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Analysis of the side-effects on latency bounds of combinations of
scheduling, redundancy and synchronization mechanisms in time-sensitive

networks.

Abstract — Time-sensitive networks, as in the context of IEEE Time-Sensitive Networking
(TSN) and IETF Deterministic Networking (DetNet), support safety-critical applications by
providing deterministic services with guaranteed latency bounds. Several mechanisms, such
as schedulers and traffic regulators (TSN ATS, asynchronous traffic shaping), were developed,
and their effects on worst-case latency bounds have been widely studied in the literature by
using the network-calculus framework. Time-sensitive networks are also required, however, to
offer an easy reconfiguration with alternative paths, a high level of reliability and sometimes
a time-synchronization service. To meet these needs, multi-path topologies were developed
to enable the reconfiguration, and a set of redundancy and synchronization mechanisms were
developed to provide high reliability and time synchronization. Although the mechanisms can
rely on their own theory to validate their adequacy to their respective objective, their side
effects on the latency bounds and their interactions with the schedulers and traffic regulators
have hardly been analyzed in the literature. In this thesis, we use the network-calculus
framework to analyze the combinations of mechanisms and their effects on latency bounds in
time-sensitive networks with multi-path topologies.

Our main contributions at the theoretical level are as follows: 1/ We develop an algorithm
(FP-TFA) for computing latency bounds in networks with multi-path topologies that lead
to cyclic dependencies. We propose and analyze the partial-deployment approach of traffic
regulators (either per-flow or TSN ATS) and another algorithm (LCAN) for breaking all
cyclic dependencies at minimal cost. 2/ We analyze the effect of redundancy mechanisms
on latency bounds by capturing their behavior with the network-calculus framework. We
analyze their interactions with traffic regulators. We find that TSN ATS can yield unbounded
latencies when used with redundancy mechanisms. 3/ We provide a time model that captures
the clock non-idealities of synchronized and non-synchronized networks within the network-
calculus framework. We show that traffic regulators with non-ideal clocks can lead to latency
penalties; with TSN ATS this penalty is unbounded even in tightly synchronized networks.
We propose two methods (rate-and-burst cascade and ADAM) for adapting the parameters
of the traffic regulators and for addressing the above issue.

We also provide contributions of practical interest: a) the xTFA modular tool that com-
putes latency bounds by using the results of the thesis, b) a module for simulating the effects
of local clocks in the discrete-event simulator ns-3, and c) an application of our results to an
industrial use-case.

Keywords:
time-sensitive networks; network calculus; traffic regulators; redundancy mechanisms;

non-ideal clocks; time synchronization
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Analyse des conséquences sur les bornes de latences des combinaisons de
mécanismes d’ordonnancement, de redondance et de synchronisation dans

les réseaux temps-réel.
Résumé — Les réseaux temps-réels, comme ceux spécifiés par IEEE Time-Sensitive

Networking (TSN) et IETF Deterministic Networking (DetNet), fournissent aux applications
critiques un service déterministe avec des bornes de latence garanties. Plusieurs mécanismes
comme les ordonnanceurs et les régulateurs de trafic (TSN ATS, asynchronous traffic shaping)
ont été développés et leurs effets sur les bornes de latences pire-cas ont été abondamment
étudiés dans la littérature en utilisant la théorie du calcul réseau. Toutefois, les réseaux
temps-réels doivent désormais aussi offrir une reconfiguration simplifiée avec des chemins
alternatifs, un haut niveau de fiabilité et parfois un service de synchronisation du temps.
Pour répondre à ces besoins, l’utilisation de topologies à plusieurs chemins a été encouragée
pour faciliter la reconfiguration et des mécanismes de redondance et de synchronisation ont
été développés pour fournir un haut niveau de fiabilité et une synchronisation du temps.
Tandis que chacun de ces mécanismes dispose d’une théorie pour valider son efficacité dans
son objectif respectif, la littérature n’a que peu étudié leurs effets secondaires sur les bornes
de latences et leurs interactions avec les ordonnanceurs et les régulateurs de trafic. Dans cette
thèse, nous utilisons la théorie du calcul réseau pour analyser les combinaisons de mécanismes
et leurs effets sur les bornes de latences dans les réseaux temps-réel avec des topologies
à plusieurs chemins. Nos principales contributions sur le plan théorique sont : 1/ Nous
développons un algorithme (FP-TFA) qui calcule des bornes de latence dans les réseaux dans
lesquels la variété des chemins crée des dépendances cycliques. Nous proposons et analysons
l’approche de déploiement partielle des régulateurs de trafic (soit par flux, soit avec TSN
ATS) ainsi qu’un autre algorithme (LCAN) qui casse toutes les dépendances cycliques à coût
minimal. 2/ Nous analysons les effets des mécanismes de redondance sur les bornes de latence
en modélisant leur comportement dans la théorie du calcul réseau. Nous analysons aussi leurs
interactions avec les régulateurs de trafic. En particulier, nous observons que TSN ATS peut
mener à des latences non bornées lorsqu’il est utilisé avec les mécanismes de redondances. 3/
Nous proposons un modèle d’horloge qui décrit, au sein de la théorie du calcul réseau, les
imperfections des horloges des réseaux synchronisés ou non. Nous montrons que l’usage de
régulateurs de trafic avec des horloges imparfaites occasionne une pénalité dans les bornes
de latence. Avec TSN ATS, cette pénalité n’est pas bornée, y compris dans les réseaux
synchronisés avec une grande précision. Nous proposons deux méthodes (cascade et ADAM)
pour adapter les paramètres des régulateurs et ainsi résoudre ce problème.

Nous fournissons également des contributions d’intérêt pratique : a) l’outil modulaire
xTFA, qui calcule des bornes de latences en utilisant les résultats de la thèse, b) un module
pour simuler l’effet des horloges locales dans le simulateur à évènements discrets ns-3, et c)
une application de nos résultats sur une étude de cas industrielle.

Mots clés :
réseaux temps-réel; calcul réseau; régulateurs de trafic; mécanismes de redondance; hor-

loges imparfaites; synchronisation
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Victor Hugo

iii





Contents

I Context 3

1 Technological Context: Time-Sensitive Networks 5
1.1 Service Performance of Communication Networks . . . . . . . . . . . . . . . . 6
1.2 Technological Trends in Time-Sensitive Networks . . . . . . . . . . . . . . . . 7
1.3 The IEEE TSN Task Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The IETF DetNet Working Group . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Performance Analysis of Time-Sensitive Networks . . . . . . . . . . . . . . . . 12

2 Theoretical Context: Network Calculus 17
2.1 The Underlying Formalism: Min-Plus Algebra . . . . . . . . . . . . . . . . . . 18
2.2 Main Concepts of Network Calculus . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The Main Results of the Network-Calculus Theory . . . . . . . . . . . . . . . 22
2.4 FIFO-per-Class Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Compositional Approaches for the Analysis of Feed-Forward FIFO-per-class

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Network-Calculus Model For Time-Sensitive Networks . . . . . . . . . . . . . 30

II Theoretical Contributions 35

3 Cyclic Dependencies 37
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 LCAN: an Optimal Algorithm for Breaking All Cyclic Dependencies . . . . . 45
3.3 FP-TFA: Computing Tight Delay Bounds in Networks with Cyclic Dependencies 50
3.4 Evaluation of the Partial-Deployment Approach . . . . . . . . . . . . . . . . . 58

4 Packet Replication and Elimination 63
4.1 Related Work on Packet Replication And Elimination . . . . . . . . . . . . . 64
4.2 Modeling the Redundancy Mechanisms . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Toolbox for the Deterministic Analysis of Packet Replication and Elimination

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Interactions between PREF and Traffic Regulators . . . . . . . . . . . . . . . 82
4.5 Evaluation of the Performance of The Toolbox . . . . . . . . . . . . . . . . . 88

5 Effects of Clock Non-Idealities 93
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Network-Calculus Toolbox for Networks With Non-Ideal Clocks . . . . . . . . 100
5.4 Computing End-To-End TAI Bounds in Time-Sensitive Networks . . . . . . . 104
5.5 Regulators in Networks With Non-Ideal Clocks . . . . . . . . . . . . . . . . . 107
5.6 Evaluation of the Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

v



vi Contents

III Practical Contributions 117

6 xTFA: A Tool for Computing Delay Bounds in Time-Sensitive Networks 119
6.1 Overview of xTFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Main Original Ideas in experimental modular TFA (xTFA) for Feed-Forward

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Adaptations of xTFA for Cyclic Dependencies . . . . . . . . . . . . . . . . . . 134

7 Implementation of Local Clocks in ns-3 137
7.1 ns-3, a Network Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Previous Work, Limitations and New Requirements . . . . . . . . . . . . . . . 142
7.3 Proposed Design for the Implementation of Clocks in ns-3 . . . . . . . . . . . 145
7.4 Application: Simulating the IR Instability with Non-Ideal Clocks . . . . . . . 150

8 Application of the Contributions to an Industrial Use-Case 153
8.1 Description of the Industrial Use-Case . . . . . . . . . . . . . . . . . . . . . . 153
8.2 Side-Effects of the Multi-Path Topology on Latency Bounds: Contributions of

Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Side-Effects of the Redundancy Mechanisms on Latency Bounds: Contribu-

tions of Chapters 4 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4 Side-Effects of the Synchronization on Latency Bounds: Contributions of Chap-

ters 5 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

IV Conclusion and Perspectives 161

9 Conclusion and Perspectives 163
9.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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Introduction

Time-sensitive networks have been used since the 1990s in cyber-physical systems (e.g., cars,
planes, factories) for interconnecting sensors, processing units, and actuators, and for enabling
safety-critical applications such as control loops. Before 2010, time-sensitive networks were
present only in a few industrial sectors (most notably the aerospace and car industries), and
various time-sensitive networking technologies were used for the different sectors.

As opposed to the best-effort quality of service offered by non-safety-critical communi-
cation networks (such as the Internet), time-sensitive networks serve the data flows with a
deterministic service that includes a guarantee of bounded latencies with no congestion losses.
This “core” service is our main focus in this thesis. Several mechanisms, such as schedulers,
shapers and frame preemption mechanisms, were developed for providing such service.

Proven latency and backlog bounds must be computed to validate the timing requirements
and absence of congestion losses with these mechanisms. Several deterministic frameworks
for computing such bounds were developed and are widely used to compute the effects of the
above mechanisms on latency bounds.

Two main ongoing developments constitute the context of this thesis:
• First, there exists an emerging need for the standardization of time-sensitive networks.

Many industrials have joined the time-sensitive networking (TSN) task group of the Institute
of Electrical and Electronics Engineers (IEEE) or the deterministic networking (DetNet)
working group of the Internet Engineering Task Force (IETF). Each group specifies a set of
technologies that are independent from the industry sector. The industry sectors can then
cherry-pick the technologies according to their specific needs.
• Second, time-sensitive networks are required to provide wider services. For example,

IEEE TSN networks provide not only bounded latency but also a high reliability, a service of
time synchronization and an easy reconfiguration with the use of multi-path topologies that
provide alternative routes. New topologies (e.g., multi-path topologies) and new mechanisms
(e.g., redundancy and synchronization), were developed to enable these additional services,
and their ability to provide the aforementioned new services is studied in the literature.

However, the side effects of these new mechanisms on the deterministic service and their
combinations with scheduling mechanisms are hardly studied in the literature. Furthermore,
the existing deterministic frameworks do not consider these new topologies and mechanisms.
As we demonstrate in this thesis, these frameworks must be adapted to the presence of the
new mechanisms otherwise they can compute invalid performance bounds.

In this thesis, we analyze the side effects on latency bounds of the combinations of the
new mechanisms (redundancy, time synchronization) and topologies (multi-path) by relying
on network calculus. We provide the theoretical grounds for modeling the effects of the new
mechanisms in the network-calculus deterministic framework. We also study the interactions
with the traffic regulators and in particular with the interleaved regulator (IR) (implemented
by IEEE TSN asynchronous traffic shaping) We show that the interactions between redun-
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Figure 1: Illustration of the context of the thesis and of our theoretical contributions. The bounded-
latency service in the thick-blue-lined oval is the focus of this thesis. Several bounded-latency mechanisms
(dashed box on the left) were developed to achieve this service and are studied in numerous occasions in
the literature. A new set of services was introduced in time-sensitive networks (ovals on the right), for
which new mechanisms were developed. Their performance for their respective service is also studied in
the literature. In this thesis, we study whether these new mechanisms and new topologies could cause side
effects on the bounded-latency service. Figure based on [Farkas 2018, p. 5].

dancy, time-synchronization mechanisms and the interleaved regulator can yield unbounded
latencies.

The thesis is organized as follows. In the first part, we introduce the context and pro-
vides the related work: In Chapter 1, we provide the technological context on time-sensitive
networks and discuss their performance evaluation. In Chapter 2, we focus on the network-
calculus framework. Our theoretical contributions are then presented in the second part: In
Chapter 3, we analyze the effects of cyclic dependencies on latency bounds and their interac-
tions with traffic regulators. In Chapter 4, we analyze the effects of redundancy mechanisms
on latency bounds and their interactions with traffic regulators. In Chapter 5, we analyze
the effects of an imperfect synchronization (or of its absence) on the latency bounds and its
consequences for traffic regulators. Our practical contributions are presented in the last part:
In Chapter 6, we describe experimental modular TFA (xTFA), a tool for computing latency
bounds in time-sensitive networks that implement the theoretical results of this thesis. In
Chapter 7, we describe an addition to the ns-3 network simulator; it enables us to simulate
timing inaccuracies and the issues that they can cause with IRs. In Chapter 8, we present an
application of our results to a representative industrial use-case. We provide our conclusive
remarks and future research perspectives in Chapter 9.

Appendix A is intended to be a vade mecum for the manuscript and can be printed
separately: it provides the list of acronyms, the table of notations and a glossary. Throughout
the thesis, the underlined terms are defined in the glossary. Appendix B contains the proofs
of the theoretical results.
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Chapter 1

Technological Context:
Time-Sensitive Networks

Curiosity. Insight. Spirit. Opportunity. [. . . ] If rovers are to be the qualities
of us as a race, we missed the most important thing: Perseverance. [. . . ] We,
[. . . ] as humans, will not give up.

Alex Mather, Essay to name the NASA Mars 2020 rover.

Contents
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1.1.2 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Technological Trends in Time-Sensitive Networks . . . . . . . . . . . . 7
1.2.1 Taxonomy of Time-Sensitive Networks . . . . . . . . . . . . . . . . . . . . 7
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1.3 The IEEE TSN Task Group . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Content of the TSN Activities . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Organization of the TSN Documents . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Difference between TSN and other Ethernet-based Technologies . . . . . . 12

1.4 The IETF DetNet Working Group . . . . . . . . . . . . . . . . . . . . . 12
1.5 Performance Analysis of Time-Sensitive Networks . . . . . . . . . . . 12

The functionalities of most human-made complex systems (e.g., cars, airplanes, web-
services) are achieved by exchanging pieces of information (the data units) among the system
elements through one or several communication networks. For example, an autonomous car
has several control loops in which data is gathered from the sensors and is distributed to one
or several controllers; the controllers then interact to make a control decision that is then
sent to the actuators. The communication network provides the service of transporting the
data units from a sending application in an end system to one or several receiving applications
in one or several end systems. Understanding the performance of the service provided by the
communication network is fundamental for obtaining system-wide performance metrics and
for validating the system requirements.

In particular, if a communication network supports a safety-critical application (i.e., an
application whose failure can result in death or serious injuries to people, significant eco-
nomical loss, or harm to the environment [INCOSE SE Handbook, §10.10]), then the safety
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6 Chapter 1. Technological Context: Time-Sensitive Networks

requirements at the system level derive requirements on the guarantees offered by the net-
work’s service. Time-sensitive networks are a subset of communication networks specifically
designed for providing a service with deterministic guarantees to safety-critical applications.
They are at the core of several multi-stakeholder working groups, such as IEEE TSN and
IETF DetNet, and they constitute the technological context of this thesis.

In this chapter, we first present the performance metrics of interest for a time-sensitive
network, and we define the deterministic service in Section 1.1. We then give a brief overview
of the industrial trends and provide some elements of taxonomy in Section 1.2. Afterwards, we
introduce more specifically the IEEE TSN task group (Section 1.3) and provide some remarks
on IETF DetNet (Section 1.4). Last, we give an overview in Section 1.5 of the related work
on the performance analysis of time-sensitive networks.

1.1 Service Performance of Communication Networks

1.1.1 Performance Metrics of Communication Networks

In a communication network, the data units are organized into flows: a flow is a coherent
sequence of data units that originate at a source and traverse the network to reach one or
several destination(s). The service offered by a given communication network can be evaluated
by a variety of functional performance metrics. In the thesis, we use

• the latency of a data unit is the duration needed by the data unit to travel the network
from source to destination(s). The latency of a flow is the maximum latency of any of
its data units.

• the jitter of a flow represents the difference between the maximum and the minimum
latency of any of its data units.

• the packet loss ratio of a flow quantifies the fraction of its sent data units that are lost
or altered in the network.

• the packet-reordering metrics for a flow [Mohammadpour, Le Boudec 2021] quantify the
amount of out-of-order data units at one of its destinations.

The network is also characterized by a set of non-functional properties such as its cost,
its weight, its flexibility (ability to add/remove/change flows or network elements), its main-
tainability, its scalability, etc.

1.1.2 Quality of Service

The Quality of Service (QoS) characterizes the guarantees that a network provides on its func-
tional performance metrics. For example, when the network does not provide any guarantees
for the latency, jitter, loss-ratio or the mis-ordering of a flow, then we say that the net-
work provides a best-effort service. When the network provides guarantees on the worst-case
performance metrics, we say that the network provides a deterministic service.

Time-sensitive networks provide a deterministic service to the applications. The focus on
the worst-case performance metrics is explicit in the working groups, including IEEE TSN
[Farkas 2018] and IETF DetNet [RFC 8655],[48].
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Figure 1.1: Evolution of the paradigms used in time-sensitive networks for sharing the network resources
between the end systems (boxes in the figure). (a) With the point-to-point paradigm, one transmission
link for each pair of end systems and for each direction is used (a total of 12 links in this figure). (b)
With the bus paradigm, only one transmission link is used and all the end systems are connected to this
link. (c) In the switched paradigm, transmission links are used for connecting the end systems to switches
and between the switches. This example requires two switches and 10 transmission links. Here, the main
shared resource are the switches, which is the focus of this thesis.

The notion of deterministic service should not be confused with the notion of predictable
behavior: A network has a predictable behavior if its state at any time instant can be pre-
dicted from the properties of the network. A network with a predictable behavior provides a
deterministic service: the worst-case performance metrics can be predicted. However, there
exist non-predictable networks that provide also a deterministic service1.

1.2 Technological Trends in Time-Sensitive Networks

1.2.1 Taxonomy of Time-Sensitive Networks

Time-sensitive networks interconnect the end systems and the applications that they contain
by relying on the transmission links (i.e., wires) provided by the physical layer of the layered
model. Each transmission link represents an associated cost (e.g., hardware cost, weight).
The most common paradigms for sharing the network resources are presented in Figure 1.1.

Accessing the Shared Resources: Synchronous, Asynchronous

In the bus and in the switched paradigms (Figure 1.1b and 1.1c), some resources of the network
are shared between the end systems: the transmission link itself for the bus paradigm and
the switches for the switched paradigm. Access to these shared resources must be distributed
among the applications. There exist two main modes for distributing the access:

Time-Triggered Sources in Synchronous Networks: A synchronous network uses the
Time-Division Multiple Access (TDMA) mode: the sources have access to the resources at

1To follow up on a question that we received during our defense and on subsequent discussions that arose, we
would like to emphasis here that we do not use the term determistic network, i.e., we do not use the adjective
determistic to describe the network. The adjective deterministic is here only used for the service. This avoids
to take part in the debate around the correct definition for determistic network. The only terms that are
used in this manuscript are deterministic service (as defined by IEEE TSN and IETF DetNet) and predictable
behavior, for which we believe that we provide an appropriate definition (the behavior can be predicted). The
definition of deterministic network is left open for the reader.
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Figure 1.2: Classification of the past and future trends of time-sensitive networks in two industrial sectors:
the aerospace industry (on the left) and the automotive industry (on the right). In today’s systems, we note
the coexistence of low-capacity buses and high-capacity Ethernet-based networks. The use of the former is
expected to continue, whereas the latter are expected to merge towards IEEE TSN.

predetermined time instants, based on a global schedule that is shared across the network.
The emission of the data units is time triggered, i.e., triggered when the node’s internal clock
reaches the allowed transmission slot in the global schedule.

Synchronous networks exhibit a predictable behavior hence provide a deterministic service
by nature. The complexity of this approach resides in the computation of a global schedule
that meets all the applications’ constraints. This problem is NP-complete [Raagaard, Pop
2017]. Synchronous networks are also required to be time synchronized: a common notion of
time must be shared across all the nodes in the network.

Event-Triggered Sources in Asynchronous Networks: In an asynchronous network,
the applications do not need to wait for predetermined time instants to send their data units.
The emission of the data units is event triggered, i.e., triggered by an external event, such as
an action of the environment on one of the end-system’s sensors. Asynchronous networks are
unpredictable by nature, hence proving their deterministic service is challenging.

Asynchronous networks are typically not required to be time synchronized, but time syn-
chronization can be present for other purposes (network management, time stamping).

Managed Buses: Some types of buses use a third mode in which a unique bus manager
initiates the conversations on the bus. This is also called the master/slave mode.

1.2.2 Trends in the Use of Time-Sensitive Networks

Figure 1.2 compiles some overall trends in the use of time-sensitive networks in two different
industrial sectors: the aerospace industry (commercial airplanes) and the automotive industry
(commercial cars). For the aerospace industry (on the left), the past trends are compiled from
the lecture of Prof. Mifdaoui at Institut Supérieur de l’Aéronautique et de l’Espace (ISAE),
whereas the future trends constitute our own understanding as intuited from the IEEE TSN
aerospace profile [IEEE P802.1DP] and from the presentation of the EDEN project at Ecole
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d’été Temps-Réel 2021 (ETR21) [Cuenot 2021]. EDEN is a multi-stakeholder project for
enabling the deployment of IEEE TSN as an embedded network in multi-domain architectures.
For the automotive industry (on the right), the past trends are compiled from [Navet, et al.
2005; Navet, Simonot-Lion 2013; Wilwert, et al. 2005] and the future trends constitute our
own understanding as intuited from the IEEE TSN automotive profile [IEEE P802.1DG] and
again from the presentation of the EDEN project [Cuenot 2021]. Due to the complexity of
the systems in both industrial sectors, many more technologies were developed than those
reported in Figure 1.2, but not all technologies have been effectively used in production.

Among those reported in the figure, we note a few synchronous/asynchronous hybrid
networks that merge the benefits of both modes (for example running control loops with
time-triggered sources while transporting also alert messages from event-triggered sources).

Despite the diversity of the technologies, we also note a general trend that every system
uses two different types of networks: low-performance networks based on point-to-point or
bus architectures and emerging high-performance networks based on switched Ethernet.

The bus-based and point-to-point-based technologies developed before 1999 are used
mostly at the edges of the systems, i.e., for connecting large quantities of sensors and ac-
tuators that do not require large volumes of data exchange. The use of these technologies is
expected to continue in the future. Indeed, the non-functional requirements (cost, scalability
to large numbers of sensors, compatibility with legacy devices, familiarity of the industri-
als, etc.) outweigh the performance requirements (sensor data volume), hence the use of
high-performance Ethernet-based protocols is not justified.

High-performance Ethernet-based protocols are primarily developed to support new com-
plex functionalities that require large volumes of data. For example, the self-driving function
of an autonomous car requires the processing of pictures, telemetry maps, etc. Hence, these
new networks are focused at the core of the system, in connection with a few high-volume
sensors (such as cameras). Since the development of FlexRay, these new technologies often
rely on an hybrid access mode.

Many of the new high-speed time-sensitive networking technologies rely on the IEEE
Ethernet specifications ([IEEE 802.1Q] and [IEEE 802.3]). This choice is based on the pre-
dominance of Ethernet in the world of computer networking. For example, using the Ethernet-
based AFDX protocol in the aerospace industry (a) saves formation costs, because most en-
gineers know about Ethernet, (b) saves costs for the test infrastructures, because many tools
for debugging, monitoring and simulating Ethernet networks already exist, and (c) prevents
the suppliers of AFDX devices (switches and end systems) from enjoying from a monopolistic
position, because less effort is required for a concurrent to adapt. These arguments and many
more can be described as “Everyone knows about Ethernet”.

In this thesis, we focus on the second type of time-sensitive networks, i.e., those based on
the switched Ethernet. As we discuss in the next section, these technologies are expected to
converge towards the mechanisms standardized by IEEE TSN that constitute, therefore, the
primary context of this thesis.
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1.3 The IEEE TSN Task Group

Time-sensitive networking (TSN) is a task group of the Institute of Electrical and Electronics
Engineers (IEEE); it provides a set of mechanisms and specifications for designing time-
sensitive networks based on IEEE local area networks (LANs). The task group is chartered
to provide deterministic service with guaranteed bounded latency, low jitter, zero congestion-
loss, and a low packet-loss ratio [21]. The group was formed in 2012 and relies on the former
IEEE Audio Video Bridging (AVB) task group, which focused on Ethernet networks for audio
and video equipment.

1.3.1 Content of the TSN Activities

The TSN task group produce two main types of outputs.

A Toolbox of Features

The most important production of the task group is a set of technological features that define
a switched network that can support both synchronous and asynchronous access modes. The
service offered by TSN is described by four key components [Farkas 2018]:

• A deterministic service in the form of bounded low latency and zero loss by conges-
tion: TSN provides a set of features that augment the traditional forwarding process
of an Ethernet bridge in order to allow for bounded latency. The toolbox contains
synchronous schedulers for time-triggered sources (Enhancements for Scheduled Traf-
fic [IEEE 802.1Qbv], Cyclic Queuing and Forwarding [IEEE 802.1Qch]), and asyn-
chronous class-based schedulers for event-triggered sources (Credit Based Shaper [IEEE
802.1Qav]), as well as interleaved regulators (Asynchronous Traffic Shaping [IEEE
802.1Qcr]).

• A service of time synchronization: TSN specifies a time-synchronization protocol
[IEEE 802.1AS]. Time synchronization is provided to the applications (e.g., for time-
stamping sensor data) and is required when using the synchronous features of TSN.

• A high level of reliability: TSN provides a set of features that improve the reliability
of the network. This includes protection against babbling idiots through traffic policing
(Per-Stream Filtering and Policing [IEEE 802.1Qci]), as well as redundancy (Frame
Replication and Elimination for Reliability [IEEE 802.1CB]).

• A simplified network management with an easy reconfiguration and the support of
multi-path topologies that reduce the reconfiguration effort.

Depending on the system’s requirements, the network engineer then selects the most suit-
able features among the TSN toolbox. We note that some features (e.g., the schedulers) are
selected on a per-class, per-output-port, per-bridge basis, whereas others (e.g., the redun-
dancy) are selected on a per-flows basis2. As a consequence, finding the best set of features

2At the time of this writing, the TSN documents also prevent several combinations of features, even if there
exist no fundamental reason for these limitations. For example the current version of [IEEE 802.1Qcr] and
[IEEE 802.1Q] prevent the combination of asynchronous traffic shaping (ATS) and credit-based shaper (CBS)
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and their parameters for a given set of requirements remains an open issue [NAVET, MAI,
MIGGE 2019].

For each of the four above objectives, we typically expect that a theory can be selected to
validate that the mechanisms labeled with this objective indeed provide the required objective
level. In Section 1.5, we discuss some of the available frameworks for validating the effect
of the bounded-latency mechanisms on the bounded latency. The validation of the time-
synchronization objective based on the performance of the time-synchronization protocol will
typically use the tools from the time-metrology domain whereas the validation of the reliability
objective will typically use the tools from the reliability-analysis domain.

However, it appears that the cross-interactions (effect of the mechanisms developed for an
objective A on an objective B) are hardly discussed in the TSN task group.

A Set of Application Profiles

To ease the network design, the TSN task group also provides a set of TSN profiles. A profile
is a document that lists the common assumptions and requirements for a given industrial
application field. It also lists recommended architectural choices, recommended TSN features
for the given application field, and recommended parameters for these features.

At time of this writing, five different TSN profiles for various industrial applications were
published or are ongoing projects: aerospace [IEEE P802.1DP], automotive [IEEE P802.1DG],
professional audio and video [IEEE 802.1BA], industrial automation [IEC/IEEE 60802] and
cellular front-haul networks [IEEE 802.1CM].

1.3.2 Organization of the TSN Documents

The task group works on two different types of documents. All documents start with 802.1,
and the ongoing projects start with a leading “P”.
− The base standards are stand-alone documents. They end with capital letters3. In TSN,

the main base standard is [IEEE 802.1Q], that specifies the bridges. The TSN synchronization
feature is described in the independent [IEEE 802.1AS] document, and the redundancy feature
is described in [IEEE 802.1CB]. Base standards are periodically updated with accepted
amendments (see below).
− The amendments are proposed modifications to a base standard. For example, most

TSN features for bounded latency propose improvements of the forwarding process within
bridges, they thus amend the [IEEE 802.1Q] specifications. They end with lowercase letters4.
For example, the ATS feature is specified in the [IEEE 802.1Qcr] amendment. Once accepted,
the amendments are periodically merged into the base standards.

for the same class, because only one transmission selection algorithm can be selected per class. Yet combining
ATS and CBS presents an interest for the performance bounds, as outlined by the different studies that
analyze their combination [Mohammadpour, et al. 2018; Zhao, Pop, Steinhorst 2021]. As this technical
limitation might be corrected in the future, we consider in this thesis that the interleaved regulator (the model
behind TSN ATS) can be combined with class-based schedulers with no limitations.

3Letters are assigned in chronological order: 802.1AA comes just after 802.1Z, and so on.
4Letters are assigned in chronological order: 802.1Qaa comes just after 802.1Qz, and so on.
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1.3.3 Difference between TSN and other Ethernet-based Technologies

In Section 1.2.2, we mention that the “Everyone knows about Ethernet” principle reduces
the costs associated with the development of Ethernet-based time-sensitive networks in the
aerospace and the automotive industries. However, the different Ethernet-based time-sensitive
networking technologies have, so far, been limited to one or a few industrial sectors. For
example, the Avionics Full-dupleX switched Ethernet (AFDX) is not used in any cars. Hence,
there exist remaining cost and monopoly issues in the gap between Ethernet and the industry-
specific network such as AFDX.

By segregating the context-agnostic technologies in the toolbox (Section 1.3.1) from the
industry-specific profiles (Section 1.3.1), the idea of the IEEE TSN task group is to go even
further with an “Everyone knows about TSN” principle. Hence, the product manufacturers,
the engineers and the debugging tools can serve any industry sector. And the specificity of
a sector lies solely on the corresponding IEEE TSN profile document. Therefore, it appears
that all Ethernet-based technologies will be replaced in the future by IEEE TSN. The task
group already gathers the main actors of the different sectors.

However, the technologies developed by the task group are much more complex and diverse
than those developed, for example, in AFDX or TTEthernet. This complexity represents a
potential risk that can hinder the adoption of TSN across the industry sectors: It might
motivates the manufacturers to focus on a few TSN profiles, implement only the technologies
listed in these profiles and neglect the other features.

1.4 The IETF DetNet Working Group

Deterministic networking (DetNet) is a working group of the Internet Engineering Task
Force (IETF); it focuses on the same aspects as IEEE TSN, i.e., providing a deterministic
service, but for applications that span over the third layer of the Internet’s layered model. In
fact, DetNet collaborates with IEEE TSN to define a common architecture of time-sensitive
networks for both Layer 2 and Layer 3. Note, however, that DetNet focuses only on layer-2
and layer-3 networks that are under a single administrative control; its does not consider the
Internet at large.

The activities of DetNet focus on: defining the overall architecture and functions; defining
the identification and processing of DetNet flows over the MPLS and IP protocols; defining
the relevant data, models and control-plane solutions for deploying DetNet; and providing
recommendations on the computation of latency bounds. Note that the actual allocation
of the underlying resource to the flows is not standardized by DetNet, but delegated to the
lower-layer (i.e., IEEE TSN).

1.5 Performance Analysis of Time-Sensitive Networks

Figure 1.3 illustrates the distribution of the latencies in a network. When the network is a
public network that does not support safety-critical applications or when the network sup-
ports soft real-time applications (i.e., non-safety-critical applications that can tolerate packets
received after the deadline), then the performance of the network is often evaluated based
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Figure 1.3: Illustration of the distribution of the latency in a network. The value of worst-case latency
remains in general unknown. Simulations and measurements can only provide lower-bounds of the unknown
worst-case. Deterministic approaches can provide an upper-bound. This upper-bound can the be used to
validate the performance requirements of the network.

on its stochastic properties such as its mean, its distribution, and sometimes the shape of its
distribution tail [Song, Koubaa, Simonot 2002].

However, when the quality of service is deterministic, the network must provide determin-
istic guarantees on the worst-case latency. Therefore, time-sensitive networks that support
safety-critical applications and that provide this deterministic service cannot be analyzed
using stochastic methods, as rare events are not captured by stochastic metrics.

Simulation or real-life measurements can report achievable latencies, i.e., latencies that
lower-bound the unknown worst-case; whereas, to validate the deterministic service, we re-
quire an upper-bound on the worst case. Obtaining such an upper bound requires the use of
deterministic approaches. We provide an overview of some deterministic approaches used for
time-sensitive network; note that the below list is not intended to be exhaustive.

Model Checking

The model-checking approach [Clarke, Emerson, Sistla 1986] describes a system as a set
of states and transitions. Once the state-machine of the system has been obtained, model
checking can be used for verifying the properties of a system. For example, we can verify that
a system never enters an unsafe state or a blocking state. Several widely spread commercial
tools for model-based system engineering rely on the model-checking approaches [2].

Model-checking was used to verify the timing properties of several time-sensitive network
technologies [Krakora, et al. 2004], including Ethernet [Witsch, et al. 2006]. Model-checking
approaches provide the exact worst-case latency, but they do not scale to complex architec-
tures, because the number of possible states of the network increase significantly with its
size.

Trajectory Approaches

The trajectory approach [Martin 2004] consists in modeling the worst interference that a flow
can suffer from all the other interfering flows. The complexity of the approach resides in the
complexity of modeling large numbers of interference patterns and various network systems.
In [Li, Cros, George 2014], an error on the modeling of the serialization effect in the trajectory
approach is described and a subsequent correction is proposed.
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The approach was used for computing the worst-case bounds for the AFDX network
in [Bauer, Scharbarg, Fraboul 2010; Li, Cros, George 2014]. An approach similar to the
trajectory approach is proposed for TSN in [Docquier, et al. 2020]. Last, we note that the
trajectory approach was also used to prove the shaping-for-free property of the Urgency Based
Scheduler (the former name of TSN ATS) in [Specht, Samii 2016].

Holistic Schedulability Analysis

In the field of real-time scheduling on single-core and multi-core systems, the schedulability
analysis discusses whether a set of periodic or aperiodic tasks can share one or several common
resources (the processors) while meeting their deadlines [Liu, Layland 1973]. The holistic
schedulability approach [Tindell, Clark 1994; Pop, Eles, Peng 1999] relies on these ideas for
a set of end systems interconnected by shared buses: “communication tasks are scheduled on
buses similar to the way processes are scheduled on programmable processors” [Eles, et al.
2000].

The theory has been applied for asynchronous buses, such as Controller Area Network
(CAN) in [Tindell, Hansson, Wellings 1994], and synchronous buses, such as the Time Trig-
gered Protocol, in [Eles, et al. 2000] for non-preemptive tasks and in [Pop, Eles, Peng 2004]
for preemptive tasks.

The holistic schedulability analysis requires modeling the worst-case traversal time of a
packet from the sending application to the receiving application, including any waiting time
for accessing the bus. The worst-case traversal time of simple access policies, such as the
non-preemptive static priority access of the CAN bus, can be modeled easily.

In [Pop, Eles, Peng 2003; Pop, et al. 2005], the theory is extended to buses connected via
gateways. The theory was latter applied to compute the global schedule of TTEthernet, an
hybrid synchronous/asynchronous switched network in [Tamas-Selicean, Pop, Steiner 2012;
Tămaş–Selicean, Pop, Steiner 2015] and for the global schedule of IEEE TSN in [Pop, et al.
2016]. A major challenge that faces the holistic schedulability analysis for switched networks
is that the worst-case delay of event-triggered messages is hard to determine across multiple
hops and under various asynchronous scheduling policies (deficit round-robin, credit-based
shaper, etc).

Network Calculus

Network calculus is a theory proposed by Le Boudec [Le Boudec 1996] for modeling network
elements as in traditional system theory, with an input, an output, and a transfer function.
The input/output representation makes it particularly useful for modeling switched networks
with complex topologies. As we discuss in Chapter 2, a wide range of algorithms rely on the
theory, some of which scale linearly with the size of the network. Network calculus provides
upper bounds on the latency, buffer occupation, and burstiness of the flows in a network.
Due to these properties, we select network calculus as the deterministic framework used in
this thesis. We detail the framework in the next chapter.
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Conclusion

Through the analysis of the industrial trends of time-sensitive networks, we have identified
that the future safety-critical systems are expected to rely on two different types of networks:
(1) buses that support applications with low data-volume requirements but stringent non-
functional requirements and (2) switched-Ethernet networks that support new safety-critical
applications with important data-volume requirements.

The latter technologies are expected to converge towards the unified sector-independant
technologies developed by the IEEE TSN task group and by the IETF DetNet working group.
Both aim at providing a deterministic service defined by the guarantees on the worst-case
latencies offered to the flows and no losses by congestion.

To validate the deterministic service, the performance of such a network must be evalu-
ated using deterministic analytical approaches. Among these approaches, the model checking
approach, the trajectory approach and the hollistic schedulability analysis provide tight delay
bounds for small networks (or buses). However, they do not scale well to complex switched
networks.

Therefore, we chose to analyze IEEE TSN and IETF DetNet networks by using the
network-calculus framework that we present in the following chapter.





Chapter 2

Theoretical Context:
Network Calculus

“I have a file with 900 pages of analysis and contingency plans for war with
Mars [. . . ]. My file for what to do if an advanced alien species comes calling ?
It’s three pages long, and it begins with Step 1: Find God.”

Chrisjen Avasarala

Mark Fergus and Hawk Ostby. The Expanse (TV series).
Based on the series of novels by James S.A. Corey.
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Network calculus is a theory for obtaining bounds on the worst-case performance metrics
of communication networks. The framework was developed by Le Boudec in [Le Boudec 1996]
(and concurrently by Chang in [Chang 1997]), based on the seminal work of Cruz [Cruz 1991a;
Cruz 1991b]. The theory now relies on several books of reference [Chang 2000; Le Boudec,
Thiran 2001; Bouillard, Boyer, Le Corronc 2018] and tutorials [12; 13].

In this framework, the network elements are represented as in traditional system theory,
with an input (α, the input arrival curve), an output (α∗, the output arrival curve), and
a transfer function (β, the service curve of the network element) and the notions organize
themselves around an algebraic structure: the min-plus dioid.

In this chapter, we provide some background on deterministic network calculus (simply
denoted network calculus in this thesis). In Section 2.1, we present the min-plus dioid and
the min-plus functions. Then, we present the main network-calculus notions in Sections 2.2
and its main results in Section 2.3. We also present the related work on FIFO-per-class
networks in Section 2.4 and the compositional approaches for such networks in Section 2.4.
Last, we discuss the network-calculus modeling of time-sensitive networks (IEEE TSN and
IETF DetNet) in Section 2.6.

2.1 The Underlying Formalism: Min-Plus Algebra

Network calculus relies on the commutative dioid (R+ ∪ {+∞},∧,+), where R+ denotes the
set of positive real numbers, ∧ denotes the binary minimum between two real numbers and + is
the sum. For an element c of the min-plus dioid, the notation |c|+ describes1 |c|+ ≜ max(0, c).

2.1.1 The Min-Plus Functions F and the Curves F0

Definition 2.1 (Min-Plus Functions F and Curves F0, Le Boudec, Thiran 2001, §3.1.3)
We define the set of min-plus functions F as the set of wide-sense increasing and positive
functions f : R→ R+ ∪ {+∞} such that ∀t < 0, f(t) = 0. We define the set of curves F0
as the subset of F such that ∀f ∈ F0,∀t ≤ 0, f(t) = 0.

The functions of F are assumed to be left continuous. The effects of this assumption are
discussed in [Le Boudec, Thiran 2001, §1.1], [Boyer, Dufour, Santinelli 2013]. Figure 2.1 gives
some examples of curves (i.e., functions belonging to F0) that are often used in this thesis.

1Throughout this thesis, we use the conventions on the +∞ object: ∀a ∈ R, a + (+∞) = (+∞); (+∞) +
(+∞) = (+∞); a ∧ (+∞) = a; (+∞) ∧ (+∞) = (+∞); max(a, +∞) = +∞.
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Figure 2.1: Example of curves used in this thesis. (a) Leaky-bucket curve with a rate r and a burst b. (b)
Rate-latency curve with a rate R and a latency T . (c) Variable bit-rate (VBR) curve that can be written as
the minimum of two leaky-bucket curves of rate r1 [resp. r2] and of burst b1 [resp. b2.] (d) Bounded-delay
curve with a delay T .

2.1.2 The Min-Plus Convolution ⊗ and the Min-Plus Deconvolution ⊘
Definition 2.2 (Min-plus Convolution ⊗) For f, g ∈ F, the min-plus convolution of f

and g is (f⊗ g) : t 7→ inf0≤s≤t{f(t− s) + g(s)}.

The min-plus convolution ⊗ is associative and commutative. Its neutral element is δ0
(Figure 2.1d with T = 0). Its counterpart is the min-plus deconvolution.

Definition 2.3 (Min-plus deconvolution ⊘) For f, g ∈ F, the min-plus deconvolution of
f by g is (f⊘ g) : t 7→ supu≥0{f(t+ u)− g(u)}.

Proposition 2.1 (Classic convolutions. Le Boudec, Thiran 2001, Thms 3.1.4, 3.1.6)
• If f and g are concave functions of F0, then (f⊗ g) = (f ∧ g) with ∧ the minimum.
• If f and g are piecewise-linear convex functions of F0 then f⊗ g is obtained by putting
side-by-side the different linear pieces of f and g, by order of increasing slope.

Example:
• For any pair γr1,b1 , γr2,b2 of leaky-bucket curves, γr1,b1 ⊗ γr2,b2 = γr1,b1 ∧ γr2,b2 is a
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Figure 2.2: A flow f crosses a system S. (a) The observation point win [resp., wout] is located at the
input of the system [resp., at its output]. (b) Example of two cumulative functions for the flow f at the
two observations points win, wout.

variable-bit-rate (VBR) arrival curve (Figure 2.1c).
• For any pair βR1,T1 , βR2,T2 of rate-latency curves βR1,T1 ⊗ βR2,T2 = β(R1∧R2),(T1+T2).

Proposition 2.2 (Classic deconvolutions. Le Boudec, Thiran 2001, §3.1.9)
• For any γr,b,βR,T , ∀t > 0, (γr,b ⊘ βR,T )(t) = γr,b+rT (t)
• For any f ∈ F0, for any D > 0, (f⊘ δD) : t 7→ f(t+D).

In [Bouillard, Boyer, Le Corronc 2018, Chap. 4], the choice of a family of min-plus
functions closed by the min-plus operations is discussed and efficient algorithms are provided.
Similar discussions can be found in [Schmitt, Zdarsky 2006, §2]. An overview of the tools
that provide a min-plus back-end is available in [Bouillard, Boyer, Le Corronc 2018, §4.5]. A
recent library has been proposed in [Zippo, Stea 2022].

2.2 Main Concepts of Network Calculus

Consider a flow f that crosses a system S (Figure 2.2a) and denote by win [resp., wout] the
observation point located at the input [resp., at the output] of S.

2.2.1 Cumulative Functions
Definition 2.4 (Cumulative function) The cumulative function of f at the observation
point w, noted Rf,w, is the function such that for t ≥ 0, Rf,w(t) is the number of bits of
f that cross w during the time interval [0, t].

Throughout the thesis, we always assume that the time and the amount of data are
continuous quantities and, up to Chapter 5, we assume that the time is universal (the same
everywhere in the network). The origin of time 0 represents a time instant far away in the
past, more specifically no source has sent any bit before t = 0. Figure 2.2b gives an example
of two continuous cumulative functions Rf,win , Rf,wout for the situation of Figure 2.2a.

2.2.2 Backlog and Virtual Delay

If the system in Figure 2.2a is causal, then the amount of data that entered at t but did not
leave is x(t) = Rf,win(t) − Rf,wout(t). If the system is also lossless, then x(t) is the amount
of data inside the system at t. Graphically, the backlog is the vertical distance between the
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Figure 2.3: Graphical illustration of the arrival-curve constraint. The evolution of Rf,w between s and t
must remain below αf,w(t− s), i.e., below the arrival curve placed at (s,Rf,w(s)).

input cumulative function Rf,win and the output cumulative function Rf,wout (Figure 2.2b).
The horizontal distance d(t) between the functions is the virtual delay. If the system serves
the data of the flow in a first in, first out (FIFO) manner, then d(t) is the delay that the bit
arriving at t experiences in the system.

We emphasize that the above notions rely on three key assumptions, by decreasing order
of importance: the causal assumption (the system does not produce or duplicate any data
internally), the lossless assumption (the system does not lose any data), and the FIFO as-
sumption. Most analyses of time-sensitive networks with network calculus rely on these three
assumptions. In Chapter 4, we discuss a situation in which some of them are not valid.

In an asynchronous network, the sources generate the packets at random time instants,
thus Rf,win and Rf,wout are not known and cannot be used to compute the worst-case backlog
or delay. Furthermore, we are usually not interested in the worst-case metrics of a particular
physical network (e.g., in a particular car), but in the worst-case metrics across all the in-
stances of a network specification (e.g., in all the cars that embark an instance of the network
specification).

2.2.3 Arrival Curves

To circumvent the issue of not knowing the cumulative functions, we compute bounds on the
worst-case performance metrics by replacing the cumulative arrival functions by the notion
of arrival curves.

Definition 2.5 (Arrival Curve. Le Boudec, Thiran 2001, §1.2.1) Consider a flow f and
an observation point w. Denote by Rf,w the cumulative function of f at the observation
point w. α ∈ F is an arrival curve for f at observation point w if and only if

∀0 ≤ s ≤ t, Rf,w(t)−Rf,w(s) ≤ α(t− s)

We note such a function αf,w.

Strictly speaking, there exits a family of functions that all match Definition 2.5. To ease
the notation, αf,w is used in this thesis to describe a specific function within this family.

Theorem 2.1 (Combining Several Arrival Curves. Le Boudec, Thiran 2001, §1.2.3)
If α1 and α2 are arrival curves for f at w, so is their min-plus convolution α1 ⊗ α2.

Figure 2.3 illustrates the arrival-curve constraint: By “sliding” the starting point of the
arrival curve on the cumulative function, the latter must always remain below the former.



22 Chapter 2. Theoretical Context: Network Calculus

time

Rf,win Rf,wout
β

Rf,win ⊗ β

data

Figure 2.4: Graphical illustration of the service-curve constraint. We slide the starting point of the function
β on the input cumulative function Rf,win . The lower bound of all the obtained values (the lower bound of
the orange area) is the result Rf,win ⊗ β (in black). The output cumulative function Rf,wou must remain
above this black line.

System S
β

f

win

αf,win

wout
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Figure 2.5: A flow f crosses a network element S. The observation point win [resp., wout] is located at
the input of the network element [resp., at its output]. The unknown cumulative functions are replaced by
arrival-curve and service-curve constraints.

2.2.4 Service Curves
Definition 2.6 (Service Curve of a Network Element. Le Boudec, Thiran 2001, Def.
1.3.1) We say that S offers to f the service curve β ∈ F0 if Rf,wout ≥ Rf,win ⊗ β.

Graphically, the service-curve constraint is shown in Figure 2.4. By “sliding” the curve β
(in orange) onto the function Rf,win (in blue), we “paint” an orange area shown in Figure 2.4.
The lower border of this zone (in black) gives the result of Rf,win ⊗ β. Therefore, β ∈ F0 is a
service curve if and only if the output cumulative function Rf,wout is above this border.

2.3 The Main Results of the Network-Calculus Theory

In the previous section, the network-calculus concepts replace the unknown cumulative func-
tions by lower- and upper-bounds. We can therefore replace Figure 2.2a by Figure 2.5, in
which the flow is now modeled by an arrival curve αf,win at the observation point win and the
system is modeled by a service curve β that is offered to the flow f .

2.3.1 The Network-Calculus Three-Bound Theorem
Theorem 2.2 (The Three-Bound Theorem. Le Boudec, Thiran 2001, §1.4.1.)
Consider a causal system S and a flow f that crosses the system. Denote by win [resp.,
wout] an observation point located at the input [resp., at the output] of the system (Fig-
ure 2.5). Assume that αf,win ∈ F is an arrival curve for f at win and that the system S

offers to f the service curve β ∈ F0.

• The backlog of f inside S is upper-boundeda by v(αf,win , β).
• If S is lossless, then the virtual delay d(t) is upper boundedb by h(αf,win , β). If S
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Figure 2.6: A flow f crosses two network elements S1, S2 in sequence.
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Figure 2.7: The “for-free” properties of the greedy shaper (a) and of the packetizer (b).

is lossless and FIFO, then the worst-case delay of f through S is upper bounded by
h(αf,win , β).

• The curve t 7→ (αf,win ⊘ β)(t) when t > 0, t 7→ 0 otherwise, is an arrival curve for
f at the output wout that we can therefore denote by αf,wout.

av(f, g) = supt≥0{f(t) − g(t)} is the vertical deviation between f and g.
bh(f, g) = supt≥0{inf{d; ∀d ≥ 0|f(t) ≤ g(t + d)}} is the horizontal deviation between f and g.

2.3.2 Concatenation of Systems

Theorem 2.3 (Concatenation of Systems. [Le Boudec, Thiran 2001], Thm. 1.4.6)
Consider a flow f that crosses two causal systems S1 and S2 in sequence (Figure 2.6).
Assume that S1 [resp., S2] offers to f the service curve β1 [resp., β2].
Then, the concatenation of S1 and S2 offers to f the service curve (β1 ⊗ β2).

Applying Theorem 2.3 then Theorem 2.2 in Figure 2.6 gives that h(αw0 , β1 ⊗ β2) is an
upper bound on the delay of f through the concatenation of S1 and S2, which is always better
than the successive application of Theorem 2.2 to S1 then S2 (i.e., h(αf,w0 , β1)+h(αf,w1 , β2) =
h(αf,w0 , β1) + h(αf,w0 ⊘ β1, β2)). This effect is known as pay burst only once (PBOO).

2.3.3 Greedy Shapers, Packetizers

Theorem 2.2 provides performance bounds for a flow through a system, as soon as the system
can be modeled with a service curve. However, there exist also systems for which we can
provide results that are stronger than those obtained from their service-curve representation.

Definition 2.7 (Greedy Shaper. Le Boudec, Thiran 2001, §1.5.1) A greedy shaper with
shaping curve σ, denoted Cσ is a causal, lossless, FIFO system that forces its output to be
σ-constrained and releases the bits as soon as doing so does not violate the σ constraint.
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Theorem 2.4 (Properties of the Greedy Shaper. Le Boudec, Thiran 2001, §1.5)
− If σ ∈ F0 is sub-additivea, then Cσ is a system that provides σ as a service curve.
− If σ ∈ F0 is sub-additive and if α is an arrival curve for f at the input of the greedy
shaper, then α⊗ σ is an arrival curve for f at the output of the greedy shaper.
− Consider a flow f with arrival curve αf,win that crosses a causal and FIFO system
S and then a greedy shaper with shaping curve σ ≥ αf,win as in Figure 2.7a. Then the
delay bound Df,S of f through S obtained with Theorem 2.2 is also a delay bound for f
through the concatenation of S with the greedy shaper, i.e., Df,S+Cσ = Df,S.

ai.e., ∀s, t ≥ 0, σ(t + s) ≤ σ(t) + σ(s)

Definition 2.8 (Packetizer. Le Boudec, Thiran 2001, §1.7.2) A packetizer (denoted
PL) is a causal, lossless, FIFO system that transforms a fluid, bit-by-bit stream into a
packetized stream by releasing the packet’s bits only when the last one is received.

Theorem 2.5 (Property of the Packetizer. Le Boudec, Thiran 2001, Thm. 1.7.1)
Consider a flow f that crosses a sequence of a system S followed by a packetizer PL
(Figure 2.7b). If f is packetized at the input of S, then the delay bound Df,S for f through
S obtained with Theorem 2.2 is also a delay bound for f through the concatenation of S
and PL, which we denote as Df,S+PL = Df,S in Figure 2.7b.

The packetizer increases, however, the burstiness of the flow f at its output thus can lead
to increased delay bounds in downstream nodes. This burstiness increase is known to be
bounded by Lmax [Le Boudec, Thiran 2001, Thm. 1.7.1], the maximum packet size of the
flow f . In Chapter 3, we provide a stronger result when the arrival rate of the bits at the
input of the packetizer is constrained.

2.4 FIFO-per-Class Systems

In the previous sections, we considered a unique flow that crosses one or several systems. To
apply Theorem 2.2, we assumed the knowledge of an arrival curve for f at the input of the
system (αf,win) and the knowledge of a service curve β that the system offers to f . In a given
time-sensitive network, f is unlikely to be the only flow that crosses S.

The time-sensitive networks studied in the thesis are FIFO-per-class networks: the system
S segregates the flows into classes {Cj}j and the flows within a same class are processed in a
FIFO manner. In this thesis, we assume that the flows are statically assigned to the classes.

Consider a flow of interest and denote by Ci its class. Assume that we know an arrival
curve αf,win for f at the input of S and a service curve βS offered by S to the entire aggregate
of all the flows crossing S. To obtain performance guarantees for f , we need

• to understand which part βS,Ci of the overall service βS is specifically offered to the
class Ci. βS,Ci is the residual service-curve for class Ci. The answer depends on the
system-level scheduling policy of the system, as discussed in Section 2.4.1.

• to understand what performance guarantees can be derived from βS,Ci for f specifi-
cally. The answer depends on the FIFO policy (the class-level scheduling policy), the
properties of which are discussed in Section 2.4.2.
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2.4.1 Residual Service-Curves for Scheduling Policies Other than FIFO

Obtaining the residual service-curve βS,Ci for Ci represents a consequential part of the network-
calculus literature because many different scheduling policies exist. Additionally, the schedul-
ing policies (as in the context of IEEE TSN) are rarely designed by network-calculus-aware
researchers. Therefore, they sometimes lead to complex behaviors, the worst-case of which
can be complex to compute. An excerpt of the literature for the most common scheduling
policies is compiled in Table 2.1. Similar tables can be found in [Bouillard, Boyer, Le Corronc
2018, §7.4, §8.4].

Table 2.1: Overview of the Literature On the Computation of Residual Service-Curves

Scheduling Policy References
Blind Multiplexing
(also called Arbitrary Multiplexing)

[Le Boudec, Thiran 2001, §6.2.1]
[Bouillard, Boyer, Le Corronc 2018, §7.2.1]

Preemptive Static Priority (P-SP) [Bouillard, Boyer, Le Corronc 2018, §7.3.2]
Non-Premptive Static Priority (NP-SP)
[IEEE 802.1Q, §8.6.8.1]

[Le Boudec, Thiran 2001, §6.2.1]
[Bouillard, Boyer, Le Corronc 2018, §8.2.1]

Deficit Round-Robin (DRR)
[Shreedhar, Varghese 1995]

[Boyer, Stea, Sofack 2012]
[Bouillard 2021]
[Tabatabaee, Le Boudec 2022]

Weighted Round-Robin (WRR)
[Katevenis, Sidiropoulos, Courcoubetis 1991]

[Soni, et al. 2018]
[Bouillard, Boyer, Le Corronc 2018, §8.2.4]

Interleaved Weighted Round-Robin (IWRR)
[Katevenis, Sidiropoulos, Courcoubetis 1991] [Tabatabaee, Le Boudec, Boyer 2021]

Credit-based shaper (CBQS)
[IEEE 802.1Q, §8.6.8.2]

[Daigmorte, Boyer, Zhao 2018]
[Mohammadpour, Stai, Boudec 2019]
[Zhao, et al. 2018]

Time-Division Multiple Acess (TDMA)
Also known as Time-Aware Shaper (TAS)
[IEEE 802.1Qbv]
[IEEE 802.1Q, §8.6.8.3-4, §8.6.9]

[Dang, Mifdaoui 2014]
[Bouillard, Boyer, Le Corronc 2018, §8.2.5]

The blind-multiplexing policy (or arbitrary-multiplexing) is a conservative model that
applies to any other scheduling policy. It has received much attention, especially for the
compositional approaches (Section 2.5) because any delay bounds obtained under the blind-
multiplexing policy is also valid under the FIFO policy.

2.4.2 The FIFO Scheduling Policy

Assume now the knowledge of βS,Ci , the service curve that the FIFO-per-class system S offers
to the class-of-interest Ci. Denote by αh,win the arrival curve of each flow h ∈ Ci of the class
at the input of S. We are interested in performance guarantees for a flow f ∈ Ci.

The Aggregate Delay Bound is a Per-flow Delay Bound

A first approach to the FIFO policy is to consider the entire class aggregate as a unique
flow. The sum of the individual arrival-curves ∑h|h∈Ci

αh,win is an arrival curve for the class
aggregate at the input of S. Applying Theorem 2.2, we obtain thatD = h

(∑
h∈Ci

αh,win , βS,Ci

)
is a delay bound for the aggregate through the system S. By property of the FIFO policy, D
is also a delay bound for any individual flow f , which describe the following residual service:
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Figure 2.8: (a) Toy example for the introduction of the different compositional approaches. (b) Toy example
with a greedy shaper (e.g., a transmission link) between the two systems.

Proposition 2.3 (FIFO residual service-curve with the total-flow analysis (TFA) Model.
Bouillard, Boyer, Le Corronc 2018, Thm 7.4)
For each flow f ∈ Ci, S offers to f the residual service-curve βf = δh(∑h∈C αh,win ,βS,Ci)

In this thesis, we refer to Proposition 2.3 as the TFA model of the FIFO policy because
this model is used in the total-flow analysis (TFA) method introduced later in Section 2.5.1.

A Family of Residual Service-Curves

The residual service-curve from Proposition 2.3 is not very good, and tighter results are
available in the literature [Bouillard, Boyer, Le Corronc 2018, §7.3.1], [Le Boudec, Thiran
2001, §6.2.2]. However, contrary to the majority of the scheduling policies listed in Table 2.1,
the FIFO scheduling policy is not well described by a unique service-curve, but by a family
of residual service-curves, none of which dominate another:

Theorem 2.6 (FIFO Residual Service-Curves. Cruz 1998, Thm 4)
Denote by α2 the curve α2 = ∑

h∈C,h̸=f αh,win. Then S offers to f the family of residual
service curves: ∀θ ≥ 0, βθf : t 7→ |β(t)− α2(t− θ)|+ ∧ (δθ(t))

In this thesis, we refer to Theorem 2.6 as the SFA-model of the FIFO policy because this
model is used in the separated flow analysis (SFA) method introduced later in Section 2.5.2.

2.5 Compositional Approaches for the Analysis of Feed-Forward
FIFO-per-class Networks

Here, we give an overview of the challenges of computing end-to-end latency bounds for the
flows in an entire FIFO-per-class network feed-forward network. To do so, we briefly describe
four families of compositional approaches for computing end-to-end latency bounds in such
networks. These methods compose with the different pieces of results and models presented in
the previous sections to compute the end-to-end performance bounds in a full network, hence
their name. The design of compositional approaches constitute an active field of research. As
opposed to the single-server situation for which Theorem 2.2 is tight, computing tight end-
to-end latency bounds in a FIFO-per-class network is indeed an NP-hard problem [Bouillard,
Boyer, Le Corronc 2018, Thm. 10.2], [Bouillard, Jouhet, Thierry 2010].

We use the toy example shown in Figure 2.8a with two systems, S1 and S2 and three flows
in the class of interest: f, g, h. We assume that S1 offers to the class the service β1 and S2
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offers to the class the service β2. These service curves are obtained from Section 2.4.1. We
denote by αf,ϕ, αg,ϕ and αh,ϕ the arrival curve of the flows at their respective sources. We are
interested in obtaining a latency bounds for f through the concatenation of S1 and S2.

2.5.1 Total Flow Analysis

The total-flow analysis (TFA) method [Schmitt, Zdarsky 2006, §3.2] relies on the TFA-model
of the FIFO policy developed in Section 2.4.2. The method applies Proposition 2.3 to the
systems in topological order.

Example: The aggregate arrival curve at the input of S1 is αS1 = αf,ϕ + αg,ϕ. By
Proposition 2.3, S1 offers to f the residual service curve δDf,S1

with Df,S1 = h(αf,ϕ +
αg,ϕ, β1) and αf,S∗

1
= αf,ϕ ⊘ δDf,S1

is an arrival curve for f at the output of S1. Moving
on to the next system and with the same arguments,

Df,S2 = h(αf,S∗
1

+ αh,ϕ, β2) = h((αf,ϕ ⊘ δDf,S1
) + αh,ϕ, β2) (2.1)

is a delay bound through S2. Thus, Df = Df,S1 +Df,S2 is an end-to-end latency bound.

The TFA compositional approach is conceptually simple. It does not use the pay burst
only once (PBOO) principle (i.e., the concatenation property, Theorem 2.3), which, as dis-
cussed in Section 2.3.2, leads to loose delay bounds. However, TFA scales very well to
large networks [Schmitt, Zdarsky 2006]. It provides the sufficient flexibility for modeling the
line-shaping effect introduced in [Grieu 2004; Mifdaoui, Leydier 2017].

Example: Assume that a greedy shaper (Definition 2.7) is placed between S1 and S2 with
shaping curve σ, as in Figure 2.8b. For example, a transmission link with capacity c is
a greedy shaper with shaping curve σ = γc.

Then by application of Theorem 2.2, αf,S2 = γf,S∗
1
⊗ σ is an arrival curve for f at

the output of the shaper, i.e., at the input of S2. Clearly, γf,S∗
1
⊗ σ ≤ γf,S∗

1
, thus the

delay bound Df,S2 in S2 computed with the greedy shaper is less than the delay bound
obtained with (2.1). Considering the transmission links as greedy shapers has a beneficial
effect on the end-to-end latency bounds; this is known as the line-shaping effect effect.
This effect is used in Chapters 3 and 6.

As we discuss in Chapters 3 and 6, the flexibility of TFA enables the modeling of a wide
variety of systems and phenomenons. For this reason, we select TFA for implementing the
theoretical contributions of this thesis.

2.5.2 Separated Flow Analysis

The separated flow analysis (SFA) methods [Schmitt, Zdarsky 2006, §3.3] aim to apply the
PBOO principle by concatenating the residual service-curves obtained with Theorem 2.6.
They operate on a per-flow basis.

Example: As per Theorem 2.6, S1 offers to f the family of residual service-curves{
βθ1

1,f : t :7→ |β1(t)− αg,ϕ(t− θ1)|+ ∧ δθ1(t); ∀θ1 ≥ 0
}

(2.2)
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and S2 offers to f the family of residual service-curves{
βθ2

2,f : t :7→ |β2(t)− αh,ϕ(t− θ2)|+ ∧ δθ2(t); ∀θ2 ≥ 0
}

(2.3)

Hence the concatenation of S1 and S2 offers to f the family of service curves{
βθ1

1,f ⊗ β
θ2
2,f ; ∀θ1 ≥ 0,∀θ2 ≥ 0

}
(2.4)

and for any θ1, θ2 ≥ 0, the horizontal deviation h(αf,ϕ, βθ1
1,f ⊗ β

θ2
2,f ) is a delay bound for

f through the concatenation of S1 and S2, thus minθ1≥0,θ2≥0 h(αf,ϕ, βθ1
1,f ⊗ β

θ2
2,f ) gives a

delay bound for f through S1 and S2.

