of such a choice, since U0 = Ω is
very unlikely to contain eigeninformation.

Finding Ritz pairs (µ, y) satisfying (4.13) is then equivalent to solve a reduced generalized
symmetric eigenvalue problem. If we denote T = UT

q ΥB−1AB−1Uq = UT
q ΥB−1Uq+1 and Φ =

UT
q ΥB−1Uq, then Φ is symmetric positive definite by assumption on Uq and ΥB−1. Consequently,

there exist a Φ-orthonormal matrix W ∈ Rp×p and a diagonal matrix ∆ ∈ Rp×p such that

TW = ΦW∆.

The approximate eigenvectors Ũ and approximate eigenvalues Λ̃ of (4.12) are then obtained
via Ũ = UqW and Λ̃ = ∆. As in Section 4.3.2, the approximate eigenvectors Ũ are indeed
ΥB−1-orthonormal, and they inherit this property from the Φ-orthonormality of W .

The overall procedure is summarized in Algorithm 4.3.

Algorithm 4.3: Direct approach for the GEP with basis transformation (4.2).

Input: Matrices A,B ∈ Rn×n that are Υ-symmetric, number of random samples
1 ≤ p ≤ rank(A), number of approximate eigenpairs 1 ≤ k ≤ p to provide,
number of subspace iterations q ≥ 0.

1 Draw a random matrix Ω ∈ Rn×p, and set U = Ω
2 Perform the thin QR factorization of B−1U = QR and set X = Q
3 for j = 1, . . . , q do
4 Compute U = AX
5 Perform the thin QR factorization of B−1U = QR and set X = Q

6 end
7 Compute Z = ΥX ∈ Rn×p and form Φ = R−TUTZ ∈ Rp×p
8 Compute X = AX ∈ Rn×p and form T = XTZ ∈ Rp×p
9 Solve the generalized Hermitian eigenvalue problem TW = ΦW∆ with W ∈ Rp×p a

Φ-orthogonal matrix and ∆ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
decreasing order

10 Remove the last p− k columns of W and ∆
11 Remove the last p− k rows of ∆
12 Set Ũ = UW ∈ Rn×k and Λ̃ = ∆ ∈ Rk×k

Output: Matrices Ũ ∈ Rn×k and Λ̃ ∈ Rk×k such that AB−1Ũ ≈ Ũ Λ̃ with
ŨTΥB−1Ũ = Ik and Λ̃ diagonal.
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Inverse approach

As in Section 4.3.2, let us assume temporarily that A is nonsingular, and let us rather study the
inverse eigenvalue problem

BA−1u = θu, (4.14)

where θ = 1/λ. Deriving the Ritz approximation of (4.14) then yields

UT
q ΥA−1Uq y = θ UT

q ΥB−1Uq y.

Again, since A−1 is not available in practice, we assuming q ≥ 1 so that A−1Uq = B−1Uq−1. In
addition with Υ-symmetry of A and B one can rewrite the projected eigenvalue problem as

UT
q ΥB−1Uq−1 y = θ UT

q ΥB−1Uq y. (4.15)

Here, A−1 no longer appear, meaning that (4.15) can be formed and solved even when A−1 is
not available. The procedure is summarized in Algorithm 4.4.

Algorithm 4.4: Inverse approach for GEP with basis transformation (4.2).

Input: Matrices A,B ∈ Rn×n that are Υ-symmetric, number of random samples
1 ≤ p ≤ rank(A), number of approximate eigenpairs 1 ≤ k ≤ p to provide,
number of subspace iterations q ≥ 0.

1 Draw a random matrix Ω ∈ Rn×p, and set U = Ω
2 for j = 1, . . . , q do
3 Compute X = B−1U ∈ Rn×p
4 Perform the thin QR factorization AX = QR and set U = Q

5 end
6 Compute Z = ΥU ∈ Rn×p and form T = R−TXTZ ∈ Rp×p
7 Compute X = B−1U ∈ Rn×p and form Φ = XTZ
8 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

9 Remove the last p− k columns of W and Θ; remove last p− k rows of Θ
10 Set Ũ = UW ∈ Rn×k and Λ̃ = Θ−1 ∈ Rk×k.

Output: Matrices Ũ ∈ Rn×k and Λ̃ ∈ Rk×k such that AB−1Ũ ≈ Ũ Λ̃ with
ŨTΥB−1Ũ = Ik and Λ̃ diagonal.

4.3.4 Relation between the inverse approaches and the harmonic Rayleigh-
Ritz method

Let us relate the proposed inverse approaches to the harmonic Rayleigh-Ritz method [39, Section
2.5]. Let us first begin with the inverse approach for the initial GEP. In this context, a pair (x, µ)
with x ∈ S and µ ∈ R is an harmonic Ritz pair of B−1A associated to S if it satisfies

B−1Ax− µx ⊥ΥB B−1AS. (4.16)

In the proposed algorithms, one has S = R(Vq), and the matrix form of (4.16) then reads

V T
q A

TB−TΥAVq y = µV T
q A

TB−TΥBVq y.
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Using the Υ-symmetry of A and B along with the relation B−1AVq = Vq+1 we obtain

V T
q+1ΥAVq y = µV T

q ΥAVq y.

Permuting left and right-hand sides, and defining θ = 1/µ (µ 6= 0) it finally yields

V T
q ΥAVq y = θ V T

q+1ΥAVq y. (4.17)

This is of the same form as (4.11), except for the index q. Therefore, for a given q, applying
the inverse approach with Vq+1 and the harmonic Rayleigh-Ritz approach with Vq will result in
forming and solving the same reduced eigenvalue problem. However, we expect Vq+1 to contain
more accurate dominant eigeninformation than Vq because of the additional subspace iteration.
Thus the output dominant eigenvectors using the harmonic Rayleigh-Ritz approach should be
of poorer quality. Alternatively, if both methods are applied with the same search space Vq,
then forming the reduced eigenvalue problem will be more costly with the harmonic Rayleigh-
Ritz method than with the inverse approach. This is the main motivation why we preferred the
inverse approach over the harmonic approach.

Similarly, for the inverse approach on the GEP with basis transformation, we say that a pair
(x, µ) with x ∈ S and µ ∈ R is an harmonic Ritz pair of AB−1 associated to S if it satisfies

AB−1x− µx ⊥ΥB−1 AB−1S. (4.18)

Using that S = R(Uq), the matrix form of (4.18) is

UT
q B
−TATΥB−1AB−1Uq y = θ UT

q B
−TATΥB−1Uq y. (4.19)

Noticing that AB−1Uq = Uq+1, permuting left and right-hand sides, and defining θ = 1/µ (µ 6= 0)
we obtain

Uq+1ΥB−1Uq+1 y = θ Uq+1ΥB−1Uq y. (4.20)

Again, this is similar to (4.15) except for the index q. Consequently, an analogous argument
leads us to prefer the inverse approach over the harmonic Ritz method.

Nevertheless, let us insist on the fact that our inverse approaches are viable only because of
the particular form of the search space we consider, while the harmonic Rayleigh-Ritz method is
well defined for any search space.

4.3.5 Algorithmic considerations
For each approach, the implementation guideline is to form the appropriate reduced generalized
Hermitian eigenvalue problem as efficiently as possible, using the different simplifications occur-
ring when q ≥ 1 highlighted in Sections 4.3.2 and 4.3.3. Consequently, the distinction between
the construction of the search space, and the Rayleigh-Ritz method itself are not clearly sepa-
rated. This aspect differs from the traditional derivation of randomized algorithms, where the
construction phase of the search space (or range finder) is clearly separated from the approxi-
mation extraction phase. However, it is precisely from this interlacing that we obtain a cheaper
implementation than the algorithms in [80] (see Section 4.3.6). The truncation performed at the
end of each algorithm is optional, although it can improve the accuracy of the result whenever
p > k.

We have mentioned in Remark 4.5 that the solution of the projected eigenvalue problem
(step 8 in Algorithms 4.1 and 4.4 or step 9 in Algorithms 4.2 and 4.3) must be performed
accurately because the orthogonality of the resulting eigenvectors is entirely determined by the
Φ-orthogonality of the matrix W ∈ Rp×p. In the applications we target, the number of samples p
will be moderate, meaning that solving the matrix pencil {T, Φ} can be done using direct methods
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such as the QZ process [43, Section 7.7.7]. Thus, the thin QR factorizations are performed to
ensure that the conditioning of the matrix pencil remains moderate. As an example, it can be
verified that in Algorithm 4.1, one has

T = QTΥAQ and Φ = QTΥBQ

with Q ∈ Rn×p an orthogonal matrix. Therefore, the condition number of T and Φ is not worse
than the one of ΥA and ΥB respectively, and the reduced eigenvalue problem is thus never
more ill-conditioned that the initial system. In this regard, an accurate orthonormality of the
columns of Q is not necessary, because the condition number of ΥA and ΥB is expected to be
significantly larger than the one of QTQ. If we denote by Q ∈ Rn×p and R ∈ Rp×p the matrices
obtained from the QR factorization of X ∈ Rn×p, then the error ‖QTQ − Ip‖ is not critical
in our algorithm. However, since we use the factors R and Q separately, it is crucial that the
error ‖X − QR‖ is as small as possible. This is critical to guarantee the symmetry of T or Φ
(depending on the algorithm). In practice, it is also important that the QR factorization can be
performed efficiently when n is large, which implies to use parallel algorithms as in [82, 96].

Then, we note that Algorithms 4.2 and 4.4 might break down if Θ is singular, which would
mean that the reduced matrix H is singular too. However, this is of no practical concern for two
reasons. First, since Ω ∈ Rn×p is such that p ≤ rank(A), then R(Ω) lies in the image of A almost
surely. Consequently, H is almost surely nonsingular. Nevertheless, if it occurs, one can replace
Θ−1 by its Moore-Penrose pseudo-inverse. In that case, the approximate eigenvectors associated
with 0 will correspond to elements in the null space of A.

Table 4.1 summarizes the computational costs of all the algorithms. The first columns detail
the number of applications of each operator to a block of p vectors. The formation of the reduced
operators, and the truncation account for 4np2 and 2npk ≤ 2np2 respectively. For the thin QR
factorization, we consider for instance the Modified Gram-Schmidt algorithm whose cost is 2np2

when applied to a n×p matrix [43, Algorithm 5.2.6]. In total, the arithmetic operations account
for no more than 4np2 + 2np2 + 2qnp2 = 2np2(q + 3). In terms of memory requirements, all the
algorithms require two blocks of p vectors, that is 2np coefficients.

All the methods have a different consumption of applications of A and B−1. Hence, Algo-
rithm 4.2 and 4.4 should be preferred in a context where applying these operators is known to
be expensive.

Algorithm A B−1 Υ Other flops Storage
4.1 q + 1 q 1 2np2(q + 3) 2np
4.2 q q 1 2np2(q + 3) 2np
4.3 q + 1 q + 1 1 2np2(q + 3) 2np
4.4 q q + 1 1 2np2(q + 3) 2np

Table 4.1: Computational costs and memory requirements of the algorithms. Columns 2 to
4 account for the number of applications of each operator to a block of p vectors. Column 5
accounts for the number of floating point operations induced by the arithmetic operations and
column 6 the memory requirements.

4.3.6 Relations with prior algorithms
The proposed methods are actually general enough to allow us to recover a number of existing
algorithms.
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Algorithms from Saibaba, Lee and Katinidis [80]. It can be shown that Algorithms 4.1
and 4.2 are generalizations of Algorithms 6, 7 and 8 proposed in [80]. Let us denote those
algorithms by SLK 6, SLK 7 and SLK 8 respectively. The scope of [80] was to propose randomized
methods to address the generalized Hermitian eigenvalue problem involving the matrix pencil
{A, B} with A ∈ Rn×n symmetric and B ∈ Rn×n symmetric positive definite. There are two
equivalent possibilities to address the same eigenvalue problem using Algorithms 4.1 and 4.2.
Either we apply them to {A, B} directly with Υ = In, or we apply them to {B−1A, In} with
Υ = B. In [80], the derivation of the methods is rather based on the latter. However, we
observe that the former does not require applications of B. Consequently, Algorithms 4.1 and 4.2
provide, in exact arithmetic, equivalent approximations as SLK 6, SLK 7 and SLK 8 at a lower
computational cost. Numerical illustrations of this fact are given in Section 4.5.2. Table 4.2
gives the choice of parameters for Algorithms 4.1 and 4.2 to recover mathematically equivalent
approximations as SLK 6, SLK 7 and SLK 8.

q = 1 q = 2
Algorithm 4.1 SLK 6 -
Algorithm 4.2 SLK 7 SLK 8

Table 4.2: Equivalence in exact arithmetic between the algorithms derived in Section 4.3.2
(with Υ = In) and SLK 6, SLK 7 and SLK 8 (respectively Algorithms 6, 7 and 8 in [80]). The
equivalences are verified when the algorithms are applied to the same pencil {A,B} with identical
values for p and k.

Algorithms from Saibaba and Katinidis [79]. In [79], the authors were interested in solving
the generalized Hermitian eigenvalue problem involving the matrix pencil {A, B} where A and
B arise from the solution of a Bayesian inverse problem in geostatistics. In this regard, they
address a problem formally similar to variational data assimilation. Algorithm 1 in [79] can be
recovered in two different ways with our algorithms. The first option is to apply Algorithm 4.1
with Υ = In and q = 1 and to draw Ω ∈ Rn×p as a Gaussian matrix with covariance matrix
Cov(Ω) = B−2, i.e. Ω = B−1G with G ∼ N (0, In). Alternatively, we can apply Algorithm 4.3
with Υ = In and q = 1, and then postmultiply the approximate eigenvectors Ũ by B−1. Although
the implementations differ, we notice that [79, Algorithm 1], unlike SLK 6, SLK 7 and SLK 8, does
not require applications of B and is thus similar on this aspect to our algorithms.

Nyström method [53]. Notably, the proposed algorithms also allow us to recover the Nyström
method (Algorithm 2.5) for standard symmetric positive definite A. Assuming Υ = B = In,
and A symmetric positive definite, then the algorithms for the GEP in initial form and with
basis transformation become identical. We indeed verify that either Algorithm 4.2 or 4.4 with
q = 1 provides approximations identical to the Nyström method. This allows us to interpret the
Nyström method in the frame of approximate eigenvalue problems.

Ritzit method from Daužickaitė et al [24]. Given A symmetric positive definite and
B = In, we can also recover the Ritzit method, introduced in [24, Algorithm 8]. This method
applies the Rayleigh-Ritz method to the squared matrix A2, with a subspace of the form AG
with G ∈ Rn×p a standard Gaussian matrix. The Ritzit method can be recovered by applying
for instance Algorithm 4.1 with A2 with B = Υ = In and q = 0 and drawing the random matrix
Ω ∈ Rn×p according to a Gaussian distribution with covariance matrix A2. This distribution
for Ω is indeed equivalent to consider Ω = AG with G ∈ Rn×p a standard Gaussian matrix.
The main reason why we have to modify the distribution is that the Ritzit method considers
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a search subspace with a different structure than ours. However, since the distribution of Ω is
fairly general, this can be bypassed.

4.3.7 Exploiting an additional matrix structure
In certain applications, the matrices A and B are related to each other. In the context of weighted
nonlinear least-squares problems, the matrices A and B for instance satisfy

A = B + C,

with A,B ∈ Rn×n being symmetric positive definite and C ∈ Rn×n being symmetric positive
semi-definite. In general, the rank m of C is much smaller than n. This particular structure
allows us to significantly improve the approximations that can be obtained with the proposed
algorithms. Indeed, we observe that in this case

B−1A = In +B−1C and AB−1 = In + CB−1.

Consequently, the eigenvectors of B−1A and B−1C (respectively AB−1 and CB−1) are identical,
and the eigenvalues are related via a simple shift of 1. However, since B−1C and CB−1 are of
rank m ≤ n, their eigenvalue distribution has a smaller tail than B−1A and AB−1 respectively.
As will be shown in the theoretical analysis proposed in Section 4.4, this means that applying
the algorithms to B−1C and CB−1 is expected to yield more accurate approximations than
applying them to B−1A and AB−1 respectively. This fact will be further detailed in the numerical
experiments provided in Section 4.5, where we consider test matrices with such a structure.

4.4 Average-case analysis
Let us now propose a theoretical analysis of the algorithms presented in Section 4.3. In this
section, the random matrix Ω is assumed to be a Gaussian matrix, thus denoted by G ∈ Rn×p,
such that G ∼ N (0,Cov(G)). We propose an average-case analysis of the methods based on
low-rank approximation errors. The proposed results directly stem from the general analysis
presented in Chapter 3. In this regard, let us begin with defining the appropriate norms. Let
A,W ∈ Rn×n be two matrices with W symmetric positive definite. We define the following norms

‖A‖2,W = max
x∈Rn\{0}

‖Ax‖W
‖x‖W

and ‖A‖F,W = tr
(
ATWAW

)
.

Those are respectively weighted spectral and Frobenius norms. Whenever possible, we will use
the shortcut ‖A‖2,F,W to denote either the weighted spectral or Frobenius norm. Those norms
are related to the standard spectral and Frobenius norms as

‖A‖2,F,W = ‖W 1
2AW− 1

2 ‖2,F . (4.21)

We separate the analysis between the methods for the initial GEP and the ones for the trans-
formed GEP. Let us begin with analyzing the methods for the initial GEP, that is Algorithms 4.1
and 4.2. We analyze the randomized methods for the GEP in initial form in Section 4.4.1, and
the ones for the GEP with basis transformation in Section 4.4.2 As will be shown, the analy-
sis for Algorithms 4.3 and 4.4 can be deduced from the one of Algorithms 4.1 and 4.2. As a
consequence, we put more effort in the details for the first analysis.

