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Glossary

Aircraft Any flying vehicle such as: airplane, helicopter or drone that accomplishes a mis-
sion.

Availability Indicates the number of aircraft in a fleet that are not in maintenance in each
time period.

Candidate Aircraft that has the correct type and capabilities and so can be assigned to a
particular mission.

Capabilities Set of optional aircraft characteristics that may be required by a mission in
order for aircraft to be considered candidates. An aircraft can have none or more
capabilities, a mission can have at most one.

Check A preventive maintenance operation done to an aircraft to detect and repair any
problem that may cause a malfunction on the unit. Several types of checks exist,
varying in the duration, thoroughness, frequency and parts to be maintained.

Cluster A set of missions such that each mission has exactly the same type, capabilities and,
as a result, aircraft candidates.

Fleet A set of aircraft that shares the same maintenance resources.

Flight potential Synonym to “Remaining flight time”.

Maintenance capacity The maximum number of aircraft that can be in maintenance at
each time period.

Minimum default usage Flight hours each aircraft is required to fly when not assigned to
a mission or in maintenance..

Mission A set of flights with a military objective such as training, reconnaissance, humani-
tarian or defense. They are planned usually months in advance and require a number of
aircraft with specific characteristics. A mission can last a few weeks to several months
or years.

Mission assignment The deployment of an aircraft to a mission during a set of consecutive
periods. This deployment can have a length smaller or equal to the length of the mission.
Each mission has limits on how short or long the deployment can be.

Remaining calendar time Expresses the maximum number of periods, starting at the end
of each time period, before an aircraft must undergo a check.

Remaining flight time Measures the maximum number of hours an aircraft can fly before
requiring a check, at the end of each time period.
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xiv Glossary

Serviceability Indicates if an aircraft is capable at the beginning of each time period to
perform a mission (i.e., is not undergoing a check).

Special mission Mission that has a capability (around 10% of missions).

Sustainability Measures the capacity of an aircraft to continue doing missions in the future
(i.e., remaining flight time).

Type of mission and aircraft Each mission and each aircraft have one and only one type.
Only aircraft with the same type as the mission can be considered candidates.
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Introduction

Contexte industriel

Qu’il s’agisse d’une maison, d’une voiture ou d’une centrale nucléaire, la maintenance est un
élément clé lors de la construction ou de l’achat d’un actif. Par exemple, les coûts annuels
d’entretien d’une maison peuvent être égaux à 1 à 4 % du prix d’achat [6]. Ce coût représente
le prix à payer pour conserver l’actif acquis dans des conditions d’opération normales et
prolonger sa durée de vie aussi longtemps que cela est économiquement viable.

En ce qui concerne des caractéristiques des maintenances : coût élevé, opacité et impor-
tance; l’entretien des aéronefs militaires n’échappe pas à la règle. Par exemple, en prenant
le coût : l’investissement en maintenance du département de la Défense des États-Unis en
2019 est d’environ 78 milliards de dollars [8]. De plus, c’est souvent le même fournisseur qui
approvisionne les actifs, l’infrastructure et leur entretien. Cela ne fait qu’augmenter l’opacité
intrinsèque des projets militaires. Enfin, l’importance de garantir le bon fonctionnement d’un
appareil chargé de la sécurité d’un pays ne peut être sous-estimée.

Sur le plan technique, la maintenance des aéronefs militaires est similaire à celle de
l’industrie civile : Il existe plusieurs types de contrôles effectués sur les aéronefs, bien que la
nomenclature, les fréquences et les parties prenantes changent. En France, c’est la “Direction
de la Maintenance Aéronautique (DMAé)” récemment créée (2018) qui est chargée de planifier
et d’organiser les contrôles des avions militaires. Les types des opérations de maintenance
pour la flotte de Mirage 2000 sont : (1) la visite de graissage (VG), réalisée tous les 6 à 8
mois calendaires; (2) la visite intermédiaire (VI), réalisée tous les 14 à 16 mois calendaires;
(3) la visite de sécurité (VS), réalisée toutes les 300 à 600 heures de vol; et (4) la grande visite
(VX), réalisée toutes les 1000 à 1200 heures de vol ou tous les 60 mois.

Les trois premiers types de maintenance sont effectués dans la base aérienne où se situe
l’avion. Les grandes visites (VX) se font à l’Atelier Industriel de l’Aéronautique (AIA), situé
dans la région de Clermont-Ferrand (voir Figure 1).

Étant donné le coût élevé des ressources nécessaires pour effectuer les tâches de mainte-
nances et la spécialisation de l’expertise requise, l’offre est généralement limitée et peu flexible.
Par conséquent, un plan de maintenance qui ne cherche pas à profiter de cette capacité de
manière optimale peut entraîner un grand nombre d’aéronefs immobilisés au sol en attente
d’une maintenance à certaines périodes. Ce même plan aura, à d’autres périodes, une partie
de la capacité de maintenance inutilisée. Cette indisponibilité réduit le potentiel réel de la
flotte et demande donc d’avoir un nombre d’avions plus élevé pour satisfaire les contraintes
opérationnelles. Il est donc primordial de disposer des outils de planification performants afin
d’améliorer la disponibilité de la flotte et de réduire son coût opératif total.

xv
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Figure 1: Une photo de l’atelier AIA de maintenance à Clermont-Ferrand où la maintenances
de type VX est effectuée pour le Mirage 2000[1].

Le coût réel d’un plan de maintenance dépend du nombre de maintenances nécessaires
pour respecter toutes les exigences de la mission. Bien que les coûts de ces visites ne soient
pas publics dans le cas des avions militaires, les coûts réels des visites de type D (équivalents
aux visites VX) des avions Boeing varient entre 1 million de dollars et 6 millions de dollars
selon le modèle d’avion [3]. En France, le coût total annuel de la maintenance des avions
militaires est passé de 3,2 milliards d’euros en 2012 à 4 milliards d’euros en 2017 [113]. Un
plan de maintenance efficace devrait minimiser le nombre d’heures de vol restantes qui sont
“perdues” lorsque la maintenance est effectuée et que le potentiel de vol est rétabli. Ainsi, ce
plan utilisera chaque avion autant que possible avant de programmer une maintenance.

Actuellement, la planification des maintenances militaires se fait généralement manuelle-
ment (dans une feuille de calcul Excel) et prend du temps. Cela limite le nombre de scénarios
qui peuvent être évalués avant de prendre une décision et augmente le temps de réaction lors
du traitement de nouvelles informations qui demandent de modifier le plan d’origine. Par
conséquent, ce processus de planification manque de robustesse et de flexibilité.

Ainsi, le besoin d’une planification efficace et fiable des vols et de la maintenance des avions
est clairement une priorité tant dans les contextes commerciaux que militaires. Néanmoins,
produire un plan aussi détaillé pour une flotte de taille importante, tout en planifiant sur un
long horizon et en tenant compte des multiples objectifs inhérents à la planification à long
terme n’est pas une tâche facile.

Les techniques de recherche opérationnelle sont employées pour résoudre des problèmes
combinatoires tels que le “Military Flight and Maintenance Planning” (MFMP) afin de pro-
duire des solutions de très bonne qualité (voire optimales). Le succès de l’application de telles
techniques à un nouveau problème nécessite la combinaison d’une expertise du domaine et
d’une connaissance théorique avancée. Cette dernière ne peut être obtenue qu’en réalisant une
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étude approfondie de la structure du problème mathématique sous-jacent et en recherchant
des approches de solutions innovantes compatibles avec le problème. Cette thèse fournit une
telle analyse.

Présentation du problème

Le problème MFMP décide de l’affectation d’une flotte hétérogène d’avions militaires i ∈ I à
un ensemble de missions j ∈ J déjà planifiées tout en décidant des opérations de maintenances
nécessaires pour chaque aéronef. Les contraintes peuvent être classifiées en trois groupes: (1)
les besoins des missions, (2) les maintenances à effectuer pour maintenir la flotte en bon état
et (3) la capacité de la flotte à chaque période.

Un ensemble des missions existe tout au long d’un horizon divisé en périodes t ∈ T .
Chaque mission j nécessite un nombre minimum d’aéronefs Rj parmi les aéronefs “compati-
bles” i ∈ Ij (i.e., aéronefs possédant les caractéristiques requises pour cette mission). Chaque
aéronef affecté à une mission j vole un nombre d’heures Hj à chaque période pendant laquelle
il est affecté et doit rester affecté à cette mission pendant au moinsMTminj et au plusMTmaxj

périodes consécutives.

Chaque maintenance a une durée fixe de M périodes et ne peut pas être interrompu:
pendant ce temps, l’avion ne peut être affecté à aucune mission. La butée calendaire (rct) est
définie comme le nombre maximal de périodes après une maintenance pendant lequel un avion
peut voler si les autres contraintes sont respectées. Même si un avion n’a pas volé depuis sa
dernière maintenance, il devra subir une maintenance à la fin de sa butée calendaire. La butée
horaire (rft) est définie comme le nombre maximal d’heures de vol qu’un aéronef peut effectuer
avant avoir besoin d’une maintenance. La rct (rft) avant la première période de l’horizon de
planification pour l’avion i est RctIniti (RctIniti ). Après une visite, un avion récupère sa rct
(rft) à sa valeur maximal de Emax (Hmax). De plus, après chaque visite, l’avion ne peut pas
rentrer en maintenance pendant au moins Emin périodes. Le nombre total de maintenances
simultanées à chaque période ne peut pas dépasser la capacité de l’atelier Cmax.

Nous appelons un avion “disponible” s’il peut être utilisé en mission au début d’une période
donnée, i.e. l’avion n’est pas en maintenance. La “durabilité” d’un avion est défini comme le
nombre total d’heures de vol lui restantes à la fin de chaque période. Pour garantir à la fois
la durabilité et la disponibilité de la flotte à chaque période, les missions sont regroupées en
clusters. Formellement, un cluster est un ensemble de missions telles que toutes les missions
partagent le même type, les mêmes capacités et, par conséquence, les mêmes avions candidats.
Pour chaque cluster, un nombre minimal d’aéronefs disponibles (AClustkt ) et une durabilité
minimale (HClust

kt ) sont définis comme contraintes pour chaque période. Tous les aéronefs
disponibles ont par défaut une consommation minimale à chaque période égale à Umin heures
de vol, qu’ils sont obligés d’effectuer dès qu’ils ne sont pas affectés à une mission ou à une
maintenance.

Comme cela a été mentionné, un des objectifs du plan de maintenance est de minimiser
les heures de vol perdues en programmant les maintenances vers la fin des butées calendaires.
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Un objectif complémentaire est d’équilibrer la charge de vol entre les avions de la flotte afin
que les fréquences des maintenances des avions soient similaires.

État de l’art

Dans la littérature, le problème de planification de vol et de maintenance pour des avions
militaires est appelé “Military Flight and Maintenance Planning problem” ou MFMP, une
variante du problème “Flight and Maintenance Planning” ou FMP. Le MFMP fut présenté
dans un premier temps par [153], puis de nombreuses contributions dans ce domaine ont été
réalisées [98, 48, 174, 108, 154, 116, 55, 152].

Ces travaux peuvent être classifiés selon la taille de l’horizon de planification en trois
groupes: court, moyen et long terme. Les problèmes de court terme planifient une année
maximum et divisent l’horizon en périodes d’un jour ou une demi journée [116, 48, 146].
Ceux de moyen terme construisent des plannings d’entre 6 mois et 2 années dont chaque
période a un taille hebdomadaire ou mensuelle [152, 174, 98, 85, 136]. Les maintenances sont
ordonnées toutes les 200 à 400 heures de vol, ce qui correspond à des types B et C. Finalement,
dans le long terme les tailles d’horizon varient entre 5 et 10 ans et les périodes sont mensuelles
[55]. Les maintenances concernées sont celles de type D, qui souvent prennent plusieurs mois
et dont la fréquence oscille entre 1000 et 1200 heures de vol ou 60 mois calendaires.

Le MFMP ressemble au problème de FMP civil, où l’on doit planifier les opérations de
maintenance des avions civils en même temps que l’on choisit les affectations de plan de
vols. Ce deuxième problème est plus présent dans la littérature [26, 161, 124, 150, 95, 148].
Cependant, les deux problèmes rencontrent des différences importantes. Par exemple, les
avions militaires retournent à leur base après chaque mission contrairement aux avions civils
qui effectuent des rotations. Les objectifs son aussi différents: le problème militaire maximise
la disponibilité de la flotte et le problème civil cherche la réduction des coûts.

Bien qu’étant un problème lié à l’aviation, le MFMP a des similitudes avec d’autres
problèmes d’optimisation de maintenances traités par des méthodes de recherche opéra-
tionnelle comme pour les chemins de fer : “rolling stock assignment and maintenance plan”
[61, 102, 109]. Nous pouvons aussi remarquer une certaine proximité entre le problème que
nous étudions et le problème d’emploi du temps des infirmières (Nurse Rostering Problem,
NRP) où l’on doit choisir les créneaux de travail pour chaque employé et chaque jour. D’autres
travaux sur le sujet de l’ordonnancement du personnel ont été réalisés par [38, 39, 45, 156].

La méthodologie la plus utilisée dans la littérature pour résoudre le MFMP est la Pro-
grammation Linéaire aux Nombres Entiers (PLNE) en combinaison avec des heuristiques
permettant de trouver des solutions optimales ou presque optimales. Des exemples de ces
heuristiques sont la fixation de variables ([55]) et la décomposition du problème en plusieurs
sous-problèmes par rapport à la flotte [116]. Une alternative à la PLNE, fréquemment util-
isée actuellement, est la Programmation Par Contraintes (PPC) [138], elle a été notamment
employée dans le contexte du concours Optiplan pour optimiser les maintenances de la flotte
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de Mirage 2000 de l’Armée de l’Air en France en 2018 [9].

Pour le problème FMP, plusieurs formulation et approches de résolution existent dans la
littérature: Génération de Colonnes (CG), formulations de flux, et formulations de réseau
temps-espace. Les techniques de résolution utilisées sont des modèles PLNE [150, 95, 148],
PPC [83, 74] et des heuristiques [124].

Dans le cas de CG, le temps de résolution du sous-problème et particulièrement impor-
tant. En conséquence, des algorithmes de Programmation Dynamique (DP) sont appliqués.
Quelques exemples sont le problème du Plus Court Chemin (SPP) [24, 27] et le Plus Court
Chemin avec contraintes de ressources (SPPRC) [150, 148]. Ces techniques sont aussi utiles
pour résoudre des voisinages dans de Recherche à Voisinage très Large (VLNS) [17].

Une des faiblesses des modèles exacts comme la PLNE est l’impossibilité de passer à
l’échelle pour résoudre des très grandes instances du problème combinatoire traité. Ces
dernières années, des contributions de l’Apprentissage Automatique (ML) à l’optimisation
combinatoire permettent d’obtenir des informations sur les solutions optimales ou quasi-
optimales Bello et al. [28], Bengio et al. [29]. Cette information peut être utilisée pour réduire
la taille du problème de base, en rendant possible une résolution exacte [104, 179, 111].

L’objectif de cette thèse est de réaliser une étude approfondie de la structure du prob-
lème mathématique lié à la planification de maintenances d’avions militaires dans le contexte
français et de développer des approches innovantes pour le résoudre et aider les décideurs.
Cette étude commence par l’analyse de la complexité du problème étudié et l’élaboration de
méthodes exactes de résolution.

Analyse de la complexité et méthodes exactes

Ce chapitre analyse la complexité du problème MFMP, propose une formulation mathéma-
tique pour le résoudre de façon exacte et présente une heuristique pour trouver des solutions
initiales. Finalement, le modèle résultant et l’heuristique sont évalués avec des instances
générées avec un simulateur d’instances compatible avec les besoins de l’Armée de l’Air
française.

Analyse de la complexité

Nous partons du fait que le FMP existe dans NP parce que nous pouvons vérifier en temps
polynomial si une solution est réalisable ou pas. Il reste à déterminer si le problème FMP
se trouve dans P ou dans NP − Difficile. Pour arriver à ce résultat, nous avons fait la
réduction suivante.

Tout d’abord nous, prenons un problème déjà démontré NP − Difficile, que nous ap-
pelons le “Shift Satisfaction Personnel Task Scheduling Problem” ou SSPTSP, présenté par
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Arkin and Silverberg [20]. Deuxièmement, nous simplifions notre problème MFMP à un cas
particulier où nous n’avons pas de décisions de maintenance ni de fonction objectif. Nous ap-
pelons ce problème simplifié le “Reduced Flight Planning Problem” ou RFPP. Troisièmement,
nous démontrons que n’importe quelle instance du problème SSPTSP peut être transformée
de façon polynomial à une instance du problème RFPP.

Cette transformation consiste à faire une équivalence directe entre les tâches du problème
SSPTSP et les missions du problème RFPP et la compatibilité tâche-ressource devient la
compatibilité mission-avion. Ainsi nous démontrons que si le problème SSPTSP est NP −
Difficile, le problème RFPP l’est aussi et si le problème RFPP l’est, notre problème de
base MFMP l’est aussi. Après cette conclusion, nous développons un modèle PLNE pour ce
problème afin d’étudier sa résolution exacte en pratique et les difficultés à passer à l’échelle
lors de la résolution des instances de taille réelle.

Méthodes exactes

Dans notre formulation du modèle PLNE, nous utilisons les variables de décision suivantes :
aijt qui vaut 1 si l’avion i est affecté à la mission j à la période t et mit qui vaut 1 si l’avion
i commence une opération de maintenance au début de la période t.

Ce premier modèle est développé pour deux objectifs : d’une part, pour maximiser la
disponibilité de la flotte en minimisant le nombre total de maintenances, d’autre part, pour
maximiser le potentiel en nombre d’heures de vol (durabilité) de la flotte à la fin de l’horizon
de planification.

Nous intégrons dans ce modèle des nouvelles contraintes qui n’avaient pas été utilisées
dans la littérature du problème MFMP : les contraintes des butées calendaires pour les main-
tenances et les durées minimales d’affectation pour les missions.

Heuristique pour construire des solutions initiales

Une métaheuristique constructive de type recuit simulé est implémenté pour générer rapide-
ment des solutions réalisables ou presque réalisables. L’objectif est de fournir ces solutions
au modèle PLNE pour ainsi faire un démarrage à chaud et améliorer la performance de ce
dernier. A chaque itération, l’heuristique décide, dans un premier temps, les maintenances
des avions en fonction du besoin et, ensuite, elle réalise toutes les affectations possibles aux
missions en considérant les limites imposées par les maintenances déjà décidées.

Toutes les affectations aux maintenances et missions se font de façon aléatoire. A la fin
de chaque itération, un morceau de la solution et libéré. Ce morceau peut consister en (1)
toute l’information pour un avion, (2) une fenêtre de temps pour un ensemble d’avions, ou (3)
une maintenance qui peut changer de position. La condition d’arrêt est un temps maximal
d’exécution ou le fait de trouver une solution réalisable.
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Simulation des instances de taille réelle

Une instance comprend un ensemble de données d’entrée suffisant pour décrire complètement
un cas particulier d’un problème MFMP. Il s’agit, entre autres, de toute l’information des
missions à réaliser, du nombre et toute l’information des avions, des caractéristiques des
opérations de maintenances à réaliser et de l’horizon de planification.

Pour pouvoir comparer et valider la performance des différentes techniques de résolution
de façon objective, un simulateur d’instances est créé. Ce simulateur prend comme entrée des
paramètres qui conditionnent la taille et la difficulté d’une instance à résoudre et retourne
des instances aléatoirement générées en fonction des paramètres spécifiés.

Les sources de diversification utilisées pour générer les instances différentes sont, pour les
avions : l’état initial et capacité ; et pour les missions : la durée, les heures de vol par période,
les avions requis, les capacités requises et la durée minimale et maximale d’affectation.

Expérimentation et résultats

Plusieurs expériences sont effectuées pour évaluer les performances du modèle PLNE en fonc-
tion de la taille des instances et de leurs configurations, ainsi que l’impact des solutions
initiales obtenues par l’heuristique sur la performance du modèle.

Concernant la sensibilité du modèle par rapport à la taille des instances, la performance
diminue avec la longueur de l’horizon |T | et avec la taille de la flotte |I|. D’un autre côté,
les changements en la consommation minimale d’heures de vol (Umin), la quantité minimale
d’heures de vol pour chaque cluster (HPK) et la fréquence des maintenances en heures de vol
(Hmax) sont les paramètres dont les changements ont le plus d’impact sur la performance du
modèle.

Finalement, les solutions fournies par l’heuristique améliorent, en moyenne, la performance
du modèle, même si cet impact reste modeste.

Nouveau modèle, bornes valides et bornes apprises pour le
MFMP

Dans ce chapitre, nous proposons un approche basé sur un nouveau modèle PLNE auquel nous
appliquons plusieurs types de coupes. D’une part, des coupes valides à partir des conditions
initiales et, de l’autre, des coupes apprises à partir des prédictions des caractéristiques de la
solution optimale ou quasi optimales. Ces prédictions sont obtenues en entraînant un modèle
d’apprentissage automatique sur les données d’entrée et les résultats de 5000 instances.

Cette approche permet de réduire le temps de résolution avec peu de pertes d’optimalité
et de faisabilité par rapport aux méthodes matheuristiques alternatives. Les résultats expéri-
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mentaux obtenus montrent l’intérêt d’une nouvelle façon d’ajouter des coupes apprises aux
problèmes en fonction de la prédiction des caractéristiques spécifiques des solutions.

Nouvelle formulation PLNE

Une nouvelle formulation PLNE est conçue, où les affectations des missions sont énumérées
explicitement ainsi que toutes les possibilités d’affectations des maintenances. Tandis que
cette formulation génère un grand nombre de variables, elle fournit une meilleure relaxation
linéaire que la formulation initiale. Ces propriétés vont nous permettre d’implémenter des
coupes agressives et efficaces.

Les variables principales de décision sont : aijtt′ qui vaut 1 si l’avion i est affecté à la
mission j entre les périodes t et t′; et mitt′ qui vaut 1 si l’avion i commence sa première
maintenance au début de la période t et commence sa deuxième maintenance au début de la
période t′.

Études de bornes valides

Plusieurs bornes ont été formulées et calculées pour contraindre le nombre total des main-
tenances et des missions dans une flotte d’avions. Ces bornes s’appliquent au niveau d’un
avion individuel, d’un ensemble d’avions similaires et de la flotte entière. Ces bornes sont
construites sur les variables de décision d’affectation des missions (aijtt′) et des maintenances
(mitt

′).

