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à prendre un nouveau départ, en pleine crise COVID. Sans ce passage de 5 mois à Montréal en ta
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Introduction

Dans de nombreux domaines scientifiques, le comportement d’un système est souvent simulé grâce à
un modèle numérique. Ce modèle numérique dépend le plus souvent d’un système d’équations aux
dérivées partielles, dont la résolution peut être numériquement coûteuse. Le modèle numérique est vu
dans ce manuscrit comme une bôıte noire, dont peu d’information est disponible. Les entrées de cette
bôıte noire représentent les variables influençant le comportement du système. La sortie de cette bôıte
noire est la réponse observée du système. Les entrées de la bôıte noire sont alors regroupées en deux
ensembles : les entrées aléatoires et les entrées déterministes. Il est supposé dans ce manuscrit que les
entrées aléatoires sont définies avec une loi de probabilité et représentent les incertitudes qui affectent
le système. Les entrées déterministes regroupent les paramètres de conception du système ainsi que
les paramètres de distribution des entrées aléatoires. La sortie de la bôıte noire est ainsi également
aléatoire. Ce modèle numérique permet d’étudier la performance du système ainsi que sa fiabilité. Une
fonction de performance est en effet définie afin d’apprécier le comportement de la sortie du modèle
numérique. Selon la valeur de cette fonction de performance, le système est soit dans un état sûr soit
dans un état défaillant, la défaillance étant un évènement rare.

La défaillance du système entrainant souvent des conséquences économiques ou environnementales,
la probabilité de défaillance du système est calculée dans un but d’analyse de fiabilité,. Cette proba-
bilité de défaillance est exprimée grâce à une intégrale définie sur le domaine de défaillance des entrées
aléatoires. Cette intégrale peut être estimée de différentes manières, soit par des méthodes de simula-
tion basée sur la technique de Monte-Carlo [Morio et al., 2014], soit par des méthodes d’approximation
comme le FORM/SORM [Madsen et al., 2006] par exemple. Selon la dimension du système ainsi que la
forme du domaine de défaillance, les différentes méthodes sont plus ou moins efficaces. La probabilité
de défaillance obtenue dépend alors fortement des entrées déterministes du système. Le calcul de la
dérivée de cette probabilité par rapport à ces paramètres est essentielle en optimisation fiabiliste (dans
le cas des paramètres de conception), ainsi que pour comprendre l’influence du modèle probabiliste
choisi sur la fiabilité du système (dans le cas des paramètres de distribution). Selon la nature de ces
paramètres, plusieurs méthodes d’estimation de la dérivée sont possibles [Papaioannou et al., 2019],
qui ne requièrent pas un budget de simulation très élevé. Néanmoins, des approximations sont souvent
nécessaires ce qui amène à des estimateurs de dérivée biaisés.

Nous supposons dans ce manuscrit que la dimension du système est élevée et que le domaine de
défaillance possède plusieurs régions de défaillance. De plus, les entrées aléatoires sont distribuées
selon une loi elliptique standard. Dans un tel contexte, le calcul de la probabilité de défaillance est
particulièrement difficile. Récemment, des méthodes présentées dans [Wang and Song, 2016] et [Pa-
paioannou et al., 2019] proposent des algorithmes robustes à la grande dimension des entrées elliptiques
standards. Néanmoins, l’identification du nombre de régions de défaillance est alors particulièrement
complexe dans un contexte de bôıte noire. Le premier objectif du manuscrit consiste alors
à développer une nouvelle méthode pour estimer la probabilité de défaillance avec de
telles hypothèses. Les régions de défaillance sont identifiées au fur et à mesure, et la probabilité est
estimée avec un échantillonnage préférentiel multiple. Dans l’espace standard elliptique, les dérivées
de la probabilité sont nécessairement définies par une intégrale surfacique. L’approche Faible [Torii,
2020] consiste alors à calculer une approximation de la dérivée avec une intégrale de domaine plus
facile à estimer. Cela introduit un biais théorique qu’il est difficile d’examiner. Le second objectif
du manuscrit consiste donc à introduire une nouvelle approche pour estimer la dérivée
de la probabilité, présentée comme une amélioration de l’approche Faible. L’estimateur de
la dérivée est obtenu grâce à une régression polynomiale hétéroscédastique. Le biais de cet estimateur
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est alors contrôlable grâce aux différents paramètres de la régression.

Le manuscrit se divise en 7 chapitres (dont celui-ci d’introduction). Le Chapitre 2 rappelle les
bases mathématiques utiles au modèle probabiliste choisi dans la thèse: les lois elliptiques standards
en grande dimension. Les Chapitres 3 et 4 présentent l’état de l’art en estimation de probabilité et
en estimation de dérivée de probabilité dans le contexte spécifique du manuscrit. Les Chapitres 5 et
6 décrivent en détail les deux algorithmes développés durant la thèse. Enfin le Chapitre 7 conclut et
propose quelques perspectives.



Chapter 1

Introduction

Context

In many scientific or economical fields, the behavior of a complex system is typically simulated with
a numerical model. Several hypothesis are made in order to build a numerically calculable model as
close as possible to the system. A fixed set of parameters is thus defined and presumably gathers the
most influential variables of the system. The numerical model is also built under several assumptions,
simplifying the environmental context for instance. The numerical model of the system can rely on an
analytical formula or on a system of equations. In general, a system of partial differential equations is
employed to model complex systems. The resolution of these equations is then numerically expensive
as it can require the use of finite element or finite volume methods for example. This model of the
system makes it possible to study its performance and its reliability by simulating its behavior multiple
times with different settings. As an illustration in an aerodynamic engineering context, one can be
interested in the behavior of an airfoil in inviscid transonic flow. The environment of the airfoil is then
defined with specific flight conditions (atmospheric conditions, Mach number, angle of attack, etc...).
The quantity of interest, for example the drag coefficient, is obtained from the numerical resolution of
the Euler equation (generally by a finite volume method, cf [Economon et al., 2016]). This quantity of
interest depends on many parameters, such as the shape of the airfoil which could be parameterized
by hundreds of variables. Even if the sensitivity of the quantity of interest with respect to these
parameters is nowadays accessible in modern computational codes (through adjoint differentiation for
example), it should be noted that the accurate numerical resolution of these equations leads to a high
numerical cost. The statistical analysis (e.g. estimation of a failure probability) of such systems is
thus nearly impossible with a limited computational budget. This general problematic motivates the
research development presented in this thesis by focusing on the estimation of failure probability and
its local sensitivity in high-dimensional spaces.

In a general context, expressing the numerical model by means of a deterministic black-box function
M, the behavior of the system is thus represented by the output Y of the black-box function, while its
inputs represent all the identified variables that have an influence on the behavior of the system. As
the system is subject to uncertainty and randomness, such as natural hazards, measurement errors or
numerical approximations for instance, the inputs of this black-box function can be separated in two
categories: random inputs X and deterministic inputs s. It is assumed here that a probabilistic model
allows to define the random inputs X by their joint probability distribution, while the deterministic
inputs s gather fixed design parameters of the system or distribution parameters defining the random
vector X for example. The output of the black-box function is consequently random, and a performance
function is usually introduced to define the state of the system, according to the value of Y : it can
either be in a safe state or in a failure state. This performance function commonly depends on a
threshold, which defines the maximum or minimum acceptable value of the output Y . Taking the
airfoil system introduced above, it is thus supposed that the shape of the airfoil relies on fixed design
parameters, as well as random variables X which represent small deformations of the airfoil due
to manufacturing uncertainties. These deformations are assumed to be independent and normally
distributed. The failure of the system corresponds then to the drag coefficient of the airfoil exceeding
a certain maximum threshold value. A large drag induces a larger fuel consumption which leads to
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12 CHAPTER 1. INTRODUCTION

environmental and economical consequences.
Evaluating the system’s probability of failure is therefore essential in order to assess the reliability

analysis of the system. As the failure of the system is usually not a consequence of a normal behavior
but rather an extreme response of the black-box model, this probability is small (typically inferior to
10−3). The probability of failure is expressed as an integral defined over the failure domain of the
random inputs X of the system. This integral can be estimated by various methods such as simu-
lation methods based on the Monte Carlo method [Owen, 2013], or approximation methods such as
FORM/SORM [Madsen et al., 2006]. This probability estimation can be quite cumbersome, depending
on the shape of the failure domain of the random inputs, especially in high-dimensional space. Further-
more, the failure probability estimation has to require as few evaluations of the black-box function as
possible, since this function is potentially numerically expensive, as for the airfoil system for instance.

The failure probability significantly depends on the deterministic parameters s of the system. The
estimation of the sensitivities of the failure probability with respect to the design parameters of the
system is then crucial in reliability-based design optimization (RBDO) [Moustapha and Sudret, 2019].
For example, the derivatives of the failure probability with respect to the design parameters of the
airfoil presented above give enlightening insights on the optimal shape of the airfoil minimizing the
drag coefficient. On the other hand, the derivatives of the failure probability with respect to the
distribution parameters of the random deformations X allow to appreciate better the influence of the
selected probabilistic model on the reliability of the system. Both sensitivities make it possible to
understand the critical failure mechanisms of the airfoil. Depending on the nature of the deterministic
inputs s, several methods have been developed to estimate the failure probability sensitivities. For
distribution parameters, simulation methods based on the score function method [Rubinstein, 1986]
allow to obtained an unbiased sensitivity estimate in the original space of the random inputs. For
design parameters, different approaches are available and most of them result in an approximation
of the derivatives, as the direct differentiation leads to surface integrals. The evaluation of these
sensitivities is performed at the same time or after the failure probability estimation. It must not lead
to a significant additional amount of costly black-box function evaluations.

This manuscript focuses on systems with a large number of random inputs (typically superior to
50), whose failure domain can possibly encompass several failure regions. We further assume the
random inputs X to follow a standard elliptical distribution [Fang et al., 2002], which may be the
result of an isoprobabilistic transformation of the original inputs. The family of elliptical distributions
contains the normal distribution and the Student distribution among others, and is very popular in
many scientific and economical fields to model the random inputs.

Problem statement and objectives
In such a context, the number of methods available to estimate the failure probability considerably
narrows. Indeed, many numerical techniques are efficient when the dimension of X is small (less than
50) but become inapplicable or irrelevant when the dimension increases. The curse of dimensionality
is a well-know phenomenon which affects numerous approaches, such as the importance sampling
(IS) method, through the degeneracy of the IS weights [Tabandeh et al., 2022]. Furthermore, as
there may be multiple failure regions in the failure domain, classical approach to estimate the failure
probability must be adapted. In the FORM/SORM approach with multiple design points, the standard
elliptical space is thus searched to find all the failure regions [Der Kiureghian and Dakessian, 1998].
In the parametric IS framework, the auxiliary density is then constructed as a mixture of parametric
densities, to take into account the multiple failure regions [Kurtz and Song, 2013]. However, few of
these methods are efficient for both high-dimensional inputs and multiple failure regions, especially if
the black-fox function is strongly nonlinear.

In addition, amongst the elliptical family, the behavior of the standard normal distribution singu-
larly evolves as the dimension increases. Indeed, using the stochastic representation of the standard
normal inputs, a particularly narrow important ring is defined with two hyperspheres and it contains
most of the probability mass of the random inputs. This specificity of the high-dimensional standard
normal law has to be taken into account in the estimation of the failure probability. Recently, the
authors in [Wang and Song, 2016] presented a new parametric importance sampling approach with a
mixture of von Mises–Fisher densities as auxiliary density for the directional component of the stan-
dard normal inputs, taking into account the important ring. Their approach has been enhanced with



13

the parametric importance sampling mixture presented in [Papaioannou et al., 2019], which assigns an
auxiliary density to both the radial component of the standard normal inputs as well as their direc-
tional component. Nevertheless, the number of densities in the mixture, corresponding to the number
of failure regions of the failure domain, has to be set in advanced and is particularly difficult to derive
in a black-box context.

The first objective of this thesis is thus to present a new method to estimate the failure
probability of such a complex, high-dimensional system, efficient in the standard normal
space, as well as for other standard elliptical distributions. Without any hypothesis on the
number of failure regions, the proposed method searches the input space for failure regions located in
the important ring, with an approach inspired by the FORM/SORM framework. For each identified
failure region, an auxiliary importance sampling density is constructed, using the stochastic represen-
tation of the inputs. The failure probability is finally estimated in a multiple importance sampling
context, with a mixture of the auxiliary densities previously constructed.

As the estimation of the derivatives of the failure probability with respect to the deterministic vari-
ables of the system is performed during or after the failure probability estimation, the same framework
is usually employed. Therefore, the sensitivity analysis is performed in the standard elliptical space
as well. In this particular space, no matter the nature of the deterministic inputs, the derivatives
of the failure probability lead to a surface integral difficult to compute. This surface integral can be
approximated with a domain integral in the Weak approach framework [Torii, 2020], where the failure
domain indicator function is replaced by a smoother function in the probability integral. However, a
theoretical bias is then introduced in the sensitivity estimation. The resulting bias of the sensitivity
estimate is then difficult to control. Other methods do not introduce bias but they require a heavier
simulation budget, as the evaluation of the gradient of the black-box function is then necessary.

Consequently, the second objective of this thesis is to introduce a new approach to estimate
the failure probability derivatives with respect to deterministic inputs, in which the bias
can be controlled and the simulation budget is kept low. The sensitivity estimate is obtained
as a byproduct of a heteroscedastic polynomial regression. The polynomial comes from the Taylor
series expansion of the approximated sensitivity domain integral obtained with the Weak approach. In
order to perform this heteroscedastic polynomial regression, the sample used for the failure probability
estimation is reused and replicated to obtain other independent samples with bootstrap [Horowitz,
2001]. The bias of the sensitivity estimate is controlled with the degree of the polynomial used for the
regression. The simulation budget is the same as in the Weak approach framework.

Outline of the thesis
This manuscript is composed of seven chapters including this one. The first three chapters present
the state of the art in failure probability estimation and sensitivity estimation in the specific context
mentioned above; the next two chapters describe in detail two algorithms developed during the thesis
to achieve the two main objectives.

Chapter 2 describes the mathematical framework used to define the system and its random in-
puts. Some elements of the probability theory are introduced, with a special focus on the properties of
the standard elliptical laws in high-dimensional space. The particular context of the thesis is further
detailed as well as the two main objectives.

Chapter 3 details the state of the art in failure probability estimation. This presentation focuses
on methods robust to high-dimensional spaces as well as multiple failure regions. The approximation
methods based on the design points of the system are first described. Then the simulation methods
based on the Monte Carlo method are presented, with an emphasis on the various cross-entropy based
adaptive importance sampling methods. Finally, the approaches combining the information based on
the design points location and simulation methods are presented. For all of the technique mentioned
above, the way each method deals with multiple failure regions in a high-dimensional standard ellip-
tical space is underlined.

Chapter 4 presents an overview of the state of the art in local reliability-based sensitivity analysis,
with a focus on the estimation of the derivatives of the failure probability with respect to deterministic
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inputs. Depending on the nature of the deterministic inputs, the local reliability-based sensitivity
analysis can either be performed in the original space of the inputs or in the standard elliptical space.
For each method, the statistical properties of the estimates are derived, as well as the amount of ad-
ditional evaluations of the black-box function and its derivatives required, compared to the simulation
budget necessary for the failure probability estimation only.

Chapter 5 describes in detail the first algorithm developed during the thesis, whose objective is
to estimate the failure probability in a high-dimensional elliptical space, with a failure domain which
possibly encompasses several failure regions. The outline of the method is first presented, with the
introduction of the three major steps of the algorithm: identification problem, sampling problem and
adaptation step. These three steps are gradually repeated until all the failure regions are (presumably)
found. The proposed algorithm is tested with four numerical applications in which the inputs follow
a standard normal distribution or a multivariate Student distribution. The first three examples are
inspired by the literature while the last one is a realistic aerodynamic engineering application. For
the first two numerical applications, the proposed algorithm is compared with the method presented
in [Papaioannou et al., 2019] as well as a Subset sampling algorithm.

Chapter 6 presents in detail the second algorithm developed during the thesis, whose objective
is to estimate the failure probability sensitivity with respect to deterministic inputs, with a controlled
bias. The mathematical framework of the proposed approach is first described and starts with the
approximation of the failure domain indicator function with a cumulative distribution function, as in
the Weak approach. A change of random variable in the image measure, a differentiation and a Taylor
series expansion are derived and make it possible to express the failure probability sensitivity as the
constant coefficient of a polynomial. Employing simulation methods to build the polynomial regression
database, the heteroscedastic polynomial regression framework of the linear least squares methods is
required and presented. The proposed algorithm is tested with three numerical applications, all of
them in the standard normal space. The first two examples are inspired by the literature and allow
to test the proposed method in small dimensions. The last example makes it possible to assess the
performance of the proposed method in high-dimensional space. For each example, the Weak approach
estimates are used as benchmarks.

A short conclusion summarizes the main contributions of the thesis and presents some outlooks for
future studies in Chapter 7.



Modélisation mathématique d’un
système

Dans de nombreux domaines scientifiques, un système complexe est souvent modélisé grâce à une
fonction M, censée simuler le comportement du système. La sortie de cette fonction est la réponse
observée tandis que les entrées représentent les différents paramètres influençant le comportement
du système, comme des variables environnementales ou physiques. Une telle fonction, couramment
appelée modèle entrée-sortie, est définie comme suit

M : Z ⊂ Rm −→ Y ⊂ R
ζ 7−→ y

où ζ = (ζ1, ..., ζm)⊤ est le vecteur de taille m des variables d’entrée et y est la sortie scalaire. Cette
fonction M est supposée déterministe dans la suite du manuscrit : il n’y a pas de stochasticité in-
trinsèque. De plus, l’évaluation de cette fonction est numériquement coûteuse, elle peut par exemple
nécessiter la résolution d’un système d’équations aux dérivées partielles. Le comportement de M est
assimilé à celui d’une une bôıte noire et très peu d’information concernant M est disponible. Le
gradient de M par rapport aux entrées du système ζ est néanmoins supposé calculable dans la suite.

Plusieurs sources d’incertitudes et d’aléas peuvent agir sur le système. En conséquence, les entrées
de la bôıte noire M sont divisés en deux groupes : les variables déterministes rassemblées dans le
vecteur s ∈ Rp d’une part et les variables aléatoires rassemblées dans le vecteur aléatoire X ∈ Rd

d’autre part. Ainsi m = p+d. Néanmoins, la dimension du système mentionnée ensuite fait seulement
référence à la valeur de la dimension d des variables aléatoires du système.

Selon la quantité d’information disponible concernant le vecteur aléatoire X, différents cadres
mathématiques existent pour modéliser les variables aléatoires du système [Ferson and Ginzburg,
1996,Qiu et al., 2008]. Dans ce manuscrit, le vecteur X est supposé absolument continu, de densité de
probabilité fX connue. La famille des lois elliptiques [Fang et al., 2018] jouant un rôle essentiel dans
la suite de ce manuscrit, leurs propriétés en grande dimension (d > 50) sont brièvement présentées ici.

Supposons que le vecteur X suit une loi elliptique standard, la représentation stochastique du
vecteur X s’écrit alors [Genest and Nešlehová, 2012]

X = RT,

où T est un vecteur aléatoire uniformément distribué sur la sphère unité T d = {(t1, . . . , td) ∈ Rd :
t21 + · · · + t2d = 1} et R est une variable aléatoire positive et indépendante de T. Le vecteur T est
le composant directionnel de X, alors que R est son composant radial, égal à sa norme Euclidienne
∥X∥ = R. La densité de R permet de distinguer les lois standards elliptiques entre elles.

La loi standard normale multivariée fait partie de la famille des lois elliptiques; c’est la seule loi de
cette famille qui mène à un vecteur aléatoire indépendant [Arnold and Lynch, 1982]. Le composant
radial d’un vecteur normal standard suit une loi du chi, dont les propriétés en grande dimension ont
été étudiées dans de nombreux travaux [Katafygiotis and Zuev, 2008, Canal, 2005]. Ainsi, lorsque la
dimension du système est élevée, R peut en fait être approché par une loi normale de moyenne

√
d

et de variance 1/2 : R ≈ N (
√
d, 1/2), pour d → +∞. De ce fait, la majeure partie de sa masse

probabiliste se situe autour de
√
d. Un anneau d’importance est alors défini grâce à deux hypersphères

de part et d’autre de l’hypersphère de rayon
√
d. Cet anneau d’importance englobe donc la région la

plus essentielle de la densité de probabilité de la loi normale standard dans Rd. Pour les autres lois
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elliptiques standards, un anneau d’importance peut aussi être défini, il n’est néanmoins pas aussi étroit
que celui de la loi normale.

Les lois standards elliptiques sont particulièrement courantes pour modéliser les variables aléatoires.
Il existe de fait de nombreuses transformations isoprobabilistes permettant de retrouver les lois stan-
dards elliptiques [Bourinet, 2018, Sarazin, 2021]. Nous supposerons donc dans la suite du manuscrit
que le vecteur aléatoire X suit une loi elliptique standard.

Afin de réaliser l’analyse de fiabilité du système, une fonction de performance g définie sur l’espace
de sortie de la bôıte noire M permet de déterminer l’état du système

• Le système est dans un état sûr pour les entrées ζ = [s,X] ∈ Rp × Rd vérifiant g(M(ζ)) > 0, le
domaine de sûreté est alors défini par Ds = {ζ ∈ Rm |g(M(ζ)) > 0}.

• Le système est dans un état défaillant pour les entrées ζ = [s,X] ∈ Rp×Rd vérifiant g(M(ζ)) ≤ 0,
le domaine de défaillance est défini par Df = {ζ ∈ Rm |g(M(ζ)) ≤ 0}.

Cette fonction de performance est couramment définie à l’aide d’une valeur de réponse seuil yth

g(M(ζ)) = yth−M(ζ). La défaillance du système représente alors le dépassement de cette valeur seuil,
qui est la valeur maximale acceptable pour la sûreté du système. L’hypersurface dans Rm vérifiant
{ζ | g(M(ζ)) = 0} est appelé surface d’état limite et permet de séparer en deux l’espace d’entrée entre
le domaine de sûreté et le domaine de défaillance. Par simplification, la fonction g ◦M : Rm → R est
par la suite appelée fonction d’état limite et est simplement notée g. Le gradient de cette fonction est
supposé disponible. Puisque la fonction d’état limite est numériquement coûteuse, le nombre d’appel à
cette fonction nécessaire à l’analyse de fiabilité du système doit rester le plus bas possible. Le nombre
total d’appel à cette fonction et ses dérivées est appelé budget de simulation.

Dans ce manuscrit, nous allons nous intéresser tout d’abord au calcul de la probabilité de défaillance
du système. En utilisant la représentation stochastique du vecteur X, cette quantité s’écrit

Pf (s) =
∫

Df (s)
fR(r)fT(t) drdt =

∫
R+

∫
T d

IDf (s)(rt)fR(r)fT(t) drdt = EfR,fT

[
IDf (s)(RT)

]
,

où Df (s) = {rt ∈ Rd | g(s, rt) ≤ 0} est le domaine de défaillance pour un vecteur s fixé, et IDf (s) est la
fonction indicatrice égale à 1 lorsque g(s, rt) ≤ 0 et 0 sinon. L’opérateur EfR,fT dénote l’espérance par
rapport à R et T simultanément. La fiabilité du système Re est définie par Re = 1 − Pf . Puisque la
défaillance du système est présumée être un évènement rare, la probabilité de défaillance Pf est faible,
i.e. inférieure à 10−3.

L’estimation de cette probabilité de défaillance est particulièrement ardue. Dans ce manuscrit,
deux hypothèses expliquent cette difficulté. Tout d’abord, la dimension d du système est supposée
élevée, d > 50. L’intégrale Pf (s) est alors définie sur un grand espace aléatoire. Ensuite, le système
étant complexe, le domaine de défaillance Df (s) est supposé posséder plusieurs régions de défaillance.
Plusieurs configurations différentes du vecteur X peuvent ainsi mener à la défaillance. Ces différentes
régions de défaillance doivent toutes être prises en compte dans l’estimation de la probabilité de
défaillance. En conclusion, l’estimation de cette intégrale est donc particulièrement difficile et des
méthodes numériques adaptées doivent être considérées.

La probabilité de défaillance dépend également du vecteur de variables déterministes s. Ainsi, dans
ce manuscrit nous nous intéressons aussi à la dérivée de Pf par rapport à s. En supposant que le
gradient ∇rtg(s, rt) ̸= 0 pour tous rt et s sur la surface d’état limite {g(s, rt) = 0}, la dérivée de
Pf (s) par rapport à sℓ pour ℓ = 1, . . . , p est égale à l’intégrale surfacique suivante [Breitung, 2006]

∂Pf (s)
∂sℓ

= −
∫

g(s,rt)=0

1
∥ ∇rtg(s, rt) ∥

∂g(s, rt)
∂sℓ

fR(r)fT(t)ds(rt),

où ds(rt) dénote l’intégration surfacique sur la surface d’état limite {g(s, rt) = 0}. L’estimation d’une
telle intégrale permets d’évaluer l’influence de s sur Pf (s) et fait partie de l’analyse de sensibilité locale
du système [Torii and Novotny, 2021].

L’estimation de cette intégrale surfacique peut être problématique, surtout pour une fonction d’état
limite g englobant plusieurs régions de défaillance dans un espace d’entrée de grande dimension. Le
principal défi de cette estimation est de recourir le moins possible à des nouvelles évaluations de
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la fonction d’état limite. En effet, il s’agit de réutiliser les évaluations de la fonction d’état limite
nécessaires à l’estimation de la probabilité de défaillance afin d’augmenter le budget de simulation de
manière négligeable.
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Chapter 2

Mathematical modeling of a system

Contents
2.1 Input-output black-box model of the system . . . . . . . . . . . . . . . . . 19
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2.2.2.1 The important ring of elliptical laws . . . . . . . . . . . . . . . . . 27
2.2.2.2 Probabilistic transformation to elliptical laws . . . . . . . . . . . . 28

2.3 Performing a reliability analysis of the system . . . . . . . . . . . . . . . . 30
2.3.1 Estimation of the failure probability of the system . . . . . . . . . . . . . . 31
2.3.2 Probability of failure sensitivity analysis . . . . . . . . . . . . . . . . . . . . 31

2.1 Input-output black-box model of the system
In many scientific fields, a complex system is often modeled with a function M(·) expected to simulate
the behavior of the system. The output of this function is the observed response while the inputs
represent the different parameters that have an influence over the behavior of the system, such as
environmental or physical variables. This function is typically named input-output model and is
mathematically defined as such :

M : Z ⊂ Rm −→ Y ⊂ R
ζ 7−→ y

where ζ = (ζ1, ..., ζm)⊤ is a m-length vector of input variables and y is a scalar output. The function
M can be given by an analytical formula or a numerically expensive computational code. For instance,
it can require the resolution of a partial differential equations system by a numerical method such as
finite volume or finite element. It is assumed here that M is deterministic. Consequently, there is no
intrinsic stochasticity in the function M: for the same set of inputs, the output will remain the same.

In this manuscript, the function M is seen as a black-box: no information about it is given.
However, it is assumed that its gradient with respect to the parameter ζ can be computed, which is
nowadays often possible; see [Kenway et al., 2019,Yu et al., 2018] for recent examples in the aerospace
field. Thus, for a particular set of inputs ζ, the response y and the gradient [∂M/∂ζi]i=1,..,m are
supposed to be available. As the black-box function is numerically expensive (and can require several
hours or days to run), the number of time M is evaluated has to be as low as possible.

The inputs of the system are divided into two groups : deterministic inputs and random inputs.
The deterministic inputs represent variables which have fixed values, such as design parameters for
instance. On the other hand, the random inputs represent variables which have uncertain measures or
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whose value cannot be set due to a lack of knowledge or simply due to their nature. Amongst the m
inputs variable, the deterministic variables are denoted s ∈ Rp while the random variable are denoted
X ∈ Rd. The total number of inputs m is thus the sum of the cardinal of those two groups : m = p+d.
However, in the following chapters, when referring to the dimension of the system, only the number
of random variables d is taken into account. It is assumed in this manuscript that the dimension of
the system is high (d is above 50, say), in order to properly account for all sources of uncertainty.
The random variables are typically denoted with uppercase letters, while deterministic variables are
denoted with lowercase letters. The variables of dimension superior to one are written in bold.

2.2 Probabilistic modeling of the random inputs
When modeling the random inputs of the system, several frameworks exist depending on the amount
of input information available and on the nature of the inputs [Ferson and Ginzburg, 1996,Qiu et al.,
2008]. If the joint probability distribution of the random vector X can be easily obtained, the proba-
bilistic approach [Apostolakis, 1990,Paté-Cornell, 1996] is employed to model the inputs of the system.
On the contrary, if the probability distribution of some of the random variables cannot be obtained
precisely, due to a lack of data for fitting their probabilistic models for example, non-probabilistic
approaches (also called imprecise probabilities [Augustin et al., 2014]), such as possibility theory, fuzzy
sets, interval theory (and others), are employed to model X. In this manuscript, it is assumed that
enough information is available to construct a probabilistic model for the random vector X, thus
non-probabilistic approaches are not presented.

2.2.1 Elements of probability theory

In order to define the probabilistic model, a probabilistic space is considered with the following triplet:
(Ω,A,P). Where Ω is a sample space, an arbitrary non-empty set, A is a σ-algebra, a set of subsets of
Ω called events, and P : A → [0, 1] is a probability measure such that the measure of the entire sample
space is equal to 1, P(Ω) = 1. A continuous random vector X of dimension d is then a (measurable)
function of (Ω,A,P) in the measurable space (Rd,B(Rd)), where B(Rd) stands for the Borel set of Rd.

Let X be a random vector of dimension d. The distribution of X is uniquely defined in the following
manner

• by its law PX

∀B ∈ B(Rd), PX(B) = P(X ∈ B),

it is thus assumed here that the law PX is absolutely continuous with respect to Lebesgue’s
measure.

• by its joint cumulative distribution function (cdf) FX

∀ x ∈ Rd, FX(x) = FX(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd),

or its survival function HX

∀ x ∈ Rd, HX(x) = HX(x1, . . . , xd) = P(X1 > x1, . . . , Xd > xd),

• or (in the absolutely continuous case) by its joint probability density function (pdf) fX

∀ x ∈ Rd, fX(x) = fX(x1, . . . , xd) = ∂dFX(x)
∂x1 · · · ∂xd

,

it is assumed here that the random vector X is absolutely continuous in the following, thus its
pdf fX is available.

A few interesting attributes of the distribution of X are presented in the following sections.
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2.2.1.1 Moments of a random variable

The moments of a random variable X, when they exist, are characteristics that give additional infor-
mation about the law of X. The moment of order α is defined, thanks to the transport theorem, by
the following quantity

∀α ∈ N E[Xα] =
∫
R
xαfX(x)dx,

where fX is the pdf of the random variable X. The quantity E [(X − E[X])α] is called centered moment
of order α. In particular, the moment of order 1 written µX is called mean value of X and the centered
moment of order 2 written Var(X) is called variance of X. The variance of X is always positive. The
standard deviation is defined by the square root of the variance and written σX =

√
Var(X). Finally,

the coefficient of variation (CV) is equal to the ratio between the standard deviation of X and its mean

CV(X) = σX

µX
.

If X ≥ 0, a definition of E[Xα] is possible when α is not a natural number and is called fractional
moments.

When dealing with a random vector X of dimension d, the mean value µX and the covariance
matrix written ΣX are given by

µX = (E[X1], . . . ,E[Xd]) ∈ Rd,

ΣX =

Cov(X1, X1) · · · Cov(X1, Xd)
...

...
Cov(Xd, X1) · · · Cov(Xd, Xd)

 ∈ Md(R),

where Cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj ])] is the covariance between the margins Xi and Xj

and Md(R) designates the set of square matrix of size d× d. The covariance between the same margin
Xi is thus equal to its variance Cov(Xi, Xi) = E[(Xi − E[Xi])2] = Var(Xi). Any covariance matrix
is symmetric and positive semi-definite. In probabilistic modeling, the covariance matrix ΣX is often
associated with the linear correlation matrix RX. The coefficient of this matrix are equal to Pearson’s
correlation (written ρ) and defined by

[RX]i,j = ρi,j = Cov(Xi, Xj)
σXi

σXj

.

It is assumed in this manuscript from now on that X is a second order random vector, thus
X ∈ L2(Ω,Rd) which ensures that the mean value µX and covariance matrix ΣX are well-defined and
finite.

2.2.1.2 Dependence structure of a random vector

An essential information about the distribution of the random vector X is the dependence relation-
ship between the univariate margins Xi. If the univariate margins X1, . . . , Xd are independent, the
distribution of the random vector X is given by the product of the univariate marginal probability
functions

CDF : ∀ x ∈ Rd FX(x) = FX(x1, . . . , xd) =
d∏

i=1
FXi

(xi),

PDF : ∀ x ∈ Rd fX(x) = fX(x1, . . . , xd) =
d∏

i=1
fXi(xi).

However, when there is a dependence between the univariate margins, the marginal laws are not
enough to describe the joint distribution. Copulas [Sklar, 1959] are then used to define the dependence
structure of the random vector X. A copula is a multivariate cdf with uniform univariate margins on
the interval [0, 1]. Sklar [Sklar, 1959] showed that given d random variables X1, . . . , Xd with univariate
cdf FX1 , . . . , FXd

respectively, there always exists a copula CX such that

∀ x ∈ Rd FX(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) = CX(FX1(x1), . . . , FXd
(xd)). (2.1)
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When FX1 , . . . , FXd
are continuous, then CX is unique and can be retrieved from the joint distribution

of X as

∀ u ∈ [0, 1]d CX(u1, . . . , ud) = P(X1 ≤ F−1
X1

(u1), . . . , Xd ≤ F−1
Xd

(ud))
= FX(F−1

X1
(u1), . . . , F−1

Xd
(ud)),

where F−1
Xi

denotes the generalized inverse of FXi
. Taking the derivative of Eq. (2.1), Sklar’s repre-

sentation of copulas can be derived for the density functions as

∀ x ∈ Rd fX(x1, . . . , xd) = cX(FX1(x1), . . . , FXd
(xd)) ×

d∏
i=1

fXi(xi),

where cX is the copula density of X defined by

∀ u ∈ [0, 1]d cX(u) = ∂dCX(u)
∂u1 · · · ∂ud

.

Therefore, the independent case is just a particular case where the copula CX and the copula density
are defined by

∀ u ∈ [0, 1]d CX(u1, . . . , ud) =
d∏

i=1
ui,

thus cX(u) = 1. The theorem of Sklar written above is essential in the copula theory since it stipulates
that the distribution of a random vector X is entirely characterized with its univariate margins fXi

and
its copula CX. In the next paragraphs, we present the meta-elliptical copulas and the Archimedean
copulas, which are the most famous copula families. However, there exist many other copula families
like the extreme-value copula family [Galambos, 1978] or the Bernstein copula family [Sancetta and
Satchell, 2004] for example.

Meta-elliptical copulas
The family of meta-elliptical copulas was first presented in [Fang et al., 2002] and comes from the
family of elliptical distributions [Fang et al., 2018]. A random vector X of dimension d is said to
have an elliptical distribution E(µX,DX, h) with mean vector µX, dispersion matrix DX and density
generator h : R+ → R+ if it can be expressed in the form

X = RAT + µX, (2.2)

where AA⊤ is the Cholesky decomposition of DX, T is a random vector uniformly distributed on the
unit sphere T d = {(t1, . . . , td) ∈ Rd : t21 + · · ·+t2d = 1} and R is a positive random variable independent
of T with density

∀ r ∈ R+ fR(r) = 2πd/2

Γ(d/2)r
d−1h

(
r2) ,

where Γ is the gamma function. The random vector T is named directional component while the
random variable R is named radial component and Eq. (2.2) is called stochastic representation of X.
The multivariate pdf of X is then given by

∀ x ∈ Rd fX = 1√
detDX

h
(
(x − µX)⊤D−1

X (x − µX)
)
. (2.3)

The underlying copula of X is said to be meta-elliptical, but is not available in closed form [Genest
and Nešlehová, 2012]. The covariance matrix ΣX of the random vector X can be retrieved thanks to
the stochastic representation of X

ΣX = Cov(X) = E
[
(X − µX)(X − µX)⊤] = E

[
RAT(RAT)⊤]

= E
[
R2ATT⊤A⊤

]
= E

[
R2]AE [TT⊤

]
A⊤,
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since R and T are independent. Then, as E
[
TT⊤

]
= 1

d Id [Lapuyade-Lahorgue, 2016], where Id is the
identity matrix of Md(R), the following relationship holds

ΣX =
E
[
R2]
d

DX. (2.4)

Thus the covariance matrix is proportional to the dispersion matrix and the constant depends on the
distribution of R2 [Lebrun and Dutfoy, 2009]. The name elliptical comes from the isodensities of the
elliptical random vector being ellipsoids. If µX = 0 and DX = Id, then the random vector X is
said to follow a standard elliptical distribution, or a spherical distribution, because its isodensities are
spherical, centered on 0. The stochastic representation of a standard elliptical vector X is then

X = RT, (2.5)

with the same notation as Eq. (2.2), and ∥X∥ = R, with ∥ · ∥ the Euclidean norm. Its probability
density function fX is then symmetric and a function of r = ∥x∥ written

∀ x ∈ Rd fX = h
(
x⊤x

)
= h

(
r2t⊤t

)
= h

(
r2) = h

(
∥x∥2) . (2.6)

The meta-elliptical family encompasses various well-known distributions, such as the Normal dis-
tribution, the Student distribution and the Cauchy distribution for example. For each of these three
elliptical laws [Genest et al., 2007], the respective distribution of R2 and the density generator h are
displayed in Table 2.1, where χ2(d) is the chi-squared distribution with d degrees of freedom and F
is the Fisher–Snedecor distribution. The definition of these distributions will be given in detail in the
following section. The meta-elliptical copulas enables to have tail dependence amongst the univariate

Table 2.1: Distributions of R2 and density generators of three elliptical laws: the normal distribution,
the Student distribution with ν degree of freedom and the Cauchy distribution.

Copula Distribution of R2 Generator h
Normal R2 ∼ χ2(d) h : t → (2π)−d/2exp

(
− t

2
)

Student R2/d ∼ F(d, ν) h : t → (πν)−d/2Γ( d+ν
2 )

Γ(ν/2) (1 + t
ν )−(d+ν)/2

Cauchy R2/d ∼ F(d, 1) h : t → (π)−d/2Γ( d+1
2 )

Γ(1/2) (1 + t)−(d+1)/2

margins which can be very practical to model certain phenomenon [Joe, 1997].

Archimedean copulas
The family of Archimedean copulas first appeared in the context of probabilistic metric spaces [Schweizer
and Sklar, 1983]. It has been proven in [McNeil and Nešlehová, 2009] that the Archimedean copulas
are strongly linked with the ℓ1-norm symmetric (or simplex) distribution. A random vector X of
dimension d is said to have an ℓ1-norm symmetric distribution if it can be expressed in the form

X = RS, (2.7)

where R is a positive random variable of cdf FR and S is a random vector, independent of R, and
uniformly distributed on the unit simplex Sd = {(s1, . . . , sd) ∈ [0, 1]d : s1 + · · · + sd = 1}. Eq. (2.7) is
the stochastic representation of the random vector X. The distribution of X is given by the following
survival function [McNeil and Nešlehová, 2009]

∀ x ∈ Rd HX(x) = WdFR (∥max(x,0)∥1) + FR(0)Ix<0(x),

where Wd is the Williamson d-transform [Williamson, 1956] and Ix<0 is the indicator function equal
to 1 when x < 0 and 0 otherwise. The random vector X has then an underlying Archimedean copula,
which can be expressed [Ling, 1965] in the simple algebraic form

∀ u ∈ [0, 1]d CX(u1, . . . , ud) = ψ(ψ−1(u1) + . . .+ ψ−1(ud)), (2.8)
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where ψ : R+ → [0, 1] is called generator function of CX. This generator function is related to the cdf
FR of the radial part R of X as the following equalities holds [McNeil and Nešlehová, 2009]

ψ = WdFR FR = W−1
d ψ

where W−1
d is the inverse Williamson d-transform. The Archimedean family encompasses various well-

known copulas such as the Gumbel copula, the Frank copula and the Clayton copula for example.
The interested reader may find their respective generator function in [Sarazin, 2021]. In Table 2.2 is
displayed the example of the independence copula introduced above, which belongs to the Archimedean
family, as an illustration of the links between CX, ψ,HX and FR. The resulting survival function HX is
the one of the independent standard exponential vector, a well known ℓ1-norm symmetric distribution.

Table 2.2: Cumulative distribution function of R, generator function and survival function associated
to the independence copula, an example of the links between ψ, FR and HX for the Archimedean
copulas.

Copula ∀ u ∈ [0, 1]d CX(u1, . . . , ud) =
∏d

i=1 ui

Generator ψ ∀x ∈ R+ ψ(x) = exp(−x)
CDF of R ∀x ∈ R+ FR(x) = 1 −

∑d−1
n=0

xn

n! exp(−x) (Erlang distribution)
Survival function ∀ x ∈ Rd HX(x) = exp

(
−
∑d

i=1 xi

)
The symmetry of Eq. (2.8) implies that all pairs of variables share the same dependence structure,

which can be a major drawback when modeling random inputs. Thus [Joe, 1996] introduced the
hierarchical Archimedean copulas, which are nested classes of Archimedean copulas that can involve
up to p − 1 generators ψ1, . . . , ψp−1 and thus introduce new dependence. They are not derived here
but the interested reader can find more details in [Grimaldi and Serinaldi, 2006].

2.2.1.3 Examples of probability distribution

Some distributions already mentioned are further detailed in this section. As previously noted, it is
assumed that the random variables and random vectors are continuous. This list of probability distri-
bution is not exhaustive but it allows a better understanding of the rest of the manuscript.

1. Univariate distributions

Uniform distribution U([a, b])
Let a and b be two real numbers such that a ̸= b. A random variable X follows a uniform distribution
on the interval [a, b], written X ∼ U([a, b]), if its density function fX is given by

∀x ∈ [a, b] fX(x) = 1
b− a

,

which is constant on the interval [a, b]. The mean and the variance of X are given by µX = 1
2 (a + b)

and Var(X) = 1
12 (b− a)2.

Exponential distribution E(λ)
Let λ ∈ R+\{0} be a strictly positive scalar. A random variable X follows an exponential distribution
of rate λ if its density function fX is given by

∀x ∈ R+ fX(x) = λexp(−λx).

The mean and variance of X are given by µX = 1
λ and Var(X) = 1

λ2 .

Chi distribution χ(ν)
Let ν ∈ N∗ be an integer. The χ distribution with ν degrees of freedom is the distribution of the
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square root of a sum of squares of ν independent standard normal random variables

X =

√√√√ ν∑
i=1

Z2
i ,

where Z1, . . . , Zν ∼ N (0, 1). The distribution is written X ∼ χ(ν), and its density function fX is given
by

∀x ∈ R+ fX(x) = 1
2(ν/2)−1Γ(ν/2)x

ν−1exp
(

−x2

2

)
.

The mean and the variance of X are given by µX =
√

2 Γ((ν+1)/2)
Γ(ν/2) and Var(X) = ν − µ2

X .

Chi-squared distribution χ2(ν)
Let ν ∈ N∗ be an integer. The χ2 distribution with ν degrees of freedom is simply the distribution of
the square of a χ-distributed random variable with ν degrees of freedom

X =
ν∑

i=1
Z2

i ,

where Z1, . . . , Zν ∼ N (0, 1). The distribution is written X ∼ χ2(ν), and its density function fX is
given by

∀x ∈ R+ fX(x) = 1
2ν/2Γ(ν/2)x

ν/2−1exp
(

−x

2

)
.

The mean and the variance of X are given by µX = ν and Var(X) = 2ν. If ν = 1 then the definition
domain is restricted to R+\{0}.

Fisher–Snedecor distribution F(κ, ν)
Let κ, ν ∈ N∗ be two integers. The Fisher–Snedecor distribution, or F -distribution, with κ and ν
degrees of freedom is the distribution of the ratio of two independent χ2-distributed variables S1 and
S2 with respective degrees of freedom κ and ν

X = S1/κ

S2/ν
,

where S1 ∼ χ2(κ) and S2 ∼ χ2(ν). The distribution is written X ∼ F(κ, ν), and its density function
fX is given by

∀x ∈ R+ fX(x) = 1
B
(

κ
2 ,

ν
2
) (κ

ν

)κ/2
xκ/2−1

(
1 + κ

ν
x
)−(κ+ν)/2

,

where B is the Beta function. The mean and the variance of X are not necessarily well-defined. If ν > 2
then the mean is finite and µX = ν

ν−2 . If ν > 4 then the variance is finite and Var(X) = 2ν2(κ+ν−2)
d(ν−2)2(ν−4) .

Otherwise, µX and Var(X) are undefined. If κ = 1 then the definition domain is restricted to R+\{0}.

2. Multivariate distributions

Uniform distribution on the unit sphere U(T d)
The unit sphere of dimension d − 1 is the set T d = {(t1, . . . , td) ∈ Rd : t21 + · · · + t2d = 1} defined in
the d-dimensional space. Let X be a random vector following the uniform distribution on T d, written
X ∼ U(T d). The uniform distribution on the unit sphere is the most natural standard elliptical
distribution. Indeed, the stochastic decomposition of X is simply X = T since R is a constant equal
to 1. The density function of X is given by

∀ x ∈ T d fX(x) = 1
Ad

where Ad = d πd/2

Γ
(

d
2 + 1

) ,
and is thus constant with Ad the surface area of T d. The mean and the covariance matrix of X are
given by µX = 0, ΣX = 1

d Id, where Id is the identity matrix. It should be noted that although the
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correlations between each margin are equal to zero, the random vector is, of course, not independent.

Von Mises–Fisher distribution on the unit sphere T d

The von Mises–Fisher distribution depends on two parameters, namely the concentration parameter
κ ∈ R+ and the mean direction parameter ν ∈ T d. Let X be a random vector following a von
Mises–Fisher distribution, its density function fX is given by

∀ x ∈ T d fX(x) = cd(κ)exp
(
κν⊤x

)
with cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ) ,

where Id/2−1 denotes the modified Bessel function of the first kind of order d/2 − 1. If κ = 0, the
distribution boils down to the uniform distribution on T d. As κ grows, the distribution is more and
more concentrated around the mean direction ν, as illustrated in Figure 2.1. The mean value of the
von Mises–Fisher distribution does not belong to the unit sphere and is equal to µX = Id/2(κ)

Id/2−1(κ) ν.

a) b)

Figure 2.1: The von Mises–Fisher distribution on the unit circle T 2 with ν = [0.71, 0.71] and a) κ = 10
b) κ = 75. The blue line represents the mean direction ν. The red dots represent a sample generated
with the chosen κ.

Multivariate normal distribution N (µX,ΣX)
The multivariate normal distribution is an elliptical distribution as previously mentioned. Let X be
a random vector of mean µX and covariance matrix ΣX following a multivariate normal distribution,
written X ∼ N (µX,ΣX). Then its stochastic representation is X = RAT + µX where R2 ∼ χ2(d)
(thus R ∼ χ(d)), T ∼ U(T d) and AA⊤ = DX. The covariance matrix is equal to the dispersion matrix
ΣX = DX as E(R2) = d in the equation Eq. (2.4). The density function fX is thus given by

∀ x ∈ Rd fX(x) = 1
(2π)d/2

√
detΣX

exp
(

− (x − µX)⊤Σ−1
X (x − µX)

2

)
, (2.9)

which is the special case of Eq. (2.3) with DX = ΣX and the generator function h : t → (2π)−d/2exp
(
− t

2
)
.

The univariate version of this distribution is straightforward, as the covariance matrix is reduced to
the variance of X equal to σ2

X and d is set to 1 in Eq. (2.9). When µX = 0 and ΣX = Id, the
identity matrix of dimension d, the distribution is called standard normal distribution. In the rest of
the manuscript, the univariate standard normal cdf will be written Ψ and its pdf will be written ϕ.

Multivariate Student distribution tν(µX,DX)
The multivariate Student distribution is also an elliptical distribution as previously mentioned. The
Student distribution of mean µX and dispersion matrix DX, written X ∼ tν(µX,DX), is the distri-
bution of the ratio of a centered normal vector Z ∼ N (0,DX) and a χ2-distributed variable U with
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degree of freedom ν > 0
X = Z√

U/ν
+ µX,

where Z and U are independent. Its stochastic representation is written X = RAT + µX where
R2/d ∼ F(d, ν), T ∼ U(T d) and AA⊤ = DX. When ν > 2, the covariance matrix is equal to
ΣX = ν

ν−2 DX since E(R2) = d× ν
ν−2 in the equation Eq. (2.4). The density function fX is thus given

by

∀ x ∈ Rd fX(x) =
(πν)−d/2Γ

(
d+ν

2
)

Γ(ν/2)
√

detDX

(
1 + (x − µX)⊤D−1

X (x − µX)
ν

)−(d+ν)/2

, (2.10)

which is the special case of Eq. (2.3) with generator function h : t → (πν)−d/2Γ( d+ν
2 )

Γ(ν/2) (1 + t
ν )−(d+ν)/2.

The univariate version of this distribution is straightforward, as the dispersion matrix is reduced to 1,
the mean value is equal to 0 and d is set to 1 in Eq. (2.10).

2.2.2 Standard elliptical laws in high-dimensional space
In this manuscript, standard elliptical distributions play a major role. Consequently, these distributions
are now further described. Assume X follows a standard elliptical law. This distribution family has
been introduced in the previous section: the stochastic representation of the random vector X is
thus given by Eq (2.5). It should be noted that although DX = Id, only the multivariate standard
normal distribution has independent components, all the other standard elliptical distributions include
dependence [Arnold and Lynch, 1982]. In this section, the behavior of those laws when the dimension
d of the system is high is depicted.

2.2.2.1 The important ring of elliptical laws

The multivariate normal distribution
In the literature, many reliability studies are performed in the high-dimensional standard normal
space [Wang and Song, 2016,Papaioannou et al., 2019,Wang and Song, 2018]. This space has specific
properties that are derived here. Let X be a standard normal vector of dimension d. Then, as previously
mentioned, X = RT, where R2 ∼ χ2(d) and T ∼ U(T d) and R and T are independent. This stochastic
representation is sometimes called polar representation. Since R2 ∼ χ2(d) means that R ∼ χ(d), the
properties of the chi distribution apply to the radial component of X. When d is sufficiently large, the
pdf of the χ distribution is highly concentrated around r =

√
d, which is illustrated in the Figure 2.2.

It has been proven in [Katafygiotis and Zuev, 2008, Canal, 2005], that if the dimension d is suffi-
ciently large, R can be approximated with a univariate normal distribution of mean

√
n and variance

1/2: as d → +∞, R ≈ N (
√
d, 1/2). Therefore, almost all the probability mass of R is concentrated

around
√
d. As the distribution of T is the uniform distribution on T d, the important ring is then the

name given to the region of spherical symmetry which encompasses most of the probability mass of
X in the standard normal space. The important ring is defined with two hyperspheres of radii LB for
lower bound and UB for upper bound and [LB,UB] is named Important Interval (II). The important
interval can be defined in several ways. For example, if one wishes to have the important ring centered
around the hypersphere of radius

√
d, the important interval can be defined with the minimum value

ϵ such as P(
√
d − ϵ ≤ R ≤

√
d + ϵ) ≥ 1 − 10−n with n a set integer. Then II1 = [

√
d − ϵ,

√
d + ϵ].

Another possibility is to use the quantile of the chi distribution and to define the important interval
as II2 = [q10−n/2(χ(d)), q1−10−n/2(χ(d))]. Those two important intervals are displayed in Table 2.3,
for several values of d and n. The higher the dimension of the system, the more similar those two
important intervals are. Thus when performing the reliability analysis, one must take into account
this specificity of the standard normal space.