In the case of FIFO multiplexing, the SFA approaches typically require finding the optimal
values for the θ parameters of Theorem 2.6 applied to each FIFO system. This number of θ
parameters increases with the length of the flow path, thus increasing the complexity of SFA.

In [Bouillard, Boyer, Le Corronc 2018, §10.4.3], Bouillard, Boyer and Le Corronc indicate
that there exists also a family of intermediate methods in which the flows are aggregated into
groups. This is also similar to [Grieu 2004, §3.2.3.1].

Also, note that SFA does not compute αf,S∗
1
, the arrival curve of f at the output of S1.

Hence, considering a greedy shaper between S1 and S2 does not improve the delay bounds.
Indeed we know from Section 2.3.3 that a greedy shaper is more powerful than its service-
curve representation. In Figure 2.8b, the end-to-end service is βθ1

1,f ⊗γc⊗β
θ2
2,f , which is simply

equal to βθ1
1,f ⊗ β

θ2
2,f if c is large enough (Proposition 2.1).

2.5.3 Tandems and Pay Multiplexing Only Once

Tandems networks are a class of networks in which the research of compositional approaches
has been very active. A tandem network is a network in which the edges can be placed on a
line and the path of each flow is a continuous sub-path of this line. Among the tandems, the
nested tandems are such that an order f1, f2, f3, . . . of the flows can be performed such that
for any i, the path of fi is nested in the path of fi+1. The analysis of tandems networks can
exploit a phenomenon known as the pay multiplexing only once (PMOO) that extends the
pay burst only once (PBOO) principle [Fidler 2003].

Example: The example in Figure 2.8 is a tandem. If we remove flow g, it is a nested
tandem (h is nested in f).

In [Lenzini, et al. 2006], the Least Upper Delay Bound (LUDB) approach relies on PMOO
and is applied in FIFO sink-tree networks (in which all flows leave the network at the same
server). Lenzini et. al. prove that for FIFO sink-tree networks, their bound is tight. Sink-
tree networks have been considered of particular interest for sensor networks [Schmitt, Roedig
2005; Schmitt, Zdarsky, Roedig 2006; Roedig, Gollan, Schmitt 2007].

In [Lenzini, Mingozzi, Stea 2007], the LUDB approach is extended to nested tandems,
but it loses its tightness [Bouillard, Boyer, Le Corronc 2018, §10.3.1]. A software tool that
implements the results of the above papers was designed in [Bisti, et al. 2010]. In [Lenzini,
Mingozzi, Stea 2008; Bisti, et al. 2008] a methodology for general tandems is proposed in
which the tandem is cut into nested sub-tandems. For any given tandem, several ways of
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cutting it into sub-tandems exist. Hence, an important challenge with the LUDB approach,
and with the PMOO principle in general, is finding an optimal transformation of a tandem
into nested sub-tandems.

In [Schmitt, Zdarsky 2006] and [Schmitt, Zdarsky, Martinovic 2008] the authors focus on
the arbitrary-multiplexing policy. As mentioned in Section 2.4.1, the arbitrary-multiplexing
policy does not make any assumptions about the scheduling policy, thus the delay bounds
obtained with this policy are also valid for FIFO networks. Here, an important difference is
that the application of the PMOO approach for arbitrary multiplexing is not limited to nested
tandems but is also possible for general tandems. Another key difference is that the blind-
multiplexing PMOO approach does not always perform better than the blind-multiplexing
SFA approach [Schmitt, Zdarsky, Fidler 2008]. The PMOO method can be extended to
feed-forward networks by selecting a flow of interest, considering its path as the tandem
and computing the arrival curve of the interfering flows when they enter this tandem. An
important challenge here is to tightly bound the traffic of the interfering flows [Bondorf,
Schmitt 2016b; Bondorf, Schmitt 2016a].

In [Bouillard, Nowak 2015], the authors computes the exact worst-case delay in general
tandems with arbitrary multiplexing. In [Bondorf, Nikolaus, Schmitt 2017], Bondorf, Nikolaus
and Schmitt rely on the SFA, LUDB and arbitrary-multiplexing PMOO to design an algorithm
that performs an exhaustive yet efficient search of the optimal tandem decomposition, thus
resulting in one of the best algorithms in the trade-off between scalability and bound tightness.
Later in [Geyer, Bondorf 2019], the tandem matching algorithm in [Bondorf, Nikolaus, Schmitt
2017] is replaced by a deep-learning approach, thus resulting in an even faster execution time.

A recent and totally different approach for transforming a general tandem into a (unique)
nested tandem is the flow prolongation approach [Bondorf 2017] in which the path of the
flows in the tandem are prolonged. Here again, several flow prolongations per tandem can be
envisioned and, in [Geyer, Scheffler, Bondorf 2022], the best flow prolongations are predicted
by a machine-learning algorithm.

The TFA, SFA and PMOO are often combined with a min-plus back-end and integrated
in software tools, such as in the DISCO network calculator [Schmitt, Zdarsky 2006; Gollan,
et al. 2008; Bondorf, Schmitt 2014], WoPaNets [Mifdaoui, Ayed 2010], Pegase [Boyer, et al.
2010], etc.

2.5.4 Linear Programming

We finally note a radically different approach that does not directly rely on the network calcu-
lus results: The linear-programming approach, introduced in [Bouillard, Stea 2012; Bouillard,
Stea 2015], computes the worst-case delay bound as the solution of a linear optimization-
problem, where the arrival-curve, service-curve and FIFO constraints are replaced by linear
constraints in the linear program. However, the number of variables is exponential with the
size of the network, hence LP is known to be applicable for networks of only a dozen nodes.

In [Bouillard 2022], Bouillard introduces the polynomial-size linear program (PLP) in
which a heuristic removes some of the decision variables of the LP approach to keep the size
of the problem polynomial within the size of the network. Interestingly, the PLP approach
can easily capture the line-shaping effect [Bouillard 2022, §4.1] and can even be extended to
networks with cyclic dependencies, which we further discuss in Section 3.1.4.
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Figure 2.10: Model for any device of the time-sensitive network. Each device is made of input ports, output
ports and a switching fabric. The input port contains a store-and-forward step and bounded technological
latencies. The switching fabric contains an ideal switching fabric and bounded technological latencies. The
output port contains a set of optional functions and a FIFO class-based queing subsystem (CBQS). The
transmission links act as greedy shapers.

2.6 Network-Calculus Model For Time-Sensitive Networks

In this section, we build upon the related work on modeling time-sensitive networks with
network calculus to introduce the network-calculus model that we use throughout the thesis
for obtaining end-to-end performance guarantees when focusing on a class of interest.

2.6.1 The Sources

We denote by ϕ the boundary of the time-sensitive network, as illustrated in Figure 2.9. For
any flow f that enters the network, we assume the knowledge of an input arrival-curve for
f at the boundary ϕ, denoted αf,ϕ. In time-sensitive networks, αf,ϕ is either obtained from
the source specifications or is enforced by a shaper in the operating system [AFDX]. αf,ϕ
can also be obtained from the TSN and DetNet specifications [48], [Zhao, et al. 2018; Maile,
Hielscher, German 2020].

In the following, we consider a time-sensitive network device (Figure 2.10), it can either
be an IEEE TSN bridge or an IETF DetNet router. The device is made of input ports, output
ports and a switching fabric. Devices are connected together through transmission links that



2.6. Network-Calculus Model For Time-Sensitive Networks 31

we assume to have fixed capacity.

2.6.2 The Input Port

We assume that each input port contains a store-and-forward step and other processing steps.
We model the store-and-forward step by using the network-calculus packetizer (Definition 2.8).
We assume that the other processing steps (decryption, cyclic redundancy check, etc.) are
performed in a causal, lossless, and FIFO manner and that their duration is bounded in
[dinproces., D

in
proces.]. As such, we model them as causal, lossless, and FIFO system that provides

the service curve δJin
proces.

(Figure 2.10), with J inproces. ≜ Din
proces.−dinproces. and δJ is the bounded-

delay curve (Figure 2.1c).

2.6.3 The Switching Fabric

The switching fabric connects the inputs ports to the output ports. For a given flow, the
switching fabric forwards the flow to one or several output ports, depending on the path
of the flow. When a packet of the flow reaches the switching fabric, we say that the latter
copies the content of the packet, i.e., the data unit, into one or several new packets that are
forwarded to the corresponding output ports.

Because of this copy process, the switching fabric is not assumed to be globally causal.
However, for any input connection of the switching fabric and for any output connection, we
assume that the pair (input,output) is causal, lossless, FIFO. The time taken by a data unit
to cross this pair is assumed to be bounded between known values [dswproces., D

sw
proces.].

Therefore, we model the switching fabric as a causal, lossless, FIFO system that provides
the service curve δJsw

proces. , followed by an ideal switching fabric (the box with the arrows in
Figure 2.10), of which any pair (input,output) is causal, lossless FIFO and where Jswproces. =
Dsw

proces. − dswproces..

2.6.4 The Output Port

An overview of the output-port forwarding process in an IEEE TSN bridge is provided in
Figure 2.11, based on the standards [IEEE 802.1Q; IEEE 802.1Qcr; IEEE 802.1CB].

The Optional Functions

The packets coming from the switching fabric are first distributed by a classification step
to a set of optional processing steps (or directly to the queue of the class). Each optional
processing step can process either one flow, the entire class aggregate, or any subset of flows
from the class of interest. In general, this part of the forwarding process is neither lossless
nor FIFO for the class.

In this thesis, we refer to this part simply as the “optional functions” for the class of
interest in this output port (dashed-blue box in Figure 2.11). Three main optional functions
are studied in this thesis:

• the traffic regulators such as the per-flow regulator (PFR) or the interleaved regulator
(IR). They are implemented in TSN under the name asynchronous traffic shaping (ATS)
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Figure 2.11: Overview of the forwarding process in an IEEE TSN output port n and mapping with the
model used in this thesis (in dashed blue). We separate the content of the output port into the optional
functions and the class-based queing subsystem (CBQS).

[IEEE 802.1Qcr] and in DetNet under the name shapers [RFC 2475, §2.3.3.3]. They are
widely studied in the literature [Wandeler, Maxiaguine, Thiele 2006; Specht, Samii 2016;
Le Boudec 2018; Mohammadpour, et al. 2018]. The main properties of the regulators
are provided in Chapter 3 and are analyzed in various situations throughout the thesis.

• the packet-elimination function (PEF). This function is implemented in TSN under the
name frame replication and elimination for redundancy (FRER) [IEEE 802.1CB] and in
DetNet under the name packet-elimination function (PEF) [RFC 8655, §3.2.2.2.]. This
function is studied in Chapter 4.

• the packet-ordering function (POF). This function is implemented in DetNet under the
same name [RFC 8655, §3.2.2.2.], but it has no equivalent in TSN. The POF has been
analyzed in [Mohammadpour, Le Boudec 2021] and its joint use with PEF is studied in
Chapter 4.

The specific models for the above functions are deferred to the relevant chapters.

The Class-Based Queuing Subsystem

The combination of the forwarding steps located after the class buffer (transmission selection
algorithm, transmission gates) determines the service that the class receives.

The Transmission Selection Algorithms (TSAs) are asynchronous scheduling mechanisms.
In general, they can be mapped to the scheduling policies mentioned in Table 2.1. [Maile,
Hielscher, German 2020] gives an overview of the TSAs for which a network-calculus service-
curve representation has been obtained in the literature. For example, the strict priority
TSA [IEEE 802.1Q, §8.6.8.1] emulates the non-preemptive static priority scheduling policy
of Table 2.1 thus can be modeled as a service-curve element. The credit-based shaper TSA
[IEEE 802.1Q, §8.6.8.2] maps to the credit-based shaper scheduling policy of Table 2.1. Its
service-curve representation is analyzed in [Mohammadpour, Stai, Boudec 2019; Zhao, et
al. 2021; Zhao, Pop, Steinhorst 2021]. The enhanced transmission selection TSA [IEEE
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Figure 2.12: Relation between the bridges (in gray boxes), the vertices of the underlying graph (in thick
red ovals) and the observation points (dashed blue lines). The vertex n models the output port n, together
with the transmission link, the input port on the remote device and the latency of the switching fabric
in the remote device. Due to the one-to-one mapping between output ports and vertices, the notation n
describes equivalently the vertex n, the ouput port n or the CBQS n.

802.1Q, §8.6.8.3] can be configured as a deficit round-robin scheduling policy that is analyzed
in [Boyer, Stea, Sofack 2012; Tabatabaee, Le Boudec 2022].

The configuration of the transmission gates results in a synchronous scheduling mechanism
known as the time-aware shaper (TAS). The configuration of the time-aware shaper is far
more complex than the configurations of the TSAs because the open/closed cycles for the
gates must be computed. The service-curve modeling of the time-aware shaper is analyzed in
[Zhao, Pop, Craciunas 2018] and in combination with TSAs in [Zhao, et al. 2018; Daigmorte
2019; Daigmorte, Boyer, Zhao 2018; Zhao, Pop, Steinhorst 2021; Zhao, et al. 2021]. The
cyclic queuing and forwarding [IEEE 802.1Qch] was introduced as an attempt to ease the
configuration of the gates.

Choosing the best set of algorithms parameters for a specific network remains an open
question [NAVET, MAI, MIGGE 2019; Samson, et al. 2021], and several performance com-
parison relying on network calculus exist [Nasrallah, et al. 2019; Zhao, Pop, Steinhorst 2021].

In the thesis, we assume simply that the combination of the transmission-selection algo-
rithm, the transmission gates and the non-preemptive static priority in output port n can be
modeled for the class of interest as a unique causal, lossless, and FIFO system that offers to
the class the service curve βn, where βn can be obtained, for example, from the literature
overview provided in [Maile, Hielscher, German 2020; Zhao, Pop, Steinhorst 2021].

2.6.5 The Transmission Links

For each output port n, we assume that the transmission link connected at the output of n
has a fixed capacity cn and a fixed propagation time Tn > 0. We note Tmin = minn Tn the
minimum of the propagation time for all transmissions links in the network. We model each
link as a greedy shaper (Definition 2.7) Cγcn,0 of shaping curve γcn,0 (Figure 2.1a).

2.6.6 The Graph Induced By Flows, Flow Graph
Definition 2.9 (Graph Induced by Flows, Flow Graph) For a network and a class of
interest, the graph induced by flows (GIF) is the directed graph G = (V, E) where

• For each output port n in the network, V contains a vertex with identical name (n)
that includes the output port, the remote input port and the variable-delay element
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of the switching fabric at the remote device (see Figure 2.12).
• For each n,m two vertices of V, there exists a directed edge (n,m) in E, if and only

if at least one flow of the class of interest crosses the output port n and, immediately
after, the output port m .

For f a flow in the class of interest, the graph of flow f , G(f) is the sub-graph of G
obtained by keeping only the vertices of which the output port is crossed by f . We note
f ∋ n to denote the fact that f crosses the output port n, i.e., n is a vertex of G(f). We
note f ∋ (n,m) to denote that f crosses m immediately after n, i.e., (n,m) is a directed
edge in G(f).

For the moment, we assume that G(f) is a multi-cast tree with one or several destinations.
Later in Chapter 4, we relax this assumption to allow for redundant paths.

2.6.7 Observation Points

For a vertex n, we define the observation points nin, n†, n′ and n∗ as in Figure 2.12.

Conclusion

In this chapter, we have introduced the network-calculus framework for computing latency
bounds in time-sensitive networks. We first gave an overview of the theoretical grounds of
the theory, with the min-plus algebra in Section 2.1 and the main concepts of arrival curves
and service curves in Section 2.2. Then in Section 2.3 we have provided the Three-Bound
Theorem (Theorem 2.2) that is central in the theory for computing performance bounds
(latency, backlog, output burstiness).

Afterwards, we have provided an overview of several active fields of research. We have
discussed in particular the question of the residual service-curve computation in Section 2.4
as well as the properties of the FIFO policy. We have also provided an overview of the different
compositional approaches for computing end-to-end latency bounds in FIFO-per-class networks.
For its simplicity and flexibility, we select the TFA approach to implement our theoretical
contributions.

Last we have provided the overall network-calculus model for the devices and the flows in
time-sensitive networks. This model is used in Chapter 3, Chapter 4, Section 5.5 of Chapter 5
and Chapter 6. A summary of the model with a list of notations is available in Appendix A.
The model is based on the TSN standards and on the related work on the analysis of TSN
mechanisms using network-calculus. We have noted that the bounded-latency mechanisms
(schedulers, shapers, etc.) are studied in numerous occasions with network calculus in the
literature, as outlined in Figure 1 of this thesis’ Introduction.

In the second part of the thesis, we use the network-calculus framework and the model
described in this chapter to analyze the effects on the latency bounds of the new mechanisms
identified in Figure 1. In the next chapter, we first analyze the effects of multi-path topologies
on the performance bounds of time-sensitive networks.
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Chapter 3

Cyclic Dependencies

“If one other Solarian exists to dispute my absolute mastery over any part of
my land, over any robot or living thing or object, my freedom is limited. Since
other Solarians exist, the limitation on freedom must be removed as far as possible
by separating them all to the point where contact is virtually nonexistent.”

Sarton Bander

Isaac Asimov, Foundation and Earth.
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Figure 3.1: Phenomenon of burstiness increase: The burstiness of the flow f increases through the network
element due to the jitter that it suffers within the network element.

As we have discussed in Chapter 1, Section 1.3, time-sensitive networks not only support
general topologies but foster the use of multi-path topologies, because the latter include
alternative paths that reduce the reconfiguration effort.

When the flows are mapped, however, on theses multi-path topologies, their paths can
induce cyclic dependencies: the graph induced by flows (GIF) can contain cycles. In the
last chapter, we presented the state of the art of computing delay bounds in FIFO-per-class
feed-forward networks, i.e., networks with no cyclic dependencies. Much less related work is
available for networks with cyclic dependencies.

Indeed, cyclic dependencies are a well-known issue in time-sensitive networks because
they can lead to unbounded delays [Andrews 2009]. Consequently, obtaining the proof of
determinism for the networks with cyclic dependencies is a much more challenging issue than
for the feed-forward networks (networks without cyclic dependencies).

Therefore, our focus of this chapter is the following: guaranteeing deterministic worst-
case latency bounds in time-sensitive networks, even if they have cyclic dependencies, while
minimizing the deployment costs and keeping high-scalability architectures.

In Section 3.1, we first discuss the issues caused by cyclic dependencies and the way they
are handled in the literature. We then introduce our new approach based on the partial
deployment of traffic regulators. In Section 3.2, we present low-cost acyclic network (LCAN),
an algorithm for identifying the optimal positions of the regulators. In Section 3.3, we present
FP-TFA, an algorithm based on the total-flow analysis (TFA) approach for computing latency
bounds in networks with cyclic dependencies and/or regulators. Finally, we evaluate the
performance of our partial-deployment approach on a parametric grid network, in Section 3.4.

Part of the material presented in this chapter was published in [Thomas, Le Boudec,
Mifdaoui 2019]. Throughout the whole chapter we assume that each flow f is constrained at
the source by a leaky-bucket arrival curve αf,ϕ = γrf ,bf,ϕ

with rate rf and burst at source
bf,ϕ: over any window of duration t, the source of the flow cannot send more than rf t+ bf,ϕ
bits.

3.1 Related Work

3.1.1 Source of Cyclic Dependencies in Time-Sensitive Networks

When such a flow f crosses a server (Figure 3.1), the jitter that it suffers in the server
(difference between its worst-case delay Df and its best-case delay df ) increases its burstiness
b∗f > bf . This burstiness is then propagated to the next server. In some networks, this
burst propagation can lead to situations in which the burstinesses of the flows have a cyclic
dependency on each other.
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Figure 3.2: Toy example of a network with a cyclic dependency. (a) The physical topology and the paths
of the two flows. (b) The graph induced by flows (GIF). Each vertex represents an output port. The
destination end systems E2 and E4 are shown for convenience, but only output ports are present as vertices
in the actual graph.

Example: This is the case for the FIFO-per-class toy example shown in Figure 3.2a,
where boxes S1 to S4 are switches, E1 to E4 are end systems, and h and g are leaky-
bucket constrained flows of the same class. When h enters S1, it competes with flow g

to exit S1 in the direction of S2. This interference generates a jitter whose worst case
depends on the burstiness of both flows h and g before S1. The jitter causes an increase
of the worst-case burstiness of h and g after S1. Focusing on h, this new burstiness
is propagated to S2, where h suffers again a jitter that further increases its burstiness.
At S3, the propagated burstiness of h competes with the fresh flow g, thus creating a
burstiness increase for h and g. And the burstiness of g continues to increase between
S3 and S1. Therefore, we reach a cyclic dependency because the burstiness of g at the
input of S1 depends on the jitter that h suffers within S1 that, in turn, depends on the
burstiness of g at the input of S1.

To explicit the cyclic dependency, we can build the graph induced by flows (GIF)
(Definition 2.9). Let us use the cardinal directions to distinguish the different output
ports for a given switch of Figure 3.2a. Then, the GIF for the toy example is shown
in Figure 3.2b. For example, (S3West, S4North) is a directed edge of the graph because g
crosses S4North immediately after S3West, in Figure 3.2a. We note that the graph contains
a cycle that characterizes the cyclic dependency: the network is not feed-forward.

3.1.2 The Issue of Cyclic Dependencies in Time-Sensitive Networks

Obtaining performance guarantees on non-feed-forward networks is a challenging issue much
more than for feed-forward networks. This is because the FIFO scheduling policy (used in
FIFO-per-class networks) belongs to the set of aggregate scheduling policies that are not
universally stable: There exists FIFO-per-class networks that are under-loaded (the utiliza-
tion factor of each node is below 1) but in which the delays and the backlogs are unbounded
[Andrews 2009].

3.1.3 Preventing the Cyclic Dependencies

If cyclic dependencies are anticipated in a network under design, then the designer could
choose to avoid them in the first place. Many industrial networks continue to avoid the cyclic
dependencies and to guarantee a feed-forward network by using specific routing constraints
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computed prior to the flow paths [AFDX]. This approach benefits from the research on
deadlock prohibition in wormhole-routing networks [Li, Gu 2009]. A wide variety of algorithms
have been proposed. For example, the X-Y routing [Li, Gu 2009] is applicable for grid
networks, the turn-prohibition algorithm is applicable for general topologies [Starobinski,
Karpovsky, Zakrevski 2003]. An overview of the different approaches can be found in [Finzi,
Craciunas 2019, §3.1].

Example: The cycle in the toy example can be avoided by preventing only one turn: for
example, the turn (S0, S2, S3) in Figure 3.2a. This means that a new route for the flow
h must be computed: for example, the shortest path E1→ S1→ S4→ E4.

We note that many of the algorithms can be written as different solvers of the same
minimum feedback arc set (MFAS) problem, a well-known NP-complete problem of graph
theory [Baharev, Schichl, Neumaier 2015] in which a directed graph (the GIF) is made acyclic
by removing as few of its edges as possible. Each removed edge corresponds to a prohibited
turn and the goal is to remove all cyclic dependencies while minimizing the turns that are
prohibited. For example, the turn-prohibition algorithm [Starobinski, Karpovsky, Zakrevski
2003] can be written as a sub-optimal solver for the MFAS problem [Fidler, Einhoff 2004].

Example: In the toy example, we note that prohibiting turn (S0, S2, S3) is equivalent
to prohibiting the edge (S0East, S2South) from the GIF (Figure 3.2b). This edge is an
optimal solution to the MFAS problem for the graph of Figure 3.2b.

Routing constraints ensure feed-forward networks that can be analyzed using the feed-
forward techniques described in Chapter 2, Section 2.5. But they give little latitude to the
network architect on the mapping of the flows. They face configuration issues in the context
of large-scale networks that are at the core of IEEE TSN and IETF Detnet working groups.
Finally, they can be incompatible with redundancy requirements. Consequently, we do not
consider this class of solution in the following parts of this chapter.

Example: If both communications E1 → E4 and E3 → E2 require two paths each, then
the only possible redundant paths are those used by h and g in Figure 3.2a, and a cyclic
dependency necessarily exists. As a result, no routing algorithm can find two alternative
paths for each communication, without creating a cyclic dependency.

3.1.4 Solving the Cyclic Dependencies

When the paths of the flows cannot be changed, we can use one of the methods for obtaining
latency bounds with network calculus on networks with cyclic dependencies. With each of
these methods, there exists a value, ucrit ∈ [0, 1] that represents the supremum of the values
of the network load at which the considered method can compute end-to-end delay bounds
for each flow: When the network load u is such that u < ucrit, then a delay bound can be
obtained for each flow using the method. When u > ucrit, the considered method cannot
conclude on the stability of the network.

The value of the critical load with feed-forward networks is always ucrit = 1: a delay bound
can always be obtained with network calculus for each flow of an under-loaded feed-forward
network, by using one of the methods presented in Chapter 2. Whereas, for the methods that
are tailored to networks with cyclic dependencies, we often have ucrit < 1.
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In [Charny, Le Boudec 2000], Charny and Le Boudec provide a first value for ucrit for
FIFO-per-class networks: If the flows of the network traverse each at most k hops, then
ucrit = 1

k−1 with [Charny, Le Boudec 2000].

Example: Each of h and g crosses five hops. The result from [Charny, Le Boudec 2000]
gives ucrit = 1

4 = 0.25. We observe that the critical load with this method is quite low.

Charny and Le Boudec prove that obtaining a higher ucrit requires taking into account
either the peak-rate limitation of the transmission links (i.e., the line-shaping effect) [Le
Boudec, Thiran 2001, Thm. 2.4.2] or more details on the paths of the flows or on the topology
[Charny, Le Boudec 2000, §4]. In [Le Boudec, Thiran 2001, §6.4.1], a previous result from
[Tassiulas, Georgiadis 1994] is extended, and any unidirectional ring of rate-latency servers
is proved to be stable. In [Chlamtac, et al. 1998], a sufficient stability condition, which is
based on the number of interactions between the flows, is provided for homogeneous networks.
The condition is extended to general networks in [Rizzo, Le Boudec 2007; Rizzo, Le Boudec
2008]. In [Amari, Mifdaoui 2017], the Pay Multiplexing Only at Convergence Points (PMOC)
approach is developed and relies on global interference equations.

Many other approaches first rely on an existing method that, tailored for feed-forward
networks, is then adapted for the network with cyclic dependencies by using the time-stopping
method introduced in [Cruz 1991b]. In a general trend, the more precise the underlying feed-
forward method is (by modeling precisely the network, its topology, its elements and its
flows), the higher the critical load is for the derived cyclic-dependency method. For example,
with the fixed-point problem formulation [Bouillard, Boyer, Le Corronc 2018, Chap. 12], the
original network is transformed into a feed-forward network using cuts. Then a feed-forward
TFA method is iteratively applied to different versions of this feed-forward network. If the
iterations meet some convergence conditions, then the overall method can conclude that the
original network with cyclic dependencies is stable and latency bounds can be derived. Using
this approach, we derived the FP-TFA tool presented in [Thomas, Le Boudec, Mifdaoui 2019].
An overview of FP-TFA is provided in Section 3.3.

We note that a recent work [Plassart, Le Boudec 2021] is based on our results in this
chapter. It provides more results on the fixed-point approaches and proves the equivalence of
its different versions. Also, in a recent work [Bouillard 2022], Bouillard extends her and Stea’s
previous work on the linear programming approaches of feed-forward networks [Bouillard,
Stea 2015] to include the line-shaping effect and extend the linear programming approach to
networks with cyclic dependencies.

Overall, the mathematical approaches for solving the cyclic dependencies take advantage
of the line-shaping effect [Grieu 2004; Mifdaoui, Leydier 2017], but they suffer from the
burst-propagation phenomenom that creates the cyclic dependencies. They do not require
any change in the paths of the flows, but they cannot guarantee the stability of the network
a priori and usually provide pessimistic delay bounds [Amari, Mifdaoui 2017].

For a given network, choosing between the routing constraints for removing the cyclic
dependencies and the mathematical approaches for keeping them is known as the Break or
Solve dilemma, whose answer depends on many different factors [Finzi, Craciunas 2019].
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Figure 3.3: Shaping-for-free property of two types of regulators. (a) The per-flow regulator uses one FIFO
queue per flow (2 here). The shaping is “for free” for each individual flow. (b) The interleaved regulator
uses only one FIFO queue. If the network element S is FIFO for the aggregate {h, g}, then the shaping is
“for free” for the aggregate and both flows have the same delay bound through the concatenation made of
S followed by the interleaved regulator.

3.1.5 Using Traffic Regulators to Break the Cyclic Dependencies

A new approach for breaking cyclic dependencies was proposed with the use of traffic reg-
ulators [Le Boudec 2018] deployed at every node [Mohammadpour, et al. 2018]. Traffic
regulators block burstiness propagation by delaying some of the flow’s packets.

What are regulators? Regulators come in two flavours: per-flow regulators (PFRs) and
interleaved regulators (IRs). A PFR, with parameters (rf,PFR, bf,PFR) for a flow f , buffers the
data of the flow in a FIFO queue (one per flow) and releases the packets, as early as possible
while ensuring that the output of this flow f is γrf,PFR,bf,PFR

-constrained: Over any window of
duration τ , no more than rf,PFRτ + bf,PFR bits of the flow exit the regulator. We say that the
regulator shapes the flow f with the shaping curve σf,PFR = γrf,PFR,bf,PFR

.
A well-known implementation is Linux’s Token-Bucket Filter [Wagner 2001]. The PFR can

delay some packets, however, it does not increase the worst-case delay [Le Boudec 2018], [Le
Boudec, Thiran 2001, Thms 1.5.2 and 1.7.3] (“shaping for free” property). This is illustrated
in Figure 3.3a. All regulated flows are treated differently from the PFR perspective and can
come from a different FIFO system. If the PFR is configured with a rate rf,PFR and a burst
bf,PFR that are equal or greater than the rate and burst of the flow at the input of the FIFO
system, then the shaping-for-free property holds: The overall worst-case delay D′h for flow
h equals its worst-case delay Dh in the FIFO system (and D′g = Dg as well). The shaping-
for-free property of the PFR can be proved using the service-curve characterization of the
PFR
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Figure 3.4: Detailed model of the vertex S1East with a PFR installed as an optional function. It processes
only the flows coming from parent E1East.

Proposition 3.1 (Service-curve characterization of the PFR Le Boudec, Thiran 2001,
Thm. 1.7.3)
Consider a PFR for a flow f , configured with the shaping curve σ. If f is packetized at
the input of the PFR and if σ is a sub-additive curve and limt→0,t>0 σ(t) is greater than
the maximum packet size of f , then the PFR can be modeled as the concatenation of a
greedy-shaper Cσ (Definition 2.7), followed by a packetizer PL (Definition 2.8).

Interleaved regulators were introduced by [Specht, Samii 2016] (under the name of “Ur-
gency Based Scheduler”, also called “Asynchronous Traffic Shaping” by IEEE TSN) in an
effort to reduce the required hardware, with respect to the PFR solution. As illustrated in
Figure 3.3b, an IR has a single FIFO queue for all the flows it regulates (but every flow f

has its own regulation parameter (rf,IR, bf,IR)). The IR examines only the packet at the head
of its FIFO queue and releases it, as soon as so doing does not violate the constraint of this
flow. Packets of other flows can thus be delayed by the packet at the head of the queue.
Nonetheless, an IR that is placed after a FIFO system does not increase the worst-case delay
of the FIFO system, as illustrated in Figure 3.3b [Le Boudec 2018, Thm. 4]. Note that this
“shaping-for-free” property of the IR holds only if all the flows processed by the IR come from
the same previous FIFO system. Also, unlike the PFR, no service-curve characterization is
known for the IR.

Where are they located? Regulators are optional functions that can be placed just
before the class-based queing subsystem (CBQS) of each vertex: Figure 3.4 recalls that the
optional functions within vertex S1East are located between the observation points S1inEast
and S1

†
Eeast. In this chapter, we assume that each regulator within a vertex regulates only

the flows coming from a specific parent of the vertex. For example, Figure 3.4 shows a PFR
placed within S1East but that processes only the flows coming from E1East: we use the notation
PFRS1East(E1East) for such PFR. For each processed flow h, its arrival curve at S1

†
East equals

the shaping curve configured on the regulator for this flow: α
h,S1†

East
= σh,PFRS1East (E1East). The

flows coming from S4North are not processed by the PFR. For each non-processed flow g,
α
g,S1†

East
= αg,S1inEast

How Can a Regulator Be Deployed? In a full deployment approach of the regula-
tors [Mohammadpour, et al. 2018; Zhao, Pop, Steinhorst 2021], [Le Boudec, Thiran 2001, end
of §6.3.2], the regulators are deployed within all the network’s devices. Thus, the burstiness
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Table 3.1: Summary of the Regulator Deployment Approaches in Networks with Cyclic Dependencies.
Our contributions are highlighted in blue and are compared to the other approaches. As discussed in
Section 3.1.3, the solutions that rely on routing constraints are not considered and do not appear in this
table.

Regulator
deployment

approach
Methods and references

Solve cyclic dependencies

No
deployment

[Charny, Le Boudec 2000]
[Amari, Mifdaoui 2017]
[Bouillard, Boyer, Le Corronc 2018, Chap 12]
[Finzi, Craciunas 2019]
[Bouillard 2022]
[Plassart, Le Boudec 2021]

Our work, FP-TFA (Section 3.3)
Per-flow regulators (PFRs) Interleaved regulators (IRs)

Full
deployment

[Le Boudec, Thiran 2001, §1.7.4]
[Mohammadpour, et al. 2018]

[Le Boudec 2018]
[Mohammadpour, et al. 2018]
[Zhao, Pop, Steinhorst 2021]

Partial
deployment Our work, LCAN (Section 3.2) + FP-TFA (Section 3.3)

of every flow remains the same along its path; there is no burstiness propagation, and the
problems caused by cyclic dependencies are eliminated. Worst-case latencies can be computed
using the “shaping-for-free” property and other network-calculus results.

3.1.6 Contributions in This Chapter

The first two rows of Table 3.1 (no-deployment and full-deployment approaches) were the
only two options considered in the literature on cyclic dependencies and regulators. In both
cases, the stability requirements, cost requirements, and scalability requirements are met only
partially.

Evaluation of the Full-Deployment with Respect to the No-Deployment Ap-
proach: Our first objective is to evaluate the benefit of the full-deployment approach of
either PFRs or IRs on the latency, with respect to the no-deployment situation in which the
network keeps its cyclic dependencies. To evaluate this benefit, we need a tool that can com-
pute delay bounds, even in networks with cyclic dependencies. The tighter the delay bounds
are obtained with this tool, the greater the critical load ucrit is.

At the beginning of the PhD, we observed that the recent results of TFA++ [Mifdaoui,
Leydier 2017] had not yet been integrated in fixed-point approaches, such as the one developed
in [Bouillard, Boyer, Le Corronc 2018, Chap 12]. Therefore, we developed FP-TFA, a tool
for computing delay bounds in networks with cyclic dependencies that takes into account the
line-shaping effect [Mifdaoui, Leydier 2017].

A Partial Deployment Approach for Regulators by Using LCAN and FP-TFA:
As regulators break the propagation of burstiness, we propose an alternative approach by
installing only a few regulators within the network, such that all cyclic dependencies are
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Figure 3.5: Overview of the LCAN algorithm.

removed (partial deployment). Hence, the computation of latency bounds is facilitated (ucrit =
1) and can be performed by using network calculus and feed-forward methods (Chapter 2).
Partial-deployment schemes have not yet been studied and could represent an opportunity
for a good compromise among cost, scalability, and performance.

We propose low-cost acyclic network (LCAN), a tool that finds the optimal positions for
the regulators and that minimizes the cost of the partial deployment while ensuring that
all cyclic dependencies are broken by the regulators. We then use FP-TFA to evaluate the
benefit of this partial-deployment approach over the full-deployment and the no-deployment
approaches

3.2 LCAN: an Optimal Algorithm for Breaking All Cyclic De-
pendencies

In this section, we describe low-cost acyclic network (LCAN), an algorithm for breaking all
cyclic dependencies through a partial deployment of regulators (either PFRs or IRs). Mixtures
of PFRs and IRs, are not considered.

LCAN relies on a user-specified cost function to compute the cost of a regulator. This
function can be tailored to reflect the hardware cost of a regulator. Constraints can be added
to the algorithm to account for other technical requirements. For example, some switches of
the network might not implement at all the regulator option, or some other switches could
host only a given maximum number of regulators. These aspects are still under discussion
in the real-time community. The external cost function enables LCAN to anticipate the
possible outcomes. The recently published standard [IEEE 802.1Qcr] specifies the functional
requirements for a bridge that implements the IR model and, with slight modifications, the
PFR model. However, it does not discuss the hardware implementation or the associated
costs and constraints.

An overview of the LCAN algorithm is presented in Figure 3.5. It first formulates a
weighted minimum feedback arc set (MFAS) problem, a well-known NP-complete problem
of graph-theory [Karp 1972, 8th item]. The problem is formulated depending on the con-
sidered type of regulators for the whole network (either PFR or IR). The output of this
step is a directed weighted graph with cycles; the weights represent the configurable costs
of the regulators. Second, it uses a state-of-the-art optimal algorithm to solve the MFAS
problem [Baharev, Schichl, Neumaier 2015].

In the following section, we describe the problem formulation by using the toy example of
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Figure 3.6: A PFR is placed for the toy example at S0East. (a) Content of the output port S0East: the
PFR reshapes all flows coming from S1East. (b) The system between the source of g and the PFR is FIFO
for g, hence the shaping-for-free property holds.

Figure 3.2.

3.2.1 Formulation of the Problem with PFRs
Example: Assume that the output port S0East implements a PFR for all the flows
coming from S1East, which we denote by PFRS0East(S1East). We configure the PFR with
the shaping parameters (rh, bh,ϕ) and (rg, bg,ϕ) i.e., the regulator shapes each flow with
the burst that the flow had at its source. Figure 3.6a presents the content of the output
port.

The flows competing in the CBQS are h and g with, respectively, arrival bursts bh,ϕ
and bg,ϕ. Hence, the computation of the delay bound within the CBQS of S0East depends
neither on bh,S1∗

East
nor on bg,S1∗

East
. The burst propagation from S1East to S0East is blocked,

which corresponds to removing the edge (S1East, S0East) from the GIF in Figure 3.2b.
The shaping-for-free property described in Section 3.1.5 is kept. For the flow g reg-

ulated by PFRS0East(S1East), the FIFO system associated with the regulator is the entire
suite of ports from the source of g, up to and including the output port S1East (Fig-
ure 3.6b).

Finding the optimal positions for the PFRs is hence translated into a MFAS problem: The
objective is to remove all the cycles from the GIF (Figure 3.2b) by removing the edges with
the smallest weight sum. Each removed edge corresponds to a PFR, and its weight represents
the regulator’s cost (provided by the external function). In the toy example, if the weights of
all edges are equal, then removing edge (S1East, S0East) is an optimal solution to the MFAS
problem.

3.2.2 Formulation of the Problem with IRs

There is a significant difference between PFRs and IRs. If an IR is used at a point, say B, in
the network to restore the burstiness that exists for a set of flows at some point, say A, the
entire path from A to B must be globally FIFO for the aggregate traffic of the set of flows.
In practice, this requires that A be a parent (immediate upstream vertex) of B.

Example: Assume that we implement an IR in place of the PFR (Figure 3.7a). We
configurea the IR such that bh,IRS0East (S1East) ≜ b

h,S1†
East

and bg,IRS0East (S1East) ≜ b
g,S1†

East
: The

IR restores the burst at the immediate upstream vertex S1East of S0East and the system
between S1

†
East and the IR is FIFO for the aggregate {f, g} (Figure 3.7b), hence the
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Figure 3.8: Excerpt of the burst-dependency graph of the toy example.

shaping-for-free property holds.
If the output port of the upstream vertex S1East does not contain any regulator that

processes h, then b
h,S1†

East
= bh,S1inEast = bh,E1∗

East
, i.e., the burst parameter bh,IR of the IR

within S0East is equal to the burst of the flow at the output of the vertex E1East. If the
output port of the previous vertex S1East contains an IR that processes flow h, then we
simply reuse the configuration of the previous IR:

bh,IRS0East (S1East) = b
h,S1†

East
= bh,IRS1East (E1East)

In both cases, none of the IR’s parameters bh,IRS0East (S1East) or bg,IRS0East (S1East) is entirely
independent from the past vertices: they depend on the bounds for the bursts that the
flows had in previous hops. As such, the action of the IR, configured as above, cannot
be modeled by removing the edge (S1East, S0East) from the graph in Figure 3.2b.

aNotation “≜” means “is equal by definition”.

To model the action of the IR, we define a new graph that we call the burst-dependency
graph. This graph is obtained from the GIF (Figure 3.2b) by using Algorithm 1. For any
directed edge (n→ m) in the GIF, Algorithm 1 creates one vertex of the same name (“n/m”)
for the burst-dependency graph (Line 4).

Example: An excerpt of the burst-dependency graph for the toy example is shown in
Figure 3.8. The directed edge (S1East → S0East) of the GIF in Figure 3.2b is represented,
in the burst-dependency graph, by the vertex “S1East/S0East” in Figure 3.8.

We call such a vertex a contention vertex because it represents the contention that occurs
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Algorithm 1 Algorithm that creates the burst-dependency graph using the graph induced
by flows.
Require: G the network’s graph induced by flows (GIF). F the set of flows.
Require: For each flow f , G(f) is its flow graph.

1: procedure GetBurstDependencyGraph(G)
2: V ′ ← ∅, E ′ ← ∅
3: for (n,m) ∈ edges(G) do

4: add a vertex called “n/m” to V ′ ▷ Contention vertex: n/m

5: end for
6: for f ∈ F do
7: for (n,m) ∈ edges(G(f)) do
8: if not already added, add a vertex called “bf,n†” and a vertex “bf,m†” to V ′

9: ▷ Burst vertices:
bf,n† and

bf,m†

10: add the edge (bf,n† , bf,m†) to E ′ ▷ Propagation edge:
11: for all children m′ of n in G do
12: add the edge (bf,n† , n/m′) to E ′ ▷ Contention edges:
13: end for
14: add the edge (n/m, bf,m†) to E ′ ▷ Contention edges:
15: end for
16: end for
17: G′ ← (V ′, E ′) return G′
18: end procedure

in S1East between the flows of the class of interest and the fact that this contention influences
the contention in the next node, S0East. If no such contention existed, or if it did not influence
the contention in the downstream node S0East, such a vertex would not exist in the graph.

Then, for any flow f and any vertex n, Algorithm 1 creates on Line 9 one vertex named
“bf,n†” in the burst-dependency graph. This vertex represents the value of the burst of f at
the observation point n†. Such a vertex is called a burst vertex.

Example: In the excerpt of Figure 3.8, we observe the vertex b
h,S1†

East
that represents the

value of the burst of h at the observation point S1
†
East. We also note the burst vertex

b
g,S1†

East
that represents the value of the burst of the other flow g at the same point.

As the name suggests, the directed edges in the burst-dependency graph represent the
relation “depends on”.

Example: If we focus on the burst vertex b
h,S0†

East
, we note two incoming edges that

translate as follows: b
h,S0†

East
, depends on b

h,S1†
East

, the burst that the flow had at S1
†
East,

and on “S1East/S0East”, i.e., on the contention that occurs within S1East.
For the vertex “S1East/S0East”, the incoming edges can be translated as follows: The

level of contention within S1East depends on the the burstiness of the competing flows
at S1

†
East, hence it depends on b

h,S1†
East

and b
g,S1†

East
(the two incoming edges). This

contention has an effect on the burstiness of the flows that continue towards S0: This
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Figure 3.9: The burst-dependency graph for the toy example. This graph is not acyclic (a cycle is shown
in blue), which reflects the fact that the network has cyclic dependencies and is not feed-forward. The
possible positions for interleaved regulators are shown with dashed vertices. Placing in the network an IR at
S4North in order to regulate all flows coming from its parent S3West corresponds to removing the red vertex
S3West/S4North from the graph, which makes it acyclic. Therefore, the IRS4North(S3West) removes all the
cyclic dependencies from the network. Here, IRS4North(S3West) is the optimal position for an IR for removing
all the cyclic dependencies from the network with as few IRs as possible.

affects b
h,S0†

East
and b

g,S0†
East

(the two outgoing edges).

The burst-dependency graph can be seen as a graph that is more precise than the GIF: In
the burst-dependency graph, we explicit the contention in every vertex, as well as the burst of
the flows that participate in each contention.

Example: The full version of the burst-dependency graph for the toy example is given in
Figure 3.9. This graph is not acyclic (a cycle is highlighted in thick blue), which is con-
sistent with the fact that the network has cyclic dependencies (as identified previously).

If we place a regulator IRn(m) at vertex n (i.e., just before its CBQS) for processing
the flows coming from its parent m, for each processed flow f , the burst bf,n† of f at n†
equals bf,m† and does not depend on the contention that occured within m. We model this by
keeping the edge bf,m† → bf,n† in the burst-dependency graph, but removing the edge “m/n”
→ bf,n† . Doing this for all flows f ∋ (m,n) is equivalent to removing entirely the vertex
“m/n” with all its incoming and outgoing edges.

Example: If we place an interleaved regulator IRS0East(S1East) within S0East that pro-
cesses all flows coming from S1East, then the configuration that ensures the shaping-for-
free property is bh,IRS0East (S1East) ≜ b

h,S1†
East

and bg,IRS0East (S1East) ≜ b
g,S1†

East
. Thus, the burst

b
h,S0†

East
of the flow h at S0†East depends only on its previous burst b

h,S1†
East

, and similarly
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for g. This corresponds to removing the contention vertex S1East/S0East (and all its
edges) from the burst-dependency graph in Figures 3.8 and 3.9.

Finding the optimal positions for the IRs is hence translated into a minimum feedback
vertex set (MFVS) problem formulation: The objective is to remove the cycles from the
burst-dependency graph by removing as few contention vertices as possible. Each removed
contention vertex represents an IR and the weight of each vertex is the configurable cost of
the IR, provided by the external cost function.

Example: With Figure 3.9, we observe that the IRS0East(S1East) is not sufficient to
solve the MFVS problem and to obtain a feed-forward network. Indeed, removing the
contention vertex S1East/S1East does not break the blue cycle.

If all the possible positions have the same cost, then placing an IR at IRS4North(S3West)
is the optimal solution for breaking all cyclic dependencies in the toy example: This
corresponds to removing the contention vertex S3West/S4North (in thick red) from the
graph in Figure 3.9, which makes it acyclic.
In graph theory, MFVS and MFAS are equivalent problems, and the former can be trans-

formed into the latter with minimal graph manipulations [Baharev, Schichl, Neumaier 2015].
This transformation is performed by the transform the problem step of Figure 3.5.

3.2.3 Solving the MFAS Problem

Finding a minimum feedback arc set (MFAS) is a well-known NP-complete problem [Garey,
Johnson 1990; Karp 1972]. We solve it by using the algorithm proposed in [Baharev, Schichl,
Neumaier 2015]. This algoritm provides an optimal solution and is well suited for graphs
containing up to one million cycles, a reasonable limit for industrial cases.

3.3 FP-TFA: Computing Tight Delay Bounds in Networks
with Cyclic Dependencies

LCAN can be used to achieve a partial deployment of either IRs or PFRs. To compare the
deterministic performances of the partial-deployment approach against the no-deployment
and the full-deployment approaches (first two rows of Table 3.1), we need an algorithm for
computing delay bounds in networks that can contain cyclic dependencies and/or regulators.

In [Thomas, Le Boudec, Mifdaoui 2019], we present FP-TFA, a tool for computing delay
bounds in networks with cyclic dependencies. Since the publication of [Thomas, Le Boudec,
Mifdaoui 2019], we have developed a new version of the tool, called experimental modular
TFA (xTFA), that provides more flexibility for the models and includes our other theoretical
contributions (Chapters 4 and 5). The algorithmic aspects of xTFA are presented in detail in
Chapter 6. In the current section, we focus only on the main theoretical results that support
FP-TFA.

FP-TFA is a tool based primarly on the TFA++ algorithm proposed by Mifdaoui and
Leydier [Mifdaoui, Leydier 2017] that is itself based on the TFA compositional approach
presented in Section 2.5.1. FP-TFA adds to TFA++ (a) a new result on the effect of the
packetizers, (b) the recent improvement proposed in [Mohammadpour, Stai, Le Boudec 2019],
(c) the model of the PFRs and IRs (as configured by LCAN), and (d) an extension of TFA++
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to topologies with cyclic dependencies by relying on the fixed-point approach of [Bouillard,
Boyer, Le Corronc 2018, Chap. 12], but with a new result on the validity of the fixed-point
approach.

3.3.1 A Novel Result on the Effect of Packetizers

Each input port in the device model used throughout the thesis (Section 2.6) contains
a network-calculus packetizer (Definition 2.8) that does not increase the per-packet delay
bounds of the upstream system (Theorem 2.5). However, it does increase the burstiness of
the flows at its output. This increase is known to be bounded by lmax, the maximum packet
length of the flow (Section 2.3.3).

In [Thomas, Le Boudec, Mifdaoui 2019], we use the duality between max-plus and min-
plus constraints to provide a better bound for the burstiness increase, when the input of the
packetizer is connected to a transmission link with fixed capacity, as it is the case in our
device model (Figure 2.10). Here, we provide a stronger result in the form of a service curve,
from which the packetizer burstiness-increase bound of [Thomas, Le Boudec, Mifdaoui 2019]
can be retrieved.

Theorem 3.1 (Service curve of a packetizer with a known input rate)
A packetizer PL placed on a line of fixed transmission rate c provides for every flow the
service curve δ lmax

c
, where lmax is the maximum packet length of the flow.

The proof is in Appendix B.1.1. If γr,b is a leaky-bucket arrival curve for a flow f at
the input of a packetizer, then applying Theorem 2.2 with the above service curve gives that
γr,b+lmax

r
c

is an arrival curve for the flow at the packetizer output, which we use in FP-TFA
for computing the effect of the packetizer on the aggregate arrival curves. The tool continues
to use Theorem 2.5 for the effect of the packetizer on the latency bounds.

3.3.2 Delay Bound within a Vertex

Arrival Curve for the Aggregate at the Input of the CBQS

We now rely on the TFA model of the FIFO policy (Section 2.4.2) and, to compute delay
bounds within a given vertex, we combine the new result on the packetizer with the improve-
ment proposed by [Mohammadpour, Stai, Le Boudec 2019].

Consider a vertex n of the network’s GIF G and assume that for each parent p of n in G
and for each flow f such that f ∋ (p, n), we know a leaky-bucket arrival curve αf,p′ = γrf ,bf,p′

for f at the observation point p′.
Example: We consider n = S1East as in Figure 3.10, and we assume that we know
a leaky-bucket arrival curve αh,E1′

East
= γrh,bh,E1′

East

[resp., αg,S4′
North

= γrg ,bg,S4′
North

] for h
[resp., g] at observation point E1′East [resp., S4′North].

The CBQS within vertex n provides the service curve βn to the aggregate {f |f ∋ n}
(Section 2.6.4). To apply Proposition 2.3, we compute an arrival curve for the aggregate at
the input of the CBQS, i.e., at observation point n†. We can decompose the set of flows
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Figure 3.10: Detailed model for the computation of the delay bound through vertex S1East of the toy
example. It results from a direct application of the model in Section 2.6 to the toy example of this chapter.

belonging to such aggregate as follows:

{f |f ∋ n} = {f |source(f) = n } ∪

 ⋃
p, parent of n in G

{f |f ∋ (p, n)}

 (3.1)

Example: There exists no flow whose source is S1East, thus

{f |f ∋ S1East} = {f |f ∋ (E1East, S1East)} ∪ {f |f ∋ (S4North, S1East)}
= {h} ∪ {g}

An arrival curve for the aggregate at n† is hence

αn† =
∑

f |source(f)=n
αf,ϕ +

 ∑
p, parent of n in G

α(p,n),n†

 (3.2)

where α(p,n),n† represents an arrival curve for the sub-aggregate {f |f ∋ (p, n)} at observation
point n†. The left-hand side of (3.2) is directly obtained from the source specifications. If we
focus on only the right-hand side, our goal is to obtain, for each parent p, an arrival curve
α(p,n),n† . To do so, for a parent p, we start at observation point p′, at which we know an
arrival curve α(p,n),p′ for the sub-aggregate {f |f ∋ (p, n)}, and we model the evolution of the
arrival curve for the sub-aggregate, from p′ to n†.

Example: We start with p = S4North. We seek to obtain an arrival curve
α(S4North,S1East),S1†

East
for the aggregate {f |f ∋ (S4North, S1East)} = {h} at observation point

S1
†
East, starting with an arrival curve α(S4North,S1East),S4′

North
of the same aggregate at obser-

vation point S4′North (Figure 3.10).

At p′, we know by assumption an arrival curve for each flow of the class of interest, hence
we have a first arrival curve for the sub-aggregate:

α(p,n),p′ =
∑

f |f∋(p,n)
αf,p′ (3.3)

When transmitted on the transmission link within p, this sub-aggregate is submitted to
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the effect of the greedy shaper Cγcp,0 representing the transmission link of capacity cp. The
network is underloaded, thus for any flow f ∋ (p, n), γcp,0 ≥ αf,p′ . Furthermore, γcp,0 is a
sub-additive curve. By application of Theorem 2.4, the greedy shaper does not increase the
end-to-end latency bounds and keeps the input arrival-curve constraints. As a result, the
sub-aggregate exits the transmission link with the arrival curve

α(p,n),p′ = γcp ⊗

 ∑
f |f∋(p,n)

αf,p′

 (3.4)

where γcp = γcp,0 is a leaky-bucket curve with a rate cp, the capacity of the link, and a
burst 0.

Example: In the toy example, we obtain α(S4North,S1East),S4′
North

= γcS4North ⊗ αh,S4North′ .

The next step is to obtain an arrival curve at p∗. We use our novel result on the service
curve of the packetizer (Theorem 3.1) in order to obtain an arrival curve at the output of the
packetizer, P ∗L.

α(p,n),P ∗
L

= γcp,lmax ⊗

lmax

∑
f |f∋(p,n) rf

cp
+

∑
f |f∋(p,n)

αf,p′

 (3.5)

Example: We obtain

α(S4North,S1East),P ∗
L

= γcS4North ,lmax ⊗ γrg ,bg,S4′
North

+ rg
cS4North

lmax
(3.6)

The resulting arrival curve is a piece-wise linear curve shown in Figure 3.11a.

If the input port has additional technological latencies or if the switching fabric has a
latency (as in Figure 2.10), then their corresponding latency bounds worsen the above arrival
curve. For illustration purposes, we assume here that no such latencies exist, thus α(p,n),p∗ =
α(p,n),P ∗

L
, i.e., the output of vertex p is the output of the packetizer PL. Additionally, consider

for now that no regulator has been installed at n. Then α(p,n),n† = α(p,n),nin = α(p,n),p∗ =
α(p,n),P ∗

L
.

Example: If no regulator is installed, either for the sub-aggregate coming from S4North,
or for the sub-aggregate coming from E1East, then

α(S4North,S1East),S1†
East

= α(S4North,S1East),S4∗
North

= γcS4North ,lmax ⊗ γrg ,bg,S4′
North

+ rg
cS4North

lmax

And this arrival curve is the same as in Figure 3.11a.

In conclusion, for each parent p of n in G, we obtain α(p,n),n† , an arrival curve for the
sub-aggregate {f |f ∋ (p, n)} at the observation point n†. Applying (3.2), we obtain αn† , an
arrival curve for the entire aggregate {f |f ∋ n}.

Example:

α
S1

†
East

=
(
γcS4North ,lmax ⊗ γrg ,bg,S4′

North
+ rg

cS4North
lmax

)
+
(
γcE1East ,lmax ⊗ γrf ,bf,E1′

East
+

rf
cE1East

lmax

)
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Figure 3.11: Contribution of the parent S4North in the aggregate arrival curve at the input of the CBQS
within S1East, i.e., α(S4North,S1East),S1†

East
. (a) When no regulator is used, the curve is obtained from (3.5). (b)

When a regulator is placed between S4North and S1East, the curve is obtained by summing all the shaping
curves of all the regulated flows.

Delay Bound within the CBQS

Finally, we compute the delay bound Dn by using the arrival curve αn† for the aggregate of
the class-of-interest at n†, βn, the service curve of the CBQS within n for the class-of-interest,
and Proposition 2.3 that also states that Df,n = Dn is also a delay bound through the CBQS
for each flow f that belongs to the class of interest.

Then, we apply the delay-bound improvement proposed by [Mohammadpour, Stai, Le
Boudec 2019]. We note that Daigmorte obtains a different yet similar result; he focuses
on strict service curves [Daigmorte 2019, Chap. 5]. If βn is a rate-latency service curve
βn = βRn,Tn with a rate Rn and a latency Tn, then

D∗n,f = Dn,f − lmin,f

( 1
Rn
− 1
cn

)
is also a delay bound for f through the CBQS, where lmin,f is the minimal packet size
of the flow [Mohammadpour, Stai, Le Boudec 2019]. Last, by property of the packetizer
(Theorem 2.5), D∗n,f is also a delay bound for f through the combined system made of the
CBQS and the packetizer.

Computing the Individual Arrival-Curves

For each flow f of the class-of-interest crossing n, we compute the arrival curves for this
individual flow at the different observation points w ∈ {nin, n†, n′, n∗} by considering each
time the system Sp′,w made of all network elements between the observation point p′ and the
observation point w, where p is the parent of n from which f arrives (f ∋ (p, n)). We obtain
Dp′→w
f , a delay upper bound for f between p′ and w by summing all maximal technological

latencies applicable located between p′ and w, plus D∗f,n if w ∈ {n′, n∗}. We do the same
with all minimum technological latencies to obtain dp

′→w
f , a lower bound for the delay of f

through Sp′,w.
Depending on w, Sp′,w can contain network elements such as an input port, a transmission

link, an output port and an (input, output) pair of a switching fabric. As discussed in Sec-
tion 2.6, each of them is causal, lossless and FIFO, hence Sp′,w is also a causal, lossless, FIFO
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system for f with a delay for f bounded within [dp
′→w
f , Dp′→w

f ]. Thus, αf,p′ ⊘ δ
Dp′→w

f
−dp′→w

f

is an arrival curve for f at w. This is a leaky-bucket arrival curve from which we obtain the
burst bound bw. Repeating this for all observation points w ∈ {nin, n†, n′, n∗}, we obtain for
each f , the burst bounds bf,nin , bf,n† , bf,n′ , bf,n∗ .

By doing this for all flows and by focusing on the observation point n′, the computations
performed at vertex n define an application Fn:

Fn : (bf,q′)∀q parent of n;∀f |f∋(q,n), (bf,ϕ)∀f |source(f)=n 7→ (bf,n′)∀f |f∋n (3.7)

which, by using a vector notation, can be written

Fn : bn 7→ b′
n (3.8)

with bn = (bf,q′)∀q parent of n;∀f |f∋(q,n), (bf,ϕ)∀f |source(f)=n and b′
n = (bf,n′)∀f |f∋n. bn and b′

n

have the same dimension by (3.1).

Computing End-to-End Delay Bounds in Feed-Forward Networks

When the network is feed-forward, the GIF G is acyclic and we can define a topological order
(n1, n2, . . . , nz) of the vertices. Then, by definition of the order, n1 has no parents in G, thus
the values of the vector bn1 = (bf,ϕ)∀f |source(f)=n1 are known by assumption. We can chain
the Fn applications until all vertices have been computed.

During this process, we store the delay bounds dp
′→n′

f and Dp′→n′

f for each vertex n, each
of parent p and each flow f . When all the vertices have been computed, the end-to-end delay
upper- and lower-bounds for a flow f are obtained by summing the per-vertex delay bounds
along the path of the flow.

3.3.3 Extension of the FP-TFA Approach to Networks with Cyclic Depen-
dencies

When the network contains cyclic dependencies, it is impossible to find a starting vertex
among the vertices that are part of a cycle.

Example: In the toy example, none of S1East, S0East, S2South, S3West and S4North can be
selected as a starting point because they belong to the same cycle.

In order to compute end-to-end delay bounds in networks with cyclic dependencies, the
idea is to virtually perform cuts in the topology so as to make it acyclic [Bouillard, Boyer,
Le Corronc 2018]. A cut here is a virtual disconnection of a transmission link that disconnects
a parent from one of its children. The cuts can be selected freely, as long as the remaining
network is feed-forward. In the FP-TFA tool, we use LCAN to identify them: The fewer cuts
are selected, the less memory is used to keep track of their related variables.

Example: We select the cut (S4North, S1East). This cut is sufficient to remove all cyclic
dependencies. In the resulting virtual network, everything occurs for vertex S1East as
if the transmission link in its parent S4North has been disconnected. In particular, it
splits the flow g into two virtual subflows: g′ upstream of the cut and g′′ after the cut
(Figure 3.12).
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Figure 3.12: Virtual cut (S4North, S1East) that disconnects the transmission link within S4North on the toy
example.
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Figure 3.13: Overview of the FP-TFA algorithm when it searches for a fixed point of the feed-forward
algorithm on the virtual feed-forward network.

Given the knowledge of the bursts after the cuts (vector b), the iterative application of
the Fn functions provides an algorithm, FF , that computes the delay bounds for the bursts
b′ just before the cuts: FF : b 7→ b′.

Example: The knowledge of a bound bg′′,S4′′
North

for the burst of the virtual flow g′′ just
after the cut enables the computation of the application

FS1East : (bg′′,S4′′
North

, bh,E1′
East

) 7→ (bg′′,S1′
East
, bh,S1′

East
)

This enables then the computation of FS0East(bg′′,S1′
East
, bh,S1′

East
) and so on. The iterative

computation of S1East, S0East, . . . , S4North hence provides an algorithm FF that maps the
vector b = (bg′′,S4′′

North
) of the burst bound after the cut to the vector b′ = (bg′,S4′

North
) of

the burst before the cut.
If the real network, with no cut, is stable, then for every cut tuple (p, n) and every split

flow f there exists a lowest possible bound on the burstiness of f at p′. Thus, the vector b̃ of
these lowest burst bounds must verify FF(b̃) ≥ b̃. By the monotonicity of FF , it follows that
b is upper-bounded by the (possibly infinite) largest fixed point of FF . In Theorem 2, we
prove a stronger result: For any non-negative and finite fixed-point b of FF (i.e., FF(b) = b)
and if the real network is initially empty, then the real network is stable and b ≤ b, i.e., the
fixed-point b is a valid bound for the burst of the flows at the cuts.

To find such a fixed point, FP-TFA iterates the feed-forward algorithm FF , starting with
the empty vector 0 (Figure 3.13). After each call to FF , we check if the fixed point is reached
for the current iteration (FF(b) == b). For the fixed point to be reached, strict equality
must be achieved for each term of the vectors, as burst values are in integers (in bits). If the
fixed point is not used, the output bursts FF(b) are used as input b to a new call to FF .
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Figure 3.14: Model for S1East when a regulator is placed for the parent S4North

Theorem 3.2 (Fix-point result)
If the network with cyclic dependencies is empty at t = 0, then any non-negative fixed
point, i.e., a vector b such that FF(b) = b, is a valid burst bound for the network with
cyclic dependencies at the cuts. If FF has a finite non-negative fixed point, then the
network is stable.
The proof is in Appendix B.1.2. In a recent work [Plassart, Le Boudec 2021], Plassart

and Le Boudec propose several new approaches that do not require minimizing the number
of cuts. In particular, Alternating TFA [Plassart, Le Boudec 2021, Algorithm 4] can be
implemented with multi-threading. Plassart and Le Boudec also prove the equivalence of
all approaches regarding their end-results: each approach, including the one published in
[Thomas, Le Boudec, Mifdaoui 2019], computes the same delay bounds. A recent work from
Anne Bouillard also proves that the fixed point is unique [Bouillard 2022].