74



Chapter 4. Randomized methods for the generalized symmetric eigenvalue problem in a
non-Euclidean inner product

4.4.1 Probabilistic analysis of the randomized methods for the gener-
alized eigenvalue problem in initial form

Let us consider the eigenvalue decomposition B−1AV = V Λ, where V ∈ Rn×n is a ΥB-
orthonormal matrix containing the eigenvectors and Λ = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn
the corresponding eigenvalues. For a given k ∈ {1, n}, we define the following partitioning

B−1A =
[
Vk Vk

] [Λk
Λk

][
V T
k

V T
k

]
ΥB, (4.22)

with Vk ∈ Rn×k, Vk ∈ Rn×(n−k), Λk ∈ Rk×k and Λk ∈ R(n−k)×(n−k). Let us also set Ak =
BVkΛkV T

k ΥB and Ak = BVkΛkV T
k ΥB so that B−1A = B−1Ak + B−1Ak. Also, for a given k,

we define the eigenvalue ratios as

γi = λk+1

λi
, 1 ≤ i ≤ k. (4.23)

The following proposition is a variant of the Eckart-Young theorem [30], which provides an
expression for the optimal rank k approximation of B−1A. Besides justifying the definitions of
the weighted norms, it will be at the core of the forthcoming analysis.

Proposition 4.6. Let Υ ∈ Rn×n be a symmetric positive definite matrix. Let A,B ∈ Rn×n be
Υ-symmetric matrices such that ΥB is symmetric positive definite. Then one has

min
Z∈Rn×k

rank(Z)=k

‖[In − πΥB(Z)]B−1A‖2,F,ΥB = ‖Λk‖2,F

where the optimal value is attained for R(Z) = R(Vk).

Proof. Using the relation between the weighted and standard norms highlighted in (4.21), we
have

‖[In − πΥB(Z)]B−1A‖2,F,ΥB = ‖(ΥB) 1
2 [In − πΥB(Z)]B−1A(ΥB)− 1

2 ‖2,F .

Then,

(ΥB) 1
2 [In − πΥB(Z)]B−1A(ΥB)− 1

2 = (ΥB) 1
2 [In − Z(ZTΥBZ)−1ZTΥB]B−1A(ΥB)− 1

2

= [In − π((ΥB) 1
2Z)](ΥB) 1

2B−1A(ΥB)− 1
2

= Â− π((ΥB) 1
2Z)Â,

where Â = (ΥB) 1
2B−1A(ΥB)− 1

2 . Then, from the eigenvalue decomposition of B−1A we have

Â = (ΥB) 1
2V ΛV T(ΥB) 1

2 . (4.24)

The ΥB-orthonormality of V implies that (ΥB) 1
2V is orthonormal. Relation (4.24) is then

simply the standard SVD of Â. Applying [13, Theorem 2.2.11], we obtain that the solution of
the minimization problem is

π((ΥB) 1
2Z)Â = (ΥB) 1

2VkΛkV T
k (ΥB) 1

2 = π((ΥB) 1
2Vk)Â,

that is R(Z) = R(Vk), with the corresponding optimal value being ‖Λk‖2,F .

Since we are looking for approximations of the dominant eigenvectors, Proposition 4.6 allows us
to consider ‖[In − πΥB(Z)]B−1A‖2,F,ΥB as an indirect measure of the approximate eigenvector
accuracy. The closest this quantity is to ‖Λk‖2,F the better Z approximates Vk. This is where
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the low rank approximation error meets the approximate eigenvector error. This is relevant in
our situation since the algorithms proposed in Section 4.3 are dedicated to the approximation of
the dominant eigenmodes.

To analyze Algorithms 4.1 and 4.2, we observe that they both rely on the same search space,
that is Z = (B−1A)qG. They only differ in the way they extract the approximations from
Z. However, the general error analysis from Chapter 3 is uniquely based on the search space.
Consequently, the following analysis will be similar for Algorithms 4.1 and 4.2, although their
theoretical foundations are different. Said differently, our theoretical analysis is blind to the
extraction phase, which is a second limitation.

From elementary properties of Gaussian vectors, Z is Gaussian with covariance matrix
Cov(Z) = (B−1A)q Cov(G)(ATB−T)q. The theoretical analysis is based on a block partitioning
of the matrix V TΥBCov(Z) ΥBV . For a given integer k ∈ {1, . . . , p}, we define

V TΥBCov(Z) ΥBV =
[
V T
k

V T
k

]
ΥBCov(Z) ΥB

[
Vk Vk

]
=
[

Covk(Z) Cov⊥,k(Z)T

Cov⊥,k(Z) Covk(Z)

]
,

with
Covk(Z) = V T

k ΥBCov(Z) ΥBVk ∈ Rk×k

Cov⊥,k(Z) = V T
k ΥBCov(Z) ΥBVk ∈ R(n−k)×k,

Covk(Z) = V T
k ΥBCov(Z) ΥBVk ∈ R(n−k)×(n−k).

(4.25)

Similarly, and for reasons that will be made clear later, we also introduce the following block
partitioning of V TΥBCov(G) ΥBV

V TΥBCov(G) ΥBV =
[
V T
k

V T
k

]
ΥBCov(G) ΥB

[
Vk Vk

]
=
[

Covk(G) Cov⊥,k(G)T

Cov⊥,k(G) Covk(G)

]
.

Let us define Ωk = V T
k ΥBZ and Ωk = V T

k ΥBZ. Using the properties of Gaussian vectors we have
Ωk ∼ N (0,Covk(Z)) and Ωk ∼ N (0, Covk(Z)). Deriving the theoretical bounds necessitates to
first express the different reduced covariance matrices defined in (4.25), as long as the conditional
covariance matrix of Ωk with respect to Ωk. This is the object of Lemma 4.8.
Remark 4.7. We point out that, although the matrices Ωk and Ωk are centered, the conditional
law of Ωk with respect to Ωk also follows a Gaussian distribution which is not necessarily centered
[67, Theorem 1.2.11].

Lemma 4.8. Let Υ ∈ Rn×n be a symmetric positive definite matrix. Let A,B ∈ Rn×n be Υ-
symmetric matrices such that ΥB is symmetric positive definite. Let G ∈ Rn×p be a Gaussian
matrix such that G ∼ N (0,Cov(G)) satisfying 2 < p ≤ min

{
rank(A), rank(Cov(G)

}
. Let

Z = (B−1A)qG ∈ Rn×p, with q ∈ N. Then for any given integer k ∈ {1, . . . , p}, one has

Covk(Z) = Λqk Covk(G) Λqk
Cov⊥,k(Z) = Λqk Cov⊥,k(G) Λqk

Covk(Z) = Λqk Covk(G) Λqk.

Furthermore, set Ωk = V T
k ΥBZ and Ωk = V T

k ΥBZ. If the covariance matrix Covk(G) is
nonsingular, then the random matrix Ωk conditioned by Ωk follows a Gaussian distribution of
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covariance matrix
Cov( Ωk | Ωk ) = Λqk

(
Covk(G)/Covk(G)

)
Λqk.

Proof. From the eigenvalue decomposition of B−1A we have (B−1A)q = V ΛqV TΥB, which yields

V TΥBCov(Z) ΥBV = ΛqV TΥBCov(G)ΥBV Λq,

where we have used the ΥB-orthonormality of V . The expression for Covk(Z), Cov⊥,k(Z)
and Covk(Z) then follows similarly. For the conditional distribution, the conditional covariance
matrix can be expressed in terms of a Schur complement (Lemma 3.9) as

Cov
(
Ωk | Ωk

)
= Covk(Z)/Covk(Z)
= Λqk

(
Covk(G)/Covk(G)

)
Λqk.

We are now ready to state the main theorems. Theorems 4.9 and 4.10 address the average-case
error in weighted Frobenius and spectral norms respectively. Those are obtained by application
of Theorems 3.18 and 3.20 from Chapter 3, respectively. We propose error bounds for

‖[In − πΥB(Z)]B−1A‖2,F,ΥB − ‖[In − πΥB(Z)]B−1Ak‖2,F,ΥB .

Since ‖[In − πΥB(Z)]B−1Ak‖2,F,ΥB ≤ ‖Λk‖2,F , it is clear that the proposed bounds are also
bounds for

‖[In − πΥB(Z)]B−1A‖2,F,ΥB − ‖Λk‖2,F .
Therefore, our bounds imply bounds for this latter quantity, which are generally preferred in the
randomized numerical linear algebra community.

Theorem 4.9 (Average-case analysis in weighted Frobenius norm). Let Υ ∈ Rn×n be symmetric
positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is symmetric positive
definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G)) with 2 < p ≤
min

{
rank(A), rank(Cov(G)

}
. Let Z = (B−1A)qG ∈ Rn×p, with q ∈ N and let πΥB(Z) denote

the ΥB-orthogonal projection onto the vector space spanned by the columns of Z. Let ϕ : x 7→
x/
√

1 + x2 for x ≥ 0. Then, if Covk(G) is nonsingular, we have for all k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB(Z)]B−1A‖F,ΥB − ‖[In − πΥB(Z)]B−1Ak‖F,ΥB

]
≤ min

√αk,√k ϕ
(√

βk√
k

)
λ1

 ,

where

αk = ‖Λqk‖
2
F

ck(G)2

λ
2(q−1)
k

+ ‖Λqk‖
2
F δk(G)

‖Λ−(q−1)
k ‖2F

p− k − 1

βk = ‖Λqk‖
2
F

ck(G)2

λ2q
k

+ ‖Λqk‖
2
F δk(G)

‖Λ−qk ‖2F
p− k − 1 ,

with Covk(G) = V T
k ΥBCov(G) ΥBVk, Covk(G) = V T

k ΥBCov(G) ΥBVk,
Cov⊥,k(G) = V T

k ΥBCov(G) ΥBVk, δk(G) = ‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2, and
ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2.

Proof. Let us define Â = (ΥB) 1
2B−1A(ΥB) 1

2 . We recall that the eigenvalue decomposition of
B−1A corresponds to the SVD of Â (4.6), and that from (4.21) one has

‖[In − πS(Z)]B−1A‖F,ΥB = ‖[In − π((ΥB) 1
2Z)]Â‖F ,
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Applying Theorem 3.18 then yields

E
[
‖[In − π((ΥB) 1

2Z]Â‖F − ‖[In − π((ΥB) 1
2Z]Âk‖F

]
≤ min

{
√
ak,
√
k ϕ

(
1√
k

√
bk

)
λ1

}
,

where

ak = ‖Cov⊥,k(Z)[Covk(Z)]−1Λk‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖(ΛT

k [Covk(Z)]−1Λk) 1
2 ‖2F

p− k − 1 , (4.26)

bk = ‖Cov⊥,k(Z)[Covk(Z)]−1‖2F +
‖Cov

(
Ωk | Ωk

) 1
2 ‖2F ‖[Covk(Z)]− 1

2 ‖2F
p− k − 1 . (4.27)

Step 1: Bounding ‖Cov⊥,k(Z)[Covk(Z)]−1‖2F and ‖Cov⊥,k(Z)[Covk(Z)]−1Λk‖2F . One
gets from Lemma 4.8 that

Cov⊥,k(Z)[Covk(Z)]−1 = Λqk Cov⊥,k(G) Covk(G)−1Λ−qk .

Taking the squared Frobenius norm and applying the submultiplicativity, one gets

‖Cov⊥,k(Z)[Covk(Z)]−1‖2F ≤ ‖Λ
q
k‖

2
F ‖Cov⊥,k(G) Covk(G)−1‖22‖Λ

−q
k ‖

2
2.

Note that ‖Λ−qk ‖22 = λ−2q
k and defining ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2, we obtain

‖Cov⊥,k(Z)[Covk(Z)]−1‖2F ≤ ck(G)2 ‖Λ
q
k‖2F
λ2q
k

. (4.28)

Similarly, we obtain

‖Cov⊥,k(Z)[Covk(Z)]−1Λk‖2F ≤ ck(G)2 ‖Λ
q
k‖2F

λ
2(q−1)
k

. (4.29)

Step 2: Bounding ‖Cov
(
Ωk | Ωk

) 1
2 ‖2F . From Lemma 4.8 we have

Cov
(

Ωk | Ωk
)

= Λqk
(
Covk(G)/Covk(G)

)
Λqk.

Then, using the partial ordering and taking the trace yields

‖Cov
(
Ωk | Ωk

) 1
2 ‖2F ≤ ‖Covk(G)/Covk(G)‖2 ‖Λqk‖

2
F . (4.30)

Step 3: Bounding ‖[Covk(Z)]− 1
2 ‖2F and ‖(ΛT

k [Covk(Z)]−1Λk) 1
2 ‖2F . From Lemma 4.8, one

gets
[Covk(Z)]−1 = Λ−qk Covk(G)−1Λ−qk 4 ‖Covk(G)−1‖2Λ−2q

k .

Taking the trace yields

‖[Covk(Z)]− 1
2 ‖2F ≤ ‖Covk(G)−1‖2‖Λ−qk ‖

2
F . (4.31)

In a similar way, we obtain

‖(ΛT
k [Covk(Z)]−1Λk) 1

2 ‖2F ≤ ‖Covk(G)−1‖2‖Λ−(q−1)
k ‖2F . (4.32)
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Summary. Plugging (4.29), (4.30) and (4.32) into (4.26), we obtain

ak ≤ ck(G)2 ‖Λ
q
k‖2F

λ
2(q−1)
k

+ δk(G)
‖Λqk‖2F ‖Λ

−(q−1)
k ‖2F

p− k − 1 = αk,

where we have used that δk(G) = ‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2. Similarly, plug-
ging (4.28), (4.30) and (4.31) into (4.27), we obtain

bk ≤ ck(G)2 ‖Λ
q
k‖2F
λ2q
k

+ δk(G)
‖Λqk‖2F ‖Λ

−q
k ‖2F

p− k − 1 = βk.

To complete the proof, we notice that ϕ : x 7→ x/
√

1 + x2 is monotonically increasing.

Theorem 4.10 (Average-case analysis in weighted spectral norm). Let Υ ∈ Rn×n be symmetric
positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is symmetric positive
definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G)) with 2 < p ≤
min

{
rank(A), rank(Cov(G)

}
. Let Z = (B−1A)qG ∈ Rn×p, with q ∈ N and let πΥB(Z) denote

the ΥB-orthogonal projection onto the vector space spanned by the columns of Z. Let ϕ : x 7→
x/
√

1 + x2 for x ≥ 0. Then, if Covk(G) is nonsingular, we have for all k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB(Y )]B−1A‖2,ΥB − ‖[In − πΥB(Y )]B−1Ak‖2,ΥB

]
≤ min

{
ck, ϕ(dk)λ1

}
,

where

ck = λk+1 γ
q−1
k ck(G) +

√
δk(G)

(
λqk+1

‖Λ−(q−1)
k ‖F√
p− k − 1

+
‖Λqk‖F
λq−1
k

e
√
p

p− k

)

dk = γqk ck(G) +
√
δk(G)

(
λqk+1

‖Λ−qk ‖F√
p− k − 1

+
‖Λqk‖F
λqk

e
√
p

p− k

)

with Covk(G) = V T
k ΥBCov(G) ΥBVk, Covk(G) = V T

k ΥBCov(G) ΥBVk,
Cov⊥,k(G) = V T

k ΥBCov(G) ΥBVk, δk(G) = ‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2, and
ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2.

Proof. The proof follows similar arguments and is based on Theorem 3.20.

Let us now consider the particular case where we change the quantity of interest, and rather
consider

‖[In − πΥB(Z)]B−1A‖2,F,ΥB − ‖Λk‖2.
In this case we can derive an improved bound for the weighted spectral norm, derived from
Theorem 3.21 and stated in Theorem 4.11.

Theorem 4.11 (Average-case analysis in weighted spectral norm, improved bound). Let Υ ∈
Rn×n be symmetric positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is
symmetric positive definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G))
with 2 < p ≤ min

{
rank(A), rank(Cov(G))

}
. Let Z = (B−1A)qG ∈ Rn×p, with q ∈ N and

let πΥB(Z) denote the ΥB-orthogonal projection onto the vector space spanned by the columns
of Z. Let ϕ : x 7→ x/

√
1 + x2 for x ≥ 0. Then, if Covk(G) is nonsingular, we have for all

k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB(Y )]B−1A‖2,ΥB − ‖Λk‖2

]
≤ min

{
ĉk, ϕ(d̂k)

√
λ2

1 − λ2
k+1

}
,
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where

ĉk = λk+1 γ
q−1
`

√
1− γ2

` ck(G) +
√
δk(G)

 k∑
i=1

γ2q−1
i

√
1− γ2

i

 1
2

λk+1√
p− k − 1

+
√

1− γ2
`

‖Λqk‖F
λq−1
`

e
√
p

p− k

d̂k = γqk ck(G) +
√
δk(G)

(
λqk+1

‖Λ−qk ‖F√
p− k − 1

+
‖Λqk‖F
λqk

e
√
p

p− k

)

with Covk(G) = V T
k ΥBCov(G) ΥBVk, Covk(G) = V T

k ΥBCov(G) ΥBVk,
Cov⊥,k(G) = V T

k ΥBCov(G) ΥBVk, δk(G) = ‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2,
ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2 and Λ̂k = (Λ2

k − λ2
k+1 Ik) 1

2 .

` =



1 if q

q − 1λ
2
k+1 ≥ λ2

1 or q = 1

arg max


√

1− γ2
i

λq−1
i

,

√
1− γ2

i+1

λq−1
i+1

 if q

q − 1λ
2
k+1 ∈ [λi, λi+1]

k if q

q − 1λ
2
k+1 ≤ λ2

k

.

Proof. Applying Theorem 3.21, it remains to compute ‖Λ−qk Λ̂k‖2 and ‖(Λ̂kΛ−2q
k Λ̂k) 1

2 ‖2 but sim-
ple algebraic manipulations show that they are actually equal. One has

Λ̂kΛ−2q
k Λ̂k = diag

(
λ2
i − λ2

k+1

λ2q
i

)
, 1 ≤ i ≤ k,

which suggests to introduce the map ψ : x 7→ (x − λ2
k+1)/xq. A simple calculation shows that

the extremum is reached for x = q
q−1λ

2
k+1 if q 6= 1. Consequently, the spectral norm is such that

‖Λ−qk Λ̂k‖2 =

√
λ2
` − λ2

k+1

λq`
=
√

1− γ2
`

λq−1
`

with ` defined as in the theorem.

4.4.2 Probabilistic analysis of the methods for the generalized eigen-
value problem with basis transformation

A probabilistic analysis for Algorithms 4.3 and 4.4 addressing (4.12) can be directly deduced
from the previous analysis. The next proposition states a result in this sense.