Other standard elliptical distributions
For the other standard elliptical laws, the same properties of the radial component in the high-
dimensional space do not necessarily apply. As previously noted in Table 2.1, both the Student
distribution and the Cauchy distribution share the Fisher–Snedecor law as the distribution of their
radial component. The density of R ∼

√
d× F(d, ν) is illustrated for different values of dimension

d and degrees of freedom ν in Figure 2.3. The pdfs displayed in Figure 2.3 do not have the same
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a) b)

Figure 2.2: The density function of the radial component R when a) d = 250 b) d = 500. When
d = 250, E[R] = 15.7956, while

√
250 = 15.8114, and Var(R) = 0.4995

Table 2.3: Example of important interval definitions for the standard normal vector, according to the
dimension d and the integer n such as P(R ∈ II) ≥ 1 − 10−n.

n = 4 n = 6 n = 8
d = 250 II1 = [13.06, 18.56] II1 = [12.33, 19.29] II1 = [11.70, 19.92]

II2 = [13.12, 18.62] II2 = [12.47, 19.37] II2 = [11.93, 20.00]

d = 500 II1 = [19.61, 25.11] II1 = [18.89, 25.83] II1 = [18.28, 26.44]
II2 = [19.65, 25.15] II2 = [18.98, 25.89] II2 = [18.42, 26.51]

d = 1000 II1 = [28.87, 34.37] II1 = [28.16, 35.09] II1 = [27.55, 35.69]
II2 = [28.90, 34.40] II2 = [28.22, 35.13] II2 = [27.65, 35.75]

behavior than the χ distribution as the probability mass of R is not concentrated around any partic-
ular value. The F -distribution appears to have a right heavy tail in some settings, which means that
the right tail is heavier than the one of the exponential distribution. Therefore, an important ring
can still be defined by quantiles, but the resulting important interval will be a lot wider than for the
standard normal case. For instance, the lower bound can be taken as

√
d× q10−n/2(F(d, ν)) and the

upper bound as
√
d× q1−10−n/2(F(d, ν)), with n an integer. In dimension d = 250 with ν = 1, the

interval II = [3.83, 2.52 × 105] satisfies P(R ∈ II) ≥ 1 − 10−4 while if ν = 4, this interval becomes
II = [6.18, 2.24 × 102] for the same probability.

2.2.2.2 Probabilistic transformation to elliptical laws

Assuming the random inputs can be modeled with standard elliptical distributions is not a strong
assumption as several probabilistic transformations allow to change a random input space into a
standard elliptical space. These transformations have been developed in different contexts, to serve
different purposes [Chabridon, 2018]. First of all, the random input variables can be of various nature,
as they may represent different physical quantities of specific unit and magnitude. Thus transforming
the inputs into a centered and scaled random vector can allow a better understanding of the input
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Figure 2.3: The density function of the radial component R ∼
√
d× F(d, ν) of a Student distribution

for different values of d and ν and of a Cauchy distribution for different values of d.

space. Another advantage is that, when transformed in the standard normal space, the random vector
is then independent. The independence makes some theoretical and numerical computation easier
as explicit formulas can then be derived. The transformation is defined thanks to a diffeomorphism
T : Rd → Rd, also referred to as isoprobabilistic transformation, such that

X = T (Z) and Z = T−1(X),

where Z is the original random input vector while X ∼ E(0, Id, h). Different transformations are
accessible depending on the nature of the random vector Z and the amount of information available
about its probabilistic model

• If the random vector Z is already independent, and its univariate marginal cdfs are known, then
the probability integral transform [Sarazin, 2021,Bourinet, 2018] is a basic transformation from
Z to X ∼ N (0, Id).

• If the random vector Z has an elliptical copula with known univariate marginal cdf and known
Pearson linear correlations between the margins, then the generalized Nataf transformation [Le-
brun and Dutfoy, 2009] allows to transform Z to its standard equivalent X ∼ E(0, Id, h), with h
the density generator associated to the elliptical copula of Z.

• If the random vector Z is known through its joint distribution (cdf, or pdf), then the Rosenblatt
transformation [Rosenblatt, 1952] allows to transform Z to X ∼ N (0, Id) without any assumption
on the dependent structure of Z.

Those transformations are not detailed here but the interested reader may find more information about
them in [Sarazin, 2021,Bourinet, 2018].

However, it should be noted that if the dimension d is high, those transformations can be nu-
merically more demanding, especially if the inputs have a strong dependence. Indeed as mentioned
in [Martinez et al., 2018], in the Nataf transformation for example, d(d − 1)/2 Pearson correlation
coefficients must be transformed and thus the computational burden increases with the square of d.
An example of solution to address this computational burden is therefore presented in [Lin et al., 2020].
As the Rosenblatt transformation requires the knowledge of the conditional cdfs of every univariate
margins, if d is high then the computational effort increases as well [Bourinet, 2018].
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2.3 Performing a reliability analysis of the system
Several quantities of interest can be studied in order to perform the reliability analysis of the system.
Indeed, since the uncertainties of the inputs X are spreading through the deterministic black-box
model to the output, one can be interested in constructing the cdf/pdf of the random output variable
Y , or in estimating its moment E[Y ] and Var(Y ). One can also be interested in the performance of
the system, which is evaluated with a deterministic scalar function g : R → R, called the performance
function. Traditionally, the performance function g is built such as the behavior of the system is split
into two states:

• The system is safe for values of ζ = [s,X] ∈ Rp ×Rd such as g(M(ζ)) > 0, and the safety domain
is defined as Ds = {ζ ∈ Rm |g(M(ζ)) > 0}.

• The system is failing for values of ζ = [s,X] ∈ Rp × Rd such as g(M(ζ)) ≤ 0, and the failure
domain is defined as Df = {ζ ∈ Rm |g(M(ζ)) ≤ 0}.

For example, if one is interested in the exceedance of a given threshold level yth of the system, the
performance function takes the form g(M(ζ)) = yth − M(ζ). The hypersurface in Rm such that
{ζ | g(M(ζ)) = 0} is called the limit state surface and splits the input space into the safety domain
and the failure domain. An illustration of the map of the input space with regard to the state of the
system is displayed in Figure 2.4, for a system of dimension d = 2.

Figure 2.4: Illustration on a two-dimensional example of the map of the input space, split in the failure
domain Df and the safety domain Ds by the limit state surface in blue. The dotted lines represent
isovalues of the joint pdf of the inputs. The color map represents the value of the limit state function
g.

For simplicity, the function g ◦M : Rm → R will be written g and referred to as limit state function
(lsf) for the rest of the manuscript. Since the gradient of the black-box model M is available, so is the
gradient of the limit state function g. As previously noted, the number of times M is evaluated has
to remain as low as possible, therefore so is the number of evaluations of the lsf g. This number of
evaluations is called the simulation budget. The lsf g can only be evaluated pointwise, thus the limit
state surface cannot be explicitly defined.

In this manuscript, the quantities of interest studied to perform the reliability analysis of the
system are the failure probability of the system, denoted Pf , which is defined as the probability that
the system is in the failure state, and its derivatives with respect to decision parameters, being the
deterministic inputs of the system s.
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2.3.1 Estimation of the failure probability of the system
In our specific context, the inputs are divided into two groups, namely the deterministic one with vector
s and the random one with vector X. In addition, it is assumed that the random input X follows a
standard elliptical distribution, thus X = RT, as previously noted in Section 2.2.1.2. Since the radial
component R and the directional component T are independent, the joint pdf of the random variable
X is written fX = fRfT. The probability of failure of the system is then defined by the following
d-fold integral

Pf (s) =
∫

Df (s)
fR(r)fT(t) drdt =

∫
R+

∫
T d

IDf (s)(rt)fR(r)fT(t) drdt = EfR,fT

[
IDf (s)(RT)

]
,

where Df (s) = {rt ∈ Rd | g(s, rt) ≤ 0} is the failure domain for a specific vector s, and IDf (s) is the
indicator function equal to 1 when g(s, rt) ≤ 0 and 0 otherwise. The operator EfR,fT stands for the
mathematical expectation with respect to R and T simultaneously. Since the failure of the system is
supposed to be a rare event, it is assumed that the failure probability Pf is small, i.e. inferior to 10−3.

It is recalled here that we suppose the dimension of the system d high, above 50. Moreover, it
is assumed in the rest of the manuscript that the failure domain Df (s) encompasses possibly several
failure modes [Ditlevsen and Madsen, 1996]. This is particularly true with high-dimensional systems,
where the failure can come from different extreme configurations of the random vector X. Thus there
may be several regions in the input space, disjoint or not, that belong to the failure domain. Therefore
the two main challenges of the estimation of the probability concern the high dimension d and the
multiple failure regions. An illustration in dimension d = 2 is given in Figure 2.5, where two failure
regions exist amongst the failure domain Df .

a) b)

Figure 2.5: Illustration of the location of the two failure regions on an example in dimension 2 a) where
the failure regions are disjoint b) where the failure regions are joint. The blue line is the limit state
surface. The dotted lines represent isovalues of the joint pdf of the inputs. The color map represents
the value of the limit state function g.

2.3.2 Probability of failure sensitivity analysis
The probability of failure depends upon the specific value of s. Thus, the other quantity of inter-
est studied in this manuscript is the derivatives of Pf according to s. Assuming that the gradient
∇rtg(s, rt) ̸= 0 for all rt and s on the limit state surface {g(s, rt) = 0}, the derivative of Pf (s)
according to sℓ with ℓ = 1, . . . , p is equal to the surface integral [Breitung, 2006]

∂Pf (s)
∂sℓ

= −
∫

g(s,rt)=0

1
∥ ∇rtg(s, rt) ∥

∂g(s, rt)
∂sℓ

fR(r)fT(t)ds(rt),
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where ds(rt) stands for surface integration over the limit state surface {g(s, rt) = 0}. The estimation
of such an integral allows to evaluate the influence of s upon Pf (s) and is part of the local sensitivity
analysis of the system [Torii and Novotny, 2021]. In the literature, the vector s is often referred to as
decision parameters [Lacaze et al., 2015]. If the vector s influences the design of the system then it is
also called design parameters [Torii, 2020,Papaioannou et al., 2018].

The estimation of such a surface integral is not straightforward, especially for a complex limit state
function g encompassing several failure regions in a high-dimensional input space. The main challenge
of the estimation of the derivatives is to increase as little as possible the simulation budget needed for
the estimation of the probability of failure.



Estimation de probabilité de
défaillance en grande dimension
dans un espace standard elliptique

Contexte d’étude
Dans ce manuscrit, afin d’analyser la fiabilité du système, nous nous intéressons tout d’abord à
l’estimation de sa probabilité de défaillance. Les variables d’entrée du système sont divisées en deux
groupes : les variables déterministes s ∈ Rp et les variables aléatoires X ∈ Rd, avec d ≥ 50. La prob-
abilité de défaillance dépend alors des variables déterministes et est notée Pf (s). Néanmoins, pour
alléger les notations de ce chapitre, cette dépendance sera supposée implicite dans la suite, pour la
probabilité de défaillance Pf ainsi que la fonction d’état limite g. En conséquence, la probabilité de
défaillance est définie à l’aide de l’intégrale suivante

Pf = P(g(X) ≤ 0) =
∫

Df

fX(x) dx =
∫
Rd

IDf
(x)fX(x) dx = EfX

[
IDf

(X)
]
,

où Df = {x ∈ Rd | g(x) ≤ 0} est le domaine de défaillance avec g : Rd → R la fonction d’état limite
restreinte aux variables aléatoires X. Dans le contexte spécifique du manuscrit, puisque le vecteur X
suit une distribution standard elliptique, l’intégrale est réécrite avec la représentation stochastique

Pf = P(g(RT) ≤ 0) =
∫

Df

fR(r)fT(t) dr dt =
∫
R+

∫
T d

IDf
(rt)fR(r)fT(t) dr dt = EfR,fT

[
IDf

(RT)
]
.

Comme précédemment mentionné, la défaillance est un évènement rare, ainsi Pf ≤ 10−3. De plus,
plusieurs configurations des entrées entrâınent la défaillance du système, ainsi Df peut englober
plusieurs régions de défaillance.

Le but de ce chapitre est alors de présenter différentes techniques développées dans la littérature afin
d’estimer la probabilité de défaillance d’un tel système. L’enjeu est de limiter le nombre d’évaluations
de la fonction d’état limite g, celle-ci étant calculée par un solveur bôıte noire numériquement coûteux.

Présentation de plusieurs méthodes d’estimation de la proba-
bilité de défaillance

Méthodes d’approximation utilisant les points de conception
Une première manière d’estimer la probabilité de défaillance est d’utiliser une méthode d’approximation
de la fonction d’état limite g. Nous présentons ici les techniques FORM (First-Order Reliability
Method) et SORM (Second-Order Reliability Method). Ces méthodes, développées dans l’espace
standard elliptique [Lebrun and Dutfoy, 2009], utilisent la localisation du point de conception du
système afin de construire un substitut de la fonction d’état limite.

Le point de conception du système, noté P ∗ est le point de norme euclidienne minimale se trouvant
dans le domaine de défaillance du système. C’est le point défaillant maximisant la densité de la
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loi standard elliptique, puisqu’il est le plus proche de l’origine. Ce point de conception s’obtient en
résolvant le problème d’optimisation quadratique sous contrainte suivant

P ∗ = argmin
x∈Df

x⊤x = argmin
x∈Df

∥x∥2

avec ∥ · ∥ la norme euclidienne. Les algorithmes permettant d’effectuer cette optimisation sont nom-
breux [Lemaire, 2013] et nécessitent en général le gradient ∇xg de la fonction d’état limite que nous
supposons disponible dans ce manuscrit. L’approximation FORM consiste alors à remplacer la fonc-
tion d’état limite g par son développement de Taylor à l’ordre 1 au voisinage de P ∗, tandis que
l’approximation SORM utilise son développement de Taylor d’ordre 2. Des approximations de la prob-
abilité de défaillance sont alors calculables avec un budget de simulation très faible, ce qui constitue
le point fort de ces méthodes.

Lorsque le domaine de défaillance possède plusieurs régions de défaillance, une méthode décrite
dans [Der Kiureghian and Dakessian, 1998] permet de trouver les différents points de conception de
chaque région de défaillance, en adaptant l’optimisation après chaque région trouvée. Le probabilité
de défaillance finale s’obtient alors généralement en termes de borne, même si une formule explicite
est possible dans le cas gaussien avec FORM [Ditlevsen and Madsen, 1996].

Néanmoins, si les approximations de la fonction d’état limite peuvent être plutôt fidèles à la réalité
au voisinage des points de conception, ce n’est pas forcément le cas dans des régions éloignées des
points de conception. Il est souligné dans [Katafygiotis and Zuev, 2008] que les points de conception
des systèmes modélisés par des variables aléatoires gaussiennes ne sont généralement pas localisés dans
l’anneau d’importance de ces dernières. Ainsi, puisque la probabilité de défaillance est principale-
ment calculée avec la masse probabiliste se situant dans cet anneau d’importance, l’approximation
FORM/SORM peut être erronée dans cette région.

Méthodes de simulation
Les méthodes de simulations sont basées sur la technique de Monte-Carlo (MC) [Robert and Casella,
1999, Sobol, 2018]. En remarquant que Pf = EfX

[
IDf

(X)
]
, la méthode de MC consiste tout d’abord

à générer un échantillon indépendant et identiquement distribué
(

X(j)
)

j=1,...,N
de taille N grâce à la

densité fX. La probabilité de défaillance est ensuite estimée par la moyenne de la fonction indicatrice
du domaine de défaillance évaluée sur l’échantillon

P̂MC
f = 1

N

N∑
j=1

IDf

(
X(j)

)
.

Cette méthode est non biaisée et converge peu importe la dimension d du système ou le nombre de
régions de défaillance de g. De plus elle est adéquate pour n’importe quelle densité fX, et convient
donc à toutes les lois elliptiques standards. Cependant, sa vitesse de convergence est lente : la vari-
ance de l’estimateur est proportionnelle à 1/N . Cette méthode n’est donc pas adaptée à l’estimation
de probabilité d’évènements rares. Plusieurs méthodes ont alors été proposées afin d’accélérer cette
vitesse de convergence.

La méthode de ”Subset Simulation” [Au and Beck, 2001] repose sur l’idée d’écrire la probabilité
de défaillance de valeur très faible en tant que produit de probabilités de défaillance intermédiaires
plus facile à estimer car de valeurs plus élevées. Des domaines de défaillance intermédiaires Fi sont
introduits à l’aide d’une séquence décroissante de seuils s0 > s1 > · · · > sm = 0 de telle sorte que
Fi = {x ∈ Rd | g(x) ≤ si}. Les probabilités conditionnelles P(Fi|Fi−1) sont ensuite calculées, pour
retrouver Pf = P(Fm) grâce au produit de ces probabilités conditionnelles pour i = 1, . . . ,m. En pra-
tique, ces probabilités sont estimées par méthode de MC grâce à des échantillons de lois conditionnelles
obtenus par châınes de Markov [Metropolis et al., 1953]. Plusieurs versions des châınes de Markov ont
été développées afin de rendre l’algorithme de subset simulation particulièrement performant en grande
dimension, surtout pour les lois normales standards [Katafygiotis and Zuev, 2008]. Lorsque le domaine
de défaillance possède plusieurs régions distinctes, un budget de simulation plus conséquent peut être
nécessaire pour atteindre chacune de ces zones grâce aux châınes de Markov.
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Les méthodes d’échantillonnage préférentiel consistent à introduire une densité h dite auxiliaire
dans le calcul de la probabilité de défaillance. Cette densité h, dont le support doit inclure celui de
IDf

fX permet de définir l’intégrale comme

Pf =
∫
Rd

IDf
(x)fX(x)

h(x) h(x) dx = Eh

[
IDf

(X)fX(X)
h(X)

]
.

L’estimateur d’échantillonnage préférentiel de Pf est ensuite donné par la formule suivante

P̂ IS
f = 1

N

N∑
j=1

IDf

(
X(j)

) fX

(
X(j)

)
h
(

X(j)
) ,

où les variables aléatoires
(

X(j)
)

sont indépendantes et identiquement distribuées selon h. Avec
un choix pertinent de densité auxiliaire, la variance de cet estimateur peut être grandement réduite
comparée à celle de l’estimateur de MC. La densité théorique optimale hopt, conduisant à un estimateur
de variance nulle, est donnée par [Bucklew, 2004]

∀ x ∈ Rd hopt(x) =
IDf

(x)fX(x)
Pf

.

Cependant, elle n’est pas utilisable en pratique puisqu’elle dépend de la quantité d’intérêt Pf . Le but
de l’échantillonnage préférentiel est alors de construire une densité auxiliaire aussi proche de hopt que
possible afin de réduire au maximum la variance de l’estimateur.

Plusieurs algorithmes ont été développés afin de construire de manière adaptative une densité
auxiliaire optimale [Tabandeh et al., 2022]. L’algorithme adaptatif non paramétrique typique [Zhang,
1996] (NAIS) utilise l’estimation par noyau afin de construire des densités à partir d’échantillons.
Pour chaque observation de l’échantillon, son appartenance ou non au domaine de défaillance est pris
en compte dans la construction de la densité de noyau grâce à un poids dépendant de la fonction
indicatrice du domaine de défaillance. Des seuils intermédiaires sont introduits afin de se rapprocher
progressivement du domaine de défaillance, comme pour le subset sampling. Cet algorithme non
paramétrique est particulièrement efficace pour les domaines de défaillance possédant plusieurs régions
de défaillance. Néanmoins son efficacité n’est plus vérifiée lorsque la dimension du système est grande.

De nombreux algorithmes adaptatifs paramétriques ont été développés dans la littérature. Une
famille de densité est alors sélectionnée et le but est d’optimiser graduellement les paramètres de
cette famille afin de se rapprocher le plus possible de hopt. Pour mesurer la distance entre la densité
paramétrique construite et hopt, la divergence de Kullback–Leibler [Kullback and Leibler, 1951] est
souvent utilisée. L’algorithme est alors appelé d’entropie croisée (Cross-Entropy Adaptive Importance
Sampling CE-AIS). Afin d’atteindre le domaine de défaillance, des seuils intermédiaires si sont une
fois de plus introduits. En notant h(· ; Θ) la densité paramétrique sélectionnée avec Θ ses paramètres,
la densité auxiliaire h(· ; Θi+1) construite à l’étape i résulte de l’optimisation suivante

Θi+1 ≈ argmax
Θ∈Rn

1
N

N∑
j=1

IY <si

(
Y

(j)
i

)
ln
(
h
(

X(j)
i ; Θ

)) fX

(
X(j)

i

)
h
(

X(j)
i ,Θi

) ,
où les variables aléatoires

(
X(j)

i

)
sont indépendantes et identiquement distribuées selon la densité

construite à l’étape précédente h(· ; Θi) et Y (j)
i = g

(
X(j)

i

)
. Cet algorithme possède plusieurs versions

différentes, selon les besoins spécifiques. Dans notre contexte de domaine de défaillance possédant
plusieurs régions distinctes, un mélange de densités paramétriques est nécessaire dans la construction la
densité auxiliaire h. Aussi, le nombre total de paramètres de ce mélange doit rester faible par rapport à
la dimension du système, puisque nous nous intéressons particulièrement aux grandes dimensions. Afin
de rentabiliser au mieux les évaluations de la fonction d’état limite g, des adaptations de l’algorithme
CE-AIS ont été proposées, notamment avec l’échantillonnage préférentiel multiple (Cross-Entropy
Adaptive Multiple Importance Sampling CE-AMIS) [Cornuet et al., 2012] et l’entropie croisée améliorée
(improved Cross-Entropy iCE) [Papaioannou et al., 2019].
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Les algorithmes adaptatifs paramétriques présentés dans [Wang and Song, 2016] et [Papaioannou
et al., 2019] sont alors particulièrement appropriés au contexte du manuscrit, puisque la densité aux-
iliaire proposée est constituée d’un mélange de densités, prenant en compte le comportement des lois
normales standards en dimension élevée. En effet, la représentation stochastique des entrées est prise
en considération et chaque densité du mélange est construite comme un produit d’une densité sur la
variable radiale R et une densité sur la variable directionnelle T. Cette décomposition favorise une
meilleure appréhension de l’anneau d’importance des variables standard normales. De plus, le mélange
de densités permet de considérer toutes les régions de défaillance. Néanmoins, le nombre de densité
dans le mélange est toujours difficile à paramétrer lorsqu’aucune information n’est disponible sur la
fonction d’état limite g, ce qui est le cas dans notre contexte.

La représentation stochastique des variables standards elliptiques est aussi le point de départ d’une
autre méthode de simulation : l’échantillonnage directionnel [Bjerager, 1988]. En effet, la probabilité
de défaillance est calculée grâce à une formule de MC, où les observations sont tirées non pas selon
fX mais selon une distribution définie sur la sphère unité T d. Pour chaque observations T(j), il s’agit
ensuite d’identifier avec une recherche linéaire une racine rj , dans le cas où la fonction d’état limite a
une forme dite d’étoile. La racine rj est alors définie comme la distance entre la surface d’état limite
et l’origine dans la direction T(j) correspondante. L’échantillonnage directionnel permet d’envisager
l’estimation de la probabilité de défaillance sous un autre angle, puisqu’il s’agit alors de calculer des
racines dans des directions données. Cependant, cette méthode nécessite quelques améliorations en
grande dimension.

Méthodes de simulation basées sur les points de conception
En utilisant les coordonnées des points de conception du système, certaines méthodes de simula-
tion permettent d’échantillonner directement dans les zones d’intérêt, afin d’estimer la probabilité de
défaillance de manière plus efficace. Supposons que les différents points de conception du système ont
été trouvés grâce à une procédure semblable à celle mentionnée dans les méthodes d’approximation.

Une méthode d’échantillonnage préférentiel appelée ”radial-based” [Harbitz, 1986] consiste alors à
exclure du domaine d’échantillonnage l’hypersphère centrée de rayon β où β est calculé comme le min-
imum des normes euclidiennes des points de conception du système. Afin d’exclure cette hypersphère,
la représentation stochastique des variables aléatoires elliptiques standards est une fois de plus utilisée.
Cette méthode a donné lieu à plusieurs versions pour prendre en compte la multitude des régions de
défaillance. Néanmoins, des adaptations sont encore nécessaires pour rendre ces méthodes convenables
à la grande dimension.

L’échantillonnage dit de ligne ”line sampling” [Hohenbichler and Rackwitz, 1988] est une méthode
spécifiquement développée pour les espaces standards gaussiens. En utilisant la direction du point
de conception, l’espace d’échantillonnage est orienté pour rendre cette direction particulièrement im-
portante. Les observations sont tirées selon une loi normale standard de dimension d − 1 définie sur
l’hyperplan vd = 0, où vd est une direction parallèle à celle du point de conception. Pour chaque ob-
servation, il faut alors trouver la racine (supposée unique), correspondant à la distance entre l’origine
et la surface d’état limite dans la direction donnée par l’observation. Dans notre cas, les points de
conception du système sont multiples et une version adaptée à ce contexte a été développée dans [Lu
et al., 2008]. Chaque point de l’espace est alors assigné au point de conception le plus proche (grâce à
un critère de distance euclidienne). Les régions de défaillance étant alors complètement disjointes, la
probabilité de défaillance est calculée comme la somme des probabilités de défaillance locales associées à
chaque point de conception. Cependant, en grande dimension, les points de conception n’appartiennent
généralement pas à l’anneau d’importance des variables standards normales [Katafygiotis and Zuev,
2008]. Ainsi, les directions des points de conception, qui déterminent grandement l’efficacité de cette
méthode, peuvent ne pas être pertinentes vis-à-vis de l’anneau d’importance. Ceci est d’autant plus
probable si la fonction d’état limite est non linéaire.

Enfin, plusieurs méthodes d’échantillonnage préférentiel, dont la densité auxiliaire est basée sur les
coordonnées des points de conception du système, sont décrites dans la littérature [Schuëller and Stix,
1987]. Il s’agit alors d’utiliser les points de conception comme centres des densités présentes dans le
mélange utilisé en tant que densité auxiliaire (dans le cas de régions de défaillance multiples). Chaque
densité dans le mélange est prise de même nature que la densité des entrées de départ fX. Dans
le cas de l’espace standard normal [Au and Beck, 2003], il est montré que la méthode reste efficace
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en grande dimension tant que les variances des densités du mélange sont les mêmes que celles des
variables d’entrées X. Néanmoins, cette performance n’est vérifiée que pour les fonctions d’état limite
à tendance linéaire. Pour les fonctions d’état limite non linéaire, cette méthode est alors infructueuse.
Cela est dû au même argument que pour la méthode d’échantillonnage de ligne; la localisation des
points de conception peut être insignifiante dans l’estimation de la probabilité de défaillance si les
régions de défaillance dans l’anneau d’importance en sont éloignées.

Conclusion
Plusieurs méthodes d’estimation de probabilité de défaillance ont été abordées dans ce chapitre. La
performance de chacune de ces méthodes par rapport au contexte du manuscrit a été soulignée. En
effet, nous supposons que les entrées aléatoires du système sont modélisées par des variables elliptiques
standards de grande dimension. Nous supposons de même que le domaine de défaillance du système
possède plusieurs régions de défaillance. Néanmoins, la fonction d’état limite est une bôıte noire, donc
le nombre de régions de défaillance est inconnu.

Les méthodes d’approximation basées sur les points de conception du système permettent d’estimer
la probabilité de défaillance avec un budget de simulation très faible. Lorsqu’il y a plusieurs points
de conception, une technique a été développée afin de les trouver au fur et à mesure, en adaptant la
recherche par optimisation. Néanmoins, il est difficile de mesurer l’erreur des probabilités de défaillance
obtenues, en particulier lorsqu’il y a plusieurs points de conception. De plus, les approximations de
la fonction d’état limite g sont valides aux voisinages des points de conception seulement. Ainsi, ces
approximations peuvent être erronées dans des régions éloignées des points de conception, comme dans
l’anneau d’importance des lois normales standards par exemple. L’estimateur de probabilité obtenu
peut alors être incorrect.

Les méthodes de simulations requièrent un budget de simulation plus élevé. Cependant, il est alors
possible d’évaluer l’erreur d’estimation de la probabilité grâce à la variance de l’estimateur. Plusieurs
algorithmes d’échantillonnage préférentiel paramétrique adaptatif présentés sont particulièrement per-
tinents dans le contexte de ce manuscrit. La représentation stochastiques des entrées est prise en
compte pour proposer une densité auxiliaire constituée d’un mélange de densités assemblées comme le
produit d’une densité sur la variable radiale R et d’une densité sur le vecteur directionnel T. Cepen-
dant, le nombre de densités dans le mélange est difficile à paramétrer, puisque la fonction d’état limite
est une bôıte noire.

En combinant les méthodes de simulation avec l’information apportée par la localisation des points
de conception du système, les avantages des deux processus peuvent être exploités. Néanmoins,
l’efficacité des méthodes résultantes n’est pas garantie pour un système de grande dimension possédant
plusieurs zones de défaillance, en particulier si la fonction d’état limite est non linéaire.

Afin de répondre à ce besoin, un nouvel algorithme d’échantillonnage préférentiel multiple adap-
tatif paramétrique (CE-AMIS) a été développé au cours de la thèse et est présenté Chapitre 5. Les
régions de défaillance sont cherchées avec une méthode proche de celle présentée dans les méthodes
d’approximation. Le cadre du CE-AMIS permet de rentabiliser les évaluations de la fonction d’état
limite g qui est numériquement coûteuse. Plusieurs méthodes de simulations basées sur les points de
conception du système, comme l’échantillonnage préférentiel radial-based, ont inspiré la construction
de la densité auxiliaire proposée. Enfin, cette algorithme est aussi adapté à toutes les distributions
elliptiques standards.
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3.1 Introduction
In this thesis, the safety measure studied for the reliability analysis of the system is its probability of
failure. The inputs of the system are divided into two groups: deterministic inputs s ∈ Rp and random
inputs X ∈ Rd, with d ≥ 50. The probability of failure depends on the value of the deterministic
vector and is written Pf (s). However in this chapter, we will drop the expression of the dependence
on s for the sake of clarity, for both Pf and the limit state function g. Thus the probability of failure
is defined as the d-fold integral

Pf = P(g(X) ≤ 0) =
∫

Df

fX(x) dx =
∫
Rd

IDf
(x)fX(x) dx = EfX

[
IDf

(X)
]
, (3.1)

where Df = {x ∈ Rd | g(x) ≤ 0} is the failure domain with g : Rd → R the limit state function
restricted to the random inputs X. And in our specific context, since X are assumed to be standard
elliptical inputs, using the stochastic representation of the inputs, the integral becomes

Pf = P(g(RT) ≤ 0) =
∫

Df

fR(r)fT(t) dr dt =
∫
R+

∫
T d

IDf
(rt)fR(r)fT(t) dr dt = EfR,fT

[
IDf

(RT)
]
.

(3.2)
As noted in the previous chapter, it is assumed that the failure is a rare event, thus Pf ≤ 10−3.
Furthermore, several configurations of the inputs can lead to the failure of the system, thus Df possibly
encompasses several failure regions.

The aim of this chapter is to present some of the techniques that have been developed in order
to estimate accurately the integral Eq. (3.1) with as few limit state function evaluations as possible.
The presentation is not exhaustive and tries to focus on methods that are specifically tailored for
multiple failure regions in the high-dimensional standard elliptical space. We will first present the
approximation methods based on the design points, where the limit state function is replaced by
a numerically inexpensive approximation, in Section 3.2. Then we will present several simulation
methods, also called sampling methods, which are all based on the crude Monte Carlo method, in
Section 3.3. Finally methods combining the design points approach with sampling techniques are
presented in Section 3.4.

3.2 Design-point-based techniques: FORM and SORM
In this section we present approximation methods based on the design points. First a general intro-
duction of the methods is derived in the standard elliptical space. Then, the specific case of failure
domains encompassing multiple failure regions is studied. Finally, the performance of those methods
in a high-dimensional context is briefly reviewed.

3.2.1 FORM/SORM in the standard elliptical space
The First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) are two
approximation methods part of the design-point-based techniques. These two methods were initially
specifically designed for the standard normal space [Madsen et al., 2006]; however, Lebrun and Dutfoy
in [Lebrun and Dutfoy, 2009] extended both methods for the standard elliptical space. These gen-
eralized FORM/SORM approximations are presented here. It is recalled that the pdf of a standard
elliptical random vector X is written

∀ x ∈ Rd fX = h
(
x⊤x

)
= h

(
r2t⊤t

)
= h

(
r2) = h

(
∥x∥2) with r = ∥x∥, (3.3)
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with ∥ · ∥ the Euclidean norm and where h : R+ → R+ is the density generator of X, a rapidly
decreasing function (see Chapter 2); it should be noted that fX has a spherical symmetry.

The first step of the FORM/SORM is to find the point P ∗ in the failure domain Df that is closest
to the origin, cf Figure 3.1. Indeed, as h is decreasing, this point maximizes the density function fX
of Eq. (3.3) and is known as the design point or the most probable failure point. Finding it requires
performing the following constrained quadratic optimization problem

P ∗ = argmin
x∈Df

x⊤x = argmin
x∈Df

∥x∥2. (3.4)

In a realistic context, the solution is located on the limit state surface. To perform this optimization,
several algorithms were specifically tailored and [Lemaire, 2013] presents an overview of them. The
similarity between these algorithms is that they all require evaluations of the gradient of the limit state
function. Since it is assumed in this manuscript that the gradient ∇xg of the lsf is available analytically
or at a feasible computational cost (adjoint approaches for example), the optimization Eq. (3.4) is then
supposed to be achievable. However, it should be noted that if the gradient must be approximated
by finite differentiation, then the optimization becomes quite cumbersome and numerically expensive,
cf [Bourinet, 2018], especially if the dimension d is high. The minimum distance between P ∗ and
the origin is then written β = ∥P ∗∥, see Figure 3.1 (and it is named the Hasofer-Lind reliability
index [Hasofer and Lind, 1974] in the standard normal case).

Figure 3.1: Illustration on a two-dimensional example of the design point of the failure domain Df .
The dark blue line is the limit state surface. The dotted lines represent the isovalues of the joint pdf
of the inputs. The color map represents the value of the limit state function g.

Then, assuming the design point is unique, a simplified version of the failure domain is obtained by
an approximation of the limit state surface at the vicinity of P ∗, namely its Taylor series expansion.

3.2.1.1 The FORM approximation

The FORM approximation results from a linear approximation of the limit state surface at P ∗ (first-
order Taylor series expansion). The approximated limit state function is then written

∀ x ∈ Rd gFORM(x) = g(P ∗) + ∇xg(P ∗)⊤(x − P ∗) = ∇xg(P ∗)⊤(x − P ∗)

because g(P ∗) = 0 by definition of P ∗. Since the standard elliptical distributions are invariant by
orthogonal transformation [Lebrun and Dutfoy, 2009], one can assume that the design point P ∗ has
the following components P ∗ = (β, 0, . . . , 0)⊤. In the FORM approximation, the failure domain is
thus approximated with the hyperplane tangent to Df at P ∗, perpendicular to P ∗, thus D̄f = {x ∈
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Rd | x⊤P ∗ ≥ β2}, and the probability of failure is written
P̂FORM

f = P(X ∈ D̄f ) = P(X⊤P ∗ ≥ β2) = P(X1 ≥ β) (3.5)
= HX1(β) = 1 − FX1(β) = FX1(−β), (3.6)

where FX1 is the cdf of the marginal X1.

3.2.1.2 The SORM approximation

The SORM approximation results from a quadratic approximation of the limit state surface at P ∗

(second order Taylor series expansion). The approximated limit state function is then written

∀ x ∈ Rd gSORM(x) = ∇xg(P ∗)⊤(x − P ∗) + 1
2(x − P ∗)⊤∇2

x,xg(P ∗)(x − P ∗),

with ∇2
x,x being the Hessian operator. Contrary to FORM, the probability of failure has unfortunately

no simple analytical formulation with the SORM approximation. There exist then several methods
amongst the SORM framework (curvature-fitting SORM and point-fitting SORM, see [Bourinet, 2018])
to estimate the failure probability integral over the approximated failure domain. It was proven
in [Lebrun and Dutfoy, 2009] that Breitung’s formula [Breitung et al., 1984] in the curvature-fitting
SORM context could be generalized to spherical distributions with the following expression

Pf
β→∞= FX1(−β)

d−1∏
i=1

1√
1 + βκi

+ o(1),

where the κi for i = 1, . . . , d− 1 are the principal curvatures of the limit state surface, that have to be
estimated. Therefore

P̂ SORM
f = FX1(−β)

d−1∏
i=1

1√
1 + βκi

, (3.7)

but other formulas exist for the standard normal case [Tvedt, 1989,Hohenbichler and Rackwitz, 1988].
It should be noted that the SORM approximation requires the evaluation of the Hessian matrix at P ∗.
In high-dimensional input spaces, the computation of such matrix can become numerically cumbersome
and is a major drawback. Point-fitting SORM is more adequate when an accurate computation of
the Hessian matrix cannot be achieved [Bourinet, 2018]. An illustration of the FORM and SORM
approximations of the limit state surface is displayed in Figure 3.2.

3.2.1.3 Remarks on the FORM/SORM approximations

The FORM approximation can be very efficient and practical when the gradient of the limit state
function is available, as it can evaluate very small probability of failures with negligible simulation
budget (inferior to a hundred lsf evaluations). However, as illustrated by Figure 3.2, the limit state
function has to be linear, or else the estimation can be heavily biased [Valdebenito et al., 2010],
especially when the dimension of the system is high. If the limit state function is not linear, then
SORM approximation can provide a better estimate with a low simulation budget, assuming the
Hessian matrix is available.

Furthermore, it should be noted that the error of the probability estimates of Eq. (3.6) and Eq. (3.7)
is difficult if not impossible to estimate. It is indeed arduous to validate the hypothesis made on
the behavior of limit state surface at the vicinity of the design points when the limit state function
is considered a black-box function. This lack of error measurement is the major weakness of the
FORM/SORM approximations.

3.2.2 Multiple design points and multiple failure regions
As previously mentioned, the FORM/SORM approximations rely on the hypothesis of the uniqueness
of the design point P ∗. However, in our specific context, we suppose that the failure domain encom-
passes several failure regions. Thus there could be several design points, or at least several local design
points. Assuming P ∗ is unique could lead to severe errors and underestimation of the probability of
failure Pf . In order to solve this issue, Der Kiureghian and Dakessian proposed a method in [Der Ki-
ureghian and Dakessian, 1998] whose basic idea is to repeat the FORM/SORM approximation for all
the identified design points. The main difficulty lies in finding all of the design points.
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Figure 3.2: Illustration on a two-dimensional example of the FORM and SORM approximations of
the limit state surface. The dark blue line is the limit state surface. The dotted lines represent the
isovalues of the joint pdf of the inputs. The color map represents the value of the limit state function
g.

3.2.2.1 Search for the design points

Their scheme to search for the design points, denoted P ∗
i for i = 1, . . . ,K, relies on the modification

of the limit state function each time a design point is found. Indeed, a bulge built around a design
point P ∗

i acts like a barrier and allows the optimizer to explore the rest of the input space at the
next optimization Eq. (3.4), as the neighborhood of P ∗

i is then in the safety domain. Assuming that
K design points have already been found, the expression of the modified limit state function is the
following

∀ x ∈ Rd g̃(x) = g(x) +
K∑

i=1
Bulgei(x),

where

Bulgei(x) =
{

si

(
(αi)2 − ∥x − P ∗

i ∥2)2 if ∥x − P ∗
i ∥ ≤ αi,

0 elsewhere,
The scalar αi is the radius of the bulge equal to αi = γ × βi and si is the scale of the bulge, which
controls the height of the bulge, defined by

si = δβi∥∇g(P ∗
i )∥

[(γβi)2 − (δβi)2]2
,

with γ and δ two user-defined parameters such that 0 < δ < γ, and βi = ∥P ∗
i ∥. The bulge is built

to have a strong outward curvature, so that the limit state surface around P ∗
i is sufficiently moved

away from the origin. It is continuous and differentiable. With every design point identified, the limit
state function is updated and the optimizer cannot converge back to it. In order to further help the
optimizer explore the rest of the input space, it is recommended in [Der Kiureghian and Dakessian,
1998] to use as starting point of the optimization the point x0 located at the opposite direction of the
previously found design points

x0 = −ϵ

(
K∑

i=1
P ∗

i

)
,

where ϵ is a small positive number between 0.2 and 0.5.
The procedure is repeated until a spurious design point is found. There are two criteria to determine

if a design point is spurious or not. First, if it is found at a distance smaller or equal to the radius
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αi from any design point P ∗
i for i = 1, . . . ,K, then it is spurious. Second, defining ϕi as the angle

between P ∗
i and a line from the origin to the foot of the Bulgei, it was shown in [Der Kiureghian and

Dakessian, 1998] that
ϕi ≤ cos−1(1 − 0.5γ2),

with the equality holding when the limit state surface is spherical. Therefore any design point found
within these cones centered on the directions of P ∗

i for i = 1, . . . ,K is spurious as well. The convergence
of the optimizer to a spurious design point is an indication that no more genuine design points exist
and thus the algorithm stops.

In order to illustrate the method and the bulges, the Figure 3.3 represents the different steps of
the algorithm for the search for all design points, with γ = 1.1, δ = 0.75 and ϵ = 0.5.

a) b) c)

d) e) f)

Figure 3.3: Illustration of the search for the design points on an example in dimension 2 with four
failure regions a) the original limit state function, b) the first design point found P ∗

1 , c) the second
design point found P ∗

2 , d) the third design point found P ∗
3 , e) the fourth design point found P ∗

4 , f) the
final modified limit state function; as the optimization finds a spurious design point, the procedure
stops. The dark blue line is the limit state surface. The color map represents the value of the limit
state function g̃. The red cross represents the starting point x0 of the optimization. The dotted lines
represent the isovalues of the joint pdf of the inputs.

3.2.2.2 Estimation of the failure probability

When all design points have been identified, the different failure regions approximated by FORM/SORM
can be overlapping. Therefore, one must consider the intersections of the resulting approximated fail-
ure regions [Schueller et al., 2004]. These expressions are usually hard to derive [Schuëller and Stix,
1987]. Consequently, the final failure probability estimate is usually obtained in terms of bounds [Kou-
nias, 1968]. Nevertheless, in the case of a series-system, a formula can be derived for standard normal
inputs [Hohenbichler, 1984] in the FORM context. Suppose the system is composed of K limit state
functions such that

g(x) = min
k∈[1,...,K]

gk(x),
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the failure event corresponds then to the union of the failure events of the lsfs gk

Pf = P(g(x) ≤ 0) = P
(
∪K

k=1gk(x) ≤ 0
)
.

This probability can also be written Pf = 1 − P
(
∩K

k=1gk(x) > 0
)
. In the FORM context, each gk is

approximated with a linear function lk of the inputs X in the vicinity of P ∗
k . In the standard normal

framework, since all the inputs Xi are independent, the resulting random variable lk(X) is a linear
combination of independent standard normal variables, therefore lk(X) is also normally distributed.
Noticing that

1 − P
(
∩K

k=1gk(x) > 0
)

= 1 − P(l1(X) > 0, . . . , lK(X) > 0) = 1 − P(−l1(X) < 0, . . . ,−lK(X) < 0)

and P(−l1(X) < 0, . . . ,−lK(X) < 0) is the joint cumulative distribution function of the vector
(−l1(X), . . . ,−lK(X)) evaluated at (0, . . . , 0), the failure probability can be approximated with

P̂FORM
f = 1 − ΨK,C(β),

where Ψ is the cdf of a centered normal random vector of dimension K with covariance matrix C
and β is the vector of the norms of all the design points (βk = ∥P ∗

k ∥)k=1,...,K , see [Ditlevsen and
Madsen, 1996] for more details. The covariance matrix C is the covariance of the random vector
(l1(X), . . . , lK(X)). This approximation could not be derived for the other standard elliptical spaces,
as the inputs Xi are not independent, therefore the distribution of the vector of linear combinations
(lk(X))k=1,...,K is more difficult to identify.

In a broader context, computing the failure probability of a system with multiple failure regions
with FORM/SORM approximations is thus challenging. It should be noted that the estimation error
of the final failure probability estimate encompasses all the estimation errors of the FORM/SORM
approximations for each design point. Consequently, the resulting error could be very large for lsf with
many failure regions.

3.2.3 Design points in high-dimensional standard normal space

In our specific context, the dimension of the system d is particularly high. In standard elliptical
spaces, the probability mass of the inputs is concentrated in the important ring (cf Chapter 2). In
the case of the standard normal distribution, the important ring is particularly narrow and located
close the hypersphere of radius

√
d. In [Katafygiotis and Zuev, 2008], Katafygiotis and Zuev pointed

out that the design points typically do not belong to this important ring. Therefore, although the
design points are the failing points with maximum likelihood, the probability masses associated with
their neighborhood are negligible. It is the failure domain located amongst the important ring that
contributes most to the failure probability integral of Eq. (3.1).

Since the FORM and SORM techniques construct approximations of the limit state surface around
the design points, these approximations may be quite accurate in the vicinity of those points but
erroneous in regions far from the design points in the important ring. Thus, these methods may
lead to biased estimations of Pf . An example of such inaccuracy in large dimensions is presented
in [Valdebenito et al., 2010].

3.3 Simulation methods
In this section, simulation methods are described, starting with the Monte Carlo method. The subset
sampling method is next presented as it performs well in the particular context of this manuscript.
A review of several adaptive importance sampling algorithm is presented afterwards, since the main
contributions of this manuscript are strongly linked to some them. Finally, the directional sampling
method is detailed, as this method takes into account the stochastic representation of the standard
elliptical inputs. For each method presented, its efficiency regarding failure domains encompassing
multiple failure regions is underlined, as well as its performance in high-dimensional standard elliptical
spaces.
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3.3.1 Crude Monte Carlo
The crude Monte Carlo (MC) method is the original sampling method and the most basic one to
estimate a mathematical expectation [Robert and Casella, 1999, Sobol, 2018]. Using the fact that
Pf = EfX

[
IDf

(X)
]
, the MC method consists in generating a sample of size N of independent and

identically distributed (iid) observations
(

X(j)
)

j=1,...,N
from their joint pdf fX to estimate the failure

probability by the sample mean of the failure domain indicator function

P̂MC
f = 1

N

N∑
j=1

IDf

(
X(j)

)
. (3.8)

The convergence of this estimator is a consequence of the law of large numbers. The Monte Carlo
method leads to an unbiased estimator of the failure probability E

[
P̂MC

f

]
= Pf , which converges

regardless of the complexity of the limit state function g and the dimension of the system d. Further-
more, the family distribution of the inputs does not matter, as long as one can generate sample from
fX. Thus, in our specific context of high-dimensional standard elliptical space with multiple failure
regions, the MC method is relevant.

The error of the estimate Eq. (3.8) can be measured with its variance and its Coefficient of Variation
(CV). The theoretical variance of the estimate is obtained by noticing that IDf

(X) follows a Bernoulli
distribution of parameter Pf

Var
(
P̂MC

f

)
= 1
N

Var
(
IDf

(X)
)

= Pf (1 − Pf )
N

.

The CV is then defined as the ratio between the standard error and the expected value of the estimate
P̂MC

f

CV
(
P̂MC

f

)
=

√
Var

(
P̂MC

f

)
E
[
P̂MC

f

] =
√

1 − Pf

NPf
. (3.9)

The ratio Eq. (3.9) shows that the convergence speed of the MC estimate is quite slow, as it is
proportional to 1/

√
N . As Pf tends to 0, for a set N , the coefficient of variation is unbounded. For

a failure probability of value 10−p, one should have a simulation budget of order 10p+2 so that the
CV reaches 10%. This heavy simulation budget cannot be afforded if the limit state function g is
computationally expensive and thus crude MC method cannot be directly applied to the rare event
probability estimation of this manuscript. However, the crude MC method will be considered as the
reference method in the rest of the manuscript, with its estimate of the failure probability P̂MC

f being
considered the reference value. The next presented simulation method, called subset sampling, is also
used for comparison purposes later in the manuscript.

3.3.2 Subset Simulation
3.3.2.1 SS in the standard elliptical space

The Subset Simulation (SS) method, or subset sampling method was developed for reliability assess-
ment purpose by Au and Beck in [Au and Beck, 2001], although it had been introduced before in other
scientific fields. Here we present the algorithm as developed in [Au and Beck, 2001]. The basic idea
of SS is to gradually move towards the failure regions of the failure domain Df in the original input
space through the introduction of a decreasing sequence of subsets, or intermediate failure events Fi,
with i = 0, . . . ,m such that F0 ⊃ F1 ⊃ · · · ⊃ Fm = Df and Fk =

⋂k
i=0 Fi for k = 0, . . . ,m. The failure

probability can then be expressed as

Pf = P(Fm) = P(F0)
m−1∏
i=0

P(Fi+1|Fi),

where P(F0) = EfX [IF0(X)] and P(Fi+1|Fi) is the conditional probability of failure Fi+1 given that the
failure Fi has already occurred, thus P(Fi+1|Fi) = EfX|Fi

[
IFi+1(X)

]
, where the conditional density is
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Algorithm 1 Subset simulation
Require: The joint pdf fX, the probability level p0 and the sample size N .

Initialization
Generate an iid sample

(
X(j)

0

)
j=1,...,N

from the joint pdf fX. Compute the response of the system(
Y

(j)
0 = g

(
X(j)

0

))
j=1,...,N

. Select the first intermediate threshold s0 as the p0-quantile of the re-
sponse values so that the estimation of P(F0) = P(g(X ≤ s0)) = EfX [IF0(X)] is equal to p0 with
crude MC. Set the index i equal to 0.
while si > 0 do

Markov Chain Monte Carlo for the intermediate failure events
Amongst the N -sample

(
X(j)

i

)
j=1,...,N

, p0 percent of the observations have a corresponding re-

sponse value Y (j)
i smaller than si and hence lie in Fi. These observations are distributed as fX|Fi

and provide seeds for simulating additional observations with MCMC. AN -sample
(

X(j)
i+1

)
j=1,...,N

lying in Fi is then obtained. From this sample, the new responses
(
Y

(j)
i+1 = g

(
X(j)

i+1

))
j=1,...,N

are
computed. The new intermediate threshold si+1 is selected as the p0-quantile of the response
values so that the estimation of P(Fi+1|Fi) = P(g(X ≤ si+1)) is equal to p0 with crude MC. The
index i is incremented: i = i+ 1.

end while
Estimation of the failure probability
Set m equal to i. The probability of failure is estimated with the following formula

P̂ SS
f = pm

0
1
N

N∑
j=1

IY ≤0

(
Y (j)

m

)
return P̂ SS

f .

written
∀x ∈ Rd fX|Fi

(x) = IFi(x)fX(x)
P(Fi)

.

Thus the small probability Pf is computed as a product of (m + 1) larger conditional probabilities,
which are easier to estimate than Pf with crude Monte Carlo. The intermediate failure events are
typically defined with intermediate threshold si, such that Fi = {x ∈ Rd | g(x) ≤ si}. Therefore
s0 > s1 > · · · > sm = 0.

The thresholds are adaptively selected so that all of the probabilities P(F0), P(F1|F0) . . ., and
P(Fm−1|Fm−2) are equal to the same constant with a MC estimation, which is often taken as p0 = 0.1.
Targeting equal probability levels for the conditional probabilities was proven in [Guyader, 2011] to
be the optimal choice for a minimal asymptotic variance of the estimate. The value of p0 is also not
randomly selected as it was proven in [Zuev et al., 2012] that an appropriate range for p0 is between
0.1 and 0.3, to minimize the variance of the estimate for a given simulation budget. This probability
p0 sets the number m of intermediate failure domain Fi required to reach the failure domain Df . A
large probability p0 makes it is easier to estimate the intermediate probabilities but leads to a larger
number m and thus to a larger simulation budget. A small probability p0 leads to a faster convergence
of the algorithm but the intermediate probabilities are then harder to estimate, therefore the errors
made on the estimations may be greater.

Algorithm 1 briefly sums up the logic of the SS method with Markov Chain Monte Carlo (MCMC)
and Figure 3.4 illustrates the different steps. In comparison to the crude MC method, the subset
simulation algorithm aims to generate observations in more critical regions which are located far from
the mean value µX of the inputs distribution. The performance of this subset simulation algorithm
heavily relies on the MCMC process which has to generate from the seeds additional conditional
observations, independent and identically distributed. Markov Chain Monte Carlo [Metropolis et al.,
1953] are very powerful techniques for simulating samples according to an arbitrary distribution called
the target distribution. The observations are simulated as the states of a Markov chain whose stationary
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a) b) c)

Figure 3.4: Illustration of the main steps of the SS algorithm with p0 = 0.1 a) the first threshold
s0 = 1.4 is computed from observations generated from fX, b) the second threshold s1 = 0.5 is
computed from observations resulting from the MCMC algorithm, c) the third threshold s2 computed
from observations resulting from the MCMC algorithm is smaller than 0 thus it is set back to 0, the
loop stops and the failure probability is estimated with the observations in the failure domain. The
dark blue line is the limit state surface. The color map represents the value of the limit state function
g. The dashed white lines represent the intermediate limit state surfaces. The dotted lines represent
the isovalues of the joint pdf of the inputs fX. The magenta dots represent the observations located
in the intermediate failure domains at each step.

distribution is the target distribution. Here, the target distribution is thus fX|Fi
.