Par exemple, dans le cas d’un avion, nous pouvons calculer les missions qui peuvent être
affectées à un avion au début de l’horizon en fonction de son état initial : plus la butée
horaire de l’avion est élevée au début de l’horizon, plus il pourra voler, et par conséquent,
plus il pourra être affecté à des missions. Autrement dit, avant que l’avion i puisse réaliser
sa première maintenance, les heures de vol des affectations aux missions ne peuvent pas être
supérieures à sa butée horaire initiale.

En même temps, des affectations proches du début de l’horizon peuvent être directement
éliminées si les heures de vol demandées par ces affectations dépassent la butée horaire initiale
de l’avion.

Apprentissage des solutions optimales

Notre approche consiste à générer et résoudre un grand nombre de petites instances (5000) du
problème MFMP. Des algorithmes d’apprentissage supervisé (régressions linéaires en quan-
tiles) sont appliqués sur l’ensemble de solutions optimales (ou proche de l’optimum) obtenues
en tenant compte de leur caractéristiques, pour construire une prédiction de certaines pro-
priétés des solutions en fonction des données d’entrée.
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Les données d’entrée validées comme statistiquement pertinentes dans cette prédiction
sont : la somme totale d’heures de vol des missions, la somme des états initiaux des avions,
la variance de la demande d’heures de vol entre les périodes, entre autres. En sortie, la
durée moyenne entre les deux maintenances et le nombre total de maintenances dans une
planification sont les deux caractéristiques les plus utiles. Pour chacune des deux, nous
estimons une borne inférieure et une borne supérieure.

Pour chaque nouvelle instance, nous appliquons le modèle de prédiction entraîné pour
obtenir quatre bornes (ou coupes) pour la solution optimale (bornes maximales et minimales
pour chacune de deux caractéristiques de la solution). Ces bornes ne sont pas des bornes
valides : leur application peut théoriquement invalider une solution optimale qui ne fera
plus partie de ce nouvel espace de solutions réduit. Cependant, la probabilité de garder une
solution optimale ou proche de l’optimale est élevée et dépend de la qualité de la prédiction.

Expérimentation et résultats

Nous avons conduit des expériences numériques afin d’évaluer la performance de notre ap-
proche, les pertes d’optimalité et les pertes de faisabilité. Les méthodes comparés sont (1)
les deux modèles PLNE du Chapitre 3 et Chapitre 4; (2) plusieurs variantes des coupes ap-
prises appliquées à chacun de ces deux modèles; (3) des matheurisitiques plus traditionnelles
implémentées à partir du modèle PLNE du Chapitre 4. Les critères de comparaison sont :
la faisabilité, l’optimalité et la performance. Les modèles du groupe (1) sont utilisés comme
référence.

Concernant la perte de faisabilité, les modèles du groupe (2) se trouvent beaucoup plus
proches des modèles exactes (1) que ceux du groupe (3), où la quantité des solutions non
réalisables et des violations des contraintes souples augment significativement. Les modèles
avec les coupes apprises n’ont presque pas de solution irréalisable additionnelle et un nombre
très bas de contraintes souples violées.

Concernant la perte d’optimalité, les modèles du groupe (2) ont des pertes médianes
d’optimalité de 3.5% et généralement de moins de 5%.

Finalement, les approches des groupes (2) et (3) offrent des gains importants en temps de
calcul : le temps de résolution est réduit considérablement pour l’ensemble d’instances ainsi
que l’écart d’optimalité.

Ces résultats montrent donc les avantages de l’utilisation de ce type de coupes apprises
pour obtenir des meilleures performances sans pour autant perdre des solutions optimales.
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Matheuristique de descente à voisinage variable basée sur des
graphes

Tant les travaux précédents que l’analyse de la littérature du problème de FMP indiquent
que les instances de ce problème sont souvent suffisamment grandes pour que les méthodes
standards de résolution ont des difficultés pour passer à l’échelle. Dans ces cas, un compromis
entre la qualité de la solution obtenue et les ressources nécessaires (dont le temps de résolution)
pour l’atteindre doit être fait. Un exemple de ce compromis est l’utilisation de techniques
d’apprentissage détaillées dans le Chapitre 4. Une alternative plus traditionnellement em-
ployée dans le domaine de la recherche opérationnelle est l’utilisation des métaheuristiques
où, pour un problème donné, on conçoit un algorithme qui parcourt l’espace des solutions en
suivant un paradigme de résolution existant dans la littérature. Les paradigmes métaheuris-
tiques les plus connus sont le recuit simulé, l’algorithme génétique et l’algorithme de colonies
de fourmis.

Nous proposons une métaheuristique appelée Descente à Voisinage Variable (VND) basée
sur deux voisinages différents et complémentaires : un horizon roulant et un algorithme
dynamique. Ce dernier s’appuie sur la représentation de l’espace des solutions comme un
ensemble de graphes.

Représentation en graphes

Chaque graphe représente toutes les possibilités d’états et d’affectations de missions et de
maintenances à un avion pendant tout l’horizon de planification. Cette représentation en tant
que graphe permet l’utilisation des algorithmes efficaces pour l’échantillonnage de chemins et
pour l’obtention du plus court chemin entre deux nœuds. Nous nommons pattern un choix
de chemin pour chaque avion.

Malheureusement, la taille de ces graphes augmente de façon exponentielle en fonction
de la taille de l’horizon et ils doivent être réduits avec des méthodes d’approximation pour
obtenir des graphes qui puissent être stockés en mémoire.

Voisinages

Deux types de voisinage sont envisagés. Le premier exploite le graphe existant d’un avion
pour changer toutes ses affectations en résolvant un SPP entre le nœud du début et le nœud de
la fin de l’horizon de planification. Les poids donnés au graphe à chaque itération dépendent
de l’état actuel de la solution de façon à ce que la solution optimale du SPP corresponde au
voisinage optimal de la solution. Nous l’appelons “SPA”.

Le deuxième, appelé “RH”, consiste à appliquer un voisinage RH construit sur le modèle
PLNE du Chapitre 4. Le problème initial est résolu en fixant à tour de rôle toutes les
affectations qui n’appartiennent pas à la fenêtre définie par un ensemble d’avions et périodes.
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L’utilisation de ce voisinage permet d’améliorer significativement la qualité de la solution
pour certaines instances, mais au prix d’une résolution plus longue.

Solution initiale

Une solution initiale est construite avec trois méthodes : (1) le voisinage “SPA” exécuté une
fois pour chaque avion ; (2) l’algorithme “maintFirst” ; (3) le modèle PLNE du Chapitre 4,
qui corresponde au voisinage “RH” avec une fenêtre de taille |I| × |T |.

Expérimentation et résultats

Nous comparons nos approches selon les critères suivants : la qualité de voisinages, la qualité
de la solution initiale, la performance en temps de résolution et l’écart d’optimalité.

La combinaison des voisinages “SPA” et “RH” se montre très efficace quand elle est com-
parée avec la performance de chaque voisinage indépendant. Cette synergie est liée à la
nature différente et complémentaire de chaque voisinage et valide le choix du schéma de la
métaheuristique.

Finalement, la performance de la métaheuristique est comparée avec celle du modèle PLNE
pour des instances de grande taille. Les résultats permettent de voir des gains importants en
temps de résolution et qualité des solutions démontrant ainsi le grand potentiel des techniques
de ce type.

Conclusions et perspectives

Cette thèse étudie le problème de la planification de vols et de maintenance des avions mili-
taires (MFMP) et propose plusieurs nouvelles méthodes pour le résoudre efficacement. Nous
avons élaboré la première formulation du problème dans le contexte français avec des con-
traintes et objectifs inédits, jamais considérés dans la littérature. Nous avons étudié la com-
plexité de ce nouveau problème d’optimisation en le reliant au problème de la planification
des emplois du temps du personnel (NRP).

La première méthode de résolution que nous avons développée pour ce nouveau problème
est basée sur un modèle PLNE. Ainsi les instances de petite et moyenne taille peuvent être
résolues à l’optimalité et des solutions de bonne qualité sont fournies pour les instances de
grande taille. Nous avons conduit l’analyse de sensibilité pour ce modèle afin de déterminer
quels étaient les paramètres qui impactaient le plus d’efficacité de la résolution. Pour améliorer
la performance du solveur PLNE, nous avons élaboré et implémenté une métaheuristique de
recuit simulé qui fournit des solutions initiales. Les tests numériques ont démontré l’utilité
de l’application des ces méthodes approchées pour diminuer le temps de résolution.
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La deuxième méthode de résolution est basée sur un modèle PLNE différent pour lequel
nous avons développée des coupes valides efficaces et une heuristique basée sur l’apprentissage
automatique (ML) afin de générer des coupes “apprises”. L’apprentissage est réalisé sur des
milliers d’instances de petite taille pour trouver des relations entre les caractéristiques des
données d’entrée et les caractéristiques spécifiques des solutions optimales. L’heuristique
utilise les informations apprises pour appliquer des coupes non valides à l’espace de solutions,
en réduisant considérablement la taille du problème sans pour autant exclure des solutions
de bonne qualité. Les tests numériques ont montré des améliorations considérables des per-
formances de résolution. Ce travail est l’un des premiers dans le domaine à combiner avec
succès des techniques d’apprentissage supervisé pour prédire les caractéristiques de solutions
optimales lors de la résolution d’un modèle PLNE.

Enfin, une méthode de résolution alternative que nous avons développée pour le traitement
efficace des instances de très grande taille est une matheuristique basée sur la combinaison
d’une technique de résolution de type horizon roulant (RH) et d’un algorithme de program-
mation dynamique (DP) avec une descente à voisinage variable (VND). Cette approche per-
met de générer de bons patterns pour chaque avion en résolvant un problème du plus court
chemin. La combinaison de partitions basées sur le temps (RH) et de partitions basées sur
les avions (DP) s’avère particulièrement efficace pour éviter les minimum locaux et atteindre
des solutions quasi optimales en temps de résolution très court.

Les contributions de cette thèse ont donné lieu aux publications suivantes:

• F. Peschiera, O. Battaïa, A. Haït, and N. Dupin. Bi-objective mip formulation for the
optimization of maintenance planning on french military aircraft operations. 2018. URL
http://oatao.univ-toulouse.fr/20766/

• F. Peschiera, R. Dell, J. Royset, A. Haït, N. Dupin, and O. Battaïa. A novel solution
approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem.
OR Spectrum, pages 1–30, jun 2020. ISSN 0171-6468. doi: 10.1007/s00291-020-00591-z.
URL http://link.springer.com/10.1007/s00291-020-00591-z

• F. Peschiera, A. Haït, N. Dupin, and O. Battaïa. Long term planning of military aircraft
flight and maintenance operations. Technical report, ISAE-SUPAERO, UniversitÃľ
de Toulouse, France, 2020. URL https://arxiv.org/abs/2001.09856 (soumis pour
publication)

• F. Peschiera, N. Dupin, A. Haït, and O. Battaïa. Novel graph-based matheuristic to solve
the flight and maintenance planning problem. Forthcoming (soumis pour publication)

Des résultats ont été présentés dans les communications suivantes :

• F. Peschiera, A. Haït, N. Dupin, and O. Battaïa. Maintenance planning on french
military aircraft operations. In Congrès annuel de la société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF), pages 1–2, Lorient, FR, 2018. URL
http://oatao.univ-toulouse.fr/20036/

http://oatao.univ-toulouse.fr/20766/
http://link.springer.com/10.1007/s00291-020-00591-z
https://arxiv.org/abs/2001.09856
http://oatao.univ-toulouse.fr/20036/


Résumé de la thèse xxvii

• F. Peschiera, A. Haït, N. Dupin, and O. Battaïa. A novel mip formulation for the
optimization problem of maintenance planning of military aircraft. In XIX Latin-
Iberoamerican Conference on Operations Research, pages 1–2, Lima, PE, 2018

• F. Peschiera, N. Dupin, O. Battaïa, and A. Haït. An alternative mip formulation for
the military flight and maintenance planning problem. In Congrès annuel de la société
Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF), pages 1–2,
Montpellier, FR, 2020. URL https://oatao.univ-toulouse.fr/26033/

Finalement, une version adaptée de l’heuristique de recuit simulé a été testée, validée et
exploitée par Dassault Aviation sur des instances réelles des flottes des avions Mirage 2000.

Le travail réalisé ouvre plusieurs perspectives de recherche.

En ce qui concerne la modélisation du problème, des facteurs de terrain tel que la possi-
bilité de stocker un avion non utilisé pour prolonger sa butée calendaire ou la modélisation
de la capacité de maintenance non pas comme une quantité fixe mais une variable peuvent
enrichir la formulation du problème en ajoutant des nouvelles variables liées à ces décisions.

L’analyse de complexité peut également être étendue. Dans cette thèse, seul le problème
de planification à long terme a été étudié. Il sera intéressant de considérer les problèmes
de planification à court et moyen terme, car dans ce contexte les missions sont générale-
ment représentées par des affectations continues d’heures de vol par période. Cela pourrait
également conduire à identifier des cas particuliers où le problème devient polynomial. C’est
probablement le cas lorsque les exigences de la mission sont des heures de vol continues et
que les opérations de maintenance sont déjà planifiées (un problème de planification de vol
sous contraintes de maintenance).

Lorsqu’il s’agit d’horizons de planification de plusieurs années, la prise en compte des
incertitudes est cruciale. En garantissant certains niveaux de disponibilité et de pérennité
à chaque période pour chaque catégorie d’avion, les solutions que nous trouvons avec les
méthodes de résolution proposées dans cette thèse sont déjà caractérisées par un certain
niveau de robustesse. Néanmoins, en ayant plus d’informations disponibles sur les sources des
incertitudes et leur impact, la robustesse d’une solution peut être considérablement améliorée
en utilisant une approche adaptée à la nature des informations qui peuvent être obtenues
concernant les incertitudes.

Le potentiel de la combinaison des techniques d’apprentissage et de l’optimisation n’a pas
été pleinement exploré. Plusieurs pistes pour de futures recherches peuvent être envisagées,
comme par exemple, l’utilisation de la régression logistique pour estimer la probabilité qu’un
pattern (i.e., une variable) participe à la solution optimale. Cette probabilité peut ensuite être
utilisée pour échantillonner des solutions. Un autre exemple est l’utilisation de la sélection
automatique des caractéristiques pour obtenir, plus rapidement et plus facilement, le modèle
prédictif.

En ce qui concerne l’application des informations ML, une séparation claire entre la pré-
diction et l’optimisation a été maintenue : de bons patterns sont d’abord prédits pour une
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instance donnée, puis utilisés pour résoudre le problème avec ces informations. Une alternative
consiste à appliquer la prédiction à l’intérieur du processus de résolution en échantillonnant
des patterns dans le cadre d’une technique de décomposition plus large où l’échantillonnage est
utilisé comme première étape pour résoudre un sous-problème. Dans ce cas, l’échantillonnage
peut être adapté par de nouvelles informations provenant de la solution actuelle, telles que
des violations de contraintes ou des prix ombre.

Les techniques de décomposition qui peuvent bénéficier de ce type d’échantillonnage sont
celles où le nombre de variables de décision croît de manière exponentielle par rapport à la
taille du problème. Un candidat évident est les représentations utilisées dans les décompo-
sitions CG. Un autre bon candidat potentiel est celui où un très grand graphe explicite est
construit pour chaque état possible de chaque avion.

Les graphes acycliques dirigés peuvent être utilisés pour échantillonner des modèles poten-
tiellement intéressants. En attribuant des poids aux arêtes et en fixant une distance maximale
K pour les motifs extraits, on peut garantir la qualité des chemins extraits. Puis, en affec-
tant soigneusement des probabilités pour choisir les voisins de chaque nœud, on obtient un
échantillonnage non biaisé de patterns qui ont une qualité meilleure que K.

Enfin, cet échantillonnage (quelle que soit sa mise en œuvre) peut ensuite être utilisé
de plusieurs manières. La première consiste à transmettre les patterns échantillonnés à un
modèle maître du type couverture par ensembles qui est compatible avec les contraintes de
routage trouvées dans les problèmes FMP et VRP. Une deuxième option consiste à intégrer
les patterns échantillonnés dans la phase constructive d’une heuristique GRASP afin de pro-
duire de nombreuses solutions rapides et raisonnablement bonnes qui peuvent être améliorées
ultérieurement avec la recherche locale.
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1.1 Industrial context

1.1.1 The maintenance industry

Be it a house, a car or a nuclear power plant, maintenance is a key consideration when building
or acquiring a new asset. For example, the yearly maintenance costs for a house can equal
1-4% of the purchase price [6]. This cost represents the price to pay to keep the acquired
asset in normal operation conditions and prolong its life as long as it is economically possible.

Maintenance is important. It is an intrinsic part of property rights. Being the owner of a
product that cannot be repaired easily and cheaply reduces the value of said product. There
exist recent movements that demand a “right to repair” for acquired goods. For example,
thanks to a new law ratified by the European Commission, from 2021, manufacturers will be
forced to make appliances long-lasting and to provide spare parts easily for up to ten years
[7].

Maintenance can also be opaque. New large infrastructure projects are always in people’s
minds and, as a result, in politicians mouths. Once the project is finished, though, little
public and therefore media attention is given to the maintenance of those projects. This can,
and often does, make the maintenance operations more opaque than the actual construction
because they are done without as much society attention. As an example, after several fatal
accidents, an investigation in Indonesia in 2008 into the Adam Air airline “revealed serious
deficiencies in maintenance and safety procedures” [167], including conflicts of interest in the
inspection of aircraft and bribes in certifications.
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Maintenance is quite expensive. Usually, it involves several specialized labor-intensive
tasks that are hard to automatize. On top of that, in a quest for lower production costs,
companies have made products harder and harder to repair or maintain. Canada estimates
its companies spent 3.3% of GDP on repairs in 2016, more than twice as much as the country
spends on research and development [5]. Although the value of a good maintenance policy is
usually hidden behind the uneventful and correct functioning of a system, the cost of a lack
of maintenance of public infrastructures can be measured from time to time. This became all
too evident recently with the collapse of the Genoa bridge in Italy. The lack of investment in
maintenance was one of the main reasons for this tragedy that caused the death of 43 people
in August 2018.

Finally, maintenance plays an important role in sustainable development. The most cost-
effective way to reduce overall consumption, and thus the pollution associated with that
consumption, is to extend the life of goods. It is not a coincidence that the same movements
calling for easier repairs are also those that condemn “planned obsolescence”. This is the name
of a practice attributed to goods manufacturers where the end of life of a product is purposely
decided since its conception in order for customers to buy new ones, and thus increase the
demand for the product. This practice is a crime in France since 2015 [2]. The length of life
for a product is specially important for the environment when discussing infrastructure that
has a large upfront cost (be it financial, social or environmental) but a very low operation cost.
This is precisely the case for renewable energy sources such as hydroelectric, wind and solar:
their return of investment, and thus their competitiveness, is tightly tied to the duration of
their infrastructure.

With regards to previously presented characteristics of maintenances: high cost, opaque-
ness and importance; military maintenance is like the regular maintenance, only more so.
Let’s take cost. If maintenance is expensive, and military maintenance is more so: the 2019
US Department of Defense investment in maintenance is around $ 78 billion [8]. In addition
to this, it is usually the case that, by design, there is a unique supplier for the goods, in-
frastructure and their maintenance. This only increases the inherit opaqueness that military
projects tend to already have in the first place. Finally, the importance of guaranteeing the
correctly functioning of the apparatus that is in charge of the security of a country cannot be
underestimated.

1.1.2 Maintenances in the aviation industry

In the aircraft industry, maintenance is done via various types of maintenance operations also
known as checks. These checks vary in frequency, duration and thoroughness. The frequency
is usually measured in a combination of flight hours, takeoff-landing cycles, and calendar
months; the duration, in months or man-hours of labor. What follows is an extract from the
“UK Aerospace Maintenance, Repair, Overhaul (MRO) & Logistics” report in 2018 [73].

Base or Heavy maintenance for airlines and other air transport operators has a range of
‘lettered’ checks from a simple A-check through to a comprehensive D-Check. The type of
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check required depends on the number of hours the aircraft has flown since its last check, the
age of the aircraft, and the number of cycles (take-offs and landings) carried out. These checks
are labour intensive and require taking the aircraft out of service resulting in lost revenues
and aircraft availability.

These ‘letter checks’ typically include:

A-Check This check is carried out approximately every 80 to 100 flight hours, which is
every 7 to 9 days. It needs between 10 and 20 man-hours and is usually performed overnight
while the aircraft is at the gate or in a hangar.

B-Check This check is a more thorough maintenance check and is normally carried out
every two months (approximately 500 to 600 flight hours). This maintenance is carried out
in a hangar and requires approximately 100 to 300 man-hours depending on the size and
complexity of the aircraft.

C-Check This check is very thorough and comprehensive. Virtually the entire aircraft
goes through an exhaustive series of checks, inspections and overhaul work. The C-Checks
typically occur every two years and require 10,000 to 30,000 man-hours, depending on the
aircraft type and take two to four weeks to complete.

D-Check This check is the most comprehensive and occurs approximately every 6 years.
It is a check that, more or less, takes the entire airplane apart for inspection and overhaul.
Such a check can usually demand up to 50,000 man-hours and it can generally take up to 2
months to complete, depending on the aircraft and the number of technicians involved. It
must be performed at a suitable maintenance base.

There is a recent trend to include some D-Check work in each C-Check and try and
eliminate the D-Check, to improve the availability of the aircraft for commercial service. D-
checks would normally be carried out at a heavy maintenance and engineering facility such
as at British Airway’s Engineering in Cardiff and Monarch Engineering at Luton.

Table 1.1 shows an example of check frequencies per type of check for some commercial
aircraft.

In many ways, the military maintenance of aircraft is similar to the civil industry. There
are several types of checks that are done to aircraft, although the names, frequencies and
actors change. And this information closely depends on the model and manufacturer.

In France, it is the recently created (2018) “Direction de la Maintenance Aéronautique
(DMAé)” the one in charge to plan and organize the checks for military aircraft. These checks
have the following types for the Mirage 2000 series:
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Aircraft ‘A’ Check ‘B’ Check ‘C’ Check ‘D’ Check

B737-300 275 FH 825 FH 18 M 48 M
B737-400 275 FH 825 FH 18 M 48 M
B737-500 275 FH 825 FH 18 M 48 M
B737-800 500 FH n/a 4000-6000 FH 96-144 M
B757-200 500-600 FH n/a 18 M / 6000 FH / 3000 FC 72 M
B767-300ER 600 FH n/a 18 M / 6000 FH 72 M
B747-400 600 FH n/a 18 M / 7500 FH 72 M
A319 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
A320 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
A321 600 FH n/a 18-20 M / 6000 FH / 3000 FC 72 M
ATR42-300 300-500 FH n/a 3000-4000 FH 96 M
ATR72-200 300-500 FH n/a 3000-4000 FH 96 M

Table 1.1: Frequency of checks per aircraft and type (FH= flight hours, FC= flight cycles,
M=months) from Cook, A.J. and Tanner, G. [52]

VG Called “Visite de graissage” or Oil Check, it is carried out every 6 to 8 calendar months.
It takes about 3 days.