Proposition 4.12. Let Υ ∈ Rn×n be a symmetric positive definite matrix and A,B ∈ Rn×n be
Υ-symmetric matrices such that ΥB is symmetric positive definite. Then for any full column
matrix rank matrix Z ∈ Rn×k one has

‖[In − πΥB(Z)]B−1A‖2,F,ΥB = ‖[In − πΥB−1(BZ)]AB−1‖2,F,ΥB−1 , (4.33)
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Proof. First, we note that [In − πΥB(Z)]B−1A = B−1[In − BπΥB(Z)B−1]A. Then, we notice
that

BπΥB(Z)B−1 = BZ(ZTΥBZ)−1ZTΥ
= BZ(ZTBTB−TΥBZ)−1ZTBT(B−T)Υ
= πΥB−1(BZ),

where we have used the Υ symmetry of B to write B−TΥ = ΥB−1. We complete the proof by
noticing that for any matrix M ∈ Rn×n, one has by definition of the weighted norms that

‖B−1M‖2,F,ΥB = ‖MB−1‖2,F,ΥB−1 .

Hence, from Proposition 4.12, one can deduce bounds for ‖[In − πΥB−1(BZ)]AB−1‖2,F,ΥB−1

where Z = (B−1A)qG with G ∈ Rn×p a Gaussian matrix such that G ∼ N (0,Cov(G)). Since
the methods addressing the GEP with basis transformation are based on matrices of the form
Z = (AB−1)qG′, taking G′ = BG and remarking that Cov(G′) = BCov(G)BT allows us to
state the new theorems. It then remains to use the relation between the eigenvectors of B−1A
and AB−1 to conclude. In this regard, we simply state the three analogous theorems without
further details.

Theorem 4.13 (Average-case analysis in weighted Frobenius norm). Let Υ ∈ Rn×n be symmetric
positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is symmetric positive
definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G)) with 2 < p ≤
min

{
rank(A), rank(Cov(G)

}
. Let Z = (AB−1)qG ∈ Rn×p, with q ∈ N and let πΥB−1(Z)

denote the ΥB−1-orthogonal projection onto the vector space spanned by the columns of Z. Let
ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, if Covk(G) is nonsingular, we have for all k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB−1(BZ)]AB−1‖F,ΥB−1 − ‖[In − πΥB−1(BZ)]AkB−1‖F,ΥB−1

]
≤

min

√αk,√kϕ
(√

βk√
k

)
λ1

 ,

where

αk = ‖Λqk‖
2
F

ck(G)2

λ
2(q−1)
k

+ ‖Λqk‖
2
F δk(G)

‖Λ−(q−1)
k ‖2F

p− k − 1

βk = ‖Λqk‖
2
F

ck(G)2

λ2q
k

+ ‖Λqk‖
2
F δk(G)

‖Λ−qk ‖2F
p− k − 1 ,

with Covk(G) = UT
k ΥB−1 Cov(G) ΥB−1Uk, and Covk(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and
Cov⊥,k(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2, and δk(G) =
‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2.

Theorem 4.14 (Average-case analysis in weighted spectral norm). Let Υ ∈ Rn×n be symmetric
positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is symmetric positive
definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G)) with 2 < p ≤
min

{
rank(A), rank(Cov(G)

}
. Let Z = (AB−1)qG ∈ Rn×p, with q ∈ N and let πΥB−1(Z)
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denote the ΥB−1-orthogonal projection onto the vector space spanned by the columns of Z. Let
ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, if Covk(G) is nonsingular, we have for all k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB−1(BZ)]AB−1‖2,ΥB−1 − ‖[In − πΥB−1(BZ)]AkB−1‖2,ΥB−1

]
≤

min
{
ck, ϕ(dk)λ1

}
,

where

ck = λk+1 γ
q−1
k ck(G) +

√
δk(G)

(
λqk+1

‖Λ−(q−1)
k ‖2F√
p− k − 1

+
‖Λqk‖F
λq−1
k

e
√
p

p− k

)

dk = γqk ck(G) +
√
δk(G)

(
λqk+1

‖Λ−qk ‖2F√
p− k − 1

+
‖Λqk‖F
λqk

e
√
p

p− k

)

with Covk(G) = UT
k ΥB−1 Cov(G) ΥB−1Uk, and Covk(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and
Cov⊥,k(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2, and δk(G) =
‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2.

Theorem 4.15 (Average-case analysis in weighted spectral norm, improved bound). Let Υ ∈
Rn×n be symmetric positive definite and A,B ∈ Rn×n be Υ-symmetric matrices such that ΥB is
symmetric positive definite. Let G ∈ Rn×p be a Gaussian matrix such that G ∼ N (0,Cov(G))
with 2 < p ≤ min

{
rank(A), rank(Cov(G))

}
. Let Z = (B−1A)qG ∈ Rn×p, with q ∈ N and let

πΥB(Z) denote the ΥB-orthogonal projection onto the vector space spanned by the columns of Z.
Let ϕ : x 7→ x/

√
1 + x2 for x ≥ 0.

Then, if Covk(G) is nonsingular, we have for all k ∈ {1, . . . , p− 2}

E
[
‖[In − πΥB−1(BZ)]AB−1‖2,ΥB−1 − ‖Λk‖2

]
≤ min

{
ĉk, ϕ(d̂k)

√
λ2

1 − λ2
k+1

}
,

where

ĉk = λk+1 γ
q−1
`

√
1− γ2

` ck(G) +
√
δk(G)

 k∑
i=1

γ2q−1
i

√
1− γ2

i

 1
2

λk+1√
p− k − 1

+
√

1− γ2
`

‖Λqk‖F
λq−1
`

e
√
p

p− k

d̂k = γqk ck(G) +
√
δk(G)

(
λqk+1

‖Λ−qk ‖F√
p− k − 1

+
‖Λqk‖F
λqk

e
√
p

p− k

)

with Covk(G) = UT
k ΥB−1 Cov(G) ΥB−1Uk, and Covk(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and
Cov⊥,k(G) = UT

k ΥB−1 Cov(G) ΥB−1Uk, and ck(G) = ‖Cov⊥,k(G) Covk(G)−1‖2, and δk(G) =
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‖Covk(G)−1‖2‖Covk(G)/Covk(G)‖2, and Λ̂k = (Λ2
k − λ2

k+1) 1
2 and

` =



1 if q

q − 1λ
2
k+1 ≥ λ2

1 or q = 1

arg max


√

1− γ2
i

λq−1
i

,

√
1− γ2

i+1

λq−1
i+1

 if q

q − 1λ
2
k+1 ∈ [λi, λi+1]

k if q

q − 1λ
2
k+1 ≤ λ2

k

.

4.4.3 Discussion on the proposed error bounds
Let us discuss the bounds obtained in Theorems 4.9 and 4.10. By definition of the Schur com-
plement, one has,

Covk(G)/Covk(G) 4 Covk(G),

which implies that ‖Covk(G)/Covk(G)‖2 ≤ ‖Covk(G)‖2. Here, we note that the matrix
Covk(G) is a principal submatrix of V TΥBCov(G) ΥBV . If we denote by µ1 ≥ · · · ≥ µn
the eigenvalues of V TΥBCov(G) ΥBV , then applying the Cauchy’s interlacing theorem [72,
Theorem 10.1.1] yields

µk+1 ≤ ‖Covk(G)‖2 ≤ µ1.

A similar argument holds for Covk(G), yielding

1
µk
≤ ‖Covk(G)−1‖2 ≤

1
µn
.

Furthermore, we note that V TΥBCov(G) ΥBV and (ΥB) 1
2 Cov(G) (ΥB) 1

2 share the same
eigenvalues since V is ΥB-orthonormal. Altogether, we obtain the following bound

1 ≤ µk+1

µk
≤ δk(G) ≤ µ1

µn
= κ2

(
(ΥB) 1

2 Cov(G) (ΥB) 1
2

)
.

These inequalities are loose. Consequently, it is not clear how the 2-norm condition number
of (ΥB) 1

2 Cov(G) (ΥB) 1
2 actually affects the approximation accuracy. This phenomenon has

already been highlighted in [78]. Nevertheless, taking Cov(G) = (ΥB)−1 yields δk(G) = 1,
which is the optimal value.

Let us now discuss the term ck(G). We propose an interpretation of ck(G) in terms of angles
between subspaces. Let us define Fk = Cov(G) 1

2TVk Covk(G)− 1
2 and Gk = Cov(G) 1

2 ΥBVk so
that,

ck(G) = ‖Covk(G)− 1
2FT

k Gk‖2 ≤ ‖Covk(G)− 1
2 ‖2‖FT

k Gk‖2.

Then, because Fk is orthonormal, one has from the definition of principal angles (see Sec-
tion 2.1.3) that

‖FT
k Gk‖2 ≤ cos (Fk, Gk)2 ‖Gk‖22 = cos (Fk, Gk)2 ‖Covk(G)‖2.

Using (4.4.3) we finally obtain

0 ≤ ck(G) ≤ cos (Fk, Gk)2
κ2

(
(ΥB) 1

2 Cov(G) (ΥB) 1
2

)
.

In particular, we observe again that taking Cov(G) = (ΥB)−1 yields the optimal value ck(G) = 0
since Vk and Vk are ΥB-conjugate.
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Remark 4.16. When Cov(G) = (ΥB)−1, we can show that the analysis corresponds to the
analysis of the standard randomized SVD of (ΥB) 1

2B−1A(ΥB) 1
2 , for which the error bounds are

indeed tighter.
Let us rapidly discuss the sensitivity of the bounds with respect to the number of random

samples p, and the number of subspace iterations q. In all the bounds, there is a term which does
not depend on p. This term stems from the statistical dependence encountered in the general
analysis in Chapter 3. Consequently, when p becomes large, the bounds do not approach zero,
while the approximation error will necessarily approach zero. Let us now look at the behavior
with respect to q. Observing that

‖Λqk‖2F
λ2q
k

=
rank(A)∑
i=k+1

(
λi
λk

)2q
≤ (rank(A)− k) γ2q

k ,

and
‖Λqk‖

2
F ‖Λ

−q
k ‖

2
F ≤ k(rank(A)− k)γ2q

k ,

we obtain that the terms αk and βk from Theorem 4.9 are both O(γ2q
k ). Consequently, they

approach zero as γ2q
k , implying that the expected low rank approximation error in weighted

Frobenius norm approaches zero too. Analogous arguments yield that the terms ck and dk in
Theorem 4.10 are both O(γqk), which yields analogous consequences.

4.4.4 Comparison with prior error bounds
An average case analysis has been proposed in [80, Theorem 1] to analyze a single-pass random-
ized method for generalized symmetric eigenvalue problems. In our context, it corresponds to
Υ = Cov(G) = In and q = 1. The analysis provides a bound in weighted spectral norm. We
briefly propose a comparison with this bound.

Let σ1, . . . , σn denote the singular values of B− 1
2A, with σ1 ≥ · · · ≥ σn. If Z = B−1AΩ,

then, using our notations, Theorem 1 in [80] states that

E
[
‖[In − πB(Z)]B−1A‖2,B

]
≤ 2
√
‖B−1‖2


[

1 +
√
k√

p− k − 1

]
σk+1 +

e
√
p

p− k

 n∑
j=k+1

σ2
j

 1
2

 .

Here, we notice that the factor two in the right-hand side has been omitted in the statement of
[80, Theorem 1], which was corrected by the authors in [78, p.16]. Since ‖[In−πB(Y )]B−1Ak‖B ≤
‖Λk‖2 = λk+1 Theorem 4.10 implies

E
[
|||[In − πB(Y )]B−1A|||2

]
≤ λk+1 + ck.

Using the bounds proposed in Section 4.4.3, namely δk(G) ≤ κ2(B), ck(G) ≤ κ2(B) and
κ2(B)−1 ≤ 1, we obtain

E
[
‖[In − πB(Z)]B−1A‖2,B

]
≤
√
κ2(B)


[

2 +
√
k√

p− k − 1

]
λk+1 +

e
√
p

p− k

 n∑
j=k+1

λ2
j

 1
2

 .

The difference in the multiplicative term is then explained by noticing that

σj ≤ ‖B
1
2 ‖2λj =

√
‖B‖2λj , 1 ≤ j ≤ n.

Consequently, when expressed in terms of eigenvalues, the bound from Theorem 4.10 is almost
twice as good as the one derived in [80]. We numerically illustrate this fact on test problems
later on. In weighted Frobenius norm, to the best of our knowledge, Theorem 4.9 is new.
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4.5 Numerical experiments
We divide the numerical experiments in three different parts. In Section 4.5.1, we propose a
comparison between our theoretical bounds and the one from [80, Theorem 1], on test matrices
inspired from [78]. Then, in Section 4.5.2 we focus on a three-dimensional variational data assim-
ilation test case to illustrate numerically the equivalence with algorithms from [80] highlighted
above, and to investigate the accuracy of the approximate eigenpairs of our algorithms.

4.5.1 Error bounds in expectation versus the state-of-the-art
Here we propose a comparison between the bounds obtained in Theorem 4.10 and the ones given
in [80, Theorem 1], along with an illustration of the bounds from Theorem 4.9. This comes as a
complement to the theoretical comparison proposed in Section 4.4.4. We recall that performing
such a comparison implies that we choose Υ = In. For the test matrices, we consider a fixed
matrix A, and we propose two different choices for B. We define

A = U diag
(

1, 1/22, . . . , 1/n2
)
UT,

with U ∈ Rn×n an orthogonal matrix obtained from the QR factorization of a standard Gaussian
matrix. Matrices whose eigenvalue distribution has a polynomial decay are frequently used as
test cases in the randomized linear algebra literature (see [87] for instance). For B, we consider
two cases:

• Min ij: B ∈ Rn×n such that Bi,j = min {i, j} for all 1 ≤ i, j ≤ n,

• Rand: B ∈ Rn×n such that B = V diag
(
1, 1/2d, . . . , 1/nd

)
V T with V ∈ Rn×n an orthog-

onal matrix obtained from the QR factorization of a standard Gaussian matrix, with d
such that κ2(B) = 103, that is, d = ln(103)/ ln(n).

Those are inspired from the MATLAB matrix gallery, and have been used in [78] to define inner-
products to test algorithms for the GSVD. We choose n = 500 and k = 10. Figures 4.1 show the
bounds for

‖[In − πB(Z)]B−1A‖2,F,B − ‖Λk‖2,F,B , (4.34)

for a number of samples p varying from 12 to 110. Here, we point out that to the best of our
knowledge, there are no available bounds in weighted Frobenius norm. In weighted spectral
norm, it seems that the only available result is given in [80, Theorem 1] and corresponds to
q = 1. We denote by SLK this bound.

In Figure 4.1, our bound in weighted spectral norm and q = 1 is tighter than the one from
SLK. The overall behavior of the bounds is then comparable to the one detailed in Chapter 3, so
we will not further discuss this aspect. Following Section 4.4.3, we provide the values of ck(G)
and δk(G) in Table 4.3. We observe that δk(G) is actually quite close to κ2(B). ck(G) remains
moderate, meaning that this term, which does not approach zero as p increases is relatively small
compared to the remaining terms. It is also interesting to remark that despite the large value
of δk(G) for Min ij, the resulting bounds are closer to zero than for Rand. The difference can
possibly be explained by the difference in the eigenvalue distributions.

4.5.2 Application to a 3D-Var data assimilation problem
We consider an application with matrices from a data assimilation problem. Data assimilation
is a general framework where observations of a dynamical system are used to determine its true

85



Chapter 4. Randomized methods for the generalized symmetric eigenvalue problem in a
non-Euclidean inner product

ck(G) δk(G) κ2(B) γk

Min ij 4.45 · 101 2.38 · 105 4.06 · 105 0.782
Rand 3.02 · 100 5.34 · 102 1.00 · 103 0.847

Table 4.3: Values for the constants appearing in the bounds in Theorems 4.9 and 4.10 when
computed on the test problems Min ij and Rand.
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(a) Results for Min ij.
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Figure 4.1: Comparison of different bounds for the error quantity (4.34) for two different matrices
B: Min ij (top) and Rand (bottom), in weighted spectral norm (left) and Frobenius norm (right).

underlying state. Its variational approach can be framed as a weighted nonlinear least-squares
problems as introduced in Section 2.4.3, yielding matrices of the form

A3D-Var = Γ−1
b +HTΓ−1

o H. (4.35)

Our objective in this section is to investigate the performance of our algorithms when com-
puting eigenpairs of either ΓbA3D-Var or A3D-VarΓb. As already highlighted in Section 2.4.3, such
eigenvalue problems are notably needed to construct spectral LMP as in (2.19).
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In this section, we consider a three-dimensional variational data assimilation problem (3D-
Var). The covariance matrix Γb is defined as a discretized diffusion operator, with standard
deviation σb = 1.0, and the observation error covariance matrix is defined as Γo = σ2

o Im, with
σo the corresponding standard deviation. The observation operator H is a selection operator.
With n = 1000 state variables, we consider two different settings

• LowObs: m = 100 and σo = 10−2,

• HighObs: m = 400 and σo = 2× 10−2.

The sensitivity analysis regarding the number of observations is critical since it strongly
impacts the eigenvalue distribution of the preconditioned matrix ΓbA3D-Var. Consequently, fol-
lowing the theoretical results obtained above, the randomized methods are expected to behave
differently on both test cases. The parameters have been selected so as to yield a condition
number of approximately 104 for both ΓbA3D-Var and A3D-VarΓb. The eigenvalue distributions of
LowObs and HighObs are shown in Figure 4.2.
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Figure 4.2: Eigenvalue distributions of the two 3D-Var test problems, LowObs and HighObs.

We split the numerical experiments in two parts. First, we numerically confirm that Algo-
rithms 4.1 and 4.2 provide equivalent implementations of [80, Algorithms 6, 7 and 8]. We men-
tioned in Section 4.3.6 the mathematical equivalence. Hence, our interest here is to show that
our implementation, which does not require applications of B, produces numerically equivalent
approximations. In a second part, we investigate the accuracy of the approximate eigenvectors
and eigenvalues.

Equivalence with Saibaba, Lee and Kitanidis’ algorithms

We recall that in [80], the authors proposed three randomized methods to address the general-
ized Hermitian eigenvalue problem involving the matrix pencil {A,B}, with A symmetric and
B symmetric positive definite, denoted by SLK 6, SLK 7 and SLK 8 hereafter. The setting of
Algorithms 4.1 and 4.2 used to recover those methods in exact arithmetic is given in Table 4.2.