The MCMC process selected for the specific needs of the SS algorithm in [Au and Beck, 2001]
is the Metropolis algorithm [Bourinet, 2018]. The original Metropolis algorithm, described in the
Appendix A.1, is applicable for any joint pdf fX, thus it is adequate for all standard elliptical distri-
butions. It relies on a d-dimensional proposal pdf, set with a spread parameter. However, it does not
perform well in high-dimensional standard normal spaces, which is a space of interest in the context
of our manuscript. Consequently, the modified Metropolis algorithm as well as other algorithms have
been developed for such a space and are presented below.

3.3.2.2 MCMC algorithms for high-dimensional standard normal inputs

Taking into account the special behavior of the standard normal space when the dimension of the system
is high, namely the concentration of the probability mass in a narrow important ring (cf Chapter 2.), it
was underlined in [Katafygiotis and Zuev, 2008] that the original Metropolis algorithm is inadequate for
this particular distribution. In fact, as described in [Au and Beck, 2001], for independent multivariate
distributions in high-dimensional spaces, the probability that the next state in the Markov Chain will
be equal to the current state is close to 1. Thus the corresponding chain may consist in very few
observations repeated numerous times. The SS method is then almost inapplicable.

The modified Metropolis algorithm is then specially tailored for independent distribution in high-
dimensional spaces. While the logic remains the same, the way the candidate state is generated changes.
Indeed, instead of using a d-dimensional proposal pdf, the independence of the random vector is taken
into account and a sequence of univariate proposal densities is employed. Each densities is set with a
spread parameter as well. This algorithm allows to overcome the deficiency of the original Metropolis
algorithm for independent distributions and is briefly described in the Appendix A.2. In our specific
case, the modified Metropolis algorithm is suited for the standard normal distribution.

However, as pointed by Katafygiotis et al. in [Katafygiotis and Zuev, 2008], the modified Metropolis
algorithm may be inefficient when the seeds are directed towards preferred directions, e.g. (

√
d, 0, . . . , 0).

If the Markov chain has a length too small, then it might exit the important ring as the chain has not
yet reached its underlying stationary distribution. Unfortunately, in practical application, one would
use Markov chains of small length as they require smaller simulation budget. Consequences of this
phenomenon are displayed in [Katafygiotis and Zuev, 2008], where the resulting SS failure probability
estimate P̂ SS

f has a large variance.
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To solve this problem, another MCMC algorithm developed by Katafygiotis et al. in [Katafygiotis
and Cheung, 2007] explores the stochastic representation of the standard normal space and is briefly
described in the Appendix A.3. Using this MCMC algorithm built in the stochastic representation
framework solves the preferred direction issue. It should be noted that the authors of [Katafygiotis
and Cheung, 2007] also used the stochastic representation of the standard normal random variables to
another extend, as they proposed a new SS algorithm, called spherical subset simulation, with interme-
diate failure event constructed as spherical rings of decreasing inner and outer radii, see [Katafygiotis
and Cheung, 2007] for more details.

3.3.2.3 Statistical properties of SS

Some of the statistical properties of the Metropolis algorithms are detailed in the Appendix A.4, as
the resulting Markov chains heavily relies on the spread parameters of the proposal pdfs previously
introduced. Here we present basic statistical properties of the SS algorithm.

We first assume that the intermediate failure events Fi are set a priori, independently of the
generated samples. As the seeds at the start of the Markov chains of step i are used to compute both
the intermediate failure probabilities P(Fi|Fi−1) of the previous step and P(Fi+1|Fi) of the current
step, there is a high correlation between each intermediate failure probability estimate. This source of
dependence induces a bias in the final failure probability estimate, and the bias is O(1/N) (where N is
the fixed sample size of each step of the SS algorithm). Nevertheless, the failure probability estimate
is asymptotically unbiased (cf [Au and Beck, 2001]). This bias is supposed to become slightly stronger
if each Fi depends on the samples, as presented in Algorithm 1.

The variance of the SS estimate is very hard to derive because of the dependence mentioned.
However, a Central Limit Theorem (CTL) type of convergence described in [Cérou et al., 2012] allows
to derive an asymptotic expression of the variance of the estimate. Since the failure probability estimate
is biased, another expression of the coefficient of variation can be used

(
CV

(
P̂ SS

f

))2
= E

( P̂ SS
f − Pf

Pf

)2
 ,

which is the CV expressed in terms of deviation with respect to Pf . The following bounds are then
often employed to get an approximation of the CV of the failure probability estimate

m∑
i=0

δ2
i ≤

(
CV

(
P̂ SS

f

))2
≤

m∑
i=0

m∑
l=0

δiδl,

where δi are the CV of the intermediate failure probability estimate, which are unbiased. The up-
per bound formula corresponds to the assumption of fully-correlated intermediate failure probability
estimates while the lower bound correspond to the assumption of independent intermediate failure
probability estimates. The small induced theoretical bias can be an important drawback of the SS
algorithm presented here.

It should be noted that the SS concept, also known as splitting, has been further studied in
numerous papers, cf [Cérou et al., 2019] for instance, where the statistical properties presented here
are improved. However, SS is not the main subject of this thesis thus these improvements are not
derived here.

3.3.2.4 SS algorithm for multiple failure regions

In the particular context of our study, we suppose that there are several failure regions in the failure
domain. The following consequence is that the lsf has multiple local minima. As underlined in
various studies [Valdebenito et al., 2010, Breitung, 2019, Tabandeh et al., 2022], for particular lsfs,
the Metropolis algorithms mentioned can get trapped in specific regions, and do not explore the rest
of the inputs space. This phenomenon can occur if there is a change in the topological structure
of the intermediate limit state surfaces for instance [Tabandeh et al., 2022], or simply if the spread
parameter of the proposal (univariate or multivariate) pdfs is not large enough. If the initial seeds are
not located towards every part of the failure domain, some failure regions might be left unexplored,
as the Markov chains never reach them. Depending on the importance of these unexplored failure
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regions, the resulting failure probability estimate could be biased, as its value underrates the true
failure probability. A larger simulation budget may then be needed to make sure all failure regions are
reached by the Markov chains.

Consequently, the tuning of the spread parameter of the proposal pdfs is crucial. Its setting
has influences on the convergence of the algorithm (through the dependence level of the samples, cf
Appendix A.4), on the bias of the failure probability estimate and on the simulation budget. Thus
the quality of the failure probability estimate and the efficiency of this SS method are not necessarily
guaranteed a priori.

This SS algorithm will be used for comparison purposes later on in some numerical applications
of the manuscript, with the modified Metropolis algorithm as MCMC procedure, as it remains quite
efficient in high-dimensional spaces. Next, we introduce the importance sampling framework, which
plays a major role in the contributions developed during the thesis. It is therefore presented in detail.

3.3.3 Importance Sampling
The importance sampling method (IS) is part of larger group of so-called variance-reduction techniques
whose purpose is to lower the simulation budget of the MC estimate by diminishing its variance. The
main idea is to introduce an auxiliary density h, whose support includes the support of IDf

fX, in the
integral Eq. (3.1), thus

Pf =
∫
Rd

IDf
(x)fX(x)

h(x) h(x) dx = Eh

[
IDf

(X)fX(X)
h(X)

]
.

The IS estimate of Pf is computed with the same logic as the MC estimate, given by the following
equation

P̂ IS
f = 1

N

N∑
j=1

IDf

(
X(j)

) fX

(
X(j)

)
h
(

X(j)
) ,

where the random variables
(

X(j)
)

are iid with density h. The density ratio fX/h is referred to as

likelihood ratio and the vector
(
IDf

(
X(j)

)
fX

(
X(j)

)
/h
(

X(j)
))

j=1,...,N
are the IS weights of the

sample. The IS estimate is theoretically unbiased. The efficiency of the auxiliary density h depends
on its ability to generate more observations in the failure domain than fX. The variance of the IS
estimate is given by the following formula

Var
(
P̂ IS

f

)
= 1
N

Varh

(
IDf

(X) fX (X)
h (X)

)
= 1
N

(
Eh

[(
IDf

(X) fX (X)
h (X)

)2
]

− P 2
f

)
.

With an appropriate auxiliary density h, the variance of the IS estimate and hence also its CV can
be drastically reduced compared to those of the crude MC. The theoretically optimal IS density hopt,
which leads to a zero variance IS probability estimate, is given by [Bucklew, 2004]

∀ x ∈ Rd hopt(x) =
IDf

(x)fX(X)
Pf

This density hopt is unavailable in practice as it depends on the quantity of interest, Pf . The goal of
the IS method is then to construct an auxiliary density which is as close as possible to the optimal one,
so that the greatest possible variance reduction can be achieved. There are several ways to construct
this auxiliary densities [Tabandeh et al., 2022]. Adaptive Importance Sampling (AIS) algorithms aim
to get closer to hopt gradually and have been greatly studied. Here in this Section 3.3.3 only the
following ones are derived:

• Non parametric Adaptive Importance Sampling (NAIS)

• Cross Entropy-based Adaptive Importance Sampling (CE-AIS)
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• Cross Entropy-based Adaptive Multiple Importance Sampling (CE-AMIS)

• improved Cross Entropy-based Adaptive Importance Sampling (iCE-AIS)

The first algorithm presented, NAIS algorithm, is non parametric while the others are all parametric.
The last two parametric methods presented, CE-AMIS and iCE-AIS, are improvements of the CE-AIS
algorithm. Non adaptive importance sampling algorithms will be mentioned in the Section 3.4 of this
chapter. It should be noted that the IS framework is applicable for any inputs distribution, therefore
it is adequate for all standard elliptical distributions.

3.3.3.1 Non parametric Adaptive Importance Sampling

The NAIS algorithm was presented in [Zhang, 1996] and aims to sequentially construct an auxiliary
density close to hopt, using non parametric densities. Non parametric densities are particularly relevant
if no information about the failure domain is available or if the failure domain is supposed to encompass
several failure regions. Indeed, non parametric densities are very flexible thus especially pertinent to
build multimodal densities as they do not impose a specific pdf family.

Non parametric densities typically refer to kernel densities [Tabandeh et al., 2022] built around a
sample. Let

(
X(j)

)
j=1,...,N

be an iid sample drawn from some multivariate distribution whose pdf is
h, the kernel density estimate (kde) of h is

∀ x ∈ Rd ĥ(x) = 1
Ndet(BN )

N∑
j=1

Kd

(
B−1

N

(
x − X(j)

))
,

where Kd is a kernel density, a non-negative function that integrates to one, and BN = diag(b1, . . . , bN )
is a diagonal covariance matrix. The diagonal covariance matrix is referred to as bandwidth of the
kde. The classical kernel density Kd is the centered normal density (see Chapter 2, Section 2.2.1.3
for the expression of this density) with diagonal covariance matrix Σ = BN [Morio et al., 2014]. In
the specific case of IS, an IS weight is associated to each observation X(j), therefore, weighted kernel
density estimates are used in the NAIS algorithm. Let

(
X(j)

)
j=1,...,N

be an iid sample drawn from
some multivariate distribution h and (wj)j=1,...,N the corresponding weights. The weighted kernel
density estimate (wkde) of h is

∀ x ∈ Rd ĥ(x) = 1
det(BN )

N∑
j=1

wj∑N
ℓ=1 wℓ

Kd

(
B−1

N

(
x − X(j)

))
, (3.10)

with the same notations as above.
The main idea of the NAIS algorithm is to sequentially built with wkdes an estimate of hopt, using

ρ-quantiles of the generated sample responses as intermediate failure thresholds si, where ρ is in (0, 1).
The intermediate threshold si defines an intermediate failure domain Df,i = {x ∈ Rd|g(x) ≤ si}. As
the iteration goes, the thresholds gradually decrease to reach the true failure threshold equal to zero
[Morio et al., 2014], thus it is the same logic than in the subset sampling algorithm; cf Section 3.3.2.1.
Algorithm 2 briefly sums up the NAIS algorithm and Figure 3.5 illustrates the different steps.

The parameter ρ greatly influences the convergence of the algorithm and the efficiency of the
method. If this parameter is set too small, then the algorithm converges rapidly and the number of
iterations to achieve convergence is small. However, since the weighted kernel density estimates are
built with only a few points (as the intermediate failure domain indicator function of their associated
weight is mostly equal to zero), there can be a greater error in their estimation. In contrast, setting
ρ very large enables a very accurate wkde but slows down the convergence of the algorithm and thus
the simulation budget gets heavier as the number of iterations gets large as well.

Since all the previously generated samples are reused to construct the new wkde at each itera-
tion, the evaluations of the costly limit state function can be of service for several steps of the algo-
rithm. Several studies have searched for optimal bandwidths parameter BN,i, including the initial work
of [Zhang, 1996], where an analytical formula is derived by minimizing the asymptotic MSE (mean
square error) of the mean value of the IS weights at each iteration. Unfortunately, this formula cannot
be used and depends on unknown integrals. Minimizing the AMISE (asymptotic mean integrated
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Algorithm 2 NAIS
Require: The joint pdf fX, the quantile level ρ and the sample size N .

Initialization
Generate an iid sample

(
X(j)

0

)
j=1,...,N

from the joint pdf fX. Compute the response of the system(
Y

(j)
0 = g

(
X(j)

0

))
j=1,...,N

. Select the initial intermediate threshold s0 as the maximum between

the ρ-quantile of the response values
(
Y

(j)
0

)
j=1,...,N

denoted Y
(ρ)

0 and zero: s0 = max
(

0, Y (ρ)
0

)
.

Compute the weights with this threshold
(
w

(j)
0 = IY <s0

(
Y

(j)
0

))
j=1,...,N

. Construct the wkde ĥ1

with the vector weight w0, diagonal covariance matrix BN,0 and sample
(

X(j)
0

)
j=1,...,N

, thanks to
Eq. (3.10). Set the index i equal to 0.
while si > 0 do

Construction of the wkde for the intermediate failure thresholds
The index i is incremented: i = i + 1. Generate an iid sample

(
X(j)

i

)
j=1,...,N

from

ĥi. Compute the response of the system
(
Y

(j)
i = g

(
X(j)

i

))
j=1,...,N

. Select the intermedi-

ate threshold si as maximum between the ρ-quantile of the response values
(
Y

(j)
i

)
j=1,...,N

denoted Y
(ρ)

i and zero: si = max
(

0, Y (ρ)
i

)
. Compute the IS weights with this thresh-

old, for all samples generated so far, thus wi is a one-dimensional vector of length N(i + 1)
where

(
w

(ℓN+j)
i = IY <si

(
Y

(j)
ℓ

)
fX

(
X(j)

ℓ

)
/ĥℓ

(
X(j)

ℓ

))
ℓ=0,...,i;j=1,...,N

, and ĥ0 = fX. Con-

struct the wkde ĥi+1 with the vector weight wi, diagonal covariance matrix BN,i and sample(
X(j)

ℓ

)
ℓ=0,...,i;j=1,...,N

, thanks to Eq. (3.10).
end while
Estimation of the failure probability
Set m equal to i. The probability of failure is estimated with the following formula

P̂NAIS
f = 1

N

N∑
j=1

IY ≤0

(
Y (j)

m

) fX

(
X(j)

m

)
ĥm

(
X(j)

m

)
return P̂NAIS

f .

square error) criterion is another possibility and the interested reader can see [Silverman, 2018, Glad
et al., 2007]. The NAIS estimate is unbiased and the studies on its convergence rate can be found
in [Zhang, 1996]. As other IS estimates, an estimate of its variance is available with the simple formula
V̂ar

(
P̂NAIS

f

)
= 1

N Varĥm

(
IY ≤0 (Ym) fX(Xm)

ĥm(Xm)

)
(using the same notations as in the Algorithm 2) since

all the observations are independent.

NAIS for multiple failure regions in high-dimensional spaces
Although the NAIS algorithm is very efficient for multiple failure regions thanks to the kde, it is known
to lose its capability as the dimension of the inputs increase. The so-called curse of the dimensionality
affects the kernel density estimate and the IS weights degenerate: an increasingly large portion of
the samples have an associated IS weight close to zero. Moreover, the optimization of the bandwidth
parameters gets more complex with the dimension, affecting the efficiency of the algorithm. One idea
to overcome this issue is to focus on the most influential or important random variables [Tabandeh
et al., 2022], identified with probabilistic sensitivity analysis [Jia and Taflanidis, 2014] for example.
The kernel density is then optimized in the lower dimensional space of these inputs.
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a) b)

Figure 3.5: Illustration of the main steps of the NAIS algorithm with ρ = 0.1 a) the initial threshold
s0 = 1.4 is computed from observations generated from fX, b) the next ρ-quantile computed from
observations generated from ĥ1 is already smaller than 0 thus the loop stops as s1 = 0 and the failure
probability is estimated with the observations in the failure domain. The dark blue line is the limit
state surface. The color map represents the value of the limit state function g. The dashed white lines
represent the intermediate limit state surfaces. The dotted lines represent the isovalues of the densities
fX and ĥ1. The magenta dots represent the observations of non-zero weight at each step.

3.3.3.2 Cross-Entropy based Adaptive Importance Sampling

The concept of the CE-AIS algorithm was first presented by Rubinstein [Rubinstein, 1997,Rubinstein,
1999, Rubinstein and Kroese, 2004] and aims to construct sequentially an auxiliary density close to
hopt, with a selected parametric density. Using parametric families as auxiliary densities for the IS
estimation can be relevant if prior information about the failure domain is available or if the input
distribution fX is of a specific nature. The parameters Θ ∈ Rn of the selected family are then gradually
optimized to obtain an auxiliary parametric density as close as possible to hopt. In order to define the
convergence of the parameters, one must specify a particular distance measure. The typical distance
measure is the relative entropy, also referred to as Kullback–Leibler (KL) divergence [Kullback and
Leibler, 1951]. The relative entropy between two densities q1 and q2, defined both on Rd, is defined as

DKL(q1| q2) =
∫
Rd

q1(x) (ln(q1(x)) − ln(q2(x))) dx.

It should be noted that DKL(q1| q2) ̸= DKL(q2| q1) thus DKL is not a proper distance measure as it
is not symmetric; furthermore it does not satisfy the triangle inequality. Still, the KL divergence is
very practical when optimizing the vector parameter Θ of the parametric families which explains its
popularity in the literature. Let h(· ; Θ) be the density of a specific parametric family. The optimized
parameters Θ∗ that allows h(· ; Θ∗) to be as close as possible to hopt are the result of the following
optimization problem

Θ∗ = argmin
Θ∈Rn

DKL(hopt(x)|h(x; Θ))

= argmin
Θ∈Rn

∫
Rd

hopt(x) (ln(hopt(x)) − ln(h(x; Θ))) dx,

as hopt does not depend on Θ, the expression above can be simplified with

Θ∗ = argmax
Θ∈Rn

∫
Rd

hopt(x)ln(h(x; Θ))dx. (3.11)
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It is recalled that hopt = IDf
fX/Pf . Since Pf is independent of Θ and x, Eq. (3.11) becomes

Θ∗ = argmax
Θ∈Rn

∫
Rd

IDf
(x)ln(h(x; Θ))fX(x)dx

= argmax
Θ∈Rn

EfX

[
IDf

(x)ln(h(x; Θ))
]
.

In order to compute the expected value EfX

[
IDf

(x)ln(h(x; Θ))
]

one could simply use the Monte Carlo
method. However since the indicator function of the failure domain is equal to zero most of the time,
this method is not relevant. One solution is to compute the integral with the IS method employing
another auxiliary density, denoted q. The optimal parameters Θ∗ are then the result of the following
optimization

Θ∗ ≈ argmax
Θ∈Rn

1
N

N∑
j=1

IDf

(
X(j)

)
ln
(
h
(

X(j); Θ
)) fX

(
X(j)

)
q
(

X(j)
) , (3.12)

where the random variables
(

X(j)
)

are iid with density q.
The logic of the CE-AIS algorithm is quite the same as the NAIS algorithm, as ρ-quantiles of the

generated sample responses are also introduced as intermediate failure thresholds, where ρ ∈ (0, 1).
However, the way the intermediate auxiliary densities are constructed differs. At a particular step i,
the next intermediate auxiliary density built is h(· ; Θi+1) where Θi+1 are the result of the following
optimization

Θi+1 ≈ argmax
Θ∈Rn

1
N

N∑
j=1

IY <si

(
Y

(j)
i

)
ln
(
h
(

X(j)
i ; Θ

)) fX

(
X(j)

i

)
h
(

X(j)
i ; Θi

) , (3.13)

where the random variables
(

X(j)
i

)
are iid with density h(· ; Θi) and Y

(j)
i = g

(
X(j)

i

)
. This is the

same equation as in Eq. (3.12) except for the failure threshold being si instead of zero and q being
h(· ; Θi), the previously optimized auxiliary density. As the cross-entropy optimization is performed for
intermediate failure threshold, the term multilevel CE [Rubinstein and Kroese, 2004] is often used to
describe the algorithm. In structural reliability [Rubinstein and Kroese, 2016], the objective functions
in Eq. (3.13) are typically convex and differentiable with respect to Θ. Consequently the optimiza-
tion problem can be efficiently solved by gradient-based algorithms. For distributions belonging to
the so-called natural exponential family (NED) [Rubinstein and Kroese, 2016], such as the normal
distribution, analytical solutions can be directly derived from Eq. (3.13). For instance, if hG(·; Θ) is
a normal density, with Θ = [µ,Σ], the mean vector µ and the covariance matrix Σ are updated as
such [Rubinstein and Kroese, 2016]

µi+1 =
N∑

j=1
X(j)

i w̄
(j)
i and Σi+1 =

N∑
j=1

(
X(j)

i − µi+1

)(
X(j)

i − µi+1

)⊤
w̄

(j)
i , (3.14)

where the random variables
(

X(j)
i

)
are iid with density hG (·; µi,Σi) and w̄

(j)
i = w

(j)
i /

∑N
ℓ=1 w

(ℓ)
i

where w(j)
i = IY <si

(
Y

(j)
i

)
fX

(
X(j)

i

)
/hG

(
X(j)

i ; µi,Σi

)
are the sample weights.

The baseline of the method is displayed in Algorithm 3. The initial parameters Θ0 of the density
are usually selected to retrieve the inputs density fX, so that the first intermediate threshold s0 of the
CE-AIS algorithm is in fact the ρ-quantile response value of a crude MC sample. It should be noted
that in contrast with the NAIS algorithm, the samples generated in the CE-AIS algorithm are made
of use only once.

As for the NAIS algorithm, the parameter ρ greatly influences the convergence of the algorithm
and the efficiency of the method. If this parameter is set too low, then the algorithm converges rapidly
and the number of iterations is small. However, the optimization of the parameters is performed with
an IS estimate of small sample size (as the intermediate failure domain indicator function of their
associated weight is mostly equal to zero), thus there can be a greater error in their estimation. In
contrast, setting ρ very large enables a very accurate IS estimation of the optimized parameter Θ but
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Algorithm 3 CE-AIS
Require: The joint pdf fX, the quantile level ρ and the sample size N .

Initialization
Choose a distribution family h(·; Θ) and initial parameters Θ0. Generate an iid sample(

X(j)
0

)
j=1,...,N

from h(·; Θ0). Compute the response of the system
(
Y

(j)
0 = g

(
X(j)

0

))
j=1,...,N

. Se-
lect the initial intermediate threshold s0 as the maximum between the ρ-quantile of the response
values

(
Y

(j)
0

)
j=1,...,N

denoted Y
(ρ)

0 and zero: s0 = max
(

0, Y (ρ)
0

)
. Set the index i equal to 0.

Compute the new optimized parameters Θ1 thanks to Eq. (3.13).
while si > 0 do

Optimization of the parametric density
The index i is incremented: i = i + 1. Generate an iid sample

(
X(j)

i

)
j=1,...,N

from h(·; Θi).

Compute the response of the system
(
Y

(j)
i = g

(
X(j)

i

))
j=1,...,N

. Select the initial intermediate

threshold si as the maximum between the ρ-quantile of the response values
(
Y

(j)
i

)
j=1,...,N

denoted

Y
(ρ)

i and zero: si = max
(

0, Y (ρ)
i

)
. If si > 0, compute the new optimized parameters Θi+1 thanks

to Eq. (3.13).
end while
Estimation of the failure probability
Set m equal to i. The probability of failure is estimated with the following formula

P̂CE−AIS
f = 1

N

N∑
j=1

IY ≤0

(
Y (j)

m

) fX

(
X(j)

m

)
h
(

X(j)
m ; Θm

)
return P̂CE−AIS

f .

slows down the convergence of the algorithm and thus the simulation budget is heavier as the number
of iterations gets large as well. The authors of [Kroese et al., 2013] recommend to select ρ in [0.01, 0.1].

In our specific context, the failure domain encompasses possibly several failure regions and the di-
mension of the system is high. Special versions of the CE-AIS algorithm were derived for such context
and are briefly presented here, starting with the multiple failure regions framework.

CE-AIS for multiple failure regions
The efficiency of the CE-AIS algorithm heavily relies on the selected family density h(·; Θ). In our
specific context, selecting h as a parametric unimodal distribution is consequently not relevant. In
order to account for the multiple failure regions, a multimodal distribution as in the mixture impor-
tance sampling framework is more appropriate. In mixture importance sampling [Owen, 2013], the
observations are generated from the mixture distribution hM, such that

∀ x ∈ Rd hM(x) =
K∑

k=1
πkhk(x), (3.15)

where K is the number of densities in the mixture and πk are weighting factors such that
∑N

k=1 πk = 1.
In the specific case of the CE-AIS algorithm, one typically selects all the hk from the same family and
the weighting factors of dimension K are parameters that have to be optimized as well at each step
as they are unknown. Therefore, although these mixture densities are more flexible, the optimiza-
tion is more complex because of the weighting factors; some approximations are usually made. The
introduction of a mixture of densities does not change the unbiasedness of CE-AIS estimate.

The value of K which is the number of densities in the mixture has to be set a priori. The setting
of the parameter K is crucial, as it highly influences the performance of the algorithm. Choosing K
too small results in neglecting failure regions with less importance for the failure probability estimation
and may cause bias. In contrast, since the dimension of the parameters of the mixture is proportional
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to K, choosing K too large makes the optimization process computationally heavier, which may result
in less accurate optimized parameters. If one already knows the number of failure regions in the failure
domain, then this value would be given to K. Each weight πk would give information about the degree
of relative impact each failure region has over the whole failure probability. Unfortunately, if the limit
state function is a black-box model, which is the case in our study context, then no information about
the failure domain is available and the parameter K is consequently difficult to set.

The most commonly used mixture of densities is the Gaussian mixture. Therefore this particular
case is derived hereafter, as an example of CE-AIS with a mixture of densities to account for the
multiple failure regions.

CE-AIS with Gaussian Mixture (GM)
The Gaussian Mixture (GM) case, introduced in [Kurtz and Song, 2013], results in the following
auxiliary density

∀ x ∈ Rd hGM(x ; Θ) =
K∑

k=1
πkN (x ; µk,Σk).

Each normal density has a d-vector mean µk and a covariance matrix Σk (with d(d + 1)/2 unknown
components). The dimension of the parameters Θ = [πk,µk,Σk, for k = 1, . . . ,K] is thus equal to
K(d(d+ 3)/2) +K. Several studies [Kurtz and Song, 2013,Geyer et al., 2019] have derived updating
formulas for the GM parameters. The updating formulas resulting from the gradient-based optimiza-
tion of Eq. (3.13) with h = hGM, are described in detail in [Kurtz and Song, 2013]. In contrast, the
authors in [Geyer et al., 2019] first underline the equivalence between solving the CE optimization
problem and obtaining the Maximum Likelihood Estimates (MLE) of the parameters Θ of the GM
density [Rubinstein and Kroese, 2016]. Then, a general Expectation-Maximization (EM) updating
scheme for weighted samples is obtained, as the original version of the EM algorithm is suited for
unweighted samples [Dempster et al., 1977].

The selection of K is also considered in both studies. In [Kurtz and Song, 2013] a rule of thumb
is presented which is to select K as superior to d and superior to the number of components for a
system reliability problem. While in [Geyer et al., 2019], several clustering methods are considered to
obtain a guess for the number K. These methods include the k-means algorithm [MacQueen, 1967],
the k-means++ algorithm [Arthur and Vassilvitskii, 2006] and a technique derived in [Gebru et al.,
2016] based on the so-called minimum message length criterion. However the density-based spatial
clustering of applications with noise (DBSCAN) algorithm [Ester et al., 1996] is the one selected, with
a small modification added in order to take into account the weights of the samples. These methods
are not detailed here.

If the number K of Gaussian densities is appropriately set, the CE-AIS algorithm with GM is very
efficient for failure domains with multiple failure regions for small to moderate dimension (up until
d = 50). An illustration of the different steps of the algorithm is displayed in Figure 3.6.

In high-dimensional spaces, as the dimension of Θ is proportional to d2, the number of parameters
to be optimized drastically increases, especially if K is set large as well. The heavy computational
burden of CE-AIS deteriorates its performance. Furthermore, the capability of the clustering algo-
rithms to obtain a guess of the value K, greatly deteriorates with increased dimension because of the
concentration of norm phenomenon [Klawonn et al., 2012]. Finally, the curse of dimensionality affects
the IS weight: an increasingly large portion of the samples have an associated IS weight close to zero.
One solution is again to reduce the dimension of the IS density. To do so, several techniques have
been developed like the screening method [Rubinstein and Glynn, 2009] or projection methods [Uribe
et al., 2021,El Masri et al., 2021] for instance. These techniques are mostly suited for failure domains
with a unique failure region and need to be adapted to mixture distributions to take into account the
multiple failure regions.

In order to deal with systems of greater dimension, other mixture of densities were thus introduced
for the CE-AIS algorithm. In the next paragraph we present a mixture of densities specifically tailored
for the multiple failure regions of a high-dimensional normal input space, as the important ring of
those inputs is taken into account.

CE-AIS with high-dimensional normal inputs
As previously mentioned, the stochastic representation of standard elliptical inputs X is X = RT
where R is a positive random variable and T is a random vector, independent of R and uniformly
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a) b) c)

Figure 3.6: Illustration of the main steps of the CE-AIS algorithm with GM, with K = 4 and ρ = 0.1
a) the initial threshold s0 = 1.4 is computed from observations generated from hGM(· ; Θ0) = fX, b)
the second threshold s1 = 0.5 computed from observations generated from the mixture of 4 Gaussian
densities hGM(· ; Θ1) c) the third ρ-quantile is already smaller than 0 thus the loop stops as s2 = 0
and the failure probability is estimated with the observations in the failure domain generated from the
mixture of 4 Gaussian densities hGM(· ; Θ2). The dark blue line is the limit state surface. The color map
represents the value of the limit state function g. The dashed white lines represent the intermediate
limit state surfaces. The dotted lines represent the isovalues of the densities fX, hGM(· ; Θ1) and
hGM(· ; Θ2). The magenta dots represent the observations of non-zero weight at each step.

distributed on the unit sphere T d = {(t1, . . . , td) ∈ Rd : t21 + · · · + t2d = 1}. Using this particular
writing, the optimal IS auxiliary density gives

∀ r ∈ R+ ∀ t ∈ T d hopt(rt) =
IDf

(rt)fR(r)fT(T)
Pf

.

The behavior of the standard elliptical inputs in high-dimensional spaces is already underlined in
Chapter 2. More precisely, an important ring which encompasses most of the probability mass of the
input distribution is defined; it is particularly narrow for standard normal inputs.

Taking into account the stochastic representation of the inputs, a method derived in [Wang and
Song, 2016] chooses a parametric family particularly suited for the CE-AIS algorithm in high-dimensional
standard normal space. Indeed, the radial variable R is simply considered equal to the constant

√
d,

as this value is an accurate approximation of R in high-dimensional standard normal spaces (see
Chapter 2). Then, one solely focuses on finding a parametric family for the random vector T denoted
hT(· ; Θ). This density is constructed as a mixture of the von Mises–Fisher (vMF) distributions [Baner-
jee et al., 2005], to take into account possible multiple failure regions. The advantage of the vMF
distribution is that the dimension of the parameters is equal to d + 1, instead of d(d + 3)/2 for the
Gaussian distribution; see Chapter 2 for more detail on the vMF distribution. Thus the parametric
density hT is written

∀t ∈ T d hT(t; Θ) =
K∑

k=1
πkhvMF(t;κk,νk).

Each vMF density has a scalar concentration parameter κk and a mean direction d-vector νk. The
dimension of the parameters Θ = [πk, κk,νk for k = 1, . . . ,K] is thus equal to K(d+ 1) +K which is
considerably smaller than for a GM density.

The updating rules of the parameters, solutions of the optimization Eq. (3.13) are derived in [Wang
and Song, 2016], with the additional constraints ∥νk∥ = 1 for k = 1, . . . ,K. However one should notice
that the optimal density in the KL divergence minimization is not directly hopt but the function defined
on t ∈ T d, such that t → hopt,

√
d(t) = IDf

(√
dt
)
fT(t)/Pf,

√
d, and Pf,

√
d is the failure probability

on the hypersphere of radius R =
√
d. Furthermore, for each iteration, the ρ-quantile of the response

values is computed as a convergence criterion, but the threshold in Eq. (3.13) is always set to 0 and
not si (no intermediate failure thresholds). As for the value of K, a rule of thumb is presented which
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is to select K ≥ d/2. Indeed, if the actual number of failure regions is inferior to K, then the vMF
densities in the mixture would merge with each other. Therefore, using a conservative large K does not
introduce errors in theory, but it does increase the number of parameters to be optimized. This method
is thus particularly relevant in our specific context, as it accounts for the multiple failure regions of
the failure domain and for the behavior of the standard normal law in high-dimensional spaces (up
to d = 1000). However, the setting of the radial variable R could be improved as the approximation
R ≈

√
d is imprecise and can be very inaccurate for moderate dimensions (for 50 ≤ d ≤ 200 for

instance). This topic is discussed in Section 3.3.3.4.
It should be noted that in contrast to [Wang and Song, 2016], a method derived in [Leng et al.,

2022] focuses on finding an IS auxiliary density only for the radial component R of the standard
normal inputs, leaving the directional density of T as the original uniform distribution over T d. A
uniform distribution with bounds ru and rl is selected as the radial auxiliary parametric density to be
optimized. However another AIS algorithm is developed in [Leng et al., 2022], that does not rely upon
the KL divergence minimization to update the parameters. As no important directions are selected in
this AIS process, it seems that this method could be irrelevant for some limit state surfaces that do
not possess a particular spherical symmetry [Leng et al., 2022].

In the next sections, we present two algorithms derived from the CE-AIS algorithm, the CE-AMIS
and the iCE-AIS, which aims at a better use of the limit state function evaluations. Indeed it is
recalled here that the limit state function g is numerically expensive, thus each evaluation should be
taken advantage of at the maximum (in the same spirit as in the NAIS algorithm for example, but in
a parametric context).

3.3.3.3 Cross-Entropy based Adaptive Multiple Importance Sampling

The CE-AMIS algorithm derives from the CE-AIS algorithm, with the introduction of the Adaptive
Multiple IS (AMIS) structure. In the AMIS [Cornuet et al., 2012, Marin et al., 2012] framework, a
recycling procedure is introduced to improve the lsf evaluations profitability. As mentioned in the pre-
vious section, the introduction of intermediate failure thresholds is not mandatory for AIS algorithms;
see [Kurtz and Song, 2013, Wang and Song, 2016, Leng et al., 2022]. For the CE-AMIS algorithm
presented here, the convergence criteria is thus related to the theoretical coefficient of variation of the
failure probability estimate rather than the ρ-quantile of the response values [Tabandeh et al., 2022].
A CV level δ is thus selected in the initialization of the algorithm.

The optimization equation of parameter Θi+1 at step i of the CE-AMIS algorithm is the following

Θi+1 ≈ argmax
Θ∈Rn

1
(i+ 1)N

i∑
ℓ=0

N∑
j=1

IY <0

(
Y

(j)
ℓ

)
ln
(
h
(

X(j)
ℓ ; Θ

)) fX

(
X(j)

ℓ

)
∑i

p=0 h
(

X(j)
ℓ ; Θp

)
/(i+ 1)

, (3.16)

where the random variables
(

X(j)
ℓ

)
ℓ=0,...,i;j=1,...,N

are generated with density
∑i

p=0 h (·,Θp) /(i + 1)

and Y
(j)

ℓ = g
(

X(j)
i

)
. Thus all generated samples are taken into account in the updating formula

of Θ, which is an idea close to the NAIS procedure. However, all the observations are assumed to
be generated from the mixture

∑i
p=0 h (·,Θp) /(i + 1) in a multiple IS (MIS) context, whereas the

observations in the NAIS algorithm are associated to one density only. The failure probability is
estimated at each step, taking advantage of all the previously generated samples as well with the MIS
formula

P̂CE−AMIS
f,i = 1

(i+ 1)N

i∑
ℓ=0

N∑
j=1

IY <0

(
Y

(j)
ℓ

) fX

(
X(j)

ℓ

)
∑i

p=0 h
(

X(j)
ℓ ; Θp

)
/(i+ 1)

, (3.17)

with the same notation as in Eq. (3.16). It should be noted that the IS weight of each observation X(j)
ℓ

is modified at each step, since another density is added to the mixture; even for observations generated
at previous iterations. This differs significantly from the NAIS algorithm. The theoretical variance is
estimated along, with all the samples, with the approximation

V̂ar
(
P̂CE−AMIS

f,i

)
≈ 1

(i+ 1)N Var
(
IY <0 (Y ) fX (X)∑i

p=0 h (X; Θp) /(i+ 1)

)
, (3.18)
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Algorithm 4 CE-AMIS
Require: The joint pdf fX, the CV level δ and the sample size N .

Initialization
Choose a distribution family h(·; Θ) and initial parameters Θ0. Generate an iid sample(

X(j)
0

)
j=1,...,N

from h(·; Θ0). Compute the response of the system
(
Y

(j)
0 = g

(
X(j)

0

))
j=1,...,N

. Com-

pute the theoretical CV of the estimate, CV0 =
√
V̂ar

(
P̂CE−AMIS

f,0

)
/P̂CE−AMIS

f,0 with Eqs. (3.17) and
(3.18). Set the index i equal to 0. Compute the new optimized parameters Θ1 thanks to Eq. (3.16).

while CVi > δ do
Optimization of the parametric density
The index i is incremented: i = i + 1. Generate an iid sample

(
X(j)

i

)
j=1,...,N

from h(·; Θi).

Compute the response of the system
(
Y

(j)
i = g

(
X(j)

i

))
j=1,...,N

. Compute the theoretical CV of

the estimate, CVi =
√
V̂ar

(
P̂CE−AMIS

f,i

)
/P̂CE−AMIS

f,i with Eqs. (3.17) and (3.18). Compute the
new optimized parameters Θi+1 thanks to Eq. (3.16).

end while
Estimation of the failure probability
Set m equal to i. The probability of failure is estimated with P̂CE−AMIS

f,m of Eq. (3.17).
return P̂CE−AMIS

f,m .

assuming all the observations are iid. Algorithm 4 describes the main structure of the CE-AMIS
method. As no intermediate failure threshold is introduced, the quality of the initial parameter vector
θ0 is crucial. Some observations X(j)

0 must belong to the failure domain in step i = 0, or else the
algorithm cannot run.

Eqs. (3.16), (3.17) and (3.18) can be adapted to the case where the size of the sample Ni vary for
each iteration [Owen, 2013]. Instead of dividing by (i+1)N , the terms are divided by NTotal =

∑i
ℓ=0 Nℓ

and the weights of the densities are not all equal to 1/(i + 1) but αp = Np/NTotal. If the simulation
budget has to be very small, then one could want to have higher values of Ni as the iteration goes,
to sample more observations with densities further optimized. Recently, methods presented in [Sbert
and Havran, 2017] and [Sbert et al., 2018] allow to compute optimal weights αp for the multiple IS
framework.

The choice of the target CV level δ greatly influences the performance of the algorithm. If the value
of δ is too small, then the simulation budget will be large as the number of iterations gets large as well.
On the contrary, if the value of δ is too large, then the resulting probability estimate P̂CE−AMIS

f,m will
have a large variance and may be inaccurate as the algorithm converges rapidly. Therefore a trade-off
must be studied between the simulation budget and the quality of the failure probability estimate.

At the end of the algorithm, the last density h(· ; Θm) is the best density with this parametric
setting to sample in the failure region. Nevertheless, the intermediate densities h(· ; Θm) and their
associated samples Xi are also reused in the final MIS estimate. This choice improves the stability of
the estimate and speeds up the convergence process [Cornuet et al., 2012].

Statistical properties of the CE-AMIS algorithm
The statistical properties of the CE-AMIS algorithm have been studied in numerous papers [Douc
et al., 2007, Cornuet et al., 2012, Marin et al., 2012] as they are particularly challenging to derive.
One of the main result of these studies is that the CE-AMIS estimate, and more generally the AMIS
estimate, is biased [Cornuet et al., 2012]. The sample

(
X(j)

i

)
j=1,...,N

is dependent of all the previously
generated samples, since Θi is. Therefore, the samples of iterations ℓ = 0, . . . , i are all generated
with the MIS density

∑i
p=0 h(·; Θp)/(i+ 1) but they are not independent. This intricate dependence

induces a bias and P̂CE−AMIS
f,i is biased at each step of the algorithm, except at the initial step i = 0.

Consequently, the variance formula Eq. (3.18) is only an approximation, assuming all the samples are
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independent. The convergence properties of the AMIS algorithm are also difficult to address. The
convergence in probability of the AMIS estimate under weak conditions is presented in [Cornuet et al.,
2012].

In [Marin et al., 2012], a slight modification of the updating formulas is made, allowing the con-
sistency of the resulting algorithm to be proven. Indeed, only the samples generated at iteration i
are considered in the optimization of parameters Θi+1. However, all of the samples of the previous
iterations ℓ = 0, . . . ,m− 1 are still reused to compute the final failure probability estimate P̂CE−AMIS

f,m .

3.3.3.4 Improved Cross Entropy-based Adaptive Importance sampling

The improved CE-AIS was presented in [Papaioannou et al., 2019] and introduces a modification in the
CE-AIS which allows a better use of the limit state function evaluations g(X), in a different manner
than CE-AMIS. Indeed, in the classical CE-AIS algorithm, only ρ percent of the sample of each step
contributes to the optimization of the parameters Θi+1 in Eq. (3.13), because of the intermediate failure
domain indicator function IY <si . The solution proposed by [Papaioannou et al., 2019] is to sequentially
get closer to hopt with a smooth approximation of the real failure domain indicator function IDf

, rather
than with intermediate thresholds. The smooth approximation selected by the authors is the standard
normal cdf Ψ, which verifies

∀ x ∈ Rd IDf
(x) = lim

σ→0
Ψ
(

−g(x)
σ

)
,

where σ > 0. However one should notice that other smoothing functions could be appropriate as
well [Lacaze et al., 2015]. With this approximation, the optimal density hopt is gradually approached
with the following sequence of densities

∀ x ∈ Rd hi(x) =
Ψ
(

−g(x)
σi

)
fX(x)

Pi
, (3.19)

where Pi is the normalizing constant and σi > 0 is the smoothing parameter. It should be noted that the
distribution sequence in Eq. (3.19) can be used for deriving others AIS approaches, as in [Beaurepaire
et al., 2013,Dubourg and Sudret, 2014], or in the Sequential IS (SIS) framework [Papaioannou et al.,
2016,Papaioannou et al., 2018] for instance. Using this density instead of hopt in the computation of
the KL divergence gives the following optimization equations for the parameters Θi+1

Θi+1 ≈ argmax
Θ∈Rn

1
N

N∑
j=1

Ψ
(

−Y (j)
i

σi

)
ln
(
h
(

X(j)
i ; Θ

)) fX

(
X(j)

i

)
h
(

X(j)
i ; Θi

) . (3.20)

With this equation, all of the limit state function evaluations
(
Y

(j)
i

)
j=1,...,N

are taken into account.
The parameter σi+1 is computed with the following optimization

σi+1 = argmin
σ∈[0,σi]

(CV(Wi) − δ)2, (3.21)

where
(
W

(j)
i = Ψ

(
−Y

(j)
i

σi

)
fX
(

X(j)
i

)
h
(

X(j)
i

;Θi

))
j=1,...,N

and δ is the CV level used as the convergence criterion

of the algorithm. The sequence of σi is thus decreasing. The structure of the iCE-AIS method is
displayed in Algorithm 5.

The initial parameters Θ0 of the density are selected to retrieve the inputs density fX. The
stopping criterion is related to the CV of the ratio between the failure domain indicator function IDf

and the smooth approximation Ψ(·/σ) to make sure the approximation is close enough to the indicator
function. This criterion ensures that the CV of the estimate P̂ iCE−AIS

f is low; see [Papaioannou et al.,
2019] for more detail.

The choice of the target CV level δ greatly influences the performance of the algorithm. It is
discussed in [Papaioannou et al., 2016, Papaioannou et al., 2018]. As for the CE-AMIS algorithm,
selecting a value of δ too small makes the simulation budget heavier as it leads to a larger num-
ber of iterations. In contrast, if the value of δ is too large, the smooth function Ψ(·/σ) can give an
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Algorithm 5 iCE-AIS
Require: The joint pdf fX, the CV level δ and the sample size N .

Initialization
Set σ0 = +∞. Choose a distribution family h(·; Θ) and initial parameters Θ0. Generate an iid sam-
ple

(
X(j)

0

)
j=1,...,N

from h(·; Θ0). Compute the response of the system
(
Y

(j)
0 = g

(
X(j)

0

))
j=1,...,N

.

Compute the CV of the ratio
(
IDf

(
Y

(j)
0

)
/Ψ
(
Y

(j)
0 /σ0

))
j=1,...,N

denoted CV0. Set the index i

equal to 0. Compute the new smoothing parameter σ1 with Eq. (3.21). Compute the new optimized
parameters Θ1 thanks to Eq. (3.20).
while CVi > δ do

Optimization of the parametric density
The index i is incremented: i = i + 1. Generate an iid sample

(
X(j)

i

)
j=1,...,N

from h(·; Θi).

Compute the response of the system
(
Y

(j)
i = g

(
X(j)

i

))
j=1,...,N

. Compute the CV of the ratio(
IDf

(
Y

(j)
i

)
/Ψ
(
Y

(j)
i /σi

))
j=1,...,N

denoted CVi. Compute the new smoothing parameter σi+1

with Eq. (3.21). Compute the new optimized parameters Θi+1 thanks to Eq. (3.20).
end while
Estimation of the failure probability
Set m equal to i. The probability of failure is estimated with the following formula

P̂ iCE−AIS
f = 1

N

N∑
j=1

IY ≤0

(
Y (j)

m

) fX

(
X(j)

m

)
h
(

X(j)
m ; Θm

)
return P̂ iCE−AIS

f .

inaccurate approximation of the failure domain indicator function, resulting in a poor sampling scheme.

iCE-AIS for multiple failure regions with high-dimensional normal inputs
In [Papaioannou et al., 2019] a parametric family particularly suited for failure domain with multiple
failure regions is derived, in the high-dimensional standard normal space. The paper follows the work
of [Wang and Song, 2016] described in Section 3.3.3.2 as the stochastic representation of the standard
normal inputs is taken advantage of as well. The density for the directional vector T is also selected
as the von Mises–Fisher density, but an improvement for the radial density is made. Indeed, instead
of considering the radial component R equal to

√
d, a Nakagami density is selected as the auxiliary

radial density. The Nakagami distribution is defined by the following pdf

∀r ∈ R+ hN(r;ω,Ω) = 2ωω

Γ(ω)Ωω
r2ω−1exp

(
−ω

Ωr
2
)
,

where ω ≥ 0.5 is the shape parameter and Ω > 0 is the spread parameter. This density can be
viewed as a generalization of the χ distribution. For standard normal inputs R ∼ χ(d), therefore this
particular choice for the radial density is relevant. The density mixture, denoted vMFNM for von
Mises–Fisher Nakagami mixture, is thus the following

∀r ∈ R+ ∀t ∈ T d hvMFNM(r, t; Θ) =
K∑

k=1
πkhN(r;ωk,Ωk)hvMF(t;κk,νk).

Each Nakagami density has a scalar shape parameter ωk and a scalar spread parameter Ωk. Each vMF
density has a scalar concentration parameter κk and a mean direction d-vector νk. The dimension of
the parameter Θ = [πk, ωk,Ωk, κk,νk, for k = 1, . . . , N ] is thus equal to K(d+ 3) +K.

The updating rules of the parameters, solution of Eq. (3.20), are derived with a weighted Expec-
tation Maximization (EM) algorithm, using the same equivalence as in [Geyer et al., 2019] (cf Section
3.3.3.2) between the optimization problem of the CE algorithm and the weighted MLE of the dis-
tribution parameters. The algorithm is illustrated in Figure 3.7. The selection of the value of K is



62 CHAPTER 3. FAILURE PROBABILITY ESTIMATION IN A HIGH-DIMENSIONAL SPACE

discussed as well, but the clustering algorithms are inappropriate in high-dimensional space, as already
mentioned in Section 3.3.3.2. Therefore, there is still a trade-off between a reasonable dimension of the
parameters Θ, which is linear with K, and an accurate representation of the multiple failure regions.

a) b) c)

Figure 3.7: Illustration of the main steps of the iCE-vMFNM algorithm, with K = 4 and δ = 4 a)
the initial CV: CV0 = 28.9 is computed from observations generated from hvMFNM(· ; Θ0) = fX b)
the second CV computed from the observations generated from the mixture density hvMFNM(· ; Θ1) is
already smaller than δ thus the loop stops c) the failure probability is estimated with the observations
in the failure domain generated from hvMFNM(· ; Θ1). The dark blue line is the limit state surface. The
color map represents the value of the limit state function g. The dotted lines represent the isovalues of
the densities fX and hvMFNM(· ; Θ1). The magenta dots represent the observations generated at each
step in a) and b) and only the observations lying in the failure domain in c).

This algorithm, denoted iCE-vMFNM, is thus particularly well suited for the context of this thesis,
for normal inputs. It will be used later on for comparison purposes in some numerical applications of
the manuscript. We present next a sampling method which relies on the stochastic representation of
the standard elliptical inputs. As it is assumed in this manuscript that the inputs of the system can
be modeled with standard elliptical distributions, this sampling method is particularly interesting.

3.3.4 Directional Sampling

3.3.4.1 DS in the standard elliptical space

Directional Sampling (DS) is a sampling technique first introduced in [Ditlevsen et al., 1986] and
derived for structural reliability problems in [Bjerager, 1988,Ditlevsen et al., 1990] for standard normal
space, but we generalize here the concept for all standard elliptical distributions, as the idea remains the
same. This particular sampling technique requires the inputs to follow a standard elliptical distribution,
in order to take advantage of their stochastic representation. The inputs are thus written X = RT,
where R ∼ fR and T ∼ U

(
T d
)

and R and T are independent. Conditioning on T = t, the failure
probability is written with the stochastic representation of the inputs

Pf = P(g(RT) ≤ 0) =
∫

T d

P(g(Rt) ≤ 0|T = t)fT(t)dt =
∫

T d

P(g(Rt) ≤ 0)fT(t)dt, (3.22)

where the last equality comes from the fact that R an T are independent. The DS estimate of Pf is
then obtain with the following MC estimate

P̂DS
f = 1

N

N∑
j=1

P
(
g
(
RT(j)

)
≤ 0
)
,
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where the T(1),T(2), . . . are iid according to U(T d). The DS estimate is unbiased and its variance is
equal to

Var
(
P̂DS

f

)
= 1
N

VarfT (P (g (RT) ≤ 0))

= 1
N

(
EfT

[
(P (g (RT) ≤ 0))2

]
− P 2

f

)
.

If the analytical evaluation of the conditional probability for each T(j) is possible, the DS estimate has
a smaller variance than the basic MC estimate [Bjerager, 1988]. More specifically, for spherical limit
state surface, only one single observation is needed in order to obtain the exact failure probability.
Thus this sampling technique is particularly suited for almost spherical limit state surfaces, and its
efficiency decreases for non-spherical limit state surfaces for an increasing dimension d.

Introducing the IS technique in Eq. (3.22) leads to the following Directional IS (DIS) estimate

P̂DIS
f = 1

N

N∑
j=1

P
(
g
(
RT(j)

)
≤ 0
) fT

(
T(j)

)
hT

(
T(j)

) ,
where T(1),T(2), . . . are iid according to hT, the auxiliary DIS density. The variance of this unbiased
estimate is

Var
(
P̂DIS

f

)
= 1
N

VarhT

(
P (g (RT) ≤ 0) fT (T)

hT (T)

)
= 1
N

(
EhT

[(
P (g (RT) ≤ 0) fT (T)

hT (T)

)2
]

− P 2
f

)
.

With an appropriate auxiliary density hT, the variance of the DIS estimate can be greatly reduced.
The optimal DIS density, which leads to a variance equal to zero, is hopt,T(t) = P(g(Rt) ≤ 0)fT(t)/Pf .
The goal of DIS is to generate more observations in important directions, in contrast to the original
distribution U

(
T d
)
.