VI Called “Visite intermédiaire” or Intermediate Check, it is carried out every 14 to 16
calendar months. It takes about 6 days.

VS Called “Visite de securité” or Security Check, it is carried out every 300 to 600 flight
hours. It takes about 4 days.

VX Called “Grande visite” or Overhaul Check, it is carried out every 1000 to 1200 flight
hours or 60 months, whichever arrives first. It takes between 4 and 6 months. These checks
are equivalent to the D-checks.

The first three checks are done in the aircraft’s airbase. The overhaul checks (VX) are
done in the “Atelier Industriel de l’Aéronautique (AIA)”, located in the Clermont-Ferrand
region. The latter can be seen in Figure 1.1.

1.1.3 Planning maintenances

The Flight and Maintenance Planning (FMP) problem, first presented by Barnhart et al. [26],
studies how these maintenance operations are scheduled and how flight activities are assigned
to a fleet of aircraft along a planning horizon.

In the civil variant of the FMP [26, 161], by far the one that has received the most
attention, aircraft need to be routed along different destinations by assigning them flight legs
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Figure 1.1: A photo of the AIA maintenance workshop in the Clermont-Ferrand where the
VX checks are done for the Mirage 2000[1].

in order to build daily trips. Checks are done during the night and are usually limited to A
and B type checks. The planning horizon covers several days (e.g. Sriram and Haghani [161]
use 7 days). The objective is usually to reduce the overall cost or to maximize total profit for
the plan.

In the military variant, which we call the Military Flight and Maintenance Planning
(MFMP) problem, flights (which are called missions) always return to the airbase and so no
routing is performed. Checks consist of B, C and D types. The planning horizon covers a few
months or several years. The objective is usually to maximize the operational status of the
fleet while minimizing the total number of checks.

In most air forces, a derivative of the Sliding Scale Scheduling Method (SSSM) [89] is used
to plan the mission assignments for aircraft. This method consists of a simple heuristic that
attempts to distribute remaining flight hours among aircraft in a ladder-like distribution, i.e.,
there is a constant probability of finding an aircraft for each possible amount of remaining
flight hours. When an aircraft passes certain threshold of flight hours, it is sent for a check.
Figure 1.2 shows an example of using this technique. In the example, Aircraft “944” has the
most surplus remaining flight hours (bank time) with respect to the curve and thus should
fly the next mission.

This technique attempts to distribute the flight load uniformly between each aircraft and
is well suited when the future mission requirements are known and do not change over time,
the fleet is homogeneous and the initial status is more or less well distributed. As can be
expected, these hypothesis rarely apply in real life and so more sophisticated techniques are
needed if good quality maintenance plans are to be obtained for realistic situations.

Recently, improving the quality of these maintenance plans has become a priority for many
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Figure 1.2: An example showing the SSSM for 8 aircraft in a 500-flight-hour cycle.

governments [116]. In particular, the French Air Force became interested in mathematical
solutions to schedule maintenance for the Mirage 2000 fleet [4] after it was revealed that
increases in maintenance costs had not been followed by improved availability of aircraft
[113].

There are two main questions that need to be answered when improving maintenance
decisions: when is the maintenance needed (prediction) and when is the maintenance actually
done (scheduling).

Calculating maintenance needs has usually consisted of what is called preventive mainte-
nance. In preventive maintenance, a simple rule is established that ties usage and maintenance
need, e.g., an aircraft cannot fly more than 500 hours without a maintenance. In contrast,
predictive maintenance involves the analysis of historical data to estimate windows of time
when maintenance has to be done so as to guarantee a risk of failure under a certain threshold.
According to the US Air-Force tests on command-and-control planes, the use of predictive
maintenance could reduce unscheduled work by a third [8].

Regardless of how we calculate those maintenance needs, a suitable maintenance schedule
is essential in order to produce an efficient overall plan. To achieve this, those time windows
are taken together with resource capacities and future usage planning, among other infor-
mation, in order to produce an actual maintenance schedule that is feasible and satisfies the
needs of its planners.

The difference between any maintenance plan and a good one is important. As the re-
sources needed to actually perform the checks are expensive and the expertise required is
highly specialized, the capacity to provide this service is usually quite limited and inflexible.
As a result, a plan that does not allocate the capacity optimally may end with more grounded
aircraft waiting for a check in some periods while in other periods the capacity usage is not
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at maximum. This unavailability reduces the actual potential of the fleet and thus requires
having even more aircraft to satisfy a certain fleet potential.

The context of long term planning is inevitably tied to uncertainties in mission require-
ments, fleet availability and maintenance capacity restrictions, .e.g., a new mission, additional
aircraft for an existing mission, an unexpected grounding of an active aircraft, a partial re-
duction in the capacity of the maintenance workshop, etc. These uncertainties require robust
plans where each period is guaranteed to have enough aircraft in good status to not only
comply with planed missions but also with changes in a set of potentially heterogeneous mis-
sions. A plan that does not take this into account explicitly, risks a scenario where there are
not enough aircraft ready for an unforeseen emergency.

The actual cost of a maintenance plan is measured by the number of checks needed to
comply with all the mission requirements: the lower that number is, the better. Although
costs for these checks are not public in the case of military aircraft, the actual costs for type D
checks in Boeing aircraft range between 1 million dollars and 6 million dollars [3] depending
on the aircraft model. In France, the total yearly cost of military aircraft maintenances rose
from 3.2 billion euro in 2012 to 4 billion euro in 2017 [113]. A good maintenance plan will
try to use each aircraft as much as possible before scheduling a check in order to minimize
the number of remaining flight hours that is “lost” when the check is done and flight hours
are reset to their maximum.

Finally, the planning of maintenances is usually done manually (in an Excel spreadsheet)
and is time consuming. This limits the number of scenarios that can be evaluated before
taking a decision and increases the reaction time when dealing with new information that
requires to change the original plan. As a result, robustness and flexibility are lost as part of
the planning process.

Thus, the need for efficient and reliable flight and maintenance planning is clearly a priority
both in commercial as in military contexts. Nevertheless, producing such a detailed plan for
a sizable fleet while planning for a long-term horizon and taking into account the multiple
objectives inherent to long-term planning is not an easy task.

Operations Research techniques are specialized in solving combinatorial problems such as
the MFMP in order to produce very good quality solutions (often optimal) given a set of
constraints and an objective function. The success in applying these techniques to a new,
difficult, problem requires a combination of domain expertise and profound theoretic back-
ground. The latter consists of a deep study on the structure of the underlying mathematical
problem and the research of innovative solution approaches that are compatible with that
problem. This thesis provides such analysis.
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1.2 Problem description

In this section we describe the main characteristics of the MFMP problem studied in this thesis
and provide a small example. A formal definition of the problem is presented in Chapter 3.

Aircraft. Aircraft are identified by index i. Each aircraft starts the planning horizon with
an initial status with respect to its maintenance needs. This status consists of the number
of hours that it can fly before needing a check RftIniti and the number of calendar periods
before needing a check RctIniti . In addition, each aircraft has one type and an optional set of
capabilities, that allow it to perform missions.

Missions. Missions are identified by index j. Each mission has a start Startj and end Endj
date and requires a certain amount of aircraft Rj to be assigned when it is active. When an
aircraft is assigned to a mission, it is required to stay assigned for at least a certain amount of
time periodsMTminj . As long as these rules are taken into account, an aircraft can be assigned
for less than the total length of the mission. Each mission has a type, which needs to be the
same as the aircraft that are assigned to it, and may require certain additional capabilities
for these aircraft. Each aircraft that is assigned to a mission needs to fly a certain amount of
hours Hj each period. When an aircraft is not flying a mission and is not in maintenance, it
still flies a certain amount of default hours per period Umin.

Maintenances. When an aircraft has reached its limit of flight hours Hmax or its limit in
calendar periods Emax, it requires a check. Each check takes a certain amount M of periods
to be performed. There is a limit to the total number of checks that can be performed
simultaneously, which corresponds to the workshop capacity Cmax.

Fleet status. The missions are classified into clusters where each mission has the same
type and capabilities. Each mission belongs to one cluster but an aircraft can belong to many
clusters. Each of these clusters needs to have a minimum number of total remaining flight
hours HClust

kt and available aircraft (not in maintenance) AClustkt in order to guarantee the
good status of the fleet and its resilience.

Objectives. A good flight and maintenance plan complies with all previous rules by schedul-
ing the checks as late as possible in the planning horizon and avoiding unnecessary checks. In
real cases, some of the previously defined rules will need to be violated and so these violations
need to be minimized too. Finally, the frequency of checks should not vary too much between
aircraft of the same type.

To better illustrate the problem, a small example follows. Take a fleet of 5 aircraft and 6
consecutive missions over a planning horizon of 20 periods. M = 2, Hmax = 300, Emax = 15,
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MTminj Startj Endj Hj Rj
j

0 2 1 4 24 1
1 2 5 7 34 3
2 3 8 11 18 3
3 3 12 15 30 3
4 2 16 18 35 3
5 2 19 20 25 1

Table 1.2: Input data for each mission j ∈ J in the small example.

RctIniti RftIniti

i

0 7 120
1 13 220
2 7 140
3 8 140
4 6 160

Table 1.3: Remaining flight time and remaining calendar time for each aircraft i ∈ I in the
small example.

Cmax = 1, Umin = 0. The first mission (j = 0) can only use aircraft 3 or 4. All the
other missions can use any of the 5 aircraft. Two clusters are thus formed: the first contains
mission 0 and has as candidates aircraft 3 and 4, the second contains missions 1-5 and has as
candidates all five aircraft. HClust

0t = 300, HClust
1t = 750, AClust0t = 1, AClust1t = 4.

Table 1.2 shows the input data for the 6 missions and Table 1.3 shows the input data for
the 5 aircraft.

Figure 1.3 shows the optimal solution for the problem. Aircrafts are shown in rows, periods
in columns. Checks are in gray. Mission assignments share the color of the mission and show
the total number of hours flown.

1.3 Thesis structure

Chapter 2 presents a review on the FMP, the MFMP and related problems from the literature
in order to compare and position the problem described above with respect to previous work.
Furthermore, a comprehensive study on the techniques employed to solve these problems is
presented and a categorization of problems and solution methods for the MFMP is provided.

Chapter 3 formalizes the MFMP problem, studies its structure and solves it with exact
methods. First, a complete instance of the MFMP problem is described and a random
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 M0 68h0 72h0 120h0 M

1 102h1 72h1 M1 105h1 50h

2 68h2 M2 120h2 105h

3 96h3 M3 72h3 120h3 M

4 M4 102h4 M4 105h

Figure 1.3: Gantt showing the optimal solution for the example.

instance generator is produced. This generator will be used to produce instances for the rest
of the thesis. The structure of the long term MFMP problem is analyzed and, as a result,
its complexity is studied. In order to solve the problem, a tight Mixed Integer Programming
(MIP) formulation is proposed and complemented by a simulated annealing heuristic that
generates initial feasible solutions. The sensibility of the model is inspected with regards to
changes in size and various characteristics of instances.

Chapter 4 formulates a new MIP model and applies Machine Learning (ML) methods to
increase the solution performance. The alternative MIP model consists of a long formulation
based on explicitly enumerating all check patterns for each aircraft. This model is then
expanded by the addition of valid cuts, based on the instance input data, and invalid cuts,
based on the prediction of optimal or near-optimal solutions. These predictions are done
by a supervised learning model that matches the input data for an instance with certain
characteristics of its solution and is trained with a dataset of thousands of small instances
solved to optimality or near-optimality. The performance of this approach is compared with
previous methods as well as with other more conventional matheuristics.

Chapter 5 deals with methods to solve very large scale problems of the MFMP using a
Variable Neighborhood Descent with two complementary neighborhoods. The first one is an
Rolling Horizon solved using the MIP model from Chapter 4. For the second neighborhood, a
complete graph of all possible states for each aircraft is produced. This graph is an extension
of the pattern formulation in Chapter 4 were each node represents the state of an aircraft
with respect to the need of a check. The neighborhood is then solved by solving a Shortest
Path Problem.

Finally, Chapter 6 summarizes the main conclusions and sheds light on directions for
future research.
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In this chapter, we present a review of the work that has been done in the MFMP and its
related problems up to now. The Flight and Maintenance Problem (FMP) and its variants
are presented in Section 2.1; Section 2.2 describes several problems with the same structure
such as the Nurse Rostering problem, the Rolling Stock Assignment and Maintenance Plan-
ning problem, and the Maintenance Scheduling and Production Planning of Nuclear Plants.
Section 2.3 presents an exhaustive review of the techniques that have been successfully uti-
lized to solve these problems including exact ones such as MIP and CP; and heuristic ones
such as matheuristic, metaheuristic and hybrid methods. Finally, Section 2.4 presents recent
approaches using machine learning in combination with mathematical programming.

2.1 The Flight and Maintenance Planing problem

2.1.1 Civil Aviation

The Flight and Maintenance Planning (FMP) problem, first introduced in Barnhart et al.
[26], consists of the combination of two problems: the Tail Assignment (TA) problem and
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the maintenance scheduling. The former, first studied in [68], consists of assigning a series of
already scheduled flights (often named legs) to a fleet of aircraft (also referred as tails) and has
been widely studied [50, 81, 67, 83, 95]. The latter consists of the scheduling of maintenance
operations (which we call checks) to aircraft in order to comply with calendar-based and
usage-based limits mandated by safety regulation. This problem is also known as the Airline
fleet Maintenance Scheduling (AMS) [60, 148]. The resulting FMP problem is also known as
AMS with Tail Assignment [161, 148] or Aircraft Maintenance Planning (AMP) [154].

With regards to the checks in the airline industry, there exist four major types [161]: A
(every 65 flight hours or 1 week), B (every 300-600 flight hours), C and D (every 1-4 years).
As a result of the short planning horizons that are used in FMP problems, only the two
first types of checks are taken into account. The other two types are sometimes taken as
constraints: these checks are already decided for some aircraft and this unavailability needs
to be taken into account during the planning process.

From the numerous contributions to solve the FMP problem, only a few take into account
the legal required limit on the number of flight hours between checks [124, 150, 95, 148].

Murat Afsar et al. [124] present a 10-week FMP problem where a fleet of 200 identical
aircraft is assigned flights and maintenances. Flights are organized in a mono hub and spoke
structure and only the hub city has the capacity to do any check. Checks are assumed to
be done during the night so the aircraft are ready in the morning of the following day. The
maintenance capacity is modeled by the total number of aircraft in maintenance at any given
night and depends on the instance but is always between two and three aircraft per night.
Flights per week range between 2500 and 3100 2-way flights for 91 destinations. The initial
status of the fleet is randomly generated and the solution method applies a weekly heuristic
inside a rolling-horizon decomposition. The heuristic is based on modeling each aircraft as a
graph where each node is a possible flight assignment, the source is the initial status and the
sink is the assignment of a check. They then apply a longest path algorithm for each aircraft
in a specific order, then slightly modify the assignments and do swaps between aircraft to
improve the solution.

Sarac et al. [150] deal with a short-term FMP problem where a set of flights are assigned to
a fleet of aircraft while scheduling checks, respecting the flight hour regulation and considering
the maintenance constraints. Checks are assumed to be done during the night. Several types
of checks can be done in one of several overnight stations if that station is also a maintenance
station. Maintenance capacity is controlled by resources and slots: each check consumes a
certain amount of man-hours and a slot from the maintenance station where it is done. Each
maintenance station can only do certain types of checks. The objective is to minimize the
total number of unused remaining flight hours. In order to solve the problem, a network is
generated were each node i represents a flight leg and each arc (i, j) represents a feasible
sequence of flights i→ j (i.e. the destination of i is the same as the origin of j and the arrival
time for i plus the turn time is less than or equal to the departure time of flight leg j). A
string-formulation model is proposed, where routes are assigned to aircraft and a Column
Generation technique is used to generate feasible routes. The computations experiments
include a fleet of 32 aircraft, 175 flights, 5 maintenance stations and a planning horizon of 1
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day.

Khaled et al. [95] present the Tail Assignment problem and solves it with a multi-
commodity flow formulation. Then, the problem is adapted to schedule checks. Only type A
checks are taken into account and these checks are assumed to be done during the night after
the last flight of the day. Each airport is equipped with a maintenance workshop that has a
capacity that varies according to each day. All checks are assumed to have the same calendar
and flight hour limit. The original objective function based on minimizing cost is modified
by adding a cost per each check depending on the airport, the aircraft and the day. Compu-
tational tests are done on instances of 7-30 days, 10-40 aircraft and with a check frequency
of 4-5 days and 64-72 flight hours.

Sanchez et al. [148] show two problems related to maintenance scheduling: the first sched-
ules checks with a given flight planning taken as input. The objective is to minimize the
number of violations of maintenance regulations while maximizing fleet sustainability at the
last period. The scheduling includes multiple check types in multiple maintenance workshops.
The maintenance capacity is measured as a consumption of resources at each period. Checks
have a fix duration for a given type and aircraft. The second problem is a variant of the
first that in addition to scheduling checks also reassigns part of the already scheduled flights
in order to reduce violations of maintenance regulation. Here 4 new objectives are added:
minimize the maximum resource consumption, the number of flight reassignments, the total
number of checks, and the total resource usage. Computational tests were done over a 30-day
planning horizon with 16.000 flights, 529 aircraft and 8 maintenance workshops.

Repair and recovery problems involve the re-optimization of a previously solved solution
(incumbent) under the light of a relatively small change in the original input data. This change
is usually the result of an unforeseen event: a delay, an accident that affects the provision of the
service or an external event that causes a change in demand. More specifically, the change can
be (1) an additional constraint, (2) the change of some coefficients on the constraint matrix or
(3) the change of some coefficients on the objective function. Usually, it is the combination of
all three. As a consequence, the incumbent solution may no longer be valid (feasible) or may
no longer be optimal (or, even, good). The main hypothesis of a repair / recovery solution
method is that a good candidate solution should not be too far from the incumbent, given
the small proportion of change in the input data. Repair and recovery methods for the FMP
have been proposed in [70, 97, 178, 94, 91, 148].

2.1.2 Military Aviation

The Military Flight and Maintenance Planning (MFMP) problem was first presented in
Sgaslik [153] and the main differences with the FMP are the use of missions instead of flight
legs. Aircraft are assigned to missions for an interval of time periods. Since all aircraft re-
turn to base after each assignment, the location of the aircraft (airport) is not taken into
account. These problems also require additional availability and sustainability constraints
to guarantee a good state for the fleet at each period. In contrast to FMP problems plan-
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ning A and B checks, most contributions in the MFMP are centered in planning B checks
[152, 174, 98, 85, 136] and D checks [55].

Sgaslik [153] presents a MFMP where a fleet of 45 helicopters are planed along a planning
horizon of 12 periods of one month each. Missions are assigned to each aircraft in order
to comply with planned flight hours. Checks provide additional flight potential and must
respect the maintenance capacity. The fleet needs to meet a monthly desired number of total
remaining flight hours, guaranteeing the good status of the fleet. The objectives penalize
penalties from soft constraints. The problem is solved by using a two-model setup. First, a
medium term problem determines D-type checks and assigns continuous flight hours. Later,
this solution is fed into a short-term model where planned missions are assigned to each
aircraft in a heterogeneous fleet.

Kozanidis [98] presents a problem where a wing of 24 aircraft is organized into 3 squadrons
of 8. The planning horizon consisted on 6 periods of 1 month each. Each squadron requires
certain flight hours per period and each aircraft has a range of hours they can fly per period.
There is a demand of flight hours over the whole planning horizon. Finally, the capacity of
the maintenance workshop is measured in available working hours per period. The decision
is the continuous number of hours to fly each aircraft in each period and when to put them
into maintenance. The link between these decisions and constraints is modeled via a resource
flow balance: the first decision “consumes” the aircraft remaining flight hours and the latter
“consumes” the workshop maintenance hours. Additional accounting needs to take place to
guarantee that the hours are consumed and updated after each period. All four objectives
were targeted at maximizing the minimum of certain KPI over all planning periods, thus
improving the worst performing period in the planning horizon. Those KPI were: (1) the
total number of available aircraft, (2) the number of available aircraft for the worst squadron-
period, (3) the total remaining flight time, and (4) the remaining flight time for the worst
squadron-period. Weights are finally given to each objective in order to combine them in
one objective function. It also presents two simple heuristics that could be used for larger
instances: the first is an implementation of the “Sliding Scale Scheduling Method” [89], the
second is a rolling horizon approach. We will call this formulation the Check Flow Balance
(CFB) formulation because of the way the maintenance workshop resource is “consumed”
by each aircraft in maintenance. This CFB formulation has been the base for many future
contributions, such as [99, 100, 77, 78, 174, 116, 152]. An efficient solution method for
a particular case (maximizing overall sustainability) of this problem was presented in [77]
and expanded in [78] to deal with the multi-objective version of the problem where overall
sustainability is maximized at the same time as its variability is minimized.

Marlow and Dell [116] solve a short term problem where a squadron of up to 24 aircraft is
planned in a planning horizon of up to 30 periods of one day each. Each aircraft is assigned
a number of flight hours each day in order to meet an overall demand per period and for
the whole planning horizon. Two types of checks are included, one is calendar based, the
other is flight hour based. The capacity of the maintenance workshop is modeled with a CFB
formulation. Several objectives are modeled as soft constraints: compliance with the total
and daily demand of flight hours, the correct distribution of remaining flight hours for the
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fleet and the compliance of flight hours between checks. Piecewise linear penalties are used
as weights for these objectives.

Seif and Yu [152] propose a generalized version of the problem in [77]. The changes
consist of including several check types, each with a particular flight hour frequency; several
maintenance workshops, each with a capacity to do checks and specific check types it can
do; the demand for flight hours is given for each aircraft type. The objective stays the same:
maximize the effective remaining flight time and the procedure to solve the problem is an
adaptation of the one in [77].