3.3.4 Extension of the FP-TFA Approach to Networks With Regulators

If a vertex n has traffic regulators installed as optional functions, then we can distinguish its
parents between the regulated parents (parent p for which a regulator PFRn(p) or IRn(p) is
installed) and the unregulated parents for which no regulator is installed. We can then rewrite
(3.1) into

αn† =
∑

f |source(f)=n
αf,ϕ +

 ∑
p,unregulated

parent of n in G

α(p,n),n†

+

 ∑
p,regulated

parent of n in G

α(p,n),n†

 (3.9)

where the middle term is computed as previously and the last sum is simply the sum of
the configured shaping curves for all the flows processed by the regulator PFRn(p) or IRn(p).

Example: Assume that we place a PFR that regulates the flows coming from S4North as
in Figure 3.14. Then α(S4North,S1East),S1†

East
simply equals the configuration of the PFR for

g, i.e.,
α(S4North,S1East),S1†

East
= γrg ,bg,ϕ

This curve is shown in Figure 3.11b.
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Figure 3.15: Parametric topology used for the evaluation (a): the basic cell, (b): a grid with two cells.

If the regulators have been placed using the LCAN tool, then the network is feed-forward.

3.4 Evaluation of the Partial-Deployment Approach

We now evaluate the performance of our partial deployment approaches (of either PFRs or
IRs) in a synthetic use-case with respect to the three other approaches: no deployment of any
regulator, full deployment of PFRs and full deployment of IRs. In the following, LCAN is
configured with a fixed cost of 1 arbitrary unit for every regulator, irrespective of the number
of flows that the regulator processes.

3.4.1 Network Description

We consider a basic network cell made of six switches with two flows, f and g (Figure 3.15a).
By operating axial symmetries at the borders (axis (B,D) and axis (E,D)), we generate a
grid made L lines and C columns of such basic cells. For example, Figure 3.15b corresponds
to the grid L = 1, C = 2.

All the flows in the grid belong to the same class of interest and are constrained at their
respective sources by the same leaky-bucket γr,bϕ

. All flows have the same constant packet
size l = bϕ. The network is homogeneous and all ports provide the same service βR,L, with R
the rate and L the latency of the service. Furthermore, all transmission links have the same
transmission capacity c.

We are interested in obtaining the worst end-to-end delay bound among all the flows of
the network. Note that the path of any flow is always five-hops long, irrespective of the size
of the network.

3.4.2 Parameters of Interest

In all the above parameters, we identify three values of interest:

• the network size: We want to observe how the LCAN approach scales to big topologies,
and how many regulators it saves, with respect to the full deployment approach.



3.4. Evaluation of the Partial-Deployment Approach 59

0 25 50 75 100 125 150 175
Number of switches

0

100

200

300

400

Re
gu

la
to

rc
ou

nt

0.0x+0.0

0.4x-4.1

0.2x-1.3

2.2x-18.1No deployment
Partial IRs deployment (using LCAN)
Partial PFRs deployment (using LCAN)
Total deployment (both IRs or PFRs)

Figure 3.16: Number of regulators versus the grid network size for the different approaches.

• the network load u, equal to u = 4r/R for L ≥ 2: We expect that the higher the
network load is, the higher the delay bounds are. We seek to determine whether there
exists a critical load ucrit beyond which FP-TFA cannot compute any delay bound in
the no-deployment approach.

• the shaping factor R/c, with R/c ≤ 1: We expect that the higher the shaping factor,
the higher the line-shaping effect. We are interested in how the shaping factor affects
the delay bounds and possibly the critical load ucrit for the no-deployment approach.

3.4.3 Effect of the Network Size on the Performance of LCAN

We first compute the number of required regulators in the different approaches for all grids
(L, C) ∈ [1, 9] × [1, 9]. Figure 3.16 shows the number of regulators as a function of the total
number of switches in the grid. Each cross corresponds to a given (L, C) grid, and we highlight
the best linear fit for each approach.

We note that the full-deployment approach requires more than two regulators per switch,
whereas the partial-deployment approaches both require fewer than one regulator every two
switches of the topology. Overall, the IR partial deployment requires 81% fewer regulators
than the full-deployment approach and the gain increases up to 89% with PFRs.

This values are very encouraging because the grid used for the evaluation is a highly
connected network that generates many cyclic dependencies. We do not expect the industrial
networks to exhibit such complex patterns, and we can expect that the gain will be even
higher for industrial networks.

3.4.4 Effect of the Network Load on the Latency Bounds

Figure 3.17a presents the delay bounds obtained with FP-TFA under the different approaches,
as a function of the network load on the (C = 8,L = 8) grid configuration (it corresponds to
153 switches). The delay bounds are obtained with a line shaping factor R/c = 1.

At low network load, the full deployment (of either PFRs or IRs), as well as the partial
deployment of PFRs, perform worse than the no-deployment approach or the partial deploy-
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Figure 3.17: End-to-end latency bound of the flows as a function of the network load (lower is better).
Size of the grid L = C = 8, initial burstiness b0 = 12E3bits, service rate R = 1E9bits/s, service latency
T = 1.2E-5s, packet length l = 12E3bits. (a) Shaping factor R/c = 1. (b) Shaping factor R/c = 0.5.

ment of IRs. Up to a threshold of u ≈ 15%, the best delay bounds are obtained without
any regulator. On one hand, the traffic regulators have a negative effect on latency bounds,
because they block the line-shaping effect (compare Figures 3.11a and 3.11b). On the other
hand, the burstiness increase is limited at low load, hence the beneficial effect of the traffic
regulators (blocking the burstiness increase) is limited and does not compensate for their
above negative effects. This explains the full deployment approach that provides the larger
delay bounds.

As the network load increases, however, the interest of regulators becomes noticeable. At
high load, the best approaches are the full-deployment schemes, either with PFRs or with IR
(both full-deployment approaches provide the same delay bounds). For the no-deployment
approach, the values for the loads u ≥ 0.85 are out of the scale in Figure 3.17a. However,
FP-TFA was able to obtain latency bounds for all computation points, including 0.99, thus
ucrit ≥ 0.99 for this network.

At high load, the partial-deployment approach represents a good compromise, where it
improves the delay bounds in comparison to the no-deployment approach but requires fewer
regulators than the full-deployment approach that provides better bounds at high load.

3.4.5 Effect of the Line Shaping

In Figure 3.17b we diminishes the shaping factor R/c down to 0.5. This diminishes the
line-shaping effect, i.e., the beneficial effect on latency of the greedy-shaper modeling the
transmission links (Section 2.6).

The value of the load threshold at which regulator deployments perform the best is reduced
to u ≈ 5%. This is due to the combination of two effects: (1) All partial- and no-deployment
approaches have a performance worse than with R/c = 1. (2) The delay bound of the full-
deployment approach is decreased because it is only affected by the delay improvement from
[Mohammadpour, Stai, Le Boudec 2019]. This improvement has a more positive effect when
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the transmission rate c is higher.
At R/c = 0.5, FP-TFA remains able to compute delay bounds for the entire spectrum

of network loads (ucrit ≥ 0.99) in the no-deployment approach. However, complementary
tests show that, without regulators, the critical load of FP-TFA ucrit diminishes below 0.98
when the shaping factor diminishes below 0.33. This highlights that the line-shaping effect is
decisive for keeping a high critical load ucrit despite the cyclic dependencies.

The approaches with partial deployment ensure feed-forward networks, hence their ucrit
equals 1: the stability is guaranteed for any load u < 1 and any shaping factor R/c. However,
the partial deployment of IRs shows very large bounds, even though LCAN places more IRs
than PFRs. With fewer PFRs, we achieve a better performance. At a high utilization or for a
high transmission rate, IRs need to be placed everywhere to provide noticeable improvements.

Conclusion

In this chapter we have discussed the issue of cyclic dependencies; they are a possible conse-
quence of using multi-path topologies in time-sensitive networks.

In Section 3.1, we have discussed how the cyclic dependencies are managed in the litera-
ture. We have concluded that the cyclic dependencies were either: avoided, by using routing
constraints; solved, by using specific approaches based on network calculus; or broken by
deploying traffic regulators at every node in the network. We have observed that routing con-
straints are incompatible with redundancy requirements thus have decided not to consider
them.

In Section 3.2, we have proposed a third approach, the partial deployment approach, that
breaks all cyclic dependencies using as few regulators as possible. We developed the LCAN
algorithm for breaking all cyclic dependencies at minimal cost by using either PFRs or IRs.
Then in Section 3.3, we have described the FP-TFA algorithm, a fixed-point formulation of
the TFA approach that can compute latency bounds in networks with cyclic dependencies
and/or regulators. FP-TFA includes several improvements with respect to the classic TFA
approach. In particular, it takes into account the line-shaping effect.

Finally in Section 3.4 we have evaluated the partial-deployment approach with LCAN with
respect to the full-deployment and no-deployment approaches in a parametric topology. The
latency bounds are computed by FP-TFA, even if the network contains cyclic dependencies.
We have observed that the partial-deployment approach provides an interesting compromise
between performance, stability, and the number of hardware elements. The partial deploy-
ment of IRs is an interesting option only at low utilization and transmission rates. When one
of these values increases, this approach shows performance worse than partial deployment of
PFRs, and IRs need to be placed everywhere to provide noticeable improvements.

The LCAN algorithm breaks all cyclic dependencies by using as few regulators as possible.
However, it does not anticipate on the consequences of its choice on the latency bounds. A
heuristic that anticipates on these aspects could be used for example to segregate between
two solutions that have the same hardware cost. Between October 2019 and February 2020,
Nicolò Dal Fabbro performed a semester project within the LCA2 laboratory at EPFL to
investigate these aspects with the supervision of Prof. Le Boudec and advice from this thesis’
author [Dal Fabbro 2020].
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Multi-path topologies are even more likely to generate cyclic dependencies when redundant
flows are mapped on these topologies. In the next chapter, we analyze the effect of redundancy
mechanisms on latency bounds.



Chapter 4

Packet Replication and Elimination

“And you keep them running and in order ?”
“Right!”
“And if they break down?”
The tech-man shook his head indignantly, “They don’t break down. They never
break down. They were built for eternity.”

Isaac Asimov, The Foundation.
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S4 S3

S1E1 S2 E2

E3E4

S5 S6 E6E5

f

Figure 4.1: Physical topology used for the toy example throughout the chapter. It is obtained from the
toy example of Chapter 3 by removing the switch S0 and adding the end systems E5, E6 and the switches
S5, S6. In this chapter, we are interested in the flow f from E5 to E6.

In Chapter 3, we have discussed that the cyclic dependencies are possible consequences
of using multi-path topologies and can have a significant effect on latency guarantees. In
this chapter, we discuss how the redundancy mechanisms affect the latency guarantees of
time-sensitive networks.

Indeed, time-sensitive networks provide a set of redundancy mechanisms that are of par-
ticular interest for safety-critical applications that require high levels of reliability. However,
the use of the scheduling and redundancy mechanisms could concurrently affect the timing
behavior of time-sensitive networks. Therefore, their efficiency and safety can be validated
only through an appropriate worst-case timing analysis of both mechanisms.

In this chapter, we first discuss the related work on the analysis of redundancy mechanisms
in Section 4.1. We then provide a framework for modeling redundancy mechanisms in the
network-calculus theory through a model of the redundancy mechanisms in Section 4.2 and
through a toolbox of network-calculus results in Section 4.3. In Section 4.4, we analyze the
interactions between the traffic regulators (PFRs and IRs) and the redundancy mechanisms.
In Section 4.5, we evaluate our framework on a parametric topology. Part of the material
presented in this chapter was published in [Thomas, Mifdaoui, Le Boudec 2022].

4.1 Related Work on Packet Replication And Elimination

We first introduce the packet replication and elimination functions (PREFs) (redundancy
mechanisms) as standardized in IEEE TSN and IETF DetNet. Then we discuss the related
work on their analysis and highlight the main challenges posed by PREFs.

4.1.1 The Packet Replication and Elimination Functions in TSN and DetNet

The TSN frame replication and elimination for redundancy (FRER) for layer 2 and the
DetNet packet replication, elimination and ordering functions (PREOFs) for layer 3 are
seamless redundancy mechanisms that allow for redundant transmissions and for the elimi-
nation of duplicate packets.
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Source
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Before the
replication Redundant part

After the duplicate
elimination

Figure 4.2: Path of a replicated flow f . It can be separated into three sections: before, in and after the
redundant part.

Table 4.1: Main Acronyms Used in the Chapter and Comparison with the Terms of the Working Groups.

In this thesis Term used in DetNet [RFC 8655] Term used in TSN [21]

PREFs Packet replication and elim-
ination functions

Packet replication and elim-
ination functions

FRER: Frame replication
and elimination for redun-
dancy [IEEE 802.1CB]

PRF Packet replication function Packet replication function Stream splitting function
[IEEE 802.1CB, §7.7]

PEF Packet elimination function Packet elimination function
Sequence recovery function
[IEEE 802.1CB, §7.4.2]

POF Packet ordering function Packet ordering function Does not exist in TSN (June
2022)

REG Traffic regulator Shapers [RFC 2475, §2.3.3] ATS: Asynchronous traffic
shaping [IEEE 802.1Qcr]

Example: Consider the toy example from the previous chapter to which we apply a few
modifications. We first remove the bridge S0 and we add two bridges S5, S6 and two
end-stations E5 and E6. This gives the physical topology shown in Figure 4.1.

Consider a flow f of safety-critical data from E5 to E6 that we first route through the
shortest path (Figure 4.1). But further assume that the flow’s end-to-end packet loss
requirement is so stringent that the backbone links (wavy lines in Figure 4.1) are not
reliable enough to meet this requirement: the backbone links may lose some packets, too
often with respect to the flow’s end-to-end loss-ratio requirement.

Redundancy mechanisms such as TSN FRER and DetNet PREOFs can be used to decrease
the end-to-end packet loss ratio by distributing “the contents of [. . . ] flows over multiple paths
in time and/or space, so that the loss of some of the paths does need not cause the loss of any
packets” [RFC 8655]. To do so, the DetNet packet-replication function (PRF) replicates each
incoming packet into several outgoing packets that can take different paths (Figure 4.2). The
paths then merge and multiple copies of the packet (the replicates) reach a packet-elimination
function (PEF) that forwards only the first replicate and eliminates the subsequent ones (the
duplicates). The PEF generally relies on a sequence number in the packet header to identify
the replicates [RFC 8655]. In Table 4.1, the different acronyms used in this thesis are compared
to the names of the mechanisms in the TSN and the DetNet working groups.

[RFC 8655, §3.1] recalls that the use of packet replication and elimination functions
(PREFs) is “constrained by the need to meet the users’ latency requirements”. Therefore,
understanding how PREFs affect the worst-case latency guarantees is fundamental to: (i)
determine the applicability of PREFs in industrial networks; (ii) perform trade-offs between
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Figure 4.3: An excerpt of the flow graph G(f) for the toy example used throughout the chapter. The
flow f is replicated and sent through two paths, (S4North, S1East, S2South) and (S4East), with different delay
bounds. The paths then merge into F , that removes the duplicates.

latency and loss-ratio requirements; and (iii) design networks with stringent requirements on
both aspects.

4.1.2 Configuration Options and their Analysis in the Literature

PREFs can be used with various configuration options. For example [IEEE 802.1CB, Annex B]
states that TSN FRER is inter-operable with High-availability Seamless Redundancy (HSR)
and Parallel Redundancy Protocol (PRP), two redundancy mechanisms standardized in [IEC
62439-3] and used in automotive and industrial applications.

Table 4.2 summarizes the various configuration options when using PREFs for the flow in
Figure 4.1, as well as their analysis in the literature. The first two rows of Table 4.2 are the
only configurations on which a deterministic analysis of the latency bounds was conducted
using network calculus. These analyses are limited to the assumption of using redundancy
mechanisms at the end systems. The last row of Table 4.2 has only been studied using
simulations, that do not provide latency guarantees.

In this chapter, our primary goal is to bridge these gaps and to provide a method of worst-
case timing analysis for time-sensitive networks that implement redundancy mechanisms in
the general use-case, i.e., at end systems and/or intermediate nodes.

4.1.3 Main Challenges when Computing Delay Bounds in the General Case

Two main challenges arise when analyzing the general case. First, the traffic exiting the PEF
can exhibit both an increased burstiness and a mis-ordering of the packets. This can lead to
increased delay bounds in the nodes placed after the PEF. Second, the coexistence of the
packet mis-ordering with the burstiness increase could negatively affect the behavior of the
devices that have been designed to tackle each issue individually.

Increased Burstiness and Mis-Ordering
Example: Consider the PREFs configuration of the last row of Table 4.2. The graph of
the flow f is shown in Figure 4.3. Assume that the flow has the leaky-bucket arrival
curve αf,S5∗

North
= γr0,b0 at the output of S5North, with a rate r0 of one data unit per

time unit (d.u./t.u.) a burst b0 = 1d.u. Further assume that the flow suffers along each
sub-path a delay bounded by [6, 7] t.u. (resp., [0, 1] t.u.), as shown in Figure 4.3.

An acceptable trajectory is given in Figure 4.4. Here, the path through S4East drops
all data units from 1 to 6: they are only received through the longer path with a latency
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Table 4.2: Overview of the Configuration Options supported by TSN FRER and DetNet PREOFs and their
Analysis in the Literature.

Configuration Related work

S4
S3

S1
S2

S5
S6

Network B

S4
S3

S1
S2

S5
S6

Network A

E1

E2

E3

E4

E6

E5

Use of two parallel, identical networks.
Each end-systems is connected to both.

Examples:
• [AFDX] in Airbus A380, A350, A400M.
• Parallel Redundancy Protocol (PRP)
[IEC 62439-3].

Each sub-network is independant and can be analyzed with
network calculus. The overall worst-case latency is the
maximum of the worst-case latencies on each sub-network.

[Li, et al. 2017] analyze the possibility that packets
could be delivered to the destination out-of-order, which
AFDX end-systems do not tolerate. They propose means
to mitigate the issue.

S4 S3

S1E1 S2 E2

E3E4

S5 S6 E6E5

Replication Elimination
fa

fb

Sub-flows with replication at the source,
elimination at the destination.

Examples:
• High-availability Seamless Redundancy
(HSR) [IEC 62439-3] for ring topologies.

With respect to Figure 4.1, a new flow fb is created and
increases the delay and backlog bounds in the crossed
nodes. It is even susceptible to generate cyclic dependencies
(see Section 3.1.3). Yet both sub-flows can be considered
to be two independent flows and the techniques developed
in Chapter 3 can be used to manage the induced cyclic
dependencies.

In [Heise, et al. 2014], a modified AFDX network
that follows the HSR principles is analyzed. The authors
highlight the issue of cyclic dependencies. They apply an
ad-hoc version of the fixed-point (Theorem 3.2) to obtain
delay bounds for each redundant flow and simply take
the maximum of the two obtained latency bounds for the
overall latency.

S4 S3

S1E1 S2 E2

E3E4

S5 S6 E6E5

Replication

Elimination

fa

fb

Sub-flows with replication and
elimination at intermediate nodes.

In [Heise, Geyer, Obermaisser 2016], a simulation frame-
work based on OMNeT++ has been developed for TSN
mechanisms, including TSN frame replication and elim-
ination for redundancy (FRER) [Heise 2018, §4.3.2]. In
[Pahlevan, Obermaisser 2018], simulation models for the
Riverbed simulator are proposed.

In [Hofmann, Nikolić, Ernst 2020] and [IEEE 802.1CB,
§C.9], several concerns about using TSN FRER in this
configuration have been discussed, including the issue of
obtaining latency bounds when elimination is performed at
intermediate node.

To the best of our knowledge, our work [Thomas, Mifdaoui,
Le Boudec 2022] is the first to provide latency bounds in
this configuration.
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Figure 4.4: An example trajectory on the toy example of Figure 4.3 that causes the output traffic after
the PEF to exhibit a double rate for some period of time.

of 7 t.u. After, the link through S4East becomes available and the data units 7 to 14 are
received through both paths, with a latency of 1 t.u. [resp., 7 t.u.]. The PEF receives
the sum of S2∗South and S4∗East. It drops the duplicates and forwards the packets that
contain never-observed data units. Its output is shown on the line PEF∗.

We observe that the traffic after the PEF is much more bursty than before the repli-
cation function: between 8 t.u. and 13 t.u., the output of the PEF shows a doubled rate,
2r0.

The example suggests that packet replication and elimination functions (PREFs) can
significantly increase the flows’ burstiness, which could further worsen the congestion and the
worst-case delay in the downstream nodes. A first approach for bounding the traffic of the
flow after the PEF, which we denote as intuitive, consists in doing as if the PEF would never
drop a packet (i.e., even the duplicates are forwarded). This approach requires the network
engineer to dimension all the downstream nodes in order to support a sustained double rate.
It leads to loose end-to-end latency bounds, as we show in Section 4.5.

Figure 4.4 also highlights that PREFs can create a mis-ordering of the data uits: d.u. 6
exits the PEF 5 t.u. after d.u. 7. Obtaining an upper bound for this mis-ordering is important
for comparing it to the application’s requirements. We provide such bound in Theorem 4.2.

Interactions with Packet Ordering Functions and Traffic Regulators

If the receiving application does not tolerate any mis-ordering, then the DetNet packet-
ordering function (POF) [RFC 8655, §3.2.2.2] can be used after the PEF to correct the mis-
ordering introduced by PREFs. Similarly, if the end-to-end latency of a flow does not meet
its requirements due to a high worst-case delay after the PEF (third section of Figure 4.2),
then the traffic regulators introduced in Section 3.1.5 can be used for removing the burstiness
increase caused by PREFs thus reducing the worst-case delay in downstream nodes.

However, as mentionend in Section 3.1.5, many properties of the regulators rely on the as-
sumption that the upstream system is FIFO. As observed on the toy example, this assumption
does not hold with PREFs.

Example: Assume that the traffic regulator in Figure 4.5 shapes the traffic back to the
profile it had at the input S5∗North. In terms of burstiness, this makes the middle section
in Figure 4.2 transparent to the third section. The regulator processes the traffic from
the PEF∗ line of Figure 4.4 and forces the packets to be as spaced as in the S5∗North line
by delaying and storing the packets if required. Clearly, the upstream system between
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Figure 4.5: The toy example of Figure 4.3, extended with a POF and a REG to deal with the mis-ordering
and burstiness increase issues due to PEF.

E5 S5North

S4North S1East S2South

S4East

S3South S6East E6

Figure 4.6: The entire flow-graph G(f) of the flow f in the toy example, corresponding to the last row of
Table 4.2. The destination E6 (dashed rectangle) is shown for convenience but is not present in the actual
graph.

S5∗North and PEF∗ in Figure 4.5 is not FIFO, because the packets exit the PEF out of order
(Figure 4.4). Thus the properties of the regulators that depend on this assumption might
not hold and the cohabitation of the PEF and the regulator (REG) could negatively affect
the latency bounds. A packet-ordering function (POF) (dashed box in Figure 4.5) can be
used after the PEF and before the regulator to force the upstream system to be FIFO. If
such POF is placed, then we would expect to retrieve all the properties of the regulators.

In Section 4.4, we analyze the interactions between PREFs, POFs and regulators.

4.2 Modeling the Redundancy Mechanisms

Before detailing our network-calculus toolbox of results for solving the challenges described
in Section 4.1.3, we discuss herein how the network-calculus model of Chapter 2, Section 2.6
is adapted to include packet replication and elimination functions (PREFs).

4.2.1 Changes to the Flow Model

Flow Graphs

The flow graph G(f) of a flow f continues to be defined as per Definition 2.9, but G(f) is no
longer assumed to be a multicast tree: its sub-paths can also merge. G(f) is simply assumed
to be a directed acyclic sub-graph of the GIF with a unique root, the source of f .

Example: The graph of flow f is shown in Figure 4.6. This is not a tree but it remains
acyclic and contains a unique root, E5, the source of f .
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Figure 4.7: Illustration of different positions for the PEF in the toy example. S3South might receive the data
unit m twice (in the dashed green and the dotted blue packets). Here we assume that the green packet is
received prior to the blue packet. (a) S3South contains a PEF (thick red vertex), it drops the dotted blue
packet that contains the already-seen data unit m (the blue packet is a duplicate for S3South). (b) S3South
does not contain any PEF for f , it forwards both replicates. S6East contains a PEF (thick red vertex), it
receives the data unit twice and drops the dotted blue packet.

Data Unit versus Packet and Replicate versus Duplicate

We continue to use the distinction between data units (the abstract content) and packets (the
physical container) as described in Section 2.6.3: at any given point in time, a data unit can
be located at several locations in the network, transported by different packets. When the
path diverges, the switching fabric plays the role of the packet-replication function (PRF)
and we call replicates the set of packets that transport the same data unit.

When the sub-paths merge, an observer located after the merge point could observe the
same data unit several times, in different packets. We say that a packet is a duplicate for an
observation point [resp., for a function] if another replicate of the same data unit was already
observed at this location [resp., by this function] in the past.

Additionally, if a packet is lost at some point, it doesn’t mean that the data unit is lost
for all downstream nodes: downstream observers could observe the data unit coming from
another path. The notion of lost data unit is here again relative to an observer:

Definition 4.1 (Lost data unit for an observer) For a data unit m that belongs to a flow
f and for an observation point w or a function FUN that belongs to one of the vertices of
G(f), we say that the data unit m is lost for w [resp., for FUN] if w [resp., FUN] never
observes m in any packet.

Example: In Figure 4.6, if vertex S1East fails, then all the data units contained in the lost
packets are lost for vertex S2South, but not necessarily for vertex S6East.

Position of PRFs and PEFs in a Flow Graph

When a node n has several children in a flow graph G(f), then the switching fabric acts as a
packet-replication function (PRF). When a vertex, such as S3South in Figure 4.6, has several
parents in G(f), it can receive the same data unit several times, within different packets.
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However, it does not necessarily implement a PEF: the elimination of the duplicates can be
deferred to a latter vertex.

If a PEF is present on such a vertex (case of S3South in Fig. 4.7a), then it forwards only the
first replicate of the data unit. Any subsequent replicate (i.e., any duplicate for S3South) is
dropped. If the vertex does not contain a PEF (case of S3South in Fig. 4.7b), then it forwards
all the packets, and might consequently forward the same data unit several times.

Elimination-Pending Vertices

The route of a flow is defined by its flow graph G(f) and by the knowledge of the vertices
that implement the PEF. In the figures, such vertices are marked with a thick red outline.

The vertices that are between a merge point and the nearest downstream PEF are the
only vertices that can observe a data unit several times, we call them EP-vertices.

Definition 4.2 (EP-vertex) For a flow f , the vertices of G(f) that are downstream of a
vertex with several parents (included) and upstream of a the next PEF for f (excluded)
are called elimination-pending vertices (EP-vertices) of G(f).

Example: In Figure 4.7b, S3South is the only EP-vertex of G(f). Figure 4.7a does not
contain any elimination-pending (EP)-vertex.

Diamond Ancestor

For n a vertex of G(f), there exists a path (n0 → · · · → n) in G(f) that reaches n from n0,
the source of f . However, as G(f) is not a tree, such a path is not necessarily unique.

Example: In Figure 4.6, S3South is a descendant of E5 and two paths reach S3South from
E5. We note that S5North plays a special role with respect to S3South in the graph G(f):
it belongs to all the paths that reach S3South from the root. We say that S5North is a
diamond ancestor of S3South.

Definition 4.3 (Diamond ancestor) For two vertices a and n in a flow graph G(f), we
say that a is a diamond ancestor of n in G(f) if:
− a is not an EP-vertex of G(f), and
− all paths in G(f) from the graph root to n contain a.

Example: Assume that the elimination function is placed in S6East, as in Figure 4.7b.
Then S5North and E5 in Figure 4.3 are diamond ancestors of S6East in G(f). However,
S3South is not a diamond ancestor of S6East in G(f) because S3South is an EP vertex of
G(f).

4.2.2 Changes to the Device Model

Like traffic regulators, the PEF and the POF are optional functions located before the CBQS
(Figure A.1 of the vade mecum Appendix A). In the following, consider a vertex n of the
graph induced by flows (GIF) G.
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Figure 4.8: Functional model of the packet-ordering function POFn(F , o∗). For a data unit m, m−1 [resp.,
m+1] refers to the data unit of the aggregate F that crossed o∗ just before [resp., just after] m.

The packet-elimination function (PEF)

For a flow f crossing n, the output port in n can contain a packet-elimination function (PEF)
for flow f , noted PEFn(f). For each incoming packet of f , PEFn(f) determines if it has already
observed the data unit contained in the packet. If so, the packet is identified as a duplicate
for the PEF and is discarded. For the stream of packets that contains never-seen data units
of f , the PEFn(f) is transparent: FIFO and without any delay.

The packet-ordering function (POF)

Consider a set of flows F crossing n and a vertex o such that for each flow f ∈ F , o is a
diamond ancestor of n in G(f). The output port in n can contain a packet-ordering function
(POF) for the aggregate F with reference o∗ (the output of vertex o), noted POFn(F , o∗). We
assume that POFn(F , o∗) has the knowledge of the order in which the data units belonging to
the aggregate F crossed the observation point o∗. POFn(F , o∗) then enforces the same order
at its own output, by delaying the packets that are out of order.

However, a data unit m cannot be delayed by POFn(F , o∗) for a duration longer than the
POF’s timeout parameter T POF: After being stored for a duration T POF, m is immediately
released, even if the previously-expected data unit has not been received so far. The timeout
allows the POF to recover from losses without blocking the following data units forever
[Mohammadpour, Le Boudec 2021; Varga, et al. 2021]. We assume that the timeout value of
every POF conforms with the recommendations of [Mohammadpour, Le Boudec 2021, §IV.B]:
It can only be triggered when one of the data units m of F is lost for the POF.

A POF cannot be placed at an EP-vertex: we always assume that the duplicates are
eliminated before the flow is handed to the POF, which is consistent with the assumptions
in [Varga, et al. 2021, §4.1]. The model of POF is illustrated in Figure 4.8. A possible
implementation is given in [Mohammadpour, Le Boudec 2021, §3.4] and [Varga, et al. 2021].

The regulator (REG)

In the precedent chapter (Chapter 3), we have used the notation PFRn(p) and IRn(p) to denote
a PFR [resp., an IR] configured by the LCAN algorithm and installed on vertex n to process
all the flows coming from the parent p. In this chapter, we slightly modify the notation to
make it more flexible in the context of PREFs.
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Figure 4.9: Model of a regulator REGn(F , w), with shaping curves {σn,f}f .
The regulator only looks at the head-of-line packet.

Consider a set of flows F crossing n, and consider a vertex o of G such that, for each
flow f ∈ F , o is a diamond ancestor of n in G(f). Consider finally an observation point,
w ∈ {o†, o′, o∗} (Figure A.2). The output port in n can contain a regulator (REG) for the
aggregate F with reference w, noted REGn(F , w). As in Chapter 3, a regulator is FIFO for
F and is configured with a set of shaping curves, one per flow f of the aggregate F , that we
note {σn,f}f∈F .

In the context of PREFs, the packets of any flow f in the aggregate F can enter n through
several input ports (n can have several parents in G(f)). Thus a regulator can be limited
to the packets of the aggregate that enter n coming from a specific parent p of n. We note
REGn(F , w, p) the regulator that processes only the stream of packets of the aggregate F that
enter n from the edge p→ n, where, for each f ∈ F , p is a parent vertex of n in G(f).

In Chapter 3, a per-flow regulator PFRn(p) configured by LCAN is noted

PFRn(p) = {REGn({f}, ϕ, p)}f∈{h|h∋(p,n)}

PFRn(p) a set of parallel elementary REGs, each processing a unique flow f of the aggregate
by enforcing the source arrival curve (w = ϕ) and by processing only the packets of f that
comes from the parent p, which was clear in Chapter 3 because n had at most one parent in
G(f).

Similarly, an interleaved regulator IRn(p) of Chapter 3, configured by LCAN is noted

IRn(p) = REGn({f |f ∋ (p, n)}, p†, p)

The IR is a unique elementary REG that processes the aggregate {f |f ∋ (p, n)} and enforces
for each flow f of this aggregate the arrival curve that the flow had just before the CBQS
of the parent p, i.e., at p† (see Figure A.2). Here again only the packets coming from p are
processed, which, in the previous chapter, was equivalent to the aggregate {f |f ∋ (p, n)}.

Order of the Optional Functions in a Vertex

We assume that each flow f can only be processed by at most one function of each type in
each vertex. As in the technical documents [Varga, et al. 2021, §4.1], we also assume that,
within a vertex, POF comes always after PEF.

Regulators (REGs) and PREFs are defined in two separate documents in IEEE TSN
[IEEE 802.1CB; IEEE 802.1Qcr]. Hence, their exists an uncertainty on their relative order.
The uncertainty has not been clarified as of June 2022. In the thesis, and as intuited in
Section 4.1.3, we see the traffic regulators as of particular interest when they are placed after
the PEFs, because they can shape the traffic back to the profile it had at the input of the
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Figure 4.10: Example of an organization of the optional functions within an output port. After their
respective PEF, the two flows share the same POF and the same regulator (REG). Note that a packet of
f might be delayed by packet of g in both the POF and the REG, even if the order of its own packets is
maintained and even if it already complies with the shaping curve σn,f within the REG.

redundant section (second section in Figure 4.2). Analyzing the interactions between PREFs
and REGs in this configuration is one of our major objectives, while placing a regulator before
the PEF is equivalent to shaping the traffic within a sub-path of a multi-cast flow, a situation
that can be analyzed using the results of Chapter 3.

To summarize, we assume that each output port can contain the following optional func-
tions, in this order: PEFs→ POFs→ REGs.

Example: Consider the flow f in Figure 4.6 and assume the existence of a second flow, g
that has exactly the same flow graph.

The output port S3South processes streams of packets coming from both parents S4East
and S2South. A first possible example of the organization of the functions before the
CBQS within vertex S3South is shown in Figure 4.10. Each flow is first processed by its
respective PEF, then both duplicate-free flows are reordered as an aggregate by using
POFS3South({f, g}, S5∗North). This function enforces the same order for the aggregate {f, g}
as the one at the output of S5North, i.e., before the redundant section. Last, they are
both processed by the same interleaved regulator that enforces two different contracts for
f and for g, but keeps the aggregate {f, g} FIFO. The two shaping curves σS3South,f and
σS3South,g can differ, but each must be an arrival curve of its respective flow at S5∗North.

A variant of this situation is shown in Figure 4.11. After elimination, each flow is
now independent from the other one, where the POFs enforce per-flow order and the
two REGs are per-flow regulators (PFRs). This situation is different from Figure 4.10
because a packet of f cannot be delayed by a packet of g. In addition it could have a
higher cost.

4.2.3 Definition of the Worst-Case, Assumptions on Losses

With the exception of PEF, each function, each CBQS, each switching fabric, each input
port and each internal connection within a device is assumed to be lossless (does not lose any
packets). Packets can be lost on the transmission links between devices. This model covers
various failures, including random media losses, the shutdown of an output port (equivalent
to its out-going link losing all packets) and the shutdown of an input port (equivalent to its
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†
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Figure 4.11: Another example of the organization of the optional functions within an output port with one
POF and one REG per flow. From the hardware perspective, this configuration could have a higher cost
than in Figure 4.10. Note that every flow is independent from the other one, before reaching the CBQS.

in-going link losing all packets).
Definition 4.4 (Delay bounds for a flow f) Let f be a flow and d one of the destinations
of f . An end-to-end (ETE) delay upper bound [resp., lower bound] of f for d is an upper
bound [resp., lower bound] on the maximum [resp., minimum] delay that each data unit
m of f takes to reach d, assuming that the data unit m is not lost for d.

As packets can be lost on transmission links, the network is not assumed to be lossless. Of
course, the latency bounds computed in this paper are only valid for the non-lost data units
(the data units for which at least one replicate reaches the destination), but these bounds
remain valid even if some other data units are lost in the network.

4.3 Toolbox for the Deterministic Analysis of Packet Replica-
tion and Elimination Functions

We provide here our toolbox of results for modeling packet replication and elimination func-
tions (PREFs) in the network-calculus framework. We first compute a tight arrival-curve
characterization of the traffic at the output of a PEF. We then quantify the amount of re-
ordering that PREFs can cause and analyze the consequences of correcting this mis-ordering
by using a packet-ordering function (POF).

4.3.1 Output Arrival Curve of a PEF

Theorem 4.1 (Output arrival curve of a PEF)
Let PEFn(f) be a packet-elimination function for flow f at vertex n ∈ vertices(G(f)).
Assume that αf,PEFin is an arrival curve of f at the input of PEFn(f). Then

1/ αf,PEFin is an arrival curve for the flow at the output of the PEF.
2/ For every diamond ancestor a of n in G(f), assume that αf,a∗ is an arrival curve

for f at the output of a and denote by da∗→nin
f [resp., Da∗→nin

f ] a minimum [resp.,
maximum] delay bound for f between the output of a and the input of PEFn(f) ( i.e.,
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of n), along any possible paths a→ n within the graph G(f). Then

αa→nf ≜ αf,a∗ ⊘ δ(Da∗→nin
f

)−(da∗→nin
f

) (4.1)

is an arrival curve for f at the output of the PEF.

Furthermore, the min-plus convolution of all above arrival curves

αf,PEF∗ = αf,PEFin ⊗ αa1→n
f ⊗ αa2→n

f ⊗ αa3→n
f ⊗ . . . (4.2)

for any subset of the diamond ancestors a1, a2, a3, . . . of n in G(f) is also an arrival
curve for f at the output of the PEF, where ⊗ denotes the min-plus convolution (Defi-
nition 2.2).

Item 2/ is proven by considering the entire system between the diamond ancestor a and the
vertex n. This system is causal, but is neither lossless nor FIFO. As we focus on obtaining an
output arrival curve, several classic network-calculus results remain valid, which we detail in
the formal proof in Appendix B.2.2. Several references have also studied non-lossless systems,
but when focusing on the service curves [Ciucu, Schmitt, Wang 2011].

Example: An arrival curve αf,PEF∗ for f at the output of the PEF within S3South (Fig-
ure 4.3) is shown in Figure 4.12 with a solid red line.

The first constituent, αf,PEFin is the arrival curve at f at the input of the PEF (as per
Theorem 4.1, Item 1/). To obtain it, we first take the arrival curve αf,S5∗

North
= γr0,b0 of f

at the output of S5North. We then use the jitter bound within each path in Figure 4.3 and
apply Lemma B.2 in Appendix B.2.1 to obtain the arrival curves αf,S2∗

South
and αf,S4∗

East
:

they both equal γr0,2b0 . As f enters S3South from both S2South and S4East, we obtain
αf,PEFin = αf,S2∗

South
+ αf,S4∗

East
= γ2r0,4b0 .

The second constituent of αf,PEF∗ in Figure 4.12 is obtained by applying the Equation
(4.1) of Theorem 4.1, Item 2/ with a = S5North. From Figure 4.3, we obtain that
a delay lower-bound [resp., an upper-bound] for f from S5∗North to S3in

South along any
possible paths within G(f) is dS5

∗
North→S3in

South

f = 0 t.u. [resp., DS5∗
North→S3in

South

f = 7 t.u.].
We obtain αS5North→S3South

f = αf,S5∗
North
⊘ δ

D
S5∗

North
→S3in

South
f

−d
S5∗

North
→S3in

South
f

= γr0,b0 ⊘ δ7, i.e.,

αS5North→S3South
f = γr0,8b0 .
If we assume that the PEF does not delete any packet, as in the intuitive approach

mentioned in Section 4.1.3, we only know that f has the arrival curve αf,PEFin at the
output of the PEF (Item 1/ of the Theorem).

But our theorem goes beyond the intuitive approach: its second item applied with
a = S5North provides a second arrival curve for f : αS5North→S3South

f . We apply Theorem 2.1
to combine the knowledge of the two arrival curves: αf,PEF∗ = αf,PEFin ⊗ αS5North→S3South

f

is also an arrival curve for f at the output of the PEF. Theorem 4.1 provides a better
upper-bound of the traffic than the intuitive approach. For example, αf,PEF∗ indicates
that the double rate 2r0 is only a peak rate that the traffic cannot exhibits forever: flow
f keeps a sustained rate r0, but with a much higher burst 8b0.
Theorem 4.1 does not require to identify pairs of replication/elimination functions, with

one PRF and one PEF in each pair. Therefore, the result is suited for complex flow graphs,
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Figure 4.12: Solid red: Arrival curve of f on the toy example, at the output of PEFS3South(f), obtained
by using Theorem 4.1. Dashed blue: Cumulative arrival function obtained with the trajectory of Fig. 4.14,
showing the tightness of the result.

Replication

S1

S2
. . .

SN

PEFn(f)f
αf α∗f

Figure 4.13: Notations of Corollary 4.1. Flow f is replicated and sent to N parallel systems. Corollary 4.1
gives the arrival curve α∗f at the output of the packet-elimination function PEFn(f).

including graphs with repeated patterns of redundancy, with meshes, as well as graphs where
the packet-elimination function is not located at the merge point of the paths. Chapter 6
describes how the identification of diamond ancestors is performed in the xTFA tool.

When pairs of PRF/PEF can be identified as in Figure 4.2, we can use:
Corollary 4.1 (Unique redundant section with parallel systems)
Consider a flow f with an arrival curve αf that is replicated and sent into N causal
systems {Si}i∈J1,NK and then processed by a packet-elimination function PEFn(f), as in
Figure 4.13. Note that each Si is not necessary a single network element but can be any
combination of network elements. Assume that the packets forwarded through Si ( i.e.,
the ones not lost) have a delay through Si that is bounded within [di, Di]. Then,

α∗f =

 ∑
i∈J1,NK

αf ⊘ δ(Di−di)

⊗
αf ⊘ δ(

max
i∈J1,NK

Di− min
j∈J1,NK

dj

)
 (4.3)

is an arrival curve for f at the output of PEFn(f).

The Corollary is a direct application of Theorem 4.1, with the corresponding notations.
Its formal proof is in Appendix B.2.3. Corollary 4.1 is of interest for two reasons. First, its
simpler notation is likely to cover many industrial applications containing a unique redundant
portion with parallel systems. Second, Corollary 4.1 is tight in the following sense.

Proposition 4.1 (The result in Corollary 4.1 is tight with N = 2 and leaky-bucket-
constrained flows, in the family of VBR arrival curves)
For any leaky-bucket arrival curve γr,b, for any set of values d1, D1, d2, D2 ∈ R such
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Figure 4.14: Trajectory showing that the result of Corollary 4.1 is tight for the toy example. The cumulative
function of f , starting at Time Unit 8 in the above trajectory, is given as a dashed blue line in Figure 4.12.

that d1 ≤ D1 and d2 ≤ D2,
there exists a flow f with arrival-curve αf = γr,b and no minimum packet length whose
content is replicated and sent to two systems S1 and S2 in which the packets of f suffer
a delay bounded in [d1, D1] and [d2, D2] respectively; the sum of the outputs of the two
systems is then processed by a packet-elimination function PEFn(f),
such that, the arrival curve α∗f defined in (4.3) is the best VBR arrival curve (Fig-
ure 2.1c) for f at the output of PEFn(f).

The formal proof is in Appendix B.2.4. We give here an intuition on the toy example.
Example: Our goal is to obtain a cumulative function Rf,PEF∗(t) at the output of PEF
such that t 7→ Rf,PEF∗(t)−Rf,PEF∗(s) ‘perfectly fits’ the arrival curve γ2r0,4b0 ⊗ γr0,8b0 , for
some observation starting time s (as in Figure 4.12).

This is done by using the trajectory shown in Figure 4.14. In the figure we spread the
packets within t.u. 8 for ease of reading, but they exit at the exact same time. Because
of this, we can also put an arbitrary order of arrivals among them.

If we start counting the packets at t.u. 8, we observe the cumulative arrival function
shown in dashed blue in Figure 4.12, for which it is clear that the arrival curve in solid
red is the best VBR envelope.

4.3.2 Reordering Introduced by the Packet Replication and Elimination

In Section 4.3.1 we provide a characterization of the traffic at the output of a PEF in the
form of an arrival curve. The arrival curve can then be used to compute delay and backlog
bounds on subsequent vertices, from which we can obtain the ETE delay bounds. However,
the data units at the output of the PEF are also out-of-order. The mis-ordering of the flow’s
data units cannot be captured by the notion of arrival curves. But it still has an effect on
the performances of time-sensitive networks: some applications require in-order-delivery or a
bounded out-of-order delivery.

Two metrics are of interest for quantifying the mis-ordering in time-sensitive networks.
Definition 4.5 (Rordering late Time Offset, Reordering Byte Offset. [Mohammadpour,
Le Boudec 2021], [RFC 4737]) Consider a flow f and two vertices n, o of G(f) such that
o is a diamond ancestor of n in G(f) and n is not an EP-vertex of G(f). Consider an
observation point v [resp., w] of n [resp., n] such that f is packetized at v and w. Define
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Figure 4.15: Toy example of Figure 4.3, with a packet-ordering function (POF) placed after the PEF to
correct the mis-ordering caused by the redundancy.

mk as the data unit of f that crosses w in the k-th position and denote by lk its size and
by Ek its arrival time at v (with the convention Ek = +∞ if mk is lost for v).
Then the reordering late time offset (RTO) λf,v(w) and the reordering byte offset (RBO)
πf,v(w) of f at v with respect to w are

λf,v(w) ≜ sup
k≥0

(
Ek − min

j|j>k
Ej

)
πf,v(w) ≜ sup

k≥0

 ∑
j|j>k,Ej<Ek

lj

 (4.4)

If POFn({f}, o∗) is a packet-ordering function that forces the data units of f to be in the
same order as their order at the output of o, then, λf,POFin

n
(o∗) gives the minimum timeout

value of the POF algorithm and πf,POFin
n

(o∗) gives its required buffer size [Mohammadpour,
Le Boudec 2021]. In general, if a destination d does not support any out-of-order delivery,
then a function POFd({f}, ϕ) is placed just before delivery to the application. The end-to-end
RTO λf,din(ϕ) and RBO πf,din(ϕ) must be obtained to correctly configure this POF.

Proposition 4.2 (RBO ≤ α(RTO))
For a flow f , and two observations points v, w as in Definition 4.5, if λf,v(w) < +∞,

πf,v(w) ≤ αv,f (λf,v(w)) (4.5)

The proof in Appendix B.2.5 follows directly from Definitions 2.5 and 4.5. Proposition 4.2
combined with Theorem 4.1 show that we can focus on the effect of the PEF on the RTO to
also obtain a bound on the RBO.

Theorem 4.2 (RTO at the output of a PEF)
Consider a flow f , a vertex n containing a packet-elimination function PEFn(f) and a
diamond ancestor a of n in G(f). Denote by da

∗→nin
f [resp., Da∗→nin

f ] a lower [resp.,
upper] delay bound for f between the output of a and the input of PEFn(f), along any
possible path in the graph G(f). Then λf,PEFn(f)∗(a∗) verifies

λf,PEFn(f)∗(a∗) ≤
∣∣∣Da∗→nin

f − da∗→nin
f − α↓f,a∗(2L

min)
∣∣∣+ (4.6)

where |x|+ ≜ max(0, x), Lmin is the minimum packet size of f , αf,a∗ is an arrival curve
for f at the output of a and α↓f,a∗ is its lower pseudo-inverse defined by α↓f,a∗(y) =
inf{x|αf,a∗(x) ≥ y} [Liebeherr 2017, §10].

The proof in Appendix B.2.6 relies on [Mohammadpour, Le Boudec 2021, Thm. 5].

Example: On the toy example of Figure 4.3, α↓f,S5∗
North

(2Lmin) = 1 t.u. Theorem 4.2 proves
that the RTO at the output of the PEF in Figure 4.3 is bounded by 6 t.u. In Figure 4.14,
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Figure 4.16: Trajectory of the packets at the output of the POF of Figure 4.15 when the POF processes
the packets from the trajectory of Figure 4.14.

we observe that Data Unit 6 is late by 4 time units with respect to Data Unit 7. The
RTO of f is hence between 4 and 6 time units.

Assume now that we place, after the PEF, the function POFS3South({f}, S5∗North), a
packet-ordering function enforcing for f the order defined at S5∗North (Figure 4.15). The
RTO bound that we computed above gives the minimum timeout value T POF (6 t.u.) and
by combining with Proposition 4.2, we obtain a bound on the RBO (14 d.u.) which gives
the minimum buffer size of the POF. In the trajectory of Figure 4.14, the POF receives
the traffic from the Line PEF∗ and forces the data units to be in the same order as on
the Line S5∗North. The resulting output is given in Figure 4.16.

We note that all data units continue to have a delay upper-bounded by 7 time units.
Indeed, when no data units is lost for the POF, then the latter does not increase the
end-to-end delay of the data units [Mohammadpour, Le Boudec 2021, Thm. 4].

Second, we observe that the traffic at the output of the POF (Figure 4.16) is much
more bursty than the traffic at the output of the PEF (Line PEF∗ in Figure 4.14) and is
no longer constrained by γ2r0,4b0 ⊗ γr0,8b0 .

Corollary 4.2 (Arrival curve at the output of a POF, [Mohammadpour, Le Boudec
2021, Corollary 1])
Consider f a flow and a, n two vertices of G(f) such that n is not an EP-vertex of G(f)
and a is a diamond ancestor of n in G(f). Assume that POFn({f}, a∗) is a POF for f
at n, and denote by da

∗→nin
f [resp., Da∗→nin

f ] a lower [resp., upper] delay bound for f
between the output of a and the input of the POF in n. If the sequence of data unit that
reaches the POF is not incomplete (no data unit is lost for the POF), then

αf,POFn({f},a)∗ = αf,a∗ ⊘ δ
Da∗→nin

f
−da∗→nin

f

is an arrival curve for f at the output of the POF. If the sequence can be incomplete,
then

αf,POFn({f},a)∗ = αf,a∗ ⊘ δ
Da∗→nin

f
−da∗→nin

f
+T POF

is an arrival curve for f at the output of the POF, with T POF the value of the timeout of
the POF.

Corollary 4.2 is a direct application of [Mohammadpour, Le Boudec 2021, Cor.1]. Placing
a POF after a PEF hence comes with benefits and drawbacks, as summarized on the first line
of Table 4.3.
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4.3.3 Obtaining End-to-End Delay Bounds in Networks with PREFs

If a vertex n of the graph induced by flows (GIF) contains a PEF or/and a POF, then we
can obtain an arrival curve αn† for the class of interest at the input of the CBQS by applying
the results of Sections 4.3.1 and 4.3.2. From αn† and from the service curve βn of the CBQS
within n (assumed known, see Section 2.6.4), we can derive the delay bounds [dn, Dn] through
n as well as the individual arrival curves of each flow at n′ and n∗, using the same techniques
as in Chapter 3, Section 3.3.

But computing αn† does not only require the knowledge of the individual arrival curves:
For a flow f for which a PEF is installed at n, for each diamond ancestor a, applying Item 2/
of Theorem 4.1 requires the knowledge of the arrival curve αf,a∗ , as well as an upper delay
bound [resp., a lower delay bound] for f from a to n along any possible path. Chapter 6
details how to store and obtain this information for feed-forward networks.

But for networks with cyclic dependencies, we can simplify the above issue and choose to
apply, for each flow f processed by a PEF, the Item 2/ of Theorem 4.3.1 using only the source
ϕ of f as a diamond ancestor. Computing the effect of the PEF with this single diamond
ancestor requires only the knowledge of the burst bf,p′ of the flow f at the output of each
parent p, as well as the bounds [dϕ→p

∗

f , Dϕ→p∗

f ] for the delay of f between the source of f and
p∗. Overall, computing the node n in the TFA approach is an application

Fn : bn,dn 7→ b′
n,d

′
n (4.7)

where
bn = (bf,p′)∀p parent of n;∀f |f∋(p,n), (bf,ϕ)∀f |source(f)=n

is the vector of the burstiness within each parent p of each flow f that enters n from p, plus
the initial burstiness of all flows generated within n, and

dn = (Dϕ→p∗

f )∀p parent of n;∀f |f∋(qpn), (0)∀f |source(f)=n

is the vector of delay upper-bounds between the source ϕ of f and the output p∗ of the parent
p, along any possible path in G(f). This vector is extended with a vector full of zeros for all
the flows whose source is the current vertex n (they have not suffered any jitter so far).

For a network with cyclic dependencies, we first perform a static analysis of the network
(not based on network calculus) to obtain the lower-bounds on the minimum delays dϕ→vf for
any flow f and any flow v. This analysis is based, for example, on the minimum propagation
time, the lower-bounds on the technological latencies, etc. Then we perform the cuts as
in Chapter 3. The combination of the Fn applications for the virtual feed-forward network
provides and algorithm FF

FF(b,d) 7→ (b′,d′)

that maps the burst and delay bounds after the cuts to the burst and delay bounds before
the cuts. As in Chapter 3, we have the following result.

Theorem 4.3 (Extended fixed-point result: Validity of any non-negative fixed-point
(b,d))
Any non-negative fixed-point (b,d) of FF , ie such that FF(b,d) = (b,d), constitute
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Figure 4.17: Notations for the analysis of the interactions between PEF and a PFR for a flow f . Vertices
of G(f) are shown in dashed circles/ovals and edges are shown with dotted arrows.

a valid bound for the bursts and the jitter bounds from source, at the cuts for the real
network with cyclic dependencies. If FF has a non-negative fixed-point, then the network
is stable.
The formal proof in Appendix B.2.7 is very similar to the one for Theorem 3.2. Chapter 6

details how to apply Theorem 4.3.

4.4 Interactions between PREF and Traffic Regulators

Subsection 4.3.2 shows that a packet-ordering function (POF) can be used after a PEF to
remove the mis-ordering caused by the redundancy. Similarly, regulators (REGs) can be used
after a PEF to remove the burstiness increase caused by the redundancy. But regulators are
queuing systems and their effect on the worst-case ETE delay should be accounted for.

In this section, we first analyze the interactions between PEF and a regulator placed
directly after. We evaluate how these interactions affect the ETE delay guarantees of the
flows, and we show that the conclusions highly depend on the nature of the regulator (either
PFR or IR). We last analyze the effect of a POF placed after the PEF and before the REG.

4.4.1 Delay-Bound Analysis of PREFs Combined with Per-Flow Regula-
tors

Consider a vertex n containing a function PEFn(f) and consider a diamond ancestor a of n
in G(f) (Figure 4.17). Consider the system S between the output of a and the output of
PEFn(f) (solid box in Figure 4.17). Due to all the possible paths with different lengths, S is
neither FIFO nor lossless. However, S is causal because a is a diamond ancestor of n in G(f).

We denote by d [resp., D] a delay lower-bound [resp., upper-bound] for each forwarded
data unit through S. The PEF has no delay, hence d = da

∗→nin
f and D = Da∗→nin

f .
After S, and still within vertex n (dashed oval on the right of Figure 4.17), we place a per-

flow regulator: REGn({f}, a∗) with shaping curve σn,f ≜ αf,a∗ . We now consider the system
S ′ made of S followed by the PFR, and we are interested in the delay bounds [d′, D′] for the
non-lost data units through S ′. If S were FIFO, we could use the essential shaping-for-free
introduced in Chapter 3, Section 3.1.5, and we would have D′ = D. But, as S is not FIFO,
the PFR does not guarantee the shaping-for-free property, as we show on the toy example.
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Figure 4.18: Toy example of Figure 4.3 with a per-flow regulator (PFR) placed after the PEF to remove
the burstiness increase caused by the redundancy.
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Figure 4.19: An acceptable trajectory on the toy example, that shows that the delay bound D′ through
S ′ is at least 14 t.u. The delay of the data units from S5∗North to the observation points are given on the
left of the packets.

Example: Figure 4.18 considers the toy example from Figure 4.3, to which we add
REGS3South({f}, S5∗North) within vertex S3South, just after the function PEFS3South(f). System
S is between the observation points S5∗North and PEF∗ and [d,D] = [0, 7] t.u. S ′ is between
the observation points S5∗North and PFR∗.

Figure 4.19 presents an acceptable trajectory. The traffic profile at S5∗North, not shown,
is periodic as in Figure 4.14. The line PEF∗ gives the resulting trajectory at the output
of the PEF.

Based on its input PEF∗ and on its shaping curve (σS3South,f = αf,S5∗
North

= γr0,b0), the
PFR outputs the packets as shown on the Line PFR∗.

We observe that the d.u. 6 suffers through S ′ a total delay of 14 t.u., i.e., twice the
delay bound D through S alone. We note that this can be explained by the time needed
by the PFR for processing d.u. 1 to 5 and 7 to 13. This is done even though d.u. 7 to
13 are out of order (“too early”) with respect to d.u. 6. At PFR∗, the packet containing
d.u. 6 is late with respect to d.u. 7 by 12 t.u. units, thus the RTO of f is at least 12 t.u.

We observe that the output of the PEF is bursty and out of order, and the PFR placed
afterwards paces the packets to remove the burstiness. But, by doing so, the PFR worsens
the mis-ordering of the packets (12 instead of 6) and increases the delay of the late packets
(Packet 6), thus increasing the worst-case ETE delay (at least 14 time units). As such, the
regulator comes with a delay penalty, that we can upper-bound:

Theorem 4.4 (Bound on the delay penalty of a PFR placed after a PEF)
With the notations of the subsection, assume that the PFR REGn({f}, a∗) is configured
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Figure 4.20: Notations for the analysis of the interactions between PEFs and an interleaved regulator (IR)
for an aggregate of flows F = {fi}i∈J1,qK.

with a leaky-bucket shaping curve σn,f = γr,b (with b greater than the maximum packet
size of f) and that σn,f is an arrival curve of f at the input of S. If D [resp., d] is an
upper [resp., a lower] bound on the delay of f through the system S (Figure 4.17), then
D′ = 2D − d [resp., d′ = d] is an upper [resp., a lower] bound on the delay of f through
the system S ′.
The formal proof in Appendix B.2.8 relies on the service-curve characterization of a PFR

(Proposition 3.1). The combination of Theorem 4.4 with [Mohammadpour, Le Boudec 2021,
Thm. 7] gives directly the following result.

Corollary 4.3 (Bound on the RTO at the output of a PFR placed after a PEF)
With the notations of Theorem 4.4, the RTO λn,PFR∗(f, a∗) of f at the output of
PFRn({f}, a∗), with reference a∗, verifies

λn,PFR∗(f, a∗) ≤ λn,PEF∗(f, a∗) +D − d

with λn,PEF∗(f, a∗) the RTO of f at the output of the PEF, again with respect to the order
of the data units at a∗.

Example: Applying Theorem 4.4 shows that 2D − d = 14 t.u. is an upper delay bound
through S ′. As it is achieved by Data Unit 6 in Figure 4.19, it is also the worst-case
delay. Applying Corollary 4.3 to the toy example gives that 13 t.u. is an upper-bound on
the RTO of the flow at the output of the PFR, with respect to the order of the packets
at S5∗North. Data Unit 6 in the trajectory achieves a reordering offset of 12 time units
(with respect to Data Unit 7), Thus the worst-case RTO at the output of S ′ in the toy
example is between 12 and 13 time units.
When a PFR is used after a PEF, the current subsection shows that the shaping-for-free

property does not hold, but Theorem 4.4 captures the delay penalty by using the service-curve
characterization of PFRs (Proposition 3.1), combined with the arrival curve obtained from
Theorem 4.1. As we do not know any service-curve characterization for an IR, Theorem 4.4
cannot apply to IRs.

4.4.2 Instability of the Interleaved Regulator Placed after a Set of PEFs

With an interleaved regulator (IR), several flows F = {fi}1≤i≤q that share the same redundant
section a → n are processed by the same IR REGn(F , a∗), after their respective elimination
function PEFn(fi) for i ∈ J1,mK (see Figure 4.20).
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When the aggregate F contains a unique flow, then the IR is a PFR. Therefore, we do
not expect the shaping-for-free property to be valid with the IR either. But when the IR
processes several flows, we exhibits an adversarial model that yields unbounded latencies:

Theorem 4.5 (Instability of the IR placed after the PEFs)
Consider a network with graph G and consider q ∈ N flows f1, . . . , fq (see Figure 4.20).
Take two vertices a and n such that, for each i ∈ J1, qK, a is a diamond ancestor of n in
G(fi). Assume that

(a) for each i ∈ J1, qK, vertex n contains PEFn(fi), a PEF for fi,
(b) vertex n contains REGn({fi}i∈J1,qK, a

∗), an interleaved regulator for the aggregate,
placed after the PEFs, with the same leaky-bucket shaping curve for each flow:
∀i ∈ J1, qK, σfi,n = γr,b,

(c) all graphs {G(fi)}i∈J1,qK share at least two different paths P1, P2 to reach n from a.

Then, for q ∈ N and r, b, d1, d2, D1, D2 ∈ R+ with d1 ≤ D1, d2 ≤ D2 and D1 ≤ D2
(flipping the indexes if required), if

(d) b is greater than the minimum packet length,
(e) d1, D1, d2, D2 are not all equal and q ≥ qmin with

qmin ≜

⌊
2r |d2 −D1|+

b
+ 2

⌋
+ 1 (4.8)

then there exists an adversarial traffic arrival at a∗ for each of the q flows and an adver-
sarial implementation of the paths {Pj}j such that

1/ each flow fi is γr,b-constrained at a∗,
2/ for each data unit m belonging to one of the flows {fi}i∈J1,qK, if m is not lost on

P1 [resp., on P2], then its delay along P1 [resp., along P2] is within [d1, D1] [resp.,
within [d2, D2]],

3/ flows {fi}i have an unbounded latency within the IR,
4/ P1 and P2 are both FIFO,
5/ the system S made of the sub-graph of G between a∗ and the output of the PEFs

(Figure 4.20) remains lossless and FIFO-per-flow for each fi.

The proof is in Appendix B.2.9. In a real-life system, the backlog of the IR cannot increase
indefinitely: Its buffer will overflow at some time, causing congestion losses thus breaking a
major requirement of time-sensitive networks.

Note that only Properties 1/ to 3/ of Theorem 4.5 are required to prove the validity of
the adversarial model. However, our adversarial model provides additional Properties 4/ and
5/; they are of interest when considering the solutions for preventing the instability, as we
illustrate in Sec. 4.4.3. Theorem 4.5 also provides a mean to obtain the following wider result,
whose proof is in Appendix B.2.10.
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Table 4.3: Benefits and Drawbacks of Several Configurations, Compared to the Situation with the PEF(s)
only.

Config Benefits with respect to the PEF alone Drawbacks with respect to the PEF alone

PEF
+

POF

• Destination receives the data units in
order
• Reordering-for-free: the POF does not
increase the end-to-end delay bounds.

• The POF worsens the arrival curve; this
can lead to higher delay bounds in down-
stream nodes.
• Increased hardware complexity (Fig-
ure 4.8).

PEF
+

REG

• Output traffic keeps the arrival con-
straints it had before the redundant sec-
tion, resulting in smaller delay bounds in
downstream nodes.

• Delay penalty due to mis-ordering:
with PFR: delay penalty with a guaran-
teed maximum delay;
with IR: unbounded delay.
• Increased hardware complexity (Fig-
ure 4.9).

PEF
+

POF
+

REG

• Destination receives the data units in or-
der
• Reordering-for-free and shaping-for-free:
[POF + REG] does not increase the delay
bounds.
• Output traffic keeps the same arrival
constraints as it had before the redundant
section.

• Increased hardware complexity (Fig-
ures 4.8 and 4.9).

Corollary 4.4 (Instability of the interleaved regulator after a non-FIFO system, even if
the system is FIFO-per-flow and lossless)
For any Dmax > 0, r > 0, b greater than the minimum packet length, and for any IR that
processes three or more flows {fi}i using the same leaky-bucket shaping curve γr,b, there
exists a lossless FIFO-per-flow system S and a γr,b-constrained adversarial generation of
each flow at the input of S such that, when the IR is placed after S, the delay of the
flows through S is upper-bounded by Dmax but the delay of the flows through the IR is
not bounded.