Quantities of interest. Let λ1 ≥ · · · ≥ λk ∈ R denote the k dominant eigenvalues of B−1A
and v1, . . . , vk ∈ Rn denote the corresponding eigenvectors. Let λ̃1, . . . , λ̃k ∈ R, and ṽ1, . . . , ṽk ∈
Rn denote approximate eigenvalues and eigenvectors of B−1A.
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To measure the difference between the approximate eigenvalues, we consider the average
relative distance with the exact eigenvalues, that is

∆λ
k = 1

k

k∑
j=1

|λ̃j − λj |
λj

. (4.36)

For the eigenvectors, we compute

∆v
k = 1

k
‖πB(Vk)[In − πB(Ṽk)]‖F,B , (4.37)

where Vk = [v1 . . . vk] ∈ Rn×k and Ṽk = [ṽ1 . . . ṽk] ∈ Rn×k. If σ1 ≥ · · · ≥ σk denote the k largest
singular values of πB(Vk)(In − πB(Ṽk)), then σi = sin(θi) with θi being the principal canonical
angles between R(Vk) and R(Ṽk) measured in the B-inner product (see Section 2.1.3). Therefore
∆v
k represents the average sine of the principal canonical angles.

Finally, we also compare the B-orthonormality of the obtained approximate eigenvectors via

∆⊥k = ‖Ṽ T
k BṼk − Ik‖2. (4.38)

This is relevant because the applications of B in SLK 6, SLK 7 and SLK 8 are explicitly required
to ensure the B-orthonormality of the provided approximate eigenvectors. Consequently, since
our algorithms no longer require them, it is important to verify whether the B-orthonormality is
altered or not.

Results. Algorithms 4.1 and 4.2 are applied to the matrix pencil (A3D,Γ−1
b ) with Υ = In.

All the methods are compared using the same standard Gaussian matrix Ω ∈ Rn×p. We set
k = 20 and p = 40 random samples, which corresponds to an oversampling of 20. The results
are presented in Table 4.4.

Keeping 3 digits for ∆λ
20 and ∆v

20 does not allow us to highlight any difference between the
provided approximate eigenvectors and eigenvalues. Consequently, the proposed implementation
seems to be numerically consistent with the mathematical equivalence property. Plus, we observe
that the B-orthonormality is of comparable quality, since the values of ∆⊥20 are of similar order
of magnitude. This is even more convincing knowing that in our 3D-Var setting, κ2(Γb) ≈
109. Consequently, whenever the inverse of B can be applied accurately, approximations of
eigeninformation can be obtained without (potentially expensive) applications of B.

Accuracy of the proposed algorithms

We now investigate the performance of our algorithms on the 3D-Var preconditioned matrices.
We handle the methods for the GEP in initial form and with basis transformation separately.
Here, we focus on the behavior in terms of approximate eigenvector and eigenvalue quality.

We study similar quantities of interest as in (4.36) and (4.37). For the eigenvalues, if λ1, . . . , λk
denote the k largest eigenvalues of Γ−1

b A3D-Var, and λ̃1, . . . , λ̃k the k approximate eigenvalues,
then we compute

δj = |λ̃j − λj |
λj

, 1 ≤ j ≤ k. (4.39)

The quantity of interest to measure the accuracy of eigenvectors depends on whether we
consider the methods for the GEP in initial form and with basis transformation. Accordingly,
they are defined in the corresponding section.

To account for the randomness, we apply each algorithm 100 times with statistically indepen-
dent standard Gaussian matrices Ωi. We then perform a statistical analysis on the corresponding
computed quantities of interest, focusing on the empirical mean and standard deviation.
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Algorithm ∆λ
20 ∆v

20 ∆⊥20

LowObs

(m = 100)

SLK 6 8.53 · 10−1 2.12 · 10−1 5.76 · 10−8

Algorithm 4.1 8.53 · 10−1 2.12 · 10−1 5.85 · 10−8

SLK 7 1.00 2.12 · 10−1 5.74 · 10−8

Algorithm 4.2 1.00 2.12 · 10−1 5.88 · 10−8

SLK 8 7.09 · 10−2 8.76 · 10−2 2.60 · 10−7

Algorithm 4.2 7.09 · 10−2 8.76 · 10−2 2.19 · 10−7

HighObs

(m = 400)

SLK 6 6.31 · 10−1 1.91 · 10−1 1.11 · 10−7

Algorithm 4.1 6.31 · 10−1 1.91 · 10−1 1.16 · 10−7

SLK 7 1.00 1.93 · 10−1 1.10 · 10−7

Algorithm 4.2 1.00 1.93 · 10−1 1.14 · 10−7

SLK 8 6.89 · 10−2 8.67 · 10−2 2.46 · 10−7

Algorithm 4.2 6.89 · 10−2 8.67 · 10−2 2.28 · 10−7

Table 4.4: Comparison between SLK 6, SLK 7, SLK 8 and our corresponding algorithms following
Table 4.2 in terms of approximate eigenvalues (∆λ

20), eigenvectors (∆v
20), and B-orthonormality

(∆⊥20). The different quantities of interest are defined in (4.36), (4.37) and (4.38) respectively.

In the following, the algorithms compute k = 20 approximate eigenpairs. We consider two
values for the number of random samples, namely p = 40, 60, corresponding to an oversampling
of 20 and 40, respectively. We consider the settings LowObs and HighObs to illustrate the behavior
of the algorithms regarding different eigenvalue distributions.

Methods for the GEP in initial form. Let us first analyze the algorithms for the initial
GEP, that is Algorithms 4.1 and 4.2, applied to {HTΓ−1

o H, Γ−1
b }. The different settings we

investigate are detailed in Table 4.5. Our targeted applications are of large scale, meaning that
the operators must be parsimoniously applied. Consequently, we focus on settings limited to
two applications of both HTΓ−1

o H and Γb to blocks of p vectors (see the last two columns of
Table 4.1).

To measure the accuracy of the obtained approximate eigenvectors, we again rely on subspace
angles. Let v1, . . . , vk ∈ Rn denote the corresponding eigenvectors associated to the k largest
eigenvalues of ΓbA3D-Var, and ṽ1, . . . , ṽk ∈ Rn the corresponding approximate eigenvectors. Let
us define Vk = [v1 . . . vk] ∈ Rn×k and Ṽk = [ṽ1 . . . ṽk] ∈ Rn×k. As a quantity of interest, we
compute the k largest singular values σ1 ≥ · · · ≥ σk of πΓ−1

b
(Vk)[In − πΓ−1

b
(Ṽk)]. Again, we have

σj = sin(θj), 1 ≤ j ≤ k, (4.40)

with θj being the principal canonical angles between R(Vk) and R(Ṽk) measured in the Γ−1
b

inner product.
Figures 4.3 and 4.4 show the results for the approximate eigenvalues and eigenvectors respec-

tively. Figure 4.3 reveals that the hierarchy in terms of accuracy strictly follows the number of
applications of the different operators. The effect of the oversampling is significant, but seems
to benefit more to LeftDir 1 (diamond) and LeftInv 2 (circle) than LeftInv 1 (square), espe-
cially in the HighObs setting. Surprisingly, the different eigenvalue distributions seem to alter
very slightly the accuracy of LeftDir 1 and LeftInv 2. By contrast, in the HighObs, the per-
formance of LeftInv 1 are very poor. Thus, LeftInv 1 seem to be unappropriated if one is
interested in getting accurate approximation eigenvalues.
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Algorithm q HTΓ−1
o H Γb

LeftDir 1 4.1 1 2 1
LeftInv 1 4.2 1 1 1
LeftInv 2 4.2 2 2 2

Table 4.5: Settings of Algorithms 4.1 and 4.2. The last two columns recall the number of
applications of the operators to a block of p vectors for each setting.

The behavior in terms of eigenvectors (Figure 4.4) is, in a large extent, similar to the one in
terms of eigenvalues. From a broad perspective, the differences between sin(θ1) and sin(θk) show
that, for all the methods, very well converged approximate eigenvectors coexist with poorly
converged ones, even for the more expensive methods. Also, it is noticeable that although
LeftInv 1 poorly performs on HighObs in terms of eigenvalues, the obtained eigenvectors are
of similar accuracy as LeftDir 1 for p = 40. This means that the additional applications of
HTΓ−1

o H required for the latter improves the approximate eigenvalues quality far more than
the eigenvectors one. By contrast, the superiority of LeftInv 2 over LeftInv 1 means that
the additional application of Γb performed in LeftInv 2 has a strong positive impact on the
approximate eigenvectors accuracy.

In conclusion, although LeftInv 1 might be the only affordable method in concrete appli-
cations, it must be considered solely if accurate eigenvalues are not of primary interest. Also,
it is clear that both operators do not impact the overall accuracy in a symmetric way. For the
3D-Var problem, additional applications of Γb improve the approximation quality significantly
more than additional applications of HTΓ−1

o H. If an additional application of Γb is affordable,
an option to improve the accuracy of the algorithms would be to apply them with an initial
random matrix of the form Ω = ΓbG, with G ∈ Rn×p a standard Gaussian instead. We let this
for future work.

Methods for the GEP with basis transformation Now, let us consider the methods for the
GEP with basis transformation and analyze the performance of Algorithms 4.3 and 4.4 applied
to HTΓ−1

o HΓb. The settings we study are detailed in Table 4.6. Again, we limit our study to the
variants requiring at most two applications of HTΓ−1

o H, to be consistent with the computational
constraint of targeted applications.

Let u1, . . . , uk ∈ Rn denote the eigenvectors associated to the k largest eigenvalues ofA3D-VarΓb,
and ũ1, . . . , ũk ∈ Rn the corresponding approximate eigenvectors. Let us define Uk = [u1 . . . uk] ∈
Rn×k and Ũk = [ũ1 . . . ũk] ∈ Rn×k. This time, we measure the approximate eigenvector accuracy
by computing the k largest singular values σ1 ≥ · · · ≥ σk of πΓb

(Uk)[In − πΓb
(Ṽk)], where

σj = sin(φj), 1 ≤ j ≤ k, (4.41)

with φj being the principal canonical angles between R(Uk) and R(Ũk) measured in the Γb inner
product.

Figures 4.5 and 4.6 show the results for the approximate eigenvalues and eigenvectors respec-
tively. We point out that the apparent variability of the obtained approximations materialized
by the vertical bars is a simple distortion due to the logarithmic scale. The apparent greater
performance is a consequence of the fact that the tested variants are globally more expensive
than the ones for the GEP in initial form. In this regard, we note that no single-pass variant
exists to address the GEP with basis transformation. For the rest, analogous comments to the
previous section can be made. Let us therefore focus on comparing both approaches.

The targeted eigenvalues are the same for the two GEP formulations, making the comparison
relevant. In particular, we observe that LeftInv 2 and RightDir 1 require the same amount of
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Figure 4.3: Accuracy of the algorithms for approximating dominant eigenvalues of {A3D-Var, Γ−1
b }

for the LowObs (top) and HighObs (bottom) test case with δj as in (4.39). The algorithms extract
k = 20 approximate eigenpairs using either p = 40 (left) or p = 60 (right) Gaussian random
samples.

Algorithm q HTΓ−1
o H Γb

RightDir 1 4.3 1 2 2
RightInv 1 4.4 1 1 2
RightInv 2 4.4 2 2 3

Table 4.6: Settings of Algorithms 4.3 and 4.4. The last two columns recall the number of
applications of the operators to a block of p vectors for each setting.

applications of HTΓ−1
o H and Γb (see Tables 4.5 and 4.6). However, the approximations obtained

with RightDir 1 are roughly one order of magnitude more accurate than the one of LeftInv 2,
for both p = 40 and p = 60, and both LowObs and HighObs. Again, this illustrates that the two
operators in the GEP do not have a symmetric role when using randomized algorithms. For the
3D-Var test case we consider, it thus seems that approximating eigenpairs of HTΓ−1

o HΓb can be
performed more efficiently than approximating ones from ΓbHTΓ−1

o H.
It is also interesting to compare RightInv 1 with LeftDir 1. The first one uses one addi-
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Figure 4.4: Accuracy of the algorithms for approximating dominant eigenvectors of
{A3D-Var, Γ−1

b } for the LowObs (top) and HighObs (bottom) test case with sin(θj) as in (4.40).
The algorithms extract k = 20 approximate eigenpairs using either p = 40 (left) or p = 60 (right)
Gaussian random samples.

tional application of Γb while the second one uses one additional application of HTΓ−1
o H. The

superiority of RightInv 1 thus appears as another clue that Γb plays a more important role than
HTΓ−1

o H to get accurate eigenvalue approximations. This statement remains true for approx-
imate eigenvectors, as revealed in Figure 4.6. Indeed, RightDir 1 and RightInv 1 differ only
from one application of HTΓ−1

o H but yield almost equivalent approximate eigenvectors.

4.6 Conclusions and perspectives
In this chapter, we have derived randomized methods to address the solution of two related gen-
eralized eigenvalue problems. The proposed algorithms are based on the Rayleigh-Ritz method,
which provides both a rigorous and flexible framework to derive approximate eigenpairs. In
particular, our algorithms generalize prior contributions from [80] and [24]. For the former,
it turns out that our approach yields equivalent results while enjoying a cheaper implementa-
tion. Based on the general analysis developed in Chapter 3, an average-case error analysis of
the new algorithms is proposed in both weighted Frobenius and spectral norms. This analysis
gives insights regarding the number of random samples, the number of subspace iterations, and
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Figure 4.5: Accuracy of the algorithms for approximating dominant eigenvalues of
{A3D-VarΓb, In} for the LowObs (top) and HighObs (bottom) test case with δj as in (4.39). The
algorithms extract k = 20 approximate eigenpairs using either p = 40 (left) or p = 60 (right)
Gaussian random samples.

the optimal covariance matrix for the Gaussian sample matrix. The analysis in spectral norm
generalizes and improves the state-of-the-art bounds from [80], while the analysis in Frobenius
norm is new. Finally, numerical experiments on a three-dimensional variational data assimilation
problem allowed us to demonstrate the potential of the proposed methods.

In this chapter, we have let open several questions. First, we have pointed out in Section 4.4
that our theoretical analysis is not able to distinguish between the different extraction processes
because it only considers the form of the search space. This leads to a common analysis for
Algorithm 4.1 and 4.2 (resp. Algorithms 4.3 and 4.4). To account for the extraction phase,
a refined theoretical analysis should handle random matrices of the form (B−1A)qΩW (resp.
(AB−1)qΩW ) with Ω ∈ Rn×p a Gaussian matrix and W ∈ Rp×k the matrix of change of basis
associated to the reduced eigenvalue problems. We remark that this problem has already been
identified in [53, Section 9.4], where the authors questioned the way to theoretically handle the
truncation in the RSVD, but has not yet been addressed.

Another important point that must be investigated concerns the implementation. We have
pointed out in Section 4.3.5 that the QR factorization and the algorithm to solve the projected
eigenvalue problem are critical. In this regard, it is crucial to identify the appropriate algorithms
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Figure 4.6: Accuracy of the algorithms for approximating dominant eigenvectors of
{A3D-VarΓb, In} for the LowObs (top) and HighObs (bottom) test case with sin(φj) as in (4.41).
The algorithms extract k = 20 approximate eigenpairs using either p = 40 (left) or p = 60 (right)
Gaussian random samples.

to obtain both a numerically efficient and stable algorithm. In particular, for large scale problems,
efficient algorithms for the QR factorization must be considered, such as parallel communication-
avoiding methods [27, 37, 38, 41, 95].
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Chapter 5. Randomized preconditioning for weighted nonlinear least-squares problems

Abstract

In this chapter, we propose a class of randomized spectral Limited Memory Precon-
ditioners (LMP) for the Preconditioned Conjugate Gradient method (PCG) when
solving a weighted nonlinear least-squares problem with the Gauss-Newton method.
We focus on two particular variants of the PCG dedicated to the solution of the lin-
earized subproblem: the inverse-free PCG (PCGIF) and the Augmented Restricted
PCG (RPCG). For both methods, specific LMP formulations have been proposed,
and spectral variants have been derived in the literature.

Then, we propose randomized spectral LMPs where the exact eigenpairs are re-
placed by approximations obtained using randomized methods. These randomized
methods are adaptations of the algorithms introduced in Chapter 4. For both Krylov
subspace methods, we propose two algorithms depending on the availability of a pre-
conditioner.

In [50], relations between the LMP for the PCGIF and the RPCG have been
identified so that the produced iterates are mathematically equivalent. We propose
such a relation for the proposed randomized spectral LMPs. This relation gives insight
on new strategies that can be used to construct more efficient randomized spectral
LMP for the PCGIF.

Finally, we investigate the performance of the proposed randomized LMPs on a
four-dimensional variational data assimilation (4D-Var) problem. The randomized
preconditioners are compared to the exact spectral LMPs and to the Ritz LMPs. The
obtained results are encouraging and open a number of interesting perspectives.

5.1 Introduction
In this chapter, we are interested in solving the sequence of linear systems arising from the
solution of the weighted nonlinear least-squares problem with the Gauss-Newton method. Ac-
cordingly, let us consider the solution of(

Γ−1
b +HT

j Γ−1
o Hj

)
︸ ︷︷ ︸

= Aj

sj = Γ−1
b (xc − xj) +HT

j Γ−1
o dj︸ ︷︷ ︸

= bj

, j ≥ 1. (5.1)

We recall that the solution of (5.1) is obtained using the PCG (Algorithm 2.2) with Γb as a
first-level preconditioner. When eigeninformation related to the dominant eigenmodes of ΓbAj
is available, then the LMP is rather used as a preconditioner.

In concrete applications, exact eigeninformation is never available, and cannot be computed
using dedicated eigensolvers because of the prohibitive computational cost. Instead, a widespread
strategy consists in using Ritz pairs computed as described in Section 2.2.5 from the previous ap-
plication of the PCG. This strategy has proven to perform well in data assimilation contexts [89].
However, it has some limitations. First, the number of approximate eigenpairs is always deter-
mined by the number of PCG iterations performed to solve the previous linear system. Second,
let us assume that we compute the Ritz pairs from the application of the PCG on the (j − 1)-th
linear system with preconditioner Mj−1. Let Vj−1 ∈ Rn×k be the matrix containing the Ritz
vectors and Λj−1Rk×k the diagonal matrix containing the corresponding Ritz values. Then these
matrices satisfy

Mj−1Aj−1Vj−1 ≈ Vj−1Λj−1.