Cho [48] presents a problem where missions and checks are scheduled for a fleet of 15
aircraft over a planning horizon of 520 half-day periods (two years without weekends). In
contrast with CFB, missions (also called sorties) and checks are modeled in discrete assign-
ments. Two types of missions were used, each requiring a different amount of flight hours.
Checks are modeled via assignments of a fixed duration of periods (20, representing two
weeks). Remaining flight hours are still controlled by a flow balance. Another contribution
is the fact of assigning a discrete state for each aircraft at the end of the planning horizon, in
order to guarantee the correct cycle-like status of the fleet. The objective is to minimize the
maximum number of aircraft under maintenance over all periods. We call this formulation
the Discrete Check and Mission (DCM) formulation. The DCM formulation has been the
base for other more recent contributions, such as [108, 154].

Shah et al. [154] add two variants to the DCM formulation: (1) missions are relaxed into
continuous flight hours, just like in [98] and (2) the objective is the minimization of the total
number of checks in the whole planning period. The maintenance capacity is modeled as a
constraint. The plan is a fleet of 7 aircraft, during 52 periods. Li et al. [108] incorporated the
use of random simulated initial states for aircraft and random simulated durations for checks.
The values followed uniform distributions and were known in advance of the solution process.

Hahn and Newman [85] presents a problem where checks and missions (deployments) are
scheduled for a fleet of 10 helicopters over a planning horizon of 12 weekly periods. The
model uses mostly a DCM formulation where aircraft are deployed into missions where they
fly a fixed amount of hours per period. In addition to these considerations, aircraft that
are not deployed are considered “in base”, where they fly a variable but bounded amount of
hours. The base has a range for the total flight hours per period and each aircraft has a range
of flight hours for the planning horizon. Checks, which are done in base, can only be done
when the amount of remaining flight hours reaches some value close to zero. The number
of concurrent checks is limited by the base capacity. Initial conditions regarding current
deployment, maintenance status and remaining flight hours are taken into account. End
conditions are also taken into account to guarantee continuity. The objective is to penalize
not reaching flight hours goals in the base and changing location too often without the need
for a check. Winata [177] uses this same benchmark problem with slight variations (no “in
base” flying) and a larger fleet (10 - 40 aircraft).

As can be interpreted from the use of less frequent checks, the MFMP deals with longer
terms than the FMP. Still, we can differentiate between be short-, medium- and long-term
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planning horizons. The short term has a time horizon of at most 1 year and is usually divided
into periods of one day [116, 48, 146].

Medium term planning is concerned with a weekly or monthly schedule over 6 months to
2 years [152, 174, 98, 85, 136]. Here, checks are assigned every 200 to 400 flight hours, which
correspond to type B and C checks. The capacity for these check types is seen as the number
of available man-hours at each period of time.

Long term planning covers time horizons between five and ten years and mostly addresses
scheduling of D checks [55]. These operations are particular in that they last several months.
Checks are scheduled every 1000 - 1200 flight hours or at most 5 years after the last overhaul
maintenance.

A common hypothesis considers an homogeneous fleet, i.e. each aircraft being capable
of performing any of the existing missions. One exception is where an heterogeneous fleet is
used is Seif and Yu [152].

One can easily imagine that long term military operations are subject to uncertainty
regarding missions, destinations and flight hours. However, contributions incorporating un-
certain parameters are quite rare. One of the first attempts to take into account the stochastic
nature of maintenance requirements and durations was presented by Mattila et al. [119], where
a simulation model was built in order to find good maintenance policies. Kessler [93] devel-
oped a model based on a multi-armed bandit superprocess to choose between two different
heuristics or policies in order to maximize the availability of the fleet.

The planning of missions and maintenance for military aircraft shares some similarities
with the planning of the procurement and retirement of said aircraft [125, 75]. For example,
the decision on how to distribute the remaining flight hours among the fleet by choosing a
good policy of mission assignment under a certain budget.

We present a classification of existing MFMP formulations by grouping features in three
categories: maintenance, mission and aircraft-related. These features consist represent differ-
ences in objective functions and constraints.

Maintenance related features

FP Flight potential: frequency of checks constrained by flight hours.

CP Calendar potential: frequency of checks constrained by calendar periods.

FD Fixed duration: each check has constant duration that depends on the type of check.

CA Capacity: maximum number of aircraft undergoing a check in any given period.

MS Multiple stations: each maintenance station has its own capacity and serves a subset of
aircraft or a subset of check types.
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RC Relaxed capacity: the maintenance capacity is measured in man-hours and each check
requires a certain amount. If a check is not finished at the end of a period, the remaining
man-hours can be covered in the next period.

MT Multiple types: aircraft may have more than one type of check. Each type has a
frequency, duration and capacity usage.

Mission related features

DA Discrete assignment: missions require a certain number of aircraft to be assigned each
period. These aircraft need to fly a fixed amount of flight hours.

HD Hour demand: a demand of flight hours is required in each period per group of aircraft.

HF Heterogeneous fleet: only compatible aircraft can be assigned to each mission.

MD Min duration: if an aircraft is assigned to a mission, there is a minimum amount of
calendar periods it has to remain assigned to this mission.

HT Hours in total: the total number of flight hours in the horizon needs to fall within a
given range. Sometimes, each aircraft or group of aircraft has its own range.

Aircraft related features

IS Initial state: mission assignments and checks that start before the beginning of the
planning horizon are fixed.

AV Availability: the total amount of checks per group of aircraft is limited:

(a) at all periods, minimize the sum.
(b) at each period during the planning horizon, upper bound.
(c) at all periods, minimize the maximum.

SU Sustainability: limit the amount of remaining flight hours per group of aircraft:

(a) at the last period of the planning horizon, lower bound.
(b) at some periods, lower bound.
(c) at each period during the planning horizon, lower bound.
(d) at all periods, maximize the minimum.
(e) at all periods, maximize the sum.
(f) at all periods, minimize the variance.

Table 2.1 shows the problem formulations used in the previous work and available infor-
mation about solved instances of the problem.

Table 2.2 shows the constraints implemented in existing problem formulations for the
MFMP.
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Reference |I| |T | Unit Hmax Method

Kozanidis [98] 24 6 m 300 MIP
Hahn and Newman [85] 10 12 w 200 MIP
Winata [177] 40 12 w 200 MIP, VNS, TS, SA
Cho [48] 15 520 0.5 d 300 MIP
Verhoeff et al. [174] 20 52 w 400 MIP
Li et al. [108] 20 50 0.5 d 200 MIP
Gavranis and Kozanidis [78] 50-100 6 m 300 MIP
Marlow and Dell [116] 12-24 30 d 200 MIP
Shah et al. [154] 7 52 m 25 MIP
Seif and Yu [152] 100 6 m 125-500 MIP
Chapters 3 and 4 15-60 90 m 800-1200 MIP
Chapter 5 45-120 90 m 800-1200 MIP, DP

Table 2.1: Previous work: solved instances. Units: m=month, d=day, w=week. |I|=fleet’s
size, |T |=horizon’s length, Hmax=check flight-hour frequency.
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Reference Maintenance Missions Fleet
FP CP FD CA MS RC MT DA HD HF MD HT IS AV SU

Kozanidis [98] C C C C C Oc Od
Hahn and Newman [85] C C C C C O C C Ca
Winata [177] C C C C C O C
Cho [48] C C O C C Ca
Verhoeff et al. [174] C C C C C C Cb Od
Li et al. [108] C C O C C
Shah et al. [154] C C C C C Oa Ca
Gavranis and Kozanidis [78] C C C C C Oe,Of
Marlow and Dell [116] O C C C O C Ob
Seif and Yu [152] C C C C C C C C Oe
This thesis C C C O C C C C Oa,Ob Oc

Table 2.2: Constraints taken into account in the existing formulations: “O” means an objective or a soft constraint, “C” means a hard
constraint.
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As can be seen from this comparison, the majority of existing formulations were developed
for an homogeneous fleet that needs to comply with general flight-hour demands under flight-
hour constraints to control checks and maintenance capacity constraints (flexible or not).

2.2 Related problems

We understand related problems as problems that have a similar structure and thus may be
solved with similar techniques, regardless of the end application. In the case of the MFMP,
this structure involves the presence of a set of resources, a set of planned tasks, and the
existence of maintenance operations (or resting periods) linked to the usage of said resources.

This section presents three related problems that share many similarities with the MFMP.
Section 2.2.1 presents the Nurse Rostering Problem (NRP). Section 2.2.2 describes the Rolling
Stock Assignment and Maintenance Planning (RSAMP) problem. Finally, Section 2.2.3 dis-
cusses the Maintenance Scheduling and Production Planning of Nuclear Plants (MSPPNP).

2.2.1 The Nurse Rostering problem

The Nurse Rostering Problem or Personnel Scheduling Problem decides shifts for a set of
workers over a sequence of consecutive periods along a planning horizon. The result of this
planning process is called a roster. This roster consists of the assignment of one shift (includ-
ing a rest shift) to each worker (or nurse) on each day. Three types are enumerated by Baker
[23]: shift scheduling (time-of-day scheduling), days off scheduling (day-of-week scheduling)
and tour scheduling (a combination of both). The MFMP problem fits well with the sec-
ond category: daily shifts (missions) are scheduled for an heterogeneous workforce (aircraft
fleet) whose working periodicity (check frequency) does not match the operating frequency
(planning horizon or missions).

Several surveys of the NRP have been done. For classification of the different problems
according to the types of constraints imposed, see [173, 54]. De Causmaecker and Vanden
Berghe [54] presented a naming convention following the α|β|γ convention in the scheduling
domain. For the state of the art on solving techniques, see [47, 41]. More recently, [170] pro-
vides an up-to-date summary of the contributions to the problem according to the technique
used.

As the literature shows, the NRP is more a large family of problems that share certain
characteristics than a single problem. This has not impeded the study of the structure and
the complexity of each of its variants. Some examples of these studies can be found in
[105, 45, 38, 39, 156, 59, 172].

Caprara et al. [45] presents a staff scheduling problem where a set of workers must comply
with a set of duties, each duty requires a certain amount of workers on each day. Workers need
to have assigned a rest block. There are several rest types, each with a different duration in
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number periods. Each worker needs a certain amount of rests of each type during the planning
horizon. The complexity is proven to be NP-Hard via the Three Partitioning Problem.

In Brunner et al. [39], the flexible days-on and days-off scheduling problem is shown.
This problem deals with the assignment of a minimum and maximum number of consecutive
working (days on) and non-working days (days off) to each worker over a planning horizon
while guaranteeing a total number of workers per day. The problem is proven NP-complete
by reducing it to the the circulant problem.

Smet [156] presents many cases of the NRP, some of which can be solved in polynomial
time. In particular, a cost-minimization problem P2 is presented where each nurse is required
a constant number of days to work, a range of nurses is required at each day per shift
type, and a set of unavailable days for each nurse is taken into account. The objective is to
minimize the sum of costs for assigning each shift to each nurse on each day. The problem is
proven to be solvable by a minimum cost network flow problem. Smet [156] also presents the
shift minimization personnel task scheduling problem (SMPTSP), where an heterogeneous
workforce is assigned a set of scheduled tasks with a given start time and end time. The
objective is to minimize the required number of workers needed to perform all the tasks.

2.2.2 The Rolling Stock Assignment and Maintenance Planning problem

A problem that is closely related to the FMP in nature and structure but is less studied is the
Rolling Stock Assignment and Maintenance Plan (RSAMP) problem, applied to the railroad
industry to plan the maintenances of trains units, also called rolling stock. Here, a timetable
of predefined tasks is taken as input data, each task being a trip between two stations. The
problem consists of assigning tasks to rolling stock (the train units that will actually do the
trip) while also scheduling the checks operations with their respective frequencies. Sometimes,
the solutions need to take into account complex shunting operations inside the stations to
guarantee feasibility.

According to Lai et al. [102], trains in Taiwan Railways Administration regular inspections
can generally be divided into four levels: daily inspection (every 1800 km or 3 days), monthly
inspection (every 90,000 km or 3 months), bogie inspection (every 500,000-1,000,000 km or
1.5-3 years), and general inspection (2,000,000-4,000,000 km or 6-9 years). The former two
types are done in the train depot while the two latter are done in a dedicated workshop.

In Doganay and Bohlin [61], checks are scheduled over a 2 year horizon in weekly periods
by taking into account the availability of spare parts by minimizing the total number of
checks, storage of spare parts and the time the trains are in maintenance. Each check has a
different frequency and use of spare parts. In Lai et al. [102], daily and monthly checks are
scheduled in an heterogeneous fleet of rolling stock. In Lin et al. [109] preventive checks are
planned every 1.5 years or 600,000 km for a high-speed train network are decided over a one
year horizon with a simulated annealing technique. The number of checks at each period is
limited to capacity and to availability objectives at each period (because of seasonality).
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Maróti and Kroon [117] show the re-routing of an existing rolling stock schedule in order
for “urgent” train units, that require a maintenance inside the planning horizon, be routed
in time to a maintenance facility. The original rolling stock schedule includes a sequence of
tasks for each train unit. Each urgent train unit has a set of maintenances that it needs to
accomplish during the new plan and each maintenance requires an additional “buffer time”
in order to take place. Maintenance capacity is not explicitly incorporated but there are
variable costs associated with the actual changes to the plan, e.g. the time and station of
these changes, the distance between arrival and departure tracks, the time between tasks, etc.
The planning horizon is around three days.

Tréfond et al. [168] proposes robust plans for the rolling stock routing problem by assigning
sequences of tasks to train units while scheduling maintenance operations after some of the
tasks with calendar-based constraints. A maintenance task can be fitted in between two
consecutive assignments, if enough time exists from the end of the first task and the start
of the second one to cover its duration. The number of maintenances that each train has to
do is known and the maintenances do not depend on the usage of the train unit. Mira et al.
[121] expands on this work by including a constraint on maintenance capacity measured in
man-hours that is consumed by each maintenance task’s work load.

2.2.3 The Maintenance Scheduling and Production Planning of Nuclear
Plants

The 2010 ROADEF/EURO Challenge [137] consisted on the production planning and main-
tenance scheduling of nuclear plants. It was sponsored by EDF, France’s electricity company.

The MSPPNP problem consists of deciding when to stop each nuclear plant for refueling
and maintenance operations, as well as its production plan in order to satisfy a series of
constraints. In relation to the MFMP problem, each nuclear plant can be seen as an aircraft,
the electricity demand can be viewed as the missions’ needs and the production plan like the
mission assignments.

Checks behave similarly as in the MFMP. They replenish the production potential, and
thus define production cycles. During the check, the unit becomes unavailable. Each check
lasts a fixed amount of time and there is a limit on the amount of simultaneous checks that
can be carried. One difference is that in the MSPPNP there are additional decisions to take
during the check, such as the quantity of refueling for the plant.

The production plan needs to satisfy technical limitations on capacity and changes on the
quantity of production. Just as with the heterogeneous fleet of aircraft, there are two types
of nuclear plants and each type has specific constraints.

There are many sources of uncertainty, mainly related to the demand of electricity: the
price, the demand and the quantities that can be supplied. This is why a multi-scenario
stochastic problem is formulated.
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The instances used in this challenge have a planning horizon of 260 weeks (5 years), with
7 to 21 time-steps per week. The number of power plants rises up to 100 or 70, depending
on the type. In order to model the uncertainty of the input data, up to 120 scenarios are
presented. Several (less than six) checks are conceived for each power plant in this planning
horizon.

2.3 Solution approaches for the FMP and related problems

This section is organized as follows. Section 2.3.1 presents Mathematical Programming (MP)
approaches, including MIP models, graph algorithms, and (heuristic) decompositions based
on MIP or LP models: rolling horizon, column generation among others. Section 2.3.2 lists
Constraint Programming (CP) implementations applied to relevant problems. Section 2.3.3
shows relevant metaheuristics (MH) methods. Finally, Section 2.3.4 presents the hybrid
implementations where two or more of the previous three groups are combined.

2.3.1 Mathematical programming

MP-based approaches have been by far the most common techniques used to solve the MFMP
and similar problems. Most of MP approaches are based on modeling the problem as a
linear programming model consisting on a set of continuous and binary variables related by
linear equations (named constraints) which constitute the valid solution space of any solution.
Finally, a linear objective function on the set of variables is used to distinguish the quality of
each solution and be able to determine the best one. These models are called Linear Programs
(LP) if all variables are real, Integer Programs (IP) if all variables are binary or Mixed Integer
Programs (MIP) in case a combination of real and binary variables exist. In this thesis we
will use MIP to refer to any of the latter two.

For each MIP model, there exist a counterpart LP model, where the only difference is
each binary variable is assumed real. We call this LP model the LP relaxation of the MIP
model. There exist efficient algorithms to find the optimal solution to an LP problem, the
most commonly used is the simplex method. Many techniques build on top of this method
to develop sophisticated solution approaches. The most common approach is the Branch and
Bound (B&B) method, where the binary variables are fixed one at a time in a tree-shape
graph that results in an exponential exploration of the solution space (branching), solving
an LP at each node until an integer solution is found. The efficiency of this exploration is
greatly improved by being able to prune the tree with information from the best valid solution
(integer solution) yet, which imposes an upper bound for the optimal solution (bounding).

Several additional techniques are used to help prune branches of the tree in order to
improve performance. Exact methods, such as probing [151], preprocessing [12] and valid
cuts [84] can achieve reductions of the solution space without taking out any feasible integer
solution (i.e., without loss of optimality). Also, most solvers use a number of primal heuristics
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to efficiently find new integer solutions through the use of the Linear Programming (LP)
relaxation of the problem and incumbents solutions (e.g., RINS, Diving Heuristics, Local
Branching, Feasibility Pump [11, 151, 51, 72]). In Diving Heuristics, a subset of variables is
fixed (usually inspired by the LP relaxation), see [64, 15] for examples of this.

Finally, “a priori” heuristic decisions can be incorporated to guide the whole solution pro-
cess. These heuristics are guided by external information about the problem and correspond
to the fixing of variables and the incorporation of heuristic-cuts (also known as pseudo-cuts,
see [106]) more generally.

The advancements of MIP solvers, both open-sourced and commercial, over the last two
decades [34, 35] make them a very powerful tool for solving a wide range of combinatorial
optimization problems, when the appropriate model is built using the best practices [176, 180].

In the case of the MFMP, techniques employed have usually been a mix of MIP models
and heuristics built on top of those MIP models [153, 85, 98, 99, 100, 77, 78, 174, 116, 152,
48, 146, 55]. More details on hybrid formulations based on MIP are found in Section 2.3.4.

MIP formulations used to solve the FMP problem and the TA problem are grouped in
three categories: String-based models solved by Column Generation (CG) techniques [150],
multi-commodity flow formulations (MCNF) [95] and time-space network (TSN) models [86].
In CG and MCNF, a graph is constructed where each node represents a flight and each arc
represents a feasible sequence of two consecutive flights. A path in this graph constitutes a
feasible schedule for one aircraft for the whole planning horizon. String-based models assign
one path to each aircraft. MCNF assign a set of arcs to each aircraft.

In time-space network models, each node represents the event at which an aircraft arrives
or departs from a flight. Each arc corresponds to a flight leg (where an aircraft changes
airport and the length corresponds to the duration of the flight) or a waiting arc (where the
aircraft remains in the same airport and the length corresponds to the lapsed time before the
next available flight).

In CG techniques, each variable represents a feasible sequence of assignments to an aircraft.
This creates a non-polynomial number of variables with respect with the problem size and
becomes impossible to store in memory for medium to large instances. As a result, a CG
algorithm is used to solve the Linear Programming (LP) relaxation of such MIP. This LP
relaxation is the basis for CG heuristics or exact Branch and Price (B&P) implementations[24,
27].

A key point in the efficiency of a CG scheme is the ability to solve quickly integer sub-
problems, using Dynamic Programming (DP) algorithms such as the Shortest Path Problem
(SPP) [24, 27] and the Shortest Path Problem with Resource Constraints (SPPRC) [150, 148].
These algorithms are also used to solve neighborhoods in hybrid techniques [17] and the
corridor method [158]. The particular appeal of using DP algorithms resides in that they
explore the exponentially large neighborhoods in polynomial time and obtain better local
optimum compared to using traditional local search heuristics with small neighborhoods.
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Other DP algorithms, such as A∗, can also be used directly to solve the problem in
question. Deng et al. [60] uses a Dynamic Programming-inspired heuristic to solve the AMS
problem.

Matheuristics that apply heuristics on top of MIP models are used to solve MFMP prob-
lems by variable fixing [55] and splitting the problem by fleet and recombining [116]. Cho
[48] proposes a two-stage MIP matheuristic for the complete problem where the first phase
decides maintenances and relaxes the missions requirements. The second phase decides the
final, discrete, mission assignments.

In large planning problems, where the horizon is divided in discrete periods, rolling horizon
(RH) heuristics are commonly used as a constructive decomposition heuristic, as in [30]. The
FMP problem is no exception, as presented in [124]. A RH heuristic slices a problem into
two or more smaller subproblems with, typically, the same number of periods (time windows
size). The subproblems are ordered according to their time windows. Each iteration solves
one of the newly created subproblems while using the solution of the previous subproblem as
additional constraints in order to guarantee a feasible solution when the last subproblem is
solved. This technique shares several similarities with repair / recovery formulations, which
are common in the planning of flights [70, 97, 91, 178, 94].

The most common traditional methods to solve the NRP have been exact methods, spe-
cially MIP models. MIP-based approaches, including decompositions such as CG and B&P,
are used in [22, 31, 40, 80, 90, 115, 149]. Several heuristic approaches based on CG are also
proposed [25, 163].

With respect to the RSAMP problem, MIP models based on network-flow formulations
are quite common [61, 102, 121, 117, 168]. Lai et al. [102] uses a four-phase matheuristic
based on a network-flow MIP model to solve the RSAMP problem.

In the MSPPNP problem, Lusby et al. [114] constructs a two-phase MP approach where
the first phase consists of a large MIP model that relaxes some constraints; and the second
phase repairs the solution with respect to those relaxed constraints. Jost and Savourey [92]
proposed a three-step matheuristic where the first and second phases decided the mainte-
nances and the third assigned the production planning.