4.4.3 Effect of the Packet-Ordering Function on the Combination of a PEF
with Traffic Regulators

Table 4.3 summarizes the benefits and drawbacks of using regulators after a PEF, as ana-
lyzed in Sections 4.4.1 and 4.4.2. We observe that the drawbacks of the regulators appear
symmetrical with respect to those of the POF. For example, a main issue of the POF is the
burstiness of the traffic at its output; this can be corrected by using a regulator. A main
issue of the REGs is the delay penalty caused by the out-of-order input; this can be solved
by placing a POF just before.

The combination PEF + POF + REG appears as a potential solution for keeping the
benefits of both the POF and the REG without their main drawbacks. We first analyze this
new configuration on the toy example.

Example: We go back to the toy example of Figure 4.18, i.e., with a unique flow f and a
periodic profile of one data unit every time unit. We add a POF before the PFR. It gives
the situation presented in Figure 4.21. The POF is configured to enforce the order of
the data units as seen at S5∗North. Assume for example that it receives the traffic defined
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by the line PEF∗ of Figure 4.19. Then the POF outputs the data units as on the Line
POF∗ of Figure 4.22. The PFR further processes this trajectory to spread the data units
as per the flow’s contract and outputs them as on the Line PFR∗ of Figure 4.22. The
resulting traffic is constrained with the initial arrival curve αr0,b0 . We observe that all
the data units have kept an ETE delay below 7 t.u.

Packet
Replication

Function (PRF)

S4North, S1East, S2South

S4East

PEFS3South(f) POFS3South({f}, S5∗North) REGS3South({f}, S5∗North)
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Figure 4.21: Toy example of Figure 4.3, to which we added a POF followed by a PFR.
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Figure 4.22: Output of the POF and of the PFR of Figure 4.21 when they process the trajectory of
Figure 4.19.

When using an interleaved regulator, Property 5/ of Theorem 4.5 shows that the re-
sequencing must be performed globally on the aggregate processed by the IR, and not for
each flow individually. Indeed, Property 5/ of Theorem 4.5 shows that per-flow reordering has
no effect on the trajectory generated by the adversarial model, and the instability remains.

When re-sequencing the aggregate globally, we obtain the following result, valid for both
PFRs and IRs.

Theorem 4.6 (Elimination-resequencing-reshaping is for free)
Consider a network with graph G and consider a set of one or more flows F . Take a and
n two vertices of G such that for each flow f ∈ F , a is a diamond ancestor of n in G(f)
(see Figure 4.23). Assume that the CBQS within n is preceded by the following functions,
in this order: a set of parallel packet-elimination functions {PEFn(f)}f∈F , followed by
a unique packet-ordering function with configuration POFn(F , a), and finally a regulator
with configuration REGn(F , a). Denote by d [resp., D] a lower bound [resp., an upper
bound] for the delay of the non-lost data units of F through the system S between a and
the output of the PEFs.
• If S is lossless for F ( i.e., for every data unit m of the aggregate, at least one packet
containing m reaches the PEFs), then d [resp., D] is also a lower bound [resp., an upper
bound] for the delay of the non-lost data units through S ′, which we note [d′, D′] = [d,D].
• Otherwise, d [resp., D + T POF] is a lower bound [resp., an upper bound] for the delay
of the data units through S ′ with T POF the timeout value of the POF.

To prove the result, we simply observe that the POF in Figure 4.23 does not increase the
delay bounds and S† is a FIFO system, thus the shaping-for-free property of regulators holds.
The formal proof is in Appendix B.2.11. Therefore, the “PEF + POF + REG” configuration
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Figure 4.23: Notations of Theorem 4.6. An aggregate re-sequencing followed by a REG is placed after the
PEFs. We are interested in the delay bounds through system S ′.
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Figure 4.24: Parametric network for the evaluation of the delay bounds obtained with the intuitive approach
and with xTFA. (a) Topology: a central ring with Ni devices connects two rings with Ne devices by using
two gateways for each external ring. Here, Ni = 6 and Ne = 4. The numbers on the arrow tips distinguish
the output ports of a device. (b) Graph of the flow W1 → E1 on the network of Fig. 4.24a. The vertex ϕ
represents the source application. DEV-j represents output port j of device DEV. Output ports containing
a PEF for the flow have a thick red outline. Destination is shown for convenience but not present in the
actual flow graph.

provides all the benefits on the network performance bounds associated with the “PEF +
POF” and the “PEF + REG” configurations, removing most of their drawbacks. This is
summarized on the last line of Table 4.3. Only the hardware cost remains a drawback, as the
models of Figures 4.8 and 4.9 must be implemented.

4.5 Evaluation of the Performance of The Toolbox

The xTFA tool (Chapter 6) implements the results of the toolbox of Section 4.3. It also takes
into account the line-shaping effect (for details, we refer to Chapter 6). In this section, we
compare the performance bounds obtained with xTFA with those obtained with an algorithm
that relies on the intuitive approach that assumes the PEF is lossless but also models the
line-shaping effect (as with FP-TFA in Chapter 3).
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Figure 4.25: Comparison of the end-to-end delay bounds obtained on the parametric topology with each
method. Lower is better. (a) As a function of the network size. (b) As a function of the network load.

4.5.1 Description of the Evaluation

We consider a parametric network inspired by [Heise, et al. 2014; Kirrmann, et al. 2009].
The physical topology is shown in Fig. 4.24a. We denote by Ne the number of devices on the
external rings and by Ni the number of devices on the central ring. Devices are connected
using full-duplex transmission links with capacity 1Gbps. Any device on the external rings is
both a switch that interconnects two links and an end system that runs internal applications.

For each device on the external rings, we consider a unicast flow from this device to its
symmetrical peer on the remote external ring. All flows have the same periodic profile at
their source application, with a payload of 1200 bytes. Finally, all flows are redounded using
PREFs, the four gateways as well as the destination eliminate the duplicates.

This is illustrated in Figure 4.24b that represents the flow graph G(f) of the flow f between
W1 and E1. The box with the special tag ϕ represents the source application that generates
the data units. These data units are replicated and exit their source device W1 through two
output ports: W1-0 and W1-1. Output ports containing a PEF for the flow W1 → E1 are
marked with a thick red outline (the destination also removes the duplicates).

We consider a unique class of traffic. Each CBQS within the output ports offers to the
aggregate a service rate equal to the capacity of the transmission link (1Gbps), and a latency
of 2µs. The resulting network is not feed-forward.

4.5.2 Comparison of the Delay Bounds when Varying the Network Size

We select Ni = 6 and vary Ne, the number of external nodes, from 3 to 39, which in turn
varies the number of flows from 2 to 74. For any network size, we select the period for all
flows such that the network load equals 45%. Figure 4.25a presents the ETE delay bounds
obtained with each method as a function of the number of flows in the network.

We observe that xTFA provides the smallest delay bounds. The delay bounds obtained
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with the intuitive approach increase rapidly with the number of flows. This can easily be
explained as the number of duplicates increase with the number of flows. These duplicates
are assumed to not be removed by PREFs in the intuitive approach, which increases the
apparent burst and rate of the aggregates.

4.5.3 Comparison of the Delay Bounds when Varying the Network Load

We now fix Ni = 6 and Ne = 15 (26 flows in the network) and vary the period of the flows
to increase the network load from 1% to 99%. The obtained ETE delay bounds are shown
in Fig. 4.25b. We observe that for each method, the obtained delay bound diverges when
the network load increases. Moreover, the critical load ucrit (at which the computed bounds
diverge) equals 0.89 with xTFA but only 0.49 with the intuitive approach.

Here again, the duplicates that are assumed not to be removed with the intuitive approach
worsens drastically the burstiness cascade that generates the cyclic dependencies, and the
implementation based on the intuitive approach struggles to find a finite fixed-point (b,d) to
the FF application (Section 4.3.3) as the network load approaches 50%.

Conclusion

In this chapter, we have considered the side-effects of using redundancy mechanisms on latency
bounds. We have first identified in Section 4.1 that the existing network-calculus literature
does not permit the computation of latency bounds when the packet replication and elimina-
tion functions (PREFs) are implemented at intermediate nodes inside the network, whereas
such a configuration is supported by the IEEE TSN and IETF DetNet standards. In fact, we
have identified several challenges associated with packet-elimination functions (PEFs) placed
at intermediate nodes. We have discussed an intuitive approach for tackling the challenges;
it assumes that the PEF never eliminates any packets.

Then we have proposed a framework for modeling PREFs in network calculus. The frame-
work is composed of a model for the redounded flows and for the functions (Section 4.2), a
toolbox of network-calculus results that capture the effect of PREFs on the arrival curves
(Theorem 4.1) and on the reordering metrics (Theorem 4.2). We also extend the fixed-point
result (Theorem 4.3) to allow for the computation of end-to-end latency bounds in networks
that contain both PREFs and cyclic dependencies.

Then we have analyzed the interactions between PREFs and traffic regulators (PFRs and
IRs). Traffic regulators can be seen as an opportunity for canceling the burstiness increase
caused by the redundancy, making the latter transparent to the nodes located after the PEF.
However, when such a regulator is placed immediately after the PEF, it incurs a delay penalty
because of the packet mis-ordering created by the redundancy. With PFRs, we were able to
bound this delay penalty, but with IRs, we have exhibited a situation in which the IR generates
unbounded latencies. Placing a packet-ordering function (POF) after the PEF and before the
regulator solves the issue, but for the IR, a per-flow reordering is not sufficient and the POF
must re-order the entire aggregate.

Finally we have compared our tight model of the PREFs with the intuitive approach on
a parametric topology. We have observed that our tight model provides significantly tighter
latency bounds than the intuitive approach. In particular, our xTFA tool (that relies on
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our tight model) can compute latency bounds for much larger load values than the highest
possible network load of the intuitive approach.

In the next chapter we evaluate the side-effects of the third set of mechanisms identified
in the thesis’ Introduction: the time-synchronization mechanisms. In particular, we develop
a framework for modeling clock non-idealities in network calculus.





Chapter 5

Effects of Clock Non-Idealities

Au moment où j’écris ces lignes, l’heure sonne à une horloge voisine ; mais
mon oreille distraite ne s’en aperçoit que lorsque plusieurs coups se sont déjà
fait entendre ; je ne les ai donc pas comptés. Et néanmoins, il me suffit d’un
effort d’attention rétrospective pour faire la somme des quatre coups déjà sonnés,
et les ajouter à ceux que j’entends. [. . . ] Je m’aperçois que les quatre premiers
sons avaient frappé mon oreille et même ému ma conscience [. . . ] de manière
à [. . . ] faire une espèce de phrase musicale. Pour évaluer rétrospectivement le
nombre des coups sonnés, j’ai essayé de reconstituer cette phrase par la pensée ;
mon imagination a frappé un coup, puis deux, puis trois, et tant qu’elle n’est
pas arrivée au nombre exact quatre, la sensibilité, consultée, a répondu que l’effet
total différait qualitativement. [. . . ] Bref, le nombre des coups frappés a été perçu
comme qualité, et non comme quantité [. . . ].

Henri Bergson, Essai sur les données immédiates de la conscience.
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In the previous chapters we have assumed that the notion of time is universal. It corre-
sponds to assuming that the clock of each flow source and of each network element is perfectly
aligned with a reference defining the “true time”. In reality, the clocks used in a time-sensitive
network are non-ideal and deviate slightly from the true time.

Time-sensitive networks are either synchronized or non-synchronized. In non-synchronized
networks, local clocks run independently at every node and their deviations are not controlled.
In synchronized networks, the deviations are kept within bounds, using a time-synchronization
protocol or a global navigation satellite system. Tightly synchronized networks (with a preci-
sion of ∼ 1µs) are typically analyzed as if clocks would be ideal. Other networks require syn-
chronization only for management purposes and are synchronized with a precision of around
∼ 100ms; we call them “loosely synchronized”.

Among the network elements that we study in the previous chapters, the traffic regulators
have shown to be powerful tools that can solve the issue of cyclic dependencies (Chapter 3)
and correct for the increased burstiness due to the redundancy mechanisms (Chapter 4). But
the traffic regulators (in particular, the IRs) are very susceptible to the packet mis-ordering,
as outlined in Chapter 4. Similarly, they could be very susceptible to clock non-idealities.

Indeed, a regulator REGn(F , o∗) that is configured for a flow f ∈ F with a rate r and a
burst b (Figure 4.9) makes sure that over any window of duration t, no more than rt+ b bits
of f are released by the regulator. Hence the evaluation of elapsed time is at the heart of the
operation of any regulator. If the regulator relies an ideal clock and if the system (o → n)
is FIFO for F , then it enjoys the “shaping-for-free” property discussed in Chapter 3. But
if the regulator bases its computations on a non-ideal clock, then the true rate enforced by
REGn(F , o∗) might differ from the configured rate. For example, if the configuration of the
regulator is non-adapted, i.e., does not take into account the clock non-idealities, and if the
clock of the regulator is too slow, then the true rate enforced by the regulator is slightly less
than the rate the flow had at o. With a greedy source, this will lead to a slow, but steady,
buildup of backlog with arbitrarily large delay or unexpected loss.

This simple example suggests that clock non-idealities might significantly affect the delay
analysis of time-sensitive networks with regulators. In this chapter, we determine to what
extend this holds, in non-synchronized and synchronized networks, and if required, we propose
some fixes. We also provide a framework for applying the network-calculus theory to networks
with non-ideal clocks. This framework is of interest beyond the analysis of time-sensitive
networks and of regulators. It is therefore independent from the model of time-sensitive
networks. Specifically, our contributions are:
• We propose a time model for non-synchronized and synchronized networks; it can be

used for computation of latency bounds.
• To compute latency bounds when clocks are non-ideal, we propose a toolbox to be used

with other network calculus results.
• In non-synchronized networks, we show that the configuration of regulators must be

adapted to take into account the clock non-idealities. If not adapted, we prove that regulators
can yield unbounded latencies or unexpected packet losses.
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• For non-synchronized networks, we propose and analyze two methods for configuring
the regulators and for avoiding the problem mentioned above. One method, rate and burst
cascade, requires that the parameters of a regulator depend on the position of the regulator
along the flow path, thus it adds complexity to the control plane. It applies to both PFR and
IR. The second method, asynchronous dual arrival-curve method (ADAM), uses the same
regulator parameters at all re-shaping points on the flow path thus makes the control plane
simpler; it applies to PFRs only.
• In synchronized networks, we compute a bound on the delay penalty imposed by per-

flow regulators (PFRs). In tightly synchronized networks, this penalty is small compared to
latency bounds, and the current practice of ignoring it is adequate. In contrast, in loosely
synchronized networks, we show that the delay penalty can be significant.
• The conclusions are very different in synchronized networks with interleaved regulators

(IRs). We show that, even in tightly synchronized networks, IRs can yield unbounded delay
or unexpected loss if the residual clock inaccuracies are not accounted for. The method of
rate and burst cascade can be used to avoid this problem.

The current chapter is organized as follows. In Sections 5.1, we present the related work.
We then introduce our new time model in Section 5.2. We then detail our toolbox of network-
calculus results in Section 5.3. In Section 5.4 we discuss how to apply the toolbox to compute
end-to-end TAI delay bounds in time-sensitive networks. We last analyze regulators in non-
synchronized and synchronized networks in Section 5.5. Part of the material presented in this
chapter was published in [Thomas, Le Boudec 2020].

5.1 Related Work

The modeling of clock non-idealities benefits from a solid background in time metrology.
In [ITU G.810], the International Telecommunication Union (ITU) defines fundamental no-
tions and models for clocks used in synchronization networks. These models are further
detailed in reference documents such as [ITU G.812] for the ITU and [IEEE 1139] for the
IEEE. Clocks used in TSN networks shall comply with [IEEE 802.1AS, §B.1].

Many technologies have been developed to perform the time-synchronization of a network.
The most common are the use of an external time source such as a global navigation satellite
system (GNSS) [Powers, Hahn 2004], and the use of time-synchronization protocols such as
Network Time Protocol (NTP) [RFC 5905], Precision Time Protocol (PTP) [IEEE 1588],
generalized PTP (gPTP) [IEEE 802.1AS] and WhiteRabbit [Moreira, et al. 2009]. Each
comes with various performance analyses: We can cite [Murta, Torres Jr. Mohapatra 2006]
for NTP, [Dierikx, et al. 2016] for WhiteRabbit. The design of a “good” time-synchronization
protocol remains an open issue [Freris, Graham, Kumar 2011; Ridoux, Veitch 2010].

In each of the above analyses, the precision of the time-synchronization protocol depends
on the latency and jitter of synchronization messages and of control data. The latency and
jitter bounds of time-sensitive networks were studied in numerous occasions using network
calculus, as reported in Section 2.5 of Chapter 2.

Interestingly, the reciprocal aspect, i.e., the effect of the clock and synchronization non-
idealities on the network performances, appears to be much less studied. For example, we
note that many performance analyses of IEEE TSN assume that the synchronization is per-
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fect [Nasrallah, et al. 2019]. Even the famous network simulator ns-3 [16] has a unique
time-base for simulating network events. In Section 7.2 of Chapter 7 we discuss the limited
literature on simulating clock non-idealities in discrete-event simulators (DESs).

A seminal work on applying network calculus on networks with non-ideal clocks for obtain-
ing worst-case upper-bounds lies in [Daigmorte, Boyer 2016; Daigmorte, Boyer 2017; Daig-
morte, Boyer, Migge 2017]. In this set of papers, the authors are interested in a bandwidth-
management method that spreads the time at which frames are scheduled on a CAN bus.
The author note that the technique requires a time-synchronization mechanism between the
network nodes. However, they show that a “weak synchronization” of the nodes (with a
1ms synchronization precision) already provides significant performance improvements [Daig-
morte, Boyer 2016, §5.3]. Their time-model is limited to synchronized networks (including
loosely synchronized networks). It does not consider any bound on the clock frequency offset,
but only on the clock time-error bound (called the “phase bound” in their papers). In the
thesis, we are interested in both synchronized and non-synchronized networks, and we show in
this chapter that taking into consideration the bounds on the frequency offsets helps deriving
tight delay bounds. Furthermore, the system model considered by [Daigmorte, Boyer 2016]
is limited to specific arrival and service curves, whereas we are interested in computing the
effect of clock non-idealities given any service curve, arrival curve or latency bound.

Industrial partners have also expressed their concerns on the effect of clock non-idealities
in IEEE TSN. The recently-published amendment [IEEE 802.1Qcr] mentions the possible
consequences of clock non-idealities when deploying asynchronous traffic shaping (ATS), the
TSN implementation of the IR. The appendix [IEEE 802.1Qcr, §V.8] and proposes some
solutions that would benefit from theoretical foundations, as proposed in this chapter.

5.2 Time Model

We propose a framework for modeling a clock within a device. We then derive this framework
for non-synchronized networks and for synchronized networks. This model and the following
Section 5.3 are independent from the TSN output-port model of Section 2.6.

5.2.1 General Time Model

We denote with HTAI the true time, i.e., the international atomic time (temps atomique
international) (TAI). We assume that it represents a continuous quantity. When reading the
time indicated by a clock Hi in the network, only a subset of values are readable, due to the
precision of the clock logic. We assume that this clock logic enforces the accessible values to
increase when the clock is read over the course of the true time. The red curve in Figure 5.1
represents the accessible values of the clock Hi as a function of the true time. It is possible to
find a continuous, strictly increasing function hi of the true time that returns the value that
the clock Hi would display at true time t if it had infinite precision (Figure 5.1). Accessing
the values of clock Hi corresponds to sampling the function hi at the discrete time instants
where the clock logic does a transition.

The origin of time is a relative notion, hence we assume that hi also extends to R−.
Furthermore, we assume that limt→−∞ hi(t) = −∞ and limt→+∞ hi(t) = +∞. Hence, hi is a
permutation of R and for any t ∈ R both hi(t) and h−1

i (t) exist. This assumption excludes
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Underlying
function hi(t)

assumed continuous,
stricly increasing

Accessible values
of function hi

measure t of the time in the true time HTAI

hi(t)

Figure 5.1: Time function hi between the TAI and the clock time. Only a subset of values are readable.
We assume that the underlying function hi is continuous, strictly increasing.

some models of clocks (e.g., those whose frequency tends to zero as the true time increases),
but it holds in the non-synchronized and synchronized time model introduced in Sections 5.2.2
and 5.2.3. It can also hold for the clocks whose frequency decreases (for instance due to the
clock aging) but for which this decrease over the lifetime of the network is small with respect to
the other non-idealities. A discussion on the clock aging is provided in Section 5.2.2. Function
hi allows us to introduce the relative time function, which will be useful in Section 5.3.

Definition 5.1 (Relative time function di←g) For two clocks Hg,Hi we define the rela-
tive time function from Hg to Hi as di←g ≜ hi ◦h−1

g where ◦ represents the composition.

di←g(t) is the value that clock Hi would have when clock Hg shows time t if they both had
infinite precision. By properties of hi, hg, di←g is a continuous, strictly increasing permutation
of R. Its inverse d−1

i←g is equal to dg←i. The time-error function [ITU G.810, §4.5.13], between
Hi and Hg is the function t 7→ di←g(t)− t for any t measured with Hg.

For two clocks Hg,Hi, di←g(0) is the value of the clock Hi when the clock Hg shows zero.
We denote by Tstart the maximum of this value for any pair (Hg,Hi), where each of Hg,Hi
represents a clock in the network or the TAI. We assume that, for any pair of clocks, no device
transmits any bit in the network until di←g reaches Tstart. This is not a limiting assumption
because we can assume that all devices start with a rough estimation of the true time, hence
of each other. Consequently, Tstart could be in the magnitude of hours or days, whereas the
origin of time on network devices usually refers to several years in the past.

In this thesis, we consider two time-models:
• The non-synchronized time-model: Clocks are free-running and do not interact with

each other, but constraints on their stability can be formulated.
• The synchronized time-model: In addition to the stability requirements on the clocks,

a time-synchronization algorithm (such as NTP or PTP), or an external time source (such as
a GNSS) is employed. It distributes a time reference to all devices so that their local time
matches with each other within a specified bound.

5.2.2 The Non-Synchronized Time Model

We consider a clock Hi in the network. We first assume that this clock does not interact with
any other. We assume that, when compared to the true time HTAI, the clock behaves as per
the time-error model provided in [ITU G.810, §I.3], reported below:

∀t, hi(t)− t = x0,i + ty0,i(T ) + Di

2 t2 + ψi(t) (5.1)
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With x0,i the initial time offset of Hi (relative to the true time, in seconds), y0,i(T ) the
frequency offset at constant temperature T , defined relative to the true frequency of 1 second
per second (thus with no unit), Di the average frequency drift of clock Hi caused by its aging
(in seconds−1), and ψi is a random noise component (in seconds).

x0,i can take any value. Hence, we cannot constrain the time-error function itself but we
can constrain its evolution. Take s < t, then (5.1) gives

hi(t)− hi(s)− (t− s) = (t− s)y0,i(T ) + Di

2 (t2 − s2) + ψi(t)− ψi(s) (5.2)

• The first term is linear with (t − s) and depends on y0,i(T ). In industrial requirements,
the frequency offset is usually bounded by a value that depends on the temperature. We
note ymax,i(T ) the bound on the frequency offset of clock Hi at constant temperature T and
ρ1,i = max{T∈T } ymax,i(T ) its highest value over the whole range of temperatures T ∈ T that
the network is expected to encounter. It corresponds to a1 + a2 in [ITU G.812, §11.2.1].

• The second term is quadratic with (t−s) and depends on the relative aging of the clocks.
In industrial requirements, such as TSN [IEEE 802.1AS, §B.1], the term Di is often

neglected. To validate the assumption that the aging is negligible, we compare the linear
coefficient due to the frequency offset, ρ1,i, with the “linear” coefficient due to the aging,
Di

t+s
2 . The following numerical application verify that we can neglect Di.

Numerical application to IEEE TSN: Call L the order of magnitude of the lifetime
of a network (in seconds). Then the aging coefficient over L is bounded by Di · L
(no unit). If we take for ρ1,i the value specified in [IEEE 802.1AS, §B.1.1] and for Di

(not specified in TSN) the largest value specified in [ITU G.812, Table 24], we obtain
L = ρ1,i/Di ≈ 10−4/10−14 = 1010s. For the aging to be noticeable compared to the
acceptable frequency offset, the network shall be in operation for more than 300years.

• The last term of Equation (5.2) is made of noise and is further detailed in [ITU G.812, §8].
It has two components. The former is the timing jitter [ITU G.810, §4.1.12], a high-frequency
signal. It is constrained by a peak-to-peak jitter bound ηi [IEEE 802.1AS, §B.1.3.1].

Numerical application to IEEE TSN: In [IEEE 802.1AS, §B.1.3.1], the jitter of any clock
Hi shall not exceed 2ns peak-to-peak, that is ηi = 2ns for any Hi in the network.

• The last noise component, the wander [ITU G.810, §4.1.15], is a low-frequency noise
signal. As opposed to the jitter or to the frequency offset, it is usually constrained by using
the time deviation (TDEV), a stochastic metric (or by using the Allan Deviation, ADEV).
The TDEV of clock Hi, devi(t − s) is an upper-bound on the deviation of the time-error
function over an observation period t− s. We assume that we can find mi ∈ R such that the
probability of the time-error function to present a wander over (t−s) higher than mi·devi(t−s)
is negligible over the lifetime of the network.

In the majority of technical requirements, as in TSN [IEEE 802.1AS, Annex B.1], the
TDEV is in the form devi(t − s) = (t − s)ci, with ci a constant. In some cases, it can even
be or negligible [ITU G.812, §8]. To remain conservative, we consider the linear form and we
define ρ2,i = mi · ci. Hence, the wander of Equation (5.2) is upper-bounded by ρ2,i · (t− s).
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We define the stability of clock Hi as ρi = 1 + ρ1,i + ρ2,i. The linear coefficient of
Equation (5.2) is bounded by ρi−1. In general, one of the two terms ρ1,i, ρ2,i is negligible with
respect to the other. For example, when the non-synchronized clock Hi uses the phase-locking
mechanism [ITU G.810, §4.4.4] (also called syntonization or frequency synchronization [ITU
G.8261]) with HTAI, then ρ1,i equals zero [ITU G.810, §I.3]. When phase-locking mechanisms
are not used (as in IEEE TSN), then ρ1,i is usually much higher than ci thus than ρ2,i.

Numerical application to IEEE TSN: In the TSN requirements, for any clock Hi we
have: ρ1,i = 100ppm [IEEE 802.1AS, §N.1.1] and ci ≤ 5 · 10−9 [IEEE 802.1AS, Table
B.1]. Hence, even with a margin mi of hundred times the standard deviation, ρ2,i remains
much smaller than ρ1,i and we obtain that any clock Hi has the stability ρi = 1+1 ·10−4.

From the above considerations, Equation (5.2) has (1) a jitter, high-frequency term, con-
strained by ηi, (2) a linear term, bounded by ρi − 1, and (3) no higher-level terms. Hence:

∀t ≥ s, hi(t)− hi(s) ≤ (t− s)ρi + ηi (5.3)

We now lower-bound the evolution by changing hi for h−1
i and we obtain:

∀t ≥ s, (t− s− ηi)
1
ρi
≤ hi(t)− hi(s) ≤ (t− s)ρi + ηi (5.4)

Let us now consider a pair of clocks (Hi,Hg). We obtain, for t ≥ s:

di←g(t)− di←g(s) = hi(h−1
g (t))− hi(h−1

g (s))
≤ (t− s)ρiρg + ηgρi + ηi

For a given network, we define the clock-stability bound of the network as ρ = max{Hi,Hg}(ρiρg)
and the time-jitter bound of the network as η = max{Hi,Hg}(ηgρi + ηi). We have finally ob-
tained the following model: for any pair (Hg,Hi), ∀t ≥ s,

1
ρ

(t− s− η) ≤ d(t)− d(s) ≤ ρ(t− s) + η (5.5)

where d = di←g. Note that ρ and η do not depend on Hg,Hi. With Hg = HTAI, Equation
5.5 proves that the assumption [limt→−∞ hi(t) = −∞, limt→+∞ hi(t) = +∞] holds.

Figure 5.2a presents, for a given known starting point (s, d(s)), the possible evolution
space of d(t) in the non-synchronized model as well as a possible trajectory. We note that
the time-error function t 7→ (d(t)− t) can be unbounded in this model.

Numerical application to IEEE TSN: Any clock Hi satisfies ρi = 1 + 1 · 10−4 and ηi =
2ns. Hence, for a TSN network, the clock-independent parameters are ρ = 1 + 2 · 10−4

and η = 4ns. Note that the above values are minimum requirements for clocks to be
used as local clocks in an IEEE TSN network. Of course, if better bounds are known
from the manufacturer specifications, the values of ρ and η can be updated accordingly.
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Figure 5.2: Envelope of d(t) (red) and example of a possible evolution of d(t) (black). (a) In the non-
synchronized time-model. (b) In the synchronized time-model.

5.2.3 The Synchronized Time Model

In a synchronized network, the clocks that meet the above stability requirements are synchro-
nized with each other. The synchronization can be performed using for example PTP [IEEE
1588], gPTP defined in TSN [IEEE 802.1AS], NTP [RFC 5905], WhiteRabbit [Moreira, et al.
2009] or a GNSS [Powers, Hahn 2004]. When synchronization is used, the time-error function
for any pair such as (Hg,Hi) is bounded by the precision of the protocol.

For a given network, we define ∆ ≥ 0 the synchronization precision of the network and
we assume that for any pair (Hg,Hi), d meets the constraints of Equation (5.5), plus

∀t, |d(t)− t| ≤ ∆ (5.6)

where d = di←g. Note that ∆ does not depend on Hg,Hi.
Numerical application to IEEE TSN: For tightly synchronized networks, we take ∆ =1µs
from [IEEE 802.1AS, Normative Annex B.3]. For loosely synchronized networks, we
select the precision of NTP. In [RFC 5905, Figure 27], NTP defines a “step threshold”
of 125ms, and a survey of the NTP network notes that this value is hardly exceeded if
the clock is synchronized [Murta, Torres Jr. Mohapatra 2006, §IV.B.1]. Hence, we take
∆ =125ms.
Figure 5.2b presents, for a known starting point (s, d(s)), the possible evolution space of

d(t) in the synchronized model as well as a possible trajectory. Note that the ∆-large envelope
is not centered on the starting point but on the d(t) = t function.

5.3 Network-Calculus Toolbox for Networks With Non-Ideal
Clocks

In the network-calculus framework (Chapter 2), the universality of the time notion is implicit.
Hence, the results of Chapter 2 and in particular the three-bound theorem (Theorem 2.2) are
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Figure 5.3: Clocks Hg and Hi observe flow f that enters system S.

valid whenever all the notions that appear in their formulation (the arrival curves, the service
curves, the delays) are expressed (observed) using the same clock. Therefore, we propose here
a toolbox that can be used to change the clock that observes one of the above notions. This
results in an extension of network calculus to networks with non-ideal clocks.

In the entire section, we consider a system S and a flow f that crosses this system (see
Figure 5.3). We denote by win [resp., wout] the observation point located at the input [resp.,
at the output] of the system. We also consider two clocks Hi and Hg.

5.3.1 Results on Delays

Proposition 5.1 (Changing the clock for the measure of a duration)
If χHi is the measure of a duration with clock Hi, then the measure χHg of the same
duration with Hg is bounded by:

max
(

0, χ
Hi − η
ρ

, χHi − 2∆
)

≤ χHg ≤ min
(
ρχHi + η, χHi + 2∆

)
(5.7)

with the convention that ∆ = +∞ if the network is non-synchronized.

The proof is in Appendix B.3.1. A delay is a measure of the duration needed by a bit (or
packet) to cross a system. If it is measured with HTAI, we call it a TAI delay.

If the delay of flow f through S in Figure 5.3 is lower-bounded by dHi
f,S [resp., upper-

bounded by DHi
f,S ] when observed with Hi, then by application of Proposition 5.1, its delay

through S is lower-bounded by dHg

f,S [resp., upper-bounded by DHg

f,S ] when observed with Hg,
with

d
Hg

f,S = max
(
0, dHi

f,S − η/ρ, d
Hi
f,S − 2∆

)
and D

Hg

f,S = min
(
ρDHi

f,S + η,DHi
f,S + 2∆

)
(5.8)

Numerical application to IEEE TSN: For both time models, when a delay bound (either
upper or lower bound) is within 1µsec and 200msec, the relative increase of the delay
when observed with another clock ranges from 0.4% to 0.02%. Practically, the effect of
clock non-idealities on the definition of the delay can thus be ignored.

5.3.2 Results on Arrival Curves

We denote by RHi
f,w the function such that ∀t < 0, RHi

f,w(t) = 0 and ∀t ≥ 0, RHi
f,w(t) is the

number of bits of f that cross w between the instant measured as 0 using Hi and the instant
measured as t using Hi (Figure 5.3). Then
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Table 5.1: Relations Between an Arrival Curve Observed with Hi and an Arrival Curve Observed with Hg.

Arrival curve
General Leaky-Bucket

in Hi αHi(t) γr,b
in Hg, general time model αHi((di ⊘ di)(t)) –
in Hg, non-synchronized time model αHi(ρt+ η) γrρ,b+rη
in Hg, synchronized time model αHi(min[ρt+ η, t+ 2∆]) γrρ,b+rη ∧ γr,b+2r∆

αHi
f,w

b
b+ rη

ρrb+ 2r∆

α
Hg

f,w

r

time interval measured with Hg or Hi

data

Figure 5.4: Changing the observing clock for a leaky-bucket arrival curve. A flow f has the leaky-bucket
arrival curve αHi

f,w = γr,b at w when it is viewed from Hi. Then, f has the arrival curve αHg

f,w when it is
viewed from Hg, with the convention ∆ = +∞ if Hg and Hi are not synchronized.

Proposition 5.2 (Changing the clock of a cumulative function)
For any clock pair (Hg,Hi), for any f any w, ∀t ≥ 0, R

Hg

f,w(t) = RHi
f,w(di←g(t))

The proof of the proposition is given in Appendix B.3.2. We now define the concept of an
arrival curve observed with a clock.

Definition 5.2 (Arrival curve of a flow observed with a clock) We say that a wide-sense
increasing function α is an arrival curve for the flow f observed at w with clock Hi if
∀t ≥ s ≥ 0, RHi

f,w(t)−RHi
f,w(s) ≤ α(t− s). We note such a function αHi

f,w.

In particular, when Hi is HTAI, we retrieve Definition 2.5.
Proposition 5.3 (Changing the clock of an arrival curve)
If αHi

f,w is an arrival curve for the flow f at w when observed with Hi, then α
Hg

f,w : t 7→
αHi
f,w ((d⊘ d)(t)) is an arrival curve for the flow observed with Hg, where ⊘ is the min-

plus deconvolution (Definition 2.3) and d = di←g.

The proof of the proposition is available in Appendix B.3.3. We can now find an arrival
curve for a flow as observed from any clock as long as we know one that is observed with
one clock. The application of Proposition 5.3 to the synchronized and non-synchronized time
models is reported in Table 5.1. The table can be used for any pair of clocks (Hg,Hi), each
being either a clock in the network or the TAI.

In the right column, we apply it for a leaky-bucket curve. If αHi
f,w = γr,b is a leaky-bucket

arrival curve for f at w when observed with Hi (dotted blue curve in Figure 5.4), then the
red curve αHg

f,w in Figure 5.4 is an arrival curve for f at w when observed with Hg. Here again
we use the convention ∆ = +∞ if the network is non-synchronized.
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Table 5.2: Relations Between a Service Curve of a System Observed with Hi and a Service Curve of the
same System Observed with Hg.

Service curve
General Rate-Latency Leaky-Bucket

in Hi βHi(t) λR,T γr,b
in Hg, general time model βHi((di⊘di)(t)) – –
in Hg, non-synchronized time model βHi(1/ρ · |t− η|+) λR/ρ,ρT+η δη ⊗ γr/ρ,b
in Hg, synchronized time model βHi(max[1/ρ · (t− η), t− 2∆, 0]) λR/ρ,ρT+η (δη ⊗ γr/ρ,b)

∨λR,T+2∆ ∨(δ2∆ ⊗ γr,b)

Numerical application to IEEE TSN: For a non-synchronized network, changing the ob-
serving clock for a leaky-bucket worsens the rate by 0.02% and the burst by less than a
bit for most flows (below 250Mbits/s) as η =4ns.

If the network is also synchronized, we obtain a second leaky-bucket arrival curve
γr,b+2r∆ with an unchanged rate but with an increased burst. For a flow of 500kbits/s,
this represents a burst increase of 125kbits for a loosely synchronized network and 1bit
for a tightly synchronized network. For loosely synchronized networks, due to the high
burst increase, the other part of the arrival curve, γρr,b+rη, needs to be used in order to
obtain tight bounds.

5.3.3 Results on Service Curves

As for the arrival-curve concept, we define the service curve concept relative to a clock:
Definition 5.3 (Service-curve offered by a system to a flow when observed with a clock)
Consider a system S and denote by win and wout its input and output observation points,
respectively. We say that the system S offers to f the service-curve β ∈ F0 when ob-
served with Hi if ∀t ≥ 0, RHi

f,wout(t) ≥ (RHi

f,win ⊗ β)(t) where ⊗ denotes the min-plus
convolution (Definition 2.2). We note such a function βHi.

Proposition 5.4 (Changing the clock for a service curve)
If S offers the service-curve βHi when observed with Hi, then it offers the service curve
βHg when observed with Hg with βHg : t 7→ βHi((d⊘d)(t)) where d = di←g and d⊘d(t) =
infu≥0[d(t+ u)− d(u)] denotes the max-plus de-convolution.

The proof is in Appendix B.3.4. The application of Proposition 5.4 to the synchronized
and non-synchronized time model is reported in Table 5.2. If S offers the rate-latency service
curve βHi

S = βR,T when observed with Hi (dotted blue curve in Figure 5.5a), then it offers
the service curve βHg

S shown in red in Figure 5.5a when observed with Hg. If S offers the
leaky-bucket service curve βHi

S = γr,b when observed with Hi (dotted blue in Figure 5.5b, for
example, S can be a greedy shaper with shaping curve γr,b, see Theorem 2.4), then it offers
the service curve βHg

S shown in red in Figure 5.5b when observed with Hg.
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Figure 5.5: Changing the observing clock for rate-latency and leaky-bucket service curves. If the system
offers service curve βHi

when observed with Hi, then it offers service curve βHg
when observed with Hg.

(a) βHi is a rate-latency service curve. (b) βHi is the service curve of a PFR (leaky-bucket service curve).

ϕ E5 S5North S4East S3South S6East E6

Hϕ
HE5 HS5North HS4East HS3South HS6East

Figure 5.6: Flow graph for the flow of the toy example.

5.4 Computing End-To-End TAI Bounds in Time-Sensitive
Networks

In this section, we discuss how the results of the toolbox of the previous section can be
practically applied for computing end-to-end TAI latency bounds in time-sensitive networks,
including those that contain packet replication, elimination and ordering functions (PREOFs).

5.4.1 Two Opposite Strategies

For general time-sensitive networks, two opposite strategies can be envisioned for computing
end-to-end TAI latency bounds. To illustrate them, we consider the following example.

Example: Consider the non-redounded flow of the toy example of Figure 4.1, for which
we provide the flow graph in Figure 5.6. We have seven different clocks (marked below the
nodes). The flow meets is source arrival-curve constraint at ϕ, but only when observed
with Hϕ the source of the clock. Similarly, the service offered by each node n is only
guaranteed when observed with the clock Hn of the output port.

A first strategy for computing TAI end-to-end latency bounds is to translate all the source
arrival curves and all the service curves in the TAI: we call this strategy “always in HTAI”.

Example: This strategy is illustrated in Figure 5.7. The source arrival curve is converted
into an arrival curve observed with HTAI by using Proposition 5.3 (orange arrow). Then
each service curve is converted into a service curve observed with HTAI using Proposi-
tion 5.4 (dashed red arrows).
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Figure 5.7: Illustration of the strategy “everything in HTAI” for the example of Figure 5.6.

In HTAI (dashed box on the lower-end of Figure 5.7), we obtain a source with an
arrival curve αHTAI

f,ϕ and a set of successive service-curve elements with service curve
βHTAI
n . Therefore, remaining in this time domain, we can apply the network calculus

results of Chapter 2 (black arrows on the lower-end of Figure 5.7).
All the intermediate results (in blue in Figure 5.7) are generated within HTAI. In

particular, summing the per-hop delays directly provides the end-to-end latency bound
for f , observed with HTAI.

The above strategy only uses Proposition 5.3 and 5.4, it does not use Proposition 5.1.
This strategy is useful when the model of a node (observed with the node’s clock) can be
translated into a model observed with HTAI. Proposition 5.4 proves that anything that can
be modeled as a service-curve element when observed with its local clock can be translated
into a service-curve element with a different service curve when observed with HTAI.

An opposite strategy, that we denote as “always in local time” is to always apply the
network-calculus results in the local clock of the output port.

Example: This strategy is illustrated in Figure 5.8. Here, the source arrival curve αHϕ

f,ϕ is
first translated into an arrival curve as observed by the first output port αHE5

f,ϕ .
Then for each node n, the network-calculus results (black arrows) are applied in the

local clock Hn. This provides the output arrival curve αHn
f,n∗ and the delay bound DHn

f,n

observed with Hn. Then the output arrival curve αHn
f,n∗ is translated into an output

arrival curve αHn+1
f,n∗ , but observed with the clock Hn+1 of the next output port using

Proposition 5.3 (orange arrows).
The per-hop delay bounds are only known so far when observed with the local clocks,

hence they are translated to HTAI using Proposition 5.4 (dashdotted purple arrows).

The above strategy only uses Propositions 5.3 and 5.1. This strategy is useful when the
model of a node (observed with the node’s clock) cannot be translated into a model observed
with HTAI. The next subsection provides an example.

In the above example, the “always in local time” strategy requires ten calls to the toolbox1,
whereas the “always in TAI” strategy only requires six calls to the toolbox2. Each time a
result of the toolbox in Section 5.3 is applied, the arrival curves are expanded and the service
curves are weakened. Therefore, we prefer the strategy “always in TAI” whenever we process
service-curve elements. Intermediate strategies mixing the above two can also be envisioned

1Five calls to Proposition 5.3 and five calls to Proposition 5.1
2One call to Proposition 5.3 and five calls to Proposition 5.4
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Figure 5.8: Illustration of the strategy “always in local time” for the example of Figure 5.6.

(sometimes in TAI, sometimes in the local clock).

5.4.2 Networks with Non-ideal Clocks and PREOFs

When a node contains an optional function such as a PEF, a POF, or a REG, the correspond-
ing model that we have developed in Section 4.2.2 of Chapter 4 is a priori only valid when
observed with the local clock of the output port. To apply the “always in TAI” strategy, we
need to obtain a model for the same function but as observed with HTAI.

The PEFs: Consider for example a PEF for f at a node n that is modeled by PEFHn
n (f)

defined in Section 4.2.2 when observed with Hn. Do we know a model for the same PEF, but
as observed with HTAI ?

The answer is yes, because the PEF does not need to measure elapsed time, thus its
behavior is identical in HTAI, i.e., PEFHTAI

n (f) = PEFHn
n (f) is also a model for the same PEF

observed with HTAI. Hence Theorem 4.1 can be applied to the model PEFHTAI
n (f) in HTAI. Its

application requires that the arrival curves and delay bounds of its formulation be provided
as observed with HTAI. This requirement is trivial in the context of the “always in TAI”
strategy because all the intermediate results are obtained in HTAI (Figure 5.7).

The POFs: Consider now a POF for F at a node n with reference o that is modeled by
POFHn

n (F , o) with timeout THn as defined in Section 4.2.2 when observed with Hn. Do we
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know a model for the same POF, but as observed with HTAI ?
The answer here is more complex. Indeed, the only model that we know from the results

of the current chapter is the model POFHTAI
n (F , o) with the same behavior as in Figure 4.8 but

with a timeout THTAI that can vary in [THTAI
min , THTAImax ] where THTAI

min and THTAImax are obtained
from Proposition 5.1. As we do not know any result that applies expressly to a POF model
with varying timeout3, we cannot apply the “always in TAI” strategy. We would typically
apply here the “local time” strategy to apply the results from [Mohammadpour, Le Boudec
2021] in the POF’s local time.

The REGs: The next section is devoted to the analysis of REGs with non-ideal clocks.

5.5 Regulators in Networks With Non-Ideal Clocks

As we discussed in the introduction of the chapter, the internal operations of a regulator
require to measure elapsed time. Therefore, like the POF, a system that is a regulator when
observed with its own internal clock might no longer meet the definition of a regulator when
observed with a different (e.g., external) clock.

Assume for instance that a PFR is configured with a shaping curve σf for flow f . This
shaping curve is enforced with the regulator’s internal clock HREG and σf is an arrival curve
for f at the output of the regulator, but when observed with the regulator’s internal clock,
i.e., αHREG

f,REG∗ = σf . Further assume that the PFR’s clock runs faster than expected when
observed with an external clock. Then the external observer will see that the system’s output
violates the configured shaping curve thus the system cannot be a regulator. Conversely, if
the clock of the system is too slow from an external point of view, then the external observer
will conclude that the system is not a regulator because it does not release the packets as
soon as possible. Worse, the clock may oscillate between being too fast or being too slow.

Similar observations can be done with the IR. Consequently, none of the properties of the
regulators (Section 3.1.5 of Chapter 3) are expected to hold when observed with an external
clock. In particular, the shaping-for-free property might be violated.

Using Proposition 5.3 and Table 5.1, one can obtain the arrival curve of the flow α
Hg

f,REG∗

as observed with an external clock Hg based on the arrival curve αHREG

f,REG∗ = σf as observed
with HREG. In this section, we hence focus on the second issue, i.e., the violation of the
shaping-for-free property due to non-ideal clocks.

In the following, we say that a regulator is non-adapted if its configured shaping curve(s)
do not take into account the clock non-idealities: the regulators are configured as if the clocks
in the network were ideal. Proposition 5.5 proves that in non-synchronized networks, the
shaping-for-free property holds neither for a non-adapted PFR nor for a non-adapted IR. For
synchronized networks, Section 5.5.3 computes a lower and an upper bound on the worst-case
penalty incurred by a non-adapted PFR. Finally, Proposition 5.10 proves that the IR cannot
provide any delay bound even in networks with arbitrary tight synchronization.

3We could argue that some, if not all, of the results of [Mohammadpour, Le Boudec 2021] can be extended
to a POF with a varying timeout but no formal extension has been performed.
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Figure 5.9: Network model for a regulated flow. At each hop, the flow goes through a system Sk and is
then regulated by the regulator REGk. Each system Sk and reach regulator REGk has its own internal clock,
noted at the bottom right.
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Figure 5.10: An example of mapping between the flow graph of the toy example used in Chapter 4
(Figure 4.6) and the sequence of Sk systems used in the current chapter.

5.5.1 Simplified Network Model For The Analysis of Regulators in Net-
works with Non-ideal Clocks

In the previous chapters, we have used the model of a TSN device described in Chapter 2,
Section 2.6. The results that we introduce in this chapter are of interest beyond the scope
TSN model of Chapter 2. Therefore, we present here as slightly different network model.

We assume that the path of a flow f is a sequence of systems Sk. Each Sk can contain any
assembly of network elements other than the regulators for f but each Sk must remain causal
and FIFO for f and its output must be packetized. The flow f is assumed to be processed
by a regulator after each system in its path, except the last one (Figure 5.9). We call “kth
hop” of this flow the sequence (Sk − REGk). By convention, REG0 denotes the source of the
flow, its output is the observation point noted as ϕ in the rest of the manuscript.

Remark (Relation with Chapter 4): A system Sk in the current chapter can be
modeled by an assembly made of a packet-replication function, several parallel paths and
a packet-elimination function of Chapter 4, as illustrated in Figure 5.10. Thus we can
combine the results of Chapter 4 with the results of the current chapter. The assumption
that Sk is causal and FIFO for f are respectively translated, in the context of Chapter 4,
into (a) the first vertex within Sk must be a diamond ancestor of the last vertex within
Sk, and the latter shall not be an EP-vertex, and (b) a POF for f is placed at the last
vertex within Sk to correct for any mis-ordering caused by the redundancy.

Note that we assume (b) because when it does not hold, we have already discussed in
Chapter 4 that regulators incur delay penalties.

For each flow f and each index k = 1 . . . n, we note REGk the regulator (PFR or IR) that
processes flow f after the network element Sk. In the previous chapters, a regulator enforce a
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shaping curve defined by a reference point: the shaping curve is the arrival curve that the flow
has at the reference. In this chapter, we allow to freely select the rate and burst parameters
of the regulators to take into account the clock inaccuracies. On REGk, we assume that we
can configure a shaping curve σk with a burst bRegk

and a rate rRegk
for this flow. Practical

implementations support only limited accuracy, and we note Qk(b) [resp. Rk(r)] the lowest
value that is configurable by REGk and that is higher than b [resp r].

For each system S, we assume that if we know the arrival curve of each flow g going
through S, observed with HTAI, then for any flow f going through S we can obtain a delay
bound DHTAI

f,S for the flow through the system S. This delay bound can be obtained using
the network-calculus results (Chapter 2) applied in the HTAI clock. Each system and each
regulator (including, for each flow f , its source REG0) uses a local clock noted at the bottom
right, as in Figure 5.9. Each flow f exits its source REG0 with a leaky-bucket arrival curve of
rate r0 = rReg0 and burst b0 = bReg0 , when observed with HReg0 .

The delay bounds provided in this section are only valid for the stream of non-lost data
units of f .

5.5.2 Non-synchronized Networks with Regulators

We now combine the set of results of Section 5.3 with other network-calculus results to analyze
non-synchronized networks containing regulators. We focus on a network with flows that are
leaky-bucket constrained at their sources.

Instability of Non-Adapted Regulators in Non-Synchronized Networks

Proposition 5.5 (Instability of non-adapted regulators in non-synchronized networks)
Consider a non-synchronized network with ρ > 1 and η ≥ 0. Consider a flow f and
system Sk as in Figure 5.9 that is causal, FIFO for f and that guarantees to f a delay
upper-bounded by DHTAI

f,Sk
if the flow satisfies an arrival curve αHTAI

f,Sin
k

= γr,b when observed
with HTAI. The flow is submitted to a non-adapted regulator (PFR or IR) with shaping
curve σk ≜ γr,b (Figure 5.9). There exist adversarial source clocks within our time model
and adversarial traffic generation that satisfies the γr,b arrival curve such that the delay
of the flow through the regulator, measured using any clock of the network, is unbounded.

Recall that if the clocks would be ideal, the worst-case delay of the flow would not be
increased by the regulator (Chapter 3). In contrast, with nonideal clocks, the total delay is
unbounded, thus the “shaping-for-free” property does not hold for non-adapted regulators.

The proof in Appendix B.3.5 is inspired by a remark made in the TSN ATS standard
[IEEE 802.1Qcr, Annex V.8]: “If the upstream device [. . . ] runs faster than nominal and [the]
downstream Bridge [. . . ] runs slower than nominal, the backlog as well as the per hop delay
in the downstream Bridge could grow under peak conditions”. In our model, the “upstream
device” represents the upstream regulator, or the source, the “downstream Bridge” represents
the next regulator, and “peak conditions” refer to a greedy source.
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The Rate and Burst Cascade for Non-Synchronized Networks with Regulators

This last quoted remark highlights how a first solution for the instability problem can be
formulated: one can make sure that whatever the clock conditions (but within the constraints
of Equation (5.5)), the downstream device will always have an output rate higher than the
input. This requires increasing slightly the nominal rate of the regulator; and because this
increase is performed at every hop, it generates a rate and burst cascade that was first
described in [IEEE 802.1Qcr, Annex V.8] and that we refine here, proving also its validity.
The rate and burst cascade works as follows.

Step 1: For each flow f , and each hop k = 1 . . . n in its path, configure REGk with
rREGk

= Rk(ρrREGk−1) and bREGk
= Qk(bREGk−1 + ηrREGk−1). Recall that Rk(r) [resp. Qk(b)]

denote the smallest configurable rate [resp. burst] higher than r [resp. b] for this regulator.
Also, ρ and η are network-wide parameters. They depend neither on the considered clock nor
on k.

Step 2: For each flow f , and each hop k = 1 . . . n in its path, the configured shaping curve
σk−1 is an arrival curve at the output of the regulator REGk−1, when observed with the clock
of the regulator: αHREGk−1

f,Sin
k

= α
HREGk−1
f,REG∗

k−1
= σk−1. Using Table 5.1 with Hg = HTAI and Hi =

HREGk−1 shows that flow f has a leaky-bucket arrival curve αHTAI
f,Sin

k
= γρrREGk−1 ,bREGk−1 +ηrREGk−1

.
For each system S in the network and each flow f ′ crossing S, the arrival curve of f ′ at

the input of S, observed with HTAI is given by the above αHTAI
f ′,Sin

k
, with k the index of S in the

path of flow f ′. According to the assumptions of Section 5.5.1, we can compute a TAI delay
bound DHTAI

f,S of any flow f that goes through S.
Step 3: For each flow f , and each hop k = 1 . . . n in its path, its TAI delay bound

DHTAI
f,Sk+REGk

through the sequence (Sk − REGk) is given by the next proposition:

Proposition 5.6 (Hop delay with the rate-and burst cascade)
If the regulators are configured as in Step 1, for each flow f that goes through system
Sk, a bound on the TAI delay of the flow through the concatenation of Sk and the next
regulator is DHTAI

f,Sk+REGk
= ρ2DHTAI

f,Sk
+ η(1 + ρ) where DHTAI

f,Sk
is a bound on the TAI delay

of flow f through Sk, computed in Step 2.

The proof is in Appendix B.3.6. Intuitively, with the clock of the regulator, the arrival
curve of the flow at the input of Sk is dominated by the shaping curve of the regulator, due
to the inflation of rate and burst. Hence the shaping-for-free property holds in HREG for the
rate-and-burst-adapted regulator.

The rate and burst cascade has the drawback that the configuration of a regulator depends
on its position in the flow path. This puts complexity on the control plane, specifically, for
computing, distributing and managing the regulators’ configuration.

Furthermore, it leads to a pessimistic reservation of rates. Indeed, every regulator REGk
is conservatively configured so as to be stable even if the previous regulator REGk−1 is greedy
(its output matches exactly the shaping curve) and even if the clock of REGk−1 is ρ times
faster than the clock of REGk, the maximum frequency difference allowed by Equation (5.5).
But REGk−1 is again configured in case REGk−2 is greedy and with a clock ρ times faster than
REGk−1. All these worst-case situations cannot remain simultaneously for a long duration:
Equation (5.5) applies for any pair of clock in the network and in particular it forbids HREGk−2
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to sustain a frequency ρ2 times faster than HREGk
, even if the configuration of the rate-and-

burst cascade would apply in this situation.
Theses remarks motivates an alternative method which, however, works only with PFRs.

The ADAM method for Non-Synchronized Networks with Per-Flow Regulators

The goal of the asynchronous dual arrival-curve method (ADAM) is, for any given flow, to
have the same parameters at all regulators along the flow path. Hence we require that the
rounding functions Rk,Qk (which capture the accuracy with which regulator parameters are
actually implemented) are the same at all network nodes (and we consequently drop the index
k for these functions). We also require that all the regulators in the network be PFRs.

The main idea of ADAM is to establish that each flow f has an arrival curve, expressed in
HTAI, of the form αHTAI

f,REG∗
k

= αf,1 ⊗ αf,2,REG∗
k

at the output of its k-th hop where αf,1, αf,2,REG∗
k

are leaky-bucket arrival curves and the former is independent of the hop index.
Step 1 (per-flow): For each flow f , find a rate margin W such that W ≥ ρ2 and

R(Wr0) = Wr0. Configure the shaping curves at all regulators along the path of the flow
with rate rREGk

= Wr0 and burst bREGk
= b0. Since ρ is a network-wide parameter that does not

depend on a clock, all regulators except the source have the same configuration, independent
of the hop index k = 1...n. Here r0, b0 are the rate and burst at the source (which depend on
f , though the dependency on f is not shown for simplicity of notation).

Step 2 (per-node): Any flow f that goes through a system S is output by the regulator
at its previous hop. Thus, using the same justification as in Step 2 of the rate and burst
cascade, it has the arrival curve αHTAI

f,1 = γρWr0,b0+ηWr0 (i.e. leaky bucket with rate ρWr0
and burst b0 + ηWr0), when observed with HTAI.

Then, again using the same justification as in Step 2 of the rate and burst cascade, compute
a TAI delay bound DHTAI

f,S through any system S and for any flow f that goes through it.
Step 3 (per-flow): For each flow f and each hop k = 1 . . . n in its path, compute a TAI

delay bound, DHTAI
f,Sk+REGk

, of the flow through the sequence Sk − REGk), using Algorithm 2.

Proposition 5.7 (Correctness of Algorithm 2)
For a flow f that has n hops and for m = 1 . . . n:

1. Let αf,2,REG∗
0

be the leaky-bucket curve with rate r2 (Line 2) and burst b2,REG∗
0

(Line 3); it is an arrival curve for the flow at its source when observed with HTAI.
2. Let α2,REG∗

k
be the leaky-bucket curve with rate r2 (Line 2) and burst b2,REG∗

k
(Line 6);

it is an arrival curve for f observed with HTAI at the output of REGk.
3. DHTAI

f,Sk+REGk
(Line 5) is a TAI delay bound for the flow through the concatenation

(Sk − REGk), for k = 1 . . .m.

The proof is in Appendix B.3.7. Unlike with the rate and burst cascade method, here the
regulators increase slightly the delay bound, specifically, the shaping-for-free property does
not hold. The proof captures this increase by using the service-curve characterization of the
PFRs (Proposition 3.1), together with the arrival curve αf,1 ∧ αf,2,REG∗

k−1
for the flow at the

input of Sk observed with HTAI. It then applies Theorem 2.2 in HTAI. As we do not know
any service-curve characterization for IRs, we are not able to extend this method to IRs.
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Algorithm 2 Computing the TAI delay for a flow through its hop m using the ADAM
method
Require: {DHTAI

f,Sk
}k, the set of all the TAI delay bounds for the flow through the systems Sk

in its path (from Step 2).
Require: m, the index at which to compute the TAI hop delay.
Require: r0, b0, the rate and burst of the flow at the source, observed with the source’s

clock. W , the rate margin selected at Step 1.
Require: η, ρ the network-wide parameters of the time-model.

1: function ComputeDelayBoundForHopM({DHTAI
f,Sk
}k,m,(r0, b0),W ,ρ,η)

2: r2 ← ρr0
3: b2,REG∗

0
← b0 + ηr0

4: for k = 1 . . .m do
5: DHTAI

f,Sk+REGk
← DHTAI

f,Sk
+ η(1 + ρ) +

b2,REF∗
k−1
−b0−ηWr0

ρr0
ρ2−1
W−1

6: b2,REG∗
k
← b2,REG∗

k−1
+ r2 ·DHTAI

f,Sk+REGk
▷ See Proposition 5.7

7: end for
8: return DHTAI

Sm+REGm

9: end function

Also note that the delay bound in Step 2 is computed using the arrival curve αf,1 and
not the full arrival curve known by the method. This is because Step 2 is performed at every
node in the network, before knowing the results of Step 3 that is performed per-flow. Using
the result of Step 3 in Step 2 is possible in feed-forward networks and might in some cases
lead to slightly smaller delay bounds. However, one of the major applications of regulators is
in non-feedforward networks. Therefore, we do not explore such possible optimizations.

5.5.3 Synchronized Networks with Regulators

In synchronized networks, we expect that unbounded delays due to non-adapted regulators
cannot occur, as clock rates cannot diverge for long periods of time. We now examine to
which extent this holds. We study separately PFRs and IRs.

Delay Penalty of Non-Adapted PFRs in Synchronized Networks

Even when synchronized, a non-adapted PFR increases the worst-case delay
Proposition 5.8 (Lower bound on the worst-case delay penalty of synchronized non-
adapted per-flow regulators)
For any leaky-bucket arrival curve γr,b, there exists a network configuration such that 1/
one flow has the arrival curve γr,b at its source, when observed with the source clock,
2/ the flow goes through one network element followed by one non-adapted PFR (hence
with shaping curve γr,b) 3/ the clocks of the source and the PFR are synchronized with
time-error bound ∆, and 4/ the PFR increases the worst-case delay by at least ∆.

The proof is in Appendix B.3.8. Thanks to the synchronization, though, the delay penalty
of the PFR can be controlled:
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Figure 5.11: Notations of Proposition 5.10. A non-adapted IR is placed after a causal, lossless, FIFO
system that is connected to n sources, each with a different clock.

Proposition 5.9 (Upper bound on the delay penalty of synchronized non-adapted per-
flow regulators)
For a synchronized network and a flow f , if REGk is a non-adapted PFR, then a TAI
delay bound for f through the concatenation of Sk and REGk is DHTAI

f,Sk+REGk
= DHTAI

f,Sk
+4∆.

The proof is in Appendix B.3.9. Note that a TAI delay bound DHTAI
f,Sk

can be obtained
by using the fact that αHREGk−1

f,REG∗
k−1

= σREGk−1 . Hence we can use the last line of Table 5.1. If
REGk−1 is also non-adapted (i.e., enforces γr0,b0), then the flow enters Sk with a double arrival-
curve constraint when observed with HTAI: a leaky-bucket arrival curve of rate ρr0 and burst
b0 + r0η, and a leaky-bucket arrival curve of rate r0 and burst b0 + 2r0∆.

Propositions 5.8 and 5.9 show that the worst-case penalty on the TAI per-hop delay of
non-adapted PFRs in synchronized networks is between ∆ and 4∆, i.e., it is of the order of
magnitude of the synchronization precision. For tightly synchronized networks and PFRs,
the current practice of ignoring clock non-idealities is thus perfectly acceptable. However, in
loosely synchronized networks, the value of ∆ (∼ 125ms) is larger than the required delay
bound for flows with stringent delay requirements. The two solutions (rate and burst cascade,
and ADAM) that apply to non-synchronized networks also apply here and can be used.

Instability of Non-Adapted IRs in Synchronized Networks

For the interleaved regulator, however, the conclusions are very different. Indeed, the IR may
yield unbounded latencies, even with tightly synchronized networks, as shown in the following
proposition.

Proposition 5.10 (Instability of non-adapted synchronized interleaved regulators)
Consider an interleaved regulator as in Figure 5.11, with n upstream systems. Assume
that (a) each upstream system j outputs Pj flows {fj,p}

Pj

p=1, each with a known arrival
curve α

Hj

fj,p
when observed with clock Hj; (b) the interleaved regulator is non-adapted:

∀(j, p), σHIR
fj,p

= α
Hj

fj,p
; and (c) the clocks HIR,HFIFO and each of the Hj are synchronized

with the synchronized model with parameters η, ρ,∆ (as per Equations (5.5) and (5.6)).
Then, for any parameters n, ρ, η,∆ with n ≥ 3, ρ > 1, η ≥ 0 and ∆ > 0, there exists
a FIFO system, adversarial clocks for HIR,HFIFO and {Hj}j, and adversarial traffic
generation of the upstream systems, such that the flows crossing the IR have unbounded
latency within the IR, when observed with any clock of the network.
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Figure 5.12: Comparison of the end-to-end strategies and of the adaptation methods. (a) End-to-end
latency bounds as a function of the path length, obtained either with the “always in TAI” strategy or with
the “always in local time strategy”, in synchronized and non-synchronized networks. (b) End-to-end latency
bounds obtained with different adaptation methods for the regulators, when each node in the flow path is
followed by a regulator.

The proof is in Appendix B.3.10.
Numerical application to IEEE TSN: In the proof, the delay divergence increases at a
rate √ρ−1 for any number of previous sources n ≥ 3, and any synchronization precision
∆ > 0. This corresponds to 100µs of increased worst-case delay per second of network
operation for both tightly- or loosely synchronized networks.