But, it is not obvious that Vj−1 and Λj−1 will also be such that

MjAjVj−1 ≈ Vj−1Λj−1.
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Thus for the Ritz pairs to be relevant, we must first assume that Aj−1 ≈ Aj . Then, to account
for the change of preconditioner, there are two possibilities. The first one consists in using the
same preconditioner for all the linear systems, that is Mj−1 = Mj = Γb. The second one imposes
to use for Mj a LMP such that

Mj =
[
In −QjAj

]
Mj−1

[
In −AjQj

]
+Qj , (5.2)

where Qj = Vj−1(V T
j−1AVj−1)−1V T

j−1. In this case, Mj is relevant if Vj−1 contains eigeninfor-
mation related to Mj−1Aj and we fall back on the assumption Aj−1 ≈ Aj . With this second
strategy, the preconditioner increases in complexity along the sequence, and requires an increased
cost in terms of storage and computational applications. For these reasons, the approach gen-
erally considered is to compute the Ritz pairs only for the first system, and to use them in the
LMP for all the next Gauss-Newton steps.

In this chapter, we propose an alternative solution based on randomized algorithms. We
propose a class of randomized LMPs where the approximate eigenpairs are obtained using adap-
tations of the randomized algorithms introduced in Chapter 4.

5.1.1 Related research
Randomized methods for solving (5.1) have already been introduced in Section 2.4. First, the
RIOT (Algorithm 2.7) method introduced in [17] and tested in [16] where the Nyström method
(Algorithm 2.5) is used to compute a low rank approximation of Γ1/2

b AjΓ1/2
b and directly ap-

proximate the solution of Ajxj = bj . We refer the reader to Section 2.4.4 for more details. In
this approach, the PCG is replaced by a fully parallel randomized approach. In general, this
technique has proven to perform well [16], except in certain situations where convergence issues
have been observed.

Therefore, the use of the PCG is convenient to maintain theoretical guarantees on the obtained
approximate solutions. In this regard, the authors in [24] have proposed to use randomized
approximate eigenvalue decompositions to construct randomized LMPs for the PCG. In addition,
based on the Nyström method, they have introduced the Ritzit method (Algorithm 2.6) which
has proven to perform well on the Lorenz 95 model.

Recently, the authors in [33] have proposed a theoretical analysis of the Nyström LMP.
Their theoretical analysis demonstrates that those preconditioners can perform well whenever
the eigenvalues of the symmetric positive definite matrix are quickly decaying [33, Theorem 5.1].
This result confirms that such randomized LMPs are particularly adapted to variational data
assimilation, as the eigenvalues distribution of ΓbAj does satisfy this condition.

5.1.2 Contributions
The manifest drawback of both the RIOT and Ritzit method is that they all rely on the avail-
ability of a factorization for Γb. This factorization allows to use Γb as a split preconditioner, and
consequently, to apply randomized methods dedicated to symmetric positive definite problems.
However, such factorization is neither always available, nor computationally affordable. In this
case, to the best of our knowledge, no randomized approach has been proposed, and this chapter
intends to bridge this gap.

In this regard, we propose randomized LMPs for two Krylov subspace methods dedicated
to the solution of (5.1) when Γ1/2

b is not available. The first method has been developed to
address the solution of (5.1) when Γ−1

b is also not available. In this case, applying PCG to (5.1)
with Mj = Γb is not possible, as applying Aj (step 7 of Algorithm 2.2) implies to apply Γ−1

b .
Consequently, a dedicated solver named PCG Inverse-Free (PCGIF) has been proposed in [50,
Section 3.1] (Approach (C)). It relies on right preconditioning, and thus modifies the inner-
product in consequence (see Section 2.2.3). Adapted formulations of the LMP [50, Lemma 3.1]
and its spectral variant [50, Equation 3.80] have also been proposed.
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The second approach we consider is based on the dual formulation of (2.17) [68, Section
12.9]. This approach was initially motivated by the fact that the dual space is of dimension m,
yielding linear systems of size m×m instead of n×n for the primal space. This involves obvious
advantages from a computational and storage perspective in the case where m� n. The variant
of the PCG we consider, named the Augmented Restricted PCG (RPCG) [48, Algorithm 5], has
been proposed to guarantee that the iterates obtained with the dual method are mathematically
equivalent to the ones from the primal approach. Similarly, expressions for the LMP and its
spectral variant have also been proposed to precondition the (Augmented) RPCG [50].

In this chapter, we thus propose and study randomized spectral LMPs for both the PCGIF
(Algorithms 5.4 and 5.5) and Augmented RPCG (Algorithms 5.6 and 5.7). As will be shown,
constructing the spectral LMP for these Krylov subspace methods requires to compute eigen-
pairs of generalized eigenvalue problems with non-Euclidean inner products. In this context, we
adapt the algorithms proposed in Chapter 4, to substitute the expensive computation of exact
eigenpairs with the computation of approximate eigenpairs using randomized methods. Then, in
Theorems 5.9 and 5.10, we show the equivalence between the randomized spectral LMP for the
PCGIF and the RPCG that ensures the mathematical equivalence of the iterates. Finally, we in-
vestigate the performance of the proposed randomized LMPs on a four-dimensional variationonal
data assimilation problem.

5.2 Preliminaries
In this preliminary section, we present the PCGIF [50] and the Augmented RPCG [48] methods.

5.2.1 Solving the linearized subproblem in the primal space

A method for solving (5.1) when Γ−1
b is not available has been proposed in [50, Section 3.1]. As

mentioned in the introduction, this inverse-free approach is based on right preconditioning (5.1)
with Γb, that is considering the change of variable s̄j = Γ−1

b sj , so that (5.1) becomes

AjΓbs̄j = bj . (5.3)

The new system matrix, denoted by Āj = AjΓb = In + HT
j Γ−1

o HjΓb no longer contains Γ−1
b .

However, Āj is now symmetric with respect to the Γb inner product. Consequently, (5.3) can
be solved by applying the PCG in the Γb-inner product, which yields the PCG Inverse-Free
(PCGIF) proposed in [50, Algorithm 3.4]. In this context, preconditioning (5.3) is also perfectly
possible, but the preconditioner M̄j must also be Γb-symmetric.

It remains to cope with the right-hand side, whose expression reads

bj = Γ−1
b (xc − xj) +HT

j Γ−1
o dj .

It is actually possible to form the right-hand side without requiring Γ−1
b . Remembering that the

Gauss-Newton iterates satisfy xj+1 = xj + Γbs̄j , we can write by induction

xj = x1 + Γb

j−1∑
k=1

s̄k

 .

If the optimization process is initialized with x1 = xc, then rearranging the terms yields

Γ−1
b (xc − xj) = −

j−1∑
k=1

s̄k,
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meaning that bj can be computed without requiring Γ−1
b as

bj = −
j−1∑
k=1

s̄k +HT
j Γ−1

o dj ,

given that the solutions from the previous linear systems are stored. Let us take a moment
to discuss whether x1 = xc is restrictive or not. By definition, the center vector is a relevant
estimate of the nonlinear regression solution. Consequently, starting the optimization process
with x1 = xc is both relevant and done in practice. If there were a better estimate for the
solution, then xc would be modified to that better estimate.

Let us discuss under which conditions applying the PCG to (5.1) with preconditioner Mj and
applying the PCGIF to (5.3) with M̄j yields identical Gauss-Newton iterates. In this regard, for
a given j, let us denote s̄i the i-th iterate of the PCGIF when applied to solve the j-th linear
system (5.3), and r̄i = bj − Āj s̄i the corresponding i-th residual. It can been shown (see [50,
Approach (C) Section 3.1]) that under the conditions{

r0 = r̄0

Mj = ΓbM̄j

, (5.4)

then the quantities in the PCG (Algorithm 2.2) and in the PCGIF (Algorithm 5.1) satisfy [50,
Relation 3.15] for all i ≥ 0 {

ri = r̄i

si = Γbs̄i
. (5.5)

For the first condition, since we focus on the PCG with a zero initial guess, one has r0 = bj .
Consequently, since (5.1) and (5.3) share the same right-hand side, one can verify that the first
condition in (5.4) imposes a zero initial guess for the PCGIF. For the second condition on the
preconditioner, we can readily see that preconditioning the PCG with Mj = Γb is equivalent
to using M̄j = In in the PCGIF. In this regard, the PCGIF integrates this preconditioner by
default.

The resulting algorithm is presented in Algorithm 5.1. It is notable that getting a viable
implementation requires some care. In particular, maintaining one application of HT

j Γ−1
o Hj , Γb

and M̄j per iteration requires to introduce two additional recurrence vectors, namely w̄i and t̄i.
For the stopping criterion, we monitor the convergence with the relative decrease in the residual
r̄i measured in the ΓbM̄j norm. This criterion is classical, and can easily be computed using the
relation

‖r̄i‖ΓbM̄j
=
√
ρ̄i,

where ρ̄i is obtained at step 18 of Algorithm 5.1. Plus, we observe that if Mj and M̄j satisfy (5.4),
then using (5.5) we have

‖r̄i‖2ΓbM̄j
= r̄T

i ΓbM̄j r̄i = r̄T
i Mj r̄i = riMjri = ‖ri‖2Mj

.

Consequently, if the conditions in (5.4) are satisfied, the monitoring of the convergence for the
PCG and the PCGIF is also compatible, in the sense that the algorithms will be stopped at the
same moment.

Preconditioning the PCGIF with LMPs

Let us now recall LMP formulas for the PCGIF, that is, LMPs for linear systems that are Γb-
symmetric. This problem has been addressed in [50, Lemma 3.1], and we recall the result for
completeness.
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Algorithm 5.1: PCGIF to solve Ajsj = bj [50, Algorithm 3.4].

Input: Operators Γ−1
o , Hj ,Γb, HT

j , preconditioner M̄j which is Γb-symmetric, misfit
vector dj ∈ Rm, solutions s̄1, . . . , s̄j−1 ∈ Rn of the previous j − 1 linear system,
tolerance ε > 0.

1 s̄0 = 0
2 r̄0 = −

∑j−1
k=1 s̄k +HT

j Γ−1
o dj

3 z̄0 = M̄j r̄0
4 p̄0 = z̄0
5 w̄0 = Γbz̄0
6 t̄0 = w̄0
7 ρ̄0 = r̄T

0 w̄0
8 while convergence is not reached do
9 q̄i = p̄i +HT

j Γ−1
o Hj t̄i

10 αi = ρ̄i/q̄
T
i t̄i

11 s̄i+1 = s̄i + αip̄i
12 r̄i+1 = r̄i − αiq̄i
13 z̄i+1 = M̄j r̄i+1
14 w̄i+1 = Γbz̄i+1
15 if ‖r̄i+1‖ΓbM̄j

≤ ε ‖r̄0‖ΓbM̄j
then

16 Stop the method.
17 end
18 ρ̄i+1 = r̄T

i+1w̄i+1
19 βi = ρ̄i+1/ρ̄i
20 p̄i+1 = z̄i+1 + βip̄i
21 t̄i+1 = w̄i+1 + βit̄i
22 end

Output: Final iterate s̄f such that sj = Γb s̄f .

Proposition 5.1 ([50], Lemma 3.1). Let Ā, M̄ ∈ Rn×n be two Γb-symmetric positive def-
inite matrices. Let S̄ ∈ Rn×k be any full column rank matrix. Then, if we denote Q̄ =
S̄(S̄TΓbĀS̄)−1S̄TΓb, then

C =
[
In − Q̄Ā

]
M̄
[
In − ĀQ̄

]
+ Q̄,

is a Γb-symmetric matrix, and ΓbC is symmetric positive definite.

As for the standard LMP, it is possible to obtain a simplified expression when S̄ contains
eigeninformation. The obtained spectral LMP has been derived in [50, Relation 3.80] and is
recalled in the following proposition.

Proposition 5.2. Let Ā, M̄ ∈ Rn×n be two Γb-symmetric matrices. Let S̄ ∈ Rn×k be a matrix
whose columns are distinct eigenvectors of M̄Ā and Λ̄ ∈ Rk×k a diagonal matrix containing the
corresponding eigenvalues. Then, the matrix C introduced in Lemma 5.1 takes the form

Csp = M̄ + S̄
(

Λ̄−1 − Ik
)
S̄TΓb. (5.6)

Proof. The proof follows from immediate algebraic manipulations. First, by assumption one has
the identity M̄ĀS̄ = S̄Λ̄ and the fact that S̄TΓbM̄−1S̄ = Ik. From this, we obtain Q̄ = S̄Λ̄−1S̄TΓb
and M̄ĀQ̄ = S̄S̄TΓb.
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Remark 5.3. In practice, we would store both S̄ and ΓbS̄ so that applying Csp does not re-
quire applying Γb. We will notice that deriving an approximate eigenvalue decomposition via
randomized methods actually allows us to obtain both S̄ and ΓbS̄ at the same cost.

Now, the natural question is to determine the conditions under which the matrix C as in
Proposition 5.1 and P as in (2.19) satisfy the second condition of (5.4), that is,

P = ΓbC.

Those have already been highlighted in [50, Lemma 3.1], and one can indeed verify that if
A = ĀΓ−1

b

S = ΓbS̄
M = ΓbM̄

, (5.7)

then P and C do satisfy the condition (5.4). Indeed, under these conditions, one has

QA = S(STAS)−1STA

= ΓbS̄(S̄TΓbĀΓ−1
b ΓbS̄)−1S̄TΓbĀΓ−1

b

= ΓbQ̄ĀΓ−1
b ,

Plugging this relation into (2.19) and using that M = ΓbM̄ yields the result. We observe that
the system matrices in (5.1) and (5.3) actually satisfy the first condition by definition, since
Āj = AjΓb. Also, we have already highlighted that M = ΓbM̄ is for instance satisfied when
M = Γb and M̄ = In.

5.2.2 Solving the linearized subproblem in the dual space
Let us now introduce the second approach, based on the dual formulation. The main objective
of this approach is to exploit the structure of the problem to alleviate both the computational
costs and memory requirements of the inner-iterations. Let us start from (5.1), that is(

Γ−1
b +HT

j Γ−1
o Hj

)
sj = Γ−1

b (xc − xj) +HT
j Γ−1

o dj .

This system can be rewritten(
Γ−1
b +HT

j Γ−1
o Hj

)
(sj − xc + xj) = HT

j Γ−1
o

(
dj −Hj(xc − xj)

)
.

Consequently, the analytic expression of the increment reads

sj = xc − xj +
(

Γ−1
b +HT

j Γ−1
o Hj

)−1
HT
j Γ−1

o

(
dj −Hj(xc − xj)

)
.

By applying the Sherman-Morrison-Woodbury (3.3), we can obtain the equivalent expression

sj = xc − xj + ΓbHT
j

(
R+HjΓbHT

j

)−1
(dj −Hj(xc − xj)),

which suggests that the increment can be obtained by rather solving the linear system(
R+HjΓbHT

j

)
ŝj = dj −Hj(xc − xj), (5.8)
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which is of order m instead of n, and then retrieve the initial solution via

sj = xc − xj + ΓbHT
j ŝj .

This is the main idea behind the dual approach, but some precautions have to be taken. In con-
crete applications, (5.1) is not solved accurately, because it is neither needed nor affordable. Con-
sequently, a few inner loop iterations are computed, hopefully minimizing as much as possible the
quadratic function (2.17). The fact is that the PCG algorithm precisely solves (5.1) by minimiz-
ing (2.17). However, applying the PCG on (5.8) will not minimize the same quadratic function,
which can lead to very poor results when few inner loop iterations are performed. This was the
main motivation behind the Augmented Restricted PCG (RPCG) proposed in [48]. To ensure
that the inner loop iterates in the dual space are indeed minimizing the primal quadratic (2.17),
one must rather solve (

Im + Γ−1
o HjΓbHT

j

)
ŝj = Γ−1

o

(
dj −Hj(xc − xj)

)
, (5.9)

with the PCG in the inner product induced by HjΓbHT
j . Indeed, if we denote Âj = Im +

Γ−1
o HjΓbHT

j , then Âj is HjΓbHT
j -symmetric. We see here the analogy with the inverse-free

approach. A preconditioner M̂j can also be used, given that it is HjΓbHT
j -symmetric too. To

maintain the equivalence with the iterates obtained with the primal approach, it has been shown
in [50, p.70] that the following two assumptions must be satisfied r0 = HT

j r̂0

MjH
T
j = ΓbHT

j M̂j

, (5.10)

where r̂0 denotes the initial residual in the dual space. Under these conditions, it can then be
shown [48, Section 3.2] that for all i ≥ 0 one has ri = HT

j r̂i

si = ΓbHT
j ŝi

. (5.11)

Once again, we observe that the second condition in (5.10) is satisfied when Mj = Γb and
M̂j = Im, which means that the method in the dual space also integrates the preconditioner Γb
in its structure. However, in our case, since r0 = bj = Γ−1

b (xc−xj)+HT
j Γ−1

o dj , it is not clear how
to obtain r̂0 such that (5.10) is satisfied. The only favorable case is for the first Gauss-Newton
step, where x1 = xc implies that r0 = HT

1 Γ−1
o d1, yielding r̂0 = Γ−1

o d1. Here, we notice that r̂0 is
actually equal to the right-hand side in (5.8) for j = 1.