2.3.2 Constraint Programming

CP is a technique born from the artificial intelligence domain, initially conceived to solve
decision problems where a feasible solution is needed. Nowadays, it also permits to model
and solve combinatorial optimization problems. Its main modeling concepts are not too
different from the ones in MP. A set of variables represents decisions and a set of constraints
relate those variables by limiting certain combinations of values. Nevertheless, the similarities
stop here. Each variable is defined by a set of discrete finite possible values, called a domain.
Constraints are not limited to linear equations: they apply any function to a subset of variables
that limits the product of the domains of those variables.
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CP uses deduction (called Constraint Propagation) and induction (called search and back-
tracking) to reduce the non-valid solution space as much as possible by adding constraints
and restricting the domains of each variable. During Constraint Propagation, infeasible values
of a variable domain are detected by combining information from other variables’ domains
and constraints. During search and backtracking, a tree-search is done by temporarily fixing
the value of one or more variables in order to find a solution or prove an infeasible solution.
This search is similar to the branching present in MIP models. When an infeasible value for
a variable is proven, its domain can be reduced, which in turn leads to better propagation.
When a domain of a variable reaches a size of 1, the variable can be fixed to that value. If the
domain of a variable is empty, an infeasible problem is proven. In order to guide the search
towards better solutions, each time a feasible solution is found it is stored and used as an
upper bound to constraint the problem even further.

CP approaches usually perform at its best in highly constrained formulations where the
valid solution space is relatively small. More detail on CP can be found in Marriott et al.
[118], Apt [19], Dechter and Others [56]. In recent years, attempts have done to integrate
CP and MIP under the same discipline. In particular Achterberg [10] presents Constraint
Integer Programming (CIP) as a new paradigm that includes MIP, CP and SAT modeling
and solving techniques combined in a low-level search tree. Combined usage of CP and MP
to solve specific relevant problems is detailed in Section 2.3.4.

In the MFMP problem, there is limited evidence of CP models being used. In the case of
the French Air Force, there is an ongoing collaboration with Airbus Defense and Cosling, the
latter developers of the open source CP solver Choco [138]. The result of this collaboration
is the tool called “OptaForce” [9].

Grönkvist [83] proposes several CP models to solve the TA problem. Grönkvist [82] shows
how CP can used to pre-process and eliminate impossible flight patterns in a CG technique
to solve the TA problem. Gabteni and Grönkvist [74] combines CG and CP to produce
near-optimal solutions for long and mid term planning horizons.

CP models have been particularly prominent in the NRP or personnel scheduling appli-
cations [36, 46, 103, 120, 126, 160, 169].

2.3.3 Metaheuristics

The world of MH is vast, with as many algorithms as species exist in the animal kingdom
[159]. Talbi [164] does a comprehensive study on their nomenclature. In particular, local
search and simulated annealing are cataloged as single-solution based MH (S-metaheuristics)
in contrast with population based MH (P-metaheuristics) such as evolutionary algorithms
and ant colony optimization.

The S-metaheuristics are the most common implementations used to solve the MFMP,
FMP and similar problems and so we will focus on this type. Most search-based MH have a
similar structure: (1) a choice of one or more types of neighborhood to modify a solution, (2)
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a descent step where small changes are explored greedily, (3) an exploration step where local
minima is avoided by expanding the range of the search, and lastly (4) a memory of previous
visited solutions or changes.

Simulated Annealing (SA) first presented in [96], is a technique based on local search
where, at each iteration, a neighbor solution candidate is selected by applying a small change
(or move) to the current solution. The candidate is then compared with the current solution
and accepted to replace the current solution with a certain probability. The probability
depends on several factors such as: the difference in quality between the two solutions; the
temperature, which is a function of the iteration number; and configuration parameters.

Variable Neighborhood Search (VNS), first introduced in [123], combines three steps in
each iteration: first a shaking phase introduces random changes to a solution to produce a
distant neighbor incumbent solution; then a local search step is applied to this new incum-
bent solution; finally, the new incumbent solution becomes the current solution if a certain
condition is reached, e.g., it improves the objective function.

Greedy Randomized Adaptive Search Procedure (GRASP) first presented in Feo and
Resende [69] is a technique based on local search were, at each iteration, a new solution is
build, then locally improved and finally kept or not. The solution creation process involves
applying, at each iteration, a greedy function that varies according to the state of the solution
to select the best N candidates moves and then choses one randomly to apply to the function.
This is repeated until a solution is obtained. The local improvement is done with a greedy
local neighborhood search and stops when the solution can no longer be improved.

In the MFMP problem, Winata [177] uses SA, Tabu Search (TS) and VNS to generate
fast solutions and compares them with an exact MIP formulation. In the FMP problem,
Murat Afsar et al. [124] use a rolling horizon heuristic solution method where each problem
was solved heuristically by exploring a network representation of the possible flights and
maintenances for each aircraft. In [63], a heuristic VNS approach was used to solve the TA
problem in order to minimize the size of the fleet. For the RSAMP problem, Lin et al. [109]
use Simulated Annealing to plan the long term maintenances of high-speed trains. For the
NRP, S-metaheuristics are the most common techniques used in the last years, namely VNS
[162, 166, 175, 33] and SA [110]. Other techniques used in recent contributions are a hybrid
artificial bee colony [21] and a scatter search approach [42]. Heuristic VNS approaches for
the NRP are found in [127]. For the MSPPNP problem, Gardi et al. [76] provided one of the
best results in the challenge with a pure local search approach.

2.3.4 Hybrid methods

In recent years a growing interest on hybrid MH has motivated the mix of techniques from
different domains in order to achieve performance. Usually, these combinations take advantage
of the strengths of each of the individual techniques and produce a more robust solution
method. Talbi [165] classifies hybrid MH hierarchically according to the level (low-level, high-
level) and the mode (relay, teamwork), resulting in 4 types: LRH (low-level relay hybrid),
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HRH, LTH, HTH (high-level teamwork hybrid).

In the LRH, one possibility described in Talbi [165] is to have an S-metaheuristic call
mathematical programming techniques as very large neighborhood searches (VLNS). These
techniques can be branch and bound, dynamic programming or network flow algorithms. In
Raidl [142], large neighborhood searches (first presented in Shaw [155] with Constraint Pro-
gramming) are described as a frequent choice when combining MH and MIP models. In these
cases, a compact model together with intelligent variable fixing permits an efficient explo-
ration of the neighborhood: MIP models usually perform well with medium-size instances
of problems but often perform poorly on very large ones. Ahuja et al. [16] illustrate differ-
ent ways to use VLNS with exact methods, including mathematical programming, network
flow (i.e., shortest path) and assignment problems specially applied for the TSP. For other
applications of MIP on VLNS, see Lopes et al. [112].

Hybridizing several types of neighborhoods in a VNS approach [87] makes the result more
robust to local optima: a local optimum for the resulting VNS will be the intersection of the
local optimum of all its neighborhoods. The Hill Climbing (HC) version of VNS, known as
Variable Neighborhood Descent (VND), is naturally used to solve MIP problems with a B&B
exploration of neighborhoods defined by MIP variable fixing.

Many hybrid matheuristics are applied to the NRP by combining MP and search-based
MH. Dowsland and Thompson [62] propose a matheuristic based on solving a knapsack model
for a feasible problem and then a combination of Tabu Search (TS) and several graph-
based neighborhoods modeled in DP are used. Smet and Berghe [157] use a MIP-based
VNS matheuristic approach by random fix-and-repair. Other examples of VNS using MIP
computations are [140, 43, 175, 57, 170].

For the MSPPNP problem, several hybrid matheuristics are used. Rozenknop et al. [147]
builds a CG-based two-phase heuristic hybrid algorithm. Dupin and Talbi [65] present a VND
that uses several neighborhoods: time windows, subsets of plants, LP-based variable fixing,
among others. Anghinolfi et al. [18] use a three-phase approach where the first phase finds a
good initial solution for the maintenance decisions with a MIP model, the second improves
the solution with SA and the third phase decides the production planning.

Çakırgil et al. [44] presents a two-phase hybrid heuristic for the NRP. The first phase
is a matheuristic build by four phases: clustering, assignment models, routing models and
re-assignment models. The second phase is a multi-objective reduced VNS matheuristic to
explore non-dominated solutions of the solution of phase one.

In the case of VNS with a CP subproblem applied, examples for the NRP are found in
[141, 139]. In Cipriano et al. [49] a CP model was complemented by local search routines and
Li and Womer [107] use CP in combination with TS.

For the MSPPNP problem, Gavranović and Buljubašsić [79] iteratively schedule checks
using a CP subproblem, and plans production using a greedy heuristic; then improve the plan
by local search. Likewise, Brandt et al. [37] device a two-phase heuristic where the first phase
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uses a CP subproblem for scheduling checks and the second one a greedy heuristic to produce
a production planning.

Hybrids methods including CP and MIP have been specially present in solving NRP. In
some cases, CP is used in combination with a CG or B&P approach [181, 58, 88], usually as
a subproblem to generate columns. Bertels and Fahle [32] combine CP, MIP and MH and
Côté et al. [53] use CP to inspire alternative MIP formulations.

2.4 Machine Learning applied to Mathematical Programming

Given the success of Mathematical Programming (MP)-based approaches to solve the MFMP
[48, 108, 116, 55, 154], a natural step forward is to explore new ways of improving the perfor-
mance of said MP approaches. New advances in Machine Learning (ML) promise to provide
such improvements.

The application of ML is a recent complement to existing techniques for solving large-scale
CO problems, such as matheuristics and MH [13, 14, 165]. ML models are an heterogeneous
group of techniques that were previously known for predicting results based on past infor-
mation. More recently, though, the surge in popularity of Reinforcement Learning (RL) has
made more explicit the link between the CO and ML worlds [28]. Bengio et al. [29] provide
several definitions and classifications for the implementations of ML that can be applied to the
CO domain. In terms of ML techniques applied to CO the two most common frameworks are
supervised learning and reinforcement learning. With respect to the goal on the application
of ML, Bengio et al. [29] cite three scenarios: end to end learning, learning meaningful proper-
ties of optimization problems, and machine learning alongside optimization algorithms. Talbi
[165] offers an overview of hybrid algorithms by combining MH, MP and ML. More related
to our case, there exists some previous work on applications of ML on MIP formulations.
Following [29], these techniques fall under the category “Learning meaningful properties of
optimization problems” by using “demonstration” (or “imitation learning”). In other words,
supervised learning models are trained with the help of a set of several instances solved (of-
fline) up to or near to optimality by some exact method. This method is sometimes called
“oracle” and usually consists of the original mathematical model solved over a long time and/
or over small instances. The objective is to gain insights on the possible solution of a new
unseen problem. This information can be used directly to guide decision making (as in [71])
or can be used to increase the performance of the existing model (as in [104, 179, 111]).

Xavier et al. [179] show it is possible to learn from the resolution of an offline set of
problems similar to a yet unknown one in order to improve performance by learning features
of the solution. For their CO case, solving large-scale security-constrained unit commitment
problems, three oracles were constructed: one chooses a subset of computationally heavy con-
straints that will probably not be needed; the second selects good candidate initial solutions;
the third one discards part of the solution space without (much) loss of optimality. Here, the
experimentation is done in a training set that corresponds to 300 random variations for each
one of eight existing instances from the literature. The ML techniques used are the polling
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of the training optimal solutions and Support Vector Machines depending on the oracle.

Fischetti and Fraccaro [71] use ML to predict the value of the objective function on
several hard-to-solve instances in order to take strategic decisions without solving the complete
tactical CO problem. The application studied is the choice of the optimal location (strategic)
and design (tactical) distribution of offshore wind parks. The techniques used are a Support
Vector Regression model applied on four features of the input data as well as the optimal
objective function for a relaxed problem. The training set consists of 3000 instances of near-
optimal solutions solved by heuristic means.

In a similar fashion, Larsen et al. [104] use ML to predict the optimal tactical solution for
an operational CO problem. The application studied consists of deciding the configuration
and number of railcars (tactical) and container-slot-railcar assignments (operational) in a
double-stack intermodal railcar load planning problem. In particular, the tactical decision in
question needs to be taken with incomplete information on the instance (namely, the weights of
containers). The method used is a regression feedforward neural network, applied on datasets
of 100k, 200k and 20M instances solved to under 5% of optimality using a commercial solver.

Lodi et al. [111] use ML to predict the similarity of two given instances. The application
studied is a Facility Location Problem. Learning constraints are added in order to force a
new instance to have a minimum number of opened facilities. This number depends on the
number of facilities that were opened in a reference instance (solved to optimality) and how
similar the two instances are.

Dupin and Talbi [66] apply ML to predict if two scenarios will have similar solutions
and applies it to the MSPPNP problem. In the stochastic optimization formulation of this
problem, scenarios are first clustered so that each group has as set of scenarios as diverse as
possible. Then, each cluster is solved independently in order to provide good lower bounds.
The similarity of two scenarios is measured by the sum of absolute differences in their demand
profiles.

In order to predict characteristics of solutions, certain care needs to be taken when dealing
with the possible error in prediction. Most supervised learning methods use a least-squares-
minimization technique (or similar) to calculate the expected value of a function. These
techniques give no information about the distribution of the variance and they can be specially
susceptible to outliers. A more robust technique to predict bounds of dependent variables is
to use “superquantiles” or quantile regressions, which are based in the Conditional Value at
Risk (CVaR). Rockafellar and Uryasev [145] first introduced the term conditional value at
risk in optimization and work by [143, 171, 144] further developed the idea, coining the name
“superquantiles”, and applying it to engineering and reliability decision making.
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2.5 Conclusions

This chapter presented a review of previous work done to solve the FMP, MFMP, related
problems as well as the solution approaches used.

With respect to the civil FMP problem, most work focuses either on the TA problem,
where flights are routed by taking into account maintenance constraints, or the AMS problem,
where maintenances are scheduled with some or all flights remaining fixed. Only a few
actually combine the maintenance scheduling with the flight routing by taking into account
the maintenance capacity and the usage-based maintenance needs. Also, short term instances
are planned with A-type checks and planning horizons of several days.

With respect to the MFMP problem, the common thread between contributions is the
usage-based maintenance scheduling. Missions are sometimes assigned discretely to aircraft
and other times are flight hours that need to be distributed among the fleet. An homogeneous
fleet is usually assumed. Medium term instances are planned with B or C-type checks and
planning horizons of several months.

MP is by far the most common technique to solve the FMP, the MFMP as well as similar
problems. In order to solve large instances, the problem is often split into smaller parts (by
fleet or by calendar) or decomposed into two or more phases. CG and CG-based heuristics
offer an advantage over other types of decompositions by not relaxing the low-level relationship
between flights and checks and thus are usually well-suited to solve many of these types of
problems.

Recently, hybrid methods that combine optimization approaches from different domains
are gaining ground. In particular, MP is currently merged successfully with MH and with ML.
These matheuristics take advantage of the good performance and optimality guarantees of
MP in small and medium-sized problems and the efficiency with which MH and ML represent
and explore the whole solution space.

In the following chapter, we will present a new, long term variant of the MFMP that
includes new features not previously seen in the literature, such as calendar-based checks, the
minimum durations for mission assignments and the extended size of the planning horizon.
Several methods based on MP are conceived that include traditional decompositions, ML-
based learned cuts and hybrid matheuristics.
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In this chapter, the complexity for the long term MFMP is studied. The instance of
a MFMP problem is formalized and then applied in the design of a configurable dataset
generator inspired by the real needs of the French Air Force. An exact MIP model for the
MFMP problem is formulated and used to test scenarios that vary in fleet size, planning
horizon length and mission size in order to obtain insights on the sensitivity of the model to
changes in the problem size. Also, additional scenarios are solved in order to test the changes
in performance of the model because of changes in individual parameters of the MFMP.
Finally, a heuristic is built to generate fast feasible solutions, that in some cases are shown
to help warm-start the model.

The chapter is structured as follows. Section 3.1 formally presents the MFMP problem
and Section 3.2 studies its complexity. Section 3.3 explains all the input data used in this
chapter and the following chapters. Section 3.4 formulates an exact MIP model and Section
3.5 describes a heuristic to generate initial solutions. A description of the instance generation
is done in Section 3.6 and the experimentation and results are presented in Section 3.7.
Finally, Section 3.8 offers conclusions.

The contributions of this chapter were presented in the following communications: F. Peschiera,
A. Haït, N. Dupin, and O. Battaïa. A novel mip formulation for the optimization problem of
maintenance planning of military aircraft. In XIX Latin-Iberoamerican Conference on Opera-
tions Research, pages 1–2, Lima, PE, 2018, F. Peschiera, O. Battaïa, A. Haït, and N. Dupin.
Bi-objective mip formulation for the optimization of maintenance planning on french mili-
tary aircraft operations. 2018. URL http://oatao.univ-toulouse.fr/20766/. An article
has been submitted for publication: F. Peschiera, A. Haït, N. Dupin, and O. Battaïa. Long
term planning of military aircraft flight and maintenance operations. Technical report, ISAE-
SUPAERO, UniversitÃľ de Toulouse, France, 2020. URL https://arxiv.org/abs/2001.
09856. Finally, a modified version of the heuristic presented Section 3.5 has been tested,
validated and successfully exploited by the company Dassault Aviation on real-life instances
of Mirage 2000 fleets.

3.1 The long term military flight and maintenance planning
problem

Section 3.1.1 formally presents the MFMP problem, including the nomenclature that will
be used for the rest of this thesis. These requirements are the result of several meetings
with specialists in charge of the planning of maintenances in the Mirage 2000 fleet in the
French Air Force as well as maintenance specialists from Dassault Aviation, the company
that manufactures the Mirage 2000. During these meetings, the problem was first described
in detail, then formalized by us, and finally the requirements were validated together. Section
3.1.2 details the realistic assumptions we take based on these exchanges.

http://oatao.univ-toulouse.fr/20766/
https://arxiv.org/abs/2001.09856
https://arxiv.org/abs/2001.09856
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3.1.1 Problem statement

The MFMP problem in question consists of assigning an heterogeneous fleet of military aircraft
i ∈ I to a given set of scheduled missions j ∈ J over a fixed time horizon while also planning
when each aircraft will be conducting checks. Constraints can be classified into three groups:
(1) the missions requirements, (2) the checks that are needed to keep the fleet in good status
and (3) the fleet and its status at any given period.

A series of missions exist along a horizon divided into t ∈ T periods. Each mission j ∈ J
requires a minimum number of aircraft (Rj) among the aircraft that can be assigned to it
(i ∈ Ij). Each assigned aircraft flies Hj hours for each period it is assigned to the mission.
An aircraft assigned to a mission j must be assigned for at least MTminj and at most MTmaxj

consecutive periods.

Each check has a fixed duration ofM periods and cannot be interrupted: during this time
the aircraft cannot be assigned to any mission. Let Remaining calendar time (rct) express
the maximum number of periods, starting at the beginning of a given time period, before
an aircraft must undergo a check; and Remaining flight time (rft), the maximum number
of flight hours an aircraft can be flown before requiring a check, at the end of a given time
period. The rct (rft) of aircraft i before the first period is RctIniti (RctIniti ). After a check, an
aircraft restores its remaining calendar and flight time to their maximum values of Emax and
Hmax respectively. Also after a check, the aircraft cannot undergo another check for at least
Emin periods. The total number of simultaneous checks during each period cannot surpass
the workshop capacity Cmax.

Let serviceability indicate if an aircraft is capable, at the beginning of a given time period,
to perform a mission (i.e., is not undergoing a check) and let sustainability be the number of
total remaining flight hours for each aircraft at the end of each period. To guarantee both
serviceability and sustainability at each time period, missions are grouped into clusters. For
each cluster k, a minimal number of serviceable aircraft (AClustkt ) and a minimal sustainability
(HClust

kt ) is set as a constraint for each period t. All serviceable aircraft have a minimum
default usage for each period equal to Umin flight hours, which they are required to fly when
not assigned to a mission or in a maintenance.

Finally, the main objective is to schedule the checks for all aircraft as late as possible and
to minimize the deviations from all elastic constraints. A secondary objective is to balance
the flying load among aircraft in the fleet so that the variance of the frequency of checks of
each aircraft in the fleet is minimized.

3.1.2 Assumptions

There are constraints that can be violated at a cost per unit of violation. For such elastic
constraints, the violation is bounded within intervals where the cost per unit of violation
within the interval is constant. Multiple bounded intervals permit increasing the cost per
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unit of violation.

Each mission is considered active only during a determined contiguous set of periods.
Missions are assumed to require a constant amount of flight hours per period for each aircraft
and a constant amount of aircraft per period, when active. Each mission j and each aircraft
i have one and only one type Yj and Yi, respectively. We assume a capability to be a set of
optional aircraft characteristics that may be required by a mission. An aircraft can have none
or more capabilities (Qi), a mission can have at most one (Qj) and if it does it is called a
Special mission. An aircraft i is considered suitable for a mission j (i.e., a candidate i ∈ Ij)
if it shares the same type (i.e., Yj = Yi) and has the capability required by the mission (i.e.,
Qj ∈ Qi). A cluster is a set of missions such that each mission has exactly the same type,
capabilities and, as a result, aircraft candidates.

We assume (realistically for our data) a maximum number of two checks for each aircraft
and a minimum of one. Maintenance capacity is constant over the planning horizon. All
checks have the same duration and frequency conditions.

We assume some aircraft (N Init
t ) are already in maintenance in period t at the beginning

of the planning horizon. Other aircraft are conducting missions that started before the start
of the planning horizon and their continued assignment extends into the planning horizon by
AInitij (the fixed set of periods aircraft i extends assignment for mission j at the start of the
planning horizon).

3.2 Complexity analysis

In the current Section, a proof of complexity for the MFMP problem is provided. The proof is
organized as follows: Section 3.2.1 presents the Shift Satisfaction Personnel Task Scheduling
Problem (SSPTSP), Section 3.2.2 presents the Reduced Flight Planning Problem (RFPP)
as a special case of the MFMP. Finally, Section 3.2.3 uses the RFPP to solve the decision
problem in the SSPTSP, thus concluding the proof.

3.2.1 Shift Satisfaction Personnel Task Scheduling Problem

The SSPTSP is a NP-Complete problem presented by Arkin and Silverberg [20]. It is a special
case of the Shift Minimization Personnel Task Scheduling Problem (SMPTSP) [101, 156]
where there is no objective function and thus, only the satisfaction of constraints is required.

A description of the problem, input data and model follow, using the notation in Smet
[156]:

Let P = 1, ..., n be the set of tasks to be assigned and E = 1, ...,m the set of employees.
Each task p ∈ P has a duration up, a start time sp and an end time fp = sp + up . Each
employee e has a set of tasks Pe ⊆ P that he/she can perform. Similarly, for each task p, a



3.2. Complexity analysis 39

set Ep ⊆ E exists, which contains all employees that can perform task p. Both Pe and Ep are
defined based on qualifications, time windows of tasks and the availability of employees. In a
feasible solution, all tasks in P are assigned to qualified employees from E in a non-preemptive
manner.