5.6 Evaluation of the Approaches

In this section, we evaluate the two proposed strategies as well as the proposed regulator
adaptation methods on a parametric topology.

We consider a unique flow f that crosses n systems S1, . . . , Sn. Because the model devel-
oped in this chapter is independent from the model of a TSN bridge, we simply assume here
that the systems (Si)i are service-curve elements. The flow’s source and each of the (Si)i has
its own clock. When observed with its own clock, Si offers to f a rate-latency service curve
with rate 100Mbit/s and latency 1µs. When observed with its own clock, the source generates
flow f with a leaky-bucket arrival curve with rate 80Mbit/s and burst of 1500Bytes.

5.6.1 Comparison of the Two End-to-end Strategies

We first use a classic TFA approach with no line shaping and no regulator, and we compute
the end-to-end latency bounds obtained with TFA when the clocks are ideal, with a path
length n between 1 and 11. The latency bounds for these ideal-clock situation range from
121µs to 97ms and are used as a reference (line at y=0 in Figure 5.12a).
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Then we remove the ideal-clock assumption and compute the relative increase, with respect
to the ideal-clock situation, of the latency bounds obtained either with the “always in TAI”
or the “always in local time” strategies, with the non-synchronized (η =4ns, ρ =1.0002) and
synchronized (∆ =1µs) time models.

For a path of a short length, the “always in local time” strategy performs slightly better
than the “always in TAI” strategy, but as the length of the path increase, the gain of the
latter becomes significant with respect to the former.

As illustrated in Figure 5.8, the “always in local time” strategy often calls Proposition 5.3
that translates, in a non-synchronized network, a γr,b arrival curve in one clock into a γρr,b+ρη
in another clock. The burst increase due to this operation is small (ρη) and the rate increase
(ρr) does not immediately worsen the delay bound in the current node4 but worsens the
burstiness increase in the subsequent nodes. On the contrary, the “always in TAI strategy”
(Figure 5.7) often calls Proposition 5.4 that translates, in a non-synchronized network, a βR,T
service curve observed with a local clock into a βR/ρ,ρT+η. Both the decrease of the rate and
the increase of the latency worsen the delay bound for the current node, especially as R is
high.

This is why, when the path of the flow is short, the “always in local time” strategy
performs better than the other one. However, as the length of the path increases, the cascade
of worsened rates with the local-time strategy worsen the bursts and the delay penalty with
respect to the other strategy becomes visible. Furthermore the delay bounds per node also
increase which further increases the penalty that the local-time strategy suffers by also calling
Proposition 5.1 to translate the delay bounds.

As the length of the path increases (and the delays become larger), the gain of the syn-
chronization becomes visible. Overall, for reasonable path lengths, the effect of the clock
non-idealities is negligible when no regulator is used (less than 0.4%) and the current practice
of ignoring the non-idealities is acceptable.

5.6.2 Comparison of the Regulator Adaptation Methods

We now place a regulator (a PFR, since f is the only flow) after each system Si in the flow
path, as in Figure 5.9. We first compute the end-to-end latency bound obtained with the
regulators when the clocks are ideal: the latency is simply n times 121µs with n the length
of the path, because the regulators block the burstiness propagation. These latency bounds
are used as a reference (line at y = 0 in Figure 5.12b).

We then remove the ideal-clock assumption and consider the non-synchronized time model.
As discussed in the previous section, the parameters of the regulators must be adapted or it
can incur unbounded latencies. We compare the end-to-end latency bounds obtained with
the rate-and-burst cascade and with the ADAM method. The rate-an-burst cascade performs
better than ADAM but both remain within a few percent of the ideal-clock situation.

Last we consider the synchronized time-model. In this case, the PFR can either be
adapted with the rate-and-burst cascade or ADAM (both are not influenced by the presence

4Within a common clock, the network-calculus delay bound for a γr′,b′ -constrained flow inside a βR′,T ′

service-curve element is T ′ + b′/R′, the rate r′ of the leaky-bucket arrival curve does not influence the delay
bound for this system.
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of the synchronization), or it can be non-adapted, in which case it provides the worst latency
bounds, but within a few percent of the ideal-clock situation.

Conclusion

In this chapter, we developed a framework for modeling non-ideal clocks in network calculus.
The framework includes a time-model for the non-synchronized and synchronized networks
(Section 5.2.1) and a toolbox of results for capturing the effects of the clock non-idealities in
network calculus.

We have proposed two strategies (“always in TAI” and “always in local time”, Section 5.4)
for computing end-to-end latency bounds in networks with non-ideal clocks.

In loosely synchronized and in non-synchronized networks, regulators are affected by clock
issues; this leads to large or unbounded delays if not properly addressed (Section 5.5). We
have proposed two adaptation methods for per-flow regulators: the rate-and-burst cascade,
and ADAM. The former imposes that the regulator parameters depend on the position of the
regulator on the flow path, which complexifies the control plane. For interleaved regulators,
only the rate and burst cascade applies.

In tightly synchronized networks, non-adapted per-flow regulators are affected, but the
delay penalty is of the order of the synchronization precision and can be neglected. In contrast,
interleaved regulators are affected well beyond the synchronization precision, and this can
lead to unbounded delays if the issue is not properly addressed. Therefore, a solution such as
the method of rate-and-burst cascade should be applied with interleaved regulators, even in
tightly synchronized networks.

Our evaluation of the two different end-to-end strategies on a parametric topology (Sec-
tion 5.6) confirms that the “always in TAI” strategy performs better than the other strategy,
except for short paths. The time-synchronization mechanisms improves the TAI latency
bounds with respect to non-synchronized networks when the paths of the flows are long.

Finally, we have observed that the rate-and-burst cascade is the adaptation method that
provide the best latency bounds, less than 0.5% worse than the latency bounds obtained with
ideal clocks. The use of non-adapted PFRs in a tightly synchronized network and the use
of PFRs adapted with ADAM provide similar performance bounds. These bounds remain
within a few percent of the ideal-clock situation.

This chapter concludes the theoretical contributions of this thesis. The second part of this
thesis will focus on the practical tools. Chapter 6 presents experimental modular TFA (xTFA),
a tool that implements the theoretical contributions of this thesis and can compute end-
to-end latency bounds in networks with cyclic dependencies, traffic regulators, PREFs and
non-ideal clocks. Chapter 7 proposes a modification to the ns-3 network simulator that is
used to validate the instability of the IR in a synchronized network with non-ideal clocks
(Proposition 5.10 of the current chapter). Finally in Chapter 8 we validate the applicability
of our results and the flexibility of the xTFA tool through an industrial use-case.
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Chapter 6

xTFA: A Tool for Computing Delay
Bounds in Time-Sensitive Networks

I don’t think necessity is the mother of invention — invention, in my opinion,
arises directly from idleness, possibly also from laziness.

Agatha Christie, An Autobiography.
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In this chapter we present experimental modular TFA (xTFA), a tool for computing latency
bounds in time-sensitive networks. As the name suggests, xTFA is an experimental tool that
has been developed throughout the thesis for assessing the effect of cyclic dependencies,
redundancy mechanisms and clock non-idealities on latency-bounds, based on the theoretical
results presented in the previous chapters.

On one hand, xTFA designates a set of original algorithms and data-structures that are
presented in this chapter. On the other hand, it also designates an implementation of these
algorithms using Python [20].

In this chapter, we first introduce xTFA through its requirements and key features in
Section 6.1. We then present the main xTFA data structures and algorithms in Section 6.2.
In Section 6.3 we finally discuss the modifications made on xTFA when computing latency
bounds in networks with cyclic dependencies.

6.1 Overview of xTFA

This section presents an overview of xTFA through its requirements and key features.
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6.1.1 General Requirements of xTFA

The main goal of xTFA is to provide a tool for applying the theoretical results obtained
throughout the thesis on realistic industrial networks. The main requirement of xTFA is
hence:

1. xTFA shall use the theoretical contributions of the current thesis and shall compute
latency bounds in networks that contain PREFs, POFs, regulators, non-ideal clocks
and/or cyclic dependencies.

But xTFA has also been developed throughout the thesis, in parallel with the theoretical
results. It has been used to gain insights on the behavior of the mechanisms, with a mutual
influence between theory and practical implementation. Thus xTFA is also required to provide
a very small “code-to-plots” time, i.e.,

2. The duration elapsed between the start of the implementation of a new result among
the thesis’s theoretical contributions and the obtention of graphical, even partial, results
on use-cases shall be as low as possible.

For our paper [Thomas, Le Boudec, Mifdaoui 2019], we developed a tool that implements
the FP-TFA algorithm described in Chapter 3. This tool was developed for obtaining delay
bounds in networks that can only contain cyclic dependencies and/or regulators. It provides
quick results but is not flexible. In particular, modeling PREOFs mechanisms (Chapter 4)
requires to model nodes that might contain regulators, or POFs, or PEFs, or a combination
of these “optional functions”. This was not anticipated, and the tool based on FP-TFA that
did not have the necessary flexibility for modeling them. This experience provides the two
additional requirements for xTFA:

3. The tool shall be modular with respect to the optional functions: adding a model for a
new optional function should be possible with minimal work.

4. It shall be possible to model a node that contains a combination of optional functions.

Note that xTFA is only an experimental tool used to support the theoretical contributions
of the thesis. Thus, the time complexity, the memory complexity and the tightness of the
results were never explicit requirements and were treated with a “best-effort” approach.

6.1.2 Main Features of xTFA

xTFA is based on the total-flow analysis (TFA) approach (Chapter 2, Section 2.5.1). It
includes the improvements that were already included in FP-TFA (Chapter 3, Section 3.3),
i.e., the line-shaping effect [Grieu 2004; Mifdaoui, Leydier 2017], the service-curve of the
packetizer (Theorem 3.1) to compute its effect on burst bounds and the improvement from
[Mohammadpour, Stai, Le Boudec 2019]. It also includes the majority of the theoretical
contributions of this thesis.

xTFA focuses on one class of a FIFO-per-class network. The network can be feed-forward
or non-feed-forward. Each flow is assumed to be constrained by a known arrival curve at its
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source, when observed with the source’s clock. Each CBQS is assumed to provide a known left-
over service curve for the class of interest1 when observed with the output-port’s clock. The
current version supports leaky-bucket-constrained flows and rate-latency-constrained CBQSs,
but adding other curves for feed-forward networks only requires extending the min-plus back-
end.

The clocks of the network are either assumed to be ideal, non-synchronized or synchro-
nized as per the time model of Chapter 5 with known values for the time-jitter bound (η),
clock-stability bound (ρ) and synchronization precision (∆), if applicable. At the time of this
writing, xTFA uses the “always in TAI” strategy (Chapter 5, Section 5.4.1) but the other
strategy can also be implemented.

The network can contain packet-replication functions (PRFs) and packet-elimination func-
tions (PEFs) as modeled in Chapter 4. It can also contain packet-ordering function (POF) as
modeled in Chapter 4. The current version of xTFA assumes that the POF timeout is never
fired, i.e., the sequence of data units that reaches a POF is not incomplete2.

The network can also contain traffic regulators (either PFRs or IRs) as modeled in Chap-
ter 4, Section 4.2.2. Their parameters can also be adapted as per the rate-and-burst cascade
or as per the ADAM method (Chapter 5, Section 5.5.2).

6.2 Main Original Ideas in xTFA for Feed-Forward Networks

To compute delay bounds in networks that can contain non-ideal clocks and output ports
with optional functions, several original concepts, data structures and algorithms have been
invented during the thesis and are presented in this section. A toy example is used to highlight
the concepts:

Example: We consider the flow f of the toy example of Chapter 4 (last row of Table 4.2).
Its graph is given in Figure 4.3: the flow is produced by the end system E5, is replicated
by S4 and sent over two paths. At S3, the duplicates of f are eliminated and the
reconstructed flow reaches its destination E6 through S6. We consider another flow g

and we assume that g has the same path. Thus the output port S3South contains two
packet-elimination functions (PEFs): one for f and one for g, as shown in Figure 6.1.

6.2.1 Breaking the TFA Approach into a Three-Step Process

Denote by G the graph induced by flows (GIF) of the network for the class of interest. If G is
acyclic, the total-flow analysis (TFA) approach [Schmitt, Zdarsky 2006] iteratively computes
delay bounds for the class-of-interest in every vertex of G.

In this chapter, we say that a vertex n can be computed as per the TFA approach if every
parent p of n in G has been computed (or if n has no parent in G). And n has been computed
if lower and upper delay bounds for the class of interest through n have been obtained and if
an arrival curve for each individual flow f ∋ n has been obtained at n′ and n∗: the output of
the CBQS and the output of the packetizer on the remote input port, respectively.

1This left-over service curve can be computed using the related-work presented in Chapter 2, Section 2.4.1.
2This also removes the issues associated with the clock non-idealities of a POF that we have mentioned in

Chapter 5, Section 5.4.2.
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Figure 6.1: Overview of the TFA model for vertex S3South of the toy example in the last row of Table 4.2.
The numbers on the top define observations points that are used later in the chapter.

For a vertex n that can be computed, the TFA approach proceeds in three steps:

• Step 1: Use the individual arrival curves {αh,p∗}h,p to compute an arrival curve αn† for
the aggregate of the class of interest at the input of the CBQS within n.

• Step 2: Use the aggregate arrival curve αn† and the service curve βn of the CBQS to
compute a lower [resp., an upper] delay bound dn [resp., Dn] for the aggregate through the
CBQS. As the CBQS is assumed to be causal, lossless and FIFO, the delay bound for the
aggregate is also a delay bound for each individual flow (Section 2.4.2).

• Step 3: Compute an arrival curve αh,n′ and αh,n∗ for individual flow h ∋ n at n′ and n∗.

We refer to these steps as the three-step process, performed for every vertex n. In xTFA,
the three steps are independent: The computations performed for one step can be changed
without modifying the other two steps as long as each step follows the above specifications.

Example: Figure 6.1 shows the vertex S3South and its two parents S2South and S4East,
together with their respective CBQSs and with the path taken by f and g. Vertex S3South
can be computed if and only if its two parents S2South and S4East have been computed.
In that case, the individual arrival curves for f and g are known at S2′South and S4′East:
αf,S2′

South
, αg,S2′

South
, αf,S4′

East
and αg,S4′

East
.

− Step 1 uses these four arrival curves to obtain an arrival curve for the aggregate made
of f and g, noted α

S3
†
South

, at S3
†
South. To do so, it models all the mechanisms between

(S2′South, S4′East) and S3
†
South.

− Step 2 then computes delay bounds within the CBQS of vertex S3South.
− Step 3 computes individual arrival curves αf,S3′

South
, αg,S3′

South
at S3′South and αf,S3∗

South
,

αg,S3∗
South

at S3∗South.
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6.2.2 The Concept of Flow State

The first major modification in xTFA is the extension of the concept of individual arrival
curves to the concept of flow states.

Presentation of the Concept

In FP-TFA (Section 3.3 in Chapter 3), Step 1 solely relies on the individual arrival curves of
the flows to compute the aggregate arrival curve αn† . However, to compute the effect of a PEF
on the aggregate arrival curve, we note that item 2/ of Theorem 4.1 in Chapter 4 requires the
identification of the diamond ancestors. Furthermore, for each identified diamond ancestor
a, Equation (4.1) requires the knowledge of a lower and an upper bound on the delay of the
processed flow between a and n. Individual arrival curves are not sufficient to obtain this
information. To cope with this issue, we extend any individual arrival curve with additional
information to create the concept of a flow state.

Definition 6.1 (FlowState) For a flow f , an observation point v, and a clock H, the
flow state zHf,v is a data structure that merges information on the state of flow f at the
observation point v when observed with clock H. The flow state is a collection:

zHf,v ≜ (α,U , {D[u]}u∈U , {d[u]}u∈U , {λ[u]}u∈U ) (6.1)

that contains
• α ≜ αHf,v, a leaky-bucket arrival curve of the flow f at the observation point v, when
observed with clock H
• U is a set of upstream vertices u for which the delay bounds of the data units of the f
from the output u∗ to the current observation point v is worth remembering. This set is
used to identify the diamond ancestors. Formally, any vertex u of G(f) that is not an
EP-vertex of G(f) and is located upstream of the observation point v can be a member of
U . Additionally, U contains the special object ϕ that represents the source application of
the flow inside its source vertex. The members of this set are called tags.
• For each tag u ∈ U , d[u] [resp., D[u]] is a lower-bound [resp. an upper-bound] of the
delay of the data units from u∗ to v, along any possible paths u → v in G(f), when
measured with clock H.
• For each tag u ∈ U , λ[u] ≜ λHf,v(u∗) is an upper-bound on the reordering late time
offset (RTO) of the flow f at the observation point v, with respect to the order that the
data units had at u∗ and as observed by clock H.

Example: We consider the delay bounds of the toy example shown on Figure 6.2 with
arbitrary time units measured with the TAI. We assume that there exist no other delay
and that all network elements are FIFO. Then the flow state zHTAI

f,S4∗
East

of f at the output
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Figure 6.2: Flow graph G(f) (also identical to G(g)) of the toy example from Chapter 4, last row of
Table 4.2. The delay bounds in the vertices upstream of S3South are assumed to have been computed and
their values are shown in red intervals showing the minimum and maximum delay bounds through a vertex,
respectively.

of S4East, observed with HTAI is

zHTAI
f,S4∗

East
=

γr0,2b0 ,



ϕ

E5East

S5North

S4East


,



D[ϕ] = 1
D[E5East] = 1
D[S5North] = 1
D[S4East] = 0


,
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d[ϕ] = 0
d[E5East] = 0
d[S5North] = 0
d[S4East] = 0


,



λ[ϕ] = 0
λ[E5East] = 0
λ[S5North] = 0
λ[S4East] = 0




(6.2)

In the above flow state, D[ϕ] upper-bounds the delay (measured with HTAI) of f
between the source application (on top of the network stack) and v, whereas D[E5East]
upper-bounds the delay between the output of the vertex E5East and v. In this example,
we have assumed that there is no delay in the output port E5East or in its remote input
port, so D[ϕ] = D[E5East]. Additionally, we note that D[S4East] equals 0 because it
upper-bounds the delay between u∗ = S4∗East and v = S4∗East. Last, for any tag u, the
system between u∗ and v is FIFO thus λ[u] equals 0.

The flow state zHTAI
f,S2∗

South
of f at the output of vertex S2South, observed with HTAI is

zHTAI
f,S2∗
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=
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S4North

S1East

S2South


,



D[ϕ] = 7
D[E5East] = 7
D[S5North] = 7
D[S4North] = 5
D[S1East] = 2
D[S2South] = 0


,



d[ϕ] = 6
d[E5East] = 6
d[S5North] = 6
d[S4North] = 4
d[S1East] = 2
d[S2South] = 0


,



λ[ϕ] = 0
λ[E5East] = 0
λ[S5North] = 0
λ[S4North] = 0
λ[S1East] = 0
λ[S2South] = 0




(6.3)

We note that both zHTAI
f,S4∗

East
and zHTAI

f,S2∗
South

contain the same arrival curve: γr0,2b0 . Indeed,
the packets have suffered the same jitter (1 time unit) since their common source E5East.

The concept of flow state replaces the concept of individual arrival curve in the TFA
approach. In particular, if a vertex p has been computed, then the individual flow state zf,p′

and zf,p∗ for each flow f ∋ p at p′ and p∗ has been obtained.

Identifying the Diamond Ancestors with the Tag Sets

The purpose of the tag set of a flow state is to ease the identification of diamond ancestors.
Assume for example that n can be computed and consider a flow f ∋ n. Then the vertices
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that belong to the intersection of the tag sets of the flow states {zf,p∗}∀ parent p are diamond
ancestors of n in G(f). If n contains a packet-elimination function (PEF) for f , then each
identified diamond ancestor can be used to apply Item 2/ of Theorem 4.1.

Example: Consider the vertex S3South. Its parents in G are S4East and S2South. If we
look at the tag sets in the flow states for f at the output of each parent (zHTAI

f,S4∗
East

and
zHTAI
f,S2∗

South
), we note that E5East, S5North and the special tag ϕ are common to both sets.

They are diamond ancestors of the vertex S3South in G(f). Each of them can be used for
Item 2/ of Theorem 4.1 when computing the effect of PEFS3South(f).

In the above Equations (6.2) and (6.3), the tag sets contain the list of all the upstream
vertices. This is however not mandatory: a tag set can contain only a subset of them.

Example: Vertices S4North, S1East, S2South and S4East are “useless” tags in zHTAI
f,S4∗

East
and

zHTAI
f,S2∗

South
because none of them is a diamond ancestor of S3South in G(f), thus removing

them does not have any effect the application of Theorem 4.1.

Besides the special tag ϕ that remains mandatory in every tag set, the user can cherry-pick
the vertices that are added to the tag set of a flow state. This can be done in order to keep
track of only a few interesting ancestors. In its default setting for feed-forward networks,
xTFA only adds a vertex a to the tag set if the vertex has several children in G(f).

Example: With the default setting of xTFA, both tag sets of zHTAI
f,S2∗

South
and zHTAI

f,S2∗
South

would only contain ϕ and S5North. Indeed, S5North is the only vertex of G(f) that has
two children in G(f). ϕ and S5North are diamond ancestors of S3South. However, E5East is
not in any of the two tag sets, despite the fact that it is a diamond ancestor of S3South.

The default setting of xTFA is susceptible to allow only for the identification of a subset
of diamond ancestors but it drastically reduces the memory size of the flow states in practice.

Changing the Observing Clock for a Flow State

Like delays, arrival curves or service surves, the flow state depends on the clock used to
observe the flow, which we specify again by putting the clock in supper-script.

Changing the observing clock for a flow state is performed by Algorithm 3. It takes the
flow state as observed with a clock Hi and the new clock Hg and returns a flow state for the
same flow at the same observation point, as observed by the new clock Hg.

In the algorithm, GetParamsTimeModel returns the parameters of the time model of
Chapter 5: the clock-stability bound ρ, the time-jitter bound η and the synchronization precision
∆, with the convention that ∆ = +∞ if the network is not synchronized.

ChangeClockArrivalCurve(α1, . . . ) applies Proposition 5.3 for changing the clock for
an arrival curve with the respective time model. Formally, it returns the curve α2 ∈ F0 with
∀t > 0, α2(t) = α1(min(ρt+η, t+2∆)). Its specific implementation depends on the underlying
computer representation of arrival and service curves: it is provided by the xTFA min-plus
back-end and consists in applying the sub-cases of Table 5.1.
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Algorithm 3 Algorithm for changing the observing clock of a flow state
Require: zHi

f,v: flow state of f at v as observed by Hi. Hg new observing clock.
1: procedure ChangeClockFlowState(zHi

f,v,Hg)
2: (α1,U , d1, D1, λ1)← zHi

f,v

3: (ρ, η,∆)← getParamsTimeModel(Hi,Hg)
4: α2 ← ChangeClockArrivalCurve(α1, ρ, η,∆) ▷ Proposition 5.3
5: for u ∈ U do
6: d2[u]← max(|d1[u]− η|+/ρ, d1[u]− 2∆) ▷ Proposition 5.1
7: D2[u]← min(ρD1[u] + η,D1[u] + 2∆) ▷ Proposition 5.1
8: λ2[u]← min(λD1[u] + η, λ1[u] + 2∆) ▷ Proposition 5.1
9: end for

10: z
Hg

f,v ← (α2,U , d2, D2, λ2)
11: return z

Hg

f,v

12: end procedure

6.2.3 The Computation Pipelines

The second major idea in xTFA is to provides more flexibility to the TFA model of each
vertex, through the concept of computation pipelines.

Presentation of the Concept

Assume that a vertex n can be computed. Step 1 computes an arrival curve αn† for the
aggregate at the input of the CBQS using the individual flow states {zf,p′ , zf,p∗}p parent,f∋(p,n).

In previous tools such as TFA++ [Mifdaoui, Leydier 2017] and FP-TFA (Chapter 3), this
is performed by applying closed-form expressions that are adapted depending on the content
of the vertex. For example, FP-TFA provides two closed-form expressions of the aggregate
arrival curve: (3.5) when the vertex does not contain any regulator and (3.9) when it does.

With the addition of packet replication, elimination and ordering functions (PREOFs),
obtaining a closed-form expression for the aggregate arrival curve by taking into account any
possible configuration of the three optional functions (REGs, PEFs, POFs) is illusory. To
remedy this issue, xTFA introduces the concept of computation pipelines.

Definition 6.2 (xTFA computation pipeline) In xTFA, a computation pipeline is a
chain of computational blocks, each of which takes as input a pipeline data structure
and returns a modified version of the same data structure.
Each vertex n contains three pipelines, corresponding to the three-step process:

• an aggregate computation pipeline for computing the aggregate arrival curve αn†,
• a delay-bound computation pipeline for computing lower and upper bounds on the

delay of the aggregate through the CBQS, and
• a flow-state computation pipeline for computing the individual output flow states
zf,n′ and zf,n∗ for each individual flow f crossing n.

The organization of the pipelines in a vertex n is presented in Figure 6.3. For each pipeline
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
zf,p′ , zf,p∗ ;

∀p parent of n;
∀f ∋ (p, n)


Aggregate

Computation Pipeline α†n
Delay Bound

Computation Pipeline [dn, Dn]
Flow States

Computation Pipeline

{
zf,n′ , zf,n∗ ;
∀f ∋ n

}

Figure 6.3: Organization of the three computation pipelines of a vertex n.

Computation of the
propagation time

Computation of
the line shaping

Computation of
the packetizers

Computation of
the switching fabric latency

Computation of
the PEFs

W1 W2 W3 W4 W5 W6

Figure 6.4: Computational blocks in the aggregate computation pipeline (ACP) of vertex S3South in the
toy example.

there exist a set of available computational blocks, each modeling a different mechanism, that
follow a unified interface. Thus modeling a vertex n does not consist anymore in obtaining a
closed-form expression for each step of the three-step process. It rather consists in selecting,
for each pipeline, the right computational blocks, their parameters and their order, depending
on the content of the vertex n and on the theoretical results that we want to use.

In the following, we focus on the aggregate computation pipeline (ACP) and detail its
benefits using the toy example. The two remaining pipelines (computation of delay bounds
and computation of individual flow states) are not presented in the manuscript because they
are conceptually much simpler.

The Aggregate Computation Pipeline (ACP)

In an aggregate computation pipeline (ACP), each computational block receives an ACP
data structure W and outputs a modified version of it, W ′. The content of an ACP data
structure W is detailed later in the manuscript. For the moment we note that due to the
unified interface, the blocks can be removed and/or moved to follow the model of a specific
vertex.

Example: Figure 6.4 presents the content of the ACP of vertex S3South in the toy
example. The first block, “Computation of the transmission links”, receives an ACP
data structure W1 and outputs W2, a modified version of it.

If S3South does not contain any PEF, then the block Computation of the PEFs can
simply be removed. If S3South contains regulators either before or after the PEFs, then
a corresponding block Computation of the REGs can be added to its ACP at the correct
location.

To ease the notation, we now define the Observation Points points 1,3,4,5,6 on the
upper-part of Figure 6.1. The “Observation Point 1” is placed on top of S2′South and
S4′South. It represents the union of the two observation points S2′South and S4′South, in the
sense that an observer placed at Observation Point 1 counts both the bits crossing both
S2′South and S4′East.

Therefore, the cumulative function Rf,1 of f at Observation Point 1 is Rf,1 =
Rf,S2′

South
+ Rf,S4′

East
. From Definition 2.5, Rf,1 is constrained by αf,S2′

South
+ αf,S4′

East
.

The same apply for Rg,1 and for R1, the cumulative arrival of the aggregate.
As we will later detail, there exists a relationship between the data structure Wj in

Figure 6.4 (corresponding to the output of the j-th computational block) and the arrival
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curve for the aggregate at Observation Point j.

The role of the ACP is hence to model the effect of each mechanism/phenomenon on the
aggregate arrival curve, step by step.

From the Origins of Line Shaping to the Design of the ACP Data Structure W

In our general network-calculus model for TSN networks (Chapter 2), we model each trans-
mission link as an element with a fixed propagation delay, followed by a greedy shaper
(Section 2.6.5). This greedy shaper formalizes the line-shaping effect effect that has been
introduced in [Grieu 2004].

In his seminal work, Grieu states that, for a vertex n, if we focus on the stream of packets
{f |f ∋ (p, n)} that come from the same parent p, then this aggregate cannot cross the
upstream physical link within p faster than the capacity of the physical link, cp. In [Grieu
2004], the aggregate {f |f ∋ (p, n)} of the flows coming from the same parent p is called a
group and the shaping curve γcp of the physical link within p is called its group envelope.

Taking into account the line shaping significantly reduces the delay bounds. Many TFA-
based tools include the line-shaping effect in their closed-form expressions (Chapter 3, [Bouil-
lard 2022, Algorithm 2], [Mifdaoui, Leydier 2017, Eq. 3]).

In xTFA, we do not want to use closed-form expressions. Therefore, to ensure the flex-
ibility of the ACP, its data structure W shall be able to capture the effects of the different
mechanisms, including the line shaping. Thus the design of the ACP data structure W is
greatly inspired by the seminal ideas of Grieu with groups and group envelopes.

Definition 6.3 (ACP data structure) An ACP data structureW is a pairW ≜ (S,P)
that contains:

- S, a set of flow states (defined in Section 6.1)
- P, a set of partitions of S such that, for each partition P ∈ P, each partition

element e of P is noted e = (Z, σ) and represents a group of flow states Z together
with a piecewise-linear concave arrival curve σ, called the group envelope.

Our definition contains three major differences with respect to [Grieu 2004, §3.2]. First,
it is more flexible because it allows for multiple partitions. Then, it continues to provide the
raw list of flow states (hence of arrival curves) for each individual flow. This property removes
the issue mentioned by Grieu in [Grieu 2004, §3.2.3.2]. Last, our ACP data structure is only
local to a node and is destroyed (saving memory space) as soon as the aggregate arrival curve
αn† has been obtained, unlike in [Grieu 2004, §3.2.3.1].

A computation block of an aggregate computation pipeline (ACP) is therefore an object
that receives an ACP data structure W and returns a modified version of it, W ′. Any
operation on W is authorized: adding or removing flows states from S, modifying any field
of any flow state of S, adding or removing partitions from P, and modifying any partition of
P by removing, adding or modifying any of its groups. Overall, the final xTFA tool provides
a dozen computational blocks for modeling the line shaping, the technological latencies, the
regulators, the internal sources, the PREOFs functions, etc.
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zS2Southf,1 zS2Southg,1

zS4Eastf,1 zS4Eastg,1

(a) W1

zS2Southf,3 zS2Southg,3

zS4Eastf,3 zS4Eastg,3

γcS2South

γcS4East

P3,1

(b) W3

zS2Southf,5 zS2Southg,5

zS4Eastf,5 zS4Eastg,5

σ1
5,1

σ2
5,1

P5,1

(c) W5

zS2Southf,6 zS2Southg,6

zS4Eastf,6 zS4Eastg,6

σ1
6,1

σ2
6,1

P6,1

σ1
6,2 σ2

6,2

P6,2

(d) W6

Figure 6.5: Content of the ACP data structure at several observations points of Figure 6.1.

6.2.4 Modeling the Line Shaping and the Packet Elimination Function Us-
ing ACP Computation Blocks

In this subsection, we highlight the flexibility offered by the ACP and the ACP data structure
by detailing the computational blocks that model the propagation time, the line shaping and
the packet-elimination function (PEF).

To ease with the explanation, we assume that all clocks are ideal, equal to HTAI, and we
consequently omit the clock super-script for the different notions. We use the super-script to
distinguish the provenance of a flow state: zpf denotes the flow state for the stream of packets
that belong to f and enter n from p. We use the lower-script to distinguish the observation
point (as in the rest of the thesis): zpf,v denotes the flow state for the stream of packets of f
coming from p, observed at v. When v is a number j (as in zpf,1, with j = 1), it denotes the
value of the flow state as written inWi, i.e., after the i-th computational step in the pipeline.

Initialization of the ACP data structure W:

The structure W is initialized with the flow states at p′, the output of the previous CBQS
for any parent p. Formally, the data structure is initialized with W1 = (S1,P1) with S1 =
{zph,p′ ; ∀p parent of n; ∀h ∋ (p, n)} and P1 = ∅ is empty as no groups have been formed yet.

Example: S1 = {zS2Southf,1 , zS2Southg,1 , zS4Eastf,1 , zS4Eastg,1 } ≜ {zS2Southf,S2′
South

, zS2Southg,S2′
South

, zS4Eastf,S4′
East
, zS4Eastg,S4′

East
} is

the set of the flow states for f and g at the output of the CBQSs of each of the two parents
S2South and S4East. Figure 6.5a shows a graphical representation of the data-structure
W1 with zph,1 ≜ zph,p′ for h ∈ {f, g} and p ∈ {S2South, S4East}. Flow states are distributed
in the plane and no association of them into groups is present so far (P1 = ∅).
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Computational Block for the Propagation Time of the Transmission Links

The first computation block in the pipeline (Figure 6.4) is responsible for computing the effect
of the propagation time in the transmission links. This is performed by Algorithm 4.

Algorithm 4 Algorithm updating the data-structure W to model the propagation time of
the transmission links.
Require: ∀p, T prop

p is the propagation delay (assumed constant and expressed in HTAI) of
the transmission link within vertex p. W1 = (S1,P1) is the input ACP data structure.

1: procedure ComputeEffectOfPropagationTime(W1)
2: (S1,P1)←W1

3: S2 ← ∅
4: for zph,1 ∈ S1 do
5: (α1,U1, D1, d1, λ1)← zph,1
6: for u ∈ U1 do
7: D2[u]← D1[u] + T prop

p

8: d2[u]← d1[u] + T prop
p

9: end for
10: zph,2 ← (α1,U1, D2, d2, λ1)
11: add zph,2 to S2
12: end for
13: W2 ← (S2,P1)
14: return W2
15: end procedure

As the propagation delay is assumed constant, it does not affect the arrival curves (Lemma
B.3) or worsen the RTO [Mohammadpour, Le Boudec 2021, Thm.7]. Therefore, for each flow
state zph,1 in the input data structure W1, Algorithm 4 creates a flow state zph,2 for W2 with
the same arrival curve, the same tag set and the same RTO map (Line 10). The minimum and
maximum delay-bound maps for the new flow state are simply increased by the propagation
delay T prop

p of the respective parent p (Lines 8 and 7).
Example: The result W2 of Algorithm 4 on the toy example is almost identical to W1,
but with different flow states zph,2 for h ∈ {f, g}, p ∈ {S2South, S4East}.

Computational Block for the Line Shaping

The line shaping is computed by using Algorithm 5 that follows the idea in [Grieu 2004]. It
creates a new partition, P3,1 on Line 3. For each parent p of n in G, it then creates a partition
element that contains all flow states coming from the parent p (Line 5) and this group is
associated with the group envelope, or shaping curve γcp (Line 6). The group and the group
envelope are then added to the partition P3,1 (Line 7).

We note that the set of flow states S2 has not been modified and is directly transmitted to
W3. Indeed, σcp is sub-additive, hence the greedy shaper keeps the arrival-curve constraints
and does not increase the end-to-end latency bounds (Theorem 2.4).
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Algorithm 5 Algorithm updating the data-structureW to take into account the line shaping
(greedy shaper of the transmission links).
Require: n the node to compute, G the network graph.
Require: ∀q vertex of G, cq is the capacity (assumed constant and expressed in HTAI) of the

transmission link within p.
1: procedure ComputeEffectOfLineShaping(W2)
2: (S2,P2)←W2
3: P3,1 ← empty partition
4: for p a parent of n in G do
5: Z ← {zqh,2 ∈ S2|q = p}
6: σ ← γcp

7: add (Z, σ) to P3,1
8: end for
9: P3 ← P2 ∪ {P3,1}

10: W3 ← (S2,P3)
11: return W3
12: end procedure

Example: The resulting data structure W3 is shown in Figure 6.5b. It contains the
flow states that are the same as in W2: ∀h ∈ {f, g}, ∀p ∈ {S2South, S4East}, zph,3 = zph,2.
But W3 additionally has a partition of the flow states (P3,1, in solid blue lines) with two
groups, one per input port, each having its group envelope.

Note that this graphical representation depicts an aggregate arrival curve

α3 =
(
αS2Southf,3 + αS2Southg,3

)
⊗ γcS2South +

(
αS4Eastf,3 + αS4Eastg,3

)
⊗ γcS4East (6.4)

obtained by summing the individual arrival curves among a group (αS2Southf,3 + αS2Southg,3 ),
performing the min-plus convolution with the group envelope, ⊗γcS2South and summing
this result with the results from the other groups in the partition. α3 is an arrival curve
for the aggregate at Observation Point 3 in Figure 6.1.

Computational Blocks for the Packetization and The Switch Fabric Latency

Let us now jump directly toW5 by providing only a few comments on the next two computa-
tional blocks in Figure 6.4. The computational block for the packetizer applies Theorems 3.1
and 2.2 to each individual flow, as well as to each aggregate defined by a group in a parti-
tion. Hence, it modifies individual arrival curves, as well as group envelopes, but it does not
modify the content of the groups within the partitions. Additionally, it does not increase the
latency bounds in the flow states, because the packetizer does not increase the per-packet
delay bounds (Theorem 2.5).

The computational block that models the technological latencies in the input port and
the switch fabric increases the lower [resp., the upper] delay bounds in all flow states by the
minimum [resp., maximum] traversal time of the switching fabric. All arrival curves (both
individual ones and group envelopes) are worsened by applying Theorem 2.2 because any
input/output pair of the switching fabric is assumed causal, FIFO and lossless (Section 2.6.3).
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Example: The output of the two steps, W5, is presented in Figure 6.5c. The flow states
zph,5 differ from zph,3 because of the packetizer and of the latency in the switching fabric.
P5,1 contains the same groups as in P3,1, but the group envelopes σ1

5,1 and σ2
5,1 differ

from the original group envelopes γcS2South and γcS4East in W3 due to the packetization and
to the switch fabric latency.

Computational Block for the Packet Elimination Function

The effect of the packet-elimination functions (PEFs), computed with the tight model of
Thoerem 4.1 is last obtained using Algorithm 6. This algorithm creates a new partition, P6,2
that contains a group for each eliminated flow.

Algorithm 6 Algorithm updating the data-structure W to take into account the packet-
elimination function (Theorem 4.1)
Require: n the node to compute, G the network graph.

1: procedure ComputeEffectOfPEFs(W5)
2: (S5,P5)←W5
3: P6,2 ← empty partition
4: for h crossing n such that n contains a PEF for h do
5: Z ← {zp5,h ∈ S5;∀p parent of n in G}
6: A ←

⋂
{U ; ∀(α,U , D, d, λ) ∈ Z}

▷ Common tags are diamond ancestors of n in G(h)
7: σ ← δ0
8: for a ∈ A do
9: da→nh ← min{d[a];∀(α,U , D, d, λ) ∈ Z}

10: Da→n
h ← max{D[a];∀(α,U , D, d, λ) ∈ Z}

11: αh,a∗ ← GetArrivalCurve(G,a∗,h)
12: αa→nf ← αh,a∗ ⊘ δDa→n

h
−da→n

h
▷ Item 2/ of Theorem 4.1

13: σ ← σ ⊗ αa→nf ▷ Theorem 4.1
14: end for
15: add group (Z, σ) to P6,2
16: end for
17: O ← all remaining flow states
18: add group

(
O,
∑

(α,U ,d,D)∈O α
)

to P6,2

19: P6 ← P5 ∪ {P6,2}
20: W6 ← (S5,P6)
21: return W6
22: end procedure

For each eliminated flow h, Line 5 first selects Z, the subset of S4 that contains all the
flow states zph,5 of flow h, for any parent p. Line 6 then intersects all the tag sets contained in
the flow states of Z. This intersection A is a subset of the diamond ancestors of n in G(h).

Then, the group envelope is initialized with the neutral element for the min-plus convo-
lution at Line 7. For each identified diamond ancestor a ∈ A, Line 9 computes the minimum
of the values d[a] for all the maps d in all the flow states in Z. Note that for any map d[] in
a flow state of Z, d[a] exists because a ∈ A ⊂ U for any tag set U of a flow state of Z. By
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definition of the maps d[], and because Z contains all the flow states of h, the minimum of
the d[a] is a lower-bound on the minimum delay for h between the output of a and the input
of the PEF, along any possible path a→ n, i.e., it is the value da→nf defined in Theorem 4.1.
Similarly, Line 10 obtains Da→n

f .
Line 11 then queries from the network graph G the arrival curve that the flow h had at

the output of a, αh,a∗ . In a feed-forward network, this query is always valid because a is a
ancestor of n thus the three-step process has necessarely been peformed for a before we reach
this line of the algorithm for n. Line 12 of Algorithm 6 applies Item 2/ of Theorem 4.1 with
ancestor a to obtain αa→nf , an arrival curve for the flow h (i.e., for the aggregate made of all
its flow states) at the output of the PEF. The arrival curve is finally combined with the one
from other ancestors (Line 13) by applying Theorem 4.1.

Before we add P6,2 to the list of partitions in the new data-strcutureW6, we need to make
sure that it is a partition across all the flow states that belong to S6 = S5. Therefore, the
subset O of S5 that contains all the flow states zph,5 for the flows h for which the current
vertex n does not have a PEF are grouped into a single last group, whose group envelope in
simply the sum of their individual arrival curves (Line 18).

Finally, Algorithm 6 can add the new partition P6,2 without modifying neither the flow
states (S6 = S5) nor the previous partitions because any set of parallel PEFs is FIFO and
without any delay thus it keeps the delay bound and the arrival curves, both the individual
arrival curves and those of the aggregates (Lemma B.3).

Example: The final result W6 of the ACP for the toy example is given in Figure 6.5d.
The four flow states have not changed compared to W5 (for each h, p, zph,6 = zph,5), it is a
consequence of Item 1/ of Theorem 4.1. Similarly, the previously-existing partition P5,1
(continuous blue lines) is kept (P6,1 = P5,1) because aggregate arrival curves are kept by
a set of parallel PEFs, as the latter have no delay (Lemma B.3).

A new partition P6,2 (dashed red lines) has been added by Algorithm 6. Here again,
its graphical representation depicts an aggregate arrival curve

α6,2 =
(
αS2Southf,6 + αS4Eastf,6

)
⊗ σ1

6,2 +
(
αS2Southg,6 + αS4Eastg,6

)
⊗ σ2

6,2 (6.5)

which is equivalent to the application of Theorem 4.1 for both f and g. σ1
6,2 is a con-

volution of the arrival curves αa1→n
f ⊗ αa2→n

f ⊗ . . . for the subset of diamond ancestors
a1, a2, . . . that are identified trough the intersection of the tag sets in the flow states of
f (Line 6 of Algorithm 6). When the flow states for f are as in Equations (6.2) and
(6.3), then the intersection of the tag sets reveals that ϕ, E5East and S5North are diamond
ancestors of n in G(f), thus σ1

6,2 = αϕ→nf ⊗ αE5East→nf ⊗ αS5North→nf . With the default
configuration of xTFA for feed-forward networks however, E5East would not have been
identified in the intersection, hence σ1

6,2 would have been only equal to αϕ→nf ⊗αS5North→nf

and the result is less tight but remains valid.

The above example highlights that the ACP data structure W is able to model both
effects (line shaping and packet elimination). It thus ensures the flexibility of the aggregate
computation pipeline and allows for interchangeable and movable computational blocks.

To obtain the final aggregate arrival curve αn† at the input of the CBQS, we apply
Algorithm 7 on the final data-structureW6. As intuited in the toy example, for each partition
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P of the data-structure, Algorithm 7 computes an aggregate arrival curve following the groups
of the partition: On Line 7, the arrival curve α(Z,σ) for a group (Z, σ) of the partition P is
obtained by the convolution of the group envelope σ with the sum of the individual arrival
curves for the members of the group Z. On Line 8, the arrival curve for all groups in the
partition P are summed to finally obtain αP , an arrival curve for the aggregate, computed as
per partition P .

Because each partition P gives an aggregate arrival curve αP , they can be combined
together and their convolution (Line 10) gives an arrival curve for the aggregate. This con-
volution αaggregate is initialized on Line 3 with the sum of all individual arrival curves, which
correspond to the trivial partition in which each flow state is alone in its own group.

Algorithm 7 Algorithm for obtaining an arrival curve for the aggregate by using the data
structure W

1: procedure DataStructureToAggregateArrivalCurve(W)
2: (S,P)←W
3: αaggregate ←

∑
(α,U ,D,d)∈S α

4: for P ∈ P do
5: αP ← 0
6: for (Z, σ) ∈ P do
7: α(Z,σ) ←

(∑
(α,U ,D,d)∈Z α

)
⊗ σ

8: αP ← αP + α(Z,σ)
9: end for

10: αaggregate ← αaggregate ⊗ αP
11: end for
12: return αaggregate
13: end procedure

6.3 Adaptations of xTFA for Cyclic Dependencies

In feed-forward networks, xTFA computes end-to-end latency bounds through the iterative
application of the three pipelines for each vertex n, following a topological sort of the GIF.

In networks with cyclic dependencies, we face the same issue as in FP-TFA: The vertices
cannot be ordered through a topological sort. To compute latency bounds in such networks
we transform the real network into a virtual feed-forward network using cuts. We then rely
on the extended fixed-point theorem of Chapter 4 (Theorem 4.3). The theorem states that
if FF : (b,d) 7→ (b′,d′) is an application that maps the bursts and upper delay bounds at
the input of the virtual feed-forward network into the burst and delay bounds at the output
of the virtual feed-forward network; if the real network is empty at t = 0; and if (b,d) is
a finite non-negative fixed-point of FF , then the real network is stable and (b,d) represent
valid burst and delay bounds at the cut locations in the real network.

With xTFA, the data structure that bounds the properties of a flow f at an observation
point v is the flow state zf,v. Hence, the iterative computation of the nodes in the virtual
feed-forward network provides an application XX : z 7→ z′ that maps the flow states after the
cuts to the flow states before the cuts. To use Theorem 4.3, we must prove the equivalence
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of XX and FF . It requires a set of restrictions on xTFA that we list hereafter.

6.3.1 Restrictions on xTFA for Networks with Cyclic Dependencies

When xTFA is used on networks with cyclic dependencies, the following restrictions are
applied:
− First, as with FP-TFA, only leaky-bucket individual arrival curves are supported, for each
flow f and each observation point v, αf,v = γrf ,bf,v

with rf the rate of flow f and bf,v the
burst of the flow at v.
− Second, for every flow state zf,v, the only tag authorized in the tag set is ϕ, the source
application of f . With this restriction, the second item of Theorem 4.1 (PEF output arrival
curve) can only be applied with the diamond ancestor a = ϕ.
− Third, the RTO bound λ[ϕ] is removed from any flow states. As a consequence, this
restricted version of xTFA cannot perform any computation that would require the knowledge
of this RTO bound. For example, this restricted version of xTFA does not support packet-
ordering function (POF) when placed without a following regulator, because computing the
effect of such POF on the arrival curve requires the RTO [Mohammadpour, Le Boudec 2021,
Cor. 1]. The restricted version can still compute delay bounds when POFs are immediately
followed by REGs, because the arrival curve at the output of the POF does not need to be
known for computing the contention in the CBQS placed after the REGs.

As a consequence of the above limitations, each flow state zf,v can be written zf,v =
(γrf ,bf,v

, ϕ, d[ϕ], D[ϕ]) with bf,v the burst of f at v, d[ϕ] [resp., D[ϕ]] a lower-bound on the
minimum delay [resp., an upper-bound on the maximum delay] for f between ϕ and v.

6.3.2 Latency Bounds in Networks With Cyclic Dependencies

We note z = {zi}i∈J1,pK the vector of flow states after the cuts (i.e., at the input of the
feed-forward network) and z′ = {z′i}i∈J1,pK the vector of flow states after the cuts (i.e., at the
output of the feed-forward network), with p the size of the two vectors.

Then the application XX obtained by the computation of the virtual feed-forward network
with the restricted version of xTFA can be written

XX : {zi = (γri,bi
, ϕ,Di[ϕ], di[ϕ])}i∈J1,pK 7→

{
z′i = (γ′ri

, b′i, ϕ,D
′
i[ϕ], d′i[ϕ])

}
i∈J1,pK

(6.6)

In this formulation, for any i ∈ J1, pK, r′i and ri are both equal to the rate rf,ϕ of the flow
f at its source ϕ, where f is the flow corresponding to the flow state zi. Similarly, di[ϕ] and
d′i[ϕ] are equal because the lower-bound on the delay can be computed offline and does not
depend on the contention within the nodes. Therefore, removing all constants, XX can be
written

XX : (bi, Di[ϕ])i∈J1,pK 7→ (b′i, D′i)i∈J1,pK (6.7)

Hence, XX obtained with the restricted xTFA on the virtual feed-forward network is
equivalent to the application FF of Theorem 4.3. If the restricted xTFA finds a finite non-
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negative fixed-point3 XX (z) = z, then the real network with the cyclic dependencies is stable
and the constituents of z represent valid upper-bounds for the bursts and delays at the cuts.

Conclusion

In this chapter we have described experimental modular TFA (xTFA). xTFA describes a set of
original data structures and algorithms for computing end-to-end latency bounds in networks
with cyclic dependencies, redundancy mechanisms and non-ideal clocks (synchronized or not).
It also describes an experimental implementation of these algorithms based on Python [20].

In Section 6.1 we provided an overview of the tool with its requirements and main features.
Then in Section 6.2 we have discussed the main ideas: the flow states, the computation
pipelines and the flow-state partitions within the data-structure of the aggregate computation
pipeline (ACP). We have provided the algorithms for the computational blocks that model the
line-shaping effect and the redundancy mechanisms. We have also highlighted the concepts
by using a toy example from the previous chapters.

Finally in Section 6.3, we have discussed how the extended fixed-point result of Chapter 4
(Theorem 4.3) is applied in the context of xTFA. In particular we have seen that it leads
to several restrictions on the capacities of the tool, with respect to the computations of
feed-forward networks.

xTFA implements the majority of our theoretical contributions for computing performance
upper-bounds. However, we also provide in this thesis several results that prove the in-
existence of such performance upper-bounds in some situations: Theorem 4.5 when an IR is
placed after a PEF, Proposition 5.5 when regulators are non-adapted in a non-synchronized
network, Proposition 5.10 when an IR is non-adapted in a synchronized network. These results
can also be confirmed through the use of simulations, because simulations lower-bound the
true worst-case. In the following chapter, we discuss how the ns-3 network simulator has been
modified to validate that the IR can yield unbounded latencies when placed non-adapted in
a network with non-ideal but synchronized clocks.

3In the tool, we add a quantification step in the third pipeline of every node so that the delay bounds and
the burst bounds are written as multiple of a fixed resolution. Hence a strict equality of the upper-bounds is
possible.
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Implementation of Local Clocks in
ns-3

“We have so long had only ourselves to fight that we are used to such in-
ternecine quarrels. An invader that finds us divided against ourselves will domi-
nate us all, or destroy us all. The only true defense is to produce Galaxia, which
cannot be turned against itself [. . . ].”

Golan Trevize

Isaac Asimov, Foundation and Earth.
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In Chapter 5, Proposition 5.10 states that a non-adapted IR placed after a FIFO system
can yield unbounded latencies if three sources with different clocks are placed before the
FIFO system. Unlike positive results, this negative result is not proved using the concepts of
network calculus: it exhibits a trajectory with adversarial sources and adversarial clocks that
yields unbounded latency. The proof in Appendix B.3.10 is long because we need to explicit
all the consequences of the choices of the adversaries. Yet, this length can hinder the diffusion
of our results and makes the proof hard to peer-review. Therefore, to add even more credit to
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the validity of Proposition 5.10, we decided to simulate the adversarial behavior and validate
that it leads indeed to unbounded latencies.

From February to June 2020, Guillermo Aguirre Rodrigo performed a master project at
EPFL with the goal of simulating the proposed trajectory and checking that the delays are
indeed unbounded. The project was carried out under the supervision of Professor Le Boudec
and with advice from this thesis’ author.

Guillermo quickly identified two options for the simulator choice: OMNET++ [17] with
its add-on NeSTINg [Falk, et al. 2019] and ns-3 [16]. At that time, none of them had the
support for simulating clock non-idealities1 or interleaved regulators2.

The simulator ns-3 was selected because (a) the NeSTINg project did not appear to be well
maintained [11], (b) the ns-3 documentation is much more consistent than the documentation
of NeSTINg or INET, and (c) this thesis’ author had prior experience with ns-3. Therefore,
Guillermo’s project had three objectives: (1) allow for the support of local clocks in ns-3;
(2) add the model of TSN ATS (the implementation of IR within TSN) to ns-3; and (3)
configure the clock models, the source behavior and the ATS parameters as in the proof of
Proposition 5.10 and analyze the delay bounds. The author of this thesis co-designed with
Guillermo the solution for the first objective. This solution is presented in this chapter as we
believe that it is of interest beyond Guillermo’s master project. A merge request based on
this work has been opened on the ns-3 mainline code and is under discussion with the ns-3
maintainers for integration [1].

We first present the key concepts of ns-3 in Section 7.1. Then the previous work for
simulating local clocks in discrete-event simulators (DESs) is discussed in Section 7.2. From
their limitations we derive a set of requirements for the solution. The proposed solution is
then presented in Section 7.3 Finally, its application for the adversarial case described in the
proof of Proposition 5.10 is discussed.

This manuscript does not discuss the other two objectives in which Guillermo led alone
the conception of the solutions. For them, we refer to his report [Aguirre Rodrigo 2020].

7.1 ns-3, a Network Simulator

ns-3 [16] is an open-source object-oriented discrete-event simulator (DES) written in C++ for
modeling and simulating networks and Internet systems. Its has been widely used for research
and educational use and has received the 2020 SIGCOMM Networking Systems Award that
recognizes “the development of a networking system that has had significant impact on the
world of computer networking” [19].

As opposed to many other network simulators (OMNET++ [17], Optnet [18], . . . ), ns-3
does not come with a default graphical user interface (GUI) and the simulation scenarios
are written in either C++ or Python scripts. However, the ns-3 web-page offers a thorough
tutorial and a complete documentation. The simulator offers a very high level of flexibility,
allowing for an easy implementation of new models. In this section, we present some of the

1After the end of the project, a support for simulating clocks has been added into INET [4], a framework
on which NeSTINg relies. This recent implementation of clocks in INET is discussed in Section 7.2.

2The NeSTINg respository [11] has an open merge request for ATS, the TSN implementation of IRs, but
as of June 2022, the merge request has not been either updated or merged since September 2019.
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Figure 7.1: Principle of the event scheduler in a discrete-event simulator (DES). (a) The events are sorted
as per their execution time. (b) The simulator picks the event with the smallest execution instant and
‘jumps’ to this time instant by updating its simulation time tsim. The execution of the event can generate
new events. (c) New events are inserted in the event scheduler as per their execution time instants.

key concepts of ns-3 on which our implementation of local clocks relies.

7.1.1 A Discrete Event Simulator

A discrete-event simulator (DES) maintains a list of to-be-executed events, ordered as per
their execution time instants in the simulation time. In ns-3, this list is called the event
scheduler. At each step, the DES processes the event with the smallest time instant by
“jumping” directly to this time instant, i.e., updating the simulation time to the execution
time of the event. It then executes the actions associated with this event. The execution of
an event can result in new events being inserted at various time instants in the scheduler.

Example: Assume that event F is scheduled at time t1, after event E0, as in Figure 7.1a.
When E0 is executed, it generates two new events E1 and E2 as in Figure 7.1b. If their
execution time instants are before the execution time of F as in Figure 7.1c, they are
inserted before F .

7.1.2 Nodes, NetDevices and Channels

The base element in an ns-3 simulation is the Node. A Node can have several networking
devices, or NetDevices, that are connected to other NetDevices in other Nodes through
Channels. One of the simplest types of Channels in ns-3 is the PointToPointChannel that
is connected to exactly two NetDevices and offers a full duplex, collision-free link between
them, which corresponds to two of our (one-way) “transmission links” used throughout the
thesis. A comparison of the terms used in ns-3 with those used throughout the thesis is shown
in Table 7.1. Each Node in ns-3 has a unique identifier, its node-id.

7.1.3 The ns-3 Aggregation System

The ns-3 aggregation system is one on the most important concepts in ns-3 and our imple-
mentation of local clocks heavily relies on it. At its origin, the aggregation system is an
elegant solution to the following problem:
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Table 7.1: Comparison of the terms used in the thesis with the ns-3 terminology.

Term used in ns-3 Term used in the thesis
A Node A “Device”

A PointToPointChannel Two “transmission links” (one per direction)
A NetDevice An “output port” + An “input port”

Node

MovingNode

getPosition(): Position

Switch

forwardPacket(p: Packet)

MovingSwitch

(a) In ns-2: a Node is specialized by sub-classing the
base class Node.

A moving Node:
n: Node

m: MobilityModel

getPosition(): Position
1

A switch:

n: Node

ip: IpFwdLayer

forwardPacket(p: Packet) 1

A moving switch:

n: Node

ip: IpFwdLayer

forwardPacket(p: Packet)

m: MobilityModel

getPosition(): Position11

(b) In ns-3: a Node is specialized by aggregating
objects to it.

Figure 7.2: Illustration of the solutions embraced by ns-2 and ns-3 to specialize the Nodes and distinguish
between switches, moving nodes, etc. (a) UML class diagram for ns-2: ns-2 uses the traditional sub-classing
paradigm to specialize the Nodes. (b) UML object diagram for ns-3: ns-3 uses an aggregation system in
which the model of a Node is modified by aggregating objects to it, for example a moving node is an
instance of Node that has a MobilityModel.

Since all elements in the simulation are ns-3 Nodes, how do we distinguish between Nodes

that are end systems and those that are bridges, or switches ? How do we distinguish between
the Nodes that have an IP forwarding layer, those that move, or not ?

In object-oriented computer programming, the classic solution for adding or overriding a
behavior of a base class (the Node) is to create a subclass of it: For example, we could create
a subclass MovingNode for a moving Node, a subclass Switch for an IP switch, etc. This
solution, used by the ns-2 network simulator, is represented in Figure 7.2a. As discussed in
the ns-3 documentation [16, Manual, Section “Aggregation”], it raises several issues.

For example, if we need to model a Node that is both a Switch and a MovingNode, then
we would create a class that inherits from both MovingNode and Switch (Figure 7.2a). This
is not possible in all object-oriented programming languages and for those that allow it (e.g.,
C++), it raises an ambiguity known as the “diamond problem” [15].

In ns-3, there exist no sub-classes of Node. Instead, the behavior of a Node instance is
modified by aggregating different objects to it. Figure 7.2b illustrate some examples3: A
moving node is an instance of Node, to which we aggregate a MobilityModel object. A
switch is a Node to which we aggregate an IpFwdLayer. And a moving switch is a Node to
which we aggregate both a MobilityModel and an IpFwdLayer.

The aggregation system of ns-3 is such that any ns-3 object (e.g., an instance of Mobility-
Model) can be aggregated to any other ns-3 object of different type (e.g., an instance of Node),
by using a simple call n->AggregateObject(o). The only limitation is that only one object

3The UML diagrams in Figure 7.2 are only for illustration purposes, they do not represent the exact
conception in ns-2 or ns-3. Note that the rounded boxes in Figure 7.2b represent instances and not classes.
Indeed, the aggregations in Figure 7.2b are not coded in the class but created during run-time.
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TFA
αn† = ∑

f∋f αf,n†

TFA++
αn† = ∑

p γcp,lmax ⊗ . . .
▷ Eq. (3.5)

TFA with REGs
αn† = ∑

f regulated σf,n + . . .
▷ Eq. (3.9)

TFA++ with REGs
αn† = . . .

(a) Illustrative class diagram with FP-TFA.

TFA++:
p: ACP s: ShapingCom-

putationBlock1

TFA with REGs:

p: ACPreg: RegCom-
putationBlock 1

TFA++ with REGs:

p: ACPreg: RegCom-
putationBlock

s: ShapingCom-
putationBlock11

(b) Illustrative object diagram with xTFA.

Figure 7.3: Illustration of the solutions embraced by FP-TFA and xTFA for distinguishing between vertex
models with or without line shaping, with or without regulators, etc. (a) FP-TFA uses the traditional
sub-classing paradigm to overwrite the closed-form expression of the aggregate arrival curve. (b) xTFA use
the concept of aggregate computation pipelines (ACPs) where each pipeline p is specified by aggregating
computation blocks to it.

per type can be aggregated: for example, only one MobilityModel can be aggregated to a
given Node.

If we have a pointer n to an aggregate and if we know the type of the aggregated object
that we are interested in, then n->GetObject<Type>() returns a pointer to the (unique)
aggregated object of actual type Type. For example, if n is a pointer to a moving Node,
then n->GetObject<MobilityModel>() returns a pointer to its (unique) MobilityModel and
n->GetObject<MobilityModel>()->GetPosition() returns the node’s position.

Remark: The ns-3 aggregation system is very powerful because the aggregation is
performed during run-time. The system has greatly inspired the conception of xTFA,
presented in details in Chapter 6. Indeed, in a TFA approach, the model for each vertex
n has a part that computes the aggregate arrival curve αn† at the observation point n†.
Thus xTFA faces the following challenge: How do we distinguish between the vertices on
which we take into account the line shaping effect and those on which we do not ? Those
that have packet-elimination functions, or regulators and those that have no optional
function ? Figure 7.3 highlights two solutions to this problem: In FP-TFA (Figure 7.3a),
the computation of the aggregate arrival curve is overwritten depending on the vertex
model. In xTFA, the computation of the arrival curve is performed by the aggregate
computation pipeline (ACP), to which we aggregate the required pieces of model.

7.1.4 The Context and the Simulator Global Variable

In ns-3, each event executed by the DES has a context, whose value can be obtained
from anywhere in the ns-3 code. This integer value is equal to the node-id of the Node

on which the event takes place4. With this node-id we can obtain a pointer to the Node

using NodeList::GetNode(node-id), where NodeList is a global variable.
The Simulator global variable (accessible from anywhere in the source code) is the entry

point for scheduling events. It provides the main following function:
− Simulator::Schedule(D, action, object, arguments) takes four parameters:

4Except in special cases, e.g., during the setup of the simulation.
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• D is the delay between the current simulation time and the time of the scheduled event.
• action is the action to be executed (a pointer to a function).
• object is the pointer to the C++ object that should execute the above function.
• arguments is a list of arguments to provide to the above function.

Simulator::Schedule(D, action, object, arguments) schedules a new event in the event
scheduler, that should be executed at t+D, where t is the current simulation time. When the
new event is to be executed, the scheduler calls object->action(arguments). The object
behind the Simulator must inherit from the SimulatorImpl interface.

ns-3 provides a default implementation for the interface: DefaultSimulatorImpl. With
this implementation, there exists only one time reference frame: the simulation time, which
corresponds to the international atomic time (temps atomique international) (TAI) in our
thesis, noted HTAI. The delay D that is provided to the Schedule function is understood as
a delay observed with HTAI. The simulator uses a unique event scheduler, with the events
being ordered as per their execution time in HTAI and the events are executed one after the
other (DefaultSimulatorImpl does not support mutli-threading).

During the setup of the simulation, the user can change the default simulator for a different
implementation, as long as this implementation inherits from the SimulatorImpl interface.

7.2 Previous Work, Limitations and New Requirements

The idea of supporting different local clocks in discrete-event simulators (DESs) is not new.
However, it realization requires to address two important challenges:
− First, the architecture of the DES must be adapted. Instead of scheduling all the events in
the same scheduler and with the same clock, the DES shall manage different clocks, identify
the clock that is used to schedule an event, synchronize the events across different clocks, etc.
− Second, a model for the local clocks shall be designed and implemented in the simulator.
As discussed in Chapter 4, the stochastic properties of the clocks have been widely studied
in the literature. However, creating a computer-representation of such clock models that is
suited for use in DESs is challenging [Renczes, Kovácsházy 2020; Mahmood, et al. 2017]. A
method for implementing a realistic clock model is presented5 in [Gaderer, et al. 2011].