From this particular situation, we obtain a first algorithm, called the Restricted PCG (RPCG),
summarized in Algorithm 5.2. Again, the proposed implementation involves two additional re-
currence vectors ŵi and t̂i to ensure that the operators HjΓbHT

j , Γ−1
o and M̂j are applied only

once per iteration. For the stopping criterion, the method is stopped whenever a sufficient rela-
tive decrease in the residual measured in the HjΓbHT

j M̂j norm is observed. This is the natural
quantity to monitor as it is easily accessible using

‖r̂i‖HjΓbHT
j
M̂j

=
√
ρ̂i,

where ρ̂i is obtained at step 18 of Algorithm 5.2. Plus, if Mj is a preconditioner for the standard
PCG satisfying (5.10), then using (5.11) we have

‖r̂i‖2
HjΓbHT

j
M̂j

= r̂T
i HjΓbHT

j M̂j r̂i = r̂T
i HjMjH

T
j r̂i = riMjri = ‖ri‖2Mj

.
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Algorithm 5.2: RPCG to solve A1s1 = b1 [48, Algorithm 5]

Input: Operators Γ−1
o , H1,Γb, HT

1 , preconditioner M̄1 which is HT
1 ΓbH1-symmetric,

misfit vector d1 ∈ Rm, tolerance ε > 0.
1 ŝ0 = 0
2 r̂0 = Γ−1

o d1

3 ẑ0 = M̂1r̂0
4 p̂0 = ẑ0
5 ŵ0 = H1ΓbHT

1 ẑ0

6 t̂0 = ŵ0
7 ρ̂0 = r̂T

0 ŵ0
8 while convergence is not reached do
9 q̂i = p̂i + Γ−1

o t̂i
10 αi = ρ̂i/q̂

T
i t̂i

11 ŝi+1 = ŝi + αip̂i
12 r̂i+1 = r̂i − αiq̂i
13 ẑi+1 = M̂1r̂i+1
14 ŵi+1 = H1ΓbHT

1 ẑi+1
15 if ‖r̂i+1‖H1ΓbHT

1 M̂1
≤ ε ‖r̂0‖H1ΓbHT

1 M̂1
then

16 Stop the method.
17 end
18 ρ̂i+1 = r̂T

i+1ŵi+1
19 βi = ρ̂i+1/ρ̂i
20 p̂i+1 = ẑi+1 + βi+1p̂i
21 t̂i+1 = ŵi+1 + βi+1t̂i
22 end

Output: Final iterate ŝf such that s1 = ΓbHT
1 ŝ1.

Consequently, this stopping criterion is compatible with the one of the PCG, in the sense that
both solvers will stop at the same time.

To overcome the problem incurred by the condition r0 = HT
j r̂0, the authors in [48] proposed

an alternative formulation of the RPCG. The idea is to consider augmented matrices so that the
condition becomes naturally satisfied by the corresponding augmented residual. Accordingly, let
us define

Hj =
[

Hj

(xc − xj)TΓ−1
b

]
, R−1 =

[
Γ−1
o

0

]
, dj =

[
Γ−1
o dj

1

]
. (5.12)

Now, it is clear that
r0 = Γ−1

b (xc − xj) + Γ−1
o dj = HT

j dj ,

meaning that the augmented initial residual to choose is simply dj . The Augmented RPCG can
then be derived following the steps as for the RPCG, basically replacing the matrices by their
augmented counterparts. However, the vectors in the Augmented PCG are now of size m + 1,
and the procedure is summarized in Algorithm 5.3. Here, we note that an alternative version
is proposed in [48, Algorithm 8] where there is no longer reference to the augmented matrices.
However, this implies to explicitly write partitioning of vectors, which degrades the readability
and does not bring additional information. For the stopping criterion, the natural quantity to
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look at remains the residual in the HjΓbHT
j M̂ j-norm, since it can be computed using

‖r̂i+1‖HjΓbHT
j
M̂j

=
√
ρ̂i.

However, here there is no longer a compatibility with the stopping criterion of the PCG.

Algorithm 5.3: Augmented RPCG to solve Ajsj = bj with j ≥ 1 [48, Algorithm 7]

Input: Operators Γ−1
o , Hj ,Γb, HT

j , preconditioner M̂ j which is HT
j ΓbHj-symmetric,

misfit vector dj ∈ Rm, tolerance ε > 0.
1 ŝ0 = 0
2 r̂0 = dj
3 ẑ0 = M̂ j r̂0
4 p̂0 = ẑ0

5 ŵ0 = HjΓbHT
j ẑ0

6 t̂0 = ŵ0
7 ρ̂0 = r̂T

0 ŵ0
8 while convergence is not reached do
9 q̂i = p̂i +R−1t̂i

10 αi = ρ̂i/q̂
T
i t̂i

11 ŝi+1 = ŝi + αip̂i
12 r̂i+1 = r̂i − αiq̂i
13 ẑi+1 = M̂ j r̂i+1

14 ŵi+1 = HjΓbHT
j ẑi+1

15 if ‖r̂i+1‖HjΓbHT
j
M̂j

≤ ε ‖r̂0‖HjΓbHT
j
M̂j

then
16 Stop the method.
17 end
18 ρ̂i+1 = r̂T

i+1ŵi+1
19 βi = ρ̂i+1/ρ̂i
20 p̂i+1 = ẑi+1 + βi+1p̂i
21 t̂i+1 = ŵi+1 + βi+1t̂i
22 end

Output: Final iterate ŝf such that sj = ΓbHT
j ŝf .

LMP for the dual approach

We are again interested in finding LMP formulas for the preconditioner M̂j and M̂ j appearing
in Algorithms 5.2 and 5.3. The problem has been solved for the RPCG in [50] and we present
the result in Proposition 5.4. We discuss the case of the Augmented RPCG afterward.

Proposition 5.4 ([50], Lemma 4.1). Let Â, M̂ ∈ Rm×m be two HjΓbHT
j -symmetric matrices.

Let Ŝ ∈ Rm×k be any full column rank matrix and Q̂j = Ŝ(ŜTHjΓbHT
j ÂŜ)−1ŜTHjΓbHT

j . Then

Dj =
[
Im − Q̂jÂ

]
M̂
[
Im − ÂQ̂j

]
+ Q̂j ,

is a HjΓbHT
j -symmetric matrix, and HjΓbHT

j Dj is symmetric positive definite.

Provided that we consider the appropriate eigenvalue problem, a simplified variant for Dj in
Proposition 5.4 can be derived. This spectral variant is detailed in the next proposition.
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Proposition 5.5. Let Â, M̂ ∈ Rm×m be two HjΓbHT
j -symmetric matrices. Let Ŝ ∈ Rm×k

be a matrix whose columns are distinct eigenvectors of M̂Â and Λ̂ ∈ Rk×k a diagonal matrix
containing the corresponding eigenvalues. Then the matrix D introduced in Lemma 5.4 takes the
form

Dj,sp = M̂ + Ŝ
(

Λ̂−1 − Ik
)
ŜTHjΓbHT

j . (5.13)

Proof. The proof follows from immediate algebraic manipulations. By assumption one has
M̂ÂŜ = ŜΛ̂ and the fact that ŜTHjΓbHT

j M̂
−1Ŝ = Ik.

Remark 5.6. Again, we will consider methods that provide both Ŝ and HjΓbHT
j Ŝ so that applying

Dsp will not require to apply HjΓbHT
j .

Let us get interested in the conditions under which a LMP D for the RPCG defined in
Proposition 5.1 and a standard LMP P as in (2.10) satisfy the compatibility condition in (5.10).
One can verify that if 

AΓbHT
j = HT

j Â

S = ΓbHT
j Ŝ

MHT
j = ΓbHT

j M̂

, (5.14)

then P and D do satisfy PHT
j = ΓbHT

j D.
Regarding the operators in (5.1) and (5.9) one remarks that

AjΓbHT
j = (Γ−1

b +HT
j Γ−1

o Hj)ΓbHT
j

= HT
j +HT

j Γ−1
o HjΓbHT

j

= HT
j (Im + Γ−1

o HjΓbHT
j )

= HT
j Âj .

Consequently, the matrices in (5.1) and (5.9) satisfy the condition on the operators. The condi-
tion MHT

j = ΓbHT
j M̂ is for instance also satisfied for M = Γb and M̂ = Im.

Let us now discuss on LMPs for the Augmented LMP. It turns out that the only formulations
available in [50] are obtained imposing the equivalence between the Augmented RPCG and
RPCG when possible. However, as we have already discussed, this would only be possible
for the first Gauss-Newton step. When this equivalence does not hold, it is not clear how to
use a preconditioner M̂ for the RPCG into a preconditioner M̂ for the Augmented RPCG.
Consequently, we propose a formulation inspired from Proposition 5.5. This is motivated by the
analogy between the two solvers, and we consider the augmented system matrix

Âj = Im+1 +R−1HjΓbHT
j ∈ R(m+1)×(m+1).

Definition 5.7. Let Â, M̂ ∈ R(m+1)×(m+1) be two HjΓbHT
j -symmetric. Let Ŝ ∈ R(m+1)×k be

any full column rank matrix and let us denote Q̂j = Ŝ(ŜTHjΓbHT
j ÂŜ)−1ŜTHjΓbHT

j . Then we
define the LMP for the Augmented RPCG as

Dj =
[
Im − Q̂jÂ

]
M̂
[
Im − ÂQ̂j

]
+ Q̂j ,

We remark that Dj is HjΓbHT
j -symmetric and that HjΓbHT

jDj is symmetric positive definite
by analogous arguments as in Proposition 5.4. Similarly, we define the spectral variant in the
next proposition.
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Proposition 5.8. Let Â, M̂ ∈ R(m+1)×(m+1) be two HjΓbHT
j -symmetric. Let Ŝ ∈ R(m+1)×k

be a matrix whose columns are distinct eigenvectors of M̂Â and Λ̂ ∈ Rk×k a diagonal matrix
containing the corresponding eigenvalues. Then the matrix D introduced in Definition 5.7 takes
the form

Dj,sp = M̂ + Ŝ
(

Λ̂−1 − Ik
)
ŜTHjΓbHT

j . (5.15)

Proof. The proof follows from immediate algebraic manipulations. By assumption one has
M̂ÂŜ = ŜΛ̂ and the fact that ŜTHjΓbHT

j M̂
−1
Ŝ = Ik.

5.3 Randomized spectral limited memory preconditioners
Let us now propose randomized variants for the LMP presented in the previous section. Since
exact eigeninformation is generally out of reach from a computational viewpoint, the general
idea is to construct the spectral variants with approximate eigenpairs instead of exact ones. It
is important to highlight that doing so, we loose the properties of the exact spectral LMP as
described in [47, Section 3]. However, it turns out that using the spectral LMP formula with
approximate eigenpairs has proven to perform well in the context of nonlinear regressions [89].
In this thesis, the approximations are obtained using variants of the randomized algorithms
introduced in Chapter 4 that are adapted to the structure of the problem.

5.3.1 A class of randomized spectral limited memory preconditioners
for the inverse-free preconditioned conjugate gradient method

According to Proposition 5.2, we know that the spectral LMP for the PCGIF considers eigenpairs
associated to the eigenvalue problem

M̄Ā v = λ v,

where M̄ and Ā are two Γb-symmetric matrices. This corresponds to the GEP in initial form
introduced in Section 4.3.2 and consequently, we can use Algorithms 4.1 and 4.2 of Chapter 4.
Having applications in data assimilation in mind, viable algorithms should be parsimonious in
the applications of the different matrices. In this regard, we focus on Algorithm 4.2 of Chapter 4
with q = 1 (see Table 4.1). The implementation of Algorithm 4.2 cannot be straightforwardly
used for several reasons. First, the particular structure of the matrices can be exploited to avoid
useless applications of operators. Then, Algorithm 4.2 is designed to provide the approximate
eigenvevectors V and eigenvalues Λ only. However, we have already mentioned that to construct
a spectral LMP as in (5.6), it is also required to compute ΓbV . Consequently, the construction of
the reduced eigenvalue problem, at the root of Algoritihm 4.2 must be done differently to satisfy
this constraint. The resulting algorithm is presented in Algorithm 5.4.

Let us now present an alternative approach in the case M̄ = In. We recall that this is
equivalent to preconditioning the PCG with Γb. This situation occurs for instance at the first
Gauss-Newton iteration, where no other preconditioner than Γb is available. In this case, the
eigenvalue problem of interest becomes

Ā v = λ v, (5.16)

where we recall that Ā = AΓb = In + HT
j Γ−1

o HjΓb. It is then possible to further exploit the
structure of the operator, and to rather consider

HT
j Γ−1

o HjΓb v = λ′ v. (5.17)

This strategy has already been considered in Chapter 4, in particular for the numerical experi-
ments related to the 3D-Var test problems. The eigenvectors are identical, and the eigenvalues
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Algorithm 5.4: Construction of a randomized spectral LMP for the PCGIF in the
general case.

Input: Matrices Γb, Hj ,Γ−1
o , HT

j , preconditioner M̄ which is Γb-symmetric, number of
random samples 1 ≤ p ≤ m, number of approximate eigenpairs 1 ≤ k ≤ p to
provide.

1 Draw a random matrix Ω ∈ Rn×p
2 Compute V = ΓbΩ ∈ Rn×p
3 Compute X = Ω +HT

j Γ−1
o HjV ∈ Rn×p

4 Perform the thin QR factorization X = QR and set X = Q

5 Form T = R−TV TX ∈ Rp×p

6 Compute V = M̄X ∈ Rn×p and Z = ΓbV ∈ Rn×p
7 Form Φ = ZTX ∈ Rp×p
8 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

9 Remove the last p− k columns of W and Θ
10 Remove the last p− k rows of Θ
11 Set V = VW ∈ Rn×k, Z = ZW ∈ Rn×k and Λ = Θ−1

Output: Matrices V,Z ∈ Rn×k and Λ ∈ Rk×k such that M̄(In +HT
j Γ−1

o HjΓb)V ≈ V Λ
and Z = ΓbV with V TΓbM̄−1V = Ik and Λ diagonal.

are simply shifted by one. This new formulation offers several advantages. First, given the
theoretical bounds obtained in Theorem 4.9 and 4.10, we know that the performance of the
randomized methods depend on the tail of the eigenvalue distribution. Here, HT

j Γ−1
o HjΓb is a

matrix of rank m ≤ n. Consequently, n−m of its eigenvalues are zero, meaning that the tail of
HT
j Γ−1

o HjΓb is much smaller than the one of In+HT
j Γ−1

o HΓb. Subtracting the identity basically
turns the cluster of eigenvalues at 1 into a cluster of same size at 0.

Here, (5.17) corresponds to the GEP with basis transformation (4.2), meaning that we can
rather consider using Algorithms 4.3 and 4.4. Again, we focus on the variant that only requires
one application of HT

j Γ−1
o Hj , that is, Algorithm 4.4 with q = 1. An implementation in this

current context is proposed in Algorithm 5.5.
In terms of computational cost, Algorithms 5.4 and 5.5 require to apply HjΓ−1

o HT
j to a block

of p vectors (step 3) only once. This step can strongly benefit from parallelization, as all the
vectors are available simultaneously. Similarly, two applications of Γb to a block of p vectors are
performed in steps 2 and 6 and could enjoy the same benefit. The thin QR factorization can be
done using specific methods for tall and skinny matrices. The QR factorization can be performed
using efficient parallel methods adapted to tall and skinny matrices of very large size [82]. For
the memory requirements, we point out that three blocks of p vectors must be kept to perform
Algorithm 5.4 and two for Algorithm 5.5. The computational costs and memory requirements
of both algorithms are presented in Table 5.1. They are perfectly equivalent in terms of number
of applications of the operators, except of course for M̄ .

5.3.2 A class of randomized spectral limited memory preconditioners
for the restricted and augmented restricted preconditioned con-
jugate gradient method

We follow the same idea presented in Section 5.3.1. We intend to use randomized methods to
approximate eigeninformation, that will be used to construct an approximate spectral LMP as
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Algorithm 5.5: Construction of a randomized spectral LMP for the PCGIF in the case
M̄ = In.

Input: Matrices Γb, Hj ,Γ−1
o , HT

j , number of random samples 1 ≤ p ≤ m, number of
approximate eigenpairs 1 ≤ k ≤ p to provide.

1 Draw a random matrix Ω ∈ Rn×p
2 Compute V = ΓbΩ ∈ Rn×p
3 Compute X = HT

j Γ−1
o HjV ∈ Rn×p

4 Perform the thin QR factorization X = QR and set X = Q

5 Form T = R−TV TX ∈ Rp×p
6 Compute Z = ΓbX ∈ Rn×p
7 Form Φ = ZTX ∈ Rp×p
8 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

9 Remove the last p− k columns of W and Θ
10 Remove the last p− k rows of Θ
11 Set V = XW ∈ Rn×k, Z = ZW ∈ Rn×k and Λ = Θ−1 + Ik

Output: Matrices V,Z ∈ Rn×k and Λ ∈ Rk×k such that (In +HT
j Γ−1

o HjΓb)V ≈ V Λ
and Z = ΓbV with V TΓbV = Ik and Λ diagonal.

Hj Γ−1
o HT

j Γb M̄ Storage
Algorithm 5.4 1 1 1 2 1 3np
Algorithm 5.5 1 1 1 2 - 2np

Table 5.1: Number of applications of the matrices to a block of p vectors required for Algo-
rithms 5.4 and 5.5, along with the memory requirements.

in (5.13) and (5.15). Here we focus on constructing a randomized spectral LMP for the RPCG.
Indeed, since we have defined the LMP for the Augmented PCG by analogy with the one for the
RPCG, it is clear that transposing the arguments will be straightforward.

According to Proposition 5.5, constructing an approximate spectral LMP for the RPCG
requires to compute approximate solutions of the eigenvalue problem

M̂Â v = λ v, (5.18)

where M̂ and Â are HjΓbHT
j -symmetric matrices and Â = Im + Γ−1

o HjΓbHT
j . Again, we adapt

Algorithms 4.2 with q = 1 of Section 4.3.2. Given the corresponding computational cost detailed
in Table 4.1, it is clear that we cannot avoid the curse of applying HjΓbHT

j to a block of p
vectors twice. The first one occurs when applying Â, and the second one when applying the
inner product matrix. Therefore, using parallel methods to compute both series of matrix-vector
products seems even more critical for the dual approach. We will notice in Section 5.3.3 that
there is an alternative to partly mitigate this extra cost. Algorithm 5.6 presents an adapted
version of Algorithm 4.2 to address the eigenvalue problem (5.18).

Likewise the inverse-free approach, if M̂ = Im, then one may rather study the eigenvalue
problem

Γ−1
o HjΓbHT

j v = λ′ v,

which we interpret as the eigenvalues of the GEP with basis transformation. In this case, algo-
rithms from Section 4.3.3 can be applied. Following Table 4.1, Algorithm 4.4 with q = 1 is less
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Algorithm 5.6: Construction of a randomized spectral LMP for the RPCG in the
general case.

