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“It doesn’t matter who we are, what matters is our plan.”

Bane, The Dark Knight Rises (2012)
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Résumé

L’utilisation croissante des drones et leur intégration dans le trafic aérien nécessite de fournir un certain nombre
de garanties de sireté et de preuves de fonctionnement. La sécurité du vol est directement tributaire de la
précision et de la fiabilité de la localisation qui est généralement obtenue par une fusion multi-capteurs, réalisée
a l’aide d’un filtre estimateur. Ce travail de thése s’intéresse au probléme de la navigation tolérante aux défauts
et aux pannes capteurs dans le cas de capteurs non redondés. L’objectif principal est de proposer des méthodes
et des architectures d’estimations de l'attitude et de la position qui permettent de préserver la justesse de
I’estimation, mais aussi d’améliorer sa consistance et son intégrité, méme en cas de perturbations prolongées
des capteurs. Un premier axe de travail concerne l'estimation et le rejet de biais multiples et fréquents sur un
capteur de position, comme peut y étre soumis un récepteur GNSS (multi-trajets), ou un capteur visuel (erreur
de poursuite). Une architecture de détection et de correction de I’estimation de position a été développée pour
cela et vient compléter les méthodes existantes basées sur le GLR. Un second axe de travail a été de proposer
une architecture d’estimation de ’attitude qui soit robuste aux perturbations magnétiques et aux accélérations
spécifiques. Elle comporte principalement trois briques: (1) Des modéles de performance permettent d’estimer les
sorties capteurs nettoyées au mieux des perturbations; (2) Une étape de consolidation de mesures utilise des tests
statistiques pour sélectionner les signaux & fusionner entre les mesures brutes ou nettoyées, ou simplement rejeter
les signaux dans les cas ou la consolidation échoue; (3) Un estimateur d’attitude basé sur un filtre de Kalman
fusionne les mesures consolidées, avec des propriétés de découplage vis-a-vis des perturbations résiduelles, ainsi
qu’un modéle de biais saturé. Les algorithmes d’estimation de position et attitude ont été validés en simulation

et séparément lors de diverses campagnes d’essais expérimentales.

Abstract

The ever-increasing use of drones and their integration within the existing air traffic demand a certain number of
guarantees of safety and functional proofs. The flight safety is directly impacted by the precision and reliability of
the localisation which is achieved most of the time by a multi-sensor fusion, itself provided by a state estimating
filter. The work of this thesis focuses on the problem of fault tolerant navigation and sensor fault in the non-
redundant sensor case. The main objective is to propose methods and architectures for attitude and position
estimation providing a correct estimation, but also improving its consistency and integrity, even in the case of
long lasting sensor perturbations. A first line of work concerns the estimation and rejection of multiple and
frequent biases on a position sensor, which is often the case for a GNSS receiver (multi-path errors), or a visual
sensor (tracking errors). An architecture for bias detection and correction of the estimated position has been
developed to this end, to complement standard methods based on the GLR. A second line of work has been
to propose an attitude estimation architecture robust to magnetic disturbances and specific accelerations. It is
divided into three principal blocks: (1) Sensor performance models allowing the estimation of sensor outputs
cleaned as well as possible from perturbations; (2) A measurement consolidation stage utilises statistical tests
to select the signals to fuse between the raw measurements and the cleaned ones, or simply reject the signals
in case the consolidation fails; (3) An attitude estimator based on a Kalman filter merges the consolidated
measurements, with decoupling properties to mitigate the effect of residual perturbations, and a saturated bias
model. The algorithms for position and attitude estimation have been validated in simulation and separately

during various experimental test campaigns.
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| Summary

THIS chapter introduces the problem of supervision for drone flight safety, starting from the
fundamental concept of drone navigation, including the concepts of sensors and data fusion.
It then outlines the characteristics of different faults that affect the capacity of a drone to
navigate safely, and introduces the concept of fault tolerant navigation for drones, and especially
the definition of fault tolerance referred to in this work.

The main contributions of this work are then listed, along with a brief explanation of the practical
methods employed in the scope of the thesis. Finally, an outline of the remainder of the thesis
is presented, and a list of publications produced in the scope of this thesis is given.
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“Elrond: ’Nine companions. So be it. You shall be the fellowship of the ring.’
Pippin: "Right! Where are we going?’”

The Lord of the Rings: The Fellowship of the Ring; Peter Jackson (2001)

1.1 What is the matter with these drones, anyway?

Unmanned Aerial Vehicles (UAV), Unmanned Aerial Systems (UAS), remotely (or autonomously) pi-
loted aircraft, are commonly grouped under the popular category "Drones". The common denominator
is that they are all airborne vehicles, capable of self-sustained flight, without a physical pilot on-board.
The shapes and sizes of drones are vast, from micro-drones in the shape of multi-rotor helicopters
weighing a couple of grams, to high altitude strategic surveillance drones of the size of a regular fighter
aircraft.