In the thesis, we focus on the first challenge: extending the current capabilities of ns-3 to
allow for discrete-event simulation with local clocks, where each local clock has an unspecified
model that is hidden behind an application programming interface (API).

7.2.1 Managing Local Clocks in Discrete Event Simulators (DESs)

In [Zhu, Ma, Ryu 2013], a “System and method for clock modeling in discrete-event simula-
tion” is patented. In the invention, when an event E is scheduled at a time instant tH observed

5For the interested reader, we should note that, contrary to what the authors indicate in [Gaderer, et al.
2011, §2] , the ns-3 simulator does not include any linear model for local clocks. The WallClockSynchronizer

class cited by the authors is in reality an utility class (not supposed to be used by the user) that is used by the
RealtimeSimulatorImpl. The latter allows for the user to run the simulation “in real time”, i.e., synchronized
with the computer’s clock (the “wall clock”). Neither WallClockSynchronizer nor RealtimeSimulatorImpl

are intended to simulate local clocks.
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Figure 7.4: Principles and issues of [Zhu, Ma, Ryu 2013]. (a) Principle of the patent: when an event E2
is scheduled with a local clock at tH1

E2
, its execution time is converted into the global time using h−1

1 (tH1
E2

),
and inserted into the unique event scheduler. (b) An issue arises if the clock model (the function h1) is
updated by another event G before E2 could have been executed. Because of this update, the previous
execution time of E2 in the global event scheduler is not valid anymore.

with a local clock H, the simulator first translates the time instant into tHTAI observed with
the true time HTAI using the API of the model for clock H. Then the event E is inserted in
the event scheduler at time tHTAI , with the rest of the events.

Example: In Figure 7.4a, the execution of Event E0 schedules the new event E2 at
tH1
E2

= t + T = 8 time units. At the execution of event E0, the mapping between HTAI
and H1 is h1(t) = t: The local clock is perfectly synchronized with the true time.

With the technique of [Zhu, Ma, Ryu 2013], the execution time of E2 is translated
into HTAI using the clock model API: tHTAI

E2
= h−1

1 (tH1
E2

) = 8 time units. And event E2

is inserted into the unique event scheduler at execution time tHTAI
E2

= 8 time units.

With the solution in [Zhu, Ma, Ryu 2013], the simulator only needs to maintain a unique
event scheduler and a unique timeline: the events are sorted in the event scheduler as per their
execution time instants observed in HTAI. The local clocks {Hi} are only used for creating
the events and for converting time instants/durations from/to the local/global time. Our
conception of local clocks in ns-3 relies on these basic principles6.

A major issue with the technique of [Zhu, Ma, Ryu 2013] arises when the clock model is
updated: the mapping between global time and local time changes.

Example: Assume that at tHTAI = 4, event G is executed (Figure 7.4b). For example,
G can correspond to the reception of a synchronization message that is processed by the
synchronization client within Node 1. This event could not have been anticipated when
E0 was executed. As a consequence of the synchronization message, the synchronization
client decides to steer the node’s clock, for example by doubling its frequency.

Then event E2 is still to be executed at tH1
E2

= 8 time units, but since the mapping
h1(t) has changed, tHTAI

E2
now equals 6 time units instead of 8 previously. The technique

of [Zhu, Ma, Ryu 2013] only keeps track of a unique scheduler aligned with the HTAI
timeline (the bottom timeline in Figure 7.4). In this scheduler, event E2 is not at the
correct execution time, it must be rescheduled.
6At the beginning of the project, we were not aware of the existence of [Zhu, Ma, Ryu 2013]. We found

it natural to convert all the events from their local clock to the true time and to manage all the events in a
unique event scheduler whose clock is HTAI. We also found it natural that the clock models should convert
time instants and durations from the local clock to the true time and reciprocally, which leads to the API
described in [Zhu, Ma, Ryu 2013].
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On the 31st of July, 2020, around a month after Guillermo opened a merge request for
submitting our solution of local clocks to the ns-3 community, the community of the open-
source INET framework [8] also published their own implementation of local clocks for the
OMNET++ simulator [4]. Their implementation shows some similarities with the design
proposed in this chapter.

For example, they also rely on the patent of [Zhu, Ma, Ryu 2013] and schedule all events
in a unique event scheduler [9, Lines 47-70]. Like in our design, their implementation stores
the events scheduled with a clock in a list [10, Lines 91, 98] and uses this list to resched-
ule the events if the clock model is updated [10, Lines 129-156]. However, as opposed to
our design, their implementation is not backwards compatible: Only the models that have
been implemented after their implementation of local clocks and that explicitly use the call
scheduleClockEventAt of their implementation (instead of the default call scheduleAt)
benefit from their implementation.

7.2.2 Previous Attempts for Local Clocks in ns-3

In the context of ns-3, several works have been previously conducted for implementing local
clocks in ns-3. None of them has been integrated in the ns-3 mainline code.

Coudron and Secci developed a first approach for implementing local clocks in ns-3
[Coudron, Secci 2015]. In their design, the Node class is modified to implement the Simulator
interface. Therefore each node i in the simulation has its own event scheduler in which time
instants are observed with Hi. The event schedulers are synchronized through a global sched-
uler (observed with HTAI) that keeps track of only the next-to-be-executed event for each
node. In an email [14], Coudron argues that the solves avoids the problems raised by the
update of a clock model. However, their proposal is not backwards compatible because the
events need to be scheduled with n->Schedule() instead of Simulator::Schedule(), where
n is a pointer to the node of the current context.

Another project based on ns-3 has been presented in [Maruyama, et al. 2015]. The
authors evaluate the performance of the [IEEE 1588] synchronization protocol using ns-3
simulations. To this end, they develop a clock model and a subclass of the ns-3 Application

class: ApplicationOnClock. Their design follows the overall design of the patent [Zhu, Ma,
Ryu 2013]. The authors also address the issue raised when updating a clock model: when a
clock model for Hi is updated, all the events that have been scheduled using Hi are removed
from the event scheduler, their new time instants in HTAI are computed and the events are
inserted again in the scheduler, at the corrected time instants in HTAI.

The design of [Maruyama, et al. 2015] is not backwards compatible: Only the models
that subclass ApplicationOnClock benefits from the clock model.

7.2.3 Specifications for a New Attempt at Implementing ns-3 Local Clocks

Guillermo and this thesis’ author relied on both the ideas and the limitations of the projects
presented above to determine a set of requirements that the implementation of local clocks
in ns-3 should meet.

1. The implementation shall permit the definition of at least one local clock per ns-3 Node.
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Figure 7.5: UML class diagram of the design of local clocks in ns-3
Unified Modeling Language (UML) class diagram of the design of local clocks in ns-3.

2. The implementation shall define an API that the future clock models must implement.
This API shall be complete7 and minimal8. For illustration purposes, the implementa-
tion will provide an easy clock model that implements said API. However, implementing
realistic clock models is not the scope of the project.

3. The implementation shall provide an interface that allows for an external application
to update the clock model during run-time (for example if an IEEE 1588 application
receives a synchronization message, it may use this interface to steer the parameters of
the clock model).

4. The implementation shall be backwards compatible (all previously-coded ns-3 models
shall benefit from the local-clock implementation) and come as a totally independent
module that does not require to change any line in the previously-existing models9.

7.3 Proposed Design for the Implementation of Clocks in ns-3

In this section, the solution developed by Guillermo Aguirre and this thesis’ author, and
implemented by the former, is presented.
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7.3.1 Overview of the Solution

The solution is presented in Figure 7.5, in which the new module clock is detailed, as well
as its interactions with already-existing modules of ns-3 (network and core). The already-
existing modules in red are not modified by the proposed approach. The solution is made of
two classes: LocalTimeSimulatorImpl and LocalClock and one interface, ClockModel. An
example of implementation of the interface ClockModel is also provided: PerfectClockModel
represents a “perfect” clock with no noise and two parameters: the time offset x0 and the
frequency offset y0: The local time h(t) at true time t is h(t) = x0 + t · y0.

The class LocalTimeSimulatorImpl implements the ns-3 interface SimulatorImpl. As
such, LocalTimeSimulatorImpl can be instantiated and can take the role of Simulator

everywhere in the simulation, in place of the DefaultSimulatorImpl. After the setup, all the
calls to Simulator::Schedule are sent to LocalTimeSimulatorImpl instead of the default
implementation. Like most of the related work, LocalTimeSimulatorImpl relies on an event
scheduler in which the events are ordered as per their time instants observed with HTAI.

The interface ClockModel represents the minimal API that a clock shall provide in order
to be integrated in the simulation. This API provides four services: converting a local time
instant from the local clock to the global clockHTAI and vice versa; and similarly for durations.

The class LocalClock represents a local clock. It relies on a clock model that shall inherit
from ClockModel. The attribute m model is private such that only the LocalClock has
access to the model. The only way for other classes to change the clock model is through the
SetClockModel method of LocalClock. The LocalClock class mirrors the four services of the
model’s API to the external classes. Note that LocalClock inherits from Object and as such
it can be aggregated to any other Object of different type. In particular, a LocalClock can
be aggregated to a Node to model the fact that the Node has a local clock. The LocalClock

also keeps track in its private list (m events) of all the events that have been scheduled with
the current clock model and that have not been executed yet. This list is used when the clock
model is updated through a call to LocalClock::SetClockModel.

In the following, we provide more insights to the proposed design by detailing two use-
cases: when an event is scheduled and when the clock model is updated.

7.3.2 Scheduling an Event

The simplified sequence diagram for the first use-case is shown in Figure 7.6. Here we assume
that the simulator executes an event (the runningEvent on the far-left). This running event
schedules a new event to be executed in D seconds from now.

To do so, the model10 calls Simulator::Schedule(D,. . . ) and provides the delay D as
well as the function and parameters to be executed by the scheduled event. This call is
delivered to sim, the configured instance for SimulatorImpl.

7Everything that the simulator needs from the clock model in order to schedule and manage the events
shall be written in the API.

8Nothing more than what is strictly necessary for the simulator to schedule and manage the events shall
be requested from the clock model.

9This requirement permits a faster acceptation of the implementation in the community, as it guarantees
that the behavior of the simulator is not changed when the local-clock module is not used.

10It can be any anything of the ns-3 source code: the model of an application, of the TCP layer, etc.
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ev: EventId
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Figure 7.6: Sequence diagram of the proposed design for the use-case “Scheduling a new Event”. The
runningEvent uses Simulator::Schedule to schedule a new event. This call is forwarded to sim, an
instance of LocalClockSimulatorImpl that takes care of identifying the clock observing the delay DH
and for converting the delay to a delay observed with HTAI. Last, the event is inserted in the Scheduler.

If sim were an instance of the ns-3 default simulator, i.e., SimulatorDefaultImpl, it
would directly insert this event in the event scheduler at execution time instant tnow + D,
where tnow is the current time. But since sim is an instance of LocalSimulatorImpl, it
does not interpret D as being observed with the global time HTAI. Instead, it interprets the
provided delay as being a delay DH observed with a local clock H.

The first step is to find the clock H that is used to observe the provided delay DH. The
simulator queries the context, i.e., node-id, of the runningEvent using the GetContext call.
It then obtains a pointer n to the node by using NodeList::GetNode(context). Last, sim
uses the ns-3 aggregation system to obtain a pointer to the LocalClock aggregated to the
Node by calling GetObject<LocalClock>() on n.

Now that sim has found a pointer to the LocalClock H, it request H to convert the local
delay DH into a global delay DHTAI by calling LocalToGlobalDuration. H forwards this call
to its private ClockModel and returns DHTAI . The simulator sim now inserts the event in the
scheduler, at the global time instant tHTAInow +DHTAI , where tHTAInow is the current global time.

Before returning the EventId ev to the calling runningEvent, sim notifies the Local-

Clock H that the event has been created. H inserts this event in its personal list of events.



148 Chapter 7. Implementation of Local Clocks in ns-3

This list is useful for the next use-case. It does not need to be ordered.

7.3.3 Updating a Clock

We now consider the use-case in which an external model needs to update the clock model. In
Figure 7.7, the external PTP client model receives a synchronization message from the ns-3
simulation. It decides to steer the clock parameters accordingly. To do so, it cannot directly
set the parameters of the private attribute model of the local clock. Instead, it creates a new
instance new of ClockModel (using the sub-class that fits its needs), configures it and uses
LocalClock::SetClockModel(new) to set it as the new model of the local clock.

When LocalClock::SetClockModel(new) is called, the LocalClock sets its new model,
but it also reschedules all the events of its personal event list that have not yet been executed.

Therefore, for each event ev in its personal list, the LocalClock requests from the
Simulator the duration DHTAI

old between tHTAInow and tHTAI
old , observed with HTAI. This gives

the remaining duration before the event, in HTAI, when the mapping between H and HTAI is
as per the old clock model. If DHTAI

old is positive, LocalClock requests the old clock model to
translate this remaining delay in local time. This gives DH, the remaining delay before the
event, observed with H, and this delay does not depend on the model for H.

Then, the LocalClock requests the LocalTimeSimulatorImpl to cancel (not execute) the
event ev, because its execution time in the event scheduler is incorrect. Ideally, the Scheduler
class would provide a method for removing an event from its queue. This is unfortunately
not the case in the ns-3 code of the Scheduler as of today. A workaround as well as other
related challenges are discussed on the merge request [1].

Last but not least, the LocalClock requests the LocalTimeSimulatorImpl to schedule
a copy of the event in DH seconds from now. To do so, it uses the Simulator::Schedule

call whose implementation is discussed in the previous subsection. During the execution of
Simulator::Schedule, the ClockModel to which the LocalClock forwards the LocalTo-

GlobalDuration is the new clock model because LocalClock has previously updated its
attribute m model.

7.3.4 Validation of the Design Requirements

Through the two use cases, we observe that the proposed solution meets the requirements that
are listed in Section 7.2.3. Indeed: (1) One LocalClock object can be aggregated per Node.
(2) The design defines an API for the clock models, and provide a simple implementation,
PerfectClockModel. (3) Through the call LocalClock::SetClockModel, an external model
can steer the parameters of the clock model and all the events remained scheduled at the
correct time instant. (4) All the already-existing the calls to Simulator::Schedule are
automatically redirected to LocalTimeSimulatorImpl (if configured), without requiring to
change any already-existing code.
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Figure 7.7: Sequence diagram of the proposed design for the use-case “Updating the Clock Model”. The
clock model is a private attribute of the LocalClock, therefore the only way for external classes to update
the clock model is to call Local::SetClockModel. This gives an opportunity to the LocalClock for
identifying all the events ev that have been scheduled in the HTAI-aligned Scheduler using the previous
clock model, compute their remaining time in HTAI with the new clock model and reschedule them.
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Figure 7.8: Scenario showing the instability of the non-adapted IR in synchronized networks.
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Figure 7.9: Shape of the function hi(t) for the adversarial clock Hi.

7.4 Application: Simulating the IR Instability with Non-Ideal
Clocks

To prove the instability of the non-adapted IR in a synchronized network with non-ideal
clocks, the proof of Proposition 5.10 uses the scenario presented in Figure 7.8. Three nodes
(on the far-left) have each a local clock Hi and a source application that generates a unique
flow. The three flows have the same leaky-bucket arrival curve at their source γr,b (when
observed with the source’s clock Hi). The three flows then reach a fourth node with an ideal
clock (HTAI) and they compete to exit Node 4 through one of its output ports made of a
FIFO CBQS with no optional function. Last, the aggregate made of the three flows reaches
a fifth node, with an ideal clock HTAI and a non-adapted IR (it enforces γr,b for each flow).

We denote by ρ, η and ∆ the parameters of the synchronized time model (clock-stability bound,
time-jitter bound, synchronization precision, Chapter 5) for the synchronized network made
of Nodes 1 to 5. Proposition 5.10 states that, for any values of ρ > 1, η ≥ 0 and ∆ > 0,
there exists an adversarial beahavior of the three clocks H1, H2, H3 that respects the bound-
aries of the time model and an adversarial generation of the three flows that respects the γr,b
arrival-curve constraints such that the delay (observed with HTAI) of the packets in the IR
diverges.

To do, so, the proof selects, for each clock Hi, the behavior illustrated by the time function
hi in Figure 7.9: When the true time HTAI reaches xi, the clock Hi increase its frequency,
set to s > 1. Then at xi + A, it slows down and its frequency is set to 1

s < 1 until the true
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Figure 7.10: Delay spent in the IR as a function of the packet number. Result of the ns-3 simulation of
the adversarial trajectory when ρ = 1.002, η = 0, ∆ = 1µs, r = 149.8kB/s and b = 1498B.

time reaches xi +B. At xi + τ , it repeats the same profile. The values A, B and the period
τ do not depend on i and are selected by the adversarial model depending on the values for
ρ, η,∆, r and b. All three clocks H1, H2 and H3 adopt the same profile, but they do not start
at the same time; xi depends on i and is again selected by the adversarial model.

To model these clocks on ns-3, Guillermo created a sub-class AdversarialClock of ClockModel
[6]11. He then combined all the pieces of his master project [Aguirre Rodrigo 2020] to simulate
the situation of Figure 7.8:

Figure 7.10 presents the delay spent by each packet inside the IR, as a function of its
packet number and obtained through ns-3. It is obtained for the case ρ = 1.002, η = 0,
∆ = 1µs, r = 149.8kB/s and b = 1498B. To ease the reading of the figure, we show only
the delay spent by the packets that have an even packet number12. After some time, we
observe that the delay increases linearly with the packet number, which highlights the delay
divergence. In this simulation, the delay that the packets spend in the IR increases by 934µs
every second.

Conclusion

In this chapter we have described a proposed modification of the ns-3 source code for enabling
the simulation of local clocks. In Section 7.1, we have introduced the key concepts of the ns-
3 network simulator, some of which have inspired the design of xTFA (Chapter 6). Then

11Another option was to split the model into three parts ([xi, xi + A], [xi + A, xi + B], [xi + B, xi + τ ]), use
an affine PerfectClockImpl to model each part, an trigger the ‘swapping’ between the various parts by using
LocalClock::SetClockModel().

12They correspond to the packets of type A2 in the proof, Appendix B.3.10.
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we have discussed the related work in Section 7.2 and have identified the limitations of the
previous attempts. From these limitations we have derived a new set of requirements.

In Section 7.3, we have described the proposed solution through a class diagram and
two use-cases. The solution was co-designed by Guillermo Aguirre Rodriguo and this thesis’
author; it was implemented by Guillermo.

Finally in Section 7.4, we have discussed how Guillermo used the solution described in
this chapter to simulate a non-adapted interleaved regulator (TSN ATS) in a tightly synchro-
nized network [Aguirre Rodrigo 2020]. His work enables the validation of Proposition 5.10
through a simulation: The ns-3 simulations prove that the interleaved regulator (IR) and its
implementation within TSN, asynchronous traffic shaping, can yield unbounded latencies if
placed in a network of non-ideal clocks (whatever the synchronization precision ∆ > 0) and
if its parameters are not adapted to take into consideration this clock non-idealities.

As the implementation of local clocks is of interest beyond the simulation of the IR and
even beyond the simulation of TSN components, we have submitted the local-clock module to
the ns-3 community, through a merge request on the mainline code [1]. The ns-3 maintainers
have expressed their interest in the module through their positive feedback, both on the ns-3
mailing list [3; 7] and on the merge request [1].

The design detailed in this chapter is the one submitted originally. The ns-3 maintainers
have identified a set of modifications on their side (on the core module) that could ease
our implementation and reduce the need for workarounds [5]. It is expected that once these
modifications have been performed on their side and once our implementation is adapted to
these new modifications, the request could be merged on the ns-3 mainline code.

This chapter constitutes the second major practical contribution developed/co-developed
during the thesis. In the next chapter, we conclude our practical contributions by highlighting
the applicability of our theoretical contributions and the utility of xTFA on an industrial use-
case.



Chapter 8

Application of the Contributions to
an Industrial Use-Case

Si je vous ai raconté ces détails sur l’astéröıde B 612 et si je vous ai confié
son numéro, c’est à cause des grandes personnes. Les grandes personnes aiment
les chiffres. Quand vous leur parlez d’un nouvel ami, elles ne vous questionnent
jamais sur l’essentiel. Elles ne vous disent jamais: “Quel est le son de sa voix ?
Quels sont les jeux qu’il préfère ? Est-ce qu’il collectionne les papillons ?” Elles
vous demandent: “Quel âge a-t-il ? Combien a-t-il de frères ? Combien pèse-t-il ?
Combien gagne son père ?” Alors seulement elles croient le connâıtre.

Antoine de Saint-Exupéry, Le Petit Prince.
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In this chapter, we analyze the worst-case latency bounds on an industrial use-case and
highlight the applicability of our contributions. We first describe the industrial network in
Section 8.1. In Section 8.2, we discuss the contributions of Chapter 3, the partial deployment
of regulators using LCAN and the benefit of FP-TFA. In Section 8.3, we discuss the contri-
butions of Chapter 4, the tight model of the packet-elimination function (PEF) and the use
of regulators after the PEF. Finally in Section 8.4, we introduce clock non-idealities and we
discuss the contributions of Chapter 5 and the regulator adaptation methods.

8.1 Description of the Industrial Use-Case

We consider the Volvo core TSN network described in [Navet, Bengtsson, Migge 2020].
Physical Topology: The physical topology is shown in Figure 8.1 and is based on

[Navet, Bengtsson, Migge 2020, p. 4]. The network contains two redundant vehicule-level
control units P1 and P2 [Navet, Bengtsson, Migge 2020, Page 4]. They run safety-critical
functions. The network also contains four sub-system-level main control units (MCUs) that
act as gateways between local networks (based on CAN) and the core TSN network.

153
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Figure 8.1: Simplified physical topology of the Volvo core TSN Network. From [Navet, Bengtsson, Migge
2020]. (a) Illustration of a flow in the configuration with redundancy mechanisms at the end systems. (b)
Illustration of a flow in the configuration with redundancy mechanisms within the switches.

Table 8.1: Description of the Flows in the Use-Case. (a) Traffic profiles. (b) Flow path for i ∈ {1, 2, 3, 4},
p ∈ {S, M1, M2, B}

(a)
Name p Payload size Period at source
S 64B 81µs
M1 92B 324µs
M2 121B 567µs
B 150B 810µs

(b)
Flow name Source Dest. Redundancy

C MCUi P12 p MCUi P1, P2 For C MCU3 P12 p [resp., C MCU4 P12 p],
dest. P2 [resp., P1] is not redounded

C P1 MCUi p P1 MCUi Except for C P1 MCU1 p
C P2 MCUi p P2 MCUi Except for C P2 MCU3 p

Flow Description: We focus on the Command and Control class and consider four
different periodic traffic profiles within the class. Their characteristics are listed in Table 8.1a.
For each traffic profile and for each MCU, there exists a multicast flow that carries the sensor
data from the MCU to both P1 and P2 and a unicast flow per control unit (2 in total) that
carries the commands from the control unit to the MCU (see Table 8.1b). In total, the
network contains 48 flows, 16 of which are multicast, for a total of 64 pairs [flow, destination].

Service Description: Each CBQS offers to the aggregate a rate-latency service curve
with a rate of 100Mbps and a latency of 2µs.

8.2 Side-Effects of the Multi-Path Topology on Latency Bounds:
Contributions of Chapter 3

The topology of Figure 8.1 is a multi-path topology that provides alternatives routes. We
can exploit this property to redound all the flows for which we can find two different [source,
destination] paths (last column of Table 8.1b).

We first consider a configuration in which the redundancy functions are performed by the
end systems (Figure 8.1a): Each end system sends two packets per each data unit. They take
opposite directions when they reach the backbone ring (clockwise and counter-clockwise).
The destination end system then eliminates the duplicates. This configuration corresponds
to the second row of Table 4.2 in Chapter 4. As we have discussed in Chapter 4, analyzing
this situation does not require the results of Chapter 4: the end-to-end latency bound is
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Figure 8.2: End-to-end latency bounds on the use-case. Comparison of the end-to-end latency bounds
obtained with no regulators and with two PFRs placed as per the suggestion of the LCAN algorithm. (a)
Latency bounds obtained when the redundancy functions are performed by the end systems. (b) Latency
bounds obtained when the redundancy functions are performed by the switches of the backbone.

the maximum of the sub-flows latency-bounds. However, routing the sub-flows creates cyclic
dependencies that are a side-effect of multi-path topologies. They are analyzed in Chapter 3.

The FP-TFA algorithm (Chapter 3, Section 3.3) can compute end-to-end latency bounds
despite the presence of cyclic dependencies and even without traffic regulators for breaking
them (no-deployment approach). We obtain the latency upper-bounds marked with a blue
line in Figure 8.2a.

We now consider our partial-deployment approach of the traffic regulators for breaking the
cyclic dependencies. The network contains two cyclic dependencies (clockwise and counter-
clockwise). Our LCAN algorithm (Chapter 3, Section 3.2) finds the optimal solution with
either two PFRs of two IRs. For the PFRs, the suggested positions are at output port SWBNorth
to process the flows coming from SWA and at SWBEast to process the flows from SW2.

The end-to-end latency bounds obtained with this partial-deployment approach are marked
with orange circles in Figure 8.2a. We note that the partial-deployment approach provides a
noticeable improvement with respect to the no-deployment approach, especially for the flows
with a high end-to-end latency bound.

We can explain this important gain of the partial-deployment approach by computing
the network load for the use case: we obtain a load greater than 98%. This important load
worsens the burst-propagation effect on the backbone ring, which worsens in turn the effect
of the cyclic dependencies on the latency bounds. Only one regulator per direction is required
to break the cyclic dependencies, hence avoiding the burstiness to propagate, which improves
the latency bounds in particular for the burstiest flows (with the highest latency bounds).
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8.3 Side-Effects of the Redundancy Mechanisms on Latency
Bounds: Contributions of Chapters 4 and 6

We now consider a scheme in which the redundancy functions are performed by the backbone
switches (Figure 8.1b): Each end system sends only one packet per each data unit. When a
data unit reaches the backbone ring, the switch sends one replicate in each direction, then
the remote switch eliminates the duplicates before sending the resulting flow to the edge
link towards the destination end system. This corresponds to the last row of Table 4.2 in
Chapter 4.

As discussed in Chapter 4, the literature prior to this thesis does not enable the compu-
tation of performance bounds with network calculus for this configuration. Latency bounds
can here be computed based on our toolbox of results in Chapter 4, Section 4.3 and their
implementation in xTFA (Chapter 6).

The end-to-end latency bounds obtained by xTFA for this configuration are shown in
Figure 8.2b. We first note that the obtained latency bounds are significantly better than
those of Figure 8.2b, with a gain of 40%. Indeed, when the redundancy functions (duplication
and elimination) are delegated to the backbone switches, the edge links between the switches
and the end systems are less loaded (the network load is reduced to 85%), which reduces the
burstiness and latency bounds for the output port connected to these links.

As in the previous configuration, we observe that xTFA computes end-to-end latency
bounds even if the cyclic dependencies are not broken by traffic regulators. This is due to the
extended fixed-point theorem for networks that contain PREFs (Theorem 4.3 in Chapter 4).
However, using a partial deployment of traffic regulators to break the two cyclic dependencies
(by relying again on the recommendation of LCAN) improves the latency bounds here as well.
The gain is less important because the network load is smaller than in Figure 8.2a.

In Figure 8.2b, the traffic regulators are used for breaking the cyclic dependencies in the
backbone ring. But as we have discussed in Chapter 4, traffic regulators can also be of interest
when placed after the packet-elimination functions (PEFs) to remove the burstiness increase
caused by the redundancy when the flows exit the backbone ring and compete to access the
edge links towards their destination. Consider for example the four redounded flows from P2

to MCU1, their path is shown in Figure 8.1b. Each of them is processed by a PEF within SWB

to eliminate the duplicates coming from SW2 and SWA. We evaluate the opportunity to shape
the four flows after the PEFs and before they compete with the four other flows coming from
P1 in the output port of SWB towards SW1. We can either use four PFRs, or we can use a
unique IR, because the four flows share the same reference point P2.

The latency bounds obtained with the various configuration options for SWBSouth are shown
in Figure 8.3a. We focus here on eight flows: four non-redounded flows that come from P1

towards MCU1 and four redounded flows from P2 towards MCU1 as well. The baseline in green
corresponds to the situation with only the PEF. We observe that as soon as we place a
regulator (preceded or not by a POF), then the latency bounds of the non-redounded flows
is improved because these four flows compete now with four redounded flows that exhibit
a smaller burstiness. However, for the four flows that come from P2 and are processed by
the PEFs and the regulator, their latency bounds is improved only if the PFRs are preceded
with per-flow POF and only if the IR is preceded by an aggregate POF. When the PFRs are
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Figure 8.3: End-to-end latency bounds on the volvo use-case. (a) Comparison of the latency bounds
obtained with different combinations inside the output port SWBSouth. (b) Relative increase of the end-
to-end latency bounds with respect to the ideal-clocks situation, with the different adaptation methods
for adapting the regulators’ configuration when the clock are non-ideal (η =4ns, ρ = 1 + 2 · 10−4 and, if
synchronized, ∆ =1µs).

not preceded by POFs the processed flows suffer a delay penalty as per Theorem 4.4. When
the IR is not preceded by an aggregate POF, we cannot compute any latency bound as per
Theorem 4.5.

8.4 Side-Effects of the Synchronization on Latency Bounds:
Contributions of Chapters 5 and 6

Last, we evaluate the effect of clock non-idealities and of the synchronization mechanism on
the latency bounds.

We consider again the situation of Figure 8.2b with two PFRs for breaking the cyclic
dependencies in the backbone ring but no regulator placed after the PEFs on the edge links.
We assume that the clocks are non-ideal. As the network contains two PFR, we know from
Chapter 5, Proposition 5.5 that the PFRs cannot be left non-adapted if the network is non-
synchronized. Otherwise they can yield unbounded latencies.

Section 5.5 of Chapter 5 provides three solutions: we can either keep a non-synchronized
network and adapt the configurations of the two PFRs using the rate-and-burst cascade or
the ADAM method; or we can synchronize the network.

We compute the end-to-end latency bounds of the flows for each option. Note that the
clocks are no longer assumed to be ideal, hence we also use the toolbox of Chapter 5, Sec-
tion 5.3, the “always in TAI” strategy (Section 5.4.1) and its implementation in xTFA (Chap-
ter 6) to compute TAI delay bounds, even for the flows that are not processed by the two
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regulators.
The results are shown in Figure 8.3b. It represents the increase, in %, of the obtained

TAI latency bounds with respect to the ideal-clock situation (that corresponds to the curve
“partial deployment” of Figure 8.2b).

We observe that the rate-and-burst cascade provides the smallest latency bounds, which
is consistent with our evaluation in Chapter 5, Section 5.6. The latency bounds computed
with this adaptation method are less than 0.2% worse than in the ideal-clock situation. The
ADAM adaptation method and the choice of using a synchronization mechanism provide
similar end-to-end latency bounds. They all remain within 1% of the ideal-clock situation.

Figure 8.3b shows that, once the regulators are correctly configured (or if the network
is synchronized and PFRs are used), then the penalty on the end-to-end TAI latencies is
negligible with respect to the ideal-clock situation. However, it does not imply that the clock
non-idealities can be neglected: clock non-idealities must be considered when configuring
the regulators’ parameters (except for synchronized PFRs). If the network either is non-
synchronized or contains IRs, then ignoring the clock non-idealities when configuring the
regulators’ parameters can lead to unbounded latencies, as proved in Propositions 5.5, 5.10
and as simulated in Chapter 7.

Conclusion

In this section, we have analyzed the side effects of the new topologies (multi-path topologies)
and of the new mechanisms (redundancy and synchronization mechanisms) on an industrial
use-case based on [Navet, Bengtsson, Migge 2020]. The analysis has been conducted with
our theoretical contributions of Chapters 3, 4, 5 and their implementation in the xTFA tool
(Chapter 6).

We have first observed that routing redundant flows (with redundancy functions at the
end systems) generate cyclic dependencies within the network’s backbone. FP-TFA is able
to compute latency bounds despite the cyclic dependencies, but placing two PFRs at the
locations suggested by LCAN improves the latency bounds, especially when the load of the
network is high.

We have observed that the implementation of the redundancy functions at the switches
(instead of the end systems) reduces the network load and the end-to-end latency bounds.
Latency bounds are computed based on our framework for modeling PREFs within network
calculus, on the extended fixed-point result and on xTFA. Here again, placing only two PFR
breaks the cyclic dependencies and improves the end-to-end latency bounds of all flows.

We have then explored a second use of regulators: reshaping the flows that exit the
backbone ring, after the elimination of their duplicates and before they compete with other
flows to access the edge link towards their destination. We have observed that the non-
processed flows benefit from placing such regulators because they compete with reshaped,
less-bursty flows. However, the flows that are processed by the regulators benefit from the
situation only if a packet-ordering function (POF) is placed after the PEF and before the
regulator.

Last we have analyzed the effect of clock non-idealities on the latency bounds when the
PFRs are used for breaking the cyclic dependencies. Latency bounds are computed based
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on our framework for modeling clock non-idealities and time synchronization within network
calculus, on the proposed end-to-end strategies, on the adaptation methods, and on their
implementation within xTFA. We concluded that if the clock non-idealities are not neglected
when configuring the regulators, then their effect on latency bounds can be neglected. The
synchronization mechanism has here a positive effect because no adaptation method is re-
quired for synchronized PFR; it provides latency bounds similar to the ADAM method.

In the next chapter, we provide our conclusive remarks and we summarize our contribu-
tions. We then discuss future research directions.
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Conclusion and Perspectives
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Chapter 9

Conclusion and Perspectives

“Ah, well, nothing is permanent in this wicked world – not even our troubles.”

Henri Verdoux

Charlie Chaplin, Monsieur Verdoux.

In this chapter, we summarize our contributions and discuss the research perspectives that
have been opened through our work.

As identified in Chapter 1, the various Ethernet-based solutions for time-sensitive net-
works are expected to converge towards the mechanisms developed by IEEE TSN and IETF
DetNet. These working groups provide a set of bounded-latency mechanisms that extend the
traditional forwarding process of an Ethernet bridge for providing bounded latency.

The effects of these mechanisms and of their combinations on the performance guarantees
of time-sensitive networks are studied in numerous occasions in the literature. Most of these
analyses rely on the network-calculus framework (Chapter 2). The framework relies on an
abstraction of the flows and network elements: the arrival curves and the service curves.

However, the TSN and DetNet working groups also defined new services that time-sensitive
networks should provide, as well as new mechanisms and topologies for providing such ser-
vices. For example, they encourage the use of multi-path topologies for minimizing the
reconfiguration effort. They provide redundancy mechanisms for providing high reliability
and a time-synchronization protocol for synchronizing the network’s clocks.

Through a worst-case performance analysis of their combinations by using network cal-
culus, we have proved that the new mechanisms and the new topologies have side-effects on
the worst-case performance metrics of time-sensitive networks and on the latency bounds.

9.1 Summary of the Contributions

Our contributions are summarized in Table 9.1. For each set of new mechanisms and topolo-
gies identified in the introduction of the present thesis (Figure 1), we have provided several
levels of contributions, as outlined in Table 9.1. We first provided a toolbox of results for
modeling the new mechanisms (redundancy and synchronization) within the network-calculus
theory. We then relied on these toolboxes to develop the approaches and algorithms for com-
puting end-to-end latency bounds in networks that contain cyclic dependencies, redundancy
mechanisms, and/or non-ideal clocks. We have studied separately the interactions between
the new mechanisms and the traffic regulators, such as PFRs and IRs, because the latter do
not have a known service-curve characterization, hence the nature of their interactions with
the new mechanisms and topologies is not captured by the above toolboxes. When regula-
tors can be seen as an opportunity (for example for breaking cyclic dependencies), we have
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provided an approach for exploiting this opportunity (the algorithm LCAN). When the regu-
lators lead to delay penalties (for example, with non-ideal clocks), we have provided methods
for addressing the issue (rate-and-burst cascade and ADAM). Finally, we have provided tools
based on our theoretical contributions that are used to compare the approaches on synthetic
cases and on an industrial use-case.

9.1.1 Main Theoretical Contributions

The main theoretical contributions of this thesis (in blue in Table 9.1) are

A framework for modeling the effects of redundancy mechanisms within network
calculus

The framework contains a model for packet replication, elimination and ordering func-
tions (PREOFs) (Section 4.2) and a toolbox of results that bound the effect of such
functions on the arrival curves (Theorem 4.1) and on the reordering (Theorem 4.2).

A framework for modeling the effects of clock non-idealities within network cal-
culus, in synchronized and non-synchronized networks.

The framework contains a time model for synchronized and non-synchronized networks
(Section 5.2.1), as well as a toolbox of results for changing the clock that observes a
delay (Proposition 5.1), an arrival curve (Proposition 5.3), and a service-curve (Propo-
sition 5.4).

The instability results for the interleaved regulator (implemented by TSN ATS)
when associated with redundancy mechanisms or when placed in a network with
non-ideal clocks.

Theorem 4.5 proves that the interleaved regulator (IR) can yield unbounded latencies
if placed immediately after a PEF. Proposition 5.10 proves that the non-adapted IR is
unstable when placed in networks with non-ideal clocks, even if the clocks are tightly
synchronized.

The FP-TFA algorithm for computing latency bounds in networks with cyclic
dependencies.

FP-TFA is based on the total-flow analysis (TFA) approach and uses a fixed-point for-
mulation for computing latency bounds in networks that contain cyclic dependencies.
It also takes into account the line-shaping effect (Section 3.3). Theorem 3.2 proves the
validity of any fixed-point found by FP-TFA. And Theorem 4.3 extends theses results
to networks with redundancy mechanisms.

9.1.2 Main Practical Contribution

The main practical contribution of the thesis (in green in Table 9.1) is
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The xTFA tool for computing latency bounds in networks with the new mecha-
nisms

The experimental modular TFA (xTFA, Chapter 6) provides a set of original data-
structures and algorithms for obtaining end-to-end latency bounds in networks that can
contain cyclic dependencies, redundancy mechanisms, non-ideal clocks, and regulators.

9.2 Perspectives

Here, we discuss two research directions based on the contributions provided in this thesis: the
implementation of our results in compositional approaches and the analysis of the behavior
of the interleaved regulator.

9.2.1 Adapting the Compositional Approaches to Compute End-to-End
Latencies with the New Mechanisms in Time-Sensitive Networks

Implementing the results of our toolboxes within compositional approach is important for
computing end-to-end performance bounds of real networks that implement the redundancy
mechanisms and that have real (hence non-ideal) clocks. With xTFA, we have selected TFA,
for its modularity and simplicity, which paves only the beginning of this research direction.

Towards a Generalization of the TFA Fixed-Point Theorem for Networks with
Cyclic Dependencies

For example, in Section 6.3 of Chapter 6, we have listed all the restrictions that apply to
xTFA when computing latency bounds in networks with cyclic dependencies and PREFs. In
particular, the only diamond ancestor selected for the application of Theorem 4.1 (arrival
curve at the PEF output) is the flow’s source. This is because the fixed-point result with
PREFs (Theorem 4.3) is limited to the vector that contains only the input bursts and the
delay bounds from the source. It would be interesting to look for a generalization of this
theorem.

Based on our work in [Thomas, Le Boudec, Mifdaoui 2019], Plassart and Le Boudec
provide theoretical foundations to the fixed-point approaches for FIFO-per-class networks
(without PREFs) in [Plassart, Le Boudec 2021]. They prove that the selection of the cuts
(see Section 3.3.3) does not influence the obtained backlog bounds.

For example, with their SyncTFA algorithm, each iteration on the virtual feed-forward
network can be split into two steps: (1) a computation step during which all network elements
are processed simultaneously based on the assumed burst and delay bounds for the flows at
their input and, (2) a propagation step during which the new burst and delay bounds obtained
from the previous step are propagated to the next node in the respective flow path to become
the new assumed values for a new iteration [Plassart, Le Boudec 2021].

In the absence of PREFs, the propagation step is straightforward because the flow paths
are trees. But if we want to extend the SyncTFA approach to networks with PREFs, we
could work on the propagation step to express that, for example, a node with a PEF receives
the sum of the bursts bounds coming from the sub-paths and the maximum of their delay
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bounds. Then, we could generalize this principle to tuples that contain several delay-bound
values from several ancestors.

SFA, PMOO: The Question of the Service Curve

For our results for PREFs, we have focused mainly on the arrival curves, which makes their
implementations easy in the context of TFA. On the contrary, SFA and PMOO are service-
curve oriented approaches, hence modeling PREFs in these compositional approaches, even
for feed-forward networks, would require additional results.

An important challenge to address is the definition of a service curve for a non-lossless
system. In our arrival-curve-oriented approach, we have concluded that the losses within
a system S do not affect the arrival curve at the output of S, when delay bounds for the
non-lost packets are already known through S (Lemma B.2). But obviously if the system
loses packets, then it affects its service curve, as defined in Definition 2.6. Scaling elements
[Ciucu, Schmitt, Wang 2011] have been used to model non-lossless systems and they could
be extended to model redundancy mechanisms.

Modeling clock non-idealities in SFA and PMOO is much simpler, as the effect on service
curves is described in Proposition 5.4. These compositional approaches would typically use
the “always in TAI” strategy (Figure 5.7) by converting all the service curves within HTAI
before applying the network-calculus concatenation result (Theorem 2.3).

Linear Programming Approaches: Defining PREFs and Clocks through Con-
straints

As we have discussed in Chapter 2, Section 2.5, linear programming approaches do not directly
rely on the notions of arrival and service curves, rather on the underlying constraints.

Therefore, modeling PREFs and clock non-idealities in PLP [Bouillard 2022] cannot di-
rectly benefit from the toolboxes proposed in this thesis. However, the models and the proofs
that we have provided in this thesis can help with the identification of the underlying con-
straints that could model PREFs and clock non-idealities within PLP. In particular, both the
non-synchronized and the synchronized time models can be described with linear constraints
(Figure 5.2).

9.2.2 The Behavior of the Interleaved Regulator

Since its proposition under the name Urgency-Based Scheduler in [Specht, Samii 2016], the
interleaved regulator (IR) has raised several questions about its behavior. The instability
results provided in this thesis could shed some light on these questions.

The Quest of a Service-Curve Characterization

A key consequence of the service-curve characterization of the PFR (Proposition 3.1) is that
small variations to the ideal situation of the shaping-for-free property, such as clock non-
idealities, lead to bounded consequences, as observed in this thesis.

On the contrary, the interleaved regulator (IR) has no known service-curve characteriza-
tion. Even worse, it can yield unbounded latencies, as soon as the clocks are non-ideal (and
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even when the synchronization precision is as tight as desired). This suggests that the IR
exhibits a non-linear behavior incompatible with the service-curve model. Proving formally
the non-existence of such characterization constitutes, hence a perspective for our instability
results.

The Influence of the Non-monotonic FIFO Behavior on the Design of the Insta-
bility Proofs

The proofs of Proposition 5.10 (instability of the non-adapted IR in the synchronized time
model) exploits the FIFO property of the IR by selecting an adversarial model with ad-
versarial clocks and adversarial sources whose behavior leads to unbounded latencies (Ap-
pendix B.3.10).

The interested reader can observe that the proof selects adversarial sources that are not
greedy: The rate of the source varies periodically, between periods when its rate is close to
the maximum allowed rate (the time elapsed between two packets is small) and periods when
it sends at a much lower rate. This remark also applies to the sources used in the proof of
Theorem 4.5 (instability of the IR after a PEF).

We highlight the similarity of this observation with an observation from [Andrews 2009]:
When proving that the FIFO policy is not stable in non-feed-forward networks at arbitrarily
low network load, Andrews cites the work of [Bramson 1996] and [Gamarnik 1998] to explain
that greedy sources cannot be used in his proof. Assume that each flow fi in Andrew’s proof
is constrained at its source by αfi,ϕ = γρi,σi . If, “except for the burstiness allowed by σi [,] the
data is always injected [by the source of fi] at a constant rate ρi, then FIFO is stable. However,
if data can sometimes be injected [by the source of fi] at a rate less than ρi, then FIFO can
be unstable at arbitrarily small network loads.” Hence, Andrews concludes that “(somewhat
counterintuitively) FIFO exhibits extreme non-monotonicity properties” [Andrews 2009, §1].

Other similarities can be noted: In [Andrews 2009], the flows have cyclic paths dependen-
cies and, in the proofs of Theorem 4.5 and Proposition 5.10, the flows have temporal cyclic
dependencies with each other. Additionally, in the problem faced by Andrews, “Large bursts
do not cause instability” [Hajek 2000]. And, in our proofs, the burstiness does not play a role
in the instability1.

It would be interesting to see to which extent this similarity holds. For example, does the
IR remain stable in the situations studied in the current thesis if we assume minimum traffic
constraints on the sources ?

1For Theorem 4.5; the burstiness of the flows plays a role, only when the path delay bounds are disjoints,
i.e., [d1, D1], [d2, D2] with d2 > D1. When the bounds intersect, then the burstiness does not play any role in
the proof.
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Contexte

Les réseaux temps-réel sont utilisés depuis les années 90 dans les systèmes cyber-physiques
(e.g., voitures, avions, usines) pour interconnecter les senseurs, unités de contrôle et actuateurs
et pour supporter les applications critiques telles que les boucles des contrôle. Avant 2010,
les réseaux temps-réel n’étaient présents que dans quelques secteurs industriels (principale-
ment les industries aérospatiale et automobile) et plusieurs technologies de réseaux temps-réel
existaient pour les différents secteurs.

Contrairement à la qualité de service au mieux offerte par les réseaux de communica-
tion non-critiques (comme Internet), les réseaux temps-réels servent les flux de données avec
un service déterministe qui contient des garanties sur les bornes de latence et une garantie
d’absence de pertes par congestion. Ce service “central” est le focus principal de cette thèse.
Plusieurs mécanismes, comme les ordonnanceurs, les lisseurs et la préemption de frame ont
été développés pour fournir un tel service.

Il est primordial d’obtenir des bornes de latences et de backlog prouvées pour valider les
contraintes de temps et l’absence de pertes par congestion lorsque de tels mécanismes sont
utilisés. Plusieurs méthodes déterministes ont été développées pour calculer de telles bornes
et sont largement utilisées dans la littérature pour calculer les effets des mécanismes ci-dessus
sur les bornes de latences.

Cette thèse répond à deux principales tendances :
• Premièrement, il existe un besoin croissant de standardisation des réseaux temps-

réel. Beaucoup d’industriels ont rejoint le groupe de travail time-sensitive networking (TSN,
réseaux temps-réel) de l’Institute of Electrical and Electronics Engineers (IEEE, institut
des ingénieurs en systèmes électriques et électronique) ou deterministic networking (DetNet,
réseaux déterministes) de l’Internet Engineering Task Force (IETF, groupe de travail pour
l’ingénierie d’Internet). Chaque groupe spécifie un ensemble de technologies qui sont indépendantes
du secteur industriel. Les secteurs industriels peuvent ensuite sélectionner les technologies en
fonction de leurs besoins.
• Deuxièmement, les réseaux temps-réel doivent fournir des services plus larges. Par

exemple, les réseaux de l’IEEE TSN doivent fournir non seulement une latence bornée, mais
aussi un haut niveau de fiabilité, un service de synchronisation du temps et une reconfiguration
simplifiée avec l’utilisation de topologies à plusieurs chemins qui offrent des routes alterna-
tives. De nouvelles topologies (topologies à plusieurs chemins) et de nouveaux mécanismes
(redondance et synchronisation) ont été développés pour permettre ces services additionnels.
Leur capacité à fournir lesdits services est étudiée dans la littérature.

Toutefois, la littérature n’a que peu étudié les effets de ces nouveaux mécanismes ou de
leur combinaison sur le service de latence bornée. De plus les méthodes d’analyse déterministe
existantes ne considèrent pas ces nouvelles topologies ou ces nouveaux mécanismes. Comme
nous le démontrons dans cette thèse, ces méthodes doivent être adaptées en présence des
nouveaux mécanismes et topologies, sinon elles peuvent obtenir des bornes de performance
invalides.
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Figure 2 : Illustration du contexte de la thèse et de nos contributions théoriques. Le service de latence
bornée dans l’ovale bleu est le focus de cette thèse. Plusieurs mécanismes pour la latence bornée (bôıte en
tirets sur la gauche) ont été développé pour fournir ce service et ont été étudiés à de nombreuses occasions
dans la littérature. Un nouvel ensemble de services a été introduit dans le réseaux temps-réels (ovales sur
la droite), pour lesquels de nouveaux mécanismes ont été développé. Leurs performances pour leur objectif
respectif a aussi été étudiée dans la littérature. Dans cette thèse, nous étudions si ces nouveaux mécanismes
et si ces nouvelles topologies peuvent avoir des effets sur le service de latence bornée. Figure basée sur
[Farkas 2018, p. 5].

Dans cette thèse, nous analysons avec le calcul réseau les effets des combinaisons des
nouveaux mécanismes (redondance, synchronisation du temps) et des nouvelles topologies sur
les bornes de latences. Nous fournissons les fondations théoriques pour modeler les effets des
nouveaux mécanismes dans la théorie du calcul réseau. Nous analysons aussi les interactions
avec les régulateurs de trafic, en particulier le régulateur entrelaçé (interleaved regulator, IR,
implémenté par IEEE TSN asynchronous traffic shaping). Nous montrons que les interactions
entre les mécanismes de redondances, de synchronisation du temps et les régulateurs entrelacés
peuvent mener à des latences non bornées.

Le manuscrit est organisé comme suit : Dans la première partie, nous introduisons le
contexte et discutons la littérature. Dans le Chapitre 1, nous discutons le contexte techno-
logique sur les réseaux temps-réels et l’évaluation de leurs performances. Dans le Chapitre
2, nous nous focalisons sur la théorie du calcul réseau. Nos contributions théoriques sont
ensuite présentées dans la seconde partie : Dans le Chapitre 3, nous analysons les effets des
dépendances cycliques sur les bornes de latences et leurs interactions avec les régulateurs de
trafic. Dans le Chapitre 4, nous analysons les effets des mécanismes de redondance sur les
bornes de latence et leurs interactions avec les régulateurs de trafic. Dans le Chapitre 5, nous
analysons les effets d’une synchronisation imparfaite (ou de son absence) sur les bornes de
latence et ses conséquences pour les régulateurs de trafic. Nos contributions pratiques sont
présentées dans la dernière partie : Dans le Chapitre 6, nous détaillons l’outil xTFA (experi-
mental modular TFA, TFA expérimental et modulaire), un outil pour calculer des bornes de
latence dans les réseaux temps-réels. Cet outil implémente les résultats théoriques de cette
thèse. Dans le Chapitre 7, nous détaillons un ajout au simulateur de réseaux ns-3. Cet ajout
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permet de simuler les imperfections des horloges et les problèmes que cela pose avec les IRs.
Dans le Chapitre 8, nous présentons une application de nos résultats sur une étude de cas
industrielle. Nous donnons nos conclusions et de futurs axes de recherche dans le Chapitre 9.

L’annexe A est conçue comme un vade mecum pour le manuscrit. Elle peut être imprimée
séparément et contient une liste des acronymes, une table de notations et un glossaire. Dans
toute la thèse, les termes soulignés sont définis dans le glossaire. L’annexe B contient les
preuves des résultats théoriques.





Contributions Principales
et Conclusion

Nous résumons ici nos contributions.
Comme identifié dans le Chapitre 1, les différentes solutions de réseaux temps-réel basées

sur Ethernet devraient converger vers les mécanismes développés par IEEE TSN et IETF
DetNet. Ces groupes de travail fournissent un ensemble de mécanismes qui améliorent le
fonctionnement traditionnel d’un switch Ethernet afin d’offrir une latence bornée.

Les effets de ces mécanismes et de leurs combinaisons sur les garanties de performance
des réseaux temps-réels sont étudiés à de multiples occasions dans la littérature. La plupart
de ces analyses reposent sur la théorie du calcul réseau (Chapitre 2). Cette théorie repose sur
une abstraction des flux et des éléments de réseau : les courbes d’arrivée et les courbes de
service.

Cependant, les groupes de travail TSN et DetNet définissent également de nouveaux ser-
vices que les réseaux temps-réels doivent fournir, ainsi que des nouveaux mécanismes et topo-
logies pour offrir ces nouveaux services. Par exemple, ils encouragent l’utilisation de topologies
à plusieurs chemins pour minimiser l’effort de reconfiguration ; ils offrent des mécanismes de
redondance pour assurer un haut niveau de fiabilité ; ils fournissent enfin un protocole de
synchronisation du temps pour synchroniser les horloges du réseau.

Via une analyse en calcul réseau de leurs combinaisons, nous avons prouvé que ces nou-
veaux mécanismes et ces nouvelles topologies ont des effets secondaires sur les métriques de
performance pire-cas des réseaux temps-réels et sur les bornes de latences.

Résumé des Contributions

Nos contributions sont résumées dans la Table 1. Pour chaque ensemble de mécanismes et de
topologies identifié dans l’introduction (Figure 2), nous offrons plusieurs niveaux de contri-
butions, comme souligné dans la Table 1.

Tout d’abord, nous fournissons un ensemble de résultats permettant de modéliser les nou-
veaux mécanismes (redondance et synchronisation) dans la théorie du calcul réseau. Nous
nous basons ensuite sur ces résultats pour développer les approches et algorithmes qui per-
mettent d’obtenir des bornes de latence de bout en bout dans les réseaux qui contiennent des
dépendances cycliques, des mécanismes de redondance et/ou des horloges non-idéales. Nous
étudions séparément les interactions entre les nouveaux mécanismes et les régulateurs de traf-
fic comme les PFRs et les IRs, car ces derniers ne possèdent aucune représentation en courbe
de service connue. Lorsque les régulateurs représentent une opportunité (par exemple pour
casser les dépendances cycliques), nous fournissons une approche qui exploite cette opportu-
nité (l’algorithme LCAN). Lorsqu’au contraire ils induisent une pénalité sur la latence (par
exemple, en présence d’horloges non-idéales), nous fournissons les méthodes pour résoudre ce
problème (cascade de rate et de burst et ADAM). Enfin, nous fournissons des outils basés
sur nos contributions théoriques et qui sont utilisés pour comparer nos approches sur des cas
synthétiques et sur un cas industriel.
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pé
ri

m
en

ta
l

et
m

od
ul

ai
re

(x
T

FA
)

(C
ha

pi
tr

e
6)

M
od

ul
e

d’
ho

rlo
ge

s
lo

ca
le

s
po

ur
ns

-3
(C

ha
-

pi
tr

e
7)

.

C
on

pa
ra

iso
ns

su
r

de
s

to
po

lo
gi

es
pa

ra
m

ét
riq

ue
s

et
su

r
un

ca
s

d’
ét

ud
e

C
om

pa
ra

iso
n

de
s

dé
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Ét

ud
e

de
ca

s
in

du
st

rie
lle

(C
ha

pi
tr

e
8)



Contexte 177

9.2.3 Contributions Théoriques Principales

Les contributions théoriques principales de cette thèse sont (en bleu dans la Table 1) :

Une théorie pour modéliser les effets des mécanismes de redondance au sein du
calcul réseau

Cette théorie contient un model pour les fonctions de réplication, d’élimination et
d’ordonnancement des paquets ainsi qu’un ensemble de résultats pour borner l’effet de
ces fonctions sur les courbes d’arrivée (Théorème 4.1) et sur le réordonnancement des
paquets (Théorème 4.2).

Une théorie pour modéliser les effets des imperfections des horloges au sein du
calcul réseau, dans les réseaux synchronisés ou non.

La théorie contient un modèle d’horloge pour les réseaux synchronisés ou non (Sec-
tion 5.2.1), ainsi qu’un ensemble de résultats pour changer l’horloge qui observe un
délai (Proposition 5.1), une courbe d’arrivée (Proposition 5.3) ou une courbe de ser-
vice (Proposition 5.4).

Les résultats d’instabilité du régulateur entrelacé (implémenté par TSN ATS),
lorsqu’il est associé à des mécanismes de redondance ou lorsqu’il est placé dans
un réseau avec des horloges imparfaites.

Le théorème 4.5 prouve que IR peut mener à des latences non bornées lorsqu’il est
placé immédiatement après une PEF. La proposition 5.10 prouve qu’un IR est instable
lorsqu’il est placé non-adapté dans un réseau avec des horloges imparfaites, même
lorsqu’elles sont synchronisées.

L’algorithme FP-TFA pour calculer des bornes de latences dans les réseaux avec
des dépendance cycliques.

FP-TFA est basé sur l’approche total-flow analysis (TFA) et utilise une formulation
de point fixe pour calculer des bornes de latences dans les réseaux qui contiennent
des dépendance cycliques. Il prend aussi en compte le phénomène de lissage de ligne
(line-shaping effect, Section 3.3). Le théorème 3.2 prouve la validité de tout point fixe
trouvé par FP-TFA. De plus, le théorème 4.3 étend ces résultats à des réseaux qui
contiennent aussi des mécanismes de redondance.

9.2.4 Contribution Pratique Principale

La contribution pratique principale de cette thèse (en vert dans la table 1) est :

L’outil xTFA pour calculer des bornes de latences dans les réseaux avec des
nouveaux mécanimes

L’outil TFA expérimental et modulaire (xTFA, Chapitre 6) fournit un enemble de struc-
tures de données et d’algorithmes originaux pour obtenir des bornes de latence dans
les réseaux qui peuvent contenir des dépendances cycliques, des horloges imparfaitess
et des régulateurs de trafic.
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Appendix A

Vade Mecum

This appendix can be printed separately. It contains a list of acronyms (§A.1), a glossary
(§A.2), and a section that regroups the general notations as well as the reference model for a
TSN bridge used throughout the manuscript (§A.3).

A.1 List of Acronyms

ADAM asynchronous dual arrival-curve method
ACP aggregate computation pipeline
AFDX Avionics Full-dupleX switched Ethernet
API application programming interface
ASIL Automotive Safety Integrity Level
ATS asynchronous traffic shaping
AVB Audio Video Bridging
CAN Controller Area Network
CBQS class-based queing subsystem
CBS credit-based shaper
DAG directed acyclic graph
DetNet deterministic networking
DES discrete-event simulator
ETE end-to-end
EP elimination-pending
FIFO first in, first out
FRER frame replication and elimination for redundancy
GIF graph induced by flows
GNSS global navigation satellite system
GPS global positioning system
gPTP generalized PTP
GUI graphical user interface
HSR High-availability Seamless Redundancy
INCOSE International Council on Systems Engineering
IEC International Electrotechnical Committee
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IR interleaved regulator
ISAE Institut Supérieur de l’Aéronautique et de l’Espace
ISO International Organization for Standardization
ITU International Telecommunication Union
LAN local area network
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LCAN low-cost acyclic network
LUDB Least Upper Delay Bound
MCU main control unit
MFAS minimum feedback arc set
MFVS minimum feedback vertex set
NC network calculus
NTP Network Time Protocol
PBOO pay burst only once
PEF packet-elimination function
PFR per-flow regulator
PMOO pay multiplexing only once
POF packet-ordering function
PRF packet-replication function
PREFs packet replication and elimination functions
PREOFs packet replication, elimination and ordering functions
PRP Parallel Redundancy Protocol
PTP Precision Time Protocol
QoS quality of service
RBO reordering byte offset
REG regulator
RTO reordering late time offset
SFA separated flow analysis
TAI international atomic time (temps atomique international)
TAS time-aware shaper
TCP Transmission Control Protocol
TDEV time deviation
TFA total-flow analysis
TG task group
TSA Transmission Selection Algorithm
TSN time-sensitive networking
UML Unified Modeling Language
VBR variable-bit-rate
WG working group
xTFA experimental modular TFA

A.2 Glossary

aggregate An aggregate is a set of flows that is viewed as a unique flow. For example, for
the aggregate {f1, f2} and an observation point v, the cumulative arrival function of the
aggregate at v is Rf1,v +Rf2,v where Rfi,v is the cumulative arrival function of fi at v.
Unless specified otherwise, we often use ‘aggregate’ to describe the class aggregate, i.e.,
the aggregate that contains all the flows of the class-of-interest . 24, 74

asynchronous A network/bus is asynchronous if the emission date of each data unit is
unknown. The emission of the data unit is triggered by an external event, i.e., the
sources are event-triggered. An asynchronous network can be time synchronized or not
. 8–10, 14, 21
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best-effort A network offers a best-effort quality of service if it does not provide any guar-
antees on the performance metrics of the service that it offers to the flows . 6

causal A system is causal if it does not produce any data, does not duplicate any data, and
does not expand the data passing through it . 20–24, 76, 77

clock-stability bound For a given set of clocks (by default, for the set of all the clocks in
the network), the clock-stability bound is an upper-bound on the linear evolution of the
relative time-function for any pair of two clocks in the set. It upper-bounds both the
frequency offset and the low-frequency noise (the wander). It is denoted ρ . 99, 121,
125, 150, 188

curve A function of F0. A function f : R→ R+∪{+∞} is a curve if f is wide-sense increasing
and ∀t ≤ 0, f(t) = 0 . 18

data unit A piece of information sent from one sending application to one or several recipient
applications. We always assume that a data unit is sufficiently small and does not need
to be fragmented in order to be transported by the network. A data unit is an abstract
concept that, in the context of PREOFs, can be located at several positions in the
network at the same time, thus being transported by several packets at the same time
(the replicates). A data unit can also cross an observation point several times, each
time transported by a different packet . 5, 6, 31, 66, 68, 70, 80, 121, 154, 156

deterministic A network offers a deterministic service if it provides a guarantee on the
maximum latency, maximum jitter, and maximum packet re-ordering for each flow.
Optionally, it can also provide a time-synchronization service and a low packet loss-
ratio, as in the contect of IEEE TSN . 6–8, 12, 13, 15

diamond ancestor For a, n two vertices of a flow graph G(f), a is a diamond ancestor of n
in G(f) if a is not an EP-vertex of G(f) and all paths in G(f) from the graph root to n
contain a. See Definition 4.3 . 71

duplicate At a given observation point [respectively, for a given function], a packet is a
duplicate if another replicate of the same data unit previously crossed the observation
point [respectively, previously entered the function] . 65, 68, 70–72, 156

feed-forward A feed-forward network is a network without any cyclic dependencies. In
other words, its graph induced by flows (Definition 2.9) is acyclic. . 26, 38, 39, 134, 136

FIFO-per-class network A FIFO-per class network is a network in which each output port
of each device offers one class-based queuing subsystem (CBQS) per class that is FIFO
for the class. Note that the network itself is not necessarily end-to-end FIFO for the
entire class; the adjective refers only to the individual output ports . 24, 26, 34

flow A coherent sequence of data units that originate at the same end system (the source)
and that follow a path to reach one or several destinations . 6
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greedy A source is greedy if it outputs the maximum amount of data that its contract allows.
For a flow f , denote by αf,ϕ its specified source arrival-curve and by Rf,ϕ its cumulative
arrival-function at the output of its source. The source of f is greedy if there exists a
time instant t0 ≥ 0 such that, ∀t ≥ t0, Rf,ϕ(t) = αf,ϕ(t− t0) . 94, 168

jitter For a flow or a network, the jitter is the variation of the latency of the data units of
the flow when traversing the network. For a clock, the timing jitter is a high-frequency
noise on the clock function hi . 6

latency For a flow, a data unit or a network, the latency is the time needed by the flow or
data unit to travel the network. For a service-curve element modeled by a rate-latency
service curve, the latency is an upper-bound on the duration during which no service is
guaranteed . 6

line-shaping effect The line-shaping effect describes the positive effect on the performance
bounds of the serialization of the bits on the transmission links. This serialization
is associated with a peak-rate limitation: Taking into account the line-shaping effect
means computing better performance bounds due to this peak rate-limitation . 27, 29,
41, 44, 59–61, 88, 120, 128, 136, 165, 177

loss ratio For a flow, the number of data units that are lost in the network divided by the
total number of data units sent by the flow’s source . 6

lossless A network element is lossless if it does not lose any bit, any fraction of data . 20–24,
76, 167

packet A formatted unit of data that transports a data unit through the network. A packet
is a virtual object that can be localized in the network using time and space . 31, 70,
154, 156

packetized A flow f is packetized at a given observation point w if for each packet p of f ,
the bits of the packet p cross w at the exact same time instant . 23, 24, 43, 78, 192,
215, 216

predictable A system or network has a predictable behavior if its state can be predicted
at any time instant, based on the known properties of the network. A network with
time-triggered sources and a global schedule has a predictable behavior: its state at any
time instant can be derived from the global schedule . 7, 8

replicate The replicates of a data unit m are all the packets that transport m . 65, 70, 75,
156

scheduling policy The scheduling policy describes the algorithm or set of algorithms in a
system that decide which packet to serve among those waiting for service. In a FIFO-
per-class network, there exists a system-level and a class-level scheduling policies. The
system-level scheduling policy decides which class to serve among those waiting. The
class-level scheduling policy, that decides which packet to serve among those of the class
waiting for service, is the FIFO policy . 24, 26, 32, 33
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seamless redundancy A mechanism offers seamless redundancy if the time elapsed during
the original emission of the data unit and the reception of the recovered data unit does
not exceed the worst-case delay that is computed under normal operation. In other
words, no extra delay is required to recover from the loss; the recovery time is zero . 64

sub-additive A function f ∈ F is sub-additive if ∀s, t ≥ 0, f(s) + f(t). A sub-additive curve
g is a sub-additive function such that g(0) = 0. . 24, 43, 53, 215

synchronization precision For a given set of clocks (by default, for the set of all the clocks
in the network), the synchronization precision upper-bounds the relative time difference
between any pair of clocks. It is denoted ∆ . 100, 121, 125, 150, 188

synchronous A network/bus is synchronous if the emission date of each data unit is known
a priori, based on a global schedule. The sources are time-triggered: The emission of
each data unit is triggered when the time reaches the programmed emission time of the
data unit. A synchronous network must be synchronized (a common notion of time
must be distributed to the node’s constituent), but the synchronization can be limited
to some nodes and its precision can vary depending on the properties of the synchronous
access . 7, 9, 10, 14

system In the context of Chapter 1, a human-made system is a “combination of interacting
elements organized to achieve one ore more stated purposes” [ISO/IEC/IEEE 15288,
§4.1.46]. In all other chapters, a system is a delimited part of the network that is
crossed by one or more flows. It has an input through which the data enters the system
and an output through which the data exits the system. The system can be formed of a
unique network element or by several network elements that do not need to be in series
. 5, 20, 101, 108

time-jitter bound For a given set of clocks (by default, for the set of all the clocks in the
network), the time-jitter bound is an upper-bound high-frequency jitter noise of the
relative time-function for any pair of two clocks in the set. It is denoted η . 99, 121,
125, 150, 188

universally stable A scheduling policy is universally stable if any underloaded network of
nodes that implement the policy is globally stable . 39

A.3 General Notations

Figure A.1 is a copy of Figure 2.10 in Chapter 2 and recalls the model of any TSN bridge, as
used throughout the manuscript.