Input: Matrices Γb, Hj ,Γ−1
o , HT

j , preconditioner M̂ which is HjΓbHT
j -symmetric,

number of random samples 1 ≤ p ≤ m, number of approximate eigenpairs
1 ≤ k ≤ p to provide.

1 Draw a random matrix Ω ∈ Rm×p
2 Compute V = HjΓbHT

j Ω ∈ Rm×p

3 Compute X = Ω + Γ−1
o V ∈ Rm×p

4 Perform the thin QR factorization X = QR and set X = Q

5 Form T = R−TV TX ∈ Rp×p

6 Compute V = M̂X ∈ Rm×p and Z = HjΓbHT
j V ∈ Rm×p

7 Form Φ = ZTX ∈ Rp×p
8 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

9 Remove the last p− k columns of W and Θ
10 Remove the last p− k rows of Θ
11 Set V = VW ∈ Rm×k, Z = ZW ∈ Rm×k and Λ = Θ−1

Output: Matrices V,Z ∈ Rm×k and Λ ∈ Rk×k such that M̂(Im + Γ−1
o HjΓbHT

j )V ≈ V Λ
and Z = HjΓbHT

j V with V THjΓbHT
j M̂

−1V = Ik and Λ diagonal.

ressource consuming and an implementation adapted to the context is given in Algorithm 5.7.
The computational costs are detailed in Table 5.2.

Here, we note that Algorithms 5.6 and 5.7 require two applications of HjΓbHT
j to a block of

p vectors (steps 2 and 6), and one with Γ−1
o (step 3). Consequently, Hj and HT

j are used twice
in Algorithms 5.6 and 5.7 than in Algorithms 5.4 and 5.5. In data assimilation, applying those
operators is more expensive than applying Γb and Γ−1

o . This implies that the construction of
randomized spectral LMP for the RPCG is more costly than for the PCGIF. However, in terms
of memory requirements, Algorithms 5.6 and 5.7 require the storage of three and two blocks of
p vectors of size m respectively. Consequently, if m � n, then the storage can be significantly
less critical. The computational costs and memory requirements are summarized in Table 5.2.

For the Augmented RPCG, two algorithms can also be obtained following the same argu-
ments. It only requires to replace Hj , HT

j and R by their augmented counterparts defined
in (5.12), and to draw a random matrix of size (m+ 1)× p instead of m× p. Hence, it seemed
not necessary to provide two additional algorithms.

5.3.3 Equivalence between the primal and dual approaches
For both the PCGIF and the RPCG, we have highlighted conditions on the initial residuals and
on the preconditioners ((5.4) and (5.10) respectively) under which applying the PCGIF (resp.
the RPCG) produces mathematically equivalent iterates as the ones obtained when applying
the PCG. The condition on the initial residuals has already been settled, and we have also
shown conditions on the different LMPs ((5.7) and (5.14) respectively) so that the condition
on the preconditioners is satisfied. Our objective in this section is to determine under which
condition the randomized spectral LMPs proposed for the inverse-free and dual approach satisfy
the conditions given in (5.4) and (5.10).

Let us first relate the inverse-free and the dual approach directly to one another. Let Csp be
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Algorithm 5.7: Construction of a randomized spectral LMP for the RPCG in the case
M̂ = Im.

Input: Matrices Γb, Hj ,Γ−1
o , HT

j , number of random samples 1 ≤ p ≤ m, number of
approximate eigenpairs 1 ≤ k ≤ p to provide.

1 Draw a random matrix Ω ∈ Rm×p
2 Compute Z = HΓbHT

j Ω ∈ Rm×p

3 Compute V = Γ−1
o Z ∈ Rm×p

4 Perform the thin QR factorization V = QR and set V = Q

5 Form T = R−TZTV

6 Compute Z = HΓbHT
j V ∈ Rm×p

7 Form Φ = ZTV
8 Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ with W ∈ Rp×p a

Φ-orthogonal matrix and Θ ∈ Rp×p a diagonal matrix with the eigenvalues sorted in
increasing order

9 Remove the last p− k columns of W and Θ
10 Remove the last p− k rows of Θ
11 Set V = VW ∈ Rm×k, Z = ZW ∈ Rm×k and Λ = Θ−1 + Ik

Output: Matrices V,Z ∈ Rm×k and Λ ∈ Rk×k such that (Im + Γ−1
o HjΓbHT

j )V ≈ V Λ
and Z = HjΓbHT

j V with V THjΓbHT
j V = Ik and Λ diagonal.

Hj Γ−1
o HT

j Γb M̂ Storage
Algorithm 5.6 2 1 2 2 1 3mp
Algorithm 5.7 2 1 2 2 - 2mp

Table 5.2: Number of applications of the matrices to a block of p vectors required for Algo-
rithms 5.6 and 5.7, along with the memory requirements.

as in Proposition 5.2 and Dsp as in Proposition 5.5. Combining (5.4) and (5.10) implies that
preconditioning PCGIF with Csp and RPCG with Dsp produces equivalent iterates if they satisfy

CspH
T
j = HT

j Dsp.

From relations (5.7) and (5.14), we obtain that this is satisfied when
S̄ = HT

j Ŝ

Λ̄ = Λ̂

M̄HT
j = HT

j M̂

, (5.19)

Indeed, in this case, one has

CspH
T
j = M̄HT

j + S̄
(

Λ̄−1 − Ik
)
S̄TΓbHT

j

= HT
j M̂ +HT

j Ŝ
(

Λ̄−1 − Ik
)
ŜTHjΓbHT

j

= HT
j [Im + Ŝ

(
Λ̄−1 − Ik

)
ŜTHjΓbHT

j ] = HT
j Dsp.

The question now is under which conditions the relations (5.19) are satisfied when Csp andDsp
are no longer exact spectral LMP, but randomized spectral LMPs constructed in Algorithms 5.4

111



Chapter 5. Randomized preconditioning for weighted nonlinear least-squares problems

and 5.6 respectively. Since M̄ and M̂ are parameters of Algorithm 5.4 and Algorithm 5.6 respec-
tively, we are going to assume that they do satisfy (5.19). We state the compatibility condition
in Proposition 5.9.

Proposition 5.9. Let Crand denote the spectral LMP introduced in Proposition 5.2 constructed
using approximate eigenpairs provided by Algorithm 5.4 with M̄ and Ω̄ ∈ Rn×p. Let Drand be the
spectral LMP introduced in Proposition 5.5 constructed using the approximate eigenpairs provided
by Algorithm 5.6 with M̂ and Ω̂ ∈ Rm×p. Then if M̄HT

j = HT
j M̂ and Ω̄ = HT

j Ω̂, then Crand and
Drand satisfy

CrandH
T
j = HT

j Drand.

Proof. The proof is rather technical and requires to go back to the theoretical derivation of the
algorithms presented in Section 4.3. Let V̄, Z̄ ∈ Rn×k and Λ̄ ∈ Rk×k denote the outputs of
Algorithm 5.4, and V̂ , Ẑ ∈ Rm×k and Λ̂ ∈ Rk×k denote the outputs of Algorithm 5.6. One
therefore has

Crand = M̄ + V̄
(

Λ̄−1 − Ik
)
Z̄T

and Drand = M̂ + V̂
(

Λ̂−1 − Ik
)
ẐT.

Since by assumption M̄HT
j = HT

j M̂ , following (5.19) it only remains to verify that V̄ = HT
j V̂

and Λ̄ = Λ̂.
Let us denote Ā = In +HT

j Γ−1
o HjΓb and Â = Im + Γ−1

o HjΓbHT
j . Let us focus on V̄ , the ar-

guments will be analogous for V̂ . Algorithm 5.4 is a particular case of Algorithm 4.2 with q = 1.
Consequently, one has V̄ = M̄ĀΩ̄W̄ with W̄ ∈ Rp×k and Λ̄ containing eigenvectors and eigen-
values of the reduced eigenvalue problem given whose expression can be obtained from (4.11).
In our case, its expression reads

Ω̄TΓbĀΩ̄ w̄ = λ̄ Ω̄TΓbĀM̄ĀΩ̄ w̄. (5.20)

Similarly, one has V̂ = M̂ÂΩ̂Ŵ with Ŵ ∈ Rp×k and Λ̂ containing eigenvectors and eigenvalues
of the reduced eigenvalue problem

Ω̂THjΓbHT
j ÂΩ̂ ŵ = λ̂ Ω̂THjΓbHT

j ÂM̂ÂΩ̂ ŵ. (5.21)

Now, since one has Ω̄ = HT
j Ω̂ by assumption, recalling that ĀHT

j = HT
j Â we obtain

Ω̄TΓbĀΩ̄ = Ω̂THjΓbĀHT
j Ω̂ = Ω̂THjΓbHT

j ÂΩ̂.

For analogous reasons we have

Ω̄TΓbĀM̄ĀΩ̄ = Ω̂THjΓbHT
j ÂM̂ÂΩ̂.

Therefore, the reduced eigenvalue problems (5.20) and (5.21) are identical. This implies that
W̄ = Ŵ and Λ̄ = Λ̂. Accordingly, one has

V̄ = M̄ĀΩ̄W̄ = HT
j M̂ÂΩ̂Ŵ = HT

j V̂ ,

and the result.

Similarly, we can derive an equivalence condition relating the randomized spectral LMP
obtained with Algorithms 5.5 and 5.7. It is stated in Proposition 5.10. We note that in this case,
one trivially has M̄HT

j = HT
j M̂ since M̄ = In and M̂ = Im.
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Proposition 5.10. Let Crand be the randomized spectral LMP as introduced in Proposition 5.2
constructed using the approximations provided by Algorithm 5.5 with Ω̄ ∈ Rn×p. Let Drand be the
randomized spectral LMP as introduced in Proposition 5.5 constructed using the approximations
provided by Algorithm 5.7 and Ω̂ ∈ Rm×p. Then if Ω̄ = HT

j Ω̂, Crand and Drand satisfy

CrandH
T
j = HT

j Drand.

Proof. The proof follows similar arguments as in Proposition 5.9.

An interesting consequence can be drawn from Proposition 5.9. As mentioned above, Al-
gorithms 5.6 and 5.7 require two additional applications of HT

j and Hj to a block of p vectors
compared to Algorithms 5.4 and 5.5, which can be costly. According to Proposition 5.9, applying
the PCGIF with approximate spectral LMP Crand constructed with matrices of the form HT

j Ω
with Ω ∈ Rm×k would yield mathematically equivalent iterates. Although we apply a primal
method, that is in the n-dimensional space, it would only require one extra application of HT

j ,
thus saving one application of H.

5.4 Application to variational data assimilation
In this section, we propose an application to variational data assimilation. The variational
formulation of data assimilation problems takes the form (2.16), and is generally solved using
the Gauss-Newton method. We split the numerical experiments in two distinct parts. First, we
study on the same instructional 3D-Var problem as in Chapter 4 the eigenvalue distribution of
the matrices when using the proposed randomized spectral LMPs as preconditioners. This is
intended to illustrate the performance of the randomized spectral LMPs, and in particular to
compare the randomized variants to the exact spectral LMP. Then, we propose an application to
the Lorentz 95 model, which is a classical 4D-Var problem often used as a benchmark problem.
In this second part, we focus on the performance of the randomized preconditioners in terms of
improvements in the convergence of the Gauss-Newton method.

5.4.1 Eigenvalue distribution of the preconditioned matrix
In this section, we use the same 3D-Var test matrix A3D-Var as in Chapter 4, whose expression
reads

A3D-Var = Γ−1
b +HT

j Γ−1
o Hj ,

which we have considered in two different settings, denoted by LowObs and HighObs. Here, we
drop the subscript for convenience. The corresponding matrices associated with the PCGIF and
RPCG are denoted by Ā = In + HT

j Γ−1
o HjΓb and Â = Im + Γ−1

o HjΓbHT
j , respectively. In this

section, we focus on the case M̄ = In and M̂ = Im. We do not investigate the performance of the
randomized spectral LMP for the Augmented RPCG since there is no augmentation to perform.

Let Crand denote a randomized spectral LMP constructed using either Algorithm 5.4 or 5.5,
and Csp denote the spectral LMP as in Proposition 5.2 constructed using exact dominant eigen-
pairs of Ā. Similarly, let Drand denote a randomized spectral LMP constructed using either
Algorithm 5.6 or 5.7, and Dsp denote the spectral LMP as in Proposition 5.5 constructed using
exact dominant eigenpairs of Â.

Our objective in this section is to investigate the eigenvalue distribution of CrandĀ and DrandÂ
compared to the one of CspĀ and DspÂ. The latter will thus serve as a reference, since our
randomized approaches aim at substituting them. We will thus observe how the accuracy of the
approximate eigenpairs investigated in Section 4.5.2 impacts the eigenvalue distribution of the
preconditioned matrices.
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Inverse-free primal space approach

Let us first present the results for the inverse-free approach. To evaluate the performance of the
randomized spectral LMP Crand compared to the exact spectral LMP Csp, we compute

∆λ
j (Crand) = |λj(CspĀ)− λj(CrandĀ)|

λj(CspĀ)
, 1 ≤ j ≤ n. (5.22)

To account for the randomness, we perform a statistical analysis on (5.22). We apply the
randomized algorithms 100 times, with independent draws of standard Gaussian matrices Ωi ∈
Rn×p, from which we obtain independent randomized spectral LMPs Crand,i. In particular, we
focus on the empirical mean and standard deviation of ∆λ

j (Crand).
We denote C General the randomized LMP constructed using Algorithm 5.4 and C M=In the

one constructed using Algorithm 5.5. Since two-level preconditioners are expected to improve
over the first-level preconditioner, it seems relevant to also study ∆λ

j (In), that we denote by
No LMP. The methods are applied with k = 20, and p = 40 and 60, that is an oversampling of 20
and 40 respectively. Results are presented in Figure 5.1.

We remark that the difference between C General and C M=In is only noticeable for small
eigenvalues, and in the HighObs setting. To decrease the condition number, which is related
to approximating the largest eigenvalues, then they should perform equally. The effect of the
oversampling is particularly visible, and allows us to gain approximately one order of magnitude
for the dominant eigenvalues. When p − k = 40 one has ∆λ

j ≤ 10−2, which means that the
condition number obtained with the randomized spectral LMP should be very close to the one
obtained with Csp.

Dual space approach

For the dual approach, we consider the quantity of interest

∆λ
j (Drand) = |λj(DspÂ)− λj(DrandÂ)|

λj(DspÂ)
, 1 ≤ j ≤ n. (5.23)

We perform the same statistical analysis as in the previous section, to compute the empir-
ical mean and standard deviation of (5.23). We denote by D General the randomized LMP
constructed using Algorithm 5.6 and by D M=In the one constructed using Algorithm 5.7. We
denote by No LMP the quantity ∆λ

j (In). The algorithms are again applied with k = 20, and
p = 40 and 60. Results are presented in Figure 5.2.

The obtained results are very similar to the ones of Figure 5.1. Consequently, we can expect
the randomized spectral LMP for the RPCG to perform well too. By extension, the one related
to the Augmented RPCG may have similar characteristics.

5.4.2 A 4D-Var application: The Lorenz 95 model
We study the effect of the proposed randomized spectral LMP in terms of convergence for the
Gauss-Newton method within a strong-constraint 4D-Var data assimilation problem. We rapidly
introduce the mathematical material, although it is very similar to 3D-Var, there exist differences
that are worth being highlighted. Let x0 ∈ Rn denote the state vector of the system at the time
t0. Prior information on the true state is gathered in the background vector, denoted by xc ∈ Rn.
This background state is not known with certainty, and a standard way to model the uncertainty
is to consider that the background state variables are noisy with a Gaussian noise with zero
mean and covariance matrix Γb ∈ Rs×s, i.e. x0 ∼ N (xc,Γb). Here we consider that we have a
series of observations denoted by y0, . . . yN ∈ Rm made at the different times t0, . . . , tN . The
observations are related to the system state via the observation operator, H : Rs × R → Rm,
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Figure 5.1: Relative distance (5.22) with respect to the eigenvalues of CspĀ for the LowObs (top)
and HighObs (bottom) settings. Randomized spectral LMPs are built using Algorithms 5.4 or 5.5
applied with k = 20 and p = 40 (left) and p = 60 (right).

which is often nonlinear. Given the true initial state x0, the state at the different time steps is
then computed using a model operator denoted by M, such that xi+1 =M(xi). In the strong-
constraint 4D-Var variant, we consider that the model is perfect, meaning that we do not account
for model errors. Finally, we assume that all the observations are noisy, with Gaussian noise
associated to the covariance matrix Ri ∈ Rm×m, i.e. for 0 ≤ i ≤ N one has yi = H(xi, ti) + ξi
with ξi ∼ N (0, Ri). Here we note that we have implictly considered that the observation errors
are assumed uncorrelated in time.

Estimating the true initial state x0 can then be done by minimizing the following functional

J(x0) = 1
2‖x0 − xc‖2Γ−1

b

+ 1
2

N∑
i=0
‖yi −H(xi, ti)‖2R−1

i

(5.24)

subject to xi+1 =M(xi). Let Hi ∈ Rm×n and Mi ∈ Rn×n be the linearized of H andM around
(xi, ti) respectively. For a given Gauss-Newton iterate pj , the new iterate pj+1 is computed as
pj+1 = pj + sj with the increment sj being the minimizer of the quadratic cost function

J̃(sj) = 1
2‖HL

−1sj − dj‖2Γ−1
o

+ 1
2‖sj + pj − xc‖2Γ−1

b

, (5.25)

whereR = diag(R0, . . . , RN ). The matrixH is such thatH = diag(H0, . . . ,HN ) ∈ R(N+1)m×(N+1)n
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Figure 5.2: Relative distance (5.23) with respect to the eigenvalues of DspÂ for the LowObs (top)
and HighObs (bottom) settings. Randomized spectral LMPs are built using Algorithms 5.6 or 5.7
applied with k = 20 and p = 40 (left) and p = 60 (right).

and the matrix L ∈ R(N+1)n×(N+1)n is defined as

L−1 =


In

M0 In
. . . . . .

MN−1 In

 .