3.3.4.2 DS/DIS for star shaped limit state surfaces

In the specific case where the limit state surfaces are star-shaped, then the following property holds

P
(
g
(
RT(j)

)
≤ 0
)

= P(R ≥ rj) = 1 − FR(rj) = HR(rj), (3.23)

where HR is the survival function of the radial distribution (χ distribution for standard normal inputs
for example) and rj is called the root of the lsf g in the direction T(j). The root rj is the smallest
value of R such that g

(
rjT(j)

)
= 0 and it is thus assumed that g

(
rT(j)

)
≤ 0 for all r ∈ [rj ,+∞).

Consequently, in order to compute the conditional probability, one only has to find the root rj for each
direction, as illustrated in Figure 3.8.

Assuming the gradient of the lsf g is available, the root of a particular direction is obtained with
a gradient-based line-search method. For more complex limit state functions, i.e that possess several
roots for the same direction T(j), the formula Eq. (3.23) no longer holds. The conditional probability
formula then depends on the number nr of roots for each direction [Cheng et al., 2023].

The numerical accuracy of each root influences a lot the resulting DS/DIS estimate. If the value
of rj is underrated, then the probability P(R ≥ rj) is overrated and vice versa. The DS/DIS estimate
is then biased. Therefore particular care must be taken when performing the line-search for each
direction.

3.3.4.3 Variants of the DIS method

Although the DS/DIS framework is suited for all standard elliptical laws, it has been mainly developed
for standard normal inputs only. The following methods are thus tailored in the standard normal space,
but they could be generalized for other elliptical spaces.
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Figure 3.8: Illustration on a two-dimensional example of the DS main idea. The dark blue line is the
limit state surface. The color map represents the value of the limit state function g. The colored lines
represent different directions T(j), the blue dots represent the intersection between the directions and
the limit state surface. The associated roots rj are the distance between the blue dots and the origin
for each T(j).

The DIS method has recently been combined with the subset sampling logic in [Cheng et al., 2023]
to introduce a new algorithm named Sequential Directional Importance Sampling (SDIS). The failure
probability is computed as a product of intermediate failure probabilities as in SS; the first one is
estimated with a basic MC simulation but the other intermediate failure probabilities are estimated
with DIS. Two MCMC algorithms are specifically tailored to generate the samples in this context.
The SDIS algorithm is efficient for multiple failure regions in both small and moderate dimension. Its
performance deteriorates with the dimension and the authors suggest to favor the SS algorithm for
higher dimensions (d ≥ 100).

The CE-AIS method presented in Section 3.3.3.2 has been adapted to the DIS framework in [Shayan-
far et al., 2018] (CE-ADIS). However, it is not applicable for the reliability problems with multiple
failure domains. Following this study, a recent method presented in [Zhang et al., 2022] (CE-DIS)
allows to take into account the multiple failure regions, by selecting the DIS auxiliary directional den-
sity as a mixture of vMF densities, as in [Wang and Song, 2016]; see Section 3.3.3.2. The updating
formulas for the parameters of the vMF mixture are then derived with the EM algorithm for weighted
MLE as in [Papaioannou et al., 2019]. The DBSCAN algorithm is used to choose the value of the
number of failure regions K. This CE-DIS algorithm is very efficient for small to moderate dimension
(up to d = 50). Nevertheless, in high-dimensional standard normal spaces, finding the roots along the
direction vector can become meaningless, as most of the probability mass of the radial component is
gathered in the important ring. Furthermore, the clustering algorithms become inefficient and it is
difficult to set the initial value of K, as already mentioned in Section 3.3.3.2. Consequently, although
this method is interesting in our context, as it takes into account the stochastic representation of the
elliptical inputs, the DS idea needs adaptation to high-dimensional spaces.

3.4 Simulation techniques based on the design point
In this section we present several sampling methods that rely on the design points of the system, as
some may be efficient in our specific context. Therefore, we suppose that the design points (P ∗

k )k=1,...,K
are available with optimizations as derived in Section 3.2 for example, in the standard elliptical space.
The goal of these sampling techniques is thus to take advantage of the information concerning the
design points locations, to generate observations in the failure domain more easily. As in the previous
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section, for each method presented, its efficiency regarding failure domains encompassing multiple
failure regions is underlined, as well as its performance in high-dimensional standard elliptical spaces.

3.4.1 Radial-Based Importance Sampling
3.4.1.1 RBIS in the standard elliptical space

The Radial-Based Importance Sampling (RBIS) method is a non adaptive method first introduced
by Harritz in [Harbitz, 1986] for standard normal space, but we generalize here the concept for all
standard elliptical distributions, as the idea remains the same. Let β denote the norm of the closest
design point written P ∗ in the standard elliptical space: β = min{∥P ∗

k ∥ for k = 1, . . . ,K} = ∥P ∗∥.
The main idea of RBIS is to exclude from the sampling domain a centered hypersphere of radius β
called the β-sphere, which belongs to the safety domain. Indeed, as P ∗ is the closest failing point
of the failure domain, the centered hypersphere of radius β cannot contain any failure region and is
completely safe.

Conditioning on R ≥ β, the failure probability of Eq. (3.2) is written with the stochastic represen-
tation

Pf = P(g(RT) ≤ 0) = P(g(RT) ≤ 0|R ≥ β)P(R ≥ β)
= P(g(RT) ≤ 0|R ≥ β)HR(β)

= HR(β)
∫ +∞

β

∫
T d

IDf
(rt)fR(r)fT(t) dr dt,

where HR is the survival function of the radial distribution. This integral is the result of an IS technique
with the radial auxiliary density fR|R≥β = IR≥βfR/HR(β). The RDIS estimate of Pf is then obtain
with the following MC estimate

P̂RBIS
f = HR(β)

N

N∑
j=1

IDf

(
R(j)T(j)

)
,

where T(1),T(2), . . . are iid according to fT ∼ Ud, and R(1), R(2), . . . are iid according to fR|R≥β . In
crude MC, most of the observations generated with fT and fR would be located in the β-sphere. Thus
RBIS is very efficient compared to crude MC. Nevertheless, since the direction density fT is left as the
original uniform distribution over the hypersphere T d, it seems the RBIS framework is particularly
suited for almost spherical limit state surfaces, like the DS method. An illustration of the RBIS method
is displayed in Figure 3.9.

It should be noted that if the norm of P ∗ is incorrectly evaluated, the quality of the RBIS estimate
decreases. Indeed, if the value of β is overrated, then P̂RBIS

f could be biased with an underrated
value. On the contrary, if β is underrated, the failure probability estimate should be unbiased, but the
method is then less efficient as the estimate has a larger variance.

3.4.1.2 RBIS without the design point

In the particular case where the design points are unknown, an algorithm presented in [Grooteman,
2008] describes an adaptive scheme to derive an optimal radius β (ARBIS). Recently, the Multisphere-
based Important Sampling method (MBIS) [Thedy and Liao, 2021] focuses on excluding an even larger
part of the sampling domain. Indeed, multiple hyperspheres with various centers and radii are identified
and excluded from the sampling domain. Consequently, the sampling scheme is much improved and
MBIS is more appropriate for failure domains with multiple failure regions. However, the RBIS method
and its variant are known to be specially designed for use in low-dimension problems [Thedy and Liao,
2021], and their performance deteriorates greatly with an increasing dimension.

3.4.2 Line Sampling
3.4.2.1 LS in the standard normal space

Line sampling was first introduced in [Hohenbichler and Rackwitz, 1988] and aims to correct the
FORM/SORM approximations with sampling. Suppose the design point is unique and written P ∗.
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a) b)

Figure 3.9: Illustration on a two-dimensional example of the RBIS main idea a) the observations are
generated from fR|R≥β where β = ∥P ∗∥ b) the failure probability is estimated with the observations
in the failure domain generated from fR|R≥β . The dark blue line is the limit state surface. The color
map represents the value of the limit state function g. The dotted lines represent the isovalues of the
inputs density fX. The magenta dots represent observations generated from fR|R≥β in a) and only
those belonging to the failure domain in b).

The idea is to sample on the hyperplane denoted V1 perpendicular to the direction pointing towards
the design point, in the standard normal space U. In order to do so, the sampling space is rotated and
reduced by one dimension: V = RU, with V =

[
V⊤

1 , Vd

]⊤
, where V1 contains the (d−1)-dimensional

subspace, Vd is a coordinate parallel to the direction of the design point P ∗, and R is a rotation matrix.
The rotation matrix R verifies R⊤R = Id and its d-th row is the unit direction P ∗/∥P ∗∥. Since the
standard normal distribution is invariant by orthogonal transformation [Lebrun and Dutfoy, 2009], V
is also standard normal. The probability integral of Eq. (3.1) in then written in the rotated space as

Pf =
∫
Rd−1

∫
Df (v1)

fVd
(vd)fV1(v1)dvd dv1, (3.24)

where fVd
is the univariate standard normal pdf, fV1 is the (d − 1)-variate standard normal pdf on

the hyperplane vd = 0 and Df (v1) =
{
vd ∈ R| g

(
R⊤ [v⊤

1 , vd

]⊤) ≤ 0
}

is the one-dimensional failure

domain for a set vector v1. The smallest value vd which verifies g
(

R⊤ [v⊤
1 , vd

]⊤) = 0 is referred to
as the root of g for the vector v1 and denoted b(v1) and it is assumed to be unique [Papaioannou and
Straub, 2021a]. The root b(v1) represents the distance to the failure surface in a direction orthogonal
to the hyperplane vd = 0 at v1. An illustration is displayed in Figure 3.10.

From the uniqueness assumption, if vd ≥ b(v1) then vd ∈ Df (v1); therefore Eq. (3.24) is written

Pf =
∫
Rd−1

∫ +∞

b(v1)
fVd

(vd)fV1(v1)dvd dv1. (3.25)

Using the symmetry property of the standard normal distribution, Eq. (3.25) becomes

Pf =
∫
Rd−1

Ψ(−b(v1))fV1(v1)dv1,

where Ψ denotes the univariate standard normal cdf. With a MC estimation of the previous integral,
the LS estimate is written

P̂LS
f = 1

N

N∑
j=1

Ψ
(

−b
(

V(j)
1

))
, (3.26)



3.4. SIMULATION TECHNIQUES BASED ON THE DESIGN POINT 67

Figure 3.10: Illustration on a two-dimensional example of the LS main idea. The dark blue line is the
limit state surface. The color map represents the value of the limit state function g. The black arrows
are the axes of the rotated space V. The dotted lines represent the isovalues of the standard normal
inputs density fX.

where V(j)
1 are iid according to fV1 , the (d−1)-variate standard normal pdf on the hyperplane vd = 0.

Hence, for each sample V(j)
1 , only the computation of the root b

(
V(j)

1

)
is required to estimate the

failure probability. This computation is typically achieved with a gradient-based line-search method.
If the uniqueness of the root is not verified, then Eq. (3.25) no longer holds and the LS estimate does
not have the expression as in Eq.(3.26).

If the roots are accurately computed, the LS estimate is unbiased and its variance is always smaller
or equal to the one of the crude MC estimate, cf [Koutsourelakis et al., 2004]. More specifically, if the
limit state surface is an hyperplane normal to the design point, only one single observation is needed in
order to obtain the exact failure probability. Therefore, the LS framework allows to evaluate how much
does the lsf deviate from a hyperplane normal to the design point, which is the FORM hypothesis.
And if the lsf is nonlinear, the FORM/SORM estimates will be biased but not the LS estimate.

The independence of the standard normal distribution is crucial in the decomposition V =
[
V⊤

1 , Vd

]⊤

since it allows to separate the pdfs of Vd and V1. As stated in [Koutsourelakis et al., 2004], the LS
method can be potentially applied for any d-variate distribution, as long as at least one input is in-
dependent of the others. Since all the other standard elliptical distributions are dependent, LS can
hardly be generalized to other standard elliptical distributions than the normal one.

3.4.2.2 LS for multiple design points

As derived in [Schueller et al., 2004,Lu et al., 2008], line sampling can also be applied to an arbitrary
number of important directions, provided that a small modification in the basic procedure is made.
Each point of the space is then associated in a disjunct manner to one of the given important directions,
according to an Euclidean distance criterion. As the failure regions are then not overlapping (thanks
to the small modification), the failure probability estimate is thus the sum of the individual failure
probability estimates. It should be noted however that the distance criterion mentioned may not be
efficient in high-dimensional spaces because of the concentration of norm phenomenon, which states
that the Euclidean norm tends to be identical for high-dimensional data [Klawonn et al., 2012].
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3.4.2.3 LS for high-dimensional standard normal inputs

One of the main advantage of the LS method is that the high-dimensional problem is reduced to
a conditional one-dimensional problem, since only the roots b(v1) have to be computed to estimate
the failure probability. Therefore, it is particularly efficient in high-dimensional spaces [Valdebenito
et al., 2010]. However, its efficiency is based on the importance of the design points’ directions. As
mentioned in Section 3.2.3, the design points rarely belong to the standard normal important ring.
Therefore, if the design points’ directions are, in fact, not the main failure directions in the important
ring, then the LS estimate performs quite poorly [Valdebenito et al., 2010]. A larger simulation budget
is required as the selected important directions are suboptimal. In other words, the LS method with
design points assumes that the directions of the design points stay relevant inside the important ring,
but this hypothesis can be wrong for nonlinear lsf. If there exists no important direction at all, then
the LS framework may not be appropriate [Pradlwarter et al., 2007]. Even if the directions of the
design points are suboptimal, the LS estimate remains unbiased, provided the roots are accurately
computed.

3.4.2.4 LS without the design point

The line sampling method without the design point information has been derived in [Koutsourelakis
et al., 2004], where a Markov chain-based technique allows to find the important direction for ex-
ample. Other simulation methods have been developed since. The Advanced Line Sampling (ALS)
method [de Angelis et al., 2015], derives an adaptive simulation scheme to improve a poor initial choice
of the important direction. More recently, the Combination Line Sampling (CLS) framework [Pa-
paioannou and Straub, 2021a] allows to generalize the ALS method and introduce the CLS estimate,
which is a weighted combination of LS estimates. The weights are then optimized to enhance the
performance of the LS method. Both ALS and CLS are efficient in small to moderate dimensions,
however as the dimension increases, the chances of finding a better important direction throughout
simulations decrease. Thus these simulation methods are not appropriate for high-dimensional spaces.
Furthermore, they need to be adapted to the case where multiple important directions exist.

If the gradient of the lsf is available, on can simply select the important direction as the negative
of the gradient of g at the origin of the standard normal space [Valdebenito et al., 2018], or at another
chosen point [Pradlwarter et al., 2005]. However, this choice supposes that there is only one important
direction, and that the gradient is somewhat constant which may be inaccurate.

3.4.3 Importance Sampling using design points
3.4.3.1 IS using design points in the standard elliptical space

Using the positions of the design points to build the auxiliary density of the IS estimate was first
derived in [Schuëller and Stix, 1987] in the standard normal space. In this non adaptive method, for
each design point P ∗

k , an auxiliary density is built as an independent normal density centered on the
design point location. Since it is difficult to give some criteria to select proper variance values for the
covariance matrices, unit variances are usually chosen [Fujita and Rackwitz, 1988]. This method can
be generalized to the other standard elliptical inputs distributed as E(0, Id, hX), by selecting for each
design point P ∗

k the auxiliary density E(P ∗
k , Id, hX) centered on P ∗

k . The IS density is then constructed
as a mixture of those auxiliary densities, where the weight πk of each density E(P ∗

k , Id, hX) reflects the
contribution of the failure region associated to P ∗

k to the failure probability; i.e the design point P ∗
k

with small βk = ∥P ∗
k ∥ value is more significant in the failure probability estimation than other design

points with larger β values. For example, the ratio

πk = FX1(−βk)∑K
j=1 FX1(−βj)

allows to take into account this criterion, where FX1 is the cdf of the standard elliptical density. The
IS density is thus written

∀ x ∈ Rd h(x) =
K∑

k=1
πkE(P ∗

k , Id, hX). (3.27)
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In contrast to the FORM/SORM approximations, where the positions of the design points P ∗
k have to

be determined with great accuracy, this method is not sensitive to the exact position since observations
are sampled in the vicinity of P ∗

k [Schueller et al., 2004]. The resulting estimate is unbiased. An
illustration of this density in the standard normal case is displayed in Figure 3.11.

a) b)

Figure 3.11: Illustration on a two-dimensional example of the IS auxiliary mixture built with design
points a) the observations are generated from h of Eq. (3.27), b) the failure probability is estimated
with the observations in the failure domain generated from h. The dark blue line is the limit state
surface. The color map represents the value of the limit state function g. The dotted lines represent
the isovalues of the standard normal mixture density h. The magenta dots represent observations
generated from h in a) and only those in the failure domain in b).

If the dimension d increases, the important ring of the standard normal inputs is particularly narrow.
Therefore the behavior of the IS mixture must be studied for this particular elliptical distribution.

3.4.3.2 IS using design points in the high-dimensional standard normal space

IS with a Gaussian mixture built as Eq. (3.27), with hX the normal generator density, is still relevant
provided the variances are all equal to one [Au and Beck, 2003]. In fact, it is proven in [Au and
Beck, 2003] that the Gaussian mixture IS density stays pertinent as long as the covariance matrices
of each auxiliary density k is the same than the one of the inputs. The resulting IS estimate is then
empirically unbiased and its variance is smaller than the one of a crude Monte Carlo, for dimension
up to d = 1000, as long as the lsf is not strongly nonlinear. In the strongly nonlinear case however,
the method is not as efficient [Katafygiotis and Zuev, 2008]. The main reason is because the positions
of the design points do not necessarily reflect the locations of the failure regions in the important ring,
as already discussed in Section 3.4.2.3 for the LS method. Therefore, if the limit state function is
a black-box model, which is the context of this manuscript, the efficiency of this IS estimate is not
certain.

3.4.3.3 IS using random failing points in the high-dimensional standard normal space

If the Gaussian mixture is built with independent normal densities centered on random failing points
(Pk)k=1,...,K obtained with a pre-sampling step, then the relevance of a Gaussian mixture as IS density
no longer holds [Au and Beck, 2003]. Because of the pre-sampling step, these failing points Pk have
high chances of belonging to the important ring, whereas the design points usually do not [Katafygiotis
and Zuev, 2008]. Suppose P1 belongs to the important ring, thus ∥P1∥ ≈

√
d. Then, as described

in [Katafygiotis and Zuev, 2008] the observations generated from the normal density centered on P1
are all located at a distance from P1 close to

√
d and belong to the important ring of P1. Therefore,
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it is very unlikely that an observation belonging to the important ring centered on P1, belongs as well
to the important ring of the original input distribution centered on 0. Such an observation O should
verify ∥O∥ ≈

√
d and ∥O−P1∥ ≈

√
d, which is very rare [Katafygiotis and Zuev, 2008]. Consequently,

the IS weight of most of the observations will be extremely small; it is the curse of dimensionality
previously mentioned, the IS weights degenerate making the probability estimation impracticable, no
matter the linearity of the lsf.

3.5 Conclusion
In this chapter, a non-exhaustive review of failure probability estimation methods has been derived.
We favored methods that perform well for the specific context of the manuscript: high-dimensional
inputs following a standard elliptical distribution, and a failure domain which encompasses several
failure regions. The limit state function is a black-box model, thus the number of failure regions is
unknown, but its gradient is available.

The approximation methods based on the design points require a negligible simulation budget,
however it is challenging to evaluate the error made on the failure probability estimation, as the
approximations of the limit state function are hardly ascertainable. A scheme is presented to find all
the failure regions of the failure domain, which is particularly relevant in our context. Nevertheless, the
estimation error is then expected to grow with multiple design points. Furthermore, the approximation
of the lsf at the design points location could be erroneous inside the important ring of the inputs,
especially in the standard normal case, resulting in a poor failure probability estimate.

The simulation methods require a larger simulation budget. Nonetheless, it is then possible to assess
the estimation error with the computation of their coefficient of variation. Several parametric adaptive
importance sampling algorithms are particularly efficient in the special context of this manuscript.
Indeed, the stochastic representation of the inputs is taken advantage of, to present an auxiliary
density constructed as a mixture of densities built as a product of a density for the radial component
R and a density for the directional vector T. However, the number of densities in the mixture is
difficult to set, since no information about the number of failure regions is available.

Combining the location information of the design points with the sampling methods allows then
to take the advantages of both processes. However, the efficiency of the resulting methods is not
guaranteed in the specific context of high-dimensional standard elliptical inputs with multiple failure
regions, especially if the limit state function is nonlinear.

In order to meet this need, a new CE-AMIS algorithm has been developed during the thesis and is
presented in Chapter 5. The failure regions are searched for as in the approximation methods frame-
work. The CE-AMIS context allows a better use of the limit state function evaluations and several
IS methods based on the design points inspired the construction of the IS auxiliary density, like RBIS
for instance. Furthermore, this algorithm is relevant for other elliptical distributions than the normal
distribution.

Finally, several simulation methods are presented in this chapter while only the FORM/SORM
approximations are described. It should be noted that a large literature concerning surrogate-assisted
approximation methods [Echard et al., 2011] is available but is not mentioned here. The main idea is to
built a numerically inexpensive limit state function approximation with a surrogate model constructed
from training points. However, the curse of dimensionality is known to affect such methods in high-
dimensional spaces [Tabandeh et al., 2022]. Consequently, we chose not to derive surrogate-assisted
methods in this manuscript.



Analyse de sensibilité locale dans
un contexte d’étude de fiabilité du
système

Contexte d’étude

Dans un but d’analyse de fiabilité du système, la probabilité de défaillance Pf du système est estimée,
avec des méthodes décrites au Chapitre 3. Cette probabilité dépend des valeurs données aux entrées
déterministes s du système. Ainsi, nous nous intéressons aussi dans ce manuscrit à la dérivée de
cette probabilité Pf par rapport au vecteur s. L’estimation de cette dérivée fait partie de l’analyse de
sensibilité du système [Iooss and Saltelli, 2017]. Le calcul de cette dérivée se faisant à un point précis
de l’espace s ∈ Rd, on parle alors de d’analyse de sensibilité locale [Chabridon, 2018].

Selon la nature des variables déterministes s, cette dérivée ne s’exprime pas de la même manière et
n’a pas la même utilité. Nous rappelons ici que le vecteur d’entrée aléatoire X suit une loi elliptique
standard, qui peut être le résultat d’une transformation isoprobabiliste, avec Z le vecteur aléatoire de
départ. Le vecteur d’entrée déterministe s peut alors contenir les différents paramètres de distribution,
notés θ, des entrées de départ Z. Les dérivées de Pf selon θ apportent une information essentielle
quant à la dépendance de la défaillance du système par rapport au modèle probabiliste choisi. Ces
dérivées permettent aussi de déterminer les variables aléatoires les plus importantes [Sues and Cesare,
2005, Wu, 1994b], dont le rôle est prépondérant dans la défaillance du système. Selon le choix de
l’espace aléatoire dans lequel est mené l’analyse de sensibilité, les dérivées de Pf par rapport à θ
s’expriment alors avec une intégrale de domaine (dans l’espace de départ Z) ou avec une intégrale
surfacique (dans l’espace standard X).

Le vecteur déterministe s peut aussi contenir les variables physiques du système, appelées variables
de conception, notées δ. L’estimation de la dérivée de Pf par rapport à δ est alors fondamentale
en optimisation fiabiliste (Reliability-Based Design Optimization (RBDO)) [Moustapha and Sudret,
2019]. Ce domaine de recherche consiste par exemple à minimiser le coût de construction d’une
structure avec des contraintes liées à la fiabilité de la structure. La dérivée de Pf par rapport à δ
s’exprime nécessairement avec une intégrale surfacique.

Dans ce chapitre nous présentons plusieurs méthodes d’estimation des dérivées de Pf par rapport
au vecteur s. Tout d’abord dans l’espace de départ Z, lorsque s = θ uniquement, puis dans l’espace
standard X pour tout type de variable s. La dimension du système est toujours supposée grande
d > 50, et il y a plusieurs régions de défaillance dans le domaine de défaillance, peu importe l’espace
aléatoire. Nous supposons que l’estimateur de la probabilité de défaillance a déjà été calculé; il s’agit
alors d’augmenter le moins possible le budget de simulation pour l’estimation de la dérivée.

71
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Estimation de la dérivée de la probabilité de défaillance selon
l’espace aléatoire sélectionné
Dérivation par rapport aux paramètres de distribution dans l’espace aléatoire
de départ
Notons fZ la densité du vecteur aléatoire Z, gZ la fonction d’état limite dans l’espace de départ et DfZ

le domaine de défaillance associé. La dérivée de Pf par rapport à θ s’écrit avec l’intégrale de domaine
suivante

∂Pf (θ)
∂θℓ

=
∫

DfZ

∂fZ(z; θ)
∂θℓ

dz =
∫
Rd

IDfZ
(z)∂fZ(z; θ)

∂θℓ
dz.

Afin d’estimer cette intégrale, la méthode dite de ”score function” [Rubinstein, 1986] consiste à intro-
duire une densité auxiliaire, tout comme en échantillonnage préférentiel. Si cette densité auxiliaire est
fZ, la dérivée s’écrit alors

∂Pf (θ)
∂θℓ

=
∫
Rd

IDfZ
(z) 1

fZ(z; θ)
∂fZ(z; θ)
∂θℓ

fZ(z; θ) dz =
∫
Rd

IDfZ
(z)∂ ln (fZ(z; θ))

∂θℓ
fZ(z; θ) dz

= EfZ

[
IDfZ

(Z)∂ ln (fZ(Z; θ))
∂θℓ

]
.

Une méthode de Monte-Carlo classique permet alors d’estimer cette espérance, en utilisant les mêmes
échantillons qui ont servis pour l’estimation de la probabilité de défaillance Pf . Le budget de simu-
lation est donc constant, et l’estimateur de la dérivée est alors non biaisé. Sa variance a un taux de
convergence de 1/N .

Cette méthode de ”score function” a été adaptée à d’autres densités auxiliaires plus efficace que
fZ [Wu, 1994a], pour obtenir un estimateur de variance plus faible. Elle a aussi été adaptée à la
technique de ”subset simulation” présentée au Chapitre 3 [Song et al., 2009].

Dérivation valable pour toutes variables déterministes dans l’espace stan-
dard elliptique
Lorsque l’analyse de sensibilité est menée dans l’espace standard elliptique, la dérivée de la probabilité
Pf s’écrit nécessairement avec une intégrale surfacique, peu importe la nature du vecteur s. En
supposant que le gradient ∇xg(s,x) ̸= 0 pour tous x et s sur la surface d’état limite {g(s,x) = 0}, la
dérivée de Pf (s) par rapport à sℓ pour ℓ = 1, . . . , p est égale à l’intégrale surfacique suivante [Breitung,
2006]

∂Pf (s)
∂sℓ

= −
∫

g(s,x)=0

1
∥ ∇xg(s,x) ∥

∂g(s,x)
∂sℓ

fX(x)ds(x),

où ds(x) dénote l’intégration surfacique sur la surface d’état limite {g(s,x) = 0}. Cette intégrale sur-
facique peut être estimée de différentes manières. Nous nous concentrons sur les techniques dérivant
des méthodes d’estimation de probabilité de défaillance présentées au Chapitre 3, appropriées au con-
texte du manuscrit, afin de pouvoir réutiliser au maximum les évaluations de la fonction d’état limite
nécessaires au calcul de Pf .

Lorsque la probabilité de défaillance est calculée avec les méthodes d’approximation, comme FORM
et SORM, la fonction d’état limite est alors approchée par une version simplifiée. La dérivée de la
probabilité s’obtient alors en dérivant cette version simplifiée [Ditlevsen and Madsen, 1996], et le coût
de simulation supplémentaire est très faible. Néanmoins il est toujours difficile d’évaluer le biais et
l’erreur de l’estimateur obtenu de la dérivée.

Dans certain cas, l’expression de la dérivée de la probabilité dans l’espace standard elliptique est
toujours une intégrale de domaine, et non de surface. En effet, dans le contexte d’échantillonnage direc-
tionnel et d’échantillonnage de ligne ”line sampling”, la fonction indicatrice du domaine de défaillance
est implicite. Ainsi la dérivation de l’intégrale de domaine Pf donne une intégrale de domaine, qui
peut être estimée avec des méthodes de Monte-Carlo classiques [Papaioannou et al., 2013]. Cepen-
dant, pour chaque observation, l’évaluation de la dérivée de g par rapport à s ainsi que le gradient de g
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par rapport à x sont nécessaires. En conséquence, le budget de simulation est considérablement alourdi.

Une alternative à l’intégrale surfacique peut s’obtenir en remplaçant la fonction indicatrice du do-
maine de défaillance par une fonction plus lisse. Cette méthode, appelée approche Faible, ”Weak ap-
proach” [Torii, 2020], consiste à utiliser une fonction de répartition Fσ univariée, dérivable, paramétrée
avec un scalaire σ, qui vérifie la propriété suivante

∀x ∈ Rd IDf
(x) = Ig(s,·)≤0(x) = lim

σ→0
Fσ (−g(s,x)) .

En remplaçant la fonction indicatrice par la fonction de répartition pour un σ̃ faible fixé, la dérivée de
la probabilité de défaillance peut être approchée par

∂Pf (s)
∂sℓ

≈ −
∫
Rd

∂g(s,x)
∂sℓ

fσ̃(−g(s,x))fX(x)dx,

où fσ̃ est la densité de probabilité de la fonction de répartition Fσ̃. Cette intégrale de domaine est
ensuite estimée avec les méthodes de Monte-Carlo classiques. La dérivée de g par rapport à sℓ est
donc évaluée pour chaque observation, ce qui alourdit le budget de simulation.

Puisque σ̃ ̸= 0, l’estimateur obtenu est forcément biaisé. Son erreur quadratique moyenne (mean
square error) est alors fonction de σ. Selon la valeur de σ, deux comportements distincts sont ob-
servés. Pour les σ élevés, l’erreur de l’estimateur est principalement due à son biais au carré qui est
proportionnel à σ4. L’erreur est donc fortement croissante. Pour les σ faibles, l’erreur de l’estimateur
est principalement due à sa variance qui est proportionnelle à 1/σ. L’erreur est donc décroissante.
La valeur de σ̃ idéale est donc celle à l’intersection de ces deux courbes, qui correspond au minimum
de l’erreur. Malheureusement cette valeur n’est pas disponible en pratique puisqu’elle dépend de la
dérivée qui est la quantité d’intérêt.

Enfin il est possible d’estimer la dérivée de la probabilité par différence finie [Atkinson, 1991]. Les
formules de différences finies sont alors paramétrés avec un scalaire h > 0 et l’estimateur est biaisé.
La dérivée de la fonction d’état limite g n’est alors pas nécessaire. Cependant, le budget de simulation
est doublé ou triplé.

Conclusion
Plusieurs méthodes permettant d’estimer la dérivée de Pf par rapport aux variables déterministes
s du système ont été présentées, dans le contexte du manuscrit. Pour chaque méthode, le budget
de simulation supplémentaire, par rapport à celui nécessaire pour l’estimation de la probabilité de
défaillance, a été souligné.

Si les variables déterministes sont des paramètres de distributions, deux options sont possibles pour
estimer la dérivée. La première option consiste à utiliser la méthode de ”score function” dans l’espace
aléatoire de départ Z. Cette méthode ne nécessite aucune évaluation de la fonction d’état limite
supplémentaire et les estimateurs sont non biaisés. La seconde option consiste à estimer la dérivée
dans l’espace standard elliptique. Dans cet espace, le nombre de méthodes disponibles pour estimer la
probabilité est bien plus conséquent. Néanmoins, le budget de simulation augmente, et les estimateurs
sont alors majoritairement biaisés, avec un biais difficilement contrôlable. Si les variables déterministes
sont des paramètres de conception, le budget de simulation augmente obligatoirement. La dérivée est
estimée dans l’espace standard elliptique et les estimateurs sont biaisés ou bien requièrent un budget
de simulation significatif.

Nous proposons alors un nouvel algorithme d’estimation de dérivée de Pf par rapport à n’importe
quelle variable déterministe s, présenté au Chapitre 6. Un estimateur de la dérivée s’obtient grâce à une
régression polynomiale hétéroscédastique, dans l’espace standard elliptique. Cette nouvelle approche
nécessite seulement l’évaluation de la dérivée de la fonction d’état limite g par rapport à s en plus du
budget de simulation nécessaire pour estimer Pf et s’inspire de l’approche Faible. Cependant, le biais
de l’estimateur est alors contrôlable avec les paramètres de la régression polynomiale.
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4.1 Introduction
The estimation of the failure probability Pf gives crucial information about the reliability of the system
but it greatly depends on the settings of the different inputs. We recall here that the inputs of the
system are divided into two categories: deterministic inputs s ∈ Rp and random inputs X ∈ Rd. The
study of the influences of the inputs on Pf is the purpose of the Reliability-based Sensitivity Analysis
(RSA) of the system.

4.1.1 Brief presentation of the reliability-based sensitivity analysis
4.1.1.1 Sensitivity analysis of the system

Reliability-based sensitivity analysis is part of the sensitivity analysis of the system [Chabridon, 2018].
The sensitivity analysis (SA) consists in understanding how the uncertainty of the model random
inputs X influences the uncertainty of the model output [Saltelli et al., 2004, Iooss and Saltelli, 2017].
Thus, a large literature focuses on studying the dependence of the output Y = M(s,X) on each
random input or group of random inputs.

Two different SA are then defined [Shekhar and Xiong, 2007]: local SA and global SA. In local SA,
one investigates the local impact of a small variation of the inputs X on the output Y . For instance,
the value of one input can be slightly changed while the others inputs remain constant. Local SA
typically requires the evaluation of gradients or partial derivatives. In global SA, one investigates the
impact of large variations of possibly several inputs simultaneously, on the output Y . Therefore both
individual random inputs and groups of random inputs are considered, and the variations cover the
inputs’ entire domain of definition. Several importance measures for global SA have been defined, such
as the variance-based Sobol’ indices [Sobol’, 1990] for example.

4.1.1.2 Introduction of the reliability-based sensitivity analysis of the system

In reliability-based SA, instead of directly studying the output Y = M(s,X), one focuses on two other
quantities of interest, depending on this output. The first one is the state of the system (with the value
of the failure domain indicator function Ig(s,X)≤0) and the second one is the failure probability Pf of
the system. One is thus interested in the influence of the inputs on one of these quantities, which allow
to describe the reliability of the system. If the quantity of interest is the state of the system, global
RSA can be conducted with respect to the random inputs X by adapting Sobol’ indices to the failure
domain indicator function [Saltelli et al., 2008,Perrin and Defaux, 2019] for instance. If the quantity of
interest is the failure probability Pf of the system, both local and global RSA can be conducted, with
respect to the random variables X as well as the deterministic variables s of the system. Depending on
the nature of the inputs, those local and global RSA with quantity of interest Pf are further detailed
next.

4.1.1.3 RSA of the system with the quantity of interest being the failure probability

There are two categories of inputs: the random input variables X and the deterministic inputs s of
the system. Furthermore, the deterministic inputs s of the system can be of different nature and,
for the rest of this chapter, depending on their nature, a specific notation will be used. The deter-
ministic inputs can represent physical variables like design parameters of the system, denoted δ ∈ Rn.
The deterministic inputs can also represent the different distribution parameters of the random inputs,
denoted θ ∈ Rm. Thus the deterministic input vector is written from now on s = [θ, δ], and m+n = p.

RSA with respect to deterministic inputs. The local methods consist in computing the deriva-
tives of Pf (s) according to s for a fixed value of s. The local sensitivity of Pf with regard to the
distribution parameters θ gives valuable information about the influence of the probabilistic model
selected for the random inputs on the system’s failure occurrence. Whereas the local sensitivity of Pf

with regard to the design parameters δ can be of great use for reliability-based design optimization
(RBDO) [Moustapha and Sudret, 2019].

In the global context, several options can be tested to extend the local derivative information.
One could simply repeat the local RSA to multiple values of sj . Otherwise, one could measure global
sensitivity through the integration of the local RSA [Wang et al., 2013]. Another solution is to adapt
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global sensitivity analysis to the deterministic inputs; for instance a variance-based important measure
has been developed for distribution parameters θ in [Morio, 2011].

RSA with respect to random inputs. The local methods consist in measuring the importance of
each input variables Xi on the failure probability at a particular location of the random input space,
for instance in the vicinity of the design point [Ditlevsen and Madsen, 1996,Papaioannou and Straub,
2021b]. While in the global context, one is interested in importance measures that reflect the varia-
tion of the failure probability induced by the random inputs, either considered isolated or gathered in
groups of different sizes. For instance, one can compute the conditional failure probability given that
a subset of the random inputs is fixed [Li et al., 2019].

In this thesis, we uniquely focus on local RSA with respect to deterministic inputs, with the quantity
of interest being the failure probability of the system. In the next section, the expression of these local
sensitivities are presented in detail.

4.1.2 Local RSA with respect to deterministic inputs
In this manuscript, it is assumed that the random inputs X follow a standard elliptical distribution.
However, this may be the result of an isoprobalistic transformation: let Z be the original inputs of
the system, then X = T (Z) where T is a diffeomorphism described in Chapter 2 Section 2.2.2.2. We
denote gZ the limit state function in the original input space and g the transformed limit state function
in the standard elliptical space. The joint pdf of Z is written fZ, while the joint pdf of X is written
fX.

4.1.2.1 Expression of the local RSA with respect to distribution parameters

We describe here the framework of the local RSA with respect to θ, the distribution parameters of
the original inputs Z. The derivatives of Pf with regard to θ give valuable information about the
influence of the probabilistic model selected for the random inputs on the system’s failure occurrence.
This sensitivity also allows to identify which random inputs should be focused on, for quality control
improvement programs for instance [Wu, 1994b, Sues and Cesare, 2005]. In order to compute the
derivatives of Pf (θ) two options are possible.

The first option is to evaluate both the failure probability Pf and its derivatives in the original
input space. The dependence of Pf on θ is then contained in the joint distribution fZ of the original
inputs Z. It is assumed here that fZ is continuously differentiable with respect to θ. Furthermore, we
assume that the integration domain of Z does not depend on θ. The failure probability is then written

Pf (θ) =
∫

DfZ

fZ(z; θ) dz =
∫
Rd

IDfZ
(z)fZ(z; θ) dz,

where DfZ =
{

z ∈ Rd | gZ(z) ≤ 0
}

is the failure domain in the original space. The derivatives of Pf

with respect to θℓ for ℓ ∈ [1, . . . ,m] are then straightforward

∂Pf (θ)
∂θℓ

=
∫

DfZ

∂fZ(z; θ)
∂θℓ

dz =
∫
Rd

IDfZ
(z)∂fZ(z; θ)

∂θℓ
dz. (4.1)

The resulting expression of the derivative of Pf in Eq. (4.1) is thus a domain integral which depends
on the derivatives of fZ with respect to θℓ, and is defined on DfZ .

The second option is to evaluate both the failure probability Pf and its derivatives in the standard
elliptical space. The dependence of Pf on θ is then contained in the transformed limit state function g
while the standardized joint distribution fX is parameter-free. The failure probability is then written

Pf (θ) =
∫

Df (θ)
fX(x) dx =

∫
Rd

IDf (θ)(x)fX(x) dx,

where Df (θ) =
{

x ∈ Rd | g(θ,x) ≤ 0
}

is the failure domain in the standard space. Assuming the
gradient ∇xg(θ,x) ̸= 0 for all x and θ on the limit state surface {g(θ,x) = 0}, the derivatives of
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Pf (θ) with respect to θℓ for ℓ ∈ [1, . . . ,m] are defined by the following surface integral [Breitung, 2006]
∂Pf (θ)
∂θℓ

= −
∫

g(θ,x)=0

1
∥ ∇xg(θ,x) ∥

∂g(θ,x)
∂θℓ

fX(x)ds(x), (4.2)

where ds(x) stands for surface integration over the limit state surface {g(θ,x) = 0}. The resulting
expression of the derivative of Pf in Eq. (4.2) is thus a surface integral which depends on the derivative
of g with respect to θℓ and its gradient ∇xg.

4.1.2.2 Expression of the local RSA with respect to design parameters

Knowing the influence of the design parameters δ on the failure of system can be of great use for
reliability-based design optimization (RBDO) [Moustapha and Sudret, 2019], as previously mentioned.
RBDO is a research domain useful to engineers for the design of structures under uncertainties. The
formulation of the RBDO problem typically attempts to balance the cost of the structure with its
reliability. Therefore, the optimization problem can be written with the minimization of an objec-
tive function describing the cost of the structure [Hilton and Feigen, 1960], under some probabilistic
constraints as such

δ∗ = arg min
δ∈Rn

c(δ) subject to
{
lj(δ) ≤ 0 for j = 1, . . . , ns,
Pf (δ) ≤ P̄f ,

where c is the cost function and the constraints are classified into two categories: the deterministic
functions lj , which define the feasible domain of the design parameters, and the failure probability
function which has to remain lower than an upper threshold set P̄f , cf [Dubourg et al., 2011]. The
derivatives of Pf with respect to δ are then needed for the gradient-based algorithm used to solve this
RBDO problem.

The expression of the dependence of Pf on the design parameters δ is necessarily contained in the
limit state function of the input space. Therefore, no matter the input space selected, the expression
of the derivatives of Pf is a surface integral as in Eq. (4.2) where one adapts the integral to fZ or
fX. In the rest of this chapter we assume that the sensitivities with regard to design parameters are
computed in the standard elliptical space of the inputs X. The surface integral is thus given by the
following equation

∂Pf (δ)
∂δℓ

= −
∫

g(δ,x)=0

1
∥ ∇xg(δ,x) ∥

∂g(δ,x)
∂δℓ

fX(x)ds(x), (4.3)

with the same assumptions and notations as in Eq. (4.2), for ℓ ∈ [1, . . . , n]. This sensitivity depends
then necessarily on the derivative of g with respect to δℓ and its gradient ∇xg.

4.1.2.3 Estimation of the local sensitivities

The main challenge of the estimation of the derivatives with respect to s, no matter its nature, is
to increase as little as possible the simulation budget needed for the estimation of the probability of
failure Pf (s). Consequently, it is assumed that the computation of this sensitivity reuses as much as
possible the evaluations of the limit state function needed for the computation of Pf . In other words,
it is uncommon to estimate Pf and its derivatives in different input spaces, as the limit state functions
differ.

According to the input space, the derivatives of Pf with regard to distribution parameters θ are
either domain integrals Eq. (4.1) or surface integrals Eq. (4.2). Domain integrals are much easier to
handle than surface integrals. However, the literature on failure probability estimation in standardized
spaces is more luxuriant than in the original input space. For instance, the methods presented in the
Chapter 3 which depend on the location of the design points of the system require standardized
input space (FORM/SORM approximations, radial-based importance sampling, line sampling, etc...).
Therefore, both options present advantages and drawbacks.

The rest of this chapter is organized as follows. Section 4.2 describes local RSA methods with
respect to the distribution parameters θ of Z estimated in the original input space. Section 4.3 derives
local RSA methods with respect to any deterministic inputs s, estimated in the standard elliptical
space. We recall here that we assume the dimension of the system d to be quite large, d > 50 and that
the failure domains of both spaces encompasses several failure regions. Therefore, we focus here on
methods that allow the estimation of the failure probability as well as its sensitivity in such a context.
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4.2 Local RSA in the original input space
In this section, we suppose the vector s contains only distribution parameters θ. We denote Z the
original random inputs of the system and fZ its joint pdf. The dependence of Pf on θ is then
expressed in the joint pdf fZ, as previously mentioned. The joint pdf fZ is supposed to be continuously
differentiable with respect to θ. We further assume that the integration domain of Z does not depend
on θ. The derivatives of Pf are written as a domain integral Eq. (4.1), and can be estimated with
various reliability methods. We present here some of these methods, based on the score function
method.

4.2.1 Score function method for sensitivity analysis
In order to estimate the derivatives of Pf , the score function method was first introduced in [Rubinstein,
1986] and later in [Wu, 1994a,Wu, 1994b]. It consists in introducing a density function in the domain
integral, like in the important sampling framework; see Chapter 3 Section 3.3.3. The density is simply
taken as the joint pdf of the inputs Z, and the sensitivity is then written

∂Pf (θ)
∂θℓ

=
∫
Rd

IDfZ
(z)∂fZ(z; θ)

∂θℓ
dz =

∫
Rd

IDfZ
(z) 1

fZ(z; θ)
∂fZ(z; θ)
∂θℓ

fZ(z; θ) dz,

for ℓ = 1, . . . ,m. Noticing the following equality ∂ln (fZ(z; θ))/∂θℓ = (1/fZ(z; θ)) ∂fZ(z; θ)/∂θℓ holds
for all z ∈ Rd, the derivative is thus equal to

∂Pf (θ)
∂θℓ

=
∫
Rd

IDfZ
(z)∂ ln (fZ(z; θ))

∂θℓ
fZ(z; θ) dz = EfZ

[
IDfZ

(Z)∂ ln (fZ(Z; θ))
∂θℓ

]
.

The derivative Q(·) = ∂ ln (fZ(·; θ))/∂θℓ is then called score function. In order to compute the sen-
sitivity with regard to the distribution parameters of Z, the following expected value must thus be
evaluated: EfZ

[
IDfZ

(Z)Q(Z)
]
. This expected value can be estimated with a crude MC method, and

the MC estimate of the derivatives of Pf is then

∂̂Pf (θ)
∂θℓ

MC

= 1
N

N∑
j=1

IDfZ

(
Z(j)

)
Q
(

Z(j)
)

(4.4)

where the observations Z(j) are iid generated from fZ. Therefore, the observations generated to obtain
the crude MC estimate of the failure probability P̂MC

f can be entirely reused here and the simulation
budget is constant as the score function does not depend on the costly limit state function g.

4.2.2 Statistical properties of the score function estimate with crude MC
In this section, the bias, variance and mean square error of the MC sensitivity estimate are derived.
As noted in [Torii and Novotny, 2021], the crude MC estimate of Eq. (4.4) is unbiased, and its variance
is written

Var

 ∂̂Pf (θ)
∂θℓ

MC = 1
N

Var
(
IDfZ

(Z)Q (Z)
)

= 1
N

(
EfZ

[
IDfZ

(Z)Q (Z)2
]

−
(
∂Pf (θ)
∂θℓ

)2
)
,

since
(
IDfZ

(z)
)2

= IDfZ
(z) for all z ∈ Rd. As the MC sensitivity estimate is unbiased, the expression

of its mean square error (mse) EMC
mse is equal to its variance.

The error estimate is then easy to derive as the quantity EfZ

[
IDfZ

(Z)Q (Z)2
]

can be evaluated
with a crude MC estimate using the same observations generated to compute both Pf and ∂Pf (θ)/∂θℓ

with the Monte Carlo method. In the literature, several studies have focused on the expression of



80 CHAPTER 4. LOCAL RELIABILITY-BASED SENSITIVITY ANALYSIS

the mean square error of estimates obtained with the score function method [Rubinstein and Kroese,
2016, Rubinstein and Shapiro, 1990], not necessarily in the failure probability framework. Here we
derive the expression presented in [Torii and Novotny, 2021] which is fitted to our particular case of
EMC

mse. The mean square error is bounded with the following inequalities

1
N

(
1
Pf

− 1
)(

∂Pf (θ)
∂θℓ

)2
≤ EMC

mse ≤ 1
N

(√
Pf

√
E
[
Q (Z)4

]
−
(
∂Pf (θ)
∂θℓ

)2
)
. (4.5)

The lower bound of Eq. (4.5) is an expression depending on the failure probability and its derivatives
thus it can be easily derived in practice. The upper bound depends on another quantity: E

[
Q (Z)4

]
,

in addition to Pf and the sensitivity. This quantity can have an analytical expression in very simple
cases. Suppose Z is a univariate random variables which follows a normal distribution of mean µZ
and variance σ2

Z. We are interested in the derivative of Pf with respect to the mean value µZ. In this
scenario, E

[
Q (Z)4

]
= 3/σ4 [Torii and Novotny, 2021] and the right bounds become

EMC
mse ≤ 1

N

(√
3Pf

σ2 −
(
∂Pf (θ)
∂µZ

)2
)
.

In the other cases, the analytical expression of E
[
Q (Z)4

]
can be more cumbersome, and the quantity

is thus estimated with the Monte Carlo method, reusing the same sample once more.
From the inequality Eq. (4.5), we can conclude that the error, and therefore the variance of the

estimate, is proportional to 1/N . Consequently, the same variance convergence applies for both the
estimation with the Monte Carlo method of the failure probability P̂MC

f (cf Chapter 3 Section 3.3.1)

and its derivatives with respect to distribution parameters ∂̂Pf (θ)
∂θℓ

MC
.

4.2.3 Score function method with advanced sampling techniques
As presented in Chapter 3, various advanced sampling techniques have been developed, based on
the MC method, to estimate the failure probability more efficiently. Some of these techniques can
be applied to the score function method context, to estimate the expected value EfZ

[
IDfZ

(Z)Q(Z)
]

in addition to Pf , making it possible to evaluate the derivatives of Pf according to the distribution
parameters θ of Z. We derive some of these methods here.

4.2.3.1 Score function method with subset sampling

We recall here that the failure probability estimate with subset sampling has the following expression,
with underlined dependence on θ

Pf (θ) =
m∏

i=0
Pi(θ) and P̂ SS

f (θ) =
m∏

i=0
P̂MC

i (θ), (4.6)

where P0(θ) = P(F0) and Pi(θ) = P(Fi|Fi−1) for i > 0; see Chapter 3 Section 3.3.2 for more detail. We
assume here that intermediate failure domains F0, F1, . . . , Fm−1 are independent of θ and are chosen
a priori. As underlined in [Song et al., 2009], taking the derivatives of Eq. (4.6) with respect to θℓ, for
ℓ = 1, . . . ,m gives the following equation

∂Pf (θ)
∂θℓ

=
m∑

i=0

Pf (θ)
Pi(θ)

∂Pi(θ)
∂θℓ

, (4.7)

where the terms of the sum are defined with the following equations

∂P0(θ)
∂θℓ

=
∫
Rd

IF0(z)∂fZ(z; θ)
∂θℓ

dz, (4.8)
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and for i > 0
∂Pi(θ)
∂θℓ

=
∫
Rd

IFi
(z)

∂fZ|Fi−1(z; θ)
∂θℓ

dz where ∀z ∈ Rd fZ|Fi−1(z; θ) =
IFi−1(z)fZ(z; θ)

P(Fi−1) . (4.9)

It should be noted that each P(Fi−1) is dependent of θ as well, even if the notation is not explicit.
Applying the score function method to the Eqs. (4.8) and (4.9) leads to the final sensitivity estimate

∂Pf (θ)
∂θℓ

= Pf (θ)
P0(θ)EfZ [IF0(Z)Q(Z)] +

m∑
i=1

Pf (θ)
Pi(θ) EfZ|Fi−1

[IFi(Z)Qi(Z)] ,

where Qi = ∂ ln
(
fZ|Fi−1(· ; θ)

)
/∂θℓ for i > 0. Those expectations can be evaluated with crude Monte

Carlo estimates, reusing the exact same samples generated during the SS procedure

∂̂Pf (θ)
∂θℓ

SS

=
P̂ SS

f (θ)
P̂MC

0 (θ)
1
N

N∑
j=1

IF0

(
Z(j)

0

)
Q
(

Z(j)
0

)
+

m∑
i=1

P̂ SS
f (θ)

P̂MC
i (θ)

1
N

N∑
j=1

IFi

(
Z(j)

i

)
Qi

(
Z(j)

i

)
,

where the random variables Z(j)
0 are generated from fZ and Z(j)

i are generated from fZ(s, · |Fi−1), with
i > 0, see [Song et al., 2009] for more details. The simulation budget is therefore constant as the score
functions Qi do not depend on the costly limit state function g.

The statistical properties of ∂̂Pf (θ)
∂θℓ

SS
are quite similar as those of the failure probability estimate

P̂ SS
f (see Chapter 3 Section 3.3.2.3). The MC estimates of EfZ [IF0(Z)Q(Z)] and EfZ|Fi−1

[IFi
(Z)Qi(Z)]

for i > 0 are each unbiased. However, there is a small bias induced by the dependence between the
samples generated at each step, if one uses the Metropolis algorithms for the Markov chain MC
procedure. This bias affects P̂ SS

f and the SS sensitivity estimate. The dependence makes the variance
of the sensitivity estimate along with the mean square error hard to derive. Consequently these
statistical quantities are not displayed here.