The general notations used thourough the manuscript are regrouped in Tables A.1 and
A.2. Figure A.2 is a copy of Figure 2.12 in Chapter 2 and recalls the mapping between the
graph induced by flows (GIF) and the devices as well as the locations of the observations
points.
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Table A.1: List of Notations

Notation Description See
Network-calculus theory

|c|+ For c ∈ R, |c|+ = max(0, c) 2.1
f, g Functions R→ R ∪ {+∞} |

F [resp., F0] Set of wide-sense increasing functions f : R→ R ∪ {+∞} |
such that ∀t < 0 [resp., ∀t ≤ 0], f(t) = 0

γr,b
Leaky-bucket curve of rate r and burst b
∀t > 0, γr,b(t) = rt+ b

|

γc = γc,0

βR,T
Rate-latency curve with rate R and latency T
∀t, βR,T (t) = R|t− T |+ 2.1

δD
Variable, D-bounded delay curve
∀t ≤ D, δD(t) = 0 ∀t > D, δD(t) = +∞ |

Flows, Graph induced by Flows (GIF) and Vertices
f, g, h Flows of the class-of-interest
F A set of flows (an aggregate)
G The graph induced by flows (GIF) of the network 2.6.6

G(f) The flow graph of f |

n
A vertex in the GIF. The vertex comprises
an output port and its remote input port. |

f ∋ n Flow f crosses the vertex n. |

f ∋ (p, n) Flow f crosses the vertex p and immedialty after the
vertex n. |

Node model
n A vertex of the GIF, its output port or its CBQS 2.6
βn The service curve of the CBQS within n 2.6.4
cn The capacity of the transmission link within vertex n 2.6.5
Tn The propagation time of the transmission link within n |

Tmin The minimum of Tn for all the vertices n of the GIF |
Observation points

v, w Observation points. They can be equal to: 2.6.7
ϕ − the output of the flow’s source |

nin − the input of vertex n: the input of n’s output port |
n∗ − the output of vertex n: the output of n’s remote in. port |

n′
− within vertex n, at the output of n’s output port
(just before the serialization on the transmission link) |

n†
− within vertex n, at the input of the CBQS in n’s output-
port (i.e., at the output of the optional functions) |

FUNin − the input of the optional function FUN

FUN∗ − the output of the optional function FUN
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Switch
fabric

Output portInput port
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Figure A.1: Model for any device in the time-sensitive network, copy of Figure 2.10 in Chapter 2. Each
device is made of input ports, output ports and a switching fabric. The input port contains a store-and-
forward step and bounded technological latencies. The switching fabric contains an ideal switching fabric
and bounded technological latencies. The output port contains a set of optional functions and a FIFO
CBQS. The transmission links act as greedy shapers.

Optional
Functions CBQS nδJswInput port

δJswInput port Output port

Output portδJswInput port

δJswInput portCγcF
Output port

n

m

p

o

nin n† n′

n∗

Figure A.2: Relation between the bridges (in gray boxes), the vertices of the underlying graph (in thick
red ovals) and the observation points (dashed blue lines). The vertex n models the output port n together
with the transmission link, the input port on the remote device and the latency of the switching fabric in
the remote device. Because of the one-to-one mapping between output ports and vertices, the notation n
describes equivalently the vertex n, the ouput port n or the CBQS n.
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Table A.2: List of Notations (continued)

Notation Description See
Properties of a flow at a given observation point

αf,v Arrival curve of f at the observation point v 2.2.3
rf Rate of the leaky-bucket-constrained flow f

bf,v
Burst of the leaky-bucket-constrained flow f at the
observation point v

λf,v(w) Reordering late time offset (RTO) of f at v, with respect to its order
at w 4.3.2

πf,v(w) Reordering byte offset (RBO) of f at v, with respect to its order at w |
zf,v Flow state of f at v 6.2.2

Delays
df,S [resp., Df,S ] Lower [resp., upper] delay bound for f through S

dS [resp., DS ] Lower [resp., upper] delay bound for the class aggregate through S

dv→wf [resp., Dv→w
f ] Lower [resp., upper] delay bound for f between observations point v and w

The optional functions: regulators, PEFs, POFs

IRn(p) Interleaved regulator placed at n and processing the flows
coming from p

3.2

PFRn(p) Set of parallel per-flow regulators placed at n and processing
the flows coming from p

|

σf,n
Configured shaping curve for the flow f at the regulator
processing f in vertex n |

REGn(F , w)
Regulator (PFR if F = {f}, IR otherwise) placed at n
and that enforces for each flow f ∈ F the arrival curve that
the flow had at w

4.2.2

POFn(F , w) Packet-ordering function (POF) placed at n that enforces for
the aggregate F the order that the packets had at w |

PEFn(f) Packet-elimination function (PEF) placed at n that removes
the duplicates from flow f

|

Clocks and time measure
t The measure of a time instant

Tstart
When any of the clocks in the network shows Tstart, all other
clocks show positive values and no source has sent any bit yet. 5.2.1

H A clock |
HTAI The international atomic time (TAI) |

η, ρ, ∆
The parameters of the non-synchronized and synchronized time models.
Respectively: the time-jitter bound, the clock-stability bound and
the synchronization precision

|

Units
t.u. Arbitrary time unit used for the examples.
d.u. Arbitrary data unit used for the examples.



Appendix B

Proofs

B.1 Proofs of Chapter 3

B.1.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Consider a flow f . For any packet q of the flow, we denote by lq its
size, Aq the arrival of its first bit, Bq the arrival of its last bit, and Dq the release of the entire
packet. By definition of the packetizer, when all the bits that belong to the packet have been
received, the packet is released from the packetizer, we thus have ∀q,Dq = Bq. Furthermore,
the transmission rate at the input is c. As the previous CBQS processes one packet at a time
and does not interleave several packets, between Aq and Bq, only the bits of the packet q of
flow f are received, thus ∀q,Bq−Aq ≤ lq

c . The packetizer is FIFO, thus all the bits belonging
to packet q suffer a delay less than the delay suffered by the first bit Dq −Aq = lq

c ≤
lmax
c

Thus, for any bit arriving at the packetizer, there exist a packet number q such that the
bit belongs to Packet q and the delay of the bit through the packetizer is bounded by lmax

c .
The packetizer is a causal, lossless and FIFO system in which the delay for any bit is

bounded by lmax
c . Applying [Le Boudec, Thiran 2001, Prop. 1.3.3] gives the result.

B.1.2 Proof of Theorem 3.2

Proof of Theorem 3.2. FF can be assumed to be wide-sense increasing as per [Bouillard,
Boyer, Le Corronc 2018, Chap. 12]. The iterations start with vector 0. Thus the obtained
fixed-point b is the lowest fixed-point of FF and it is then sufficient to prove that this vector
is a valid bound for the bursts at the cuts.

Consider the view of the cyclic network in Figure B.1 where points U and W are located
respectively after and before the cuts. The network between U and W is feed-forward.

Example: In Figure 3.12, U = S4′′North and V = S4′North.

Feed-forward network

. . . . . .
Constant delay θ

Constant delay θ

U WV

Figure B.1: Illustration of the proof principle. The network is feed-forward between U and W , and V is
exactly θ seconds before W .

189
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We fix some θ such that 0 < θ < Tmin with Tmin the minimum propagation time of the
links. We consider V , the point that is exactly θ seconds before W . This point is on the
same transmission link as W because tprop is the minimal propagation delay of the links. We
consider the true network, i.e. with U and W connected together. In the rest of the proof,
take any τ ≥ 0.

For M = U, V,W call RM [resp. Rτ
M (t)] the vector of cumulative arrival functions [resp.

stopped at time τ i.e., Rτ
M (t) = min(RM (t),RM (τ))]. Also for M = V,W call R′τM the

vector of cumulative arrival functions that are obtained at points V,W when the inputs at
U are stopped at time τ , i.e. R′τM (t) = min(RM (t),RU (τ)). Last, call bτM and b′τM the
corresponding best burst bounds. For example, for any component i of vector b′τM , b′τM,i =
supt′≥t(R′τM,i(t′)−R′τM,i(t)−r(t′−t)), where r is the leaky-bucket rate of the flow corresponding
to component i.

Lemma B.1
At point V , bτV ≤ b′τV

Proof of Lemma B.1. Note that for t ≤ τ,Rτ
M (t) = R′τM (t) and for t > τ,Rτ

M (t) is a constant.
The result is thus obtained by splitting the sup of the definition of b′τV , bτV into the three
options: either t, t′ ≤ τ , or t ≤ τ, t′ > τ or t, t′ > τ .

As FF computes a bound on the output bursts for a given input, we know that b′τW ≤
FF(bτU ). As the delay between V and W is constant equal to θ, a change of variable (s, s′)←
(t+ θ, t′ + θ) in the definition of b′τV gives b′τV = b′τW ≤ FF(bτU ). Using Lemma 1, we obtain:

∀τ ≥ 0, bτV ≤ FF(bτU ) (B.1)

Using RW (t + τ) = RV (t) for any t ≥ 0, we obtain bτ+θ
W = bτV . Also, as W and U are

connected together, Equation B.1 gives bτ+θ
U = bτ+θ

W = bτV ≤ FF(bτU ). Apply this to τ = kθ

for k ∈ N and obtain:

∀k ∈ N, b(k+1)θ
U ≤ FF(bkθU ) (B.2)

The network is empty at t = 0 so b0
U = 0 ≤ b. Now FF can be assumed to be wide-sense

increasing as per [Bouillard, Boyer, Le Corronc 2018, Chap. 12]. By monotonicity of FF , the
fact that FF(b) = b and a simple induction argument, it follows that bkθU ≤ b for all k ∈ N.
For any τ ∈ [0,+∞), we have bτU ≤ bkθU with k = ⌈ τθ ⌉, thus bτU ≤ b for all τ ≥ 0. Now
bU = supτ≥0 bτU , thus b is a finite bound for bU and the network is stable.

B.2 Proofs of Chapter 4

B.2.1 Network Calculus Results for Non-Lossless Non-FIFO systems

In this appendix, we provide several classic network-calculus results that remain valid for
non-lossless, non-FIFO networks.

Lemma B.2 (Arrival curve of a flow at the output of a system with bounded delay)
Consider a flow f entering a system S. Assume that each bit of f that exits S suffers a delay
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Sf
α α∗

Figure B.2: Notations for Appendix B.2.1. Flow f with input arrival curve α enters system S and exits
with an output arrival curve α∗.

within S that is bounded within [d,D]. Finally assume that α is an arrival curve for f at the
input of S. S does not need to be FIFO or lossless.

Then, α∗ = α⊘ δD−d is an arrival curve for f at the output of S.

Proof. Denote by Rf the cumulative process of f at the input of S (Figure B.2). We decom-
pose Rf = Ra +Rb, with Ra the cumulative process, at the input, for the stream of bits of f
that are not lost inside S and Rb = Rf −Ra. Ra(t) is defined as the number of bits of f that
eventually exit S (that are not lost inside it) and that are observed at the input of S during
the interval [0, t]. Note that the cumulative functions Ra and Rb are unknown in general:
When a bit is observed at the input of S, the real-life observer cannot infer whether it will
be lost within S or not. However, we can still work on the unknown functions Ra and Rb.

We denote by R∗a [resp., R∗b ] the output cumulative function related to the input process
Ra [resp., Rb]. Hence, R∗a(t) is defined as the number of bits of f that exit S (are not lost
inside it) and that are seen at the output of S during the interval [0, t].

All cumulative functions are positive, wide-sense increasing and defined for t ≥ 0 (Sec-
tion 2.2). We extend their definition domain by using the convention that all cumulative
functions equal zero in R−: ∀t ≤ 0, Ra(t) = Rb(t) = R∗a(t) = R∗b(t) = 0.

As α is an arrival curve for f at the input of S, for all s ≤ t,

Rf (t)−Rf (s) ≤ α(t− s)
Ra(t) +Rb(t)−Ra(s) +Rb(s) ≤ α(t− s)

Ra(t)−Ra(s) ≤ α(t− s) +Rb(s)−Rb(t)

As s ≤ t, and Rb is wide-sense increasing, Rb(s) − Rb(t) ≤ 0 and Ra(t) − Ra(s) ≤ α(t − s)
which shows that the cumulative process Ra is also α-constrained.

By definition of Rb and R∗b , ∀t, R∗b(t) = 0 and

R∗a(t) = R∗f (t) (B.3)

The system S is not FIFO but the non-lost bits have a maximum delay of D. Hence, all
the bits of Ra that have entered S at t have exited S by t+D,

R∗a(t+D) ≥ Ra(t) (B.4)

Equation (B.4) is valid for t < 0 because Ra(t) = 0 for t < 0 and R∗a is a positive function.
Similarly, the minimum delay of each data unit within S is d. As such, all the data units that
have exited S by t+ d must have entered S before t,

R∗a(t+ d) ≤ Ra(t) (B.5)
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Equation (B.5) is again valid for t < 0: Ra(t) = 0 but R∗a(t+ d) also equals zero because the
minimum time that a bit needs to reach the output is d.

Then, ∀t ≥ s,

R∗a(t)−R∗a(s)
≤ Ra(t− d)−Ra(s−D) ▷ (B.4) and (B.5)
≤ α(t− s+ (D − d)) ▷ Ra is α-constrained
≤ (α⊘ δD−d)(t− s)

Combining the above result with (B.3) shows, ∀t ≥ s

R∗f (t)−R∗f (s) ≤ (α⊘ δD−d)(t− s) (B.6)

which proves that α∗ = α⊘ δD−d is an arrival curve for f at the output of S.

For a system with a constant delay or without any delay, Lemma B.2 is simplified as
follows.

Lemma B.3 (A system with constant delay keeps the arrival curves)
If S is a system in which the non-lost bits of any flow have a constant delay, then an arrival
curve for a flow or aggregate of flows at the input of S is also an arrival curve for the same
flow or aggregate of flows at the output of S.

Proof. For the aggregate, we simply need to consider the whole aggregate as a unique flow
when applying Lemma B.2.

B.2.2 Proof of Theorem 4.1

Proof of Theorem 4.1. Consider a vertex n and a flow f such that n contains a PEF for f ,
noted PEFn(f). From the device model of Chapter 2, Section 2.6, we first note that flow f is
packetized at both the input and the output of PEFn(f).

Proof of Item 1/ As per the model in Section 4.2.2, PEFn(f) is a network element that
can lose packets but does not have any delay for the forwarded packets. As a consequence,
it does not have any delay for the forwarded bits either (both its input and its output are
packetized). Applying Lemma B.3 proves that an arrival curve for f at the input of the PEF,
αf,PEFin , is also an arrival curve for f at the output of the PEF.

Item 2/ Consider a diamond ancestor a of n. The observation point a∗ is located at the
output of the input port within a. As such, flow f is packetized at the observation point a∗.
As such, a bound on the per-bit delay between a∗ and either the PEF’s input or the PEF’s
output PEF∗ is also a per-packet delay bound on the delay between the same two observation
points, and vice versa.

Denote by PG(f)
a,n the set of all possible paths from a to n in G(f) and consider a data

unit m of f such that m is not lost for n. By definition of the diamond ancestor, a is not an
EP-vertex for f , thus the data unit m is observed exactly once at a.

Denote by {Pmi }i∈I(m) the set of packets containing m that reach PEFn(f), with I(m)
a set to index them. I(m) is not empty because m is not lost for n (at least one packet
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a
αf,a∗

[da∗→nin
f , Da∗→nin

f ] (Eq. B.7)

P
E
F
n
(f

)

S

[da∗→nin
f , Da∗→nin

f ] (Eq. B.9)

Figure B.3: Notations for Appendix B.2.2: System from diamond ancestor a to the PEF, focusing on the
non-lost data units.

containing m reaches n). Furthermore, I(m) is a finite set because G(f) is finite and acyclic:
m is replicated a finite number of times.

For i in I(m), call ρi the path within G(f) that the packet Pmi took from the source of f
to n. By definition of a diamond ancestor of n, this path crosses a and by definition of PG(f)

a,n ,
there exists a path pi ∈ PG(f)

a,n such that packet Pmi took path pi between a and n (pi is a
sub-path of ρi).

Denote by dmi the delay of packet Pmi between the output of a and the input of PEFn(f).
By definition of the notations Da∗→nin

f and da
∗→nin
f used in Theorem 4.1,

da
∗→nin
f ≤ dmi ≤ Da∗→nin

f (B.7)

The values da∗→nin
f and Da∗→nin

f can be seen as the lower and upper-bound of the non-lost
data units through the system located between the output of a and the input of PEFn(f).
This system is represented with a cloud in Figure B.3.

The data unit m exits PEFn(f) as soon as one of the the packets {Pmi }i∈I(m) reaches the
packet-elimination function. If we denote by da∗→PEF∗

m the delay of the data unit m from the
output of a to the output of the PEF, we have, ∀m ∈ f , m not lost for n,

∃i ∈ I(m), da
∗→PEF∗
m = dmi (B.8)

Combining Equations (B.7) and (B.8) gives

∀m ∈ f,m not lost for n, da
∗→nin
f ≤ da∗→PEF∗

m ≤ Da∗→nin
f (B.9)

Equation (B.9) proves that any non-lost data units of f for n suffer through the system
S in Figure B.3 a delay bounded in [da∗→nin

f , Da∗→nin
f ]. As both a∗ and the output of the

PEF are packetized, this also proves that each bit of f that is not lost within S (neither in
the cloud of Figure B.3 nor in the PEF) suffers a delay through S that is bounded within
[da∗→nin
f , Da∗→nin

f ]. We apply Lemma B.2 and obtain that αf,a∗ ⊘ δ(Da∗→nin
f

)−(da∗→nin
f

) is an
arrival curve for f at the output of the PEF.

The last sentence of the theorem is a direct application of Theorem 2.1.

B.2.3 Proof of Corollary 4.1

Proof of Corollary 4.1. The replication is performed by the switching fabric, both its input
and output are hence packetized. The same remark applies for the PEF thus we conclude that
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both the input and the output of each system Si is also packetized. Therefore, the per-bit
delay of flow f through Si is also bounded by [di, Di].

For each i ∈ J1, NK, the application of Lemma B.2 gives the arrival curve for f at the
output of Si

∀ ∈ J1, NK, αf,S∗
i

= αf ⊘ δDi−d1

We then obtain αf,PEFin

αf,PEFin =
∑

i∈J1,nK

αf,S∗
i

=
∑

i∈J1,nK

αf ⊘ δDi−d1

We then apply Equation (4.1) with a∗ being the input of the replication function in
Figure 4.13. A lower delay bound for f from the ancestor a to the input of the PEF along
any possible paths (i.e., through any Si) is

da
∗→nin
f = min{di; i ∈ J1, NK}

Similarly,
Da∗→nin
f = max{Di; i ∈ J1, NK}

and (4.1) can be written

αa
∗→nin
f = αf,a∗ ⊘ δ

Da∗→nin
f

−da∗→nin
f

= αf ⊘ δmaxi Di−mini di

We apply Theorem 4.1: αf,PEF∗ = αf,PEFin⊗αa∗→nin
f is an arrival curve for f at the output of

the PEF. Replacing with the above expressions for αf,PEFin and αa∗→nin
f gives Equation (4.3)

of Corollary 4.1.

B.2.4 Proof of Proposition 4.1

Proof of Proposition 4.1. Take a leaky-bucket arrival curve γr,b. And [d1, D1], [d2, D2] two
intervals of R+.

We first prove the result when d2 −D1 ≥ b/r, we prove the other situation afterwards.

Case d2 −D1 ≥ b/r:

Applying Corollary 4.1 with N = 2 systems S1, S2 with bounded intervals [d1, D1] and [d2, D2]
gives that

α∗ =

 ∑
i∈J1,2K

γr,b ⊘ δDi−di

⊗ (γr,b ⊘ δD2−d1)

=
(
γr,b+r(D1−d1) + γr,b+r(D2−d1)

)
⊗ γr,b+r(D2−d1)

= γ2r,2b+r(D1−d1+D2−d2) ⊗ γr,b+r(D2−d1)

(B.10)
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time
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0
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D
2
−
D

1

I1
b

Figure B.4: Source output in the trajectory that achieves the tightness of Corollary 4.1. Two ”initiator”
data units are sent at 0 and at D2 −D1.

Table B.1: Generation of the Data-Units of Category I in the Trajectory that Achieves the Tightness of
Corollary 4.1.

Data unit m Size, size(m) Generation time, G(m)
I2 b 0
I1 b D2 −D1

is an arrival curve for f after the PEF in Figure 4.13.
In the following, we exhibit a trajectory with a γr,b-constrained source for f and no

minimal packet length. We exhibit also two systems S1, S2, in which the delay of the non-lost
data-units is in the intervals [d1, D1] and [d2, D2]. The proof operates in several steps, as
follows:

Definition of several constants used in the proof

We define
χ1 ≜

⌈
r(D1 − d1)

b

⌉
and χ2 ≜

⌈
r(D2 − d2)

b

⌉
(B.11)

(Note that χ1 ≥ 1 and χ2 ≥ 1)
Last, we define

ψ =
⌈
r(d2 −D1)− b

b

⌉
(B.12)

and we also have ψ ≥ 1.

Description of the traffic generation at the source

For the sake of clarity, we classify the data-units generated by the source into four categories:
I,B, S and X. The category of a data-unit defines the role that the data-unit has in the
trajectory. Each of the three first categories (I,B, S) has two sub-categories that we distin-
guish by using a superscript (e.g., I1 and I2). This sub-category notion is used in order to
distinguish the role of every system (S1 or S2) in the trajectory.

Subcategories do not infer the order with which data-units are generated. The notions of
categories and subcategories are only used in the proof, they are not related to any physical
property of the packets.

Category I: The source generates two “initiator” data-units: I2 [resp., I1] at absolute
time 0 [resp., (D2 −D1)], of length b (see Table B.1). Figure B.4 shows the timeline of the
data-units I out of the source.
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Table B.2: Generation of the Data-Units of Category B in the Trajectory that Achieves the Tightness of
Corollary 4.1.

Data unit m Size, size(m) Generation time, G(m)
∀k ∈ J1, χ2 − 1K, B2

k b k br
B2
χ2 r(D2 − d2)− (χ2 − 1)b (D2 − d2)

∀k ∈ J1, χ1 − 1K, B1
k b (D2 −D1) + k br

B1
χ1 r(D1 − d1)− (χ1 − 1)b (D2 −D1) + (D1 − d1)

time

size size
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I2

D
2
−
D

1

I1

b/
r
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D
2
−
d

2
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2

D
2
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d

1

B1
1

b

r(D1 − d1)
r(D2 − d2)− b

Figure B.5: Example of the source output in the trajectory that achieves the tightness, focusing on categories
I and B.

Note: The role of the two data-units of category I is to initiate the backlog period. In the
next parts of the proof, we create a situation where I1 and I2 exit the PEF of Figure 4.13 at
the same time, creating the 2b part of the burst in the term γ2r,2b+r(D1−d1+D2−d2) of (B.10).

Category B: In addition to the data-units of category I, the source generates χ2 data-
units of subcategory B2 and χ1 data-units of subcategory B1, as described in Table B.2. A
possible output of the source when combining categories I and B is shown in Figure B.5. In
the proposed situation, we have χ1 = 1 (i.e., r(D1− d1) ≤ b). Then the interval J1, χ1− 1K in
Table B.2 is empty and category B1 contains a unique data-unit B1

1 = B1
χ1 of size r(D1− d1)

and sent at time (D2−D1)+(D1−d1) = D2−d1. In Figure B.5, χ2 equals 2, and category B2
is made of two data-units: B2

1 , of size b, released at time b/r; and B2
2 , of size r(D2 − d2)− b,

released at time (D2 − d2).
Note that for any value of χ1, χ2, by Table B.2,

∀j ∈ {1, 2}
∑

k∈J1,χjK

size(Bj
k) = r(Dj − dj) (B.13)

Note: The role of the data-units of category B is to participate in the burst term of
γ2r,2b+r(D1−d1+D2−d2) in (B.10). In the next parts of the proof, we create a situation where
all data-units of category B (both subcategories B1 and B2) are released at the same time,
simultaneously with data-units I1 and I2. This give the part r(D1−d1 +D2−d2) in the burst
term of γ2r,2b+r(D1−d1+D2−d2).

We now prove that data-units of subcategory B1 [resp., B2] are generated after data-units
of subcategory I1 [resp., I2] and in the order of their lower-script index.
• If χ2 = 1, then the first data-unit of B2 is sent at D2−d2 and D2−d2 ≥ 0, so data-unit

of B2 is generated after the data-unit of I2.
• If χ2 ≥ 1, then the first data-unit of B2 is sent at b/r ≥ 0, so data-units of B2 are
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Table B.3: Generation of the Data-Units of Category S in the Trajectory that Achieves the Tightness of
Corollary 4.1.

Data unit m Size, size(m) Generation time, G(m)
∀k ∈ J1, ψ − 1K, S2

k b (D2 − d2) + k br
S2
ψ r(d2 −D1)− ψb (D2 −D1 − b

r )
∀k ∈ J1, ψ − 1K, S1

k b (D2 − d1) + k br
S1
ψ r(d2 −D1)− ψb (D2 + d2)− (D1 + d1)− b

r
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Figure B.6: Source output, with the three categories I,B and S of data-units

generated after the data-units of I2. Also, the data-units (B2
k)κ∈J1,χ2K are generated in the

same order as their index: this is clear for indexes up to χ2− 1. For the order between B2
χ2−1

and B2
χ2 , we note that

⌈
r(D2−d2)

b

⌉
b
r −

b
r ≤ D2 − d2 by property of the ceiling function.

• If χ1 = 1, then the first data-unit of B1 is sent at (D2 − d1) thus after the data-unit of
I1 (as D1 ≥ d1).
• If χ1 ≥ 1, then by using the same reasoning for B2, we obtain that data-units of B1 are

generated after the initiator I1 and they are released in the order of their lower-script index.
Category S: In addition to the data-units of categories I and B, the source generates ψ

data-units of subcategory S2 and ψ data-units of subcategory S1, as described in Table B.3.
A possible output of the source when adding category S to Figure B.5 is shown in Figure B.6.
In the proposed situation, we have ψ = 2 and subcategories S1 and S2 are both made of two
data-units: S1

1 [resp., S2
1 ], of size b, released b

r after the last data-unit of B1 [resp., B2] and S1
2

[resp., S2
2 ], of size r(d2−D1)− 2b, released at (D2 + d2)− (D1 + d1)− b

r [resp., D2−D1− b
r ].

Note that for any value of ψ, by Table B.3,

∀j ∈ {1, 2}
∑

k∈J1,ψK

size(Sjk) = r(d2 −D1)− b (B.14)

Note: The role of the data-units of category S is to participate in the peak-rate term of
γ2r,2b+r(D1−d1+D2−d2) in (B.10). The output traffic should maintain the peak rate for a suffi-
cient duration so that the obtained cumulative output intersects with the curve γr,b+r(D2−d1).
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Table B.4: Generation of the Data-units of Category X in the Trajectory that Achieves the Tightness of
Corollary 4.1.

Data unit m Size, size(m) Generation time, G(m)
∀k ∈ N∗, Xk b (D2 + d2)− (D1 + d1) + (k − 1) br

In the next parts of the proof, we create a situation where each data unit of subcategory S1

is released at the same time as its peer of subcategory S2. This creates a peak rate 2r for
a duration of at least d2 − D1 − b/r. The resulting cumulative output intersects the curve
γr,b+r(D2−d1).

We now check the order of the data data units of category S.
• If ψ = 1, then the first data-unit of S2 is sent at D2−D1−b/r, whereas the last data-unit

of B2 was sent at D2 − d2. By assumption, d2 −D1 ≥ b/r, so D2 −D1 − b/r ≥ D2 − d2 and
the first data-unit of S2 is sent after the last data-unit of B2.
• If ψ ≥ 1, then the first data-unit of S2 is sent b/r after the last data-unit of B2. Also, the

data-units (S2
k)κ∈J1,ψK are generated in the same order as their index: this is clear for indexes

up to ψ − 1. For the order between S2
ψ−1 and S2

ψ, we note that (ψ − 1) br ≤ (d2 −D1)− b
r by

properties of the ceiling function and so (D2 − d2) + (ψ − 1) br ≤ (D2 − d2) + (d2 −D1) − b
r ,

i.e., D2 − d2 + (ψ − 1) br ≤ D2 −D1 − b
r , i.e, S2

ψ−1 is sent before S2
ψ

We then apply the same principles for S1. We thus prove that data-units of subcategory
S1 [resp., S2] are generated after data-units of subcategory B1 [resp., B2] and in the order of
their index. We also observe that the last data-unit of subcategory S2 is sent at D2−D1− b

r ,
whereas the data-unit of subcategory I1 is sent at D2 −D1, hence data-units of subcategory
S2 are sent before the data-unit of subcategory I1.

Category X: After the data-units of subcategory S1, the source generates for eternity
data-units (Xn)n∈N∗ of size b with a period b/r (see Table B.4). The first one of these data-
units is sent b/r after the last data-unit of S1. Figure B.7 presents the output of the source
with all four categories.

Note: The role of category X is to generate the sustained rate term in the curve γr,b+r(D2−d1)
in (B.10).

Properties of the traffic generation at the source

Now that we have described the profile of the traffic generated by the source, we can prove
that the generation is γr,b-compliant. This is done with the following lemmas.

Lemma B.4 (Size of the data-units)
For any data-unit P described in the previous Subsection, 0 ≤ size(P ) ≤ b

Proof of Lemma B.4. We focus on certain data-units.
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Figure B.7: Source output, with the four categories of data units: I,B, S and X of data-units, in the
trajectory that achieves the tightness of Corollary 4.1.

• B2
χ2 : By property of the ceiling function:

r(D2 − d2)
b

≤ χ2 ≤ r(D2 − d2)
b

+ 1

r(D2 − d2)− b ≤ (χ2 − 1)b ≤ r(D2 − d2) ▷ b > 0
−r(D2 − d2) + b ≥ −(χ2 − 1)b ≥ −r(D2 − d2)

b ≥ r(D2 − d2)− (χ2 − 1)b ≥ 0

• B1
χ1 : same idea

• S1
ψ and S2

ψ (they have the same size): By property of the ceiling function:

r

b
(d2 −D1)− 1 ≤ ψ ≤ r

b
(d2 −D1)

−r(d2 −D1) + b ≥ −ψb ≥ −r(d2 −D1) ▷ b > 0
b ≥ r(d2 −D1)− ψb ≥ 0

All the other data-units have the same size, equal to the burst b.

Lemma B.5 (Minimum time distance between two successive data-units)
Consider two successive data-units m,m′ in the traffic described in the previous Subsection,
i.e., m′ is the first data-unit sent after m. Note G(m) and G(m′) the time at which they are
generated.

Then G(m′)− G(m) ≥ size(m′)
r

Proof of Lemma B.5. We simply describe all the possible combinations:
• Case m = I2 and m′ = B2

1 :
We have G(m) = 0 (see Table B.1). If χ2 = 1, then G(m′)−G(m) = (D2− d2), size(m′) =
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r(D2 − d2) (see Table B.2) and the result holds. If χ2 ≥ 2, then G(m′) − G(m) = b/r,
size(m′) = b and the result holds.
• Case m,m′ ∈ B2 (when χ2 ≥ 2):
There exists k ∈ J1, χ2 − 1 K such that m = B2

k and m′ = B2
k+1. If k ≤ χ2 − 2, then

G(m′)− G(m) = b/r, size(m′) = b and the result holds. If k = χ2 − 1, then:

G(m′)− G(m) = (D2 − d2)− k b
r

= (D2 − d2)− (χ2 − 1) b
r

= r · size(m′)

• Case m = B2
χ2 and m′ = S2

1 :

We have G(m) = D2 − d2 (Table B.2). If ψ = 1, then m′ = S2
ψ and

G(m′)− G(m) = D2 −D1 −
b

r
− (D2 − d2)

= d2 −D1 −
b

r

= r(d2 −D1)− ψb
r

= size(m′)/r

If ψ ≥ 2, then G(m′) − G(m) = b/r (see Tables B.2 and B.3) and size(m′) = b so the result
holds.
• Case m,m′ ∈ S2 (when ψ ≥ 2):
There exists k ∈ J1, ψ − 1K such that m = S2

k and m′ = S2
k+1. If k ≤ ψ − 2, then

G(m′)− G(m) = b/r and size(m′) = b so the result holds. If k = ψ − 1, then

G(m′)− G(m) = d2 −D1 − ψ
b

r

= size(S2
ψ)/r = size(m′)/r

• Case m = S2
ψ and m′ = I1:

Then we have G(m) = D2 −D1 − b
r (Table B.3) and G(m′) = (D2 −D1) (Table B.1). So

G(m′)− G(m) = b/r = size(m′)/r.
• Case m = I1 and m′ ∈ B1:
We have G(m) = (D2 −D1) (see Table B.1). If χ1 = 1, then G(m′)− G(m) = (D1 − d1),

size(m′) = r(D1−d1) (see Table B.2) and the result holds. If χ1 ≥ 2, then G(m′)−G(m) = b/r,
size(m′) = b and the result holds also.
• Case m,m′ ∈ B1 (when χ1 ≥ 2):
There exists k ∈ J1, χ1 − 1 K such that m = B1

k and m′ = B1
k+1. If k ≤ χ1 − 2, then
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G(m′)− G(m) = b/r, size(m′) = b and the result holds. If k = χ1 − 1, then

G(m′)− G(m) = (D2 −D1) + (D1 − d1)− (D2 −D1)− k b
r

= (D1 − d1)− (χ1 − 1) b
r

= r · size(m′)

• Case m = B1
χ1 and m′ = S1

1 :
We have G(m) = (D2 − d1) (Table B.2). If ψ = 1, then m′ = S1

ψ and

G(m′)− G(m) = D2 + d2 −D1 − d1 − b/r −D2 + d1

= d2 −D1 − b/r
= size(m′)/r

If ψ ≥ 2, then G(m′) − G(m) = b/r (see Tables B.2 and B.3) and size(m′) = b so the result
holds.
• Case m,m′ ∈ S1 (when ψ ≥ 2):
There exists k ∈ J1, ψ − 1K such that m = S1

k and m′ = S1
k+1. If k ≤ ψ − 2, then

G(m′)− G(m) = b/r and size(m′) = b so the result holds. If k = ψ − 1, then

G(m′)− G(m) = d2 −D1 − ψb/r
= size(m′)/r

• Case m ∈ S1, m′ ∈ X: clear (Table B.4)
• Case m,m′ ∈ X: clear as well (Table B.4)

Lemma B.6 (The source described in the previous Subsection complies with the arrival curve
γr,b)
The traffic generation described in the previous Subsection is γr,b-constrained.

Proof of Lemma B.6. Consider any set of n consecutive data-units generated by the source
(Pv)v∈J1,nK. Then

G(Pn)− G(P1) ≥
∑

v∈J1,n−1K

G(Pv+1)− G(Pv)

≥
∑

v∈J1,n−1K

size(Pv+1)
r

▷ Lemma B.5

r(G(Pn)− G(P1)) + b ≥
∑

v∈J1,n−1K

size(Pv+1) + b

≥
∑

v∈J2,nK

size(Pv) + b
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Table B.5: Absolute Release Time for Each Packet at the Output of Each System S1, S2

Data unit, m G(m), generation time E1(m), exit time out of S1 for the packet E2(m), exit time out of S2 for the packet
transporting m through S1 transporting m through S2

I2 0 +∞ D2
∀k ∈ J1, χ2 − 1K, B2

k k br +∞ D2
B2
χ2 D2 − d2 +∞ D2

∀k ∈ J1, ψ − 1K, S2
k D2 − d2 + k br +∞ D2 + k br

S2
ψ D2 −D1 − b

r +∞ D2 + d2 −D1 − b
r

I1 D2 −D1 D2 +∞
∀k ∈ J1, χ1 − 1K, B1

k D2 −D1 + k br D2 +∞
B1
χ1 D2 − d1 D2 +∞

∀k ∈ J1, ψ − 1K, S1
k D2 − d1 + k br D2 + k br +∞

S1
ψ D2 + d2 −D1 − d1 − b

r D2 + d2 −D1 − b
r +∞

∀k ∈ N∗, Xk D2 + d2 −D1 − d1 + (k − 1) br D2 + d2 −D1 + (k − 1) br +∞

Applying Lemma B.5, size(P1) ≤ b, so we obtain

r(G(Pn)− G(P1)) + b ≥
∑

v∈J1,nK

size(Pv) (B.15)

Equation (B.15) is the max-plus representation of a packetized flow constrained by an arrival
curve γr,b Le Boudec, Thiran 2001, §3.

Description of the systems S1, S2

For a data unit m, we note E1(m) [resp., E2(m)] the absolute time at which the packet
transporting m through S1 [resp., through S2], exits S1 [resp., exits S2]. For j ∈ {1, 2}, we
note Ej(m) = +∞ if and only if the packet transporting data unit m through Sj is lost by
system Sj . Systems S1 and S2 release the packets generated by the source at the time instants
shown in Table B.5.

Remark: We chose a system such that any packet transporting a data unit of category
I2, B2 or S2 is lost within S1 (E1(m) = +∞) and any packet transporting a data unit of
category I1, B1, S1 or X is lost within S2 (E2(m) = +∞). This scheme keeps the proof simple
but note that a similar proof could be obtained assuming S2 is lossless. In that case, we would
only need to make sure that, for m in category I1, B1, S1 or X, the packet transporting m

through S2 exits S2 after the packet transporting m through S1 exits S1, i.e., E2(m) ≥ E1(m)
for any m.

As an illustration, Figure B.8 shows the obtained cumulative function at the output of the
PEF when applying the exit time instants of Table B.5 on the example of Figure B.7. Dashed
boxes represent values of interest. We also plot on top of it the arrival curve at the output
of the PEF, obtained in (B.10). In the following subsections, we prove that there exists no
better VBR-arrival curve than this one for the shown output cumulative function.

Properties of the systems S1, S2

We now show the following properties of the above-described systems S1, S2.

Lemma B.7 (The delay bounds through S1, S2)
The delay of any non-lost packet through S1 is bounded between d1 and D1. The delay of any
non-lost packet through S2 is bounded between d2 and D2.
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Figure B.8: Dashed blue: Cumulative function R∗ at the output of the PEF, from the example trajectory
of Figure B.7. Dashed boxes: Values of interest of the cumulative function. Red dashdotted: Arrival curve
obtained from Corollary 4.1 and recalled in Equation (B.10).

Proof of Lemma B.7. From Table B.5, the result is clear for packets transporting data-units
of categories I, S and X

We prove it for packets transporting data-units of category B:
Through S1: for m a data unit of category B2, the packet transporting m through S1 is

lost. For m a data unit of category B1, the packet transporting m through S1 verifies

G(B1
χ1) ≥ G(m) ≥ G(I1)

because data units of B1 are sent after I1 and before B1
χ1 .

D2 − (D2 − d1) ≤ E1(m)− G(m) ≤ D2 − (D2 −D1) (B.16)

per Table B.5. Equation (B.16) proves that any packet transporting a data unit of type B1

through S1 has a delay through S1 bounded in [d1, D1].
Through S2: for m a data unit of category B1, the packet transporting m through S2 is

lost. For m a data unit of category B2, the packet transporting m through S2 verifies

G(B2
χ2) ≥ G(m) ≥ G(I2)

because data units B2 are sent after I2 and before B2
χ2 .

D2 − (D2 − d2) ≤ E1(m)− G(m) ≤ D2 − 0 (B.17)

Equation (B.17) proves that any packet transporting a data unit of type B2 through S2 has
a delay through S2 bounded in [d2, D2].
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Properties of the output cumulative function

Call R∗ the output cumulative function of the flow at the output of the PEF. Any data
unit m is released as soon as the first packet containing m is received from either S1 or S2.
Therefore, for any time instant t,

R∗(t) =
∑{

m

∣∣∣∣∣ E1(m) < t

or E2(m) < t

} size(m) (B.18)

We apply Equation (B.18) to obtain the value of the cumulative function at several time-
instants of interest. We start with t = D2.

R∗(D2) =
∑{

m

∣∣∣∣∣ E1(m) < D2

or E2(m) < D2

} size(m)

Per Table B.5, we obtain
R∗(D2) = 0 (B.19)

We then continue with D2 + ϵ for ϵ > 0,

R∗(D2 + ϵ)
=

∑
min(E1(m),E2(m))<D2+ϵ

size(m)

≥
∑
m∈I

size(m) +
∑
m∈B1

size(m) +
∑
m∈B2

size(m)

▷ From Table B.5

With (B.13), we obtain

∀ϵ > 0, R∗(D2 + ϵ) ≥ 2b+ r(D1 − d1) + r(D2 − d2) (B.20)

And finally, ∀ϵ > 0,

R∗(D2 + (d2 −D1)− b/r + ϵ)
=

∑
min(E1(m),E2(m))<D2+(d2−D1)−b/r+ϵ

size(m)

≥
∑
m∈I

size(m) +
∑
m∈B

size(m)

+
∑
m∈S1

size(m) +
∑
m∈S2

size(m)

▷ From Table B.5
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With (B.14), we obtain ∀ϵ > 0

R∗(D2 + (d2 −D1)− b/r + ϵ)
≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)

(B.21)

Properties of any candidate arrival curve for f

Consider any VBR arrival curve α′ = SPEC(M ′, p′, r′, b′) defined in Le Boudec, Thiran 2001,
§1.2 and assume that α′ is an arrival curve for f at the output of the PEF.

Consider also the piecewise-linear function α† defined on R+ by

α† : t 7→ min(M ′ + ρ′t, b′ + r′t) (B.22)

By definition, we have, for all t ≥ 0

α′(t) =
{
α†(t) if t > 0

0 if t = 0
(B.23)

Note that α† is concave and wide-sense increasing. We also have the following result

Lemma B.8
For any s ≥ t ≥ 0, α†(s)− α†(t) ≥ r′(s− t)

Proof of Lemma B.8. We simply break in all the possible cases: • If both s ≤ M ′−b′

ρ′−r′ and
t ≤ M ′−b′

ρ′−r′ then α†(s)− α†(t) = ρ′(s− t) ≥ r′(s− t) because r′ ≥ ρ′.
• If t ≤ M ′−b′

ρ′−r′ , and s ≥ M ′−b′

ρ′−r′ , then α†(s)−α†(t) = b′−M ′+r′s−ρ′t ≥ r′s−ρ′t ≥ r′(s− t)
because b′ ≥M ′ and ρ′ ≥ r′.
• If both s ≥ M ′−b′

ρ′−r′ and t ≥ M ′−b′

ρ′−r′ then α†(s)− α†(t) = r′(s− t).

We observe that after D2 + (d2 −D1), the output traffic R∗ is made of the data units of
category X with a size b and a period b/r. Therefore, the long-term rate of the flow at the
output of the PEF is exactly r and any piece-wise linear arrival curve for this flow must have
a long-term rate at least as big as r. For the VBR arrival curve α′, this gives

r′ ≥ r (B.24)

Then, as α′ is an arrival curve for f at the output of the PEF, by Definition 2.5, for any
t, s ≥ 0, R∗(t+ s)−R(t) ≤ α′(s).

In particular, ∀ϵ > 0
α′(ϵ) ≥ R∗(D2 + ϵ)−R∗(D2)

With (B.19) and (B.20) this gives, ∀ϵ > 0,

α′(ϵ) ≥ 2b+ r(D1 − d1 +D2 − d2) (B.25)

This is valid for any choice of ϵ > 0 thus limt→0 α
′(t) ≥ 2b + r(D1 − d1 + D2 − d2), which
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gives:
α†(0) ≥ 2b+ r(D1 − d1 +D2 − d2) (B.26)

Similarly, ∀ϵ > 0,

α′
(
d2 −D1 −

b

r
+ ϵ

)
≥ R∗

(
D2 + d2 −D1 −

b

r
+ ϵ

)
−R∗(D2) (B.27)

with (B.19) and (B.21), we obtain, ∀ϵ > 0,

α′
(
d2 −D1 −

b

r
+ ϵ

)
≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1) (B.28)

this is again valid for any value ϵ > 0 so limϵ→0 α
′(d2 −D1 − b

r + ϵ) ≥ r(D1 − d1) + r(D2 −
d2) + 2r(d2 −D1), which gives

α†
(
d2 −D1 −

b

r

)
= α′

(
d2 −D1 −

b

r

)
≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)

(B.29)

And using the above properties, we can prove the following result

Lemma B.9
For any t > 0, α†(t) ≥ α∗(t) where α∗ is the VBR obtained by applying Corollary 4.1 and
given in (B.10).

Proof of Lemma B.9. • If t > d2 −D1 − b
r , then

α†(t) = α†
(
d2 −D1 −

b

r

)
+ α†(t)− α†

(
d2 −D1 −

b

r

)
≥ α†

(
d2 −D1 −

b

r

)
+ r′(t− d2 +D1) + b ▷ Lemma B.8

≥ α†
(
d2 −D1 −

b

r

)
+ r(t− d2 +D1) + b ▷ (B.24)

≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1) + r(t− d2 +D1) + b ▷ (B.29)
≥ b+ rD2 − rd1 + rt = α∗(t) ▷ (B.10)

• If 0 < t < d2 −D1 − b
r , then we use the fact that α† is concave on R+.

Define
x = t

d2 −D1 − b
r

(B.30)
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then, by definition of a concave function,

α†(t) ≥ xα†
(
d2 −D1 −

b

r

)
+ (1− x)α†(0)

≥ x (r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)) ▷ (B.29)
+ (1− x) (2b+ r(D1 − d1 +D2 − d2)) ▷ (B.26)

≥ 2rx
(
d2 −D1 −

b

r

)
+ 2b+ r(D1 − d1) + r(D2 − d2)

≥ 2rt+ 2b+ r(D1 − d1) + r(D2 − d2) = α∗(t) ▷ (B.26) and (B.10)

By (B.23), Lemma B.9 proves that ∀t > 0, α′(t) ≥ α∗(t) and by definition of an arrival
curve, α′(0) = α∗(0) = 0. We hence have proved that α∗ is a better arrival curve for f at the
output of the PEF than α′. This is valid for any VBR curve α′ that is an arrival curve for f
at the output of the PEF. Therefore α∗ obtained using Corollary 4.1 is the best VBR arrival
curve for f at the output of the PEF.

Case d2 −D1 ≤ b/r:

In this case, the leaky-bucket γ2r,2b+r(D1−d1+D2−d2) is always larger than γr,b+r(D2−d1). Thus
the application of Corollary 4.1 gives that the leaky-bucket α∗ = γr,b+r(D2−d1) is an arrival
curve for f at the output of the PEF in Figure 4.13.

Using the same rationale as for the previous case, we can use a greedy source that generates
packets with a long-term rate of r, thus any arrival curve for f at the output of the PEF must
also have a long-term rate larger than r.

Therefore, the proof of tightness needs only to exhibit a trajectory that creates a burst as
big as b+ r(D2 − d1). This is done as follows.

Definition of several constants

We define
χ1 ≜

⌈
r(D1 − d1)

b

⌉
and χ2 ≜

⌈
r(D2 −D1)

b

⌉
(B.31)

Note that both χ1 ≥ 1 and χ2 ≥ 1. We further consider a time instant t0 such that t0 >
D2 −D1.

Description of the traffic generation at the source

We classify the data units generated by the source into two categories: I, B. Category B is
then subdivided into subcategories B1 and B2. The category of a data unit defines the role
that the data unit has in the trajectory. This notion is only used in the proof and does not
relate to any physical property of the data units.

Category I The source generates a unique data unit I at absolute time t0, of length b (see
Table B.6).
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Table B.6: Generation of the Data-Unit of Category I in the Trajectory that Achieves the Tightness of
Corollary 4.1, when d2 −D1 ≤ b/r.

Data unit m Size, size(m) Generation time, G(m)
I b t0

Table B.7: Generation of the Data-Units of Category B in the Trajectory that Achieves the Tightness of
Corollary 4.1, when d2 −D1 ≤ b/r.

Data unit m Size, size(m) Generation time, G(m)
∀k ∈ J1, χ2 − 1K, B2

k b t0 −D2 +D1 + (k − 1) br
B2
χ2 r(D2 −D1)− (χ2 − 1)b t0 − b/r

∀k ∈ J1, χ1 − 1K, B1
k b t0 + k br

B1
χ1 r(D1 − d1)− (χ1 − 1)b t0 + (D1 − d1)

Note: The role of the data unit I is to create the term b of the burst b+ r(D2 − d1).
Category B In addition, the source generates χ1 data units of subcategory B1 and χ2

data units of subcategory B2, as described in Table B.7.
A possible output of the source when combining categories I and B is shown in Figure B.9.

In the proposed situation, we have χ1 = χ2 = 2. Both subcategories B1 and B2 are made of
two data units. The data units of B2 are sent before I whereas the data units of B1 are sent
after I.

We note that, for any value of χ1, χ2,∑
k∈J1,χ1K

size(B1
k) = r(D1 − d1)

and
∑

k∈J1,χ2K

size(B2
k) = r(D2 −D1)

(B.32)

time

size size

t 0

I

t 0
−
b/
r

B2
1

t 0
−
D

2
+
D

1

B2
1

t 0
+
b/
r

B1
1

t 0
+

(D
1
−
d

1)

B1
2

b

r(D1 − d1)− b
r(D2 −D1)− b

Figure B.9: Example of the source output in the trajectory that achieves the tightness, focusing on categories
I and B.
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Table B.8: Absolute Release Time for Each Packet at the Output of Each System S1, S2, in the Case
d2 −D1 ≤ b/r.

Data unit, m G(m), Generation time E1(m), exit time out of S1 for the packet E2(m), exit time out of S2 for the packet
transporting m through S1 transporting m through S2

∀k ∈ J1, χ2 − 1K, B2
k t0 −D2 +D1 + (k − 1) br +∞ t0 +D1

B2
χ2 t0 − b/r +∞ t0 +D1
I t0 t0 +D1 +∞

∀k ∈ J1, χ1 − 1K, B1
k t0 + k br t0 +D1 +∞

B1
χ1 t0 + (D1 − d1) t0 +D1 +∞

Properties of the traffic generation at the source

As for the previous case, we prove that Lemmas B.4 and B.5 hold for the traffic described
in B.2.4. This is clear for most pair of data units, let us show it for example for data units
B2
χ2−1 and B2

χ2 :

G(B2
χ2)− G(B2

χ2−1) = t0 −
b

r
− t0 +D2 −D1 − (χ2 − 1) b

r
+ b

r

= D2 −D1 − (χ2 − 1) b
r

≥
size(B2

χ2)
r

Therefore, Lemma B.6 also holds for the traffic described in B.2.4. The traffic described in
the trajectory is γr,b-constrained.

Description of the systems S1, S2

With the same notations and conventions as for the previous case, the systems S1 and S2
release the packets containing the different data units at the time instants shown in Table B.8.

Properties of the systems S1, S2

As for the previous case, we can also prove that Lemma B.7 holds for the systems S1, S2
described above. This is clear from Table B.8 for most data units. For example, the delay of
the packet transporting the data unit B2

χ2 through S2 is at least d2 because, by assumption,
d2 −D1 ≤ b

r .

Properties of the output cumulative function

In the trajectory of Table B.8, all data units exit the PEF at t0 +D1. We hence have created
a burst of size

size(I) +
∑

k∈J1,χ1K

size(B1
k) +

∑
k∈J1,χ2K

size(B2
k)

= b+ r(D1 − d1) + r(D2 −D1) ▷ (B.32)
= b+ r(D2 − d1)
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Therefore, any curve that is an arrival curve of f at the output of the PEF should have a limit
at 0 at least larger than b+ r(D2− d1) and a long-term rate at least larger than r. Thus any
such curve that is also concave on R∗+ must hence be larger than the leaky-bucket arrival
curve γr,b+r(D2−d1). In particular, any VBR arrival curve (concave on R∗+ by definition) is
larger than γr,b+r(D2−d1).

B.2.5 Proof of Proposition 4.2

Proof of Proposition 4.2. Consider the flow f and two observation points v, w that meet the
constraints of Definition 4.5: v is in vertex n, w is in vertex o, n is not an EP-vertex of G(f),
o is a diamond ancestor of n in G(f), and the flow f is packetized at v, w. Define mk, lk, Ek
as in Definition 4.5.

Ek is correctly defined because n is not an EP-vertex, thus mk can cross the observation
point v at most once. Furthermore, f is packetized at v, thus all the bits of mk cross v at the
same time. Define the reordering offset of mk [Mohammadpour, Le Boudec 2021, Eq. (4)] by

Πk ≜
∑

j|j>k,Ej<Ek

lj (B.33)

Denote by Rf,v the cumulative arrival function of flow f at observation point v. From
Definition 2.4, Rf,v(t) is the number of bits of flow f that cross v over the time interval
[0, t]. The cumulative functions are assumed left-continuous (Section 2.2), thus Rf,v(t) is also
number of bits of flow f that cross v over the time interval [0, t[. Hence, for any non-lost
data unit mk, Rf,v(Ek) is the number of bits of f that cross v strictly before Ek. As f is
packetized at v, Rf,v(Ek) is hence the sum of the length of the packet lengths for all data
units that arrived before mk, excepted mk.

Hence Πk can be written

Πk =
∑

j|j>k,Ej<Ek

lj

= Rf,v(Ek)−Rf,v(min
j>k

Ej)

≤ αf,v(Ek −min
j>k

Ej)

because αf,v is an arrival curve of f at v. Denote by Λk ≜ Ek−minj>k Ej the reordering late
offset of data unit k [Mohammadpour, Le Boudec 2021, Eq. (2)]. We hence obtain that for
all k such that Ek < +∞,

Πk ≤ αf,v(Λk) (B.34)

The RTO and the RBO of f at v with respect to w are defined in Definition 4.5 by

πf,v(w) ≜ sup
k|Ek<+∞

Πk λf,v(w) ≜ sup
k|Ek<+∞

Λk (B.35)

Equation (B.34) is valid for any k such that Ek < +∞; αf,v is a wide-sense increasing function;
and supk|Ek<+∞ Λk is bounded by assumption. We hence obtain πf,v(w) ≤ αf,v(λf,v(w)).



B.2. Proofs of Chapter 4 211

Feed-forward network N ∗

. . .

. . .

C1
Cp

S1
Sm

. . .Constant delay θ

Constant delay θ

X

U

WV

Figure B.10: Unfolding N into a feed-forward causal system.

B.2.6 Proof of Theorem 4.2

Proof of Theorem 4.2. The section of the network between the diamond ancestor a and the
vertex n that contains the PEF is a system (neither FIFO nor lossless in general) with a jitter
for f bounded by Da∗→nin

f − da∗→nin
f . We apply [Mohammadpour, Le Boudec 2021, Thm 5]

to obtain the result.

B.2.7 Proof of Theorem 4.3

Proof of Theorem 4.3. Consider network N with cyclic dependencies and select θ such that
0 < θ < Tmin where Tmin is the minimum propagation time of the transmission links (see
Chapter 2, Section 2.6). Let E be a feedback arc set for the network’s underlying graph G(N ).
For each edge e in E , we define one cut per flow going through e, and we consider {Ci}i the
set of these cuts. In other words, {Ci}i = {(e, f);∀e ∈ E ; ∀f |e ∈ edges(G(f))}. We consider
also {Sj}j the set of the sources in the network N .

Using these notations, we unfold the network N as in Figure B.10.

• W [resp. U ] represent the points located just before [resp. just after] the {Ci}i cuts: in
N , W and U are connected together through links not shown here : ∀i;Wi → Ui.

• X represents the points located just after the sources {Sj}j .

• Last, V represents the points located exactly θ seconds before W . For each i an index
of W , the point Vi is located on the same link as Wi because tprop is the minimum
propagation delay.

We call N ∗ the system between (U,X) and W . N ∗ is a causal system as the sources have
been extracted. It is also feed-forward because E is a feedback arc set. Since N is not assumed
to be FIFO nor lossless, neither is N ∗. Call FF : (bin,din) 7→ (bout,dout) the feed-forward
algorithm that computes;

• the burst bounds bout, and

• the upper delay bounds with respect to the flow’s source dout
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Table B.9: Notations for the Proof of Theorem 4.3

Vectors of observation points located respectively
X at the output of the sources,
U just after the cuts,
W just before the cuts and
V θ seconds before W .
T An acceptable trajectory for the network

T (τ) The trajectory that is identical to T before τ
and drops all packets at X and U after τ .
Cumulative process at Mi, respectively

RM,i(t) on trajectory T ,
RτM,i(t) on trajectory T when the observation is stopped at τ and
R′τM,i(t) when the input is stopped at τ (trajectory T (τ))

The sequence of the measured source-to-M delays
for the data units that cross Mi, respectively

(DM,i) on trajectory T ,
(Dτ

M,i) on trajectory T when the observation is stopped at τ and
(D′τM,i) when the input is stopped at τ (trajectory T (τ))

at the output of N ∗ based on the equally defined bounds (bin,din) provided at the input of
N ∗.

We consider now a non-negative fixed-point (b,d), i.e. such that FF(b,d) = (b,d). Our
goal is to prove that the elements of the vectors (b,d) constitute valid burst and delay bounds
at the cuts. The notations used in this proof are regrouped in Table B.9.

Consider any acceptable trajectory T for N . To ease the notation, the dependency of the
following notions on T is made implicit.

Cumulative processes and true delays. For M ∈ {X,U, V,W}, we note RM (t) =
[RM,i(t)]i the vector of the cumulative processes in this trajectory, observed at points Mi.

For M ∈ {X,U, V,W} and i and index of M , we note (DM,i,n)n∈N∗ the sequence of the
measured source-to-M delays for the data units that cross Mi, in the order at which they
present themselves at Mi. If the process at Mi is not packetized, then the instant at which
a data unit crosses Mi is defined as the instant of the transmission of the last bit of the
data unit. If several packets arrive at the same instant at the observation point Mi, then an
arbitrary deterministic second order (for example, based on the packets’ content) is used to
break ties. If a same data unit presents itself twice at Mi (for example when it is transported
by two redundant packets), then each traversal generates a distinct entry in the sequence
(DM,i,n)n∈N∗ .

Example: Call f the flow cut by Ci. If P is the third packet of f observed at Mi, then
DM,i,3 is the time elapsed between the emission of the data unit contained in P at the source
of f and the the instant a which P goes through Mi.

We note DM = [(DM,i)]i the vector of all such sequences at the observation point M .
In the rest of the proof, we take any τ ≥ 0.
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Stopping the observation at τ . For M ∈ {U, V,W} we call Rτ
M (t) the vector of the cu-

mulative processes stopped at τ : Rτ
M : t 7→min(RM (t),RM (t)) = [min(RM,i(t), RM,i(τ))]i.

Similarly, we call Dτ
M the vector of the sequences at M obtained from the sequences DM

by keeping only the delays relative to the packets that arrive at M strictly before the absolute
time reaches τ .

Lemma B.10 (Dτ
M is a finite prefix of DM )

For M ∈ {U, V,W}, for i an index of M , there exists nlast ≥ 0 such that (Dτ
M,i) = (DM,i,n)n≤nlast.

If nlast = 0, then (Dτ
M,i) is an empty sequence.

Proof. Call f the unique flow cut by Ci (by definition of the cuts). If no packet has been
observed before τ , then we set nlast = 0, and the result holds. If one or more packets of f
are observed before τ at Mi, we select nlast to be the index within the sequence (DM,i) of the
source-to-M delay that was measured for the last packet that arrived at Mi strictly before τ .
Between 0 and τ , a finite duration, the source of flow f could not have produced an infinite
number of packets (by assumption on the sources). N ∗ is causal and the number of nodes in
the network is finite. In addition, flow graphs are acyclic, hence the number of packets of f
crossing Mi between 0 and τ is also finite, so nlast is finite. Any packet that arrived strictly
before τ has arrived before the last packet that arrived strictly before τ , hence the result
holds by definition of Dτ

M,i.

Stopping the input at τ . Recall that the above definitions depend on the trajectory T .
We define T ′(τ) the trajectory obtained from T by stopping all the processes at U and X at
τ : in trajectory T ′(τ), for t ≥ τ , all the data, all the packets that go through X and U are
dropped (deleted).

We call R′τM (t) [resp. D′τM ] the version of RM (t) [resp. DM ] when defined on the trajectory
T ′(τ) instead of being defined for trajectory T .

Lemma B.11
For M ∈ {U, V,W}, for i an index of M ,

1. Dτ
M,i is a prefix of D′τM,i.

2. D′τM,i is a finite sequence.

Proof. 1. Dτ
M,i is a finite sequence that contains all the source-to-M delay measured for

packets reaching Mi before τ . Before τ , the trajectories T and T (τ) are identical (same
processes, packets in the same order), hence Dτ

M,i is contained at the beginning of D′τM,i,
it is a prefix.