The SSPTSP consists in answering the question: is a planning covering all tasks feasible?

Let NSSPTSP be the set of all instances for the SSPTSP. Any instance n ∈ NSSPTSP can
then be expressed by the following notation:

E employees.
P tasks.
up duration of task p.
sp start time of task p.
fp end time of task p.
Pe set of tasks employee e can perform.
Ep set of employees that can perform task p.

Decision variables and model Let binary variable xpe take the value 1 if task p is assigned
to employee e and 0 otherwise.

Two tasks p and p′ overlap if their time intervals [sp, fp] and [sp′ , fp′ ] overlap. Let a clique
K be defined as a set of tasks that overlap in time and thus cannot be scheduled to the same
employee. K is said to be a maximal clique if there is no other clique K ′ that includes K as
a smaller subset, i.e., if there is no other K ′ such that K ⊂ K ′. Let K ∈ Ce be the set of
maximal cliques among the tasks Pe that the employee e can be assigned to.

The model to solve the SSPTSP is then:

feasibility (3.1)

subject to:

∑
e∈Ep

xpe = 1 p ∈ P (3.2)

∑
p∈K

xpe ≤ 1 e ∈ E ,K ∈ Ce (3.3)

xpe ∈ B p ∈ P, e ∈ Ep (3.4)

Constraints (3.3) set the number of employees assigned to each task to 1. Constraints
(3.3) guarantee that no overlapping tasks are assigned to the same employee. Constraints
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(3.4) set the bounds for the decision variables.

3.2.2 Reduced Flight Planning Problem

A simplified description of our original problem, that we call Reduced Flight Planning Problem
(RFPP) is drafted so that it complies with the formulation of the SSPTSP.

The RFPP is a MFMP problem with the following characteristics: (1) each mission j ∈
J requires one aircraft, i.e. Rj = 1; (2) missions do not require any flight hours when
assigned and there are no minimum flight hours per period, i.e., Hj = 0, Umin = 0; (3)
each aircraft has just exited a maintenance before the beginning of the first period and
thus have sufficient initial rct and rft to not need any check during the planning horizon,
i.e., RctIniti = |T | + 1, RftIniti = Hmax; (4) because of points 2 and 3, there is no need of
scheduling checks and no need of constraining the sustainability and serviceability of each
cluster, i.e., AClustkt = |I|, HClust

kt = 0; (5) aircrafts have no previous fixed assignments, i.e.,
NClust
kt = 0, N Init

t = 0,AInitij = ∅. The objective function of the RFPP is a constant. Any
RFPP instance is thus a particular case of the MFMP problem and so, if the RFPP is NP-
complete, the MFMP problem is also NP-complete.

The RFPP consists then in the following decision problem. Let j ∈ J be the set of
missions planned along a horizon of t ∈ T planning periods. Let i ∈ I the set of aircraft.
Each mission j is active during periods Tj ⊆ T and requires one aircraft to be assigned at each
period t ∈ Tj . Each assignment of an aircraft i to a mission j has a minimum (maximum)
duration ofMTminj (MTmaxj ) periods. Each aircraft i has a set of missions Ji ⊆ J that it can
be assigned to. Similarly, for each mission j, a set Ij ⊆ I exists, which contains all aircraft
that can be assigned to mission j.

The RFPP answers the question: is a planning covering all missions feasible?

Decision variables and model Let binary variable ajti take the value 1 if mission j is
assigned during period t to aircraft i and 0 otherwise. Let binary variable asjti take the value
1 if aircraft i starts a new assignment to mission j in period j, i.e., if ajti = 1 and aj(t−1)i = 0
and 0 otherwise.

The model to solve the RFPP is then:

feasibility (3.5)

subject to:
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∑
i∈Ij

ajti = 1 j ∈ J , t ∈ Tj (3.6)

asjti ≥ ajti − aj(t−1)i t = 2, ..., T , j ∈ Jt, i ∈ Ij (3.7)
asjti ≥ ajti t = 1, j ∈ Tt, i ∈ Ij (3.8)∑
t′∈TMT

jt

asjt′i ≤ ajti j ∈ J , t ∈ Tj , i ∈ Ij (3.9)

asjti ∈ B j ∈ J , t ∈ Tj , i ∈ Ij (3.10)
ajti ∈ B j ∈ J , t ∈ Tj , i ∈ Ij (3.11)

Constraints (3.6) set the number of aircraft assigned to each task j at each period t to 1.
Constraints (3.7-3.8) guarantee that the variable starts are correctly modeled. Constraints
(3.18-3.19) force an assignment to start at period t if aircraft i is firstly assigned to mission
j i.e. aircraft i is not assigned to mission j in period (t − 1). Constraints (3.20) control
the minimum duration of a consecutive mission assignment. If aircraft i is firstly assigned
to mission j in period t, it has to be assigned to it during the following t′ ∈ T MT

jt periods.
Constraints (3.11-3.10) set the bounds for the decision variables.

3.2.3 Reduction

Theorem 1
Finding a feasible solution to the RFPP is equivalent to solving the SSPTSP.

Proof. For each employee e ∈ E in SSPTSP, we create an analogous aircraft i ∈ I in RFPP,
we will use e and i indistinctly. For each task p ∈ P in SSPTSP, we create a j ∈ J
mission in RFPP, we will use p and j indistinctly. The compatibility between missions and
aircraft is equivalent to that of tasks and employees: Ji = Pi and Ij = Ej . The minimal
and maximal assignment duration time of each mission are equal to the duration of the task
MTminj = MTmaxj = uj . Start times and end times define the moment when the mission is
active: Tj = t ∈ {sj ...fj}.

Let n ∈ NRFPP be the set of all instances of problem RFPP. For each instance n ∈
NSSPTSP , an instance n′ = f(n) is created. The details of transformation f are shown in
Table 3.1.

Let:
QSSPTSP : for an instance n ∈ NSSPTSP : ∃ a feasible solution?
QRFPP : for an instance n′ = f(n): ∃ a feasible solution?

Given that an answer to QRFPP is also an answer to QSSPTSP for each n ∈ NSSPTSP
and that SSPTSP is NP-complete, this proves that the RFPP is NP-complete. This, in turn,
proves that the MFMP problem is NP-complete.
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RFPP Meaning f(n)
t ∈ T planning horizon. {minp(sp)...maxp(fp)}
i ∈ I aircraft. E
j ∈ J missions. P
t ∈ Tj time periods in which task j = p is active. t ∈ {sj ...fj}
j ∈ Jt missions j ∈ J to be realized in period t. j|t ∈ {sj ...fj}
i ∈ Ij aircraft that can be assigned to mission j = p. Ej
j ∈ Ji missions for which aircraft i = e can be used. Pi
MTminj minimum number of consecutive periods for task j = p. uj
MTmaxj maximum number of consecutive periods for task j = p. uj

Table 3.1: Interval scheduling set translation

3.3 Input data

In this Section we explicitly present all sets, parameters as well as many derived sets and
parameters for the MFMP problem. These same definitions and nomenclature will be shared
among all chapters.

3.3.1 Sets and parameters

Basic sets

i ∈ I aircraft.
t ∈ T time periods included in the planning horizon. We use t = 0 for starting

conditions and t = T for the last period.
j ∈ J missions.

Auxiliary sets

y ∈ Y type of aircraft.
k ∈ K cluster of missions that require the same functionality.
c ∈ C capabilities for missions.
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Mission parameters [units]

Hj flight hours required per period and aircraft for mission j. [hours]
Rj number of aircraft required per period for mission j. [aircraft]
MTminj minimum number of consecutive periods required for an aircraft

to be assigned to mission j.
[periods]

MTmaxj maximum number of consecutive periods an aircraft can be
assigned to mission j.

[periods]

Umin flight hours required per period and aircraft when not assigned
to any mission nor in maintenance.

[hours]

Yj type of mission j. [type]
Qj optional capability required for mission j. [capability]

Maintenance parameters [units]

M number of periods for a check. [periods]
Cmax maximum number of simultaneous aircraft checks. [aircraft]
Emin minimum number of periods between two consecutive checks

for each aircraft.
[periods]

Emax maximum number of periods between two consecutive checks
for each aircraft.

[periods]

Hmax maximum number of flight hours between two consecutive
checks for each aircraft.

[hours]

Fleet parameters [units]

N Init
t number of aircraft pre-assigned to a maintenance check at the

start of period t.
[aircraft]

NClust
kt number of aircraft in cluster k pre-assigned to a maintenance

check at the start of period t.
[aircraft]

AClustkt maximum number of cluster k aircraft that can be simultane-
ously in maintenance at start of period t.

[aircraft]

HClust
kt required remaining flight hours for cluster k at end of period t. [hours]

RftIniti remaining flight time for aircraft i from the start of the planning
horizon.

[hours]

RctIniti remaining calendar time until aircraft i reaches Emax from the
start of the planning horizon.

[periods]

Yi type of aircraft i. [type]
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Index sets

i ∈ Iy aircraft i ∈ I belonging to type y. One aircraft can belong to
only one type.

j ∈ Jy missions j ∈ J belonging to type y. One mission can belong
to only one type.

c ∈ Qi capabilities c ∈ C belonging to aircraft i.
j ∈ Ji missions j ∈ J where aircraft i is suitable.
i ∈ Ij aircraft i ∈ I suitable for mission j.
t ∈ Tj time periods t ∈ T when mission j is active.
j ∈ Jt missions j ∈ J that are active in period t.
i ∈ Ik aircraft i ∈ I belonging to cluster k. One aircraft can belong

to more than one cluster.
i ∈ AInitij periods t ∈ T where aircraft i is pre-assigned to mission j.

Note Ji and Ij are calculated based on Iy, Jy, Qi and Qj . For an aircraft i to be able
to be assigned to a mission j it needs to share the same type y as the mission and have the
required capability (Qj ∈ Qi).

3.3.2 Time-related index sets

We define several sets based on the input data to simplify the constraint formulation of all
models in this thesis. The equations related to these sets, together with an example, are given
in Appendix A.
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t ∈ T MInit
i time period options t ∈ T for aircraft i to start its first check.

t ∈ T mInit
i time periods t ∈ T when aircraft i ∈ I cannot start its first

check.
t ∈ T st′ time periods t ∈ T required for a check that ends in t′.
t ∈ T mt′ time periods t ∈ T when a second check cannot start if the first

check starts in period t′.
t ∈ T MM

t′ time period options t ∈ T when a second check must start if
the first check starts in period t′.

t ∈ T Mt′ time periods t < T permitted for a second check to start, given
the first check started in t′ and excluding the need for a third
check.

t ∈ T M+
t′ time periods permitted for a second check to start, including

the possibility t = T for not doing a second maintenance.
(t1, t2) ∈ T T Tt pairs of time periods t1 ∈ T , t2 ∈ T Mt1 when a first and second

check can start and the aircraft is in maintenance in period t.
t ∈ T MT

jt′ time periods t ∈ T when, if a mission assignment starts, the
assignment continues in t′.

(t, t′) ∈ T Tj set of all possible start t and finish t′ combinations for assign-
ment of mission.

(t1, t2) ∈ T T Jjt allowed assignments for mission j that start (end) at period t1
(t2) and contain period t.

(j, t, t′) ∈ J T Tit1t2 allowed mission assignments that start (end) at period t (t′)
for each aircraft i and for each mission j ∈ Ji between checks
starting at t1 and t2.

3.3.3 Auxiliary parameters

To condense notation, we define parameters that aggregate flight hour usage and initial status.
U ′tt′ is the flight hour usage for each aircraft between t and t′ without taking into consideration
any mission or check assignment. H ′jtt′ is the additional flight hour usage for each aircraft
when assigned to mission j between periods t and t′. AT Initijt is a binary representation of
t ∈ AInitij .

U ′tt′ = Umin(t′ − t+ 1)
H ′jtt′ = (Hj − Umin)(t′ − t+ 1)

AT Initijt =

0 t /∈ AInitij

1 t ∈ AInitij

(3.12)
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Figure 3.1: Example interval deviation for sustainability constraint with |S| = 3.

3.3.4 Interval deviation and objective function parameters

The following parameters are used to penalize the objective function in the model in Chapter
4. The weights are piece-wise linear and non-decreasing. An example of the usage of these
weights is shown in Figure 3.1 where the relationship between the penalty cost PHs and the
maximum deviation UHs is shown. The last interval, i.e., s = 3, has no upper bound.

s ∈ S interval for constraint violation.
UAs maximum deviation for violating the serviceability limit in in-

terval s.
[aircraft]

PAs penalty cost for violating serviceability constraint in interval s. [ penalty
aircraft−period ]

UHs maximum deviation for violating the sustainability limit in in-
terval s.

[hours]

PHs penalty cost for violating sustainability constraint in interval s. [ penalty
hour−period ]

UCs maximum deviation for violating the maintenance capacity
limit in interval s.

[aircraft]

PCs penalty cost for violating capacity constraint in interval s. [ penalty
aircraft−period ]

P2M reward per period for the start of the second check. [ penalty
aircraft−period ]

3.4 Mathematical formulation

The following model provides a tight MIP formulation that solves the Military Flight and
Maintenance Problem described in Chapter 3.1. Decision variables for assigning missions and
maintenances are similar to the DCM formulation presented in [48].
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3.4.1 Variables

The following decision variables control the assignment of missions and checks to aircraft.

ajti =1 if mission j ∈ J is assigned to aircraft i ∈ Ij in period t ∈ Tj , 0
otherwise.

asjti =1 if aircraft i starts a new assignment to mission j in period t. If
ajti = 1 and aj(t−1)i = 0.

mit =1 if aircraft i ∈ I starts a check in period t ∈ T , 0 otherwise.

The following decision variables control the used and remaining flight time in aircraft.

uit flight hours (continuous) of aircraft i ∈ I during period t ∈ T .
rftit remaining flight time (continuous) for aircraft i ∈ I at the end of

period t ∈ T .

Fixed values Note that ajti and mit are initially set up to 0 for all aircraft already in
maintenance at the beginning of the planning horizon for the remaining time periods of the
check. Nt is calculated based on this information. Similarly, for aircraft that have not yet
complied with their minimum mission assignment duration at the beginning of the planning
horizon, ajti is fixed to comply with the constraints.

3.4.2 Objective function and constraints

Two objectives have been studied. Objective (3.13) minimizes the number of checks. (3.14)
combines the first one with the goal of maximizing the final total flight hours potential of the
fleet. These objectives do not take into account the balancing of the flight load for the fleet.

Min
∑

t∈T ,i∈I
mit (3.13)

Min
∑

t∈T ,i∈I
mit ×Hmax −

∑
i∈I

rftiT (3.14)

The first term counts all the flight hours given to aircraft following checks and the second
term quantifies the amount of remaining flight hours for all aircraft at the end of the planning
horizon. These two objectives have the same units, can be easily compared and ensure the
aircraft are used in the most efficient way.
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The following constraints are used in the model:∑
t′∈T s

t

∑
i∈I

mit′ +Nt ≤ Cmax t ∈ T (3.15)

∑
i∈Ij

ajti ≥ Rj j ∈ J , t ∈ Tj (3.16)

∑
t′∈T s

t

mit′ +
∑

j∈Jt∩Ji

ajti ≤ 1 t ∈ T , i ∈ I (3.17)

Maintenance capacity is controlled by (3.15). The aircraft requirements of missions are
defined by (3.16). Constraints (3.17) ensure that an aircraft can only be used for one mission
or undergo check in the same period.

asjti ≥ ajti − aj(t−1)i t = 2, ..., T , j ∈ Jt, i ∈ Ij (3.18)
asjti ≥ ajti −AT Initijt t = 1, j ∈ Tt, i ∈ Ij (3.19)∑
t′∈TMT

jt

asjt′i ≤ ajti j ∈ J , t ∈ Tj , i ∈ Ij (3.20)

Constraints (3.18) captures period t where aircraft i is firstly assigned to mission j i.e. it
is not assigned to it in period (t − 1). Constraints (3.19) are introduced for the first period
in the planning horizon.

Constraints (3.20) control the minimum duration of a consecutive mission assignment. If
aircraft i is firstly assigned to mission j in period t, it has to be assigned to it during the
following t′ ∈ T MT

jt periods. This is a stronger version of the constraint asjt′i ≤ ajti.

To our knowledge, Constraints (3.18-3.20) have not been taken into account in previous
military MFMP problems.

∑
t′∈T s

t

∑
i∈Ik

mit′ +NK
kt ≤ AClustkt k ∈ K, t ∈ T (3.21)

∑
i∈Ik

rftit ≥ HClust
kt k ∈ K, t ∈ T (3.22)

Constraints (3.21) guarantee a minimum serviceability of aircraft for each cluster k. A
cluster is defined by the largest group of aircraft that is required exclusively for at least one
mission. Constraints (3.22) ensure there is a minimum amount of remaining flight time for
each cluster k.
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uit ≥
∑

j∈Jt∩Ji

ajtiHj t = 1, ..., T , i ∈ I (3.23)

uit ≥ Umin(1−
∑
t′∈T s

t

mit′) t = 1, ..., T , i ∈ I (3.24)

uit ∈ [0,max
j
{Hj}] t = 1, ..., T , i ∈ I (3.25)

rftit ≤ rfti(t−1) +Hmaxmit − uit t = 1, ..., T , i ∈ I (3.26)
rfti0 = RftIniti i ∈ I (3.27)
rftit ≥ Hmaxmit′ t ∈ T , t′ ∈ T st , i ∈ I (3.28)
rftit ∈ [0, Hmax] t ∈ T , i ∈ I (3.29)

The flight time per aircraft and period is calculated in (3.23)-(3.25). The remaining flight
time is defined by (3.26)-(3.27) and its limits by (3.28)-(3.29).

mit′ +mit ≤ 1 t ∈ T , t′ ∈ T mt , i ∈ I (3.30)∑
t′∈TMM

t

mit′ ≥ mit t ∈ T , i ∈ I (3.31)

mit = 0 t ∈ T mInit
i , i ∈ I (3.32)∑

t∈TMInit
i

mit ≥ 1 i ∈ I (3.33)

The minimum and maximum calendar times are defined by (3.30) and (3.31) respectively.
Constraints (3.30) guarantee that if a check is done in some period t, we know that another
one cannot be done in the immediately consecutive t′ ∈ T mt periods. Constraints (3.31) ensure
that if a check is planned in period t, we need to start at least one check in periods t′ ∈ T Mt .
Constraints (3.32) and (3.33) control the minimum and maximum remaining calendar times
respectively at the beginning of the planning period. They follow the same logic as constraints
(3.30) and (3.31), respectively.

To our knowledge, calendar based constraints such as Constraints (3.30-3.33) have not
been taken into account in previous MFMP problems.

This model will be used in the experimentation done in Section 3.7.

3.5 Heuristic initial solution

In order to improve the performance of the model presented in Section 3.4, a heuristic that
produces fast feasible or near-feasible solutions is devised. These solutions will be used to
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warm-start the MIP solver.

The heuristic consists in a Simulated Annealing heuristic detailed in Algorithm 1. The
stop criteria are two: getting a solution with 0 errors or an iteration limit. Given the structure
of the constraints and the design of the algorithm, the heuristic does not guarantee a feasible
solution to the problem.

The first iteration c = 1 generates an initial solution by first scheduling random mandatory
checks (see Line 6) and, then, randomly assigning missions as needed (see Line 7). Both
functions are explained in detail in Algorithms 2 and 3, respectively. At each subsequent
iteration c ≥ 2, the solution is first perturbed by removing or moving maintenances and
mission assignments (see Lines 15 and 16), in order to randomly re-schedule checks and then
re-assign missions.

Each candidate selected for releasing in Line 15 consists of a couple (aircraft, period).
These candidates are selected based on the location of errors in the incumbent solution. The
perturbations in Line 16 release a slice of the I ×T matrix of mission assignments and checks
schedules. This slice can be a whole row, i.e., free all assignments and checks for aircraft i; a
group of columns, i.e., free all assignments and checks for all aircraft between periods t and
t′; or a combination of the two, i.e., free assignments and checks for subset of aircraft between
periods t and t′. The type of release is randomly generated.

After each cycle, the solution is compared with the previous one (see line 9) and is accepted
depending on the difference in quality, a decreasing temperature and a random factor. The
greater the temperature, the greater the probability to accept a new solution that has more
errors than the incumbent.

3.6 Dataset generation

The data set for the numerical experiments is generated on the basis of possible data structures
used by Air Forces. The methodology used in this section is employed to generate all instances
studied in this thesis, although the scenario configuration will vary depending on each study.

In order to generate the data, a formal specification of an instance is done. This specifica-
tion is more general than the standard defined in 3.3 and can be viewed in detail in Appendix
B.

The notation used is the following. A discrete choice of values is indicated by values
separated by commas. Intervals indicate that a value is chosen in a “uniform random way”
from the intervals for continuous values or through random sampling with replacement for
integer values. Values with a * are deterministic control parameters.

The rest of the Section is structured as follows: Section 3.6.1 describes the main parameters
used to generate instances: the length of the planning horizon, the number of active missions
per period and the size of the fleet. Section 3.6.2 covers the maintenance parameter generation,
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Algorithm 1: maintFirst
Data:
x: incumbent solution, err its errors.
x′: new candidate solution.
x∗: best solution found.
T : temperature.
C: maximum iterations.
R: cooldown rate.

1 begin
2 x← InitializeEmptySolution()
3 err ← err∗ ← GetErrors(x)
4 x′ ← x
5 for c← 1 to C do
6 x′ ← AssignChecks(x′)
7 x′ ← AssignMissions(x′)
8 err′ ← GetErrors(x′)
9 if AcceptanceFunc(err, err′, T ) then

10 x, err ←− x′, err′
11 if

∑
err′ <

∑
err∗ then

12 x∗, err∗ ←− x′, err′

13 T ← R× T
14 if |err∗| = 0 then break
15 C ← GetCandidatesReassign(err)
16 x′ ← PartialRelease(x,C)

Algorithm 2: AssignChecks()
1 Data:
x: the current solution

2 begin
3 for i ∈ I do
4 needs← GetMaintenanceNeeds(x, i)
5 T c ← GetMaintenanceCandidates(x, i, needs)
6 if |T c| > 0 then
7 t← choice(T c)
8 SetMaintenance(x, i, t);
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Algorithm 3: AssignMissions()
1 Data:
x: the current solution

2 begin
3 for j ∈ shuffle(J ) do
4 needs← CheckMissionNeeds(x, j)
5 Ic ← GetMissionCandidates(j)
6 while |Ic| > 0 ∧ |needs| > 0 do
7 i← choice(Ic)
8 T c ← GetCandidatePeriods(needs, i)
9 if |T c| = 0 then

10 Ic.pop(i)
11 for t ∈ shuffle(T c) do
12 success← SetMissionAssignment(x, i, t, j)
13 if success then
14 needs[t]← needs[t]− 1

Section 3.6.3 cover mission parameters and Section 3.6.4 describe the aircraft parameters.
Sections 3.6.5 and 3.6.6 explain the aircraft-mission compatibility, cluster creation and service
levels for availability and sustainability.