4.2.3.2 Score function method with importance sampling

The score function method is, by definition, already an importance sampling technique, since a density
is added in the sensitivity integral. Nevertheless, if this density is selected as fZ, then the resulting MC
estimate is not very efficient, as most of the observations will not be in the failure domain. Suppose
the failure probability is estimated in the IS context with an auxiliary density h. This auxiliary
density is supposed to be capable of generating more observations in the failure domain; see Chapter 3
Section 3.3.3. Using the same density h, the sensitivity of the failure probability can be estimated as
∂Pf (θ)
∂θℓ

=
∫
Rd

IDfZ
(z) 1

h(z)
∂fZ(z; θ)
∂θℓ

h(z) dz = Eh

[
IDfZ

(Z) 1
h(Z)

∂fZ(Z; θ)
∂θℓ

]
= Eh

[
IDfZ

(Z)Qh(Z)
]
,

where Qh(·) = (1/h) × (∂fZ(·; θ)/∂θℓ) = (fZ/h) × (∂ln(fZ(·; θ))/∂θℓ). The IS sensitivity estimate is
then written

∂̂Pf (θ)
∂θℓ

IS

= 1
N

N∑
j=1

IDfZ

(
Z(j)

)
Qh

(
Z(j)

)
,

where the random variables Z(j) are iid with density h and are the same observations used for the
estimations of P̂ IS

f . The simulation budget is constant as the score function Qh does not depend on
the costly limit state function g. The IS sensitivity estimate is then unbiased, and its variance, as well
as the mean square error, is written

Var

 ∂̂Pf (θ)
∂θℓ

IS = EIS
mse = 1

N

(
Eh

[
IDfZ

(Z)Qh (Z)2
]

−
(
∂Pf (θ)
∂θℓ

)2
)
.

Using the same computations as in [Torii and Novotny, 2021], it is possible to derive an upper for the
EIS

mse as such (see Appendix B)

EIS
mse ≤ 1

N

√Pf

√√√√Eh

[(
fZ(Z)
h(Z)

)3
Q(Z)4

]
−
(
∂Pf (θ)
∂θℓ

)2
 .
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Therefore, we notice that compared to the formula Eq. (4.5) the likelihood ratio fZ/h to the power 3
is introduced in the expected value. The convergence of EMC

mse is thus greatly affected by the choice of
the auxiliary density h.

The use of another IS auxiliary density than fz in the score function framework was initiated by
Wu in [Wu, 1994a, Wu, 1994b] where an adaptive importance sampling scheme is presented and the
resulting auxiliary density h is close to hopt = IDfZ

fZ/Pf . Later in [Song et al., 2009], the authors
developed a simulation method combining the SS framework and the IS technique to build the failure
probability estimate, along with the sensitivity estimate with the score function method. Indeed, in-
stead of estimating each intermediate failure probability EfZ|Fi−1

[IFi
(Z)] and intermediate sensitivity

EfZ|Fi−1
[IFi(Z)Qi(Z)] of the SS framework with crude MC estimates, they employ the IS technique.

The samples drawn by IS are then iid and the variance of both the final failure probability estimate
and its sensitivity can be derived.

In short, local RSA in the original input space is performed without any additional evaluation of the
lsf. The simulation budget is kept constant, no matter the simulation method selected. Furthermore,
the sensitivity estimates are unbiased (except in the SS framework with Metropolis algorithms). In
the next section, we present local RSA performed in the standard elliptical space.

4.3 Local RSA in the standard elliptical space
In this section we assume that after an isoprobabilistic transformation T , the random inputs Z have
been transformed into standard elliptical inputs X, such as X = T (Z); see Chapter 3 Section 3.2.2.2.
We denote gZ the limit state function in the original input space and g the transformed limit state
function in the standard elliptical space. The dependence of Pf on s is then necessarily expressed in
the transformed limit state function g. According to the nature of the parameters s, this dependence
can be further derived.

Suppose the vector s contains distribution parameters only, s = θ. Consequently, these parameters
have no influence on the limit state function in the Z-space and the influence on the limit state function
in the X-space is actually solely contains in the transformation T , denoted Tθ such as x = Tθ(z),
therefore

∀x ∈ Rd g(θ,x) = gZ(z) where z = T−1
θ (x),

with T−1
θ the inverse isoprobabilistic transformation with fixed θ.

Suppose the vector s contains design parameters only s = δ. Consequently, the parameters δ have
influence on the definition of the limit state function in both spaces. The relationship between the two
limit state functions g and gZ can then be written

∀x ∈ Rd g(δ,x) = g(δ, T (z)) = gZ(δ, z) where z = T−1(x).

Independently of the nature of s, the sensitivity of Pf is expressed with a surface integral: Eq. (4.2) for
θ and Eq. (4.3) for δ. This surface integral can be estimated with various methods [Royset and Polak,
2004, Jensen et al., 2009] for RBDO purposes. However in this chapter we mainly focus on methods
that directly come from frameworks employed to compute the failure probability estimates presented
in Chapter 3, in the specific context of high-dimensional standard elliptical spaces with multiple failure
regions.

4.3.1 Sensitivity through the design point of the system
4.3.1.1 Expression in the FORM context

In the FORM and SORM context, the limit state function is approximated with Taylor series ex-
pansions in the neighborhood of the design points in the standard elliptical space; see Chapter 3
Section 3.2.1. We derive here the sensitivities of Pf for the FORM approximation, first in a context
where there is a unique design point P ∗. The failure probability is estimated with the equation

P̂FORM
f = 1 − FX1(β(s)),
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where FX1 is the cdf of the univariate standard elliptical variable X1. The quantity β is equal to

β(s) = α⊤P ∗ where α = − ∇xg(s, P ∗)
∥∇xg(s, P ∗)∥ .

Therefore, the value of β is a function of s. The derivative of Pf according to sℓ in the FORM context
is then simply

∂̂Pf (s)
∂sℓ

FORM

= −∂β(s)
∂sℓ

fX1(β(s)),

where fX1 is the pdf of the random variable X1 and ∂β(s)/∂sℓ is the derivatives of β with respect to
s. After some calculus, see [Ditlevsen and Madsen, 1996], the derivative is equal to

∂β(s)
∂sℓ

= 1
∥∇xg(s, P ∗)∥

∂g(s, P ∗)
∂sℓ

. (4.10)

Consequently the sensitivity of Pf with respect to sℓ, with ℓ ∈ [1, . . . , p] is equal to

∂̂Pf (s)
∂sℓ

FORM

= − 1
∥∇xg(s, P ∗)∥

∂g(s, P ∗)
∂sℓ

fX1(β(s)), (4.11)

with the FORM approximation context. Therefore, one needs the value of the gradient ∇xg evaluated
in [s, P ∗], as well as the derivative of g with respect to sℓ evaluated in [s, P ∗]. Apart from these two
quantities, no additional evaluation of the costly lsf is required to estimate the sensitivities. Depending
on the nature of the deterministic inputs s, this derivative can be furthered detailed [Ditlevsen and
Madsen, 1996]. If the vector s represents distribution parameters only, s = θ, then

∂β(θ)
∂θℓ

= α⊤ ∂T (θ, z∗)
∂θℓ

,

where z∗ = T−1
θ (P ∗). Therefore the derivative of Pf is approximated with

∂̂Pf (θ)
∂θℓ

FORM

= −α⊤ ∂T (θ, z∗)
∂θℓ

fX1(β(θ)).

If the vector s represents design parameters only, s = δ, it follows that ∂g(δ, P ∗)/∂δℓ = ∂gZ(δ, z∗)/∂δℓ,
where z∗ = T−1(P ∗).

It should be noted that the study of the bias and the error of the sensitivity estimate is particularly
challenging, in a black-box model context. As for the failure probability estimate in the FORM
framework, the method requires very small simulation budget but the statistical properties of the
resulting estimates are arduous to obtain. This remark is also valid when there are multiple design
points. The computation of the sensitivities in this context is detailed next.

4.3.1.2 Sensitivity with multiple design points in the standard normal space

For systems with multiple design points, an accurate formula of Pf is difficult to derive; cf Chapter 3
Section 3.2.2. However, in the standard normal space, with the approximation introduced in [Hohen-
bichler, 1984], the derivatives can be easily derived in the FORM context. Suppose K design points
have been identified P ∗

1 , P
∗
2 , . . . , P

∗
K ; we recall here that the failure probability is approximated with

the formula
P̂FORM

f = 1 − FK(β(s); C(s)),
where FK is the cdf of a centered normal vector of dimension K with covariance matrix C(s) and β(s)
is the vector of the norms of all the design points (βk = ∥P ∗

k ∥)k=1,...,K . The covariance matrix C(s)
is defined such as Ci,j = α⊤

i αj where αi = −∇xg(s, P ∗
i )/∥∇xg(s, P ∗

i )∥. The derivative of the failure
probability with respect to sℓ is written

∂̂Pf (s)
∂sℓ

FORM

= −
K∑

k=1

−∂βk(s)
∂sℓ

∂FK(β(s); C(s))
∂xk

+
k−1∑
j=1

∂Ck,j(s)
∂sℓ

∂FK(β(s); C(s))
∂Ck,j

 ,
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where the derivative of each βk can be derived from Eq. (4.10). The interested reader can find the
derivatives of Ck,j in [Ditlevsen and Madsen, 1996]. Another approach to compute the sensitivity of
Pf in a series system is presented in [Sues and Cesare, 2005]. First, a MC sampling is performed
using the various approximated lsfs built at the different design points, in a FORM/SORM context,
to estimate Pf . Then, the derivatives are obtained with the score function method with IS, using, in
the Z-space, the failing observations obtained from the computation of Pf ; cf Section 4.2.3.2. This
special approach is restricted to distribution parameters θ only.

4.3.1.3 Sensitivity with other approximation methods inspired by FORM

As previously mentioned in Chapter 3 Section 3.2, the FORM approximation is accurate for linear lsfs
only. Sensitivities derived in a SORM context are proposed in [Yoo et al., 2014], when s are distribution
parameters, s = θ. However, the context slightly differs from the SORM presented in Chapter 3 and is
named novel SORM. This particular context takes advantage of the radial distribution of the standard
normal inputs (R2 ∼ χ2(d), see Chapter 2, Section 2.2.1) to derive another quadratic approximation
of the limit state surface. The sensitivities are then estimated with the differentiation of this novel
approximation. This method is therefore only applicable for inputs transformed in standard normal
spaces, and for s = θ. This method is tested for systems of various dimensions (up to d = 20).

Although not presented in Chapter 3, other approximation methods inspired by the FORM/SORM
framework have been derived in the reliability literature. These approximation methods aim to give
better results than FORM and SORM in a nonlinear lsf context. We mention here the multi-hyperplane
combination method (MHCM), first introduced in [Feng, 1990]. In the MHCM framework, several
hyperplanes are employed to approximate the lsf at the vicinity of a design point, in the standard
normal space. The sensitivities with respect to the distribution parameters θ of the original inputs Z
in the MHCM context are presented in [Dong et al., 2014]. Another approximation method presented
in [Melchers and Ahammed, 2004] is completely independent of the design points’ position, as the
approximation of the lsf is a hyperplane constructed from a Monte Carlo sample. The sensitivities
with respect to the distribution parameters are then computed with this hyperplane.

In a broader context, the sensitivities computed with these approximation methods generally re-
quire very few to none additional lsf evaluation (or its gradient). However, the error of the resulting
sensitivity estimate is usually difficult to measure without any reference value [Yoo et al., 2014,Dong
et al., 2014].

4.3.2 Sensitivity with direct simulation method
Surface integrals cannot be directly estimated with Monte Carlo methods. Nevertheless, there are
special contexts in which the derivative of the domain integral Pf is still a domain integral, in the
standard elliptical space. Indeed, if the failure probability is estimated in the directional sampling
framework or in the line sampling framework, the failure domain indicator function is no longer explicit
in the definition of the failure probability integral. Consequently, the differentiation of the probability
results in a domain integral as well, which can be estimated with MC methods.

The sensitivity analysis in both sampling frameworks is detailed here, where no assumption on
the nature of s is made. In both frameworks, the observations generated to compute the failure
probability estimate can be reused to compute the failure probability sensitivity estimate. As derived
in Chapter 3, line sampling and directional sampling are two methods that can be efficient in high-
dimensional spaces, for multiple failure regions. Line sampling is tailored to the standard normal space
while directional sampling is suited for all standard elliptical spaces.

4.3.2.1 Sensitivity estimation with directional sampling

Directional sampling is presented in Chapter 3 Section 3.3.4 and we focus here on the case where the
limit state function is star-shaped. The probability of failure, with the dependency on s included, is
written

Pf (s) = P(g(s, RT) ≤ 0) =
∫

T d

P(g(s, Rt) ≤ 0)fT(t)dt =
∫

T d

(1 − FR(r(s, t))fT(t)dt,

where t 7→ r(s, t) is the function which assigns to every direction t its root, where the dependency
of s is underlined, and fR is the pdf of the radial component of the standard elliptical inputs X; see
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Section 3.3.4.2 of Chapter 3. The sensitivity of Pf can be simply derived with the equation

∂Pf (s)
∂sℓ

=
∫

T d

(
−∂r(s, t)

∂sℓ
fR(r(s, t))

)
fT(t)dt,

and the derivatives of r is equal to [Papaioannou et al., 2013]

∀t ∈ T d ∂r(s, t)
∂sℓ

= − 1
∇xg (s, r(s, t)t)⊤ t

∂g (s, r(s, t)t)
∂sℓ

.

Therefore, the failure probability sensitivity can be estimated with

∂̂Pf (s)
∂sℓ

DS

= 1
N

N∑
j=1

fR

(
r
(

s,T(j)
))

∇xg
(

s, r
(

s,T(j)
)

T(j)
)⊤

T(j)

∂g
(

s, r
(

s,T(j)
)

T(j)
)

∂sℓ
, (4.12)

where the observations T(j) are iid from fT. Introducing the IS framework, the sensitivity estimate in
the DIS context is written

∂̂Pf (s)
∂sℓ

DIS

= 1
N

N∑
j=1

fR

(
r
(

s,T(j)
))

∇xg
(

s, r
(

s,T(j)
)

T(j)
)⊤

T(j)

∂g
(

s, r
(

s,T(j)
)

T(j)
)

∂sℓ

fT

(
T(j)

)
hT

(
T(j)

) , (4.13)

where the observations T(j) are iid from hT. The estimators Eq. (4.12) and Eq. (4.13) are unbiased.
Since all the observations are iid, the variance and mean square error are derived with the classical
formulas. The observations are the same as the ones used to compute the failure probability estimate.
However, it should be noted that the denominator of the first term of both estimates is the cosine
between the sampling direction and the gradient of the lsf evaluated at the intersection between the
sampling direction and the limit state surface. Consequently, an evaluation of the gradient ∇xg is
required for each observation T(j), in addition to the evaluation of the derivative of g with respect to
sℓ. Therefore, the simulation budget becomes substantially heavier.

In [Song et al., 2011], the sensitivities with respect to distribution parameters only, s = θ, are
furthered detailed. Furthermore, a link between the root function r, and the norm β of the design
point in the FORM framework is underlined. Indeed, for each observation r

(
s,T(j)

)
T(j) at the

intersection of the sampling direction and the limit state surface, a hyperplane can be built as in the
FORM context to locally approximate the limit state function. There is consequently an equivalence
between the derivatives of r and those of β; cf Section 4.3.1.1. The resulting sensitivity estimate can
then be seen as the mean value, with a correction factor, of all the local sensitivities computed on the
approximated lsfs.

4.3.2.2 Sensitivity estimation with line sampling

Line sampling is presented in Chapter 3 Section 3.4.2 and we focus here on the case where the roots
of the limit state function for the vector v1 are unique. Suppose the design point P ∗ is unique. The
probability of failure with the dependency on s is written

Pf (s) =
∫
Rd−1

Ψ(−b(s,v1))fV1(v1)dv1,

where v1 7→ b(s,v1) is the function which assigns to every vector v1 its root, where the dependency of
s is underlined, Ψ denotes the cdf of an univariate standard normal variable and fV1 is the pdf of the
(d−1)-variate standard normal random vector on the hyperplane vd = 0 ; see Chapter 3 Section 3.4.2.1.
The sensitivity of Pf can simply be derived with the equation

∂Pf (s)
∂sℓ

=
∫
Rd−1

(
−∂b(s,v1)

∂sℓ
ϕ (b(s,v1))

)
fV1(v1)dv1,
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where ϕ denotes the pdf of a univariate standard normal variable (which is symmetric), and the
derivatives of b are equal to [Papaioannou et al., 2013]

∀v1 ∈ Rd−1 ∂b(s,v1)
∂sℓ

= − 1

∇xg
(

s,R⊤ [v⊤
1 , b(s,v1)

]⊤)⊤
a

∂g
(

s,R⊤ [v⊤
1 , b(s,v1)

]⊤)
∂sℓ

,

where a = P ∗/∥P ∗∥. Consequently, the failure probability sensitivity can be estimated with

∂̂Pf (s)
∂sℓ

LS

= 1
N

N∑
j=1

ϕ
(
b
(

s,V(j)
1

))
∇xg

(
s,R⊤

[
V(j)

1
⊤
, b
(

s,V(j)
1

)]⊤
)⊤

a

∂g

(
s,R⊤

[
V(j)

1
⊤
, b
(

s,V(j)
1

)]⊤
)

∂sℓ
,

(4.14)
where the observations V(j)

1 are iid from fV1 . The sensitivity estimate is unbiased. Since all the
observations are iid, the variance and mean square error are derived with the classical formulas; the
CV is displayed in [Valdebenito et al., 2018] for the interested reader. The observations are the same
as the ones used to compute the failure probability estimate. However, it should be noted that the
denominator of the first term is the cosine between the direction a towards the design point and the
gradient of the lsf evaluated at the intersection between the vector parallel to a at V(j)

1 and the limit
state surface. Consequently, as in the DS framework, an evaluation of the gradient ∇xg is required for
each observation V(j)

1 , in addition to the evaluation of the derivative of g with respect to sℓ. Therefore
the simulation budget also becomes substantially heavier with this sampling method.

The case of the systems with multiple design points is studied in [Lu et al., 2008], where the
sensitivities with regard to distribution parameters only, s = θ, are further detailed. As previously
mentioned in Chapter 3 Section 3.4.2.2, a small modification in the line sampling scheme is required
to obtain non overlapping failure regions. Once the failure regions are non-overlapping, the sensitivity
of the failure probability with regard to a deterministic parameter is simply equal to the sum of the
failure probability sensitivities associated to each design point. Here we derive the formula for any
deterministic input sℓ, as the logic presented in [Lu et al., 2008] is the same for design parameters.
Suppose there are K design points, the derivative of Pf is written

∂̂Pf (s)
∂sℓ

LS

=
K∑

k=1

∂̂Pf (s)
∂sℓ

LS

k

(4.15)

where each term in the sum is equal to Eq. (4.14) adapted to the design point P ∗
k . The resulting

sensitivity estimate is still unbiased and since all the samples are independent, its variance can be
computed with the classical formula.

As in the DS framework, a link between the derivation of the root function b and the derivation
of the β in the FORM framework can be derived [Lu et al., 2008, Valdebenito et al., 2018, Shufang
et al., 2009]. In [Valdebenito et al., 2018] a second approach is presented to compute the sensitivity
with regard to distribution parameters only, s = θ, in the LS framework. Indeed, in the particular
case where the original inputs Z are independent, the expression of the sensitivity with regard to
the distribution parameters is first derived in the original input space Z with the score function
method (cf Section 4.2.1). Next, this domain integral is recast in the standard normal space X as the
transformation T is quite simple since Z is already an independent vector. The LS method is then
applied to the resulting domain integral in the standard normal space; see [Valdebenito et al., 2018]
for more details.

4.3.3 Sensitivity through an approximation of the failure domain indicator
function

As previously mentioned, surface integrals cannot be directly computed with Monte Carlo methods.
However, it is possible to have a close estimate of the surface integrals Eqs. (4.2) and (4.3) with a
domain integral, through the approximation of the failure domain indicator function. This approach
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is called the Weak approach by Torii in [Torii, 2020] and [Torii and Novotny, 2021], as the sensitivity
is evaluated in the sense of distribution. The Weak approach is presented here and the statistical
properties of the sensitivity estimate are derived, for any deterministic input sℓ, for ℓ = 1, . . . , p.

4.3.3.1 Weak approach: approximation of the indicator function

The failure domain indicator function makes the direct differentiation of the failure probability integral
not possible. By replacing the failure domain indicator function by a smoother function, the differen-
tiation can be performed and results in a domain integral [Papaioannou et al., 2013]. Several smooth
approximations of the indicator function have been derived in the literature [Lacaze et al., 2015], which
are typically cdfs of continuous univariate variables [Torii, 2020]. Here we derive the approximation
chosen in [Papaioannou et al., 2013,Papaioannou et al., 2018] which comes from the following limit

∀x ∈ Rd IDf
(x) = lim

σ→0
Ψ
(

−g(s,x)
σ

)
,

where Ψ is the standard normal univariate cdf, and σ > 0. An illustration of this approximation of the
indicator function is displayed in Figure 4.1. It should be noted however that the uniform distribution
defined on [−σ/2, σ/2], with σ > 0, is another univariate cdf often considered for the approximation
of the indicator function [Torii and Novotny, 2021,Torii, 2020].

Figure 4.1: Approximation of the indicator function Iy>0 with the function y → Ψ(y/σ) for three
different values of σ, where Ψ is the cdf of a standard normal univariate variable.

In the sense of distributions, the derivative of Pf with respect to sℓ can then be defined as [Torii,
2020]

∂Pf (s)
∂sℓ

= lim
σ→0

∫
Rd

∂Ψ (−g(s,x)/σ)
∂sℓ

fX(x)dx

= −lim
σ→0

∫
Rd

1
σ

∂g(s,x)
∂sℓ

ϕ

(
−g(s,x)

σ

)
fX(x)dx,

where ϕ is the univariate standard normal pdf. The convergence is proven in [Papaioannou et al., 2013]
under some regularity conditions. Consequently, an approximation of the failure probability sensitivity
can be obtained with the following domain integral

∂Pf (s)
∂sℓ

≈ −
∫
Rd

1
σ̃

∂g(s,x)
∂sℓ

ϕ

(
−g(s,x)

σ̃

)
fX(x)dx = ∂P̃f (s, σ̃)

∂sℓ
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where P̃f (s, σ̃) =
∫
Rd

Ψ
(

−g(s,x)
σ̃

)
fX(x)dx,

for σ̃ a set positive value. One should notice that the following convergence also holds: P̃f (s, σ)
converges to Pf (s) as σ → 0. The domain integral ∂P̃f (s, σ̃)/∂sℓ can be estimated with the Monte
Carlo method with the following estimate

̂
∂P̃f (s, σ̃)
∂sℓ

MC

= − 1
N

N∑
j=1

1
σ̃

∂g
(

s,X(j)
)

∂sℓ
ϕ

−
g
(

s,X(j)
)

σ̃

 ,

where the X(j) are iid from fX. The same samples can be reused to compute both the failure probability
estimate with MC and this sensitivity estimate, however, for each observation X(j), the derivative of
the lsf with respect to sℓ has to be evaluated, which increases the simulation budget. This estimate is
biased, since σ̃ ̸= 0 and its statistical properties are detailed in the next section.

4.3.3.2 Statistical properties of the Weak approach with crude MC

The statistical properties of this sensitivity estimate have been studied in numerous papers [Papaioan-
nou et al., 2013,Torii, 2020,Torii and Novotny, 2021] as the choice of σ̃ is crucial and has influence on
both the bias and the variance of the estimate. As the estimate is biased, it is interesting to use the
expression of the mean square error denoted ẼMC

mse(σ), derived in [Torii, 2020], which is a function of
σ > 0

ẼMC
mse(σ) =

E

 ̂
∂P̃f (s, σ)
∂sℓ

MC
− ∂Pf (s)

∂sℓ


2

+ Var

 ̂
∂P̃f (s, σ)
∂sℓ

MC


ẼMC
mse(σ) = e2 + Var

 ̂
∂P̃f (s, σ)
∂sℓ

MC
 ,

where e is the bias. Intuitively, one would want the value of σ̃ to be as small as possible to reduce the
bias. However, for very small σ, the domain integral of ∂P̃f (s, σ)/∂sℓ converges to a surface integral
over the limit state surface g(s,x) = 0. Consequently, most observations of the sensitivity MC estimate
would then have a negligible weight in the mean sample value, as only few of them are close to the
limit state surface.

In [Torii, 2020] analytical formulas are derived when the uniform cdf defined on the interval
[−σ/2,−σ/2] is chosen as the failure domain indicator function approximation, for the one-dimensional
case (d = 1). The resulting bias e is proportional to σ2, thus e2 ∝ σ4 and the variance is proportional
to 1/Nσ. The proportional property of the bias is extended to the multidimensional case in [Torii and
Novotny, 2021]. Consequently, decreasing the parameter σ greatly reduces the bias. Nevertheless, past
a certain point, the variance of the estimate increases for smaller σ values, if N is kept constant. This
is schematically illustrated in Figure 4.2. The horizontal axis is separated into two stages: the bias
stage where the error is mainly affected by the bias of the estimate and the variance stage where the
error is mainly affected by the variance of the estimate.

Therefore, the optimal value of σ̃ should be selected at the intersection between the bias stage
and the variance stage. This intersection value is challenging to obtain in practice and is problem
dependent [Lacaze et al., 2015]. An analytical formula of the optimal σ̃ is detailed in [Torii and
Novotny, 2021] for the one-dimensional case, with the uniform cdf approximation mentioned above.
This formula is proportional to 1/N1/5 and depends on the quantity of interest ∂Pf (s)/∂sℓ as well as
the derivative of order 3 of Pf with respect to sℓ; thus its computation is intractable in practice. With
this optimal σ̃ value, the value of the mean square error is computed and ẼMC

mse(σ̃) ∝ 1/N4/5. This
convergence rate is slower than the error convergence rate of the MC estimate obtained with the score
function method, which is 1/N , see Section 4.2.2. Consequently, even with the best σ̃ value, the score
function method is more efficient, but it is only applicable when s are distribution parameters only.

Finally, it should be underlined that the bias and variance of the sensitivity estimate are indepen-
dent of Pf (s), as noticed in [Torii, 2020]. They are dependent on the derivatives of Pf of order 1 and
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Figure 4.2: Illustration of the relation between ẼMC
mse and σ in log-log scale, for a fixed sample size N ,

with the approximations derived in [Torii, 2020] in a one-dimensional case.

above. In comparison, the mean square error of the MC estimate obtained with the score function
method depends on Pf , as shown in Eq. (4.5). Consequently, the sensitivities of Pf (s) computed
with the Weak approach and the failure probability estimate do not depend on the same quantities.
Improvements on the failure probability estimation will not necessarily lead to improvements on the
failure probability sensitivity estimation and vice versa.

4.3.3.3 Weak approach with advanced sampling techniques

The Weak approach has been associated to the sequential importance sampling (SIS) framework in
[Papaioannou et al., 2018], to obtain a sensitivity estimate more efficient than the MC one. The
selected value of σ̃ is the smallest value of σ such as the coefficient of variation of the sensitivity
estimate is close to a CV target

σ̃ = argmin
σ∈(0,σL)

CV

 ̂
∂P̃f (s, σ)
∂sℓ

SIS
− CVtarget


2

,

where σL is the final value of the decreasing sequence σi of the SIS framework (see [Papaioannou et al.,
2016]). This selection does not require any additional evaluation of the lsf. The resulting sensitivity
estimate has a controlled CV however it is not possible to measure its bias, other than with the
approximation e ∝ σ̃2. This method is efficient for multiple failure regions [Papaioannou et al., 2018].
The SIS framework, only briefly mentioned in Chapter 3, is also quite robust in high-dimensional
spaces [Papaioannou et al., 2016]. Consequently the method presented in [Papaioannou et al., 2018]
is particularly appropriate in our context to derive the sensitivities, but the bias is not controlled.

The Weak approach has been associated to the subset sampling framework in [Lacaze et al., 2015],
for sensitivities with respect to design parameters. Eq. (4.7) presented in Section 4.2.3.1 is still valid
(with δ instead of θ), however the dependence on δ in each Pi(δ) is then contained in the intermediate
failure domain indicator function, as well as in P(Fi−1). Each intermediate sensitivity ∂Pi(δ)/∂δℓ

is then estimated with the Weak approach. The selected value of σ̃ is obtained with a formula that
depends on the number of failing observations in the sampling procedure, on Pf (s), and on the order of
magnitude of the lsf g. More precisely, σ̃ is chosen as a quantile of the

∥∥Y (j)
∥∥ =

∥∥∥g (s,X(j)
)∥∥∥ ordered

values, for j = 1, . . . , N . This choice results in a number Nr of response values within ± σ̃, where Nr
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depends on N and Pf (s) and is set a priori. As previously mentioned, the bias of this estimate cannot
be controlled other than with the approximation e ∝ σ̃2.

4.3.4 Sensitivity with finite difference schemes

Although the gradient of the limit state function is supposed to be available in this manuscript, we
briefly present here approaches that do not rely on the derivatives of the limit state function g with
respect to s to compute the sensitivity of Pf . These approaches are applicable for high-dimensional
systems whose failure domain encompasses several failure regions, and will be used as reference values
later in the manuscript.

4.3.4.1 Expression of the finite difference schemes

The derivatives of Pf with respect to s can be directly based on finite difference schemes [Atkinson,
1991,Quarteroni et al., 2010]. Denoting hℓ the p-vector whose components equal zero except the ℓ-th
component equals to h, with h > 0, we recall here the forward formula

̂∂Pf (s,hℓ)
∂sℓ

F

= Pf (s + hℓ) − Pf (s)
h

=
EfX

[
IDf (s+hℓ)(X)

]
− EfX

[
IDf (s)(X)

]
h

,

and the central formula

̂∂Pf (s,hℓ)
∂sℓ

C

= Pf (s + hℓ) − Pf (s − hℓ)
2h =

EfX

[
IDf (s+hℓ)(X)

]
− EfX

[
IDf (s−hℓ)(X)

]
2h .

The expected values of these formulas can then be estimated with MC methods. Here we use the same
formulations to present the different approaches as in [Torii, 2020]. The Direct approach consists in
employing independent samples for the estimations of Pf (s + hℓ), Pf (s) and Pf (s − hℓ). Therefore, in
order to obtain the failure probability sensitivity, the simulation budget is multiplied by two with the
forward formula and by three with the central formula. In contrast, the Common Random Variable
(CRV) approach employs the same sample for the estimations of Pf (s + hℓ), Pf (s) and Pf (s − hℓ).
However, the limit state functions with parameter s + hℓ and s − hℓ differ from g(s, ·). Consequently,
the simulation budget is still multiplied by two with the forward formula and by three with the central
formula. Using the same sample allows to cancel the noise in the expected values MC estimates, which
justifies the CRV approach.

4.3.4.2 Statistical properties of the finite difference scheme estimates

Both approaches are biased since h ̸= 0. The expression of the bias and variance of both approaches,
for both finite difference schemes can be found in [Torii, 2020]. The bias e of both approaches is
proportional to h with the forward formula and h2 for the central formula. The variance of the Direct
approach is proportional to 1/Nh2. Whereas the variance of the CRV approach is proportional to
1/Nh. Consequently, the CRV is theoretically superior to the Direct approach. Furthermore, amongst
the two formulas, the central formula is the best theoretically as the bias converges more rapidly, for
small h. The evolution of the mean square error as a function of h can be separated in two stages for
both methods: the variance stage for small values of h and the bias stage for greater values of h, as
presented for the Weak approach in Section 4.3.3.2.

An optimal value of h is displayed in [Torii and Novotny, 2021] for the central formula in the CRV
approach. This value is proportional to 1/N1/5 and depends on the quantity of interest ∂Pf (s)/∂sℓ as
well as the derivative of order 3 of Pf with respect to sℓ; thus its computation is intractable in practice.
With this optimal h, the value of the mean square error is computed and ẼMC

mse(σ̃) ∝ 1/N4/5, which is
the same convergence rate than the Weak approach with the optimal σ̃. The same conclusion can be
drawn: this convergence rate is slower than the error convergence rate of the MC estimate obtained
with the score function method, which is 1/N , see Section 4.2.2. Consequently, for sensitivities with
respect to distribution parameters, the score function method is more efficient.
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4.4 Conclusion
In this chapter we presented several methods to compute the derivatives of the failure probability with
respect to the deterministic inputs s of the system, for a local reliability-based sensitivity analysis
purpose. We focused on methods efficient in the special context of the manuscript. The dimension of
the system is thus large, d > 50, and the failure domain encompasses possibly several failure regions.
For each method, the additional simulation budget needed is underlined, compared to the simulation
budget necessary to the estimation of the failure probability.

If the deterministic inputs are distribution parameters, denoted θ, two different frameworks are
possible. The first framework relies on the score function methods and the estimation is performed
in the original input space. The simulation budget is then constant and the sensitivity estimates
are typically unbiased. However, there are few efficient techniques available to compute the failure
probability in the original space. In the second framework, the original inputs are transformed into
standard elliptical inputs with an isoprobabilistic transformation. In this input space, there is a greater
number of efficient methods to compute the failure probability. Nevertheless, the sensitivity estimation
causes a heavier simulation budget, as the derivatives of the limit state function with respect to θ must
be evaluated. Some approaches result in unbiased estimates, as in the DS and LS context, but require
an even greater simulation budget as the gradient of g with respect to the random inputs is needed.
While the other approaches lead to biased estimates, whose bias depend on a scalar parameter (σ or
h), or remains unknown (in the FORM context). The resulting bias cannot not be properly controlled.

If the deterministic parameters are design parameters, denoted δ, the evaluation of the derivatives of
g with respect to δ is mandatory, except in the finite difference schemes context (where the simulation
budget is then doubled or tripled). The sensitivity analysis is performed in the standard elliptical
space and the same conclusions can be drawn concerning the simulation budget and the bias than with
distribution parameters. Thus, the simulation budget substantially increases with LS or DS and the
bias cannot be properly managed with the other approaches.

In Chapter 6 we present a new approach to compute the derivatives of the failure probability with
respect to any deterministic input s, as a byproduct of a heteroscedastic polynomial regression, in the
standard elliptical space. This new approach only requires the evaluation of the derivatives of the limit
state function with respect to s in addition to the simulation budget necessary for the estimation of
Pf . It is inspired by the Weak approach. However, the resulting bias can be controlled in an innovative
way with the parameters of the polynomial regression.

It should be noted that a large literature concerning the derivatives of Pf with respect to determinis-
tic inputs in the meta-model framework exists [Torii et al., 2017,Dubourg and Sudret, 2014,Moustapha
and Sudret, 2019, Yun et al., 2020], but as mentioned in Chapter 3, these methods are not presented
here.
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Estimation de probabilité de
défaillance avec échantillonnage
préférentiel multiple dans un espace
standard elliptique de grande
dimension

Nous présentons ici un algorithme d’estimation de probabilité de défaillance d’un système de grande
dimension, dont le domaine de défaillance possède plusieurs régions de défaillance. Les variables
aléatoires du système sont modélisées avec une distribution elliptique standard. La dépendance de
la probabilité de défaillance aux variables déterministes s du système est supposée implicite dans ce
chapitre.

Présentation du schéma adaptatif de l’algorithme
Toutes les régions de défaillance doivent être identifiées dans l’espace elliptique de grande dimension
afin d’obtenir un estimateur précis de la probabilité de défaillance. Au lieu de construire un mélange
de densités paramétriques, optimisées ensemble, ayant pour but d’échantillonner dans le domaine de
défaillance entier, nous proposons ici de recourir au paradigme ”diviser pour mieux régner”. Ainsi,
chaque région de défaillance est identifiée et échantillonnée seule, avec une unique densité optimisée.
La probabilité de défaillance est ensuite estimée par échantillonnage préférentiel multiple, avec un
mélange de toutes les densités construites au fur et à mesure.

L’estimation de la probabilité de défaillance est alors décomposée en deux problèmes distincts. Tout
d’abord, il y a le problème d’identification, qui consiste à trouver dans l’espace standard elliptique les
différentes régions de défaillance. Ensuite, il y a le problème d’échantillonnage, qui consiste à construire
une densité auxiliaire optimisée pour chaque région de défaillance. Ces problèmes sont bien distincts
mais ils ne peuvent pas être résolus indépendamment : dès qu’une région de défaillance est identifiée,
l’échantillonnage dans cette zone commence. La recherche des autres régions de défaillance s’ensuit,
en prenant en compte la région de défaillance déjà identifiée : c’est l’étape d’adaptation. Ce schéma
est répété tant que toutes les régions de défaillance ne sont pas identifiées et échantillonnées. Nous
détaillons à présent chaque étape de la méthode.

Le problème d’identification des régions de défaillance
La recherche des régions de défaillance est inspirée de la méthode FORM/SORM dans le cas de points
de conception multiples [Der Kiureghian and Dakessian, 1998]. Les régions de défaillance sont alors
identifiées grâce à des points défaillants représentatifs. Le point représentatif d’une région est le point
défaillant de la région de norme euclidienne minimale, dans l’espace standard elliptique. Il est appelé
point de conception. En effet, ce point défaillant le plus proche de l’origine est celui qui maximise
la vraisemblance i.e. c’est le point défaillant de densité la plus élevée de toute la région en ques-
tion. Néanmoins, il est souligné dans [Katafygiotis and Zuev, 2008] que les points de conception
n’appartiennent généralement pas à l’anneau d’importance dans l’espace standard normal. Pour pren-
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dre en compte cette situation, la solution considérée consiste alors à chercher les points défaillants les
plus proches de l’origine dans l’anneau d’importance.

Selon la localisation de la région de défaillance et de l’anneau d’importance, deux situations, ap-
pelées Cas 1 et Cas 2 sont considérées. Dans le Cas 1, le point défaillant le plus proche de l’origine
se trouve dans l’anneau d’importance. Ainsi ce point est le point sélectionné pour être représentatif
de la région de défaillance. Il est trouvé par optimisation sous contrainte, en minimisant la norme des
points X appartenant à l’anneau d’importance et à la région de défaillance. Dans le Cas 2, le point
défaillant le plus proche de l’origine ne se trouve pas dans l’anneau d’importance et se situe plus près
de l’origine que la borne inférieure LB de l’intervalle d’importance. Pour trouver un point représentatif
de la région de défaillance, deux optimisations sont alors nécessaires, la première étant la même que
dans le Cas 1. Puisque le résultat de cette première optimisation est trouvé sur la borne inférieure, la
deuxième optimisation consiste à chercher sur cette borne inférieure le point le plus représentatif de la
région de défaillance. Le résultat de ces deux optimisations est alors un point défaillant qui minimise
la fonction d’état limite g sur la borne inférieure de l’anneau d’importance.

Puisque plusieurs régions de défaillance doivent être identifiées, ces optimisations sont effectuées
avec une technique de points de départ multiples aléatoires. Une liste L de minima locaux est ainsi
obtenue. Cette liste est ensuite triée pour favoriser les points représentants les régions de défaillance
les plus proches ou bien ceux dont la valeur de la fonction d’état limite est la plus négative. Le premier
point P1 de cette liste représente la première région de défaillance identifiée.

Le problème d’échantillonnage de la région de défaillance
Une fois qu’une région de défaillance a été identifiée via son point représentatif P1, il s’agit d’échantillonner
dans cette région avec une densité auxiliaire optimale. En prenant en compte la représentation stochas-
tique des variables elliptiques, la densité paramétrique utilisée pour échantillonner la région est con-
struite comme un produit d’une densité hR sur la variable aléatoire R et d’une densité hT sur le vecteur
aléatoire T.

La densité radial hR sélectionnée est la densité radiale elliptique de départ fR conditionnée à ce que
R soit plus grand qu’une certaine valeur scalaire appelée ropt,1. La densité directionnelle choisie est
une densité de von Mises–Fisher [Banerjee et al., 2005], qui dépend d’un paramètre de concentration κ1
scalaire et d’une direction moyenne ν1 ∈ T d. Plus le paramètre de concentration κ1 est élevé, plus la
direction ν1 est importante. Il y a donc d+ 2 paramètres à optimiser pour la densité auxiliaire choisie
hR × hT. Au lieu d’optimiser ces paramètres tous ensemble avec un algorithme d’entropie croisée
comme dans [Wang and Song, 2016,Papaioannou et al., 2019], les coordonnées du point représentatif
P1 sont utilisées pour définir la direction moyenne ν1 et le scalaire ropt,1.

Pour le scalaire ropt,1, la localisation de la région de défaillance dans l’anneau d’importance influence
le paramétrage. Ainsi le scalaire ropt,1 est égal à la norme euclidienne de P1 dans le Cas 1 et à 0 dans le
Cas 2. Pour les autres paramètres, les configurations sont les mêmes peu importe le cas. La direction
moyenne ν1 est égale à la direction normée du point P1. Le paramètre scalaire de concentration κ1
est optimisé avec un algorithme d’entropie croisée avec échantillonnage préférentiel multiple adaptatif,
où la densité optimale à approcher est celle de la région de défaillance et non pas celle du domaine de
défaillance entier. La convergence de l’algorithme est défini avec un critère de coefficient de variation
théorique.

L’utilisation de cet algorithme d’entropie croisée avec échantillonnage préférentiel multiple adap-
tatif introduit de la dépendance entre les échantillons générés. Néanmoins, nous avons remarqué
que cette dépendance était négligeable lorsque le paramètre à optimiser était seulement le paramètre
de concentration κ scalaire. L’échantillonnage préférentiel multiple permet alors de rentabiliser au
mieux les évaluations coûteuses de la fonction d’état limite. En effet, les évaluations sont recyclées à
chaque itération de l’algorithme. Cela augmente alors le nombre total d’observations défaillantes et
l’optimisation du κ est plus stable. À la fin de cet algorithme, la probabilité de défaillance de cette
région est estimée.

Étape d’adaptation
Lorsqu’une région de défaillance a été identifiée et échantillonnée, la recherche des autres régions de
défaillance commence. Pour se faire, nous nous inspirons toujours de la méthode FORM avec plusieurs
points de conception [Der Kiureghian and Dakessian, 1998], en adaptant la méthode à notre contexte



4.4. CONCLUSION 95

spécifique. Une fois que la première région de défaillance est trouvée, un bulbe est construit autour de
P1 et est ajouté à la fonction d’état limite g. La nouvelle fonction d’état limite est appelée fonction
d’état limite modifiée et est notée g̃. Cette région de défaillance représentée par P1 n’est alors plus
considérée dans la recherche des autres régions de défaillance, puisqu’elle appartient désormais au
domaine de sûreté du système.

Ce bulbe est défini à l’aide d’un rayon et d’un paramètre d’échelle ”scale”. Après avoir construit ce
bulbe, une première mise à jour de la liste L contenant tous les points représentatifs est effectuée. Tous
les points se situant dans le bulbe de P1 sont enlevés car ils représentent la même région de défaillance,
qui a déjà été échantillonnée.

Ce bulbe peut ne pas englober toute la zone de défaillance associée à P1, tout particulièrement
dans le Cas 2 mentionné plus haut, où P1 se situe sur la borne inférieure de l’anneau d’importance
alors que la zone de défaillance s’étale sur tout l’anneau d’importance. Ainsi, un cône de défaillance
associé à P1 est défini grâce à l’angle maximal entre P1 et les points défaillants générés dans la région
de défaillance lors du problème d’échantillonnage. Tous les points défaillants de la liste L se trouvant
dans ce cône de défaillance sont alors retirés de la liste, puisqu’ils représentent aussi la même région
de défaillance. C’est la deuxième mise à jour de la liste

À la suite de ces mises à jour, les points défaillants se trouvant dans la liste L sont représentatifs
de régions de défaillance qui n’ont pas encore été échantillonnées. Le premier point de cette liste mise
à jour, P2, sert à identifier la seconde région de défaillance. Le problème d’échantillonnage est alors
effectué pour cette seconde région, avec la construction d’une nouvelle densité auxiliaire. La fonction
d’état limite utilisée pour le problème d’échantillonnage est toujours celle d’origine g et non pas celle
modifiée. Un bulbe autour de P2 est ensuite ajoutée à la fonction d’état limite modifiée pour la mettre
à jour et un cône est aussi associé au point P2. La liste L est mise à jour à nouveau. Ce schéma est
répété tant que la liste L n’est pas vide.

Recherche des régions de défaillance négligées

Il peut arriver que la liste L obtenue suite aux multiples optimisations effectuées lors du problème
d’identification ne contiennent pas de points représentatifs de toutes les régions de défaillance du
système. En effet, une région de défaillance peut être particulièrement dominante, au point que les
optimisations locales convergent toutes vers le même point représentatif. Il peut alors y avoir plusieurs
régions de défaillance qui n’ont pas été identifiées. Afin de remédier à ce problème, un autre ensemble
d’optimisation est considéré, c’est un autre problème d’identification qui s’amorce.

Ces optimisations sont semblables à celles présentées dans le problème d’identification, à deux
exceptions près. Tout d’abord, la fonction d’état limite utilisée n’est pas celle d’origine g, mais celle
modifiée g̃ prenant en compte tous les bulbes construits. Le domaine de défaillance n’est donc plus
celui de départ. Ensuite, la technique de points de départ multiples aléatoires des optimisations est
centrée autour de la position opposée à la somme des points défaillants déjà trouvés.

Une fois ces optimisations effectuées, une nouvelle liste L de points représentatifs de région de
défaillance est obtenue. Une mise à jour de cette liste est effectuée en enlevant les point défaillants
contenus dans le cône de défaillance associé à chaque région de défaillance déjà trouvée. La liste est
ensuite triée, le premier point de cette liste est représentatif d’une nouvelle région de défaillance à
échantillonner. Le schéma précédemment décrit est donc réitéré pour cette nouvelle liste, et ainsi de
suite.

Ainsi, l’algorithme s’arrête lorsqu’une nouvelle liste L ne continent plus aucune nouvelle région
de défaillance. Il semble alors que toutes les régions de défaillance du système ont été identifiées et
échantillonnées.

Estimation de la probabilité de défaillance

La probabilité de défaillance globale est estimée avec un estimateur d’échantillonnage préférentiel
multiple (MIS), en utilisant toutes les densités construites au fur et à mesure et tous les échantillons
générés. Supposons que le nombre de région de défaillance final soit égal à K, et que pour chaque
itération de l’algorithme d’échantillonnage, N observations soient générées. Pour chaque région de
défaillance, on note nk l’indice final du paramètre de concentration κ optimisé. L’équation final de
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l’estimateur s’écrit alors

P̂MIS
f = 1

ntotal ×N

ntotal×N∑
j=1

IDf

(
R(j)T(j)

) fR

(
R(j)) fT

(
T(j)

)
hMIS

(
R(j),T(j)

) ,

où les paires aléatoires
(
R(1),T(1)

)
,
(
R(2),T(2)

)
, . . . sont générées par la densité hMIS

∀r ∈ R+ ∀T ∈ T d hMIS(rt) = 1
ntotal

K∑
k=1

hR(r; ropt,k)
{

nk∑
ℓ=0

hT(t;κk,ℓ,νk)
}
.

Le nombre ntotal de densités auxiliaires est donc égal à n1 + · · · + nK +K. Ce nombre de densité est
plus élevé que dans d’autres algorithmes [Papaioannou et al., 2019,Geyer et al., 2019]. Néanmoins, ce
grand nombre de densités et d’échantillons associés rendent l’estimateur d’échantillonnage préférentiel
plus précis en termes de coefficient de variation.

Le budget de simulation de la méthode est alors réparti entre les différents problèmes d’identification
et d’échantillonnage nécessaires au fur et à mesure de l’algorithme. Le gradient de la fonction d’état
limite est nécessaire pour résoudre les problèmes d’identification. Selon la précision des optimisations
menées lors des différents problèmes d’identification, le budget de simulation peut être grandement
impacté : si les coordonnées de chaque Pk ne sont pas précises, des itérations supplémentaires sont
nécessaires dans l’algorithme d’échantillonnage.

Un estimateur théorique de la variance de P̂MIS
f , supposant que toutes les observations sont

indépendantes et identiquement distribuées, est disponible. Il permet alors de déterminer la qualité
de l’estimateur en une seule simulation.

Applications numériques
La performance de cet algorithme est mise à l’épreuve avec quatre applications numériques. Les trois
premières sont des applications fréquemment utilisées dans la littérature, la dernière est une application
industrielle plus réaliste, dans un contexte de fonction d’état limite bôıte noire.

La technique de points de départ multiples aléatoires utilisée pour les optimisations des problèmes
d’identification est celle d’échantillonnage par hypercube latin [Shields et al., 2015], de taille 10. Les
différent points de départ sont alors répartis sur l’espace des entrées en globalité.

Système en série de quatre fonctions d’état limite linéaire
Cette première application permet de tester la robustesse de l’algorithme à trouver toutes les régions de
défaillance (ici quatre) du système, en fonction de plusieurs paramètres. Les variables aléatoires sont
normales standards. La probabilité de défaillance est alors indépendante de la dimension du système,
sa valeur a un ordre de grandeur de 10−6. Cet exemple est représentatif du Cas 2 mentionné plus tôt.

Tout d’abord, une étude sur la valeur du paramètre de concentration κk,0 initial est menée. Ce
paramètre influence la convergence de l’algorithme d’échantillonnage d’entropie croisée. Trois dimen-
sions du système sont alors étudiées : d = 200, d = 300 et d = 400, pour des valeurs de κk,0 allant
de 50 à 150. Plus la dimension du système est grande, plus les valeurs finales convergées de κ sont
élevées. Dans de très rares cas, l’algorithme trouve trois ou cinq régions de défaillance au lieu de
quatre. Ces cas correspondent à des valeurs de κk,0 particulièrement basses ou bien très élevées par
rapport à la dimension du système. Cependant, l’algorithme est globalement très robuste et permet
d’estimer correctement la probabilité de défaillance du système, cf Figure 5.11.

La performance de l’algorithme est ensuite comparée à d’autres méthodes de simulation adaptées à
la grande dimension : un algorithme de ”subset simulation” [Au and Beck, 2001] ainsi qu’un algorithme
d’entropie croisée améliorée (iCE) [Papaioannou et al., 2019]. Pour les trois dimensions concernées,
l’algorithme proposé requiert un budget de simulation plus faible, cf Table 5.1. De plus, le coefficient
de variation de l’estimateur de la probabilité de défaillance de notre méthode est aussi le plus bas.
En augmentant la valeur de la probabilité de défaillance à estimer (10−4), la méthode présentée est
toujours la plus performante, en termes de budget de simulation ainsi que de coefficient de variation,
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cf Table 5.2. Il est toutefois rappelé que le gradient de la fonction d’état limite, supposé disponible,
doit être évalué dans l’algorithme proposé, alors que les deux autres méthodes n’en n’ont pas besoin.

L’algorithme est enfin expérimenté en très grande dimension : d = 500 et d = 1000. Les résultats
sont également concluant, la probabilité de défaillance est correctement estimée. Le budget de sim-
ulation nécessaire est toujours bas (inférieur à 12500) et le coefficient de variation reste faible aussi
(inférieur à 5%).

Oscillateur de Duffing
La fonction d’état limite de cette seconde application est non linéaire et représente le déplacement
maximal d’un oscillateur de Duffing [Zuev, 2009] soumis à une excitation aléatoire. Les variables
aléatoires sont normales standards. La probabilité de défaillance est indépendante de la dimension du
système, sa valeur a un ordre de grandeur de 10−4. L’algorithme a trouvé pour cette application, deux
régions de défaillance. Cette application est aussi représentative du Cas 2 mentionné plus haut.

La performance de l’algorithme est testée en dimension d = 100, d = 200 et d = 300 et elle est
comparée avec un algorithme de ”subset simulation” ainsi qu’un algorithme d’entropie croisée améliorée
(iCE). Les mêmes conclusions que pour l’exemple précédent peuvent être observées, cf Table 5.3. Pour
les trois dimensions concernées, l’algorithme proposé requiert un budget de simulation plus faible et le
coefficient de variation de l’estimateur est le plus faible aussi. Alors que la fonction d’état limite est
non linéaire, le budget de simulation nécessaire aux multiples optimisations des différents problèmes
d’identification reste relativement bas.

Pour cette application non linéaire, l’influence de la largeur de l’anneau d’importance est aussi
étudiée en dimension d = 100. Les directions des points défaillants représentatifs ne varient pas avec
un anneau d’importance plus étroit. Ainsi l’estimation de la probabilité de défaillance ne semble pas
être affectée par ce paramètre.