2. Since N ∗ is causal, after τ , no more packet is produced in or enters into N ∗. Since
the number of nodes in the network is finite and since flow graphs are acyclic, the
observation point Mi can only observe the data unit remaining in the network a finite
number of times, hence D′τM,i is finite.
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Obtaining the worst-case bounds. For M ∈ {U, V,W} we denote by bτM [resp. b′τM ] the
vector of worst-case leaky-bucket bursts observed at M on the observation stopped at τ [resp.
on the trajectory T (τ)]. By definition, they correspond to the worst-case leaky-bucket bursts
observed on cumulative processes Rτ

M (t) [resp. R′τM (t)]. For example, for any i an index of
M , bτM,i = supt′≥t(RτM,i(t′)−RτM,i(t)− r(t′ − t)) where r is the leaky-bucket rate of the flow
cut by Ci.

Similarly, for M ∈ {U, V,W}, we denote by dτM [resp. d′τM ] the worst-case source-to-M
delay observed at M on the observation stopped at τ [resp. on the trajectory T (τ)]. By
Lemma B.10 and B.11, sequences Dτ

M and D′τM are either empty or finite. We take the
convention that the maximum of an empty sequence is 0 seconds of true delay. Hence, dτM
[resp. d′τM ] correspond by definition to the maximum value of the sequence Dτ

M [resp. D′τM ].
For example, for i an index of M , call nlast the last index of the finite sequence Dτ

M,i. Then
dτM,i = maxj∈J1,nlastKD

τ
M,i,j .

Lemma B.12
Focusing on M = V ,

1. bτV ≤ b′τV

2. dτV ≤ d′τV

Proof. 1. Same proof as in B.1

2. For i an index of V , by Lemma B.11, (Dτ
M,i) is a finite prefix of the finite sequence (D′τM,i),

hence all values in (Dτ
M,i) are contained in (D′τM,i), hence maxj(Dτ

M,i,j) ≤ maxk(D′τM,i,k)

Using the FF bound. FF computes, for a given input, a bound on the bursts and the
source-to-W true delay bounds for the non-lost packets at the output W . Hence (b′τW ,d′τW ) ≤
FF(bτU ,dτU ). The delay between V and W is constant equal to θ, hence for any index i of
V , ∀t ≥ 0,R′τV,i(t) = R′τW,i(t+ θ), which, per the definition of b′τM , gives b′τV = b′τW .

Similarly, all the packets that reached Vi in the trajectory T (τ) will reach Wi exactly θ

seconds after and in the same order because the link between Vi and Wi is a lossless constant-
delay link. This gives d′τV = d′τW − θ where θ is a vector of the same size of V that contains θ
in every field. It gives

(bτV ,dτV ) ≤ FF(bτU ,dτU )− (0, θ)

Since the link between V and W is lossless with a constant delay equal to θ, W observes
between θ and τ + θ the same exact traffic than what V observes between 0 and τ , with the
exception that the packets have θ more seconds of delay from their source. Hence bτ+θ

W = bτV
and dτ+θ

W = dτ+θ
V + θ. Finally, W and U are connected together in N , so we obtain

(bτ+θ
U ,dτ+θ

U ) = (bτ+θ
W ,dτ+θ

W ) = (bτV ,dτV ) + (0,θ) ≤ FF(bτU ,dτU ) (B.36)

Equation (B.36) is valid for any τ ≥ 0, so applying it with τ = kθ, k ∈ N gives

∀k ∈ N,
(
b(k+1)θ
U ,d(k+1)θ

U

)
≤ FF(bkθU ,dkθU ) (B.37)
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. . . PEFn(f)

S

Cσf,n PL
f

a
αf,a∗ αf,PEF∗

REGn({f}, a∗)
S′′ S′

[d,D] [0, D − d] (B.39)

[d, 2D − d] (B.40)
[d, 2D − d] Theorem 2.5

Figure B.11: Notations for the Proof of Theorem 4.4.

The network is empty at t = 0 so (b0
U ,d0

U ) = (0,0). FF can be assumed to be wide-sense
increasing as per [Bouillard, Boyer, Le Corronc 2018, Chap. 12]. Combined with the fact that
FF(b,d) = (b,d) and a simple induction argument, it follows that

(
bkθU ,dkθU

)
≤ (b,d) for

all k ∈ N. Last any τ > 0, (bτU ,dτU ) ≤
(
bkθU ,dkθU

)
with k =

⌈
τ
θ

⌉
, so ∀τ > 0, (bτU ,dτU ) ≤ (b,d).

Now the worst case bursts and virtual delays on this trajectory T are

(bU ,dU ) = lim
τ≥0

(bτU ,dτU ) ≤ (b,d) (B.38)

Equation (B.38) is valid for any acceptable trajectory T of the network N , so the network N
is stable and (b,d) is a finite bound for (bU ,dU )∀T , the worst-case burst and delay bounds
in the network N .

B.2.8 Proof of Theorem 4.4

Proof of Theorem 4.4. Consider the system S between the output of a and the output of the
PEF (Figure B.11). We apply Item 2/ of Theorem 4.1 with diamond ancestor a. We obtain
that

αf,PEF∗ = αf,a∗ ⊘ δD−d
= γr,b ⊘ δD−d
= γr,b+r(D−d)

is an arrival curve for f at the output of the PEF, i.e., at the output of S.
The input of the PFR is packetized because the PFR is located within a device, after the

packetizer. In addition, σf,n = γr,b is sub-additive and b is larger than the maximum packet
length of f because γr,n is an arrival curve for f at a∗. Hence, we can apply the service-curve
characterization of the PFR (Proposition 3.1): the PFR with shaping curve σf,n is realized
by the concatenation of a greedy-shaper (Definition 2.7) with shaping curve σf,n followed by
a packetizer.

As σf,n = γr,b, it is sub-additive, we apply the first item of Theorem 2.4: the greedy
shaper Cσf,n

offers to f the service-curve σf,n. We apply Theorem 2.2 and obtain that the
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horizontal deviation
h(αf,PEF∗ , σf,n)

=h(γr,b+r(D−d), γr,b)
=D − d

(B.39)

in an upper-bound on the delay of f through Cσf,n
and 0 is obviously a lower-bound.

Then the delay bounds through the system marked as S ′′ on Figure B.11 is

[d,D] + [0, D − d]
= [d, 2D − d]

(B.40)

Last, the input of S ′′ is packetized because the output a∗ of the diamond ancestor is located
after the packetizer within the input port. We can hence apply Theorem 2.5 and we obtain
that 2D − d is also a delay bound through the concatenation of S ′′ with the packetizer, i.e.,
through S ′.

B.2.9 Proof of Theorem 4.5

Proof of Theorem 4.5. Consider a system defined by Figure 4.20 and by Conditions (a) to (c)
of Theorem 4.5. Take any r > 0, b > 0 and d1, D1, d2, D2 such that Conditions (d) to (e) of
Theorem 4.5 are met. We first describe the adversarial model applied when D1 < d2.

Adversarial model for the case D1 < d2

We exhibit an adversarial model MD1<d2 for the sources and for the paths {Pj}j such that
Properties 1/ to 5/ of Theorem 4.5 hold for MD1<d2 .

Constants of MD1<d2 We define

J ≜ d2 −D1 (B.41)

And
D ≜ d2 d ≜ D1 (B.42)

thus d < D. Note that q ≥ qmin can be written

q ≥ qmin =
⌊2rJ
b

+ 2
⌋

+ 1

With J > 0. Note that q > 2rJ
b + 2 thus (q − 2) br > 2J . Therefore, take any ϵ such that

min
(
b

r
− 2
q − 2J, J

)
> ϵ > 0 (B.43)

We further define
I ≜ max

(
q

q − 2J,
b

r

)
(B.44)

ϕ ≜ I − J + ϵ (B.45)
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and
τ ≜ qϕ (B.46)

Finally, we consider a starting instant x1 > 0 and for i ∈ J1, qK, we define

xi ≜ (i− 1)ϕ+ x1 (B.47)

Properties on the constants of MD1<d2 For q > 3, q
q−2 > 1 thus by (B.44)

I > J > 0 (B.48)

thus we also have ϕ > 0 and τ > 0 by (B.45) and (B.46). Furthermore,

τ − I = q(I − J) + qϵ− I ▷ by (B.45), (B.46)
= (q − 2)I − qJ + qϵ+ I

≥ qJ − qJ + qϵ+ I ▷ by (B.44)
> I ▷ by (B.43)

combined again with (B.44), this gives

τ − I > b

r
(B.49)

For ϕ, we first have
ϕ < I (B.50)

because ϵ < J and
ϕ < I + b

r
− q

q − 2J (B.51)

because ϵ < b
r −

2
q−2J . By (B.44), I can take only one of two values. If I = b

r , then (B.50)
gives ϕ < b

r . If I = q
q−2J , then (B.51) gives ϕ < b

r . We hence prove

ϕ <
b

r
(B.52)

Adversarial traffic generation at the source in MD1<d2 For each i ∈ J1, qK, the source
a in Figure 4.20 sends1 a data unit m1

i,k, of size b at the time instant xi + kτ and m2
j,k of size

b at the time instant xi + kτ + I for all k ∈ N.
Figure B.12 presents the traffic at the output of the source, focusing on two successive

flows: fi and fi+1 (with i ≤ q − 1). Their source profiles are periodic with a period τ and
Figure B.12 focuses on the k-th period. For the flow fi (solid-blue data units), the source
generates the data unit m1

i,k at time xi + kτ , then sends m2
i,k after a duration I and it finally

waits for the next period (k + 1) before it restarts the same profile and sends m1
i,k+1. The

source profile for flow fi+1 (dashed-red data units) is identical, but shifted by ϕ with respect

1If b is larger than the maximal packet length, then the source sends several data units simultaneously such
that the sum of their length equal b. In this case, m1

i,k and m2
i,k represent the set of these data units.
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Figure B.12: Generation of data units for flows fi and fi+1 (i ≤ q − 1). Their traffic profile is periodic
with period τ . The source sends a data unit for fi at xi + kτ for k ∈ N, then it sends another data unit
after a duration I and finally restarts at the next period. The profile for fi+1 is identical and shifted by ϕ
with respect to the one of fi (xi+1 = xi + ϕ).
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Figure B.13: Traffic profile for the flows fi and fi+1 at the output of the two adversarial paths P1 and
P2, in the model MD1<d2 . P1 drops all m1 data units whereas P2 drops all m2 data units.

to the source profile for fi, because xi+1 = xi + ϕ by (B.47). By (B.45) and (B.43), ϕ < I

thus m1
i,k+1 is sent before m2

i,k as shown in the figure.

Properties on the traffic generation at the source in MD1<d2 By (B.44) and (B.49),
the minimum time elapsed at the source between any two data units of fi is larger than b/r,
which shows that Property 1/ of Theorem 4.5 holds.

Adversarial paths in MD1<d2

- For any k ∈ N and any i ∈ J1, qK, path P1 drops the packet containing the data unit
m1
i,k and forwards the packet containing the data unit m2

i,k with a delay d.

- For any k ∈ N and any i ∈ J1, qK, path P2 forwards the packet containing the data unit
m1
i,k with a delay D and drops the packet containing the data unit m2

i,k.

- Any other path Pj with j ≥ 3 drops all packets.

Figure B.13 shows the trajectory at the output the two adversarial paths, focusing on period
k and on flows fi and fi+1. Path P1 drops the packets containing the data units m1

i,k and
m1
i+1,k. It forwards those that contain m2

i,k and m2
i+1,k with a delay d. Similarly, P2 drops

m2
i,k and m2

i+1,k but forwards m1
i,k and m1

i+1,k with a delay D.
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Figure B.14: Traffic profile for the flows fi and fi+1 at the input of the IR (above) and at its output
(below). To ease the lecture, the scale is not the same as in Figures B.12 and B.13.

Properties of the paths in MD1<d2 The delay of the non-lost packets through P1 [resp.,
through P2] equals d = D1 [resp., D = d2] that belongs to [d1, D1] [resp., to [d2, D2] ]. Thus
the adversarial paths meet Properties 2/ and 4/ of Theorem 4.5.

Effect of the PEFs in MD1<d2 The set of parallel PEFs in Figure 4.20 receive the sum
of the two paths outputs. As per its model in Section 4.2.2, each PEF forwards the first
packet containing the data unit. For i ∈ J1, qK, k ∈ N and w ∈ {1, 2}, we denote by Awi,k the
time instant at which the unique packet containing the data unit mw

i,k exits the set of parallel
PEFs.

By construction of the adversarial paths, for i ∈ J1, qK and k ∈ N, only path P1 forwards
a packet containing the data unit m2

i,k, released d after its emission by the source. Thus m2
i,k

exits the PEFs as soon as the packet exits P1. We obtain

∀i ∈ J1, qK, ∀k ∈ N A2
i,k = xi + kτ + I + d (B.53)

Similarly with m1
i,k that is only forwarded by P2,

∀i ∈ J1, qK, ∀k ∈ N A1
i,k = xi + kτ +D (B.54)

The top line of Figure B.14 shows the trajectory at the output of the PEFs focusing on
flows fi and fi+1 and on the k-th period of the profile. Note that PEFs∗ is the output of the
system denoted by S in Section 4.4.2 and is also the input of the IR (Figure 4.20).

Properties of the system S between in and PEFs∗ inMD1<d2 For i ∈ J1, qK and n ∈ N
we note that

A2
i,k −A1

i,k = I + d−D ▷ (B.53) and (B.54)
= I − J ▷ (B.41)
> 0 ▷ (B.48)
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This proves that m2
i,k exit S after m1

i,k for any i ∈ J1, qK and any k ∈ N. Also,

A1
i,k+1 −A2

i,k = τ +D − d− I ▷ (B.53) and (B.54)
= τ − (I − J)
= (q − 1)(I − J) + qϵ ▷ (B.46) and (B.45)
> 0 ▷ q ≥ 3

And this proves that for any i ∈ J1, qK and any k ∈ N, m2
i,k exits S before m1

i,k+1. Therefore,
S is FIFO for fi, for any i ∈ J1, qK. Furthermore, each data unit is transported through
exactly one path (either P1 or P2), thus S is also lossless. This proves that Property 5/ of
Theorem 4.5 holds.

Last, we note that

A1
i+1,k −A2

i,k = xi+1 − xi +D − d− I ▷ (B.53) and (B.54)
= ϕ+ J − I ▷ (B.41) and (B.47)
= ϵ > 0 ▷ (B.45)

(B.55)

Therefore, m1
i+1,k, the first packet of the flow fi+1 in the k-th period exits the PEFs ϵ seconds

after the second packet of the flow fi in the k-th period, as described in Figure B.14.

Output of the IR in MD1<d2 For i ∈ J1, qK, n ∈ N and w ∈ {1, 2}, we denote by Dw
i,k the

absolute time at which data unit mw
i,k leaves the IR.

The bottom line of Figure B.14 shows the release time of the data units out of the IR.
Assume for example that the source has been idle for a while, then the regulator is empty
and data unit m1

i,k can be released immediately without violating the shaping curve for fi,
thus D1

i,k = A1
i,k.

However, data unit m2
i,k arrives at the IR too soon with respect to the shaping curve σfi

.
By applying the equations of the IR Le Boudec 2018, we note that the IR must delay m2

i,k

and
∀i ∈ J1, qK,∀k ∈ N, D2

i,k ≥ D1
i,k + b/r (B.56)

By (B.55), data unit m1
i+1,k arrives after the data unit m2

i,k. As the IR looks only at the
head-of-line packet and is itself a FIFO system, we obtain

∀i ∈ J1, qK,∀k ∈ N, D1
i+1,k ≥ D2

i,k (B.57)

Combining Equations (B.56) and (B.57) gives, by induction,

∀k ∈ N, D2
q,k ≥ D1

1,k + q
b

r
(B.58)
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Now we note that

A1
1,k+1 = x1 + (k + 1)τ +D ▷ (B.54)

= x1 + kτ + qϕ+D ▷ (B.46)
= xq + kτ + ϕ+D ▷ (B.47)
= xq + kτ + I − J + ϵ+D ▷ (B.45)
= xq + kτ + I + d+ ϵ ▷ (B.41)
= A2

q,k + ϵ ▷ (B.53)

Therefore, the first data unit of the (k + 1)-th period of f1 arrives ϵ seconds after the second
data unit of the k-th period of the last flow fq. The IR being FIFO, we have

∀k ∈ N, D1
1,k+1 ≥ D2

q,k (B.59)

which, combined with (B.57), gives

∀k ∈ N, D1
1,k+1 ≥ D1

1,k + q
b

r
(B.60)

At period k = 0, the network is empty and D1
1,0 = A1

1,0 = x1. The induction of (B.60) thus
gives

∀k ∈ N, D1
1,k ≥ x1 + kq

b

r
(B.61)

And the delay, through the IR, suffered by the first data unit of the k-th period of the first
flow f1 is

D1
1,k −A1

1,k

≥ x1 + kq
b

r
− x1 − kτ −D ▷ (B.61) and (B.54)

≥ −D + kq

(
b

r
− ϕ

)
▷ (B.46)

By (B.52), br −ϕ > 0. Thus the above delay lower-bound diverges as k increases and Property
3/ of the Theorem holds.

Adversarial model for the case d2 < D1

The adversarial model Md2<D1 follows the same principle as the adversarial model MD1<d2

described above. In the following, we detail only the differences.

Constants of Md2<D1 By assumption, D1 − d2 > 0. Furthermore, qmin now equals 3 and
q ≥ qmin,

(
q−2

2

)
b
r > 0.
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We hence select J such that

0 < J < min
(
q − 2

2
b

r
,D1 − d2

)
(B.62)

And we re-define
D ≜ D1 d ≜ D − J (B.63)

As J < D1 − d2=, J > 0, and D2 ≥ D1 by on the indexes, we obtain D2 ≥ D1 > d > d2 thus

d ∈ [d2, D2] (B.64)

By definition, 2
q−2J <

b
r , thus we define ϵ, I, ϕ, τ and xi as in Appendix B.2.9, i.e., per

Equations (B.43), (B.44), (B.45), (B.46) and (B.47).

Properties on the constants of Md2<D1 None of the properties established in Ap-
pendix B.2.9 depends on the definition of J , d or D. They are all obtained thanks to the
definitions of the other constants. As we re-use the same definitions, all the properties ob-
tained in Appendix B.2.9 are also valid for Md2<D1 .

Adversarial traffic generation at the source inMd2<D1 The adversarial modelMd2<D1

uses the same traffic generation asMD1<d2 . It is described in Appendix B.2.9 and summarized
in Figure B.12.

Properties on the traffic generation at the source in Md2<D1 The traffic generation
is not modified, thus the properties established in Appendix B.2.9 also hold for Md2<D1 . In
particular, Property 1/ of Theorem 4.5 holds.

Adversarial paths in Md2<D1 With respect to the modelMD1<d2 , the adversarial model
Md2<D1 simply flips the the roles of each paths. Specifically,

- For any k ∈ N and any i ∈ J1, qK, path P1 forwards the packet containing the data unit
m1
i,k with a delay D and drops the packet containing the data unit m2

i,k.

- For any k ∈ N and any i ∈ J1, qK, path P2 drops the packet containing the data unit
m1
i,k and forwards the packet containing the data unit m2

i,k with a delay d.

- Any other path Pj with j ≥ 3 drops all packets.

The output of both paths is shown in Figure B.15. We can note the symmetry with Fig-
ure B.13.

Properties of the paths in Md2<D1 The packets not lost in P1 have the same delay
through P1 equal to D. Similarly, the packets not lost in P2 have the same delay through P2
equal to d. Thus both P1 and P2 are FIFO and Property 4/ of Theorem 4.5 hold.

Furthermore, by (B.63), D = D1 and by (B.64), d ∈ [d2, D2]. Thus Property 2/ holds.
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Figure B.15: Traffic profile for the flows fi and fi+1 at the output of the two adversarial paths P1 and
P2, in the model Md2<D1 . P1 drops all m2 data units whereas P2 drops all m2 data units. With respect
to Figure B.13, the roles of P1 and P2 have been exchanged.

Effect of the PEFs in Md2<D1 As for the MD1<d2 model, each data unit arrives in a
unique packet at the PEFs (m1 data units arrive only through P1 and m2 data units arrive
only through P 2). Thus the PEFs are transparent and forward the sum of both output traffic,
outP1 and outP2 from Figure B.15. We observe that the sum of them gives the same output
as on the first line of Figure B.14.

Therefore, all the remaining steps of the proof (properties on the system S, output of the
IR with diverging delays) can be followed as in the model MD1<d2 .

Adversarial model for the case d2 = D1

If d2 = D1, then qmin = 3. By Condition (e) of Theorem 4.5, one of the two intervals [d1, D1]
or [d2, D2] has a strictly positive length. Assume for example that d2 < D2. Then we simply
select d′2 such that

d2 < d′2 < min
(
D2, D1 + b

2r

)
(B.65)

We obtain ⌊
2r |d′2 −D1|+

b
+ 2

⌋
+ 1 = 3

because
2r |d′2 −D1|+

b
< 1

by choice of d′2. This means that we can apply modelMd′
2<D1 with parameters q, r, b, d1, d

′
2, D1, D2

and the same number of flows (q ≥ 3). This model will provide Properties 1/ to 5/ of Theo-
rem 4.5 for the choice of parameters q, r, b, d1, d

′
2, D1, D2, thus providing Properties 1/ to 5/

of Theorem 4.5 for the choice parameters r, b, d1, d2, D1, D2.
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B.2.10 Proof of Corollary 4.4

Proof of Corollary 4.4. We simply construct S as a system that contains a packet-replication
function (PRF), two alternative paths P1, P2 and a set of PEFs, as in Figure 4.20. We then
apply Theorem 4.5 with lossless and FIFO paths P1 and P2 that have both the same delay
interval [d1, D1] = [d2, D2] = [0, Dmax].

B.2.11 Proof of Theorem 4.6

Proof of Theorem 4.6. We denote by [d†, D†] the lower and upper delay bounds of the non-
lost data units through the system S† between the output of a and the output of the POF
(Figure 4.23).

The output of a vertex corresponds to the output of the packetizer, thus the flow aggregate
F is packetized at the output of vertex a. We can hence define the packet sequence (A,L, F )
for the aggregate F as in Le Boudec 2018, §II.A:

• A is the sequence of the arrival times at the observation point a∗ for the data units that
belong to the flow aggregate F . A is a wide-sense increasing sequence. I.e., An is the
arrival time at a∗ of the n-th data unit of the aggregate F .

• L is the sequence of packet length for the above data units. I.e., Ln is the length of the
packet that transports the n-th data unit that arrives at a∗ and belongs to F .

• F is the sequence of flow identifiers for the above data units. I.e., Fn = f means that
the n-th data unit of the aggregate F at a∗ belongs to flow f .

We also define the Πf regulator for each flow f of F that corresponds to the shaping curve
σf,n of the IR REGn(F , a) Le Boudec 2018, IV.A. By configuration of REGn(F , a), each flow
f of the aggregate is σf,n-constrained thus Πf -regular at a∗, the input of the systems S, S†
and S′.
− If S is lossless for F , we apply Mohammadpour, Le Boudec 2021, Theorem 4 and

obtain d† = d and D† = D.
Then, by definition of the POF and considering its configuration POFn({f}, a), system S†

is FIFO and lossless for the aggregate F processed by the regulator. Therefore, applying Le
Boudec 2018, Theorem 5 gives d′ = d† and D′ = D†.
− If S is not lossless for F , then the application of Mohammadpour, Le Boudec 2021,

Theorem 4 gives d† = d and D† = D + T .
Then, by definition of the POF and considering its configuration POFn({f}, a), system S†

is FIFO but not lossless for the aggregate F processed by the regulator.
Like in the proof of Lemma B.2, we decompose the packet sequence (A,L, F ) at the input

of S† into the sub-sequences (A1, L1, F1) and (A2, L2, F2) that correspond respectively to the
data units that are not lost inside S† and to the data units that are lost inside S†.

We consider the cumulative functions Rf,1 and Rf,2 of each flow f that correspond to the
sequence (A1, L1, F1) and (A2, L2, F2), respectively. Then, Rf ≜ Rf,1+Rf,2, the overall cumu-
lative function, corresponds to the sequence (A,L, F ) for flow f thus Rf is σf,n-constrained.
Re-using an argument from the proof of Lemma B.2, the cumulative sub-function Rf,1 remains
σf,n-constrained. Thus flow f in sub-sequence (A1, L1, F1) remains Πf -regular.
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Therefore, we apply Le Boudec 2018, Theorem 5 on the sub-sequence (A1, L1, F1) and
we obtain that for the corresponding IR output sequence (D1, L1, F1), the delay through S ′
verifies d′ = d† and D′ = D†. The delay of the non-lost data units through S ′ is hence within
[d′, D′] = [d,D + T ].

B.3 Proofs of Chapter 5

B.3.1 Proof of Proposition 5.1

Proof of Proposition 5.1. Denote by d ≜ dg←i. We start with a lemma

Lemma B.13 ( Changing the clock for the measure of a duration, general result)
If χHi is the measure of a duration with clock Hi, then the measure χHg of the same duration
with Hg is bounded by:

(d⊘d)(χHi) ≤ χHg ≤ (d⊘ d)(χHi) (B.66)

where ⊘ is the min-plus deconvolution2 (Definition 2.3), ⊘ is the max-plus deconvolution3

and d is the relative time function d ≜ dg←i.

Proof of Lemma B.13. Consider the event ωs [resp., ωe] that corresponds to the start [resp.,
the end] of the considered duration. Denote by tHi

s [resp., tHi
e ] the measure with Hi of the

time instant (date) of event ws [resp., of event we]. Then

χHi = tHi
e − tHi

s (B.67)

Similarly, denote by t
Hg
s [resp., tHg

e ] the measure with Hg of the time instant (date) of ωs
[resp., of ωe] with Hg. As tHi

s and tHg
s are the measure of the time instant of the same event,

but with two different clocks, we have

tHg
s = dg←i(tHi

s ) and tHg
e = dg←i(tHi

e ) (B.68)

Then

χHg = tHg
e − tHg

s (B.69)
= d(tHi

e )− d(tHi
s ) = d(tHi

s + χHi)− d(tHi
s ) (B.70)

One one hand, d(tHi
s + χHi) − d(tHi

s ) ≤ supu≥0 d(u + χHi) − d(u) because tHi
s ≥ 0. On the

other hand, d(tHi
s +χHi)−d(tHi

s ) ≥ infu≥0 d(u+χHi)−d(u) because again tHi
s ≥ 0. We hence

have

inf
u≥0

d(u+ χHi)− d(u) ≤ χHg ≤ sup
u≥0

d(u+ χHi)− d(u) (B.71)

(d⊘d)(χHi) ≤ χHg ≤ (d⊘ d)(χHi) (B.72)

2f ⊘ g : t 7→ supu≥0 f(t + u) − g(u)
3f⊘g : t 7→ infu≥0 f(t + u) − g(u)



226 Appendix B. Proofs

By Equation 5.6, for any t ≥ 0, u ≥ 0, d(t+u)−d(t) ≤ ρu+η and d(t+u)−d(t) ≥ (u−η)/ρ.
If, the network is also synchronized, then d(t + u) − d(t) ≤ |d(t + u) − t| + |t − d(t)| ≤ 2∆,
and d(t+ u)− d(t) ≥ −|d(t+ u)− t| − |t− d(t)| ≥ −2∆. Last, as dg→i is strictly increasing,
then χHg ≥ 0 because χHi ≥ 0.

B.3.2 Proof of Proposition 5.2

Time observed with Hi

Time observed with Hg

01011101010110101000011000. . .

0 di←g(t)

t0

di←g(0)

Figure B.16: Case where the initial offset of the local clock Hi is positive compared to the reference clock
Hg.

Proof of Proposition 5.2. Note that the same amount of data of f enter S between the time
instants measured as t1 and t2 using Hg and between the time instants measured as di←g(t1)
and di←g(t2) using Hi. We now split the proof into two situations.

Case d(0) ≥ 0: If the origin of Hi is before the origin of Hg, then the situation is as in
Figure B.16, where we represent face-to-face the two clocks. For any t ≥ 0, the number of
bits observed using Hi between 0 and d(t) equals the number of bits observed between 0 and
d(0), plus the number of bits observed between d(0) and d(t). That second term also equals
the number of bits observed between 0 and t using Hg (Figure B.16), i.e., RHg (t). Hence,

∀t ≥ 0, RHi(d(t)) = RHi(d(0)) +RHg (t) (B.73)

Due to the definition of Tstart, no bit could have been sent before the time measured as 0
using Hg. Consequently, RHi(d(0)) = 0, and we have the result.

Case d(0) < 0: If the origin of clock Hi is after the origin of clock Hg, then by symmetry,
we simply flip the pair and obtain the result from case a).
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B.3.3 Proof of Proposition 5.3

Proof of Proposition 5.3. Take t ≥ s ≥ 0 and define τ = t− s, then

RHg (s+ τ)−RHg (s)
= RHi(d(s+ τ))−RHi(d(s)) ▷ Proposition 5.2
≤ αHi(d(s+ τ)− d(s)) ▷ αHi is an arrival curve when observed with Hi
≤ sup

s′≥0

[
αHi(d(s′ + τ)− d(s′))

]
▷ s ∈ {s′|s′ ≥ 0}

≤ αHi(sup
s′≥0

[d(s′ + τ)− d(s′)]) ▷ αHi is wide-sense increasing

≤ αHi((d⊘ d)(τ))

Also, per Equation (5.5), (d⊘d)(τ) ≤ ρτ+η, hence (d⊘d)(τ) is always finite in our model.

B.3.4 Proof of Proposition 5.4

Proof of Proposition 5.4. Take t ≥ 0. Then

R
Hg

f,wout(t) = RHi

f,wout(d(t)) ▷ Proposition 5.2

≥ inf
0≤σ≤d(t)

[
RHi

f,win(σ) + βHi(d(t)− σ)
]

▷ βHi is a service curve observed with Hi

The function d is a permutation of R, thus for any time instant σ ≥ d(0) measured with Hi,
we note σ = d(s) with s the measure using Hg. Hence,

R
Hg

f,wout(t)

≥ inf
d−1(0)≤s≤t

[
RHi

f,win(d(s)) + βHi(d(t)− d(s))
]

If t < Tstart (defined in Section 5.2.1): the result holds because no bit has been trans-
mitted: RHg

f,wout(t) = 0; ∀s ≤ t < Tstart, R
Hi

f,win(d(s)) = 0 and infd−1(0)≤s≤t β
Hi(d(t)−d(s)) = 0,

obtained for s = t.

If t ≥ Tstart: Call A : s 7→ RHi

f,win(d(s)) + βHi(d(t)− d(s)). As Tstart ≥ d−1(0), we can split
the domain of the infsA(s) into the two cases s ≤ Tstart and s ≥ Tstart, the result being the
minimum of the two obtained inf.

For s < Tstart, βHi(d(t) − d(s)) ≥ βHi(d(t) − d(Tstart)) because d and βHi are both
increasing functions. On the other hand, based on the assumption on Tstart, RHi(d(s)) =
RHi(d(Tstart)) as both quantities equal 0 bit.

Consequently,
inf

d−1(0)≤s≤Tstart
A(s) ≥ A(Tstart)
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Hence infsA(s) is obtained for s ∈ [Tstart, t], i.e.,

R
Hg

f,wout(t) ≥ inf
Tstart≤s≤t

A(s)

By definition Tstart ≥ 0, so [Tstart, t] ⊂ [0, t], hence

R
Hg

f,wout(t) ≥ inf
0≤s≤t

A(s)

≥ inf
0≤s≤t

[
RHi

f,win(d(s)) + βHi(d(t)− d(s))
]

≥ inf
0≤s≤t

[
RHi

f,win(d(s)) + inf
u|0≤u

βHi(d(t− s+ u)− d(u))
]

▷ s ∈ {u|0 ≤ u}

≥ inf
0≤s≤t

[
RHi

f,win(d(s)) + βHi

[
inf
u|0≤u

(d(t− s+ u)− d(u))
]]

▷ βHiwide-sense increasing

≥ inf
0≤s≤t

[
RHi(d(s)) + βHi((d⊘d)(t− s))

]
With ⊘ the max-plus deconvolution [Le Boudec, Thiran 2001, Def 3.2.2]. By Proposition 5.2,
RHi

f,win(d(s)) = R
Hg

f,win(s), hence

R
Hg

f,wout(t) ≥ inf
0≤s≤t

[
RHg (s) + βHi((d⊘d)(t− s))

]
which proves that the system S offers the function t 7→ βHi((d⊘d)(t− s)) as a service curve
when observed with Hg.

B.3.5 Proof of Proposition 5.5

Proof of Proposition 5.5. Consider a flow f that crosses a system S and a regulator, in se-
quence. Assume that the source of the flow is at the input to system S and call Hϕ the clock
used to define the arrival curve αHϕ = γr,b at the source. Assume the regulator is a PFR
and let HReg ̸= Hϕ be its clock. Since the PFR is non-adapted, it is configured with shaping
curve σHReg = αHϕ .

Let the flow be greedy after Tstart and generate packets of size ℓ bits, with ℓ ≤ b. Its
cumulative arrival function at the source, measured in Hϕ, is

R
Hϕ

ϕ (t) =
⌊
αHϕ(|t− Tstart|+)

ℓ

⌋
ℓ (B.74)

where ⌊·⌋ is the floor function. The fact that this flow satisfies the arrival-curve constraint
αHϕ in Hϕ follows from [Le Boudec 2001, Thm III.2]. Also, system S provides a delay bound
DHTAI
f,Sk

in HTAI thus, by Section 5.3.1, a bound DHϕ

f,Sk
= ρDHTAI

f,Sk
+ η in Hϕ. Let RHϕ

PFRin be the
cumulative arrival function of flow f at the input of the PFR, observed with Hϕ. Thus, for
every t,

R
Hϕ

ϕ (t−DHϕ) ≤ RHϕ

PFRin(t) (B.75)

Let dReg←ϕ(t) = t/ρ be the relative time function between Hϕ and HReg. The function meets
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the conditions of Equation (5.5). Using Proposition 5.2, the cumulative arrival function of
flow f at the input of the PFR, when observed with the PFR clock HReg, is given by

R
HReg
PFRin(τ) = R

Hϕ

PFRin

(
d−1

Reg←ϕ(τ)
)

= R
Hϕ

PFRin(ρτ) (B.76)

Network calculus results are valid as long as all the notions are in the same time reference.
In particular, the PFR can be modeled as a fluid greedy shaper followed by a packetizer, and
the latter can be ignored for delay computations. The output of the fluid greedy shaper,
observed with HReg, is thus

R
HReg
PFR∗ = R

HReg
PFRin ⊗ γr,b

It follows that, for all τ ,

R
HReg
PFR∗(τ) ≤ RPFRinHReg(Tstart) + γr,b(τ − Tstart) = r|τ − Tstart|+ + b (B.77)

by definition of Tstart.
We now show

Lemma B.14
For any e > 0, the worst-case delay through the PFR, measured in HReg, is ≥ e.

Proof of Lemma B.14. From (B.77), it follows that, for τ ≥ Tstart,

R
HReg
PFR∗(τ + e) ≤ r(τ + e− Tstart) + b (B.78)

Combine Eqs (B.74)–(B.78) and obtain

R
HReg
PFR∗(τ + e)−RHReg

PFRin(τ) ≤ r(τ + e− Tstart) + b−RHϕ(ρτ −DHϕ

f,Sk
)

= r(τ + e− Tstart) + b−

r(ρτ −DHϕ

f,Sk
Tstart) + b

ℓ

 ℓ
≤ r(τ + e− Tstart) + b− (r(ρτ −DHϕ

f,Sk
− Tstart) + b) + ℓ

= r(1− ρ)τ + re+ rD
Hϕ

f,Sk
+ ℓ

(B.79)

Thus RHReg
PFR∗(τ + e)−RHReg

PFRin(τ) < 0 whenever τ >
(
re+rD

Hϕ
f,Sk

+ℓ
(ρ−1)r ∨ Tstart

)
; it follows that the

delay, measured with HReg, for packets arrived at the PFR after time
(
re+rD

Hϕ
f,Sk

+ℓ
(ρ−1)r ∨ Tstart

)
is larger than e.

Lemma B.14 holds for any arbitrary e > 0, therefore the delay measured with HReg is
unbounded. By Section 5.3.1, this also proves that the delay is not bounded when viewed
from any clock of the network.

For the IR, the same adversarial example applies because an IR processing only one flow
has the same behavior as a PFR [Le Boudec 2018].
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B.3.6 Proof of Proposition 5.6

Proof of Proposition 5.6. Consider a system S and assume that S is the k-th hop for flow f .
We note S = Sk as in Figure 5.9. When observed with HREGk−1 , the flow has the arrival curve
α
HREGk−1
(k−1)∗ = σk−1 at the output of REGk−1. We now apply Table 5.1 with Hg = HREGk

and
Hi = HREGk−1 . We obtain that, when observed with the clock of the next regulator, HREGk

,
the flow leaves REGk−1 with a leaky-bucket arrival curve αHREGk

(k−1)∗ of rate ρrREGk−1 and burst
REGk−1 + ηrREGk−1 .

From the configuration of REGk−1 and REGk, we note that αHREGk
k = α

HREGk

(k−1)∗ ≤ σk. Conse-
quently, all the conditions for the shaping-for-free property are met when observed with clock
HREGk

. We apply the respective theorems for both the PFR [Le Boudec, Thiran 2001, Thm
1.5.2] and the IR [Le Boudec 2018, Thm 5] using this clock. An upper bound on the delay
for the flow through the system Sk as measured with HREGk

is ρDHTAI
f,Sk

+ η (Proposition 5.1).
Applying the shaping-for-free property, this is also a valid delay bound for the flow trough
the whole hop (Sk followed by regulator), when measuring with HREGk

. To obtain a delay
bound back in the measurement clock HTAI, we apply again Proposition 5.1, which gives the
result.

B.3.7 Proof of Proposition 5.7

We first establish the following lemma.

Lemma B.15
Assume that α2,(k−1)∗ = γρr0,b2,(k−1)∗ is an arrival curve for the flow at the input of the Sk,
observed in HTAI. Then

1. DHTAI
f,Sk+REGk

= DHTAI
f,Sk

+η(1+ρ)+ b2,(k−1)∗−b0−ηWr0
ρr0

ρ2−1
W−1 is a TAI delay bound for the flow

through the concatenation of Sk and REGk.

2. γ
ρr0,b2,(k−1)∗ +ρr0·D

HTAI
f,Sk+REGk

is an arrival curve for the flow observed in HTAI at the output
of REGk.

Proof of Lemma B.15. (1) The shaping curve of the PFR REGk is σk = γWr0,b0 . σk is con-
cave and σ(0+) = b0 ≥ lmax. And the input of the PFR is packetized by assumption in
Section 5.5.1. Therefore, the PFR REGk can be modeled as a (fluid) greedy shaper Cσ followed
by a packetizer PL as in Figure B.17 [Le Boudec, Thiran 2001, Thm. 1.7.3]. Denote by S′

[resp., S′′] the concatenation of Sk and Cσ [resp., of Sk, Cσ and PL] as in Figure B.17.
The greedy shaper Cσ provides to f the service curve βHREGk

Cσ
= σ = γWr0,b0 when observed

with its internal clock, HCσ = HREGk
[Le Boudec, Thiran 2001, Cor. 1.5.1]. By applying

Proposition 5.4 for the non-synchronized time model, we obtain that Cσ offers to f the service
curve βHTAI

Cσ
= δη ⊗ γWr0/ρ,b0 when observed with HTAI (Table 5.2). This service curve is

shown under the Cσ box in Figure B.17.
DHTAI
f,Sk

is a delay bound for f through Sk, observed with HTAI and obtained through Step
2 of the ADAM method. Sk is causal, lossless and FIFO for f . Thus its provides to f the
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Sk Cσ PLf

βHTAI
Sk

= δ
D

HTAI
f,Sk

βHTAI
Cσ

= δη ⊗ γWr0/ρ,b0

PFR REGk

S′

βHTAI
S′ = δ

D
HTAI
f,Sk

⊗ δη ⊗ γWr0/ρ,b0

or also βHTAI
S′ = δ

D
HTAI
f,Sk+REGk

S′′

βHTAI
S′′ = δ

D
HTAI
f,Sk+REGk

Figure B.17: Network-calculus model of the system Sk followed by the PFR REGk: the PFR can be modeled
as a fluid greedy-shaper Cσ followed by a packetizer PL. Below each box we show one (or two) service
curves that the element provides to f when observed in HTAI.

DHTAI
f,Sk

+ η

b0

rat
e W

r 0/
ρ

βHTAI
S′

b0 + ηWr0

ra
te
r 1

=
ρW
r 0

αHTAI
1

b2,(k−1)∗

rate r2 = ρr0

αHTAI
2,(k−1)∗

DHTAI
f,Sk+REGk

time interval measured in HTAI

data

Figure B.18: TAI delay bound computation for the flow through the system S′ of Figure B.17. The
knowledge of α2,k is required to provide a bounded delay whereas the knowledge of α1 helps having a
tighter delay bound.
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service cure the service-curve δ
D

HTAI
f,Sk

Le Boudec, Thiran 2001, Prop. 1.3.3 when observed
with HTAI. This service curve is shown below the Sk box in Figure B.17.

Now that we know the two service curves for Sk and Cσ as observed with HTAI, the
system S′ on Figure B.17, that is the concatenation of Sk and Cσ, offers to f the service curve
βHTAI
S′ = δ

D
HTAI
f,Sk

⊗ δη ⊗ γWr0/ρ,b0 when observed with HTAI [Le Boudec, Thiran 2001, Thm.

1.4.6]. Its shape is given in Figure B.18.
Conversely, the flow has, when observed with HTAI and at the input of S′, both α1 (PFR

output arrival-curve property) and α2,k−1 (assumption in Lemma B.15) as arrival curves.
Their shape are given in Figure B.18.

We apply the Network Calculus three-bound theorem [Le Boudec, Thiran 2001, Thm
1.4.2] to obtain a delay bound as the maximal horizontal distance between α1⊗α2 and βHopk

,
reached at the location marked on Figure B.18. Note that knowing only α1 does not prove
the existence of a maximal horizontal distance because Wr0/ρ < ρWr0 (for ρ > 1). However,
knowing also α2,k−1 proves its existence because Wr0/ρ ≥ ρr0 because W ≥ ρ2. Geometrical
considerations give that

DHTAI
f,Sk+REGk

= DHTAI
f,Sk

+ η(1 + ρ) +
b2,(k−1)∗ − b0 − ηWr0

ρr0

ρ2 − 1
W − 1 (B.80)

is a delay bound through S′.
S′ is causal, lossless and FIFO for f because Sk and Cσ are. Hence it provides to f the

service curve δ
D

HTAI
f,Sk+REGk

[Le Boudec, Thiran 2001, Prop. 1.3.3]. Both S′ and the packetizer

are causal, lossless and FIFO and the input of S′ is pacektized. Hence their concatenation,
i.e., S′′ offers to f the service curve δ

D
HTAI
f,Sk+REGk

to f [Le Boudec, Thiran 2001, Thm 1.7.1 Item

3] and is also causal, lossless and FIFO because both S′ and PL are.
Using one last time the Le Boudec, Thiran 2001, Prop. 1.3.3, this means that δ

D
HTAI
f,Sk+REGk

defined in (B.80) is a delay bound for f through S′′, i.e., through the concatenation of Sk
and REGk.

(2) The system S′′ in Figure B.17 offers to f the service curve δ
D

HTAI
f,Sk+REGk

. We apply

cite[Thm 1.4.3]leboudecNetworkCalculusTheory2001 with HTAI to obtain the result.

Proof of Proposition 5.7. (1) Applying Table 5.1 with Hg = HTAI and Hi = HREG0 proves
that α2,0 is an arrival curve for the flow at its source when observed with HTAI.

(2) and (3): The combination of the two statements is shown by induction on k. The
base step k = 0 follows from the previous item. The induction step follows immediately from
items (2) and (3) of Lemma B.15

B.3.8 Proof of Proposition 5.8

Proof of Proposition 5.8. Take the clock of the source to be exactly the TAI and let HReg ̸=
HTAI be the clock of the PFR. Since the PFR is non-adapted, it is configured with shaping
curve σHReg ≜ αHTAI

f,ϕ .
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∆

Tstart

Tstart

x1

x1 −∆

time observed with HTAI

time observed with HReg

Figure B.19: Shape of the relative time function dPFR←TAI. When the TAI reaches Tstart, the PFR clock
HReg starts measuring the time slower (with a relative factor 1/ρ) until its time is late by ∆ compared to
the TAI. After that point, it measures the time at the same speed but remain ∆ seconds late.

Let x1 ≜ Tstart + ρ∆
ρ−1 and take, for the adversarial relative time function dPFR←TAI, the

following piecewise linear function

dPFR←TAI(t) ≜


t if t ≤ Tstart

1
ρ

(t− Tstart) + Tstart if Tstart < t ≤ x1

t−∆ if x1 < t

The shape of dPFR←TAI is given in Figure B.19. It is continuous, strictly increasing, and
meets the constraints of Equations (5.5) and (5.6).

As in Appendix B.3.5, let the source be greedy after Tstart and generate packets of size ℓ
bits, with b ≥ ℓ. Its cumulative arrival function at the source, measured in H1, is

RHTAI(t) =
⌊
αHTAI(|t− Tstart|+)

ℓ

⌋
ℓ (B.81)

where ⌊·⌋ is the floor function. The fact that this flow satisfies the arrival-curve constraint
αHTAI in HTAI follows again from Le Boudec 2001, Thm III.2.

Consider now the first network element for the flow, S1 in Figure 5.9, as having no delay,
for any observation clock.

Let R′ be the cumulative arrival function in the PFR, that is at the output of the network
element. Then for any t, R′HTAI(t) = RHTAI(t) and for any τ , R′HReg(τ) = RHReg(τ).



234 Appendix B. Proofs

With the same arguments as in Appendix B.3.5, we model the PFR as a fluid greedy
shaper followed by a packetizer. The latter can be ignored for delay computations. The
output of the fluid greedy shaper, observed with HReg, is thus R∗HReg = R′HReg ⊗ γr,b. It
follows that, for all τ , R∗HReg(τ) ≤ RHReg(Tstart) + αHTAI(τ − Tstart) = r|τ − Tstart|+ + b by
definition of Tstart.

Now let x2 be the next TAI time after x1 at which the source finishes sending a packet.
Then by definition of R and R′

R′HTAI(x2) = RHTAI(x2) = αHTAI(x2 − Tstart) (B.82)

Now consider x2 + ∆ and compute the cumulative output of the regulator at x2 + ∆:
R∗HTAI(x2 + ∆) = RHReg(dPFR←TAI(x2 + ∆)) = RHReg(x2) because x2 ≥ x1 and by definition
of dPFR←TAI.

Yet RHReg(x2) ≤ αHTAI(x2 − Tstart) so

R∗HTAI(x2 + ∆) ≤ αHTAI(x2 − Tstart) (B.83)

Combining Equations B.82 and B.83 proves

R∗HTAI(x2 + ∆)−RHTAI(x2) ≤ 0 (B.84)

Equation (B.84) proves that the delay of the packet output at x2 (observed with HTAI) from
the source exits the greedy shaper at x2 + ∆ (observed with HTAI). It has hence suffered
a delay of ∆ measured with HTAI, which is ∆ more than the worst-case delay through the
network element. The worst-case delay is hence lower-bounded by this reachable value.

B.3.9 Proof of Proposition 5.9

Proof of Proposition 5.9. For each hop index k, the shaping curve of the non-adapted PFR
REGk is a leaky-bucket curve σ (the arrival curve of the flow at its source, observed with the
source’s clock) that is concave and such that σ(0+) = b0, which is greater than the maxmimum
packet length of the flow. In addition, the input of REGk is packetized. Thus REGk can be
modeled as the concatenation of a fluid greedy shaper Cσ (that provides the non-adapted
shaping curve σ as a service curve when observed with its own clock) and of a packetizer PL
that does not increase the hop delay.

For any hop index k, the PFR REGk is non-adapted, its configuration is{
rREGk

= r0

bREGk
= b0

One one hand, γrREGk
,bREGk

is a service curve of Cσ when observed with its clock HREGk
. We

use Proposition 5.4 and the synchronized part of Table 5.2 with Hg = HTAI and Hi = HREGk

and obtain that Cσ offers the service curve

βHTAI
Cσ

=
(
δη ⊗ γr0/ρ,b0

)
∨ (δ2∆ ⊗ γr0,b0) (B.85)

when observed with HTAI.
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On the other hand, by definition of the PFR, γrREGk−1 ,bREGk−1
is an arrival curve of the

flow at the output of the previous regulator, i.e., at the input of Sk, when observed with
HREGk−1 . We apply Proposition 5.3 and the synchronized part of Table 5.1 with Hg = HTAI
and Hi = HREGk−1 and obtain that αHTAI

(k−1)∗ = γρr0,b0+r0η ∧ γr0,b0+2r0∆ is an arrival curve of the
flow at the input of hop k when observed with HTAI. Its shape is given in Figure B.20.

Assume now that DHTAI
f,Sk

is a delay bound for f through Sk, computed by using the above
αHTAI

(k−1)∗ as an arrival curve in Sk when observed with HTAI. As Sk is causal, lossless and
FIFO for f , Sk offers to f the service curve δ

D
HTAI
f,Sk

. The concatenation of Sk and Cσ (which

we denoted as S′ in Figure B.17) offers to f the service curve βHTAI
S′ = δ

D
HTAI
f,Sk

⊗ βHTAI
PFRk

when
observed with HTAI. Its shape is given in Figure B.20.

We then compute the maximal horizontal distance in the figure. Geometrical considera-
tions give 

yA = b0 + r0
ρ− 1(2∆ρ− η)

yB = b0 + r0
ρ− 1(2∆− η)

Hence, yA ≥ yB and the maximum horizontal distance is reached at A. We obtain

DHTAI
f,Sk+REGk

= DHTAI
f,Sk

+ 4∆ (B.86)

And as the packetizer PL does not increase the delay bound of the hop, the bound
DHTAI
f,Sk+REGk

obtained in (B.86) is indeed an upper-bound on the delay of f through the entire
k-th hop.

B.3.10 Proof of Proposition 5.10

Proof of Proposition 5.10. Take η ≥ 0, ρ > 1, ∆ > 0 and n ≥ 3. The following example
respects the constraints of the model and has unbounded flow latencies.

We consider n sources, each source generates a single flow to the FIFO system. W e
choose a FIFO system with infinite service and with HFIFO = HIR such that the delay of the
flows trough the FIFO system, when observed in the clock HIR, equals zero. We further take
HIR = HTAI. If the TAI delay is not bounded, then it is also not bounded in any other clock
that meets the stability requirements of Equation (5.5).

Adversarial Clocks: We consider a starting point x1 ≥ Tstart. We choose a slope s1 such
that 1 < s1 ≤ min(1.5,√ρ) and define

I ≜
∆s1
s1 − 1

We also consider any ϵ > 0 such that ϵ < I(1− 1
s1

). ϵ is well defined because s1 > 1. We also
define τ ≜ nI/s1 + nϵ and xj ≜ x1 + (j − 1)I/s1 + (j − 1)ϵ for j = 1 . . . n. Now, for every
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DHT AI
f,Sk

+η
DHT AI
f,Sk

+2∆

r0/
ρ

ByB

r 0

βHopk
αk−1

b0

b0 + 2r0∆

r 0

AyA

b0 + r0η

ρr
0

DHT AI
f,Sk+REGk

time intervalmeasured with the TAI

data

Figure B.20: Delay-bound computation for the flow through the concatenation of Sk with the fluid greedy
shaper Cσ when the regulator is a PFR and the network is synchronized. This also gives a delay bound for
the entire k-th hop as the packetizer in the PFR model does not increase the hop delay bound.

clock j, we choose as relative time function dj←IR the following piecewise linear function

dj = dj←IR : t 7→



t−∆/2 if t ≤ xj
s1(t− xj) + xj −∆/2 if xj < t ≤ xj + I/s1

1/s1(t− xj + I/s1)
+I + xj −∆/2

}
if xj + I

s1
< t ≤ xj + I

s1
+ I

t−∆/2 if xj + I

s1
+ I < t ≤ xj + τ

τ + dj(t− τ) if xj + τ < t

The shape of function dj←IR is available in Figure B.21. We obtain directly the following
properties for any j

• dj←IR is continuous and strictly increasing

• The time-error function t 7→ dj←IR(t)− t is periodic with period τ for t ≥ xj

Also, for any j, j′ dj′←j(t) = dj′←IR(d−1
j←IR(t)). As s1 ≤

√
ρ and |dj←IR(t)− t| ≤ ∆/2, any

pair of clocks (Hj ,Hj′) meets the constraints of Equations (5.5) and (5.6), which shows that
our adversarial clocks are within the synchronized time model proposed in Section 5.2.1.
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xj xj
+ I
s1

s 1

xj
+ I
s1

+I

1/s1

xj + τ

dIR→j(xj)

dIR→j(xj)
+I

dIR→j(xj)
+τ

dIR→j(xj)
+I + I

s1

∆/2

time observed with HIR

time observed with Hj

Figure B.21: Shape of the time function dj←IR. The shape is periodic, with period τ . When clock HIR
reaches xj , clock Hj starts counting the time faster (with a relative factor s1) until HIR counts I/s1 more
seconds. Then, Hj counts the time slower (with a relative factor 1/s1). When the time-error function
between HIR and Hj reaches −∆/2, Hj counts the time at the same speed as HIR until the next period
starts.

Adversarial Traffic Generation: Let l be any arbitrary data size. Each source j is
configured to send a packet of size l when its local clock reaches dj(xj)+kτ and dj(xj)+kτ+I
for all k ∈ N. Figure B.22 presents the traffic generation of source j within one period,
observed with its internal clock Hj . When observed with Hj , the traffic generation is periodic
of period τ .

As n ≥ 3 and s1 < 1.5, τ ≥ 2I + 2ϵ ≥ 2I and τ − I ≥ I. Hence, the minimum duration
between two packets generated by source j, measured with Hj is I. This proves that each
flow exits its respective source j with a leaky-bucket arrival curve γ l

I
,l (rate l/I, burst l) when

observed using Hj . We now assume that the interleaved regulator is configured with the same
leaky-bucket arrival curve γ l

I
,l for all the flows.

Figure B.23 presents the timeline of packets generated by source j but as observed with
HIR. The IR has to regulate the same timeline for all the n inputs, based on its configuration.
For j = 1 . . . n and for k ∈ N we note A1

j,k = xj + kτ the arrival time in the IR of the first
packet of the the kth period of source j measured with HIR and A2

j,k = xj+kτ+ I
s1

the arrival
time of the second packet, still measured with HIR. Also, note D1

j,k and D2
j,k their respective

release time out of the IR, again measured using HIR.
Figure B.24 presents the arrival and release times of the packets for two consecutive

sources. Assume for instance that the sources have been idle for a while, then D1
j,k = A1

j,k.
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time observed
with Hjdj(xj)

+ kτ

dj(xj)
+ kτ + I

dj(xj)
+ (k + 1)τ

I

τ

Figure B.22: Generation of packets as observed with Hj . The traffic profile is periodic of period τ . Source
j sends a packet when the internal clock reaches dj(xj) +kτ for some k ∈ N, then it sends another packet
after a duration of I counted using Hj , and finally restarts at the next period.

time observed
with HIRxj

+kτ
xj

+kτ + I

s1

xj

+(k + 1)τ

I/s1

τ

Figure B.23: Generation of packets as observed with HIR . The traffic profile is periodic of period τ . When
observing with HIR, source j sends packets at xj + kτ and xj + kτ + I

s1
for all k ∈ N.

The instant A2
j,k is, from the perspective of HIR, too soon by I(1− 1

s1
). Using the IR equations

[Le Boudec 2018], the IR has to delay the packet and

∀j = 1 . . . n,∀k ∈ N, D2
j,k ≥ D1

j,k + I (B.87)

As xj+1 = xj + I
s1

+ ϵ, packet A1
j+1,k arrives ϵ seconds after A2

j,k (measured using HIR). As
ϵ < I(1− 1

s1
), the packet at A1

j+1,k arrives before the previous packet of the previous source
could be released out of the IR. Because the IR only looks at the head-of-line packet, and
using the IR equations, we obtain

∀j = 1 . . . (n− 1),∀k ∈ N, D1
j+1,k ≥ D2

j,k (B.88)

Combining Equations (B.87) and (B.88) gives, by induction,

D2
n,k ≥ D1

1,k + nI (B.89)
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Arrival from j
observed with HIRA1

j,k A2
j,k

I/s1

Arrival from j + 1
observed with HIRA1

j+1,k A2
j+1,k

ϵ I/s1

Output of the IR
observed with HIRD1

j,k D2
j,k

≤ D1
j+1,k

D2
j+1,k

I
I − I

s1
− ϵ

I

Figure B.24: Traffic arrival from two successive upstream sources, as observed with HIR and release time
of the packets, again observed with HIR.

Now we can note that

A1
1,k+1 = x1 + kτ + τ

= x1 + kτ + n
I

s1
+ nϵ

= x1 + (n− 1) I
s1

+ (n− 1)ϵ+ kτ + I

s1
+ ϵ

= xn + kτ + I

s1
+ ϵ

= A2
n,k + ϵ

Hence, the first packet of the (k + 1)th period of the first upstream source arrives ϵ seconds
(counted with HIR) after the second packet of the kth period of the last source, so we also
have

D1
1,k+1 ≥ D2

n,k (B.90)

Combining Equations (B.87) and (B.90) gives

D1
1,k ≥ D1

1,1 + (k − 1)nI = x1 + (k − 1)nI (B.91)

Because we have D1
1,1 = x1, as the network was empty before. The delay suffered through

the IR by the first packet of the kth period of the first source is, when measured with HIR

D1
1,k −A1

1,k ≥ x1 + (k − 1)nI − x1 − (k − 1)τ (B.92)

≥ x1 + (k − 1)nI − x1 − (k − 1)n I
s1
− (k − 1)nϵ (B.93)

≥ (k − 1)n
(
I

(
1− 1

s1

)
− ϵ
)

(B.94)

As we have arbitrary selected ϵ such that ϵ < I(1− 1
s1

), we obtain I(1− 1
s1

)− ϵ > 0 thus the
above delay lower-bound diverges as k increases, so the delay through the IR is unbounded
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when seen from HIR, which proves the instability.

Remark: Equation (B.94) proves that at each period of duration τ , the delay increases
by nI(1− 1

s1
)− nϵ. The divergence of the delay per second is

div =
nI(1− 1

s1
)− nϵ

nI
s1

+ nϵ

This divergence is valid for any ϵ > 0, with ϵ < I(1− 1
s1

). Taking ϵ→ 0, the divergence
can be as large as

lim
ϵ→0

div =
nI(1− 1

s1
)

nI
s1

= s1 − 1

s1 can be as large as √ρ, so the divergence of the delay can be as large as √ρ − 1, for
any n ≥ 3,∆ > 0.
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//ethesis.inp-toulouse.fr/archive/00000084/ (visited on 07/22/2021).

https://datatracker.ietf.org/doc/draft-ietf-detnet-bounded-latency
https://datatracker.ietf.org/doc/draft-ietf-detnet-bounded-latency
https://doi.org/10.1145/3356401.3356418
https://doi.org/10.1145/3356401.3356418
https://doi.org/10.1145/3356401.3356418
https://doi.org/10.1109/TAC.2010.2089210
https://doi.org/10.1109/TAC.2010.2089210
https://doi.org/10.1155/2011/294852
https://doi.org/10.1155/2011/294852
https://doi.org/10.1109/INFOCOM.2019.8737496
https://doi.org/10.1109/INFOCOM.2019.8737496
https://arxiv.org/abs/2202.03004
http://arxiv.org/abs/2202.03004
http://ethesis.inp-toulouse.fr/archive/00000084/
http://ethesis.inp-toulouse.fr/archive/00000084/


Bibliography 247

[Hajek 2000] Hajek, B. (Jan. 2000). “Large Bursts Do Not Cause Instability.” In: IEEE Transac-
tions on Automatic Control 45.1, pp. 116–118. issn: 1558-2523. doi: 10.1109/9.827366.

[Heise 2018] Heise, Peter (2018). “Real-Time Guarantees, Dependability and Self-Configuration
in Future Avionic Networks.” Siegen: Universitätsbibliothek der Universität Siegen.
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2017). “Reliability Enhancement of Redundancy Management in AFDX Networks.” In:
IEEE Transactions on Industrial Informatics 13.5, pp. 2118–2129. issn: 1941-0050. doi:
10.1109/TII.2017.2732345.

[Li, Cros, George 2014] Li, Xiaoting, Olivier Cros, and Laurent George (Aug. 2014). “The Trajec-
tory Approach for AFDX FIFO Networks Revisited and Corrected.” In: The 20th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and Applications.
Chongqing, China: IEEE. url: https://hal-upec-upem.archives-ouvertes.fr/hal-
00975730 (visited on 06/27/2022).

[Li, Gu 2009] Li, Y. and H. Gu (Oct. 2009). “XY-turn Model for Deadlock Free Routing in
Honeycomb Networks-on-Chip.” In: 2009 15th Asia-Pacific Conference on Communications.
2009 15th Asia-Pacific Conference on Communications, pp. 900–903. doi: 10.1109/APCC.
2009.5375521. url: http://doi.org/10.1109/APCC.2009.5375521.

[Liebeherr 2017] Liebeherr, Jörg (2017). Duality of the Max-Plus and Min-Plus Network Calcu-
lus. now. url: https://ieeexplore.ieee.org/document/8187214 (visited on 11/08/2019).

https://doi.org/10.1145/384268.378780
https://doi.org/10.1145/384268.378780
https://doi.org/10.1145/384268.378780
https://doi.org/10.1109/TNET.2018.2875191
http://doi.org/10.1109/TNET.2018.2875191
http://doi.org/10.1109/TNET.2018.2875191
https://www.springer.com/us/book/9783540421849
https://doi.org/10.1016/j.peva.2005.10.003
https://www.sciencedirect.com/science/article/pii/S0166531605001537
https://www.sciencedirect.com/science/article/pii/S0166531605001537
https://doi.org/10.1016/j.peva.2008.04.002
https://www.sciencedirect.com/science/article/pii/S016653160800028X
https://www.sciencedirect.com/science/article/pii/S016653160800028X
https://doi.org/10.1109/TII.2017.2732345
https://hal-upec-upem.archives-ouvertes.fr/hal-00975730
https://hal-upec-upem.archives-ouvertes.fr/hal-00975730
https://doi.org/10.1109/APCC.2009.5375521
https://doi.org/10.1109/APCC.2009.5375521
http://doi.org/10.1109/APCC.2009.5375521
https://ieeexplore.ieee.org/document/8187214


Bibliography 249

[Liu, Layland 1973] Liu, C. L. and James W. Layland (Jan. 1, 1973). “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment.” In: Journal of the ACM 20.1,
pp. 46–61. issn: 0004-5411. doi: 10.1145/321738.321743. url: https://doi.org/10.
1145/321738.321743 (visited on 05/29/2022).

[Mahmood, Exel, Trsek, et al. 2017] Mahmood, Aneeq, Reinhard Exel, Henning Trsek, and Thilo
Sauter (Apr. 2017). “Clock Synchronization Over IEEE 802.11—A Survey of Methodologies
and Protocols.” In: IEEE Transactions on Industrial Informatics 13.2, pp. 907–922. issn:
1941-0050. doi: 10.1109/TII.2016.2629669.

[Maile, Hielscher, German 2020] Maile, Lisa, Kai-Steffen Hielscher, and Reinhard German (May
2020). “Network Calculus Results for TSN: An Introduction.” In: 2020 Information Com-
munication Technologies Conference (ICTC). 2020 Information Communication Technolo-
gies Conference (ICTC). 41, 50 ,29,26,28, pp. 131–140. doi: 10.1109/ICTC49638.2020.
9123308.
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