3.6.1 Sets

Code Parameter Value

|J P | Total number of parallel missions* 1, 2, 3, 4
|I| Number of aircraft* 15, 30, 45, 60
|T | Number of periods* 90, 120, 140

3.6.2 Maintenances

Code Parameter Value

Cperc Maintenance capacity (percentage)* 0.10, 0.15, 0.2
Cmax Maintenance capacity dCperc × |I|e
Emax Time limit in periods* 40, 60, 80
Esize Time limit window* 20, 30, 40
Hmax Flight hours limit* 800, 1000, 1200
Emin Time limit in periods (Emax − Esize)
M Check duration* 4, 6, 8
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3.6.3 Missions and flight hours

The total number of types of missions corresponds to the number of parallel missions one
can allow in order to guarantee that, at any moment in time there is only one active mission
for each type. The flight hours are generated using a triangular distribution between 30 and
80 with a mode of 50 and rounded down to the closest integer value. Regarding types and
standards, see Section 3.6.5.

The following logic has been used to generate the missions, assuming N = |JP | active
missions in each period. We create N missions with a random duration that start at period
t = 1. Every time a mission ends, we create a new mission with new random parameters. If
the newly created mission ends after period T , we make that mission end at period T and
we do not create a new mission. Algorithm 4 shows the logic for the mission generation that
guarantees there are always N active missions at any given time.

Algorithm 4: Mission generation logic
Data:
start: start date for mission.
m: created mission.

1 begin
2 for 1 to N do
3 start← 1
4 repeat
5 m← create_random_mission_at(start)
6 if end(m) > T then
7 end(m)← T

8 start← end(m) + 1
9 until end(m) = T

Code Parameter Value

|Tj | Duration (periods) 6 – 12
MTmin

j Minimum assignment (periods) 2, 3, 6
MTmax

j Maximum assignment (periods) |Tj |
Rj Number of required aircraft 2 – 5
Hj Number of required hours triangular(30, 50, 80)
Umin Default assignment flight hours* 0, 5, 15, 20
Yj Type choice 1
Qj Standard 10% chance

3.6.4 Aircraft

Each aircraft has specific characteristics that allow it to accomplish missions. These charac-
teristics are represented by a type and a standard. More detail on types and standards is
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discussed in 3.6.5.

Code Parameter Value

Yi Type choice
Qi Standards choice

Each aircraft has an initial state based on RctIniti , RftIniti and the fixed assignments Atij
and checks NMi from the periods previous to the start of the planning horizon. Algorithm 5
summarizes the logic behind the creation of these parameters.

Code Parameter Value

NP Percentage of aircraft starting in maintenance. 7%
Atij Number of periods previously done under mission j 0− 2MTmin

j

RctInit
i Remaining calendar time 0− Emax

RftInit
i Remaining flight time 0−Hmax

NMi Remaining maintenance periods 0 – M

The initial states are simulated according to the following rules. (i) NV aircraft are
sampled from the set of aircraft and become the aircraft under maintenance IM ⊂ I; (ii) for
each sampled aircraft i ∈ IM , NMi is generated randomly and RctIniti = Hmax, RftIniti =
Emax (see Line 4).

For the remaining I−IM aircraft that are not in maintenance: (i) RctIniti is first generated
randomly and then RftIniti is generated randomly from the value of the former (see Line 8);
(ii) for each mission j belonging to the set of missions active at the beginning of the planning
period: Rj aircraft are sampled and assigned to each such a mission with Atij previous
assignments (see Line 16).

3.6.5 Mission-aircraft compatibility

Mission compatibility parameters are generated in the following way. For each mission, a type
Yj ∈ Y and a standard Qj ∈ Q are assigned. Qj can be null, which implies the mission has
no standard. A minimum number of aircraft of type y is calculated based on

∑
{j∈J |Yj=y}Rj .

In order to guarantee a feasible number of aircraft to comply with missions, the require-
ments for each type of aircraft are calculated for the whole planning horizon. Then, this
serves as a lower bound on the number of aircraft of each type to create. For the remaining
aircraft, their type is chosen randomly taking the weight of the requirements for each type.
In order to guarantee a feasible number of aircraft per standard, we chose to generate twice
the number of required standards among the aircraft.
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Algorithm 5: Initial status generation logic
Data:
JInit ⊂ J : missions that start at t = 1.
IInitM ⊂ I: aircraft in maintenance before t = 1.
IInitj ⊂ I: aircraft assigned to mission j before t = 1.
U (a, b): discrete uniform distribution between a and b.

1 begin
2 NV ← |I| ×NP
3 IM ← sample(I, NV )
4 for i ∈ IInitM do
5 NMi ← U(1,M)
6 RctIniti ← Hmax

7 RftIniti ← Emax

8 for i ∈ I\ IInitM do
9 RctIniti ← U(0, Emax)

10 RctI′i ← RctIniti + U(−3, 3)
11 if RctI′i < 0 then
12 RctI′i ← 0
13 if RctI′i > T then
14 RctI′i ← Emax

15 RftIniti ← dRctI′i × Hmax

Emax e
16 for j ∈ JInit do
17 IInitj ← sample(Ij \ IInitM , Rj)
18 for i ∈ IInitj do
19 Atij ← U(0, 2×MTminj )



56 Chapter 3. Complexity analysis and exact methods

3.6.6 Cluster and service levels

A cluster is a group of missions where every mission has exactly the same requirements (i.e.
same type and standard). To explain the model input parameters, the following notations are
needed. Let Ik ⊂ I represent the aircraft candidates for cluster k and QHk = |Ik| ×Hmax is
the maximum flight hours for the whole set of aircraft in a given cluster k.

Code Parameter Value

ANK Minimal number of serviceable aircraft per cluster.* 1, 2, 3
APK Percentage of serviceable aircraft per cluster.* 0.05, 0.1, 0.2
HPK Percentage of sustainability per cluster.* 0.3, 0.5, 0.7
HClust

kt Minimal remaining flight hours for cluster k. HPK ×QHk

AClust
kt Minimal serviceable aircraft for cluster k. max {APKQk, AN

K}

3.7 Experimentation and results

Following the techniques explained in Section 3.6, a base scenario is conceived. Then, several
scenarios are generated by changing one control parameter at a time during the generation of
instances. Table 3.2 shows the values used to generate the base scenario as well as the derived
scenarios. ‘Base scenario’ corresponds to the default values. ‘Studied scenarios’ corresponds
to the values that are modified to create each scenario.

For each scenario, 50 instances are randomly generated. Among scenarios, the same
position of instance always has the same random seed. This is done so that random differences
between instances in the same position among different scenarios are as small as possible and
comparisons can be more broadly generalized.

The following statistics regarding size, performance and Linear Programming (LP) relax-
ation are obtained for each scenario. With respect to the size of the problem: the average
number of variables (vars), constraints (cons) and non-zero values (non-zero) in the matrix
before the solver starts the branching phase. With respect to the performance of the solution
method: the number of instances with no integer solution after the time limit (no-int), the
minimum (tmin), maximum (tmax) and average (tavg) solving times and the average gap (gavg)
in %.

With respect to the quality of the linear relaxation and the applied cuts, several differ-
ences are obtained (in %): the LP relaxation against the best solution found (rinit); the LP
relaxation after cuts in the root node against the best solution found (rcuts); and the best
solution found after cuts in the root node against the best solution found (icuts). Finally, the
nodes in the branch and bound it took to prove optimality in the instances where it is proved
(nodes).

All instances are solved using the MIP model described in 3.4. The model is built in
Python with the PuLP library and solved with CPLEX 12.8. All tests are run on a 12-core,
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Parameter Name Base scenario Studied scenarios
Esize maintenance calendar time size 30 20, 40
Emax maintenance calendar time 60 40, 80
Hmax maintenance flight hours 1000 800, 1200
Cperc capacity in percentage of fleet 0.15 0.1, 0.2
M maintenance duration 6 4, 8
|JP | number of parallel tasks 1 2, 3, 4
|T | number of periods in horizon 60 120, 140
Umin minimum flight hours consumption 0 5, 15, 20
HPK minimum rft per cluster 0.5 0.3, 0.7
max{rft} maximize rft at the end 0 1

Table 3.2: Experiments and studied scenarios.

64 GB RAM machine running Linux Fedora 20 with a CPU speed (in MHz) of 2927.000.

The rest of the current Section presents three experiments, each one uses a group of
scenarios. Section 3.7.1 presents an analysis on the sensitivity of the model to each parameter
of the problem. Section 3.7.2 compares the performance by changing the size of the problem.
Finally, Section 3.7.3 evaluates the contribution of using a generated feasible solution as input
to the MIP model.

3.7.1 Parameter sensitivity analysis

Experiment 1 consisted in analyzing the sensitivity of the model to changes in its input
parameters. Table 3.3 summarizes the performance after solving the model with each scenario.
It can be seen that most instances are solved to optimality, although the resolution times are
close to the imposed 1-hour limit. The variations in the size of the problem are due to the
differences in the solver’s pre-solving capabilities given the fact that these scenarios did not
change the size of the original problem.

The results obtained show that parameters with influence on execution times and in
remaining relative gaps included the ones that regulate the frequency of checks, e.g. the
amount of flight hours between checks (Hmax): increasing available hours, without changing
the flight load, will dramatically reduce solution times. This is seen in Figure 3.2, where
scenarios are shown in the X-axis while the times are shown in the Y-axis. This modification
also has an impact on whether a solution is feasible or not (see Table 3.3). Another parameter
that had a very sensible impact is the minimum amount of sustainability per cluster HPK .
The impact of both of these parameters can also be confirmed via the difference in the average
needed nodes to reach optimality, shown in Table 3.4.

Figure 3.3 shows the gaps obtained (in the Y-axis) for each scenario (in the X-axis).

The minimum consumption of flight hours per period Umin makes the problem significantly
harder to solve. This can be confirmed both via the remaining gaps, solving times and with
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case tmin tavg non-zero vars cons no-int inf gavg

HPK=0.3 1.8 5.2 50976.5 4275.5 6273.0 0 0 0.0
Hmax=1200 2.1 76.7 51030.3 4295.0 6298.2 0 0 0.1
Esize=20 1.6 172.8 29772.8 3826.1 5120.3 0 3 0.2
Esize=40 4.0 266.8 64152.6 4496.1 6994.6 0 1 0.4
base 2.2 310.6 51167.1 4310.7 6315.9 0 1 0.3
Emax=40 8.1 530.9 68612.7 4525.5 7632.9 0 0 0.2
Emax=80 1.5 1250.6 28257.9 3877.8 5010.4 0 3 1.9
HPK=0.7 80.7 1746.9 50805.8 4393.9 6320.6 0 42 2.9
Hmax=800 4.4 2168.5 51219.7 4327.2 6327.2 0 5 2.7
Umin=5 24.6 2650.3 60950.1 5525.3 8583.6 0 3 4.3
Umin=20 3600.0 3600.0 53562.3 5379.8 8149.6 25 8 5.2
Umin=15 3600.0 3600.0 60716.4 5529.0 8573.6 10 6 6.3

Table 3.3: Experiment 1: summary per scenario sorted by average solving time.

Figure 3.2: Box-plot showing the distribution of solution times for each of the instances of
Experiment 1.
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Figure 3.3: Box-plot showing the distribution of relative gaps for each of the instances of
Experiment 1.

several instances where a feasible solution is not found after 1 hour (table 3.3). The effect
is evident even when adding a relatively small quantity of consumption hours (Umin=5),
although a greater impact is correlated with a higher minimum consumption. In addition,
Table 3.3 shows that the solver’s pre-processor is less able to reduce the problem size in these
scenarios than in most of the other ones. Table 3.4 shows how, although the initial relaxation
is particularly bad for these scenarios, the cuts phase (helped by a manual configuration of
the solver) significantly improves the relaxation.

3.7.2 Problem size sensitivity analysis

Experiment 2 studied changes in the problem size and the objective function. First, the
horizon is increased in size by changing the amount of planning periods. Second, the number
of parallel tasks is increased with an equivalent increase in the size of the fleet. Lastly, an
objective function that maximizes the final state in addition to minimizing the number of
checks is tested.

By activating maximization of the end state for the whole fleet (max{rft}=1), the ef-
ficiency of the solving process, measured in solving times, declines significantly. Another
condition with a similar effect is increasing the size of the planning horizon (|T |=140). Both
scenarios seem to share the same difficulty.

A similar effect is detected when increasing the number of parallel missions |JP | and the
size of the fleet proportionally. This effect can be explained by the fact that the model size
grows in proportion to the number of parallel missions (see ‘non-zero’ column in Table 3.5).

To summarize, although the model performance seems to deteriorate with larger instances,
the effect in resulting gaps seems to keep a lineal relationship with regards to |JP | and |T |,
for the studied scenarios and the resulting gaps are still acceptable. See Figure 3.4, where
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case rinit rcuts icuts nodes

base 15.9 1.2 8.0 4335.9
Esize=20 2.1 0.7 2.9 2999.0
Esize=40 17.5 2.5 23.3 4384.3
Emax=40 41.0 5.0 7.3 15172.6
Emax=80 4.5 2.3 7.4 46174.8
Hmax=1200 17.1 0.1 3.5 121.2
Hmax=800 10.3 5.0 17.8 89602.2
HPK=0.3 16.7 0.1 3.1 372.8
HPK=0.7 16.7 9.1 13.5 26534.8
Umin=15 23.8 7.4 8.0
Umin=20 20.1 6.3 3.5
Umin=5 18.2 6.8 22.3 13642.6
Cperc=0.2 15.1 1.0 8.8 1386.2

Table 3.4: Experiment 1: mean performance of relaxations per scenario (in % difference).

case tmin tavg non-zero vars cons no-int inf gavg

base 2.2 310.6 51167.1 4310.7 6315.9 0 1 0.3
|T |=120 19.9 376.0 88668.3 5815.8 9161.6 0 6 0.8
|JP |=2 20.1 1313.9 101572.8 8317.9 12266.2 0 5 0.8
|T |=140 44.5 1651.0 115910.9 6738.7 11081.5 0 4 3.3
max{rft}=1 7.5 2198.8 51167.1 4310.7 6315.9 0 1 1.6
|JP |=3 62.7 2723.7 157213.7 12907.6 18915.8 1 8 2.5
|JP |=4 114.7 3228.6 209747.2 17045.4 24947.4 3 9 2.6

Table 3.5: Experiment 2: summary per scenario sorted by average solving time.
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Figure 3.4: Box-plot showing the distribution of relative gaps for each of the instances of
Experiment 2.

case rinit rcuts icuts nodes

base 15.9 1.2 8.0 4335.9
|JP |=2 15.1 2.1 9.9 10518.1
|JP |=3 16.1 4.0 17.9 11876.2
|JP |=4 15.2 3.8 11.4 9875.4
|T |=120 24.8 10.4 21.7 5239.8
|T |=140 22.4 15.6 23.7 23023.9
max{rft}=1 7.2 3.3 59.3 142925.7

Table 3.6: Experiment 2: mean performance of relaxations per scenario (in % difference).

each scenario (in the X-axis) shows its gap in the Y-axis.

Table 3.6 how the quality of the cuts phased decreases with the size of the planning
horizon, in relaxation quality as in integer solution quality. Also, the number of nodes needed
to find an optimal solution considerably increases in the (|T |=140) scenario. This is possible
due to the fact that aircraft need a third maintenance in these circumstances and the possible
maintenance combinations grow in a combinatorial sense. Lastly, guaranteeing an optimal
solution appears to prove difficult when considering the final state in the objective function,
as seen in the average number of nodes needed.

3.7.3 Heuristic comparison

Experiment 3 studied the impact of using the heuristic presented in Section 3.5 to generate
fast feasible solutions for instances. These solutions are, firstly, compared to the best available
solutions obtained using the mathematical model (usually optimal) and, later, used as input
in order to warm-start the solution process by the solver.
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Figure 3.5: Box-plot showing the distribution of solution times for each of the instances of
Experiment 2.

case tavgM tavgH tavgM+H gavgM gavgM+H %DifH %InitH
base 247.1 23.7 183.0 0.2 0.1 22.0 95.9
Umin=5 2417.5 92.8 2364.2 3.8 3.4 19.0 74.5
|JP |=2 706.9 86.2 976.9 0.4 0.7 22.0 64.4
|JP |=3 1979.5 217.1 1712.3 1.6 1.0 23.0 34.1
|JP |=4 3102.1 401.1 2963.7 1.1 1.1 19.5 18.4
|T |=120 247.6 47.8 305.0 0.5 0.8 19.7 75.0
|T |=140 1493.3 65.8 1211.7 2.9 1.9 23.4 87.0
max{rft}=1 2214.1 23.7 2194.2 1.6 1.7 89.9 95.9

Table 3.7: Comparison of all instances where a feasible solution is found by the heuristic in
a selected set of difficult scenarios.

Table 3.7 shows several ways to properly measure the heuristic’s performance: (1) the
average time it takes to find an initial solution (tavgH ); (2) the relative distance between the
solution found by the heuristic and the best solution found with the MIP model (%DifH);
(3) the probability of finding an initial solution in a short time (10 minutes) (%InitH); (4)
the difference between the original average solving times tavgM (average gaps gavgM ) and the ones
after providing an initial solution tavgH+M (gavgH+M ).

The relative quality seems to depend particularly on the type of objective function being
used (max{rft}=1 scenario) but not so on the size of the problem. On the other hand, the
probability of finding a solution appears to depend on the number of parallel tasks at any
given time. Finally, the average times to find a solution do increase with problem size but
not in a uncontrollable way, especially for increases in planning horizon size.

Secondly, feeding an initially generated solution to the solver slightly increases the solving
process, both in resolution times and in gap, although not in a meaningful quantity. Taking
into account the heuristic performance and impact on resolution, it can be concluded that it
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is particularly useful for longer planning horizons, where the performance remains high and
the impact is also greatest.

Finally, since the solver permitted it, giving a nearly-feasible solution to the solver is
tested. Usually this solution is then repaired by the solver during the cutting phase. No gains
in solution times and gap are observed for these cases.

3.8 Conclusions

This chapter presented a new MIP formulation for the long-term Flight and Maintenance
Planning problem for military aircraft. Its performance is measured by solving an array of
scenarios inspired by real French Air Force needs.

Compared to the existing literature, the problem studied includes several new constraints
while still managing to solve fairly large instances. Also, a complexity proof is presented.

The study shows that the mathematical model’s performance is quite robust with respect
to increases in fleet size, number of missions and the size of the planning horizon. On the
other hand, adding fixed additional consumptions outside of missions proves challenging.

In terms of performance, gains in resolution time are obtained by developing a construction
heuristic that provides starting solutions for the cases where an integer solution is not easily
obtained by the model. It is shown to be potentially useful in scenarios with long planning
horizons.

With respect to extending the model, additional constraints from real world application,
such as long-term storage of grounded aircraft, can be incorporated.

In order to better integrate long term schedules with the existing medium- and short-
term maintenance planning, a matheuristic that alternates between the two problems could
potentially satisfy the needs of the different scopes with a good quality solution that takes
several types of aircraft maintenance into account simultaneously.

Regarding uncertainty treatment, explicit ways to measure the stochastic nature of the in-
put parameters can be implemented. For example, by using robust optimization or stochastic
programming in order to guarantee the feasibility of the solution even in extreme scenarios.

Next chapter will show an alternative solution approach based on Machine Learning aimed
at obtaining a better performance while producing a more balanced maintenance planning,
and thus, more robust to small changes.
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In this chapter, we propose a new solution approach based on a new Mixed Integer Pro-
gram and the use of both valid cuts generated on the basis of initial conditions and learned
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These learned cuts are generated by training a Machine Learning model on the input data and
results of 5000 instances. This approach helps to reduce the solution time with little losses in

65



66 Chapter 4. Alternative MIP model, valid bounds and learned constraints

optimality and feasibility in comparison to alternative matheuristic methods. The obtained
experimental results show the benefit of a new way of adding learned cuts to problems based
on predicting specific characteristics of solutions.

The chapter is structured as follows. Section 4.1 formulates an alternative MIP model for
the MFMP problem. Section 4.2 presents valid cuts and Section 4.3 presents learned bounds
and constraints for this MIP model. Section 4.4 explains the experimentation methodology
and Section 4.5 shows the results of those experiments. Finally, Section 4.6 summarizes the
conclusions.

The contributions of this chapter were presented in the following publications: F. Peschiera,
R. Dell, J. Royset, A. Haït, N. Dupin, and O. Battaïa. A novel solution approach with
ML-based pseudo-cuts for the Flight and Maintenance Planning problem. OR Spectrum,
pages 1–30, jun 2020. ISSN 0171-6468. doi: 10.1007/s00291-020-00591-z. URL http:
//link.springer.com/10.1007/s00291-020-00591-z; F. Peschiera, N. Dupin, O. Battaïa,
and A. Haït. An alternative mip formulation for the military flight and maintenance planning
problem. In Congrès annuel de la société Française de Recherche Opérationnelle et d’Aide
à la Décision (ROADEF), pages 1–2, Montpellier, FR, 2020. URL https://oatao.univ-
toulouse.fr/26033/.

4.1 Alternative mathematical formulation

This section presents the base model: the decision variables, constraints and objective func-
tion. With respect to the model on chapter 3.4, it models both mission and maintenance
assignments as start-stop assignments.

4.1.1 Variables

The following binary decision variables prescribe the assignment of missions and checks to
aircraft.

aijtt′ has value one if aircraft i starts an assignment to mission j at the beginning
of period t and finishes at the end of period t′, zero otherwise.

mitt′ has value one if aircraft i starts a check at the beginning of period t and
then starts the next check at the beginning of period t′ or does not have a
second check (t′ = T ), zero otherwise.