Perte d’un portefeuille
Ce troisième exemple est fréquemment utilisé en finance [Chan and Kroese, 2012]. Il s’agit d’un large
portefeuille de prêt de dimension d = 250 où chaque débiteur a une probabilité non nulle de faire
défaut. Les variables aléatoires suivent une loi de Student multivariée. La probabilité de défaillance
correspond à une perte excessive du portefeuille. La valeur de cette probabilité a un ordre de grandeur
de 10−3. Avant de pouvoir utiliser l’algorithme proposé, les variables d’entrées doivent être réduites,
afin de travailler dans l’espace de Student multivarié standard. De même, la fonction d’état limite,
qui dépend de plusieurs fonctions indicatrice, n’est pas directement dérivable. Une approximation
dérivable de la fonction d’état limite est alors utilisée pour effectuer les optimisations nécessaires
aux problèmes d’identification de la méthode. L’algorithme a trouvé pour cette application, une seule
région de défaillance. Cette application est représentative du Cas 1 mentionné plus haut. Il est rappelé
que l’anneau d’importance des lois de Student est très large, ce qui favorise l’apparition de situations
de type Cas 1.

La performance de l’algorithme est comparée à celle d’une méthode de minimisation de variance
[Chan and Kroese, 2012]. Contrairement aux deux applications précédentes, un budget de simulation
assez conséquent est nécessaire pour l’algorithme afin d’obtenir un estimateur dont le coefficient de
variation est faible (inférieur à 4%), cf Table 5.4. De plus, ce coefficient de variation est supérieur à
celui de la méthode de minimisation de variance [Chan and Kroese, 2012]. Ainsi, pour cet application,
l’algorithme ne semble pas être aussi performant que précédemment.

Une étude sur la distribution auxiliaire radiale permet d’expliquer ce résultat moins satisfaisant.
Après avoir effectué un échantillonnage Monte-Carlo de large dimension, il semble que la valeur ropt
calculée grâce aux optimisations ne soit pas assez élevée. La densité auxiliaire radiale construite par
l’algorithme n’est alors particulièrement pas optimale, ce qui explique le budget de simulation impor-
tant et le coefficient de variation élevé. En augmentant cette valeur ropt, l’efficacité de l’algorithme
augmente aussi. De même, le budget de simulation diminue si la valeur du paramètre de concentration
κ1,0 initiale est abaissée. En effet, le domaine de défaillance semble avoir une symétrie sphérique.

Cette mauvaise estimation de ropt peut être due à l’approximation de la fonction d’état limite
mentionnée plus haut. Cette exemple prouve l’importance de la précision des optimisations effectuées
dans les problèmes d’identification de la méthode.
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Profil aérodynamique dans un flux non visqueux transsonique
Le dernier exemple examine le coefficient de trâınée d’un profil aérodynamique dans un flux non
visqueux transsonique soumis à une déformation aléatoire de forme. Cet exemple est représentatif d’un
problème industriel puisque la fonction d’état limite est analytiquement non disponible et se comporte
comme une bôıte noire [Economon et al., 2016]. Les variables aléatoires représentent l’amplitude des
déformations et suivent une loi normale centrée d’écart type 5 × 10−4. La probabilité de référence est
obtenue avec un échantillon Monte-Carlo de taille 106770 et sa valeur a un d’ordre de grandeur de
10−4. Plus de 8 jours ont été nécessaires pour effectuer cette simulation Monte-Carlo puisque la bôıte
noire est effectivement très coûteuse en termes de temps de calcul (résolution de l’équation d’Euler par
la méthode des volumes finis, parallélisée sur 24 CPU). L’algorithme a trouvé pour cette application
trois régions de défaillance. Cet exemple est représentatif du Cas 2 mentionné plus haut.

La performance de l’algorithme est comparée au résultat de la méthode Monte-Carlo, pour trois
simulations indépendantes seulement. Le budget de simulation nécessaire est alors beaucoup plus faible
pour chaque simulation, comparé à l’échantillonnage Monte-Carlo classique, cf Table 5.5. Pour les deux
premières simulations, la probabilité trouvée est proche de celle de la méthode Monte-Carlo, avec un
coefficient de variation théorique plus bas. Pour la dernière simulation, la probabilité trouvée est plus
faible que la valeur de référence. Cette valeur pour la troisième simulation est le résultat de coordonnées
imprécises du point représentatif de la deuxième région de défaillance. En effet, l’optimiseur ne trouve
pas le ”bon” point représentatif, et l’échantillonnage de cette zone est alors sous-optimal.

Comme l’illustre les deux premières simulations, l’algorithme présenté peut donc proposer une
estimation correcte de la probabilité de défaillance, en réduisant le budget de simulation par 7 com-
paré à un échantillonnage Monte-Carlo. Ce résultat est vraiment intéressant pour cet exemple où
chaque évaluation de la fonction d’état limite est particulièrement coûteuse. Aussi, la probabilité de
défaillance de chacune de ces trois régions est évaluée. La contribution à la probabilité de défaillance
globale de chaque région de défaillance dans l’espace des entrées est alors soulignée. Cette information
est primordiale pour mieux comprendre quelles configurations du profil aérodynamique mènent à la
défaillance du système.

Conclusion
Dans ce chapitre, un nouvel algorithme d’estimation de probabilité de défaillance d’un système a été
présenté. Les variables aléatoires du système sont modélisées par une loi elliptique standard de grande
dimension. Nous supposons qu’il y a plusieurs régions de défaillance dans le domaine de défaillance.
Nous abordons ici quelques remarques finales ainsi que des perspectives.

Nécessité de l’espace standard elliptique
Nous pouvons nous demander si la modélisation des variables aléatoires du système par une loi elliptique
standard est obligatoire pour le bon fonctionnement de l’algorithme. Il semblerait que la réponse soit
positive, pour plusieurs raisons.

Tout d’abord, l’indépendance entre la variable radiale R et le vecteur directionnel T des variables
elliptiques standards permet de définir un anneau d’importance avec deux hypersphères. Sans cette
indépendance, il est difficile de définir un anneau d’importance puisqu’il pourrait ne pas exister. Si
les optimisations nécessaires aux problèmes d’identification ne sont pas contraintes à un espace re-
streint comme l’anneau d’importance, l’algorithme pourrait ne pas s’arrêter. De même, des régions
de défaillance dont la masse probabiliste est extrêmement faible pourraient être considérées dans le
problème d’échantillonnage, ce qui serait un gâchis d’évaluations de la fonction d’état limite coûteuse.

De plus, si les entrées ne sont pas elliptiques, il est aussi difficile de sélectionner une densité auxiliaire
radiale efficace. Dans l’algorithme proposé, cette densité dépend de la loi de la variable R des entrées.
Si une telle loi n’existe pas, plusieurs solutions sont alors possibles pour construire une densité auxiliaire
radiale (comme avec des densités de noyau par exemple). Ces solutions nécessiteraient cependant une
étape d’échantillonnage supplémentaire.

Enfin, si les entrées ne sont pas elliptiques, les poids de l’estimateur d’échantillonnage préférentiel
multiple pourraient dégénérer avec une dimension d élevée. En effet, avec des entrées elliptiques, le
choix de la densité radiale mentionnée au-dessus permet une simplification des poids de l’estimateur,
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qui ne serait pas possible avec des entrées d’autre nature. Les poids pourraient alors dégénérer en
grande dimension, ce qui est un phénomène très courant en échantillonnage préférentiel.

Influence des densités auxiliaires de l’échantillonnage préférentiel
Les applications numériques présentées permettent de rendre compte de l’importance des densités
auxiliaires sélectionnées pour l’échantillonnage préférentiel. En effet, dans l’espace standard gaussien,
il semble que la densité auxiliaire directionnelle soit la composante la plus importante du produit de
densités, pour les trois applications considérées. De bonnes valeurs des paramètres de cette densité
rend l’échantillonnage préférentiel efficace. Au contraire, avec l’application avec les lois de Student,
puisque le domaine de défaillance possède une symétrie sphérique, c’est la bonne valeur du paramètre
de la densité auxiliaire radiale qui est primordiale. Prendre en compte la représentation stochastique
des entrées elliptiques est donc pertinent dans les deux espaces aléatoires considérés.

Algorithme proposé sans l’utilisation du gradient de la fonction d’état limite
Dans ce manuscrit, il est supposé que le gradient de la fonction d’état limite est disponible pour les
optimisations nécessaires aux problèmes d’identification. Dans le cas où ce gradient n’est pas aisément
calculable, ces optimisations sont alors beaucoup plus difficiles à effectuer, en particulier avec une
dimension du système élevée. Des travaux récents permettent de trouver les points de conception du
système sans avoir recours au gradient de la fonction d’état limite [Zhong et al., 2020,Zhu et al., 2022].
En combinant ces techniques avec la restriction à l’anneau d’importance lors de la recherche des points
représentatifs des régions de défaillance, une version alternative de l’algorithme ne nécessitant pas le
gradient pourrait être envisageable.
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5.1 Introduction
In this chapter, we present a new algorithm developed to estimate the failure probability of a high-
dimensional system with standard elliptical inputs and a failure domain which encompasses several
failure regions. The main highlights of the proposed algorithm are as follows:

• the failure probability is estimated in the importance sampling framework, with parametric
adaptively optimized auxiliary densities;

• the auxiliary IS parametric densities are sequentially constructed for each failure region identified
as part of the failure domain with a CE-AMIS method (cf Chapter 3 Section 3.3.3.3);

• the search for failure regions is achieved through optimization and is inspired by the FORM/SORM
multiple design points method (cf Chapter 3 Section 3.2.2). However, an original adaptation of
the optimization is proposed to take into account the important ring of the standard elliptical
inputs (see Chapter 2 Section 2.2.2.1);

• the stochastic representation of the elliptically distributed inputs is exploited in the structure of
the auxiliary parametric densities, which are expressed as the product of a parametric conditional
distribution for the radial component, and a parametric von Mises–Fisher distribution for the
directional vector;

• the failure probability of the entire failure domain is then estimated by multiple importance
sampling (MIS) with a mixture of the auxiliary densities.

This chapter is organized as follows. A complete description of the proposed algorithm is first
detailed in Section 5.2. Each step is described with illustrations. Section 5.3 presents four numeri-
cal examples with elliptical inputs: three with the Gaussian distribution and one with the Student
distribution. The results are summarized and some conclusions are drawn in Section 5.4.

As the random inputs X are assumed to follow a standard elliptical distribution, the different
formulas are written with the stochastic representation of the inputs: X = RT. The important ring
defined in Chapter 2 Section 2.2.2.1 is then the region in the standard elliptical space encompassing
most of the probability mass of X. Furthermore, the expression of the dependence on the deterministic
inputs of the system s is dropped in this chapter for the sake of clarity, for both Pf and the limit state
function g.



5.2. ADAPTIVE METHOD TO ESTIMATE THE FAILURE PROBABILITY 103

5.2 Adaptive method to estimate the failure probability
As previously mentioned, several failure regions in the high-dimensional input space have to be iden-
tified in order to get an accurate estimate of the failure probability. In the specific case of parametric
densities for IS, several methods [Wang and Song, 2016, Papaioannou et al., 2019, Kurtz and Song,
2013, Geyer et al., 2019] have relied on a mixture structure to account for the multiple failure re-
gions. The IS density is then built as a weighted mixture of K parametric densities, with weight
πk. However, determining the number of failure regions K a priori is challenging; cf Chapter 3 Sec-
tion 3.3.3.2. Furthermore, the weights have to be computed as well, which increases the number of
unknown parameters.

Instead of trying to sample in the failure domain as a whole with a mixture of parametric densities
optimized together, the method proposed here sequentially identifies and generates samples in each
of the failure regions. In the spirit of the divide and conquer paradigm, the global IS density is thus
sought through a local IS density for each failure region. The final failure probability estimate is then
computed with a mixture of the optimized single IS auxiliary densities.

5.2.1 Presentation of the proposed method
5.2.1.1 Presentation of the scheme for sampling in the entire failure domain

In order to estimate the failure probability, it is proposed to decompose the problem in two parts.
First, an identification problem is considered which consists of identifying the different regions of the
failure domain in the input space. Next, a sampling problem is solved by constructing an optimized
auxiliary parametric density for each failure region. Although these two problems are distinct, they
are intertwined and cannot be solved separately. As soon as a failure region is found, the construction
of its IS auxiliary density is considered. Next, the search for a new failure region is initiated, taking
into account the failure region previously found; this is the adaptation step. This scheme is repeated
until all failure regions have been found and sampled as illustrated in Figure 5.1.

Creation of a set L of failing points represen-
tative of failure regions through optimization.

if L is not
empty

if L is empty

Estimation of the
failure probability.

End

Identification Problem Start

Identification of a new failure region repre-
sented by the first point P in the ordered set L.

Construction of a density h with generation of a sample around P .

Sampling Problem

Addition of a bulge around P to the limit state func-
tion to take into account the failure region just found.

Updating of the set L.

Adaptation Step

if L is empty
if L is not

empty

Figure 5.1: Scheme of the proposed method to find and model every failure region.
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Section 5.2.2 describes the identification problem: the search for a set L of failing points which
are representative of the failure regions, and the selection of a first failure region to be sampled. The
sampling problem for this failure region is then considered in Section 5.2.3. The adaptation step in
described in Section 5.2.4, as well as the loop which must be initiated when the set L is not empty
after the adaptation step. The procedure to be followed when the set L is empty after the adaptation
step is laid out in Section 5.2.5.

5.2.1.2 Presentation of the MIS estimate

At the end of this scheme, every failure region has been identified and sampled, and the failure
probability can be estimated by the MIS framework; see Chapter 3 Section 3.3.3.3. For every failure
region j, a number nj + 1 of densities hj,0, . . . , hj,nj are created successively in the construction of the
optimal density for the sampling problem derived in Section 5.2.3. They result from the parameter
optimization process with hj,0 being the initial density and hj,nj

the optimized density that best fits the
failure region. Instead of using only the last density hj,nj

and its sample to represent the failure region
j, all the intermediates densities and samples are included to improve the stability of the estimate, as in
AMIS framework [Cornuet et al., 2012]. As previously noted in Chapter 3, the AMIS method induces
dependence amongst the different samples, which lead to a bias estimate of the failure probability.
However, in the rest of this chapter, we assume that the dependence of the samples is negligible. This
assumption will be discussed in Section 5.2 and Section 5.3.

Let K denote the number of failure regions. The stochastic representation of the inputs is taken
advantage of, to propose the following MIS probability estimate

P̂MIS
f = 1

Nsamp

Nsamp∑
j=1

IDf

(
R(j)T(j)

) fR

(
R(j)) fT

(
T(j)

)
hMIS

(
R(j)T(j)

) ,

where the random pairs
(
R(1),T(1)

)
,
(
R(2),T(2)

)
, . . . are generated from hMIS

∀r ∈ R+ ∀t ∈ T d hMIS(rt) = 1
ntotal

K∑
j=1

nj∑
ℓ=0

hj,ℓ(r, t).

Here, Nsamp is the total number of observations generated in the various sampling problems performed
for the estimation, and the total number of densities in the mixture hMIS is ntotal. The number ntotal
of IS auxiliary densities is equal to n1 + · · · + nK + K. It should be noted that in this mixture, the
weighting factors πk are all equal to 1/ntotal. Therefore all of the constructed densities have the same
contribution to the mixture hMIS. This topic will be discussed in Section 5.2.3.

The following sections describe the successive steps of the method summarized in Figure 5.1 to
determine a valuable IS mixture density hMIS.

5.2.2 Identification problem
5.2.2.1 Search for the multiple failure regions

The search for the failure regions in the standard elliptical space is inspired by what is achieved in the
approximation methods FORM/SORM for multiple design points detailed in Chapter 3 Section 3.2.2.
The main idea is recalled here. In those methods, each failure region is identified with the failing
point closest to the origin in the standard elliptical space [Der Kiureghian and Dakessian, 1998,Lebrun
and Dutfoy, 2009]. Indeed the closest failing point, the so-called design point or most probable point
[Grooteman, 2008], of a failure region is the most likely single realization of the input random variables
that causes failure. Nevertheless, as reported in [Katafygiotis and Zuev, 2008], in high-dimensional
standard normal space those design points seldom belong to the important ring. Hence the design
points are of little interest in the search for the main failure regions in such a space, as the probability
mass associated with their vicinity is most likely negligible. To take this issue into account, the solution
proposed here is to look for the closest failing points inside the important ring.

For each failure region, depending on its location with respect to the important ring, two different
situations must be considered. In Case 1, the closest failing point of the failure region is inside the
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a) b)

Figure 5.2: Illustration of the location of the failure region and the important ring in a) Case 1 where
the closest failing point of the failure region is inside the important ring, and in b) Case 2 where the
closest failing point of the failure region is outside the important ring. The red circles delineate the
lower bound and the upper bound of the important ring. In both examples, there is only one failure
region in the failure domain, located in the upper right corner delimited in dark blue. The color legend
represents the value of the limit state function. The representation is in dimension two, however the
aim of the algorithm is high-dimensional spaces.

important ring. In Case 2, the closest failing point of the failure region does not belong to the important
ring, as it is closer than the lower bound LB of the important interval, and the failure region spreads
across the important ring. Case 2 is typical of contexts where the distribution of the radial component
R leads to a particularly narrow important ring, as in the high-dimensional standard normal space.

Figure 5.2 provides schematic illustrations of the two cases. It should be noted that other configu-
rations of the failure region position regarding the important ring exist, however, these two cases seem
to be the most common situations encountered when testing the algorithm.

5.2.2.2 Optimization problems in the important ring

In each one of these situations, the failure region is identified with a failing point found as follows:

Case 1: The failure region is identified with the closest failing point. The local optimization problem
is written in the form

P ∗ = argmin
x∈Imp.Ring ∩Df

∥x∥, (5.1)

where P ∗ is a point belonging to both the failure domain Df and the important ring (Imp.Ring),
which minimizes the Euclidean norm ∥ · ∥; see Figure 5.3 a). This optimization is exactly the same as
performed in the FORM/SORM approximations and P ∗ is the design point of the system.

Case 2: The failure region is identified with a failing point resulting from two optimizations, as
optimization Eq. (5.1) then has an infinite number of solutions: any point in the failure region on the
lower bound of the important ring is a solution to problem Eq. (5.1). It is assumed that the optimizer
then randomly picks up one of them, say P ∗. A second optimization is performed to find a point that
would better represent this particular failure region. The proposed solution consists of finding the
point P̃ ∗ that minimizes the limit state function in the lower bound of radius LB of the important
ring, viz.

P̃ ∗ = argmin
x∈Df , ∥x∥=LB

g(x). (5.2)

See Figure 5.3 b). The starting point of the second optimization is P ∗. This local optimization is
performed at fixed radius value with a gradient algorithm and hence relatively cheap in terms of limit
state function evaluation.
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a) b)

Figure 5.3: Illustration of the failing point representative of the failure region P ∗ in a) Case 1 and
P̃ ∗ in b) Case 2. The blue line represents the Euclidean distance between the representative point
and the origin. The red circles delineate the lower bound and upper bound of the important ring. In
both examples, there is only one failure region in the failure domain, located in the upper right corner
delimited in dark blue. The color legend represents the value of the limit state function.

Depending on the shape of the failure region and the important ring, the representative point is
thus either the starting point P ∗ of this failure region in the important ring (Case 1) or the most
negative point P̃ ∗ at the lower bound of the important ring for failure regions starting before the
important ring (Case 2), as illustrated in Figure 5.3. The result of the first optimization Eq. (5.1)
indicates which Case it is: if ∥P ∗∥ =LB then it is Case 2, else it is Case 1.

5.2.2.3 Selection of a first failure region

To find all the failure regions, these optimizations are repeated with a random multi-start technique
which is detailed in Section 5.3. The resulting local minima P ∗ or P̃ ∗ representing the failure regions
of the systems are gathered in a set L. It may happen that some points represent the same failure
region. To select a first failure region for sampling, the representative points of the set L are ranked
and sorted. In Case 1, representative points P ∗ of failure regions are ranked according to their norm
∥P ∗∥ > LB. In Case 2, representative points P̃ ∗ of failure regions are ranked according to the value of
their lsf g(P̃ ∗) < 0, as their norms are equal to LB. The set L is then sorted in ascending order with
regard to the ranking value of each representative point.

It should be noted that the representative points of Case 2 whose ranking values are negative are
necessarily ranked before those of Case 1 whose ranking values are positive. This numerical trick allows
to favor points representative of Case 2, as we expect them to be associated with larger failure regions
than in Case 1.

A first failure region is then identified with the first point P1 of the ordered set L. This point is
thus the closest to the origin and its lsf evaluation is the most negative if its norm is equal to LB. The
identification problem is summarized in Algorithm 6.

5.2.3 Sampling problem

5.2.3.1 Selection of a parametric family for the standard elliptical inputs

Taking advantage of the stochastic decomposition of the elliptical inputs, the parametric IS density
used to sample in the failure region is constructed as the product of a density hR on the random
variable R and a density hT on the random vector T.

The selected radial distribution hR is the original law of R, conditional on being greater than a
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Algorithm 6 Identification Problem
Require: The lsf g and its gradient ∇g.

Initialization
The set L is empty. Generate a random vector V of starting points X0.
Multi-start local optimizations
for X0 ∈ V do

Search for the closest failing point with Eq. (5.1) with starting point X0. The result is P ∗.
if ∥P ∗∥ = LB then

The failure region starts before the important ring: This is Case 2. Perform the optimization
given in Eq. (5.2), with starting point P ∗, to find the most negative point in the lower bound.
The result is P̃ ∗. Add the representative point P̃ ∗ to the set L, with associated ranking value
g(P̃ ∗).

else
The closest failing point is inside the important ring: This is Case 1. Add the representative
point P ∗ to the set L, with associated ranking value ∥P ∗∥.

end if
end for
Identification of a first failure region
Sort the set L in ascending order with respect to the ranking value of each representative point.
Identify P1 as the first point of the ordered set L.
return The ordered set L and a first identified failure region with P1.

scalar parameter ropt ∈ R+

∀r ∈ R+ hR(r; ropt) = fR|R>ropt(r) =
IR>ropt(r)fR(r)
P(R > ropt)

. (5.3)

This choice of distribution for the radial component, which excludes part of the original distribution,
is inspired by the RBIS framework presented in Chapter 3 Section 3.4.1.

The selected directional distribution hT is a von Mises–Fisher distribution, a choice already proven
to be efficient in [Zhang et al., 2022, Wang and Song, 2016, Papaioannou et al., 2019]. It depends
on two parameters, namely the concentration parameter κ ∈ R+ and the mean direction parameter
ν ∈ T d, cf Chapter 2 Section 2.2.1.3. It is recalled here that as κ grows, the vMF distribution is more
and more concentrated around the mean direction ν; if κ = 0 then the vMF distribution is equivalent
to the uniform distribution on the unit hypersphere U(T d).

The choice of these parametric densities leads to a total of d+2 scalar parameters to be set. For the
first failure region identified above with P1, the goal is thus to find the optimal parameters ropt,1, κ1
and ν1 such that the density r, t 7→ hR(r; ropt,1) × hT(t;κ1,ν1) is close to the optimal density of this
failure region defined by

∀r ∈ R+ ∀t ∈ T d hopt,1(r, t) =
IDf,1(rt)fR(r)fT(t)

Pf,1
,

where Df,1 denotes the failure domain of this particular failure region and Pf,1 its probability. Instead
of optimizing the parameters ropt,1, κ1, and ν1 of dimension d+2 with a Cross-Entropy (CE) algorithm
as in [Wang and Song, 2016, Papaioannou et al., 2019, Kurtz and Song, 2013, Geyer et al., 2019], one
can take advantage of the coordinates of the optimized point P1 representative of the failure region as
derived below. This simplifies the optimization of the parameters.

5.2.3.2 Setting of the parameters

Scalar parameter ropt of the radial conditional distribution
The parameter ropt,1 defines the minimum value of R such that RT belongs to Df,1, for all T. De-
pending on the location of the failure region compared to the important ring, ropt,1 is set differently.
Using the same notation as in Section 5.2.2 with Cases 1 and 2, the settings of ropt,1 are as follows:
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Case 1: Set ropt,1 = ∥P1∥. Indeed, P1 is the closest failing point in the important ring. No point
whose norm is below ropt,1 can be in the failure region of the important ring. This choice is the same
as in the RBIS context, when there is only one failure region.

Case 2: The norm of P1 equals the distance between the origin and the lower bound of the important
ring. Thus, ropt,1 is set to 0 to avoid any bias, given that additional information on the radial
component of the failure region is not available. Therefore, the distribution of the variable R is left
unchanged in this particular case.

Mean direction ν of the vMF distribution
The mean direction ν1 is set to be the direction of P1, viz. ν1 = P1/∥P1∥. This decision implies that
the direction of the point P1 is where the likelihood of the density hT is largest. It makes it possible
to set the value of the vector ν1 of dimension d directly with the coordinates of P1, which are available
after the optimizations of the identification problem described in Section 5.2.2.

Selecting the direction of P1 as the most important direction for this failure region is relevant both
in Cases 1 and 2. Indeed in Case 1, P1 is the design point of the system; thus, selecting its direction as
the most important of the failure region is the same idea as in the line sampling framework, described
in Chapter 3 Section 3.4.2.1. And since P1 belongs to the important ring, the issue discussed in
Section 3.4.2.3 of Chapter 3 is solved: this direction is indeed relevant for the failure probability
estimation of this particular failure region.

In Case 2, given that the evaluation of P1 with the lsf has the most negative value in the lower
bound of the important ring, the direction of P1 is the most likely to be well centered with regard to the
failure region location. In this case P1 is not the true design point of the system. The true design point
is located closer to the origin. In the line sampling framework, one would have chosen the direction of
the true design point of the system as the most important direction. But as previously underlined in
Section 3.4.2.3 of Chapter 3, this direction may be irrelevant in the important ring for nonlinear lsf.
Therefore, selecting the most important direction with the direction of P1 is more relevant, and allows
the method to be more robust to nonlinear lsf.

Concentration parameter κ of the vMF distribution
Finally, the scalar κ1 is set as the result of a Cross-Entropy based Adaptive MIS method (CE-AMIS)
[Cornuet et al., 2012], presented in Section 3.3.3.3 of Chapter 3. Here, the parameter κ has to minimize
the KL distance between the optimal IS density r, t → hopt,1(r, t) of this particular failure region and
the product density r, t → hR(r; ropt,1) × hT(t;κ,ν1). The resulting updating formula for κ1,i+1 in
the stochastic representation of the inputs is written

κ1,i+1 ≈ argmax
κ∈R+

1
(i+ 1)N

i∑
ℓ=0

N∑
j=1

IDf,1

(
R

(j)
ℓ T(j)

ℓ

)
ln
(
hT

(
T(j)

ℓ ;κ,ν1

))
fR

(
R

(j)
ℓ

)
fT

(
T(j)

ℓ

)
hR

(
R

(j)
ℓ ; ropt,1

)∑i
p=0

1
i+1hT

(
T(j)

ℓ ;κ1,p,ν1

) , (5.4)

where the random variables
(
R

(j)
ℓ ,T(j)

ℓ

)
ℓ=0,...,i;j=1,...,N

are generated with the multiple IS density

hR (· ; ropt,1)
∑i

p=0
1

i+1hT (· ;κ1,p,ν1). Replacing the expression of hR of Eq. (5.3) in Eq. (5.4) allows
a simplification in the MIS weights

κ1,i+1 ≈ argmax
κ∈R+

1
(i+ 1)N

i∑
ℓ=0

N∑
j=1

IDf,1

(
R

(j)
ℓ T(j)

ℓ

)
ln
(
hT

(
T(j)

ℓ ;κ,ν1

)) P(R > ropt,1)fT

(
T(j)

ℓ

)
∑i

p=0 hT

(
T(j)

ℓ ;κ1,p,ν1

)
/(i+ 1)

.

(5.5)
If the indicator function of the failure domain and the IS weights were removed, this optimization would
be exactly the same as a maximum likelihood estimation (MLE) of the vMF distribution parameters,
when ν is known. Therefore, as in [Papaioannou et al., 2019, Geyer et al., 2019], the equivalence
between the CE optimization and the MLE is underlined here. With the indicator function and the
IS weights, the optimization (5.5) becomes a weighted MLE problem whose solution is known. After
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some calculations using formulas from [Banerjee et al., 2005,Wang and Song, 2016], the optimal κ1 is
found to be the solution of the equation

Id/2(κ1,i+1)
Id/2−1(κ1,i+1) = r⊤ν1∑i

ℓ=0
∑N

j=1 IDf,1

(
R

(j)
ℓ T(j)

ℓ

)
fT
(

T(j)
ℓ

)∑i

p=0
hT
(

T(j)
ℓ

;κ1,p,ν1
)

/(i+1)

, (5.6)

where

r =
i∑

ℓ=0

N∑
j=1

IDf,1

(
R

(j)
ℓ T(j)

ℓ

) fT

(
T(j)

ℓ

)
∑i

p=0 hT

(
T(j)

ℓ ;κ1,p,ν1

)
/(i+ 1)

T(j)
ℓ .

the term P(R > ropt,1) simplifies in the ratio. As one cannot solve Eq. (5.6) analytically, it is proposed
in [Banerjee et al., 2005] to approximate κ1,i+1 with

κ1,i+1 ≈ ξd− ξ3

1 − ξ2 , (5.7)

where ξ = Id/2(κ1,i+1)/Id/2−1(κ1,i+1). If κ1,i+1 happens to be negative, then it is set to 0. In the CE-
AMIS procedure, the failure probability is evaluated at each step of the algorithm. Here the formula
presented in Chapter 3 Section 3.3.3.3 becomes

P̂f,1,i = 1
(i+ 1)N

i∑
ℓ=0

N∑
j=1

IDf,1

(
R

(j)
ℓ T(j)

ℓ

) P(R > ropt,1)fT

(
T(j)

ℓ

)
∑i

p=0 hT

(
T(j)

ℓ ;κ1,p,ν1

)
/(i+ 1)

, (5.8)

And the theoretical variance is estimated along, with the following approximation

V̂ar
(
P̂f,1,i

)
≈ 1

(i+ 1)N Var
(
IDf,1 (RT) P(R > ropt,1)fT (T)∑i

p=0 hT (T;κ1,p,ν1) /(i+ 1)

)
, (5.9)

assuming all the samples are iid (we suppose the dependence of the samples to be negligible). With
these equations, the value of κ1,i+1 is gradually updated with the convergence of the CE-AMIS algo-
rithm as follows.

1. Initialization. Set the index i equal to 0. Starting from a value κ1,0 ̸= 0, an iid sample S0 of size
N is generated from r, t → hR(r, ropt,1) × hT(t, κ1,0,ν1). With this sample, the failure probability of
this region P̂f,1,0 is estimated with the formula (5.8). The theoretical CV of P̂f,1,0 denoted CV0, is

given by CV0 =
√
V̂ar

(
P̂f,1,0

)
/P̂f,1,0 where V̂ar

(
P̂f,1,0

)
is given by E. (5.9). Then κ1,1 is computed

with population S0 and Eqs. (5.7).

It is assumed that IDf,1

(
R

(j)
ℓ T(j)

ℓ

)
= IDf

(
R

(j)
ℓ T(j)

ℓ

)
while the observations are generated with

κ1,p ̸= 0 around ν1. Thus in Eqs. (5.6), (5.7), (5.8) and (5.9) no distinction is made between those two
failure domains. The situation where not a single R(j)

ℓ T(j)
ℓ from S0 is failing may occur in two different

settings. First, if the initial κ1,0 is too small, then the observations are not concentrated enough
around ν1 and with a particularly narrow failure region, IDf,1

(
R

(j)
ℓ T(j)

ℓ

)
= 0 for all S0. Second, if

the failure region associated with P1 is extremely small or strongly nonlinear, then even with a large
κ1,0 all points of S0 may belong to the safety domain. Indeed, it is recalled here that P1 is located
on the lower bound of the important ring in Case 2. Furthermore in Case 2 the distribution of the
radial component R is left untouched: most of the observations generated will have a norm close to
the E[R]. Depending on the important ring setting, the lower bound can be very distant from E[R].
Therefore, the region in the same direction than P1 but with higher radial values may be in the safety
domain. For both of these situations the Cross-Entropy optimization is stopped and the failure region
associated with P1 is considered negligible for the estimation of the failure probability.

2. Updating of the concentration parameter. While CVi ≥ 10%, the index i is incremented:
i = i+ 1. An iid sample Si of size N is generated from r, t → hR(r; ropt,1) ×hT(t;κ1,i,ν1). The failure
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probability of this region P̂f,1,i is estimated from the i+1 samples S0, . . . , Si generated, using the MIS

formula (5.8). The theoretical CV of P̂f,1,i, denoted CVi, is given by CVi =
√
V̂ar

(
P̂f,1,i

)
/P̂f,1,i where

V̂ar
(
P̂f,1,i

)
is given by E. (5.9). Then κ1,i+1 is updated with populations S0, . . . , Si and Eqs. (5.7).

3. End of the algorithm. Once the CV convergence criterion is reached, n1 is set to n1 = i + 1.
A last iid sample Sn1 of size N is generated from r, t → hR(r; ropt,1) × hT(t;κ1,n1 ,ν1) and the final
probability of this failure region is computed P̂f,1 = P̂f,1,n1 . The matrix M1 is defined as the vector
M1 = (S0, . . . , Sn1) of all the generated samples.

5.2.3.3 Remarks on the CE-AMIS algorithm for κ

Settings of the CE-AMIS structure
Compared to the CE-AMIS algorithm introduced in Chapter 3 Section 3.3.3.3, the last step differs.
Indeed, once the CV criterion is reached, a final sample is generated with the final optimized value
of κ1. This choice was made on purpose, as we noticed that for some examples, the CV criterion
was already reached in the initial step. This can occur if the position of the failing point P1 is truly
well located inside the failure region and for a particularly good choice of κ1,0. Consequently, in the
original CE-AMIS algorithm, the concentration parameter would not have been updated. And the
resulting algorithm would be very dependent on the initial concentration parameter κ1,0. Therefore,
we added this extra sampling to prevent a strong dependence on the parameter setting of the CE-AMIS
algorithm. Since this extra sampling was added, the CV criterion is set to a value quite large: 10%,
as it is not the final theoretical CV of the probability of this failure region.

Here, the sample size of each step is the same and equal to N . This choice results in equal weights
for each density hR(· ; ropt,1) × hT(· ;κ1,p,ν1) in the MIS mixture. As mentioned in the presentation
of the CE-AMIS algorithm in Chapter 3 Section 3.3.3.3, a better setting of the size of the samples
S0, . . . , Sn1 could be considered, as several recent studies make it possible to compute optimal weights
for each density; cf [Sbert and Havran, 2017,Sbert et al., 2018]. For simplicity, we chose to let the sizes
equal. Moreover, it should be underlined that a recent paper [El-Laham et al., 2019] focus on selecting
amongst the (n1 + 1) densities generated in the AMIS procedure, a smaller number of components (a
reduced mixture) for a better efficiency; it is the efficient AMIS (EAMIS). Nevertheless, for simplic-
ity purposes again, we chose to keep all of the (n1+1) densities for each step of the CE-AMIS algorithm.

Choice of the CE-AMIS method over the CE-AIS method
Updating κ1,i+1 with a CE-AMIS algorithm rather than a CE-AIS algorithm as done in [Wang and
Song, 2016, Papaioannou et al., 2019, Zhang et al., 2022] is a non-trivial choice. Indeed, it is well
known that the AMIS structure does induce dependence between the different samples S0, . . . , Sn1 ,
which leads to a bias in the failure probability estimate [Cornuet et al., 2012], whereas the CE-AIS
method does not. In fact, we observed during the investigation that if the CE-AMIS method is used
to update both the scalar parameter κ and the mean direction ν of a vMF density, a bias is then
observable. Nevertheless, the parameter optimized here is only the scalar concentration κ, since ν is
already set. We noticed that in this situation, the bias of the failure probability estimate becomes then
negligible, and the approximation of the theoretical variance, assuming all the samples are independent,
is valid. Moreover, the concentration parameter κ of the vMF is known to be quite unstable in the
CE-AIS algorithm. Indeed, it converges fast to high values and several techniques are used to slow
down its convergence. In [Wang and Song, 2016,Zhang et al., 2022] a bisection technique is employed
to modify the concentration parameter after its updating. Whereas in [Papaioannou et al., 2019], an
upper bound is set on the value of ξ in Eq. (5.7) to prevent numerical instability. We did not encounter
such instability with the CE-AMIS algorithm. This is due to the higher number of observations with
non-zero weights in Eqs. (5.6) and (5.7), which is a property of AMIS: all of the generated observations
are recycled instead of using only the ones generated at the current step.

It should also be noted that in classical adaptive Cross-Entropy methods, the initial parameters are
often selected to retrieve the original input density cf Chapter 3 Section 3.3.3.2 and Section 3.3.3.4, as
no information about the failure region is available. In contrast here, a search for the failure regions
has led to the coordinates of the failing point P1: an important direction has already been identified
and a minimum value of R as well. Therefore, the first sample is generated directly towards the failure
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region and has higher chances of belonging to the failure domain than any sample generated from
fX. Consequently, the sampling procedure is already optimized and all the samples can be relevant
for the CE procedure. Keeping all of the samples in an AMIS structure to update the concentration
parameter and to estimate the failure probability of this region is thus justified. For the different reasons
listed above, the CE-AMIS algorithm is more suited to our method than others CE-AIS algorithm;
furthermore, the AMIS framework allows a better use of the costly lsf evaluations.

The accurate computation of the coordinates of P1 with the local optimization problems of Sec-
tion 5.2.2 is thus crucial in the efficiency of the CE-AMIS algorithm. Indeed, a greater number of
iterations could be required to reach the CV convergence criterion if the mean direction ν1 or ropt,1
are inaccurate. This would lead to a larger simulation budget. Therefore, the optimizations described
in Section 5.2.2.2 must be performed with care.

5.2.4 Adaptation step
5.2.4.1 Construction of a bulge around the failure region

Once a first failure region has been identified and sampled, the search for the remaining failure regions
can be initiated. As mentioned at the beginning of Section 5.2.2.1, the search for the failure regions
is greatly inspired by the FORM method for multiple failure modes [Der Kiureghian and Dakessian,
1998] described in Section 3.2.2 of Chapter 3. This method is adjusted to our specific context and
is part of the Adaptation step mentioned in Section 5.2.1.1. Once the first failure region is found, a
bulge, denoted by Bulge1, is built around the location of its associated representative failing point P1
and added to the lsf g. The modified limit state function, written g̃, is then

g̃(x) = g(x) + Bulge1(x),

and the modified failure domain is written D̃f = {rt : g̃ (rt) ≤ 0}. This failure region is thus not
considered again in the search for the remaining failure regions, as it belongs to the safety domain.

In the proposed method, two different situations have been defined as Case 1 and Case 2 depending
on the location of the failure region within the important ring. Given that the value of the lsf at the
failing point g(P1) is not equal to zero in Case 2, a small modification has been added to the classical
bulge equation presented in [Der Kiureghian and Dakessian, 1998] to introduce a bulge equation that
suits both situations:

Bulge1(x) =

 s1
(
α2

1 − ∥x − P1∥2)2 − Ig(P1)<0
g(P1)
α1

(α1 − ∥x − P1∥) if ∥x − P1∥ ≤ α1,

0 elsewhere,

where Ig(P1)<0 = 1 when g(P1) < 0 and 0 otherwise. This bulge is continuous and differentiable. The
resulting modified failure regions in those two situations are illustrated in Figure 5.4.

The scalar α1 is the radius of the bulge defined by α1 = γ × β1 and s1 is the scale of the bulge,
defined by

s1 = δβ1∥∇g(P1)∥
{(γβ1)2 − (δβ1)2}2 ,

where δ = 0.75 and γ = 1.1 as in [Der Kiureghian and Dakessian, 1998], and β1 = ∥P1∥. Any point in
the bulge is thus no longer in the updated failure domain D̃f . A first updating of the ordered set L
is made to remove any of those points.

5.2.4.2 Definition of a failure cone associated with the failure region

In Case 2, P1 is located on the lower bound of the important ring and hence β1 = LB. However,
most of the observations generated are not located around P1. Indeed, as the distribution of the radial
component R is left unchanged (see Section 5.2.3.2), most observations have a radial value closer to
the mean value E[R] of R than LB. Therefore, the bulge built around P1 is not representative of the
samples generated in this failure region. A failing point belonging to the same failure region as P1 may
be found at a distance from P1 superior to α1.

In Case 1, the same situation may happen if the radius α1 of the bulge is not large enough. Thus
another criterion, inspired by the angle criterion in [Der Kiureghian and Dakessian, 1998], is introduced
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a) b)

Figure 5.4: Illustration of the bulge built around the representative point P1 of the failure region and
the resulting modified failure domain D̃f in a) Case 1 and b) Case 2. This illustration should be
compared to Figure 5.3 for a better understanding. The red circles represent the lower bound and
upper bound of the important ring. In both examples, there is only one failure region in the failure
domain, located in the upper right corner delimited in dark blue. The color legend represents the value
of the modified limit state function g̃.

for both Case 1 and Case 2 in order to prevent this phenomenon: the maximum angle ϕ1 between P1
and the failing points of the population M1 is estimated and the failure cone C1 associated with P1 is
defined as C1 = {x : x̂P1 ≤ γ × ϕ1}. Any failing point belonging to this cone is representative of the
same failure region and must also be removed from the ordered set L to avoid redundancy, it is the
second updating.

Adding an angle criterion is relevant in high-dimensional spaces, as it provides a measure that is
independent of the dimension d of the system. Relying only on the distance criterion α1, defined with
the Euclidean norm that does depend on d, becomes pointless in very high dimensions, as the distances
tend to be identical for all data; it is the concentration of norm phenomenon [Klawonn et al., 2012],
already mentioned in Chapter 3 Section 3.3.3.2 in the clustering algorithms context and in Section
4.2.2 in the context of LS for multiple design points.

5.2.4.3 Identification of the other failure regions

After this second updating, if the ordered set L is not empty, then the remaining points represent some
failure regions that are different from the first one and need to be considered. The next failure region
is identified with the first point of the updated ordered set L, denoted as P2. The sampling problem
(Section 5.2.3) is then repeated with this failure region represented by P2. The failure domain used
in the sampling problem is still Df = {rt : g (rt) ≤ 0} without the modification g̃ defined above. It
prevents introducing a bias in the probability estimation. At the end of the sampling problem, the
second failure region represented by P2 has been properly sampled and another auxiliary density has
been iteratively constructed. A second bulge Bulge2 is created in the same way as Bulge1, so that g̃ is
updated again. The ordered set L is also updated with the distance criterion α2 and the cone criterion
C2.

This scheme goes on until the set L is empty, with the number of failure regions found equal to k.
Algorithm 7 sums up the process of sampling in all failure regions represented by points in the set L.
The modified lsf is initialized with g̃ = g and the number of failure regions k is initialized with k = 0
as there is no identified failure region at the start of the algorithm.

5.2.5 Search for missed failure regions
The set L found in the identification problem presented in Section 5.2.2.3 may not include all the ex-
isting failure regions. For example, one failure region may be so dominant that all the optimized points
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Algorithm 7 Sampling in all failure regions of the ordered set L
Require: The ordered set L, the lsf g, the modified lsf g̃ and the number k of failure regions.

Construction of densities and sampling
while L ̸= ∅ do

Set k = k + 1. Select Pk as the first element of the ordered set L.
Sampling Problem: Construct an optimal auxiliary density for the failure region represented by
Pk and generate a population Mk in this failure region as in Section 5.2.3.
Adaptation Step: Add the Bulgek to the modified lsf g̃ and update the set L by removing points
closer to αk from Pk and points belonging to the cone Ck.

end while
All the failure regions represented by failing points in the set L have been sampled.
return The number k of failure regions and the modified lsf g̃.

of the set L have converged to this particular region. Therefore, some failure regions that are slightly
harder to find by optimization may be missed. To solve this problem, another set of optimizations is
performed, to find the failure regions that could have been overshadowed. The optimizations are the
same as the one presented in Section 5.2.2.2 with Eqs. (5.1) and (5.2) except for two updates. First,
the failure domain is no longer Df but the modified one D̃f = {rt : g̃ (rt) ≤ 0}. Thereby, all the bulges
constructed earlier prevent the optimization from converging back to the same points, because they are
no longer in the failure domain. Second, the multi-start technique of the first optimization Eq. (5.1)
is centered around the opposite direction x0 of the failing points previously found, as suggested in the
FORM method with multiple design points [Der Kiureghian and Dakessian, 1998]

x0 = −ϵ(P1 + · · · + Pk), (5.10)

where ϵ = 0.5. After the optimizations, a new set L is found. The failing points of this set are all
located at least αi-away from each point Pi with i ∈ {1, . . . , k}. After removing the failing points of the
set belonging to the cone Ci of each Pi, the set L contains only failing points representative of failure
regions that have not been sampled yet. It is sorted as described in Section 5.2.2.3. Algorithm 7 is
then repeated for this ordered set L until is it empty. Algorithm 8 sums up the sampling of all failure
regions of the failure domain.

Algorithm 8 Search and sampling of all failure regions of the failure domain
Require: The lsf g and its gradient ∇g.

Initialization
Identification Problem: Create an ordered set L as output of the Algorithm 6 with inputs (g,∇g).
Set the number of failure region k = 0. Initialize the modified lsf with g̃ = g
Sampling all failure regions represented by failing points in the set L
while L ̸= ∅ do

Sampling Problem and Adaptation Step: Generate a population in every failure region represented
by failing points in the ordered set L as derived in Algorithm 7 with inputs (L, g, g̃, k) and outputs
(k, g̃).
Identification Problem: Create a new set L with the optimizations presented in Section 5.2.2
with the modified lsf g̃ and the modified failure domain D̃f = {rt : g̃ (rt) ≤ 0} and x0 =
−ϵ(P1 + · · · + Pk). Update this set L by removing points located within the cones Ci for each Pi

with i ∈ {1, . . . , k} and sort the set L.
end while
All failure regions of the failure domain have been identified and sampled.
Set K equal to the last value of k, such that K is the final number of failure regions identified and
sampled, in the failure domain.
return The total number of failure regions K.

The algorithm ends when the new set L is found to be the empty set. It means that no other
failure region has been found, i.e., the entire failure domain has (presumably) been covered. It should
be noted that the bulges keep getting added to the modified lsf g̃ through the different created sets L.
It is recalled here that the modified limit state function is used only for the optimizations performed
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in the identification problems, and not for the construction of the auxiliary densities in the sampling
problems.

5.2.6 Estimation of the global failure probability
5.2.6.1 Final MIS estimate expression

The global failure probability is estimated at the end of Algorithm 8 with the MIS estimate presented
before. The global IS auxiliary density is a mixture of a number ntotal of densities structured as
hR × hT. The final equation of the estimate is

P̂MIS
f = 1

ntotal ×N

ntotal×N∑
j=1

IDf

(
R(j)T(j)

) fR

(
R(j)) fT

(
T(j)

)
hMIS

(
R(j),T(j)

) ,

where the random pairs
(
R(1),T(1)

)
,
(
R(2),T(2)

)
, . . . are generated from hMIS

∀r ∈ R+ ∀T ∈ T d hMIS(rt) = 1
ntotal

K∑
k=1

hR(r; ropt,k)
{

nk∑
ℓ=0

hT(t;κk,ℓ,νk)
}
.

Thus Nsamp = ntotal ×N . As previously noted, the number ntotal of IS auxiliary densities is equal to
n1 + · · · + nK + K. The number ntotal is thus quite larger than in other algorithms where only one
density is associated with a particular failure region k [Papaioannou et al., 2019, Geyer et al., 2019].
We compared the proposed MIS estimate with a lighter version, where only the last density of the
CE-AMIS algorithm and its sample were kept in a MIS estimate. The full MIS estimate has proven
to be the more stable in terms of empirical CV than the lighter version, therefore this framework was
selected.

This estimate does not require any prior knowledge of the number K of failure regions, as it is
computed within the algorithm. The failure probability associated with each failure region P̂f,k is
computed as well and it can be an interesting quantity to understand the contribution of each failure
region to the global failure probability. If the failure regions are disjoint, then the crude sum of these
failure probabilities gives the same estimate than the proposed MIS estimate. However if they are not
disjoint, the proposed MIS estimate takes into account the union of these regions while the crude sum
of the P̂f,k does not and returns a higher biased failure probability value.

It should be noted that if there exist some errors in the gradient estimation or in the local optimiza-
tions performed during the identification steps, the identification of the different failure regions and
the coordinates of their representative point can be impacted. The resulting MIS probability estimate
may be biased if the parameters ropt,k are not identified well. Therefore, the quality of the proposed
MIS estimate highly depends on the accuracy of the optimizations presented in Section 5.2.2.2.

The samples associated with different failure regions are independent, however there is a small
dependence amongst the samples associated with the same failure region, as previously mentioned in
the CE-AMIS algorithm in Section 5.2.3.3. We assume this dependence to be negligible to approximate
the theoretical variance of the estimate as such

V̂ar
(
P̂MIS

f

)
≈ 1
ntotal ×N

Var
(
IDf

(RT) fR (R) fT (T)
hMIS (RT)

)
. (5.11)

5.2.6.2 Discussion on the simulation budget allocation

The number (nk + 1) of densities associated with the failure region k depends on the CV criterion of
the CE-AMIS algorithm presented in Section 5.2.2.2. The harder it is to sample in the failure region
k and have a good estimation of P̂f,k, the higher this number (nk + 1) is and the larger the generated
population Mk = (S0, . . . , Snk

) gets, as N is fixed. Thus in the final estimate, a large population
could be associated with a failure region particularly hard to reach but not necessarily important in
the failure domain, i.e with a small contribution to the failure probability. In other algorithms, which
consider the failure domain in its entirety, this issue would not happen, as the algorithms would stop
as long as enough observations are in the failure domain, no matter the region (for algorithms with
ρ-quantile criterion for instance). Therefore, this could be a drawback of the proposed method. The
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global simulation budget may not be pertinently distributed amongst the different failure regions.
However, as a consequence, smaller failure regions are theoretically not left out or overshadowed by
other larger failure regions. This situation may occur with the other algorithms mentioned.

To keep track of the simulation budget, the evaluations of the lsf and its gradient needed in the
proposed method is now further detailed. The lsf g is evaluated through several repetitions of the
identification problem (Section 5.2.2) and the sampling problem (Section 5.2.3). The numbers Nopt,1
and Nopt,2 denote the global numbers of evaluations of g and ∇g, respectively, required for all the
optimizations performed in the identification problems, and Nsamp is the final number of lsf evaluations
required in the sampling problems. The total number of lsf evaluations is equal to Nopt,1 +Nsamp. It is
reminded here that a greater simulation budget Nsamp may be required to reach the CV convergence
criterion of the CE-AMIS algorithm if the sampling density is sub-optimal because of inaccurate mean
direction νk or ropt,k. Therefore the simulation budget is strongly dependent on the quality of the
optimizations presented in Section 5.2.2.2.

5.2.6.3 Example in dimension 2: A 4-branch system

To clarify the procedure, an example in dimension 2 is presented. This example is meant to be for
illustrative purposes only, as the goal of the algorithm is to estimate the failure probability of systems
involving a large number of input variables. The following example is frequently found in the literature
and was used as an illustration example for the different failure probability algorithms of Chapter 3.
The inputs are assumed to be Gaussian X ∼ N (02, I2), and the lsf equation is given by

g(X) = min



(X1 −X2)2/10 − (X1 +X2)/
√

2 + 3

(X1 −X2)2/10 + (X1 +X2)/
√

2 + 3

(X1 −X2) + 7/
√

2

(X2 −X1) + 7/
√

2


.

The reference value for the failure probability is 2.22 × 10−3. Figure 5.5 displays the function g and
the contour of the failure domain.

Figure 5.5: Limit state function for the 4-branch system. This system has four failure regions located
at the four corners of the input space. The color legend represents the value of the limit state function
g. The dark blue line is the limit state surface.

The first step of the algorithm is to find P1 through optimization (Section 5.2.2); this is the
identification problem. Here the dimension is too low for the important ring to be any restrictive;
it encompasses the whole input space. Hence, all the failure regions start inside the important ring.
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This application is thus an example of the situation referred to as Case 1 in the previous sections.
After the identification problem (with a random multi-start of size 10), the set L contains only three
different representative points, (−2.12,−2.12), (2.12, 2.12) and (2.47,−2.47). The Euclidean norm of
both (2.12, 2.12) and (2.12,−2.12) is very close to 3 while the Euclidean norm of (2.47,−2.47) is close
to 3.5; thus it is last in the ordered set. This first identification problem has missed the fourth failure
region.

The first point of the set is P1 = (−2.12,−2.12) with ropt,1 = 2.99 and ν1 = (−0.71,−0.71). The
sampling of the failure region around P1 is performed (Section 5.2.3) with κ1,0 = 20 and N = 1000.
The first CV0 computed is equal to 2.6%, thus κ is only updated once and its final value is 33.5. The
population M1 of size 2N is illustrated in Figure 5.6.