Lorenz 95 model

In the Lorenz 95 model, the evolution of the state vector x ∈ Rn components, denoted by
X1, . . . , Xn is governed by a set of n coupled ordinary differential equations

dXl

dt
= −Xl−2Xl−1 +Xl−1Xl+1 −Xl + F, 1 ≤ l ≤ n

where we impose periodic boundary conditions, namely X−1 = Xn−1, X0 = Xn and Xn+1 = X1.
The constant F is a parameter of the problem which is generally set to F = 8. The equations
are integrated using a fourth-order Runge-Kutta scheme [20, Chapter 3], with time step of 0.025.
The matrix Γb is a discretized diffusion operator with standard deviation σb = 1.0. We consider
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R0 = · · · = RN = σ2
r Im with σr = 0.2. We consider n = 500 and N = 24, implying operators of

size up to 12500× 12500. We study the following settings:

• Obs 1: 20 evenly distributed observations of the state variables are made at 6 evenly
distributed time steps, for a total of 120 observations (≈ 1% of observations),

• Obs 10: 70 evenly distributed observations of the state variables are made at 18 evenly
distributed time steps, for a total of 1260 observations (≈ 10% of observations),

• Obs 20: 140 evenly distributed observations of the state variables are made at 18 evenly
distributed time steps, for a total of 2520 observations (≈ 20% of observations).

This will allow us to study how the number of observations affects the performance of the
randomized spectral LMP.

Preconditioning strategies

Let us describe the preconditioning strategies we analyze.

• No LMP. In this first strategy, we apply the PCG (Algorithm 2.2) with Mj = Γb for all j,
that is we do not use the LMP. This is intended to illustrate a worst case scenario to study
the impact of the LMPs. If the proposed randomized LMPs bring no improvements to Γb,
then they should peform similar to this strategy.

• Exact Eigs. Here, by contrast, we consider the ideal case where the spectral LMP (2.19)
is constructed using exact eigenpairs. Thus, for each Gauss-Newton step, we construct
beforehand the spectral LMP as in (2.19) with the dominant eigenpairs of ΓbAj obtained via
a dedicated eigensolver. Then, we apply the PCG (Algorithm 2.2) with the spectral LMP
as a preconditioner. This approach is relevant to study since the randomized approaches
aim at approximating the spectral LMP.

• Ritz. Then, we consider a more realistic intermediate strategy, widely used in concrete
applications, and relying on Ritz approximations. The Ritz pairs are computed only once,
after the application of the PCG (Algorithm 2.2) on the first Gauss-Newton step using
M1 = Γb. Then, they are used to construct LMP in standard form (2.10) for all the next
linear systems. In particular, this implies that the LMP for the j-th system is constructed
using approximate eigenpairs of ΓbA1.

• Rand InvFree. For this randomized strategy, the linear systems are solved using the PCGIF
(Algorithm 5.1). For each system, we set M̄j = In and thus construct a randomized spectral
LMP as in (5.6) using approximate eigenpairs obtained with Algorithms 5.5.

• Rand Dual. For the dual space method, we distinguish between j = 1 and j > 1. For the
first Gauss-Newton step, the system is solved using the RPCG (Algorithm 5.2). Therefore,
setting M̂j = Im, we construct a randomized spectral LMP as in (5.13) using Algorithm 5.7.
Then for j > 1, the linear systems are solved using the Augmented RPCG (Algorithm 5.3).
Consequently, the randomized LMP are constructed as in (5.15).

For the randomized strategies, we have deliberately limited ourselves to simple approaches,
that is without any first-level preconditioner. We let this for future work. In the strategies
Exact Eigs, Ritz, Rand InvFree and Rand Dual, we consider the same number of vectors,
namely k = 30. For the randomized methods, we use an oversampling of 20, that is we ap-
ply Algorithms 5.5 and 5.7 with p = 50, as suggested in [80].
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Results

Let us now present the results. For each setting (Obs 1, Obs 10 and Obs 20) we have performed
6 Gauss-Newton steps, which was generally sufficient to achieve convergence. The PCGIF and
Augmented RPCG were both applied using a tolerance of ε = 10−4. This ensures that when
the Krylov subspace methods are stopped, the final iterates will be relatively similar between
all the proposed approaches. This guarantees that the different strategies go through the same
Gauss-Newton steps, and therefore encounter the same sequence of linear systems.

Results are presented in Figure 5.3, where both the evolution of the quadratic cost function
(left) and of the true objective function (right) are shown. For the quadratic cost function, we
have cropped to focus more on the strategies with LMPs. For all the three settings, there are al-
most no noticeable differences between Exact Eigs (square), Rand InvFree (dot) and Rand Dual
(cross). This illustrates that the randomized approaches are very well capturing the behavior
of the exact spectral LMP, while being computed at a fewer cost. The Ritz (square) strategy
performs actually well, but is penalized by the first Gauss-Newton where no LMP is used. This is
even more visible when looking at the number of inner iterations per Gauss-Newton step shown
in Figure 5.4. In Figure 5.4, one can clearly notice that from the second Gauss-Newton step,
the Ritz LMP tends to yield similar results as Exact Eigs, Rand InvFree and Rand Dual. On
Obs 20, Ritz slightly outperforms the other strategies, which may be due to the fact that Ritz
approximations also account for the right-hand side via the Krylov subspace.

In addition, we notice that the dual and inverse-free randomized strategies perform similarly.
This seems to be another illustration of the phenomenon highlighted in Section 4.5.2. Indeed,
the dual approach requires additional applications of Hj and HT

j compared to the inverse-free
approach. And as already highlighted when studying the approximate eigenpairs accuracy, it
seems that additional applications of Hj and HT

j lead to very few improvements for variational
data assimilation problems. Consequently, we do not observe a significant gain with the dual
approach compared to the inverse-free approach, although it is more costly regarding the applica-
tions of Hj and HT

j . However, although there is no benefit in terms of number of inner-iterations,
the dual methods remain cheaper in terms of storage and arithmetic costs.

5.5 Conclusions and perspectives
In this chapter, we have proposed classes of randomized spectral LMP adapted to both the
PCGIF and the Augmented RPCG. In this regard, we have used an adaptation of the algo-
rithms proposed in Chapter 4, that further exploits the structure of variational data assimilation
problems. For each Krylov subspace method, we have proposed two different variants of ran-
domized spectral LMP depending on the availability of a first-level preconditioner. We have also
identified conditions under which the randomized spectral LMPs for the PCGIF and the RPCG
produce mathematically equivalent iterates. Finally, a first numerical illustration on a 3D-Var
problem allowed us to demonstrate that the randomized spectral LMPs are indeed accurate ap-
proximations of exact spectral LMPs. Then, the improvements in terms of convergence of the
optimization procedure, the randomized spectral LMP performs similarly as the exact spectral
LMP. It is also comparable to the Ritz LMP, but can be computed from the beginning while the
Ritz LMP necessitates a first Gauss-Newton step without LMP.

One objective for future research on this topic is to propose and study more sophisticated
randomized approaches adapted to the solution of the sequence. Here, we have only considered
the elementary approach where a new randomized LMP is constructed in the beginning of each
Gauss-Newton step assuming there is no first-level preconditioner. Nevertheless, the algorithms
proposed in this chapter allow us to construct randomized spectral LMPs also when such a first-
level preconditioner is available. Consequently, a strategy that must be studied would consist in
building randomized LMPs on top of each other, that is the new randomized spectral LMP is
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Figure 5.3: Convergence of the Gauss-Newton method on the Obs 1 (top), Obs 10 (middle),
and Obs 20 (bottom) settings. Behaviors of the quadratic cost function (left) and of the true
objective function (right) are shown.

constructed using the previous one as a first-level preconditioner. The j-th LMP would then carry
eigeninformation related to all the previous systems, which could lead to further convergence
improvements.
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Figure 5.4: Number of inner iterations per Gauss-Newton step on the Obs 1 (top), Obs 10
(middle), and Obs 20 (bottom) settings.

Also, it seems relevant to study the potential combinations between randomized and deter-
ministic approaches such as the Ritz LMP. Ritz LMP has been proposed for the PCGIF and the
Augmented RPCG in [50] (see Section 3.1.2 and 4.4.1, respectively). An advantage of the Ritz
LMP is that the approximate eigenpairs are obtained using Krylov subspaces, and thus integrate
the right-hand side. This can improve the convergence rate in the first iterations of the PCG,
which is desirable in practical applications where few iterations are performed. There are several
possibilities to perform such a combination. A first approach would consist in primarily con-
structing the Ritz LMP, and then consider it as the first-level preconditioner in Algorithms 5.4
or 5.6. Accordingly, the j-th preconditioner will carry information on both the previous Krylov
subspace, and complementary eigeninformation obtained with the randomized methods. Another
possibility is to use the Ritz vectors to draw the random matrix Ω in the orthogonal subspace,
which is equivalent to consider a particular covariance matrix for Ω. In both cases, the objective
is to use randomized methods to obtain eigeninformation that is complementary to the Ritz one.
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Conclusions and perspectives

Conclusions. In this thesis, we have proposed several contributions to finally address the
variational data assimilation problem using randomized numerical linear algebra methods.

In Chapter 3, we have proposed a general error analysis of the randomized low rank ap-
proximation error. This analysis extends the existing work to Gaussian matrices with general
covariance mean and non-trivial mean term. The proposed generalization enables to analyze a
larger class of randomized methods based on randomized subspace iterations. An application to
the analysis of the randomized singular value decomposition has demonstrated that the proposed
bounds improve over the reference bounds in [53].

Secondly, in Chapter 4 we have developed algorithms to address two generalized eigenvalue
problems that notably arise in variational data assimilation. The proposed methods are fairly
general and, in particular, allowed us to recover existing algorithms from [80, 79, 24]. Then, we
have derived an average case analysis of the algorithms using the general analysis from Chapter
3. Finally, we have illustrated the performance of our algorithms in terms of eigenpair accuracy
on a three-dimensional variational data assimilation problem.

Finally, in Chapter 5, we have adapted the algorithms from Chapter 4 to design a new class
of randomized spectral limited memory preconditioners. Those randomized preconditioners are
designed for two particular Krylov subspace methods adapted to variational data assimilation:
the inverse-free and the augmented restricted preconditioned conjugate gradient methods. We
have presented two variants of randomized spectral limited memory preconditioners depending
on the availability of a first-level preconditioner. Then, we have identified relations between the
randomized spectral limited memory preconditioners for the inverse-free and the restricted pre-
conditioned conjugate gradient to ensure mathematically equivalent iterates. The performance
of the proposed randomized spectral limited memory preconditioners have then been illustrated
on a toy four-dimensional variational data assimilation problem. The obtained results show
that the randomized preconditioners yield similar performance as the conjugate gradient method
preconditioned by the exact spectral LMP, which opens interesting perspectives.

Perspectives. The proposed randomized methods have proven to perform well either for ap-
proximating eigenpairs or preconditioning Krylov subspace methods within variational data as-
similation. In both the theoretical analysis and numerical experiments we have focused on the
Gaussian distribution. However, in computationally intensive contexts, structured distributions
[63, 93] (such as subsampled trigonometric transforms [94] and sparse random distributions [22])
are generally preferred. In particular, random sparse matrices can be particularly adapted for
large scale data assimilation problems since they are cheaper to generate and store, and thus be
beneficial to the overall arithmetic cost. Consequently, a future research direction should inves-
tigate how the randomized algorithms presented in this thesis behave when the random sample
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matrix is drawn from a sparse distribution. As pointed out in [70], randomized algorithms are
relatively insensitive to the underlying distribution meaning that we should numerically observe
similar performance. Theoretically, deriving a randomized low rank approximation analysis as
in Chapter 3 for sparse distributions would also be of great interest. It seems clear that such
an analysis cannot be deduced using similar arguments as for the Gaussian case. Consequently,
we will need to employ refined theoretical tools. Matrix concentration inequalities [85] seem also
relevant in this context.

In Chapter 5, we have proposed a numerical illustration to determine how well the random-
ized spectral limited memory preconditioners approximate the corresponding exact spectral one.
This empirically appears as a consequence of the theoretical analysis proposed in Chapter 4. In
a recent paper, the authors proposed a theoretical analysis [33, Section 2] of a class of random-
ized preconditioners for symmetric positive definite matrices when using the shifted Nyström
approximation [86, Algorithm 3]. These preconditioners are based on the spectral limited mem-
ory preconditioner given in (2.19). Their analysis relates the error between the randomized and
exact spectral limited memory preconditioner to the low rank approximation error [63, Section
11]. Consequently, it would be interesting to investigate possible extensions of their results to
the analysis of the randomized preconditioners proposed in this thesis.

The algorithms proposed in Chapter 4 can be applied to general matrices. Consequently, our
randomized methods can be used to compute approximate eigenpairs of symmetric indefinite
matrices. In combination with appropriate limited memory preconditioner formulations [46, 64],
this would allow us to address indefinite formulations appearing in variational data assimilation
[32]. In such cases, the truncation performed at the end of each algorithm should rather focus on
the largest eigenvalues in absolute value. Assuming that the randomized methods will accurately
capture these extremal eigenmodes, it would be interesting to consider the combination with an
harmonic Ritz analysis which is known to provide accurate interior eigenpairs. We also note that
in this case our theoretical analysis will have to be adapted.

In operational variational data assimilation problems, the Ritz limited memory preconditioner
is the method of choice. An important aspect that should be investigated is how to combine the
Ritz pairs that are available almost for free and the randomized methods proposed in this thesis.
The objective would be to use the randomized methods to obtain complementary information
and thus to take advantage of both the deterministic and randomized aspects. A first option
would be to use the Ritz limited memory preconditioner as the first preconditioner in the algo-
rithms presented in Chapter 4. Thus, the randomized method will act as an additional layer of
preconditioning on top of the deterministic two-level Ritz preconditioner. Another possibility is
to use available information within the covariance matrix of the random sample matrix Ω. For
instance, one can draw the random sample matrix in the orthogonal of the subspace spanned by
the available Ritz vectors, or use deflated operators as a covariance matrix. In these cases, one
must be careful with the interpretation of the resulting approximate eigenpairs. Especially, it will
be crucial to clearly identify to which operator the approximate eigeninformation corresponds
and use it accordingly.

The randomized preconditioning strategies investigated in Chapter 5 are elementary and in
particular, they do not really consider the aspects related to the sequence. A natural exten-
sion would then be to study more sophisticated strategies that are specifically adapted to the
sequence. The main objective here is to construct the j-th preconditioner taking into account
the (j − 1) previous solutions. This implies to determine how to use the already available in-
formation and also to which operator apply the randomized methods on. It turns out that the
flexibility of the algorithms in Chapters 4 and 5 allows us to consider several options. A first
one would be to combine multiplicatively the randomized limited memory preconditioners. In
this case, the algorithms in Chapter 5 will be applied with the (j − 1)-th preconditioner as the
first level preconditioner of the j-th preconditioner. This will obviously increase the complexity
of the preconditioner along the sequence, but the aggregated information may yield significant
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improvements in the overall solution process. Another possibility is to construct several random-
ized preconditioners in parallel and combine them additively. In this case, the challenge is to
ensure that the preconditioners provide different information to maximize the improvements.
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[14] N. Boullé and A. Townsend, A generalization of the randomized singular value decom-
position, arXiv:2105.13052 [cs, math, stat], (2022).

[15] , Learning Elliptic Partial Differential Equations with Randomized Linear Algebra,
Foundations of Computational Mathematics, (2022).

[16] N. Bousserez, J. J. Guerrette, and D. K. Henze, Enhanced parallelization of the
incremental 4D-Var data assimilation algorithm using the Randomized Incremental Optimal
Technique, Quarterly Journal of the Royal Meteorological Society, 146 (2020), pp. 1351–
1371.

[17] N. Bousserez and D. K. Henze, Optimal and scalable methods to approximate the so-
lutions of large-scale Bayesian problems: Theory and application to atmospheric inversion
and data assimilation, Quarterly Journal of the Royal Meteorological Society, 144 (2018),
pp. 365–390.

[18] C. Boutsidis, M. W. Mahoney, and P. Drineas, An Improved Approximation Algo-
rithm for the Column Subset Selection Problem, in Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Math-
ematics, Jan. 2009, pp. 968–977.

[19] A. Buluc, T. G. Kolda, S. M. Wild, M. Anitescu, A. DeGennaro, J. Jake-
man, C. Kamath, R. Kannan, M. E. Lopes, P.-G. Martinsson, K. Myers, J. Nel-
son, J. M. Restrepo, C. Seshadhri, D. Vrabie, B. Wohlberg, S. J. Wright,
C. Yang, and P. Zwart, Randomized Algorithms for Scientific Computing (RASC),
arXiv:2104.11079 [cs], (2021), pp. None, 1807223.

[20] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley &
Sons, Ltd, Chichester, UK, July 2016.

[21] A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen, Data assimilation in the
geosciences: An overview of methods, issues, and perspectives, WIREs Climate Change, 9
(2018).

[22] M. B. Cohen, Nearly Tight Oblivious Subspace Embeddings by Trace Inequalities, in Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, Jan. 2016, pp. 278–287.

[23] R. Daley, Atmospheric Data Analysis, no. 2 in Cambridge Atmospheric and Space Science
Series, Cambridge University Press, Cambridge, first ed., 1999.

[24] I. Daužickaitė, A. S. Lawless, J. A. Scott, and P. J. Leeuwen, Randomised pre-
conditioning for the forcing formulation of weak-constraint 4D-Var, Quarterly Journal of
the Royal Meteorological Society, 147 (2021), pp. 3719–3734.

[25] C. Davis, Separation of Two Linear Subspaces, Acta Sci. Math. (Szeged), 19 (1958),
pp. 172–187.

[26] T. A. Davis, Direct Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, Jan. 2006.

[27] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal Par-
allel and Sequential QR and LU Factorizations, SIAM Journal on Scientific Computing, 34
(2012), pp. A206–A239.

126



Bibliography

[28] P. Drineas and I. C. F. Ipsen, Low-Rank Matrix Approximations Do Not Need a Singular
Value Gap, SIAM Journal on Matrix Analysis and Applications, 40 (2019), pp. 299–319.

[29] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster least
squares approximation, Numerische Mathematik, 117 (2011), pp. 219–249.

[30] C. Eckart and G. Young, The approximation of one matrix by another of lower rank,
Psychometrika, 1 (1936), pp. 211–218.

[31] X. Feng and Z. Zhang, The rank of a random matrix, Applied Mathematics and Com-
putation, 185 (2007), pp. 689–694.
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