The following continuous auxiliary variables prescribe the status of each aircraft or group
of aircraft.

rftit remaining flight time for aircraft i ∈ I at the end of period t ∈ T .
eAkts Deviation in serviceability for cluster k at end of t in interval s.
eHkts Deviation in sustainability for cluster k at end of t in interval s.
eCts Deviation in maintenance capacity at end of t in interval s.

http://link.springer.com/10.1007/s00291-020-00591-z
http://link.springer.com/10.1007/s00291-020-00591-z
https://oatao.univ-toulouse.fr/26033/
https://oatao.univ-toulouse.fr/26033/
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4.1.2 Objective function and constraints

The main objective function (4.1) expresses the difference between the total deviation from all
goals on serviceability, sustainability and maintenance capacity and the mean starting time
of the second maintenance.

Min
∑
k∈K,
t∈T ,
s∈S

PAs × eAkts +
∑
k∈K,
t∈T ,
s∈S

PHs × eHkts +
∑

t∈T ,s∈S
PCs × eCts

− P2M
∑
i∈I,

t∈TMInit
i ,

t′∈TM+
t

mitt′ × t′ (4.1)

∑
i∈I,

(t1,t2)∈T T Tt

mit1t2 +N Init
t ≤ Cmax +

∑
s∈S

eCts t ∈ T (4.2)

∑
i∈Ij ,

(t1,t2)∈T T Jjt

aijt1t2 ≥ Rj j ∈ J , t ∈ Tj (4.3)

∑
(t1,t2)∈
T T Tt

mit1t2 +
∑
j∈
Jt∩Ji

∑
(t1,t2)∈
T T Jjt

aijt1t2 ≤ 1 t ∈ T , i ∈ I (4.4)

Constraints (4.2) limit the number of unpenalized simultaneous checks. Constraints (4.3)
enforce aircraft mission requirements. Constraints (4.4) restrict each aircraft to at most one
assignment each period.

∑
(j,t,t′)∈JT Ti1t1

aijtt′H
′
jtt′ + U ′1t1 ≤ Rft

Init
i +Hmax(1−mit1t2)

i ∈ I, t1 ∈ T MInit
i , t2 ∈ T M+

t1 (4.5)∑
(j,t,t′)∈JT Tit1t2

aijtt′H
′
jtt′ + U ′t1t2 ≤ H

max +Hmax(1−mit1t2)

i ∈ I, t1 ∈ T MInit
i , t2 ∈ T M+

t1 (4.6)∑
(j,t,t′)∈JT Tit2T

aijtt′H
′
jtt′ + U ′t2T ≤ H

max +Hmax(1−mit1t2)

i ∈ I, t1 ∈ T MInit
i , t2 ∈ T M+

t1 (4.7)

Constraints (4.5) - (4.7) limit the total flight hours of each aircraft before the first check,
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between checks and after the second check.

∑
i∈Ik,

(t1,t2)∈T T Tt

mit1t2 +NClust
kt ≤ AClustkt +

∑
s∈S

eAkts k ∈ K, t ∈ T (4.8)

∑
i∈Ik

rftit ≥ HClust
kt +

∑
s∈S

eHkts k ∈ K, t ∈ T (4.9)

Constraints (4.8) limit the number of unpenalized aircraft from cluster k simultaneously
undergoing a check in period t. This measures serviceability. Constraints (4.9) record any
deviation from the remaining flight hour requirement for each cluster k and each period t.

rftit ≤ rfti(t−1) +Hmax
∑

(t1,t2)∈
T T Tt

mit1t2

− Umin −
∑

j∈Jt∩Ji,
(t1,t2)∈T T Jjt

aijt1t2(Hj − Umin) t ∈ {1, ..., T}, i ∈ I (4.10)

rftit = RftIniti t = 0, i ∈ I (4.11)

rftit ≥ Hmax
∑

(t1,t2)∈
T T Tt

mit1t2 t ∈ T , i ∈ I (4.12)

Constraints (4.10) - (4.12) define the remaining flight time for each aircraft i and each
period t resulting from planned mission and maintenance assignments.

∑
t∈TMInit

i ,

t′∈TM+
t

mitt′ = 1 i ∈ I (4.13)

Constraints (4.13) require maintenance assignments for each aircraft. Each aircraft is
assigned one (if t′ = T ) or two checks over the whole planning horizon.

∑
(t1,t2)∈T T Jjt

aijt1t2 ≥ 1 i ∈ I, j ∈ Ji, t ∈ AInitij (4.14)

Constraints (4.14) require aircraft to comply with pre-assigned tasks during periods in
AInitij .
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aijtt′ ∈ B i ∈ I, j ∈ Ji, (t, t′) ∈ T Tj (4.15)

mitt′ ∈ B i ∈ I, t ∈ T MInit
i , t′ ∈ T M+

t (4.16)
rftit ∈ [0, Hmax] t ∈ {0, ..., T}, i ∈ I (4.17)
eAkts ∈ [0, UAs] k ∈ K, t ∈ T , s ∈ S (4.18)
eHkts ∈ [0, UHs] k ∈ K, t ∈ T , s ∈ S (4.19)
eCts ∈ [0, UCs] t ∈ T , s ∈ S (4.20)

Constraints (4.15) - (4.20) declare all the decision variables’ bounds and domains.

4.2 Deterministic bounds and valid cuts

This section presents various levels of cuts and bounds obtained from the initial status of the
fleet and applied to the MIP model in Section 4.1. First, each individual aircraft is analyzed:
at each period (Section 4.2.1), at the start of the planning horizon (Section 4.2.2), and at
the end of the planning horizon (Section 4.2.3). Then, Section 4.2.4 analyzes each group of
aircraft by type and period. Finally, Section 4.2.5 deals with the whole fleet at each period.

4.2.1 Accumulated checks per aircraft and period

For each period t, and using the aircraft initial states, we calculate the minimum and maxi-
mum number of checks that an aircraft could have already started and ended at the start of
the period.

We define TM1mini ∈ T and TM1maxi ∈ T as, respectively, the minimum and maximum
periods for starting the first check for aircraft i. Analogously, TM2mini ∈ T and TM2maxi ∈ T
are the minimum and maximum periods for starting the second check for aircraft i.

Using previous notation,

TM1mini = min
t
{t ∈ T MInit

i }

TM1maxi = min{max
t
{t ∈ T MInit

i }, bRftIniti /Uminc}

TM2mini = min
t
{t ∈ T MTM1min

i
}

TM2maxi = min{max
t
{t ∈ T MTM1max

i
}, TM1maxi +M + bHmax/Uminc}

To guarantee a feasible solution, the ranges of periods to start the first and second checks
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need not be empty:

TM1i = [TM1mini , TM1maxi ] 6= ∅
TM2i = [TM2mini , TM2maxi ] 6= ∅

Lower and upper bounds for the accumulate number of checks started (MAccSminit ,MAccSmaxit )
and finished (MAccFminit , MAccFmaxit ) can be pre-calculated for each period using these units.
We name the range MAccSbit to represent both the lower level and upper level of the range of
accumulated starts by replacing the terms min and max by b, as in bound.

MAccSminit =


0 t ≤ TM1maxi

1 TM1maxi < t ≤ TM2maxi

2 t > TM2maxi

MAccSmaxit =


0 t < TM1mini

1 TM1mini ≤ t < TM2mini

2 t ≥ TM2mini

MAccF bit = MAccSbi(t−M) i ∈ I, t ∈ T , b ∈ {min,max}

4.2.2 Mission assignments at the start of the horizon for each aircraft

Before aircraft i can undergo its first check (i.e. at tsi = TM1mini −1), flight hours for assigned
missions must not exceed its initial remaining flight hours, as represented by cuts (4.21) (a
subset of constraints (4.5) in section 4.1).

∑
(j,t,t′)∈
JT Ti1ts

i

aijtt′H
′
jtt′ + U ′1tsi

≤ RftIniti i ∈ I, tsi = TM1mini − 1 (4.21)

Clearly, some mission assignments can be discarded because the flight hour usage for
those assignments alone, together with the minimum default usage, is more than the initial
remaining time:
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aijtt′ = 0 i ∈ I, (j, t, t′) ∈ J T Ti1tsi | Rft
Init
i < H ′jtt′ + U ′1tsi

(4.22)

4.2.3 Accumulated checks at the end of the horizon per aircraft

Each aircraft’s lower bound and upper bound of performed checks in the last period (T ), is:
[1, 1], [1, 2] or [2, 2], e.g., [1, 2] implies a lower bound of 1 and an upper bound of 2. Let I1M

be the set of aircraft with range [1, 1] and I2M the set of aircraft with range [2, 2].

With certainty on the number of checks, it is possible to enforce this on the decision
variables using the following cuts.

I1M = {i ∈ I |MAccSmaxiT = 1}
I2M = {i ∈ I |MAccSminiT = 2}

∑
t∈TMInit

i

mitT = 1 i ∈ I1M (4.23)

mitT = 0 i ∈ I2M , t ∈ T MInit
i (4.24)

4.2.4 Accumulated checks per aircraft type and period

Both MAccF bit and MAccSbit from Section 4.2.1 can be aggregated by aircraft type y.

YMAcc
1 Sbyt =

∑
i∈Iy

MAccSbit t ∈ T , y ∈ Y, b ∈ {min,max}

YMAcc
1 F byt =

∑
i∈Iy

MAccF bit t ∈ T , y ∈ Y, b ∈ {min,max} (4.25)

By using the required mission assignments, we calculate the number of checks that fit
until period t (aircraft that are in a mission cannot be in maintenance). Because each mission
demands a specific type of aircraft, this bound is made at the aircraft type level. Let JRAccjt

represent the accumulated required number of assignments (in aircraft-periods) for mission
j until the end of period t. Let IRAccyt be the number of aircraft-periods available for main-
tenance for type y up to period t. Then, YMAcc

2 Fmaxyt is an upper bound on the number of
checks that can be finished until the end of period t for all aircraft of type y.
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JRAccjt =
∑

t′∈Tj |t′≤t
Rj t ∈ T , j ∈ J

IRAccyt = |IYy| × t−
∑
j∈Jy

JRAccjt t ∈ T , y ∈ Y

YMAcc
2 Fmaxyt = b

IRAccyt

M
c t ∈ T , y ∈ Y (4.26)

By using the mission required flight hours over time, we can calculate how many checks
we need until period t. Let Y HAcc

yt be the sum of all flight-hour needs of missions of type
y until the end of period t. This demand of flight hours can be subtracted from the initial
remaining flight time of the group of aircraft and then divided over the Hmax flight hours
each check provides. Thus, we get a lower bound YMAcc

2 Fminyt on the number of checks we
need to do for aircraft of type y until period t.

Y HAcc
yt =

∑
j∈Jy

(Hj − Umin)× JRAccjt + |I|U ′1t t ∈ T , y ∈ Y

YMAcc
2 Fminyt = d

Y HAcc
yt −

∑
i∈IYy

RftIniti

Hmax
e t ∈ T , y ∈ Y (4.27)

So, in this way, we arrive to two lower bounds (4.25 and 4.27) and two upper bounds
(4.25 and 4.26) per period and aircraft type. We then get the maximum and the minimum
respectively to get bounds on the number of checks until period t. YMAccF byt represents the
bound b in the number of total checks since the beginning of the planning horizon for all
aircraft of type y until period t.

YMAccFminyt = max{YMAcc
1 Fminyt , Y MAcc

2 Fminyt }
YMAccFmaxyt = min{YMAcc

1 Fmaxyt , Y MAcc
2 Fmaxyt }

Let QMnum
tt1t2 represent the number of finished checks before the end of period t given t1

and t2 are the start of the first and second checks, respectively.

QMnum
tt1t2 =


0 t < t1 +M

1 t1 +M ≤ t < t2 +M

2 t ≥ t2 +M

This provides the following cut:
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YMAccFminyt ≤
∑
i∈Iy ,

t1∈T
MInit

i ,

t2∈TM+
t1

mit1t2 ×QMnum
tt1t2 ≤ YM

AccFmaxyt t ∈ T , y ∈ Y (4.28)

Cuts (4.28) limit the starts of checks of aircraft of type y in order to have the number of
finished checks to fall between the YMAccF byt bounds.

4.2.5 Accumulated checks per period

The bounds on accumulated checks by type and period defined in section 4.2.4 can be aggre-
gated into the whole fleet.

TMAcc
1 Sbt =

∑
y∈Y

YMAccSbyt t ∈ T , b ∈ {min,max}

TMAcc
1 F bt =

∑
y∈Y

YMAccF byt t ∈ T , b ∈ {min,max}

Additionally, the maintenance capacity together with the maintenance duration offer an
upper bound on the maximum number of checks that can be finished until a given period t.

TMAcc
2 Fmaxt = b t

M
c × Cmax t ∈ T

Following the same path as in the previous section, we calculate the net upper bound for
maintenance per period.

TMAccFmaxt = min{TMAcc
1 Fmaxt , TMAcc

2 Fmaxt }

Which provides the following cut:

TMAccFmint ≤
∑
i∈I,

t1∈T
MInit

i ,

t2∈TM+
t1

mit1t2 ×QMnum
tt1t2 ≤ TM

AccFmaxt t ∈ T (4.29)
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Cuts (4.29) limit the starts of checks of all aircraft in order to have the total number of
finished checks to fall between the TMAccF bt bounds.

4.3 Learned bounds and constraints

Learned bounds, as we present them, are similar to deterministic bounds in terms of imple-
mentation: they can be both represented by an additional set of constraints or a reduction in
the set of decision variables. The main difference is that the latter (as presented in Section
4.2) are guaranteed not to remove valid solutions from the solution space while the former
can, and often do, remove valid solutions. The reason for this is that learned bounds do
not focus in the feasible solution space itself but in the statistical distribution of the optimal
or near optimal solution in that space. This, in turn, permits learned bounds to drastically
reduce the solution space even if there is a chance of removing an optimal solution.

Whenever relevant, we use notation similar to that used in Larsen et al. [104]. Let a
particular instance of our problem be represented by the input vector x and the optimal
solution to our problem by y∗(x) :≡ arg miny∈Y(x)C(x, y). Where C(x, y) and Y(x) are the
cost function and the solution space respectively. Finally, let gn(y) ∀n ∈ {1, .., N} represent
N features from the solution y. Our goal is, then, to predict gn(y∗) for each n ∈ {1, .., N}
by means of the input vector x and a function ĝn(x) learned from matching features on both
input and output data.

Each predicted feature n of an instance’s optimal solution generates one or more pseudo-
cuts that reduce the solution space Y(x). This reduction removes valid solutions from the
solution space and can potentially remove optimal solutions. Following notation in [111],
we refer to these pseudo-cuts as “learned constraints”. The result of applying all learned
constraints thus creates a new solution space Y ′(x). Let ŷ∗(x) be the optimal solution for
this new problem, i.e., ŷ∗(x) = arg miny∈Y ′(x)C(x, y).

It would be desirable that the following holds:

C(x, ŷ∗(x)) ≈ C(x, y∗(x))

In other words we allow an invalid reduction of the original solution space as long as the
optimal objective function value of the reduced solution space Y ′(x) is not too far from the
optimal objective function value of the original solution space.

In what is left of this section, we first explain the general case of constraining maintenance
cycles in 4.3.1 and we then present gn(y) and the method to calculate ĝn(x) using a supervised
learning algorithm in 4.3.2.
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4.3.1 Constraining maintenance cycles

We seek to limit the combinations of possible maintenance cycles (check patterns) for each
aircraft in the fleet. This decision is motivated by: (1) having a check frequency as homoge-
neous as possible among similar aircraft, presented as a second objective in Section 3.1; (2)
improving solution time, by reducing the number of decision variables; and (3) permitting
the creation of a forecasting method that provides the planner with information about the
optimal solution of a given instance without having to solve it.

Let H be the set of constraints to add as learned constraints and D the set of variables
mitt′ . For each h ∈ H, let Ah ∈ R|D| and bh ∈ R. Finally, let Dh ⊂ D be a selected subset of
variables used in constraint h ∈ H.

Equation 4.30 shows the generic formulation of every possible learning constraint h ∈ H.

∑
m∈Dh

Ahm ×m ≥ bh h ∈ H (4.30)

This formulation includes stronger constraints H′ ⊂ H of the type seen in Equation 4.31.

m = 0 h ∈ H′,m ∈ Dh (4.31)

Other special case where Ah ∈ B|D| creates cover-cut-like constraints H′′ ⊂ H of the type
seen in Equation 4.32.

∑
m∈Dh|Ah

m=1
m ≥ bh h ∈ H′′ (4.32)

4.3.2 Predicting maintenance cycle constraints

One key difference among the check patterns for a given aircraft is the distance between the
two checks. We define the distance between two checks as the number of periods that take
place between the end of the first check and the beginning of the second check. The minimum
(maximum) distance between two checks is Emin (Emax) periods (see Section 3.3.1).

Because the objective function encourages the model to plan the second check as late as
possible (see the Equation (4.1)), the model rewards making the two checks far apart from
each other, avoiding the second check altogether in certain cases.
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Figure 4.1: Response NM (y axis) vs input features µC (x axis) and Init (rows).

In fact, instances where the demand in flight hours is low (e.g., the sum of all flight hours
along the horizon is low), typically have only one check for each aircraft. Contrary to this,
instances with a high demand for flight hours have more checks and the second check is
typically done sooner. A similar relationship can be expected from the initial status of the
fleet. If a given fleet is in good status (e.g., aircraft at the beginning of the planning horizon
haven’t flown that many hours since their last check), one would expect less checks overall
and farther apart. Both the total demand of flight hours and the initial status of the fleet are
known parameters.

This intuition can be formalized via a supervised ML model where a response n is a
function gn(y∗) on the optimal maintenance cycle distribution (e.g., in Figure 4.1 the response
is the total number of checks) and the input features are a function on the mission flight
hours demand and the fleet initial status distributions (e.g., in Figure 4.1 the input feature
is the average flight hour demand). Note that the instances used in the figure are solved to
optimality or close to optimality and that “Init: 1/3” includes instances under the percentile
33th for feature Init (as defined in table 4.2) and group “Init: 2/3” includes instances between
percentiles 33th and 66th for that feature.

The method consists in the following. First, we choose a set of candidate responses to
predict. Then, we calculate several input features that we suspect can predict those responses.
Finally, after validating the ML model on said responses and input features, we obtain, for
each response, the subset of input features that best predict the chosen responses and the
function that minimizes the loss function: ĝn(x).

For our problem, we choose the responses in Table 4.1.

With the following equations:
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NM Total number of checks.
µT−t′ Average distance between the second check and the end of the

horizon over fleet.
µt′−t Average distance between two checks over the fleet.

Table 4.1: Responses extracted from the solution of any MFMP problem that are predicted
using features from input data for the problem.

µC Average consumption per period.
Init Sum of fleet remaining flight hours before first period.
Spec Sum of all special mission flight hours.
µWC Period that splits total consumption in two equal parts. Can be

fractional.
σ2
C Variance of consumption per period.
maxC Max consumption per period.

Table 4.2: Input features extracted from the input parameters of any MFMP problem that
are used to predict responses from the solution for that problem.

NM =
∑

(i,t,t′)∈D|t′<T
mitt′ + |I|

µT−t′ = 1
|I|

∑
(i,t,t′)∈D

mitt′ × (T − t′)

µt′−t = 1
|I|

∑
(i,t,t′)∈D

mitt′ × (t′ − t−M)

After validating the ML model, we obtain the input features in Table 4.2.

Let the consumption in period t be represent by the following:

Ct =
∑

j∈JT t

HjRj t ∈ T

And let JQ represent the set of special missions, i.e., that have a capability or where
Qj 6= ?.

Then the equations for those input features are:
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Figure 4.2: Distribution of the average distance between checks in the 4667 successfully solved
instances.

µC = 1
|T |

∑
t∈T

Ct

Init =
∑
i∈I

RftIniti

Spec =
∑
j∈JQ

HjRj |T J j |

µWC =
∑
t∈T Ct × t∑
t∈T Ct

σ2
C = 1

|T |
∑
t∈T

(Ct − µC)2

maxC = max
i∈T
{Ct}

4.4 Experimentation

Five thousand small (15 aircraft) instances are randomly generated following the method
found in Section 3.6. The sources of randomness are the missions, i.e. the quantity, hour
needs, resource quantities, minimum durations, special requirements; and the initial fleet
status, i.e. remaining calendar time, remaining flight time, special capabilities for each aircraft
at the start of the planning horizon. These instances are used as an input to obtain learned
constraints.

Figure 4.2 shows the distribution on the average distance between checks for all solved
instances. The minimum (maximum) distance allowed for each aircraft in each instance is 30
(60) periods.

3 additional sets of 1000 instances each are randomly generated to test the implementation
of these learned constraints. Each set corresponds to a particular size of fleet: 30, 45 and 60
aircraft.
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In what is left of this section, we first explain the mathematical model implementation and
execution in 4.4.1. We then present the statistical model implementation in 4.4.2. Finally,
all tested mathematical models are explained in 4.4.3.

4.4.1 Mathematical model implementation

Mathematical models are generated using python 3.7 and the PuLP library.

All instances are solved until optimality with a time limit of 1 hour and a tolerance
(absolute gap) of 10. We use CPLEX 12.8 running on single thread Windows 7 with 72
2.3GHz processors and 128 GB RAM workstation. Up to 70 experiments are run in parallel.
CPLEX parameters are optimized for the problem using the CPLEX Tuner tool.

4.4.2 Implementation of learned constraints

Of the 5000 instances, around 1000 instances are discarded in order to build the prediction
model because of having violated soft constraints or having an absolute gap too large (bigger
than 100). The remaining 4084 instances are split into two groups: training (70%) and testing
(30%). The training set is used to train a statistical model. The testing set is used for the
feature selection process.

For forecasting, we test and compare several methods: Linear Regression (LR), Decision
Tree Regression (DTR), Multi-layer Perceptron regression (MLPR), Support Vector Regres-
sion (SVR), Quantile Regression (QR) and Gradient Boosted Regression Trees (GBRT).

Robust predictions involve predicting bounds, or quantiles. Only two implementations
offered the possibility of predicting quantiles: QR and GBRT. Both techniques are found to
have similar effectiveness in predicting the 10% and 90% quantiles. At the end, the former is
chosen because it returned scalar coefficients for every regressor and so is more intuitive to
validate. To build the QR models, python 3.7 is used together with the statsmodels library.

The learning constraint associated with the number of checks is:

∑
m∈S1

m ≤ ˆNMub − |I| (4.33)

∑
m∈S1

m ≥ ˆNM lb − |I| (4.34)

Where S1 = {mitt′ ∈ D|t′ < T}. The learning constraint associated to the average lateness
of the second checks would be then:
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