Figure 5.6: Sampling of the first failure region of the 4-branch system. One has P1 = (−2.12,−2.12),
ropt,1 = 2.99 and ν1 = (−0.71,−0.71). The population M1 is of size 2N as only two iterations were
needed in the algorithm, with κ1,0 = 20 and κ1,1 = 33.5 and is represented with pink dots. The color
legend represents the value of the limit state function g. The dark blue line is the limit state surface.

The Bulge1 is added to the limit state function g to create the modified lsf g̃ and the set L is
updated (adaptation step). The same scheme is repeated for P2 = (2.12, 2.12) and P3 = (2.47,−2.47)
(Section 5.2.4). Populations M2 and M3 are displayed in Figure 5.7. The set L is empty at this point,
and the search for missed failure regions begins (identification problem, Section 5.2.5) with a new set
L resulting of the optimization on the modified limit state function g̃, displayed in Figure 5.8.

The new set L results in the singleton {(−2.47, 2.47)}. The sampling of the fourth failure region
is performed (sampling problem), Bulge4 is added to g̃ and once this is done, the set L is empty
(adaptation step). The resulting population M4 is displayed in Figure 5.9 as well as the new modified
lsf.

The new set L resulting from the optimization fails to detect any failure region different from the
ones previously found (identification problem) and thus the algorithm stops. The failure probability is
estimated with a MIS estimate of eight densities, two for each failure region. The estimated probability
is equal to 2.23 × 10−3, with a theoretical CV equal to 1.3%. The total number of evaluations of the
gradient of g for the optimizations of the identification problems is equal to Nopt,2 = 330. The number
of evaluations of g comprises Nopt,1 = 476 evaluations for the optimizations of the identification
problems, and Nsamp = 4 × 2 × 1000 = 8000 evaluations for the sampling problems of the four failure
regions.
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a) b)

Figure 5.7: Sampling of a) the second and b) third failure regions of the 4-branch system. One has
P2 = (2.12, 2.12), ropt,2 = 2.99, and ν2 = (0.71, 0.71). Population M2 is of size 2N as only two
iterations were needed in the algorithm, with κ2,0 = 20 and κ2,1 = 27.6. Moreover, P3 = (2.74,−2.47),
ropt,3 = 3.49, and ν3 = (0.71,−0.71). Population M3 is of size 2N as only two iterations were needed
in the algorithm, with κ3,0 = 20 and κ3,1 = 18.1. The color legend represents the value of the limit
state function g. The dark blue line is the limit state surface.

Figure 5.8: The modified limit state function g̃ after the additions of Bulge1, Bulge2, and Bulge3.
The color legend represents the value of the modified limit state function g̃. The dark blue line is the
modified limit state surface.

5.3 Numerical investigations with high-dimensional input space
The performance of the proposed algorithm is investigated with three numerical examples taken from
the IS literature and with a realistic aerodynamic engineering application. The first two applications
are compared with the improved Cross-Entropy vMF-Nakagami Mixture algorithm (iCE-vMFNM)
of [Papaioannou et al., 2019] presented in Section 3.3.3.4 of Chapter 3 and with a subset simulation
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a) b)

Figure 5.9: a) Sampling of the fourth failure region of the 4-branch system. One has P4 = (−2.74, 2.47),
ropt,4 = 3.49, and ν4 = (−0.71, 0.71). Population M4 is of size 2N as only two iterations were needed
in the algorithm, with κ4,0 = 20 and κ4,1 = 16.4. The color legend represents the value of the limit
state function g. The dark blue line is the limit state surface. b) The modified limit state function
after the addition of Bulge4 to the previous modified limit state function. The color legend represents
the value of the modified limit state function g̃. The dark blue line is the modified limit state surface.

(SS) algorithm [Au and Beck, 2001] presented in Section 3.3.2 of Chapter 3. The Monte Carlo method
is used for reference value. The inputs of the first two examples and the realistic engineering application
follow the standard Gaussian distribution, while the inputs of the third example follow a multivariate
Student distribution.

As previously noted, all the examples involve inputs of dimension 100 and above. Nevertheless, as
shown at the end of the previous section, the algorithm can also perform well in small dimension, even
though it is not the primary objective of the proposed method.

To compare the different methods, 500 independent simulation runs were performed to calculate the
statistics of the probability estimates and the other quantities of interest, except for the last example
where the algorithm ran only once.

5.3.1 Series system of four linear limit state functions

5.3.1.1 Presentation of the application

The first example is a series system problem with four components for which the number of random
variables can be chosen without affecting the probability of failure; it was inspired by a numerical ap-
plication from [Wang and Song, 2016] and [Papaioannou et al., 2019]. This first example demonstrates
the robustness of the proposed algorithm to find all the failure regions in the high-dimensional input
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space. It is defined standard Gaussian space X ∼ (0d, Id) and the lsf is given by

g1(X) = min



β + 1√
d

d∑
i=1

Xi

β − 1√
d
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i=1

Xi

β + 1√
d

d/2∑
i=1

Xi −
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i=d/2+1

Xi


β + 1√

d

−
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Xi +
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Xi





. (5.12)

The failure probability is then independent of the number d of random variables. In order to have a
low failure probability, the β parameter is set to β = 5. The reference probability value computed with
the Monte Carlo method is equal to Pf = 1.15 × 10−6 with an empirical CV of 4.1% and a sample of
size 5 × 108. There are four failure regions in this failure domain, each associated with a limit state
function.

5.3.1.2 Definition of the important ring

The performance of the proposed method is studied in dimensions 200, 300, and 400. As the inputs
are standard normal, one has R ∼ χ(d). The important ring is defined as in [Katafygiotis and Zuev,
2008]: the important interval [LB, UB] is centered around

√
d and the smallest value of ϵ such that

P(
√
d − ϵ ≤ R ≤

√
d + ϵ) ≥ 1 − 10−8 is selected. It should be noted that another definitions of the

important ring is possible, cf Section 2.2.2.1 of Chapter 2. The interval is [10.02, 18.26] for d = 200,
[13.22, 21.42] for d = 300 and [15.91, 24.09] for d = 400, and is displayed in Figure 5.10.

a) b) c)

Figure 5.10: Illustration of the important interval of the χ(d) distribution for the three dimensions
tested a) d = 200, b) d = 300 c) d = 400. The dashed line represents the value of

√
d, the red dotted

lines are the two important interval bounds.

The four design points of the system are straightforward. For the first two linear lsfs, the design
points are

{
−(β/

√
d)1d, (β/

√
d)1d

}
where 1d = [1, . . . , 1] and for the other two linear lsfs they are{

−(β/
√
d)1̄d, (β/

√
d)1̄d

}
where 1̄d is the vector 1̄d = [1, . . . , 1,−1, . . . ,−1] in which the change of sign

occurs at the (d/2 + 1)-th component. Each of these design points has a norm equal to β, thus they
do not belong to any of the important rings defined above. Therefore each of the four failure regions
starts before the beginning of the important ring and spreads across it. Thus this application is an
example of the situation referred to as Case 2 in the previous sections.

It should be noted that although the failure regions are not all disjoints, the failure probability value
is very close to the crude sum of the four FORM estimates of each failure regions Pf ≈ 4 × Ψ(−β) =
1.15 × 10−6, where Ψ is the cdf of an univariate standard normal law; cf Section 3.2.1 Chapter 3. This
results from the linearity of each limit state function.
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5.3.1.3 Settings of the proposed algorithm

The optimizations presented in Section 5.2.2.2 are performed with SLSQP algorithm [Sahin, 2019],
where the precision goal for the value of the objective function in the stopping criterion is set to 10−3

for both of the optimizations Eq. (5.1) and Eq. (5.2). The maximum number of iterations in the
algorithm is set to 1000. Although the optimizations must be very accurate to improve the efficiency
of the CE-AMIS algorithm, the simulation budget associated with these optimizations (Nopt,1 and
Nopt,2) must not be too large either.

The random vector for the multi-start technique mentioned in Section 5.2.2.3 and Section 5.2.5 in
the search for the failure regions is generated with Latin Hypercube Sampling (LHS) [Shields et al.,
2015] of size 10. LHS is a sampling method developed for independent inputs which aims to cover the
inputs space with a stratified sampling strategy. In the proposed method, LHS is thus performed with
standard normal inputs in the first identification problem of Section 5.2.2.3 and then with independent
normal inputs of unit variance centered on x0 of Eq. (5.10) in the following identification problems of
Section 5.2.5. Although the choice of 10 for the sampling size is arbitrary, it proved to be sufficient for
the example considered here.

In the CE-AMIS algorithm, N is set to 1000 and the maximum number of iterations, denoted pmax
is set to pmax = 10. The number pmax is rather low, but it is adequate as the only updated parameter
is the scalar concentration parameter κ of the vMF density.

One should remark that the limit state function g1 is not differentiable at all points: the gradient
is not defined for all x where two of the four linear lsfs evaluations are equal. This occurs for all
x = [0, . . . , 0, xd/2+1, . . . , xd] and x = [x1, . . . , xd/2, 0, . . . , 0]. In practice, the optimizer did not evaluate
the gradient of g1 at those particular points during our investigation.

5.3.1.4 Study of the influence of κ0 on the failure probability estimate

For each failure region k, an initial value of κk,0 has to be set a priori in the CE-AMIS algorithm of
Section 5.2.3.2. A study of the influence of this κk,0, simply denoted κ0, on the failure probability
estimate has been conducted for this application and is displayed in Figure 5.11. The failing points
representative of the four failure regions are found in the same direction as the actual design points,
but with a norm equal to LB instead of β. For each of the four failure regions, the final converged κ
value of the CE-AMIS algorithm is the same. This value grows with the dimension. For d = 200, the
converged κ value is around 79. For d = 300, the converged κ value is around 94. Finally for d = 400,
the converged κ value is around 107.

The number K of failure regions found by the algorithm is displayed in Figure 5.11 c). In dimension
300, where the converged κ value is equal to 94, setting κ0 = 50 or κ0 = 150 does not prevent the
algorithm from finding the four failure regions each time. However, in dimension 200, if κ0 is greater
than the converged value 79, the algorithm finds on rare occasions five failure regions instead of four
(once every 500 independent simulations, for κ0 = 120 and κ0 = 150). This means that the samples
generated in one particular failure region are too concentrated and do not cover the whole failure
region; as a result, the remaining part is identified as another new failure region (as both the bulge
and the cone associated with the representative failing point are not wide enough, see Section 5.2.4).
This is not a problem in terms of failure probability estimation, but it results in a heavier budget
Nsamp for these particular simulation runs.

In contrast in dimension 400, if κ0 is a lot smaller than the optimal κ equal to 107, the algorithm
sometimes fails to find the four failure regions and stops at three (18 times out of 500 independent
simulations, for κ0 = 50). Indeed, if κ0 is too small, then the sample generated in the first step of
the CE-AIS algorithm is too wide, and the situation occurs where not a single R(j)T(j) is failing.
This particular failure region is thus considered as negligible (see Section 5.2.3) and therefore K = 3.
The resulting probability estimate is then biased (see Figure 5.11 a)) and the variance of the estimate
is higher (see Figure 5.11 d)). However, it should be noted that finding three failure regions or five
remains rare instances, and that the algorithm is quite robust regarding the number of failure regions
found depending on the value of κ0.

The probability estimate is very close to the reference value and is not dependent on κ0, except
in dimension 400 when κ0 = 50. It seems that the value of κ0 that minimizes the number Nsamp of
evaluations of the limit state function is when κ0 is really close to the optimal κ, which is expected,
(see Figure 5.11 b)). Then, as κ0 is set greater or smaller, the budget Nsamp increases as more steps
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Figure 5.11: a) Evolution of the failure probability estimate with respect to κ0, for dimensions 200,
300, and 400. b) Evolution of the number of lsf evaluations Nsamp with respect to κ0. c) Evolution
of the number K of failure regions found with respect to κ0. d) Evolution of variance of the failure
probability estimate with respect to κ0.

are necessary for the CE-AMIS algorithm to converge.
The global numbers Nopt,1 and Nopt,2 of evaluations of g and ∇g required for all the optimizations

performed in the identification problems did not vary throughout the study. Indeed, as the initial
LHS is of size 10, if the algorithm finds three or five failure regions instead of four, the number of
performed optimizations remains the same in the end. Thus κ0 does not influence the numerical cost
of the optimization part.

The conclusion of this study is to choose κ0 relatively high when no information concerning the
failure regions is available and the higher the dimension, the higher κ0.

5.3.1.5 Comparison with the iCE-vMFNM method and the SS algorithm

Settings of the Subset Sampling algorithm
The subset sampling algorithm used for this application employs the modified Metropolis algorithm
described in Appendix A.2 as it is suited for high-dimensional standard normal inputs. The proposal
univariate pdfs of the modified Metropolis algorithm are chosen as uniform pdfs of width w = 1,
centered at the coordinate of the current sample: for component j, the proposal univariate pdf is
p∗

j

(
· |θ(k)

j

)
= I[

θ
(k)
j

−w,θ
(k)
j

+w
]/2w, where θ(k) is the current state (cf Appendix A.2). The p0 probabil-

ity is set equal to 0.1. For this particular application, the spread parameter w was set to 1 as it gives
better result than if w = 2 (which is the value suggested by [Au and Beck, 2001]). The sample size at
each iteration is set to N = 15000, which is quite large but necessary as there are four failure regions.
A maximum number of iteration is set to pmax = 10 for comparison purposes.

Settings of the iCE-vMFNM algorithm
The parameters of the iCE-vMFNM algorithm are set as follow : δ = 10 and N = 100000 (cf Chapter 3
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Table 5.1: Comparison of the proposed algorithm with the iCE-vMFNM algorithm and with a SS
algorithm for g1. The reference probability is equal to 1.15×10−6 for the three dimensions considered.
The symbol [∗∗] indicates that fewer than 500 simulations converged.

Series system of four linear limit state functions
Proposed
algorithm

iCE-
vMFNM

Subset
sampling

d = 200
1.14×10−6 1.00×10−6 1.15×10−6

CV 4.1% CV 56.4% CV 10.6%
(3.9%)

Nsamp 14486 Nsamp 449400 Nsamp 91530
Nopt,1 261
Nopt,2 204

d = 300
1.15×10−6 1.03×10−6 1.15×10−6

CV 3.6% CV 50.6% CV 10.9%
(3.6%)

Nsamp 12174 Nsamp 456800 Nsamp 91860
Nopt,1 231
Nopt,2 184

d = 400
1.15×10−6 1.05×10−6 1.15×10−6

CV 3.3% CV 33.1% CV 10.3%
(3.4%) [**]

Nsamp 11308 Nsamp 400000 Nsamp 91470
Nopt,1 255
Nopt,2 213

Section 3.3.3.4). This CV target value δ = 10 resulted in being the best value after several tests. The
number N is very large as well but it is necessary as the failure probability is very small. It is recalled
here that in the iCE-vMFNM algorithm, the first sample is generated from fX and there are no inter-
mediate failure thresholds. The number of densities in the mixture, K = 4 is a parameter to be set;
therefore, its previous knowledge is required unlike in the proposed algorithm where no assumption is
made on K. A maximum number of iteration is set to pmax = 10 for comparison purposes.

Comparison of the methods
To compare the algorithm with the other available methods, κ0 is selected as follows: 70 when d = 200,
90 when d = 300, and 110 when d = 400. The performance of the algorithms is summarized in Table 5.1
where the CV displayed for all the methods is the empirical one, estimated over the 500 independent
simulation runs. The numbers in parentheses are the mean of the theoretical CV estimates of the
proposed method, computed with the approximation of the variance of Eq. (5.11).

The estimates of the proposed method and the subset simulation method are quite close to the
reference value 1.15 × 10−6. However, the proposed algorithm has the smallest CV with the smallest
global budget. Indeed, the total number of evaluations of the lsf Nopt,1 + Nsamp is very low: with
less than 15,000 evaluations, the CV is below 4% whatever the dimension d. For every simulation,
the number of failure regions found by the proposed method is equal to 4. The CE-AMIS algorithm
converges in 3 steps for each failure region on average, no matter the dimension. Consequently, the
number Nsamp seems to be independent of the dimension, which is expected since only the scalar
parameter κ is optimized with the CE-AMIS method. The failure probability of each region P̂f,k is
close to Ψ(−5) = 2.87 × 10−7, its FORM estimate. Therefore the regions contribute equally to the
global failure probability. The optimization budgets Nopt,1 and Nopt,2 remain negligible compared to
the number of lsf evaluations required by the other two methods. The estimates of the theoretical
CVs are very close to the empirical CVs, which indicates that the precision of the algorithm can be
correctly determined with only one simulation run and that the independence assumption is relevant.
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Table 5.2: Comparison of the proposed algorithm with the iCE-vMFNM algorithm and with a SS
algorithm for g1, with β = 3.5. The reference probability is equal to 9.30 × 10−6 for the d = 200.

Series system of four linear limit state functions
Proposed
algorithm

iCE-
vMFNM

Subset
sampling

d = 200
9.29×10−4 9.32×10−4 9.33×10−4

CV 2.6% CV 6.5% CV 7.7%
(2.6%)

Nsamp 12312 Nsamp 41080 Nsamp 38240
Nopt,1 229
Nopt,2 184

The iCE-vMFNM algorithm performs poorly compared to the other two algorithms. Indeed, the
mean estimate is a bit biased compared to the reference value, the CV is very high and the simulation
budget is huge compared to the other two methods. In dimension 400, the displayed statistics result
from less than 500 independent simulations, hence the symbol [**], given that the algorithm did not
converge most of the time.

The number of evaluations of g1 for the subset sampling method is independent of the dimension of
the inputs. The simulation budget is quite high: at least six times higher than the proposed algorithm
global budget. This method leads to large CVs as well: it is two to three times superior to the proposed
estimate CVs.

5.3.1.6 Influence of the value of Pf

In order to study the influence of the value of the probability on the efficiency of the algorithms, a study
of same application is conducted with a value of β = 3.5 in dimension 200. The reference probability
value computed with the Monte Carlo method is equal to Pf = 9.30 × 10−4 with an empirical CV
of 3.2% and a sample of size 106. The probability value is once more very close to the crude sum
of the four FORM estimate: Pf ≈ 4 × Ψ(−β). This probability is a lot larger than when β = 5.
To compare the methods, a few changes considering the settings of the algorithms are made. In the
proposed algorithm, since the probability is quite large, the value of the parameter γ, which influences
the size of the bulges of Section 5.2.4.1 and the cones of Section 5.2.4.2 are lowered from γ = 1.1 to
γ = 1 (only for this particular application). In the SS algorithm, the size of the sample are lowered to
N = 10000. In the iCE-vMFNM algorithm, the target CV is lowered to δ = 4 and the sample size is
lowered to N = 20000.

The value of κ0 is set the same as in the previous study, thus κ0 = 70. The performance of the
algorithms is summarized in Table 5.2, the CV displayed for all the methods is the empirical one,
estimated over the 500 independent simulation runs. The numbers in parentheses are the mean of the
theoretical CV estimates of the proposed method, computed with the approximation of the variance
of Eq. (5.11).

The estimates of the three methods are very close to the reference value 9.30 × 10−4. Once more,
the proposed algorithm has the smallest CV with the smallest global budget. The total number of
evaluations of the lsf Nopt,1 + Nsamp is still very low: with less than 13,000 evaluations, the CV is
below 3%. For every simulation, the number of failure regions found by the proposed method is equal
to 4. As previously, the CE-AMIS algorithm converges in 3 steps for each failure region on average.
Consequently, the number Nsamp seems to be independent of the rarity of the failure event. The final
converged κ value of the four failure regions is close to 55. The failure probability of each region P̂f,k

is close to Ψ(−3.5) = 2.33 × 10−4, its FORM estimate. The optimization budgets Nopt,1 and Nopt,2
remain negligible compared to the number of lsf evaluations required by the other two methods. The
estimates of the theoretical CVs are still very close to the empirical CVs. Selecting the value of κ0
as 70, even though the failure region is much larger here (the final converged κ value is equal to 55
instead of 79 when β = 5), underlines the robustness of the algorithm concerning this κ0 value.

The iCE-vMFNM algorithm performs significantly better compared to the previous study. The
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simulation budget as well as the CV are divided by 10. Consequently, the efficiency of this algorithm
depends on the rarity of the failure event. The simulation budget is still three times higher than the
proposed method.

The SS algorithm performs slightly better in this configuration, as the simulation budget is lower
along with the CV. Consequently, the efficiency of this algorithm depends as well on the rarity of the
failure event. The simulation budget is still three times higher than the proposed method.

Remarks on the setting of the γ parameter
It should be noted that if the value of γ is set so γ = 1.1 instead of γ = 1 in this configuration, the
number of failure regions found by the algorithm is not always equal to 4. Indeed over 500 simulations,
79 simulations resulted in only 3 failure regions found, due to the width of the failure regions. Indeed,
as the failure event is not very rare, the failure regions are quite large and relatively close to one
another. It may happen that in the CE-AMIS algorithm, an observation generated in the sampling
process of the failure region k reaches another failure region k′. The maximum angle ϕk associated with
the failure region k is then very large, and multiplying it by 1.1 makes it even larger. The resulting
failure cone Ck encompasses then the failing point Pk′ associated with the other failure region k′ found
by the optimizations. Consequently, this failure region k′ is not accounted for, or only very little as
just a small part of it has been sampled. At the end of the algorithm, the failure probability estimate
is then biased. Nevertheless, this phenomenon occurs on rare occasions and lowering the value of γ
solves the problem. The value of γ is kept to 1.1 for the rest of the applications.

5.3.1.7 Test on higher dimensions

The performance of proposed method is investigated for this application in dimensions 500 and 1000
as well, to test the algorithm in very high dimensions. For this test, the first setting of the application
is used (β = 5, γ = 1.1) and 100 independent simulations are run.

Dimension 500
The initial value of the concentration parameter κ0 is set to κ0 = 130. The number of failure regions
found by the proposed method is equal to 4. As previously, the CE-AMIS algorithm converges in 3
steps for each failure region on average, Nsamp = 11520. The final converged value of κ is close to
119. The failure probability estimate equals P̂f = 1.15 × 10−6 , with an empirical CV of 3.3% and
a theoretical CV of 3.2% (assuming all the samples are independent). The optimization budgets are
Nopt,1 = 248 and Nopt,2 = 205 .

Dimension 1000
The initial value of the concentration parameter κ0 is set to κ0 = 200. The number of failure regions
found by the proposed method is equal to 3.98, thus for two runs only 3 failure regions are found.
For these two runs, it seems the same problem mentioned in the previous section occurred: the fail-
ure cone is a little too wide. The CE-AMIS algorithm converges in 3 steps for each failure region
on average, Nsamp = 11930. The final converged value of κ is close to 167. The failure probability
estimate equals P̂f = 1.14 × 10−6, with an empirical CV of 4.6% and a theoretical CV of 2.8% (as-
suming all the samples are independent). The optimization budgets are Nopt,1 = 273 and Nopt,2 = 213.

The proposed method stays relevant in very high-dimensional spaces. In dimension 1000, it seems a
smaller setting of the γ parameter could lead to better results, however even with γ = 1.1, the proposed
method is already very efficient. This value is kept for the others applications.

5.3.2 Duffing oscillator
5.3.2.1 Presentation of the application

The second example is a nonlinear elastic system as described in [Zuev, 2009]. The Duffing oscillator
is modeled by the equation

mz̈(t) + cż(t) + k
{
z(t) + γz(t)3} = f(t),
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where z(t), ż(t), and z̈(t) are the displacement, velocity, and acceleration of the oscillator at time
t, respectively, and the constants are taken as in [Zuev, 2009], with m = 1000 kg, c = 200π Ns/m,
k = 1000(2π)2 N/m and γ = 1 m−2. The oscillator is subjected to the random loading f(t,X),
discretized in the frequency domain as in [Papaioannou et al., 2019]

f(t,X) = −mσ
d/2∑
i=1

{
Xi cos(ωit) +Xd/2+i sin(ωit)

}
,

where ωi = i∆ω with ∆ω = 30π/d and σ =
√

2S∆ω, where S = 0.005 m2/s3 is the intensity of the
loading. Here, X are independent standard Gaussian random variables of dimension d. The lsf g2 is
the maximum displacement of the oscillator at t = 2 s defined as

g2(X) = min{zcrit,1 − z(2s), z(2s) − zcrit,2},

where zcrit,1 = 0.1 and zcrit,2 = −0.06. The initial values are set to z(0) = 0 and ż(0) = 1.5. The
limit state function along with its gradient are computed with an Euler method. The reference value
is computed with a Monte Carlo method and is equal to 4.28 × 10−4 with an empirical CV of 4.9%
with a sample of size of 106, whatever the dimension d.

5.3.2.2 Definition of the important ring

The performance of the proposed method is investigated in dimensions 100, 200, and 300 and the im-
portant ring is defined as in the previous application Section 5.3.1.2. Thus for d = 100, the importance
interval equals [5.83, 14.17] and for the other two dimensions the interval is the same as before.

Compared to the previous example, the search for design points of the system is not as straight-
forward. The proposed method found each time 2 failure regions. Both failure regions start before
the beginning of the important ring and spread across it; thus this application is another example of
the situation referred to as Case 2 in the previous sections. The direction ν1 and ν2 of the associated
failing point P1 and P2 are displayed in Figure 5.12. They seem to be opposite to each other and the
plots are the same no matter the dimension, which is expected. Therefore the failure event is linked to
extreme values of the amplitudes associated with the lowest frequencies in the harmonic discretisation
of the random loading. It is reminded here that the random loading formula associates the random
vector’s components 1 to d/2 with a cosine and d/2 + 1 to d with a sine. As the failure regions are
opposite to each other, the sum of the failure probability associated with each failure region should be
equal to the final MIS estimate.

a) b) c)

Figure 5.12: Illustration of the direction of the failing points P1 and P2 representative of the two failure
regions ) in dimension 100 b) in dimension 200 c) in dimension 300.

5.3.2.3 Comparison with the iCE-vMFNM method and the SS algorithm

The setting of the proposed method is the same as the one presented in Section 5.3.1.3. The setting
of the SS algorithm is the same as the one presented in Section 5.3.1.5, except for the size of the
sample at each iteration which is set to N = 10000. For the iCE-vMFNM algorithm, the number of
densities in the mixture is set to K = 2 and the CV target value is set to δ = 2 for all dimensions.
However, the sample size is set depending on the dimension. It is recalled here that the iCE-vMFNM
algorithm requires a number of 2(d+ 3) + 2 parameters to be optimized; cf Chapter 3 Section 3.3.3.4.
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Table 5.3: Comparison of the proposed algorithm with the iCE-vMFNM algorithm and with a SS
algorithm for g2. The reference probability is equal to 4.28×10−4 for the three dimensions considered.

Duffing oscillator
Proposed
algorithm

iCE-
vMFNM

Subset
sampling

d = 100
4.28 × 10−4 4.28 × 10−4 4.29 × 10−4

CV 4.7% CV 5.0% CV 8.7%
(4.6%)

Nsamp 5818 Nsamp 9312 Nsamp 40000
Nopt,1 386
Nopt,2 278

d = 200
4.26 × 10−4 4.26 × 10−4 4.28 × 10−4

CV 4.0% CV 5.0% CV 9.5%
(4.1%)

Nsamp 5624 Nsamp 16170 Nsamp 40000
Nopt,1 244
Nopt,2 187

d = 300
4.26 × 10−4 4.25 × 10−4 4.28 × 10−4

CV 4.5% CV 4.6% CV 8.9%
(4.3%)

Nsamp 5978 Nsamp 23660 Nsamp 40000
Nopt,1 268
Nopt,2 201

Consequently the higher the dimension the larger the simulation budget for comparable precision:
N = 3000 for d = 100, N = 5000 for d = 200 and N = 7000 for d = 300. In the proposed method, this
issue does not occur since only the concentration parameter κ is optimized in the CE-AMIS algorithm.

To compare the algorithm with the other available methods, the initial κ0 are selected as follows:
κ0 = 50 when d = 100, κ0 = 70 when d = 200 and κ0 = 90 when d = 300. These particular values
are inspired by the study of the previous example. The performance of the algorithms is summarized
in Table 5.3, where the CV displayed for all the methods is the empirical one, estimated over the
500 independent simulation runs. The numbers in parentheses are the mean of the theoretical CV
estimates of the proposed method, computed with the approximation of the variance of Eq. (5.11).

The estimates of the three methods are close to the reference value 4.28 × 10−4. As in the previous
example, the proposed algorithm has the smallest CV with the smallest global budget. The total
number of evaluations of the lsf Nopt,1 + Nsamp is extremely low: with less than 7000 evaluations,
the CV is below 5% whatever the dimension d. For every simulation, the number of failure regions
found by the proposed method is equal to 2. The CE-AMIS algorithm converges in 3 steps for both
failure regions on average, no matter the dimension. The final converged value of κ depends on the
failure regions and the dimension: κ1,n1 = 39 and κ2,n2 = 43 for d = 100, κ1,n1 = 54 and κ2,n2 = 57
for d = 200 and κ1,n1 = 64 and κ2,n2 = 69 for d = 300. Therefore, the first failure region is wider
than the second. The failure probability of the failure regions are given by P̂f,1 = 3.14 × 10−4 and
P̂f,2 = 1.14×10−4, for every dimension. The contribution of the first failure region to the global failure
probability is the strongest.

Given that the number of failure regions found is twice smaller than in the previous example, it
is not surprising that Nsamp is also twice smaller in the proposed method. It seems that Nsamp is
thus strongly linked to the number of failure regions of the system and completely independent of the
dimension. The numbers Nopt,1 and Nopt,2 have the same magnitude as in the previous application
even though the lsf is more complex; they remain below 400, which is very low compared to Nsamp.
Once more, the estimates of the theoretical CV are very close to the empirical CVs.

For this application, the iCE-vMFNM algorithm performs better than in the previous example,
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even with the low β setting of Section 5.3.1.6. The number of lsf evaluations gradually increases, for a
CV close to 5%. Consequently, the iCE-vMFNM performance depends on the dimension of the system,
as well as the number of failure regions. This is not surprising considering the number of parameters
in the CE optimization which depends both on d and K. In dimension d = 300, the number of lsf
evaluations required is still four times higher than with the proposed algorithm.

The number of evaluations of g2 for the subset sampling method is the highest with also the highest
CV and it is still independent of the dimension. In contrast to the other two algorithms, the number
Nsamp is not lower than in the previous application with β = 3.5 although there are only two failure
regions. Compared to the proposed method, the simulation budget is six to seven times superior.

5.3.2.4 Influence of the width of the important ring

In this application, two failure regions start before the beginning of the important ring and spreads
across it; a situation denoted as Case 2 in the previous sections. One can wonder about the influence
of the width of the important ring, on the coordinates of the important direction ν1 and ν2. Indeed,
in Case 2, the distribution of the radial component is left unchanged. Moreover, in this particular
application, since X are standard normal inputs then R ∼ χ(d) and E[R] ≈

√
d. Therefore, the

narrower the important ring is defined, the closer the lower bound LB is to
√
d. As the representative

failing points P1 and P2 are on the hypersphere of radius LB, the closer LB is to
√
d, the closer P1 and

P2 are to the observations generated in the various CE-AMIS procedures. In other words, searching for
the important directions on a hypersphere of radius closer

√
d gives a better auxiliary density hR ×hT,

considering the chosen radial auxiliary density hR; see the Appendix C for more details.
In the previous example, as the lsf is linear, the important directions would be the same no matter

the radius LB of the important ring. In this application however it may differ. Consequently, the
performance of proposed method is investigated in dimension 100 with an important ring defined as
such: the interval [LB, UB] is centered around

√
d and the smallest value of ϵ such that P(

√
d−ϵ ≤ R ≤√

d+ ϵ) ≥ 1 − 10−4 is selected. The resulting important interval is [7.25, 12.75], instead of [5.83, 14.17]
and is displayed in Figure 5.13.

Figure 5.13: Illustration of the important intervals of the χ(100) distribution for the two different
settings. The dashed line represents the value

√
100, the red dotted lines are the two important

interval bounds of the first setting, the purple dotted lines are the two important interval bounds of
the second setting.

The important directions found are the same as with the previous important interval. Consequently,
the CE-AMIS algorithm performs in the same manner and the simulation budget Nsamp remains the
same. However the optimization budgets decrease a little: Nopt,1 = 354 instead of 386 and Nopt,2 = 261
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instead of 278. The conclusion of this study is that for different values of LB, the most negative
directions found by the optimization of Eq. (5.2) on the hypersphere of radius LB remain the same,
therefore the limit state function g2 does not have a strong nonlinear behavior.

5.3.3 Portfolio loss
5.3.3.1 Presentation of the application

The third example is often used in financial studies [Bassamboo et al., 2008, Chan and Kroese, 2012,
El Masri et al., 2021]. It consists of a large portfolio of loans with 250 obligors, each of whom having a
non-zero probability of default. It is assumed that a d-vector of underlying latent variables Z represents
the obligors as such: when Zi > 0.5

√
d, then the ith obligor defaults. The portfolio loss is expressed

as
L(Z) = IZ1>0.5

√
250 + · · · + IZ250>0.5

√
250. (5.13)

The value of interest is the probability that the portfolio loss exceeds 0.25 × 250; thus, the limit state
function is given by

g3(Z) = 62.5 − L(Z).
In order to model the underlying correlations between the obligors, this simple single factor model is
employed [Bassamboo et al., 2008]

Zi = ρL+
√

1 − ρ ηi

W
for i = 1, . . . , 250,

where the factor L is a standard normal variable which measures the effects impacting all the obligors, ηi

is a centered normal variable of variance 9 independent of the factor L which captures the idiosyncratic
risk, W is a random variable independent of L and ηi, which represents a common shock affecting the
obligors, of distribution

W ∼
√
χ2(ν)/ν,

and ρ is a correlation parameter. The resulting inputs Z follow thus a centered multivariate Student
distribution with ν degrees of freedom (see Chapter 2 Section 2.2.1.3) and d× d dispersion matrix

DZ =


9 − 8ρ2 ρ2 . . . ρ2

ρ2 9 − 8ρ2 ρ2 . . .
. .
. .
ρ2 . . . ρ2 9 − 8ρ2

 .

For application purposes, ρ is set to 0.25 and ν = 4. The reference probability value computed with a
Monte Carlo method is equal to 8.12 × 10−3.

5.3.3.2 Adaptation to the proposed method

To use the proposed method, the first step is to apply a linear transformation to remove the correlation
of the inputs (but they remain dependent). To do so, one has to pre-multiply the inputs Z by the
matrix A−1 such that AA⊤ is the Cholesky decomposition of DZ. The limit state function with the
standard variable X = A−1Z is then

ḡ3(X) = 62.5 − L(AX).

The optimizations of Section 5.2.2.2 performed in the various identification problems require the gra-
dient of ḡ3. Nevertheless, this particular limit state function is not differentiable, as it involves the
indicator function in the portfolio loss function L. Thus, only for the optimizations performed in the
identification problems, a substitute ĝ3 of ḡ3 is used

ĝ3(X) = 62.5 − L̂(AX),

where
L̂(AX) = Ψ

(
[AX]1 − 0.5

√
250
)

+ · · · + Ψ
(

[AX]250 − 0.5
√

250
)
,

with Ψ being the cdf of the standard normal distribution. This regularization for the indicator function
is quite common (as derived in [Lacaze et al., 2015]) and makes differentiation possible.
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5.3.3.3 Definition of the important ring

Given that X is a standard multivariate Student random vector with ν = 4 degrees of freedom and
dimension d = 250, then R2/250 ∼ F(250, 4) with F a Fisher–Snedecor distribution. This distribution
is heavy-tailed and is not symmetric around its mean; cf Chapter 2 Section 2.2.2.1. The important ring
is defined with the two hyperspheres of radii LB and UB chosen as quantiles of the Fisher–Snedecor
distribution such that LB =

√
250 × q10−5/2(F(250, 4)) and UB =

√
250 × q1−10−5/2(F(250, 4)). The

important interval is thus equal to [5.62, 398.22] and is a lot wider than for the χ distribution of the
previous applications; it is displayed in Figure 5.14.

Figure 5.14: Illustration of the important interval of the
√

250 × F(250, 4) distribution. The red
dotted lines are the two important interval bounds.

The proposed method found each time one failure region. The failure region starts inside the
important ring; therefore, this application is an example of the situation referred to as Case 1 in the
previous sections. The failing point P1 is thus the design point of the system. Its norm is equal to
∥P1∥ = 21.19 and its direction ν1 is displayed in Figure 5.15, in both the space of X and the space of
Z. This important direction is quite difficult to interpret as there are many jumps in the value of the
components. In the Z space, each Zi plays the same part in the loss function of Eq. (5.13), however
the value of the components oscillates between two constants.

5.3.3.4 Performance of the proposed method

In this application, the setting of the LHS differs from Section 5.3.1.3 as the inputs are no longer
independent; the LHS framework requires independent inputs. Therefore, the LHS is performed with
an independent mixture of d univariate Student distributions (which is not a multivariate Student
law) centered either on 0 or x0 of Eq. (5.10) according to the identification problem. The rest of the
settings are the same. The proposed method is also tested with a higher size of sample N = 13000 for
comparison purposes.

The proposed method is compared with the results of a variance minimization (VM) algorithm
presented in [Chan and Kroese, 2012] which is not detailed here, to have a comparative benchmark.
The basic idea of this VM algorithm is to optimize the parameters of the IS density to obtain an IS
estimate with minimum variance, instead of the IS density with the minimum CE divergence with
hopt = IDf

fX/Pf .
The performances of the algorithms are displayed in Table 5.4 with κ0 = 80 for N = 1000 and

N = 13000. This particular value of κ0 is inspired by the study of Section 5.3.1.4. The numbers
in parentheses are the theoretical coefficients of variation of the proposed method, computed with
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Figure 5.15: Illustration of the direction of the failing points P1, in the space of X in green and the
space of Z in brown.

the approximation of the variance of Eq. (5.11), over 500 independent simulations. The results are
compared with the classical Monte Carlo algorithm as well.

Table 5.4: Comparison of the proposed algorithm with the VM algorithm of [Chan and Kroese, 2012]
and with a classical Monte Carlo for ḡ3. The reference probability is equal to 8.12 × 10−3.

Portfolio Loss
Proposed
algorithm
(N = 1000)

Proposed
algorithm
(N = 13000)

VM MC

8.12 × 10−3 8.15 × 10−3 8.14×10−3 8.12×10−3

CV 8.4% CV 3.9% CV 0.5% CV 1.1%
(8.4%) (3.7%)

Nsamp 7452 Nsamp 50258 Nsamp 55000 Nsamp 106

Nopt,1 1354 Nopt,1 1340
Nopt,2 1119 Nopt,2 1108

The failure probability estimate of the proposed method is very close to the reference value 8.12 ×
10−3. For every simulation, the number of failure regions found by the proposed method is equal to 1.
The CE-AMIS algorithm converges in 7 steps on average for N = 1000 and on 4 steps on average for
N = 13000. The final converged value of κ1,n1 is equal to κ1,n1 = 7. Therefore, the failure region is
very wide; it appears that the failure domain has a spherical symmetry, as the resulting vMF density
hT is close to the original uniform distribution on the hypersphere fT. Consequently, the important
direction displayed in Figure 5.15 might not be very important. The simulation budget Nsamp is quite
large, even though there is only one failure region. Compared to the two previous examples, the
proposed algorithm here is not as precise in terms of CV. Indeed, a very large budget is needed to
reach a CV value lower to 4%. The numbers Nopt,1 and Nopt,2 are a lot larger than in the previous
applications as well: they are no longer negligible.

The VM algorithm, in contrast, is very precise. However, to achieve such results, it is assumed
that it is possible to generate observations from hopt with a Markov Chain Monte Carlo algorithm
specifically set for the multivariate Student distribution: the Gibbs sampler [Chan and Kroese, 2012].
This assumption is possible in this particular case as there is only one failure region. The VM algorithm
would take a very long time to converge if there were several failure regions, resulting to a larger
simulation budget.

As a conclusion, the proposed algorithm remains relevant, as it allows to compute the probability
with a CV lower than 10% with a budget lower than 10000. Furthermore, the estimates of the
theoretical CV are still very close to the empirical CV. This example with the Student distribution
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shows the flexibility of the proposed algorithm in terms of elliptically distributed inputs.

5.3.3.5 Study on radial distribution of the failing inputs

As the results of the proposed method are not as good as for the two previous applications, a study
on the radial distribution of the failing inputs is conducted. With a large Monte Carlo, a histogram
of the norm of the points in the failure domain Df of the system is plotted, against the chosen radial
auxiliary density hR = fR|R>ropt,1 with ropt,1 = 21.19. The result is illustrated in Figure 5.16. The
conclusion of this study is that the value of ropt,1, obtained with the optimization of Section 5.2.2.2 is
underestimated. Indeed, it seems that the failure domain starts at the hypersphere of radius 40, which
is a lot larger than 21.19. This explains why the CE-AMIS takes a lot of iterations to converge. As
there is no particular important direction, an efficient radial auxiliary density is crucial. Unfortunately,
the settings of hR are not optimal because ropt,1 is too low; therefore the algorithms requires a larger
simulation budget to reach the CV criterion.

Figure 5.16: Density of hR = fR|R>ropt,1 with ropt,1 = 21.19 plotted with an histogram of the norm of
the points in Df obtained with a MC sampling.

This poor estimation of ropt,1 can be related to the approximation of the lsf ĝ3, which may not be
the most appropriate to accurately find the design point. To analyze if this poor ropt,1 is the only reason
for the results of the proposed method, the following test is conducted: the CE-AMIS algorithm is run
independently 500 times in three different settings. For all the settings, the size of the sample is set to
N = 1000 and the important direction ν1 is set to ν1 = 1d/

√
d (since there is no important direction).

In the first setting, denoted Setting 1, the initial κ1,0 value is kept to 80, but ropt,1 = 38 (a little lower
than 40, in case the previous MC did not sample the entire failure region Df , to avoid any bias). In
the second setting, denoted Setting 2, the value of ropt,1 is kept to 21.19, but the initial κ1,0 value
is lowered to 20. In the third setting, denoted Setting 3, the initial κ1,0 value is set to 20 and ropt,1 = 38.

Results of Setting 1
The failure probability estimate is equal to 8.12 × 10−3, with an empirical CV of 4.8% and a theo-
retical CV (assuming the samples are independent) of 5.0%. The simulation budget is Nsamp = 4022,
which indicates that the CE-AMIS algorithm converges in 4 steps in average, instead of 7 in Table 5.4.
Therefore, the CV is almost divided by two, along with the simulation budget, for N = 1000. The
influence of ropt,1 is thus very strong.

Results of Setting 2
The failure probability estimate is equal to 8.08×10−3, with an empirical CV of 8.3% and a theoretical
CV (assuming the samples are independent) of 8.4%. The simulation budget is Nsamp = 5544, which
indicates that the CE-AMIS algorithm converges in 5 to 6 steps in average, instead of 7 in Table 5.4.
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Therefore, the simulation budget is lower, but the CV remains the same. The influence of κ1,0 is thus
moderate.

Results of Setting 3
The failure probability estimate is equal to 8.07×10−3, with an empirical CV of 5.0% and a theoretical
CV (assuming the samples are independent) of 4.9%. The simulation budget is Nsamp = 2610, which
indicates that the CE-AMIS algorithm converges in 2 to 3 steps in average. Compared to Setting 1,
the simulation budget is lower but the CV is the same. Compared to Setting 2, the simulation budget
is lower along with the CV.

The conclusion of these tests is that the results of the proposed method displayed in Table 5.4
are mostly due to a poor estimation of ropt,1 which has a great influence on the CV of the failure
probability estimate and the simulation budget. The initial setting of κ1,0 plays a minor part in the
resulting CV but affects the simulation budget.

5.3.4 Airfoil in inviscid transonic flow
The last example studies the drag coefficient of an airfoil in inviscid transonic flow subject to random
shape distortion. This example is representative of an industrial problem as the limit state function is
analytically unavailable and acts like a black-box. Therefore this example illustrates better the context
of the manuscript.

5.3.4.1 Design problem and optimal airfoil

This example is inspired by an optimization test case provided by the Computational Fluid Dynamic
(CFD) solver SU2 [Economon et al., 2016]. For the sake of completeness, the main features of this
problem are now detailed. The objective of this test case is to design the shape of an airfoil that
minimizes the drag coefficient in transonic inviscid flow conditions. The baseline shape is a NACA
0012 airfoil, the freestream pressure is set to 101,325 Pa, its temperature is set to 273.15 K and the
Mach number is equal to 0.8. The 2D Euler fluid model is solved by the finite volume method on a
computational mesh of 5233 points and 10,216 triangular elements. Figure 5.17 a) presents the mesh
around the airfoil. Under such conditions a transonic shock appears on the upper surface of the airfoil
leading to a high drag coefficient equals to CNACA 0012

D = 2.13 × 10−2, as presented in Figure 5.17 b).
The shape of the airfoil is parameterized through Hicks-Henne bump functions defined around the

airfoil. These functions include two parameters, the location of their center and the amplitude of the
bump. For this example 10 Hicks–Henne bump functions are used, five on the upper surface of the
airfoil and five on the lower surface of the airfoil, respectively centered at 5%, 25%, 50%, 75%, 95%
of the airfoil chord. The optimization problem is then to minimize the drag coefficient with respect
to the 10 amplitudes of the Hicks–Henne bump functions, under a constraint of lift coefficient equals

a) b)

Figure 5.17: a) Close view on the initial computational mesh of the NACA 0012 airfoil. b) Pressure
coefficient field showing the transonic shock on the NACA 0012 airfoil.
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to CL = 0.326 (value obtained with the initial NACA 0012 airfoil). This problem is solved using
a gradient based optimizer and the gradient of the objective function is obtained through adjoint
approach. Readers interested in the details of this resolution are referred to the SU2 tutorials and
to the many articles about the adjoint approach in CFD computation; see [Kenway et al., 2019] for
example.

The solution of the optimization problem is illustrated in Figure 5.18. One can note that the
optimal solution (Figure 5.18 a)) reaches some characteristics of a supercritical airfoil, like a flattened
upper surface near the leading edge. The obtained pressure coefficient field (Figure 5.18 b)) shows no
transonic shock and leads to an overall drag coefficient equal to Copt

D = 1.02 × 10−3.

a)

b)

Figure 5.18: a) Comparison between the optimal airfoil solution and the baseline NACA 0012 airfoil.
b) Pressure coefficient field around the optimal solution.

5.3.4.2 Presentation of the reliability problem

It is now assumed that the optimal airfoil shape previously defined is subjected to random distortion.
This distortion is represented by 100 Hicks–Henne bump functions, 50 at the lower airfoil surface and
50 at the upper airfoil surface. The centers of the 50 functions are linearly spaced between 5% and 95%
of the airfoil chord. It is assumed that the amplitude of the Hicks–Henne functions are independent
and normally distributed. The mean value is null and the variance is chosen to create reasonable
deformation of the airfoil, modeling manufacturing uncertainties for example. Using previous notations
this leads to X ∼ N (0, 2.5 × 10−7 × Id). The failure of the system occurs when the distortion causes a
value of the drag coefficient that is above a certain threshold equal to 0.01, thus the limit state function
is written

g4(X) = 0.01 − CD(X).
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First a Monte Carlo estimation is performed in order to get a reference value for this problem. A total
of 106,770 simulations were run leading to a failure probability estimation equal to PMC

f = 5.61×10−4

with a theoretical coefficient of variation of 12.9%. Each CFD simulation is run on a cluster using 24
CPU and takes approximately 7s. The Monte Carlo estimation thus lasted approximately 8.5 days on
24 CPU. The equations between the inputs X and the resulting drag coefficient CD are the Euler and
adjoint Euler equations. The lsf for this engineering problem is a black-box function as the analytical
form of the drag coefficient CD is not available but is numerically computed by finite volume CFD
code. One can note that it is thus not possible to know a priori the number of failure regions.

5.3.4.3 Definition of the important ring

The definition of the important ring is the same as in Section 5.3.2.2 for dimension d = 100, but given
that the standard deviation of the inputs is equal to 5 × 10−4, the bounds of the importance interval
are multiplied by 5 × 10−4 as well, and IR = [2.92 × 10−3, 7.08 × 10−3]. Since the inputs do not have
a variance equal to 1, a standard deviation factor is simply added in the algorithm.

The proposed algorithm finds three different failure regions, K = 3. For each failure region, the
representative point Pi is found on the lower bound of the important ring, thus the failure regions start
before the beginning of the important ring and spread across it; this application is another example
of the situation referred to as Case 2 in the previous sections. The vector values of these three points
represent the worst configurations for the shape of the airfoil. Indeed they lead to shapes that produce
particularly high drag. The shapes induced by the three representative failing point P1, P2 and P3
are displayed in Figure 5.19. The pressure fields resulting from these three shapes are illustrated in
Figure 5.20. Shocks appear which explain the high drag of these shapes. Indeed, for the point P1 a
large deformation appears at the rear of the airfoil causing a strong acceleration of the flow on this
part and thus a transonic shock on the rear of the airfoil; see Figure 5.20 a). The point P2 deforms
the optimal shape near the leading edge and curves the airfoil in this area. The P2 deformed shape
looks approximately like the original NACA 0012 airfoil and thus leads to a transonic shock; see
Figure 5.20 b). The point P3 results from a negative curvature at the leading edge side and a bump at
the trailing edge side. This deformation creates two transonic shocks as shown in Figure 5.20 c).

5.3.4.4 Performance of the proposed method

For this application, the setting of the SLSQP algorithm differs from Section 5.3.1.3 as the maximum
number of iterations in the algorithm is lowered to 50 instead of 1000. The precision goal for the value
of the objective function in the stopping criterion is set to 10−6 for the first optimization Eq. (5.1)
and to 10−4 for the second optimization Eq. (5.2). Furthermore, the value of the maximum number
of iterations pmax of the CE-AMIS algorithm is lowered to 5 instead of 10. The algorithm is run only
three times. The displayed failing points P1, P2 and P3 of the Section 5.3.4.3 are those found in the
first run. The performance of the proposed algorithm is summarized in Table 5.5, with N = 1000 and
κ0 = 50. The coefficients of variation are the theoretical ones, assuming the samples are independent.

Table 5.5: Comparison of the proposed algorithm with the Monte Carlo method for g4.

Failure probability of the airfoil shape
Run 1 Run 2 Run 3 Monte Carlo
5.30 × 10−4 5.11 × 10−4 4.87 × 10−4 5.61 × 10−4

CV 9.8% CV 5.9% CV 6.2% CV 12.9%
Nsamp 13000 Nsamp 13000 Nsamp 13000 Nsamp 106770
Nopt,1 4717 Nopt,1 3575 Nopt,1 1597
Nopt,2 918 Nopt,2 617 Nopt,2 438

One can note that the failure probability estimates found by the proposed algorithm in Run 1 and
Run 2 are very close to the Monte Carlo reference, and have a smaller coefficient of variation. However,
Run 3 gives an estimate with a smaller failure probability value than the MC reference. For the three
runs, the proposed method found 3 failure regions. The pressure coefficient distributions resulting of
the configurations of the 2D airfoil with the failing points (Pk)k=1,2,3 are displayed in Figure 5.21, for
each of the three runs.
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a)

b)

c)

Figure 5.19: Shape comparison between the optimal airfoil and the critical point found by the proposed
approach: a) P1, b) P2, c) P3.

The first failing point P1 found is exactly the same for the three runs. The CE-AMIS converges
in 3 steps for this failure region, for all runs. The final converged value of κ equals κ1,n1 = 37. The
resulting failure probability estimates of this region are close to P̂f,1 = 5 × 10−4. The second failing
point P2 is quite similar for Run 1 and Run 2 but there is a small deviation in Run 3. This results
from the first optimization Eq. (5.1): in Run 3, P2 is found at a higher norm than LB. This could
be a consequence of the low convergence criterion of the SLSQP as the algorithm necessarily stops at
50 iterations. For the three runs, the CE-AMIS algorithm reaches the maximum value of iterations
pmax = 5 without reaching the CV criterion. The final converged value of κ equals κ2,n2 = 30 except for
Run 3 where it is equal to κ2,n2 = 70. The resulting failure probability estimates of this region are close
to P̂f,2 = 2 × 10−5 except for Run 3 where P̂f,2 = 3 × 10−9. Finally, the last failing point P3 is similar
for all the runs. Once more the CE-AMIS algorithm reaches the maximum value of iterations pmax = 5
without reaching the CV criterion. The final converged value of κ equals κ3,n3 = 40. The resulting
failure probability estimates of this region are close to P̂f,1 = 1 × 10−5. Therefore, the first failure
region contributes the most to the global failure probability. The other two regions contribute quite
equally, with, maybe, the failure region associated with P2 a bit more relevant. The poor coordinates
of P2 in Run 3 explains why for this run, the global failure probability estimate is a bit lower.