A classification of drones

Drones can be subdivided into numerous categories. Here we focus on the division by mission type,
since it is also related to the complexity and size of the vehicle:

e Mini-drones, or hobby drones, typically used for leisure, aerial photography, or academic
research, in the form of lightweight multi-rotor or fixed wing drones. A common factor among
these drones is the use of low-cost sensors and actuators, making them prone to failures. In terms
of flight safety, these drones are easily completely lost if subject to external perturbations, due
to their lack of redundancy and poor sensor quality. However, due to their small size, they pose
little threat to anything but the unfortunate unprotected human or animal.

e Medium sized, professional drones, typically used for longer autonomy professional photog-
raphy, surveying, or local surveillance. These drones can reach weights of tens of kilos, often in
the shape of large multi-rotor drones or fixed wing variants. The sensors used in this category are
usually of better quality than for the mini-drones, but space and weight constraints often hinder
the addition of redundant sensors. From a safety point of view, this category is critical since their
hardware does not allow for a high level of redundancy and safety, and their size makes them
hazardous to their environment in case of a crash.

e Large professional drones, typically used in military surveillance or advanced research pro-
grams. In this category we find smaller autonomous helicopters and large fixed wing drones.
These drones are typically equipped with higher quality sensors and might offer some sensor re-
dundancy. However the environments in which they are employed might still be hazardous to
their sensors (urban, low-level flight, etc.). If drones of this category crash, severe damage to
their environment can be expected.

e Tactical/strategic drones, typically fixed wing medium /high altitude surveillance and /or armed
offensive drones. In this category, the sensor and actuator quality is on par with large manned
aircraft and the sensor redundancy offers a high level of safety. The flight safety of these drones is

on par with regular aviation and crashes are very rare, apart when due to malevolent interference.

The number of drones, of all categories, in the airspace has exploded in recent years, and the trend
is expected to continue (see Figure 1.1).
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FiGUurRE 1.1: Total UAS Forecast in the U.S., 2015-2035. Source: U.S. Department

of Transportation, John A. Volpe National Transportation Center, Unmanned Aircraft

System (UAS) Service Demand 2015-2035: Literature Review & Projections of Future
Use, September 2013, DOTVNTSC-DoD-13-01.

Current difficulties for drone flight safety

Drone flight today is subject to stringent regulation, effectively keeping them away from urban or haz-
ardous environments. In addition, flight operations are almost always performed with a remote pilot in
the loop and autonomous drone flight is almost exclusively done in controlled laboratory environments.
The reason for this is at the core technical:

e Low quality sensors are easily degraded by external factors. This can rapidly degrades the drone
flight safety in cases of sensor faults or disturbances.

e Lack of sensor redundancy means that vital information such as orientation (attitude) or position
only has a single source, such as an IMU, a compass, or a. GNSS receiver.

e Lack of actuator redundancy and/or neutral stability risks making any actuator loss fatal for the
vehicle.

e Very few studies have assessed the integrity of drone navigation.
e The integrity for drone navigation is far from applicable in the classical aeronautical requirements.

e The components used in the vast majority of drones carry no guarantee of quality and in the
majority of cases no certification or guarantee of functionality exists for actuators and sensors.

This list is by no means exhaustive but aims to briefly present the current difficulties facing generalised
acceptance for drone flight. It is self-evident that overcoming these points is crucial if autonomous
drones are to leave the leisure and laboratory environment and for real sweep into and share the space
of general aviation. The research that treats the above points is called fault tolerant navigation. Before
getting into the details of fault tolerant navigation, let us first introduce what navigation is about for
us.
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1.2 Drone navigation

Navigation is, according to the Oxford dictionary, The process or activity of accurately ascertaining one’s
position and planning and following a route. The keywords here are process, accurately ascertaining,
position, and following a route. For drones, this means employing an algorithm (process) that makes use
of different navigation sensors in order to establish the position, orientation and course as accurately as
possible. The process of combining information from different sensors is known as sensor fusion. The
orientation is also known as the attitude, the two words are used interchangeably in this thesis.

Sensors for drone navigation

A multitude of navigation sensors are available to drones. We can divide these into primary and
secondary sensors. The primary sensors give an information about the absolute state of the drone with
respect to a global reference (for example the earth), e.g.

e Inertial measurement units (IMU) containing accelerometers and gyroscopes measure the
orientation of the drone with respect to gravity, and the orientation rates (if the non gravitationnal
acceleration is negligeable).

e Magnetometers (or compasses) measure the drones heading with respect to the magnetic
north.

e Barometers measure the static pressure (and temperature) in order to determine the altitude
of the drone.

¢ Global Navigation Satellite System (GNSS) receivers measure the position and velocity
of the drone with respect to the center of the earth using a constellation of satellites with known
positions and velocities.

The secondary sensors provide an information of the relative state of the drone with respect to a
local reference (for example a nearby object), e.g.

e Vision based sensors can provide a relative position and orientation with respect to the objects
in the field of view. We can find, for example, sensors using features of individual images and
past knowledges (feature positions) to determine instantaneous relative position and orientation;
related to SLAM algorithms (Simultaneous Localization and Mapping). Or continuous optical
flows to determine relative velocity and orientation rates; related to Odometry algorithms.

¢ Ranging sensors, based on light (Infrared, laser), sound (ultrasound), or electromagnetic echo
(radar), provide a relative distance measurement to the reflected objects. A typical use is for
determining the drone’s height above ground.

e Air data sensors measure the angle and speed of the drone with respect to the air around the
drone. These sensors are mainly used in fixed wing drones due to the steady airflow around the
drone needed for precision.

Figure 1.2 shows an example of a fixed wing drone equipped with an array of different navigation
sensors [H2020 VISION - Validation of Integrated Safety-enhanced Intelligent flight ¢cONtrol].
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