The numbers Nopt,1 and Nopt,2 vary a lot for each run. This is an indicator that the optimization
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a)

b)

c)

Figure 5.20: Pressure coefficient fields at the critical point found by the proposed approach: a) P1, b)
P2, c) P3.

results seem to depend a lot on the random LHS employed to perform the random multi-start opti-
mizations of the various identification problems. It is reminded here that the LHS performed is similar
to the one presented in Section 5.3.1.3, but each observation is multiplied by the standard deviation
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a)

b)

c)

Figure 5.21: Pressure coefficient distributions on both sides of the 2D airfoil at the critical points found
by the proposed approach: a) P1, b) P2, c) P3. The critical points found by Run 1 are represented in
blue, those of Run 2 are represented in red and those of Run 3 in black.

5 × 10−4. These numbers can be quite large, like in Run 1 where Nopt,1 represents more than a third
of the simulation budget Nsamp
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Compared to the Monte Carlo estimation, the simulation budget is divided by a factor close to
7, which is a very interesting gain for such a costly numerical application. This example also shows
the value of finding the important failure region locations in the input space as this information can
further help to understand the critical failure mechanisms and help the design.

Remarks on the simulation budget
As previously mentioned in Section 5.2.6.2, this application is an example where the structure of the
simulation budget does not reflect the contribution of each failure region. Indeed, the first failure region
is the most important, but the simulation budget for this failure region is only 3N = 3000. Whereas
for the other two failure regions, since the pmax criterion of the CE-AMIS algorithm is reached, they
require each 5N = 5000 evaluations of the costly lsf, for smaller contributions to the global failure
probability. However, these failure regions are then not left unexplored, which is the strong asset of
the proposed algorithm.

In Run 3, the failure region associated with P2 is badly sampled. The coordinates of P2 result in a
large value of ropt,2, as P2 is not found in the lower bound of the important ring. The radial auxiliary
density is thus equal to hR = fR|R>ropt , instead of hR = fR when ∥P2∥ =LB. The resulting failure
probability of this region is then underrated and the global failure probability as well. Consequently,
the failure region associated with P2 should not be discarded, even if its contribution is 10 times lower
than the contribution of the failure region associated with P1.

5.4 Conclusion
In this chapter we presented a new method to estimate the failure probability of a system in a high-
dimensional standard elliptical space, for failure domain encompassing several failure regions. Here we
discuss some final remarks and outlooks.

5.4.1 Necessity of standard elliptical inputs
On can wonder if the proposed algorithm is in fact only restricted to standard elliptical inputs, or if it
could be applicable to other kinds of input space. Several points must be mentioned to answer this.

5.4.1.1 Definition of an important ring

First of all, without standard elliptical inputs, then an important ring might not be defined. The
important ring of the elliptical inputs comes from the independence between the random variable R,
which is the Euclidean norm of X, and the random vector T. With other inputs, such an independence
might not exist. Suppose the optimization Eq. (5.1) of Section 5.2.2.2 is not constrained to an important
ring and searches for failing points in the whole space Rd. This search could then be endless since
d is large. Indeed, the bulges built around the failing regions as well as the failure cones most likely
do not cover the whole failure domain of Rd. So, for large values of ∥X∥, there could always be a
failing point in the failure domain, away for the bulges, who does not belong to any failure cone.
Furthermore, the associated probability mass of such a failing point would be negligible as its norm
is so large. Consequently, trying to sample in the vicinity of this failing point would be a waste of
simulation budget. In fact, with the portfolio loss application, this phenomenon was encountered for
wider important ring settings.

Therefore, the important ring is essential in the optimization problem for two reasons. First, it
allows to focus on the most important part of the input space. Second, the search for the failure
regions inside of it necessarily comes to an end at one point, as the important ring is a restricted
space. Without elliptical inputs, once should focus on another criterion to restrict the space for the
optimization. This restriction must not be too strong, as we are estimating rare events, thus the failure
domain is supposed to be located in distant parts of the input space.

5.4.1.2 Selection of the radial auxiliary density

Next, without standard elliptical inputs, the choice of the radial auxiliary density hR is not as obvious.
The idea to condition a univariate law to being greater than ropt is still valid but the choice of this law
is not straightforward. One easy solution could be to use kernel density estimates (kde) (see Chapter 3
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section 3.3.3.1), since they are very efficient in dimension one, restricted to (ropt,+∞). A pre-sampling
step should then be performed to build the kde.

5.4.1.3 Degeneration of the MIS weights

Finally, without elliptical inputs there are higher chances that the curse of dimensionality affects the
MIS weights of the CE-AMIS algorithm. As underlined in Eq. (5.5) of the CE-AMIS algorithm, for
standard elliptical inputs, there is a simplification in the MIS weights since the density fR is evaluated
both in the numerator and the denominator. Moreover, the density fT is a constant for each

(
T(j)

ℓ

)
.

In other words, the expression of the MIS weights is quite simple in our method with standard elliptical
inputs and would not be with other inputs. Consequently, the efficiency of the proposed method could
be heavily affected by the dimension of the inputs.

5.4.2 Influence of IS auxiliary density in high-dimensional spaces
For the three applications tested in high-dimensional standard normal space, the failure regions always
start before the important ring and spread across it. Thus the radial auxiliary density hR is left
unchanged : hR = fR (the situation is referred to as Case 2). The accuracy of the proposed method
suggests that in this particular space, the directional component of the IS density is the most influential.
This becomes even more valid as the dimension increases and the variance of the random variable R
decreases. However, it should be noted that with spherical failure domain in this particular space, then
the proposed method would be quite inefficient. One solution could be to learn a better radial auxiliary
density, either with kde as mentioned in the previous section, or with the Nakagami distribution
employed in [Papaioannou et al., 2019]. The simplification in the MIS weights would not occur and a
pre-sampling step should be necessary but the resulting IS density would perform better.

In contrast, in the application with standard multivariate Student inputs, the influence of hR is
the strongest and a study showed that if hR is poorly constructed, the proposed method is not as
efficient; cf Section 5.3.3.5. Consequently, in both random spaces, taking into account the stochastic
representation of the elliptical inputs in the construction of the IS auxiliary density is relevant.

5.4.3 Proposed method without the gradient of the limit state function
In this manuscript, it is assumed that the gradient of the limit state function is available for the
optimization problems of Section 5.2.2.2. When the gradient is not available, these optimizations are
very difficult to perform in high-dimensional space and the proposed algorithm may be inefficient.
However, many recent papers can be found in the literature which make it possible to find the design
points for the FORM in high-dimensional standard normal space without employing the gradient
[Zhong et al., 2020,Zhu et al., 2022]. Combining these new optimization schemes with the important
ring constraint could be a promising gradient-free alternative.

In moderate dimension, the use of surrogates [Echard et al., 2011] could be appropriate: the limit
state function g is first approximated with a meta model g̃ constructed from training points, then
the gradient of this surrogate g̃ is available [Torii et al., 2017]. However, it should be noted that the
accurate computation of the gradient of the limit state function is crucial in the proposed method as
it may lead to poor coordinates of Pk, decreasing the efficiency of the algorithm, cf Section 5.3.3.5. In
high dimension however, it is very difficult to build accurate meta models [Tabandeh et al., 2022], this
solution is thus not an option.
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Estimation de la sensibilité locale
de la probabilité de défaillance par
régression polynomiale
hétéroscédastique

Nous présentons ici une nouvelle manière d’estimer la dérivée de la probabilité de défaillance du
système, par rapport aux entrées déterministes. Il est supposé que la probabilité de défaillance a déjà
été estimée par une méthode de simulation. Il s’agit alors de réutiliser le plus possible les évaluations de
la fonction d’état limite nécessaires pour le calcul de la probabilité, afin d’augmenter le moins possible
le budget de simulation. Le calcul de la probabilité ainsi que sa dérivée se font dans l’espace standard
elliptique.

Expression de la dérivée dans un développent en série de Taylor
L’approche présentée s’inspire de l’approche Faible [Torii, 2020], puisqu’une approximation de la fonc-
tion indicatrice du domaine de défaillance du système est utilisée. Plus précisément, cette approxi-
mation est choisie comme un fonction de répartition continue Ξσ, définie avec un paramètre σ > 0
vérifiant la propriété suivante

∀x ∈ Rd IDf (s)(x) = Iy≤0(g(s,x)) = lim
σ→0

Ξσ (−g(s,x)) ,

où 0 est contenu dans l’intérieur du support de Ξσ. La fonction de probabilité Pf (s, ·) est alors définie
sur R+\{0} ainsi

∀σ ∈ R+\{0} Pf (s, σ) =
∫
Rd

Ξσ (−g(s,x)) fX(x)dx = EfX [Ξσ (−g(s,X))] .

La limite de cette fonction de probabilité est égale à Pf (s) lorsque σ tend vers 0. De même, la dérivée
de cette fonction tend vers la quantité d’intérêt ∂Pf (s)/∂sℓ, lorsque σ → 0.

En travaillant sur l’expression de Pf (s, σ) avec le changement de variable Hs = g(s,X) dans la
mesure image, il est possible de réécrire l’intégrale en faisant apparâıtre la fonction de répartition FHs .
En dérivant cette intégrale, une autre expression de ∂Pf (s, σ)/∂sℓ s’obtient

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

= Eξσ

[
∂FHs(−Z)

∂sℓ

]
,

où Z est une variable aléatoire univariée de fonction de densité ξσ (la dérivée de Ξσ). Un développement
en série de Taylor en 0 de la fonction dans l’espérance, notée T , permet d’aboutir à la décomposition
suivante

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

= ∂Pf (s)
∂sℓ

+ Eξσ
[Z]

1! T ′(0) +
Eξσ

[
Z2]

2! T ′′(0) + . . .

+ Eξσ
[Zn]
n! T (n)(0) + Eξσ

[Rn(Z)] .

141



142 CHAPTER 5. NEW FAILURE PROBABILITY ESTIMATION METHOD WITH MIS

Ainsi, la quantité d’intérêt ∂Pf (s)/∂sℓ se trouve être le coefficient d’ordre 0 d’une expression polyno-
miale des moments de Z. Selon la fonction de répartition Ξσ choisie, les moments de Z sont fonctions
de σ. Par exemple, si Ξσ est la fonction de répartition d’une loi normale centrée de variance σ2, alors
les moments impairs de Z sont nuls. Le polynôme obtenu est ainsi un polynôme pair. L’identification
des coefficients de ce polynôme, grâce à une régression polynomiale, permet alors d’estimer la quantité
d’intérêt.

Afin de réaliser la régression polynomiale, m évaluations de ∂Pf (s, σ)/∂sℓ sont nécessaires, pour m
valeurs de σ différentes. Il s’agit alors d’estimer l’intégrale suivante

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

=
∫
R

−∂g(s,x)
∂sℓ

ξσ(−g(s,x))fx(x)dx,

qui est l’expression directe de la dérivée, obtenue sans avoir effectué au préalable le changement de
variable mentionné. Cette estimation pour un σ fixé est faisable avec des méthodes de simulations, c’est
le principe de l’approche Faible [Torii, 2020]. Chaque évaluation de la fonction d’état limite nécessaire
à l’estimation de la probabilité de défaillance est donc réutilisée. Il faut cependant aussi évaluer la
dérivée de la fonction d’état limite par rapport à sℓ pour chaque observation, ce qui augmente le budget
de simulation. Grâce à une approche de Monte-Carlo classique, l’estimateur obtenu est sans biais et
sa variance théorique est une fonction strictement décroissante de σ, pour un budget de simulation
constant. Ainsi, chaque estimateur ̂∂Pf (s, σl)/∂sℓ, pour l = 1, . . . ,m a un bruit différent. Plus σ est
faible, plus le bruit est élevé. La régression polynomiale est alors hétéroscédastique.

Il est important de remarquer que la méthode proposée est théoriquement biaisée, puisque le modèle
polynomial utilisé pour la régression sera forcément de degré fini, noté n. L’égalité dans l’équation
du développement en série de Taylor est valable pour un nombre infini de termes. Puisqu’ici seuls les
n+1 premiers termes seront considérés, le polynôme n’est alors qu’une approximation de ∂Pf (s, σ)/∂sℓ.
Plus la valeur de n est grande, plus le biais est faible, pour un σ fixé. De même, pour un n fixé, plus
σ est faible, plus le biais est faible.

Régression polynomiale hétéroscédastique
Dans cette thèse, nous avons choisi de recourir aux méthodes linéaires des moindres carrés pour ef-
fectuer la régression polynomiale [Watson, 1967]. Il est néanmoins rappelé que les régressions poly-
nomiales ne sont pas le sujet principal de ce chapitre, ni de cette thèse. Nous nous intéressons ici
au calcul de la dérivée de la probabilité de défaillance. Ainsi, les ajustements détaillés dans la suite
résultent de choix simples obtenus après plusieurs tests.

Pour ne pas augmenter le budget de simulation, chaque estimateur ̂∂Pf (s, σl)/∂sℓ est calculé avec
les mêmes observations

(
X(j)

)
j=1,...,N

qui ont servi à l’estimation de la probabilité de défaillance.
Cependant, une utilisation directe du même échantillon rend les estimateurs fortement corrélés entre
eux. Le modèle de régression adapté est alors la méthode des moindres carrés généralisée (Generalized
Least Squares GLS). De plus, puisque la matrice de covariance des estimateurs est inconnue et doit être
aussi estimée, le terme ”méthode GLS réalisable (Feasible GSL, FGSL)” est utilisé. Le cadre FGLS
requiert l’inversion de la matrice de covariance. Ce calcul est particulièrement complexe, surtout
dans notre contexte où l’estimation de la matrice de covariance par des méthodes de simulation est
imparfaite et bruitée, puisque le budget de simulation est constant.

Afin de simplifier le cadre de régression, la technique de bootstrap [Horowitz, 2001] est ainsi utilisée.
Cette technique permet, à partir de l’échantillon

(
X(j)

)
j=1,...,N

de générer d’autres échantillons
indépendants de même propriété statistique. Cette technique n’augmente pas le budget de simula-
tion et permet donc de rendre les estimateurs indépendants entre eux. La matrice de covariance
estimée devient diagonale et est aisément inversible : la régression polynomiale s’effectue alors avec
une méthode des moindres carrés pondérée (Weighted Least Squares WSL).

Avant de définir les paramètres de régression de la méthode WSL, les réponses de la fonction d’état
limite

(
Y (j) = g

(
s,X(j)

))
j=1,...,N

sont adimensionnées afin de rendre le paramétrage aussi général
que possible. L’intervalle de régression est alors défini grâce à un critère de coefficient de variation (CV)
théorique. La régression ne concerne que les valeurs de σl telles que le CV théorique de l’estimateur
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̂∂Pf (s, σl)/∂sℓ ne dépasse pas une valeur seuil. Le degré du polynôme est quant à lui déterminé en
faisant plusieurs expérimentations. En effet, grâce à la méthode de bootstrap, le budget de simulation
est le même peu importe le degré du polynôme. Ainsi, plusieurs degrés peuvent être examinés, en
commençant avec un degré faible. Dès lors que la valeur de l’estimateur de la dérivée ne varie plus,
cela signifie que le biais peut être considéré comme négligeable et que la valeur correcte a été atteinte.
De cette manière, un contrôle du biais est possible grâce au degré du polynôme.

L’application de cette approche avec une méthode de Monte-Carlo conduit à un intervalle de
régression assez large, où la contrainte de CV joue seulement sur la borne inférieure de l’intervalle. Une
illustration avec un exemple jouet permet de valider l’intérêt de l’approche proposée, cf Tables 6.1 et
6.2. Trois budgets de simulation différents sont expérimentés. Pour un budget de simulation similaire,
les estimateurs de dérivées obtenus avec la méthode proposée ont toujours un biais empirique plus
faible que ceux de l’approche Faible. Lorsque le budget de simulation est élevé, leur coefficient de
variation est aussi plus faible que ceux de l’approche Faible.

En adaptant l’approche proposé aux méthodes d’échantillonnage préférentiel, la régression n’est pas
tout à fait la même. En effet, pour des valeurs de σ élevées, la variance des estimateurs ̂∂Pf (s, σl)/∂sℓ

augmente. La contrainte de CV joue alors sur les deux bornes de l’intervalle de régression. Pour
l’exemple jouet étudié, l’intérêt de l’approche est une fois de plus démontré. Les estimateurs obtenus
avec l’approche proposée ont un biais très faible, et un CV plus bas que ceux obtenus avec l’approche
Faible, cf Table 6.3.

Il est important de noter que l’approche proposée permet aussi de calculer la variance théorique
de la dérivée obtenue par régression. En effet, le cadre de régression WSL admet l’estimation de
cette variance, avec une formule théorique. Néanmoins, pour l’exemple jouet étudié, cet estimateur de
variance donne alors une valeur plus faible que la variance réelle observée.

Application numérique
La performance de cette nouvelle approche est mise à l’épreuve avec trois applications numériques.
Pour toutes les applications les variables d’entrées sont normales. Les deux premières concernent des
systèmes de dimension faible qui sont fréquemment étudiés dans la littérature et permettent donc de
valider l’approche. La troisième application concerne un système de grande dimension, possédant deux
régions de défaillance. Cette troisième application permet d’expérimenter l’approche proposée dans le
cadre spécifique du manuscrit. Pour toutes les applications, l’approximation de la fonction indicatrice
choisie est la fonction de répartition d’une loi normale centrée de variance σ2, ainsi les polynômes sont
pairs. Trois degrés de polynôme différents sont examinés : n = 2, n = 4 et n = 6.

La première application [Papaioannou et al., 2018,Torii, 2020] étudie le comportement d’une poutre
en porte-à-faux soumise à un fléchissement biaxial. La dimension des variables aléatoires est égale
à 4. Deux fonctions d’état limite sont alors définies. Elles dépendent respectivement de deux et
trois paramètres déterministes de conception du système. Il s’agit alors de calculer les dérivées des
probabilités de défaillance par rapport à ces deux ou trois paramètres de conception. Afin d’estimer
la première probabilité de défaillance ainsi que ses dérivées, l’approche proposée est associée à un
algorithme d’échantillonnage préférentiel adaptatif non paramétrique (NAIS [Zhang, 1996]). La valeur
de la dérivée obtenue est constante pour les trois degrés de polynôme, cf Table 6.4. Ainsi une régression
de degré égal à n = 2 suffit pour aboutir à un estimateur de dérivée de valeur correcte. Les résultats
soulignent l’intérêt de la méthode par rapport à l’approche Faible: la valeur des estimateurs est correcte
pour un CV plus faible. Pour la deuxième fonction d’état limite, l’approche proposée est associé à un
algorithme d’échantillonnage préférentiel adaptatif paramétrique (iCE-SG [Papaioannou et al., 2019]).
La valeur de la dérivée obtenue est constante dès lors que n ≥ 4, cf Table 6.5. Ainsi une régression
de degré égal à n = 4 est nécessaire pour aboutir à un estimateur de dérivée de valeur correcte. Les
estimateurs obtenus avec l’approche proposée sont alors moins biaisés que ceux obtenus avec l’approche
Faible. Cependant, leur variance est alors légèrement supérieure.

La deuxième application représente une ferme de toit soumise à une charge aléatoire [Song et al.,
2009]. La dimension des variables aléatoires est égale à 6. Pour cet exemple, les variables aléatoires
normales de départ ne sont pas standards. Il s’agit alors de calculer la probabilité de défaillance
et ses dérivées par rapport aux paramètres de distribution des entrées de départ du système. Une
transformation isoprobabiliste est alors nécessaire pour calculer la probabilité ainsi que sa dérivée
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dans l’espace standard normal. Afin d’estimer la probabilité de défaillance ainsi que ses dérivées,
l’approche proposée est de nouveau associée à l’algorithme NAIS. Douze dérivées sont estimées. Pour
dix paramètres de distribution, la valeur de la dérivée obtenue est constante pour les trois degrés de
polynôme, cf Tables 6.6 et 6.7. Ainsi une régression de degré égal à n = 2 suffit pour aboutir à un
estimateur de dérivée de valeur correcte pour ces dix paramètres. L’approche proposée permet alors
d’obtenir un estimateur de biais bas et de CV inférieur à celui obtenu avec l’approche Faible. Pour les
deux autres paramètres de distributions, les valeurs des estimateurs obtenus avec l’approche proposée
ne sont pas constantes et leur CV sont très larges, particulièrement pour n = 6. Lorsque n = 6,
ces résultats sont la conséquence du phénomène du surapprentissage. La régression polynomiale ne
parvient alors pas à lisser le bruit des estimateurs ̂∂Pf (s, σl)/∂sℓ, cf Figure 6.9.

La dernière application s’intéresse au déplacement maximal d’un oscillateur de Duffing [Zuev,
2009]. La dimension des variables aléatoires est égale à 100. La fonction d’état limite dépend de
deux paramètres de conception du système. Il s’agit alors de calculer la probabilité de défaillance
et ses dérivées par rapport à ces deux paramètres de conception. Afin d’estimer la probabilité et
ses dérivées, l’approche proposée est associée à l’algorithme d’échantillonnage préférentiel multiple
adaptatif paramétrique présenté au Chapitre 5 du manuscrit. La valeur de la dérivée obtenue varie
très peu pour les trois degrés de polynôme, cf Table 6.8. Ainsi une régression de degré égal à n = 2 suffit
pour aboutir à un estimateur de dérivée de valeur correcte. Les estimateurs obtenus avec l’approche
proposée sont alors bien moins biaisés que ceux obtenus avec l’approche Faible. Cependant, leur CV
est alors plus large. Néanmoins, puisque le biais de l’estimateur est contrôlé grâce à l’étude sur le
degré du polynôme, l’approche proposée peut tout de même être considérée comme une amélioration
de l’approche Faible. Le CV plus faible des estimateurs obtenus avec l’approche Faible ne garantit pas
la qualité de l’estimation vis-à-vis du biais.

Pour les trois applications, l’estimateur de la variance des dérivées était à chaque fois sous-évalué.
De plus, la variation de cet estimateur était très élevée. Ainsi, comme précédemment mentionné, il
semble que l’estimation de la variance, possible dans le cadre WSL, ne soit pas efficace en pratique.

Conclusion
Dans ce chapitre, une nouvelle manière d’estimer la dérivée de la probabilité de défaillance par rapport
aux paramètres déterministes du système a été présentée. Cette dérivée s’obtient grâce à une régression
polynomiale hétéroscédastique. Les paramètres déterministes peuvent représenter les paramètres de
conception du système ou bien les paramètres de distribution du vecteur aléatoire de départ. Le calcul
de la probabilité ainsi que sa dérivée se font dans l’espace standard elliptique, après une transformation
isoprobabiliste. Cette nouvelle approche, qui s’inspire de l’approche Faible, est présentée comme
une amélioration de cette dernière. Nous abordons ici quelques remarques finales et ainsi que des
perspectives.

La principale innovation proposée par l’approche présentée consiste à exprimer la dérivée de la
probabilité comme le terme d’ordre zéro d’un développement en série de Taylor. Ce terme constant
peut alors être identifié grâce à une régression polynomiale. Puisque le budget de simulation ne doit
pas être augmenté, le paramétrage de la régression a été fait de la manière la plus simple possible afin
de respecter cette contrainte. En conséquence, il semble que la méthode pourrait être améliorée suite
à une étude plus approfondie sur les régressions polynomiales hétéroscédastiques.

Plus particulièrement, une des perspectives les plus intéressantes consiste à améliorer la stabilité des
estimateurs de dérivée obtenus. En effet, pour de nombreuses applications, la valeur des estimateurs
étaient très proches de la valeur de référence, mais leur CV était un peu trop large par rapport à
l’approche Faible. Puisque la méthode proposée est présentée comme une amélioration de l’approche
Faible, arriver à baisser le niveau de CV des estimateurs en plus du biais serait favorable.

De même, l’estimateur de la variance des dérivées semble toujours être sous-évalué. Un estima-
teur de la variance efficace permet d’évaluer la qualité de l’estimation de la dérivée avec une unique
simulation. Puisqu’un tel estimateur est disponible dans l’approche Faible, il semble aussi nécessaire
d’améliorer cette estimation dans l’approche proposée.

Cette approche a été testée en grande dimension dans un espace standard normal avec un système
possédant deux régions de défaillance. Bien que les résultats ne soient pas aussi précis que dans d’autres
exemples, notamment à cause du CV des estimateurs qui est assez élevé, nous ne pensons pas que cela
vienne de la grande dimension du système ou bien de la multitude des régions de défaillance. En
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effet, l’approche proposée ici considère seulement l’espace unidimensionnel de la sortie de la fonction
d’état limite Y = g(s,X). Ainsi, elle est indépendante de la dimension des entrées X ainsi que de la
configuration du domaine de défaillance. De même, nous ne pensons pas que la distribution elliptique
initiale des entrées aléatoires influence les résultats. Ainsi, une autre perspective intéressante serait
d’appliquer la méthode proposée à d’autres systèmes de grande dimension, possédant plusieurs régions
de défaillance, dont les entrées suivent une autre distribution elliptique que la loi normale.

Enfin, les différentes applications présentées dans ce chapitre ont souligné la possibilité de combiner
l’approche proposée à plusieurs méthodes de simulation. En effet, seuls le vecteur des évaluation de
la fonction d’état limite et celui de ses dérivées sont nécessaires. La densité ayant permis de générer
l’échantillon n’est pas utilisée. De sorte, nous supposons que l’approche présentée peut être associée
à de nombreuse méthodes de simulation, autre que la méthode de Monte-Carlo et l’échantillonnage
préférentiel. Puisque la méthode proposée est ainsi valable pour des systèmes de faible et large dimen-
sions, possédant plusieurs régions de défaillance et dont la distribution des variables aléatoires importe
peu, le fait de pouvoir la combiner avec de nombreuses méthodes de simulation la rend particulièrement
flexible à l’étude de différents systèmes.
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6.1 Introduction
In this chapter we present an original approach to estimate the derivatives of Pf with respect to the
deterministic inputs s ∈ Rp of the system. The main highlights of the proposed method are as follows:

• the derivatives of the failure probability are derived in a context close to the Weak approach
described in Chapter 4 Section 4.3.3.1, as an approximation of the failure indicator function is
employed to compute the sensitivity;

• the resulting derivative is the coefficient of order zero of a Taylor series expansion, which can be
recovered with a heteroscedastic polynomial regression;

• the dimension d of the random inputs as well as the number of failure regions in the failure domain
have no influence on the method as the heteroscedastic polynomial regression is performed in
the one-dimensional space of the limit state function output g(s,X);

• the final simulation budget is the same as in the Weak approach context, as the derivatives of
the costly limit state function with respect to sℓ have to be evaluated, for sℓ = 1, . . . , p. It should
be noted that the evaluation of these derivatives are mandatory as long as s are not distribution
parameters only, cf Chapter 4 Section 4.3;

• even though the proposed method is theoretically biased, the resulting bias of the sensitivity
estimates can be controlled by increasing the degree of the polynomial used for the regression;

• the proposed method can be seen as an improvement of the Weak approach, as it is expected to
lead to sensitivity estimates less biased and more precise in terms of CV.

This approach is suited for both distribution parameters as well as design parameters and is performed
in the standard elliptical space. Consequently, the standardized limit state function g depends upon
the parameters s whereas the pdf of the inputs fX is parameter-free, cf Chapter 4 Section 4.3. It is
assumed that the estimation of the failure probability is already performed with a simulation method.
The observations generated during the procedure are then reused in the proposed approach to increase
as little as possible the simulation budget, as will be detailed.

This chapter is organized as follows. Sections 6.2 and 6.3 describe the proposed algorithm. In
order to illustrate the new approach in these first sections, a one-dimensional toy example is detailed.
Section 6.2 focuses on the mathematical background leading to the new expression of the sensitivities
while Section 6.3 presents the heteroscedastic polynomial regression. Then Section 6.4 presents three
numerical examples, with standard normal inputs. The results are summarized and some conclusions
are drawn in Section 6.5.

6.2 New sensitivity expression through Taylor series expan-
sion

The sensitivity analysis presented here is performed in the standard elliptical space. Therefore, no
matter the nature of vector s, its influence is expressed in the failure domain Df of the system,
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through the limit state function g. We recall here that the failure probability is defined with the
following domain integral and expected value

Pf (s) =
∫

Df (s)
fX(x) dx =

∫
Rd

IDf (s)(x)fX(x) dx = EfX

[
IDf (s)(X)

]
,

where Df (s) = {x ∈ Rd| g(s,x) ≤ 0}. The mathematical framework of the approach is first presented.
Next a one-dimensional toy example serves as an example to illustrate the different mathematical
quantities introduced. Finally the main idea of the approach is introduced, which is to use sampling
methods to compute the derivative of the failure probability as a byproduct of a heteroscedastic
polynomial regression.

6.2.1 Baseline of the mathematical framework of the approach
The baseline of the mathematical framework of the approach, detailed in this section, is summarized as
follows. As in the Weak approach presented in Chapter 4 Section 4.3.3.1, the failure domain indicator
function is first approximated with a smoother function. Then, a change of random variable in the
image measure is introduced. The resulting integral is differentiable and its derivative with respect
to sℓ with ℓ = 1, . . . , p is expressed as an expected value. Next, the Taylor series expansion of the
expected value is derived and the sensitivity with respect to sℓ is finally identified amongst the Taylor
series coefficients.

6.2.1.1 Approximation of the failure indicator function

As the indicator function is not differentiable, several smoother functions have been used in the litera-
ture as surrogate [Torii, 2020,Papaioannou et al., 2013,Lacaze et al., 2015]; cf Chapter 4 Section 4.3.3.
Here, we focus on approximations which are continuous cumulative distribution functions Ξσ, defined
with a parameter σ > 0 which verify the following property

∀x ∈ Rd IDf (s)(x) = Iy≤0(g(s,x)) = lim
σ→0

Ξσ (−g(s,x)) , (6.1)

where 0 is contained in the interior of the support of Ξσ. The failure probability function Pf (s, ·) is
then defined on R+\{0} such as

∀σ ∈ R+\{0} Pf (s, σ) =
∫
Rd

Ξσ (−g(s,x)) fX(x)dx = EfX [Ξσ (−g(s,X))] , (6.2)

and we further assume the cdf Ξσ to be regular enough to verify the following properties

Pf (s) = lim
σ→0

Pf (s, σ) and ∂Pf (s)
∂sℓ

= lim
σ→0

∂Pf (s, σ)
∂sℓ

.

In the Weak approach framework presented in Chapter 4 Section 4.3.3.1, the sensitivity of Pf is
obtained by differentiating Eq. (6.2) with respect to sℓ, ℓ = 1, . . . , p, for a fixed value of σ denoted σ̃.
Here, we introduce a modification in the approach with a change of random variable to derive another
expression of the failure probability function Eq. (6.2).

6.2.1.2 Change of variable

It is assumed in the rest of this chapter that the random response of the system g(s,X) is an absolutely
continuous univariate random variable. Considering the following change of random variable in the
image measure: Hs = g(s,X), the failure probability function Eq. (6.2) becomes

∀σ ∈ R+\{0} Pf (s, σ) = EfHs
[Ξσ (−Hs)] =

∫
R

Ξσ (−h) fHs(h)dh, (6.3)

where fHs is the unknown density of the univariate random variable Hs. It should be noted that the
failure probability function is thus written as an integral defined on R rather than Rd. Denoting ξσ the
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pdf associated with the Ξσ distribution, the failure probability function Eq. (6.3) can then be rewritten
in the following way

∀σ ∈ R+\{0} Pf (s, σ) =
∫
R

Ξσ (−h) fHs(h)dh =
∫
R

(∫ −h

−∞
ξσ (z) dz

)
fHs(h)dh (6.4)

=
∫
R

(∫
R
I{z≤−h}ξσ (z) dz

)
fHs(h)dh. (6.5)

Applying the theorem of Fubini to integral Eq. (6.5) results in

∀σ ∈ R+\{0} Pf (s, σ) =
∫
R

(∫
R
I{h≤−z}fHs(h)dh

)
ξσ (z) dz =

∫
R
FHs(−z)ξσ (z) dz,

where FHs is the unknown cdf of the univariate random variable Hs. Employing this new expression
of the failure probability function Pf (s, ·) to compute the derivative with regard to sℓ with ℓ = 1, . . . , p
gives

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

=
∫
R

∂FHs(−z)
∂sℓ

ξσ(z)dz = Eξσ

[
∂FHs(−Z)

∂sℓ

]
, (6.6)

where Z is a univariate random variable of pdf ξσ. Eq. (6.6) is a new expression of the failure
probability derivative function in a modified Weak approach context, in which the cdf nature of the
approximation function Ξσ is taken advantage of. Instead of trying to evaluate this expression of the
derivative function at a specific value of σ, we use the Taylor series expansion to remove the dependence
in σ, as detailed in the next section.

6.2.1.3 Taylor series expansion

Taylor series expansion is a powerful tool to help derive the expression of expected values [Ang and
Tang, 2007, Khan, 2004, Biau and Mason, 2015]. In our specific context, we derive the Taylor series
expansion in the neighborhood of 0 of the function T defined as T (z) = ∂FHs(−z)/∂sℓ for all z ∈ R.
Assuming FHs is Cn+2 in 0, the Taylor series expansion leads to

T (Z) = T (0) + Z

1!T
′(0) + Z2

2! T
′′(0) + . . .+ Zn

n! T
(n)(0) +Rn(Z), (6.7)

where the remainder is expressed in the integral form with [Apostol, 1967]

Rn(Z) =
∫ Z

0

(Z − t)n

n! T (n+1)(t)dt.

Applying the expectation to both sides of the equality Eq. (6.7) results in the following equation

Eξσ [T (Z)] = T (0) + Eξσ [Z]
1! T ′(0) +

Eξσ

[
Z2]

2! T ′′(0) + . . .+ Eξσ [Zn]
n! T (n)(0) + Eξσ [Rn(Z)] . (6.8)

The first term T (0) on the right side of the equality is equal to the derivative of the function FHs with
respect to sℓ, evaluated in z = 0. This term is equal to ∂Pf (s)/∂sℓ as detailed in the Appendix D.1.
Therefore, the following expression of ∂Pf (s, σ)/∂sℓ is obtained

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

= ∂Pf (s)
∂sℓ

+ Eξσ
[Z]

1! T ′(0) +
Eξσ

[
Z2]

2! T ′′(0) + . . .

+ Eξσ
[Zn]
n! T (n)(0) + Eξσ [Rn(Z)] . (6.9)

From Eq. (6.9) the derivative of Pf with respect to sℓ appears to be the constant term of a polynomial
expression of the moments of Z, where Z is a random univariate variable of cdf Ξσ and pdf ξσ.



6.2. NEW SENSITIVITY EXPRESSION THROUGH TAYLOR SERIES EXPANSION 151

6.2.2 Illustration with a one-dimensional toy example
Let X be a univariate standard normal variable. The limit state function of the toy example is defined
as g : X 7→ aX + b where s = [a, b] ∈ R∗ × R is the deterministic vector. It is noticeable that the
response of the limit state function Y = g([a, b], X) follows then a normal law of mean b and variance
a2, Y ∼ N (b, a2).

As the toy example is very simple, all the quantities mentioned in the equations above can be
analytically computed. First the reliability analysis of the toy example is briefly presented. A particular
choice of approximation function Ξσ is then detailed, leading to the expression of the Taylor series
expansion.

6.2.2.1 Reliability analysis of the toy example

The failure probability of the toy example is given by

Pf (s) = P(aX + b < 0) = P
(
X < − b

a

)
= Ψ

(
− b

a

)
,

where Ψ is the cdf of a standard normal random variable. Denoting ϕ the pdf of a standard normal
variable, the derivatives of Pf are equal to

∂Pf (s)
∂a

= b

a2ϕ

(
b

a

)
and ∂Pf (s)

∂b
= −1

a
ϕ

(
b

a

)
.

The random variable Hs follows a normal distribution of mean b and variance a2, therefore FHs is C∞.

6.2.2.2 Choice of the indicator function approximation

The selected approximation of the indicator function is the cdf of a centered normal variable of variance
σ2. Therefore ∀y ∈ R , Ξσ(y) = Ψ(y/σ) where Ψ is the cdf of a univariate standard normal variable.
This particular choice of smooth approximation of the failure indicator function has been studied
in [Lacaze et al., 2015] and employed in various methods [Papaioannou et al., 2013,Papaioannou et al.,
2018,Torii, 2020].

With this particular approximation function, the failure probability function σ → ∂Pf (s, σ)/∂a
and σ → ∂Pf (s, σ)/∂b can be analytically computed. From Eq. (6.2), one has

∀σ ∈ R+\{0} Pf (s, σ) =
∫
R

Ψ
(

−ax− b

σ

)
ϕ(x)dx,

since fX = ϕ, the univariate standard normal pdf. Consequently, the failure probability derivative
functions are expressed as

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂a

= −
∫
R

x

σ
ϕ

(
−ax− b

σ

)
ϕ(x)dx = 1√

a2 + σ2
1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
ab

a2 + σ2

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂b

= −
∫
R

1
σ
ϕ

(
−ax− b

σ

)
ϕ(x)dx = − 1√

a2 + σ2
1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
,

where the detailed calculus can be found in the Appendix D.2. It should be noted that the convergence
of the failure probability derivative function proven in [Papaioannou et al., 2013] is indeed verified with
this example as one has

lim
σ→0

∂Pf (s, σ)
∂a

= b

a2
1√
2π

exp
(

−1
2

(
b2

a2

))
= ∂Pf (s)

∂a

lim
σ→0

∂Pf (s, σ)
∂b

= −1
a

1√
2π

exp
(

−1
2

(
b2

a2

))
= ∂Pf (s)

∂b
.

Furthermore, since the variable Z of the Taylor series expansion is a centered normal variable of
variance σ2, its moments are known and we recall here their expression

∀k ∈ N Eξσ

[
Z2k

]
= (2k)!

2kk! σ
2k and Eξσ

[
Z2k+1] = 0.
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Consequently, the expression of Eq. (6.9) can be further detailed and gives

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

= ∂Pf (s)
∂sℓ

+ σ2

2 T ′′(0) + σ4

4 × 2!T
(4)(0) + . . .

+ σ2n

2nn!T
(2n)(0) + Eξσ

[R2n(Z)] (6.10)

Therefore, the failure probability sensitivity is equal to the constant coefficient of an even polynomial
in σ. It should be noted that the polynomial is even as the pdf ξσ is an even function. Therefore,
if ones chooses Ξσ as the cdf of a uniform random variable in the interval [−σ/2, σ/2] like in [Torii,
2020,Torii and Novotny, 2021], the resulting polynomial will also be even.

6.2.2.3 New expression of the Taylor series expansion

Since an analytical expression of the function FHs is available, the other coefficients of the polynomial
which are derivatives of the function T multiplied by the moments of Z can be analytically derived
as well. Computing the derivatives of order 2 and 4 of the function T (see Appendix D.3) gives the
following analytical formula

T ′′
a (0) = b

a4ϕ

(
b

a

)(
−3 + b2

a2

)
and T (4)

a (0) = b

a6ϕ

(
b

a

)(
15 − 10 b

2

a2 + b4

a4

)
,

T ′′
b (0) = 1

a3ϕ

(
b

a

)(
1 − b2

a2

)
and T

(4)
b (0) = 1

a5ϕ

(
b

a

)(
−3 + 6 b

2

a2 − b4

a4

)
.

Given these formulas, we introduce the polynomials P2 and P4 of order 2 and order 4 defined on R+

as

P2(σ) = ∂Pf (s)
∂a

+ σ2

2
b

a4ϕ

(
b

a

)(
−3 + b2

a2

)
and P4(σ) = P2(σ)+ σ4

4 × 2!
b

a6ϕ

(
b

a

)(
15 − 10 b

2

a2 + b4

a4

)
,

for parameter a and

P2(σ) = ∂Pf (s)
∂b

+ σ2

2
1
a3ϕ

(
b

a

)(
1 − b2

a2

)
and P4(σ) = P2(σ) + σ4

4 × 2!
1
a5ϕ

(
b

a

)(
−3 + 6 b

2

a2 − b4

a4

)
,

for parameter b. An illustration of these polynomials is shown in Figure 6.1, with the derivative
functions σ 7→ ∂Pf (s, σ)/∂a and σ 7→ ∂Pf (s, σ)/∂b plotted as well.

From the curves shown in Figure 6.1, it seems polynomials P2 and P4 are quite similar and close
to the failure probability derivative function for σ ∈ [0, 0.5], however for higher values of σ, the plots
begin to diverge, with a stronger divergence between P2 and the failure probability derivative function
than between P4 and the failure probability derivative function. This result is not surprising as for
low values of σ, the first coefficients of the Taylor series expansion matter more than for higher values
of σ, where higher order coefficients are dominant.

Consequently, if one focuses on a small interval of low σ values, the failure probability derivative
function can be approximated with a polynomial of order 2 or 4 for this particular toy example, whose
constant coefficient is equal to the quantity of interest: the probability sensitivity. Therefore, if the
coefficients of this polynomial are identified, the probability sensitivity is identified as well. This
identification is the main idea of the new approach proposed.

6.2.3 Combining sampling methods and polynomial regression to derive
the failure probability sensitivity

In this section and in the rest of this chapter, we denote Pn the polynomial of order n such as

∀σ ∈ R+ Pn(σ) = ∂Pf (s)
∂sℓ

+ Eξσ
[Z]

1! T ′(0) +
Eξσ

[
Z2]

2! T ′′(0) + . . .+ Eξσ
[Zn]
n! T (n)(0).

Consequently one has

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

− Pn(σ) = Eξσ
[Rn(Z)] and for a small σ ∂Pf (s, σ)

∂sℓ
≈ Pn(σ).
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a) b)

c) d)

Figure 6.1: Illustration of the polynomials P2 and P4 for both of the derivatives of Pf . The real
derivative value is in black dotted line and the derivative function σ 7→ ∂Pf (s, σ)/∂sℓ is in blue. The
parameters of the toy example are set as follows: a = 2 and b = 5. Figures a) and c) display the
derivative with respect to a while Figures b) and d) display the derivative with respect to b. Figures
a) and b) show the evolution of the different functions for a range of σ in (0, 2) while figures c) and
d) show the evolution for a range of σ in (0, 1). The failure probability is equal to 6.21 × 10−3, the
derivative with respect to a is equal to 2.19 × 10−2 and the derivative with respect to b is equal to
8.76 × 10−3.

The smaller the σ, the lower n is needed to reach an accurate equivalence between Pn and ∂Pf (s, ·)/∂sℓ,
as illustrated with the toy example. Furthermore, in order to evaluate the coefficients of the polynomial
Pn, one must have at least n + 1 evaluations of the function σ 7→ Pn(σ). The idea of the proposed
approach is thus to find the coefficient of Pn of order zero, which is the probability sensitivity, by
performing a polynomial regression with m evaluations of

(
∂Pf (s, σl)/∂sℓ

)
l=1,...,m

with m ≥ n + 1,
since the two functions are equivalent for small σ. Recalling that

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂sℓ

=
∫
Rd

−∂g(s,x)
∂sℓ

ξσ(−g(s,x))fx(x)dx, (6.11)

is a domain integral, it can be estimated with Monte Carlo methods as in the Weak approach framework
presented in Chapter 4 Section 4.3.3. We briefly review here the properties of this estimate.
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6.2.3.1 Regression with crude Monte Carlo method

The crude Monte Carlo estimate of Eq. (6.11) is given by the following formula

∀σ ∈ R+\{0}
̂∂Pf (s, σ)
∂sℓ

MC

= − 1
N

N∑
j=1

∂g
(

s,X(j)
)

∂sℓ
ξσ

(
−g
(

s,X(j)
))

, (6.12)

where the observations
(

X(j)
)

j=1,...,N
are iid from fx. These observations are reused from the estima-

tion of the failure probability with an MC estimate. Therefore, the only additional simulation budget
concerns the evaluation of the limit state function derivative with respect to sℓ for each observation.
The MC estimate is unbiased and its variance is given by

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)
∂sℓ

MC = 1
N

Var
(
∂g (s,X)
∂sℓ

ξσ (−g (s,X))
)
. (6.13)

Depending on the pdf ξσ, the expression of this variance can be further detailed. For instance, if ξσ

is the pdf of a centered normal variable of variance σ2, then ∀y ∈ R ξσ(y) = (1/σ)ϕ(y/σ) and the
variance becomes

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)
∂sℓ

MC = 1
Nσ2Var

(
∂g (s,X)
∂sℓ

ϕ

(
−g (s,X)

σ

))
.

If ξσ is the cdf of a uniform variable defined on [−σ/2, σ/2], then ∀y ∈ [−σ/2, σ/2] ξσ(y) = 1/σ and
0 elsewhere and the variance becomes

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)
∂sℓ

MC = 1
Nσ2Var

(
∂g (s,X)
∂sℓ

I[− σ
2 , σ

2 ] (−g (s,X))
)
.

For a fixed N , these variance functions are derived in Figure 6.2. From Figure 6.2, it is obvious that the

a) b)

Figure 6.2: Illustration of the variance functions for both of the mentioned indicator approximation
functions Ξσ with the toy example (a = 2, b = 5) with respect to sℓ = a and with N = 106. The normal
approximation is plotted in cyan while the uniform approximation is plotted in navy blue. Figure a)
shows the evolution of the different functions for a range of σ in (0.02, 1) while Figure b) shows the
evolution for a range of σ in (0, 0.02). The derivative with respect to b gives roughly the same variance
function evolution.
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variance Eq. (6.13) of the MC estimate is a decreasing function of σ, for both approximation functions.
This conclusion is valid for all approximation functions of the indicator function. Indeed, as they verify
the convergence property Eq. (6.1), Ξσ(y) tends to the indicator function as σ → 0. Consequently the
domain integral Eq. (6.11) converges to a surface integral over the limit state surface g(s,x) = 0 as
σ → 0. Most of the observations of Eq. (6.12) are then located away from this surface and thus have
a negligible weight in the mean sample value; cf Chapter 4 Section 4.3.3.2.

Therefore, for a fixed N , each estimate ̂∂Pf (s, σl)/∂sℓ, for l = 1, . . . ,m, has a different noise, and
the smaller the σl the bigger the noise. In order to identify the coefficients of the polynomial Pn,
a heteroscedastic polynomial regression must then be performed. This heteroscedastic polynomial
regression is further detailed in the next section. The theoretical bias of the proposed approach is first
briefly addressed here, as it is an important aspect of the proposed method.

6.2.3.2 Theoretical bias of the sensitivity estimate

Each MC estimate of Eq. (6.2) is unbiased. Nevertheless, as the polynomial Pn is of degree n and
n is finite, the proposed approach is theoretically biased as there is no equality between Pn and
∂Pf (s, ·)/∂sℓ, no matter the sampling method. Indeed, for each σl, it is recalled that

∂Pf (s, σl)
∂sℓ

= Pn(σl) + Eξσl
[Rn(Z)] = Pn(σl) + Eξσl

[∫ Z

0

(Z − t)n

n! T (n+1)(t)dt
]
,

where T (z) = ∂FHs(−z)/∂sℓ for all z ∈ R. The higher the n, the smaller the theoretical bias, for a fixed
σl. Furthermore, for a fixed n, since several values of σl are considered, the remainder Eξσl

[Rn(Z)] is
then more negligible for the smaller values of σl than for the higher values. This evolving theoretical
bias has to be taken into account when performing the heteroscedastic polynomial regression. The
discussion on the bias of the proposed method continues on the next sections.

6.3 Heteroscedastic polynomial regression
The main parameters of the heteroscedastic polynomial regression are the selected degree of the poly-
nomial n, the number m of estimates

(
̂∂Pf (s, σl)/∂sℓ

)
l=1,...,m

with m ≥ n + 1 and the interval of

regression [σmin, σmax], given that n and the interval are dependent, as underlined in the toy example

Section 6.2.2.3. However, the correlation between the different estimates
(

̂∂Pf (s, σl)/∂sℓ

)
l=1,...,m

is

first discussed, as it directly influences the regression framework.
In the rest of this chapter, the following notations will be used. We denote V the m-length vector

of the estimates: V =
(

̂∂Pf (s, σl)/∂sℓ

)
l=1,...,m

, S the Vandermonde matrix of σ of size m × (n + 1)

such as Sl,i = σi
l , for l = 1 . . . ,m and i = 0, . . . , n and α the polynomial coefficients such as the

regression is written
V = Sα + ϵ,

where ϵ is the m-length vector of random errors ϵl of expected value EfX [ϵl] = 0, as the estimates Vl

are unbiased. The errors variance Var (ϵl) depends on σl cf Eq. (6.13). The σ-vector is denoted in
the ascending order: σ1 > σ2 > . . . > σm. This linear regression is addressed in our manuscript with
linear least square methods [Watson, 1967, Lai et al., 1979]. However, it should be noted that there
exist other methods that aim to identify the coefficients of a polynomial; for instance the polynomial
interpolation framework [Werner, 1984]. As this identification is not the main subject of this thesis,
those methods are not derived here.

6.3.1 Linear least squares method in our specific context

As previously mentioned, the observations
(

X(j)
)

j=1,...,N
needed for each estimate Vl are reused

from the failure probability estimation procedure, in order to minimize the additional simulation
budget. However, reusing the exact same sample for each Vl results in a highly correlated database
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(σl, Vl)l=1,...,m. The regression framework required is then the Generalized Least Squares (GLS) frame-
work that we describe here in short.

6.3.1.1 Generalized Least Squares regression framework

The Generalized Least Squares (GLS) framework is the generalization of the Ordinary Least Squares
(OLS) framework, to the cases where the variance of the random error ϵl is not constant (heteroscedas-
ticity) and the estimates vector V is not uncorrelated. We denote Σϵ the covariance matrix of the
random errors ϵ. The GLS estimate of the coefficient α is then obtained with the following equations

α̂ =
(

S⊤Σ−1
ϵ S

)−1 (
S⊤Σ−1

ϵ V
)
, (6.14)

and it is the best linear unbiased estimate [Taboga, 2021]. It is possible to derive the covariance matrix
estimate of α̂ with the following formula

V̂ar (α̂) =
(

S⊤Σ−1
ϵ S

)−1
. (6.15)

In our specific context, the covariance matrix Σϵ is not analytically known and has to be estimated with
the sample

(
X(j)

)
j=1,...,N

. Therefore, in the formulas Eqs. (6.14) and (6.15), replacing Σϵ with Σ̂ϵ

gives the final framework suited for the heteroscedastic polynomial regression needed in our approach,
called the Feasible GLS (FGLS).

From formulas Eqs. (6.14) and (6.15), one can notice that the inverse of the covariance matrix is
required to compute both quantities. In our specific case, this covariance matrix is an estimation of the
real covariance matrix. Therefore, each coefficient already comes with an estimation error. All those
errors combined make it very difficult to accurately compute Σ̂ϵ

−1
. Consequently, although the FGLS

framework is theoretically the best suited for the proposed method, it is practically inapplicable. For
this reason, a regression framework simplification must be considered, which is detailed next.

6.3.1.2 Pre-processing of the covariance matrix

The matrix Σ̂ϵ is particularly hard to inverse as its non-diagonal coefficients are non-zero. Therefore,
the simplification proposed here is to decrease the correlation of the vector of estimates V. One solution
could be to generate m samples of size N independently and then estimate each Vl with a different
sample. The resulting vector V would be completely independent. However, as the goal is to increase
as little as possible the simulation budget, this solution is not applicable in our context, especially if
the number m is high.

The solution selected to decrease the correlation of the vector V is to employ bootstrap [Horowitz,
2001]. The logic of bootstrapping is to learn an empirical discrete cdf from a vector of iid observations
in order to generate a new sample. The new sample shares the same property as the original sample
but they are independent. Here, we apply bootstrap to the iid observations

(
X(j)

)
j=1,...,N

already
available from the failure probability estimation. The first estimate V1 is computed with the original
sample and for each σl with l > 1, bootstrap is employed. The resulting vector V is thus independent.
Bootstrap does not require any additional call to the limit state function or its derivatives.

The resulting covariance matrix Σ̂ϵ is thus diagonal, and numerically invertible. The regression
framework is then referred to as Weighted Least Squares (WSL). Denoting W the diagonal matrix
such as Wl,l = 1/V̂ar (Vl), where V̂ar (Vl) is given by Eq. (6.13), the WSL estimate is then written

α̂W =
(

S⊤WS
)−1 (

S⊤WV
)
, (6.16)

and it is the best linear unbiased estimate [Taboga, 2021]. It is possible to derive the covariance matrix
estimate of α̂W with the following formula

V̂ar (α̂W ) =
(

S⊤WS
)−1

. (6.17)

Therefore, with only one simulation run, an estimation of the variance of the sensitivity estimate is
available. The sensitivity estimate is equal to the coefficient of order zero of the polynomial, which is the
first component of the vector α̂W and its theoretical variance estimate is the component V̂ar (α̂W )1,1.
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6.3.1.3 Remark on the bias of the estimate

Even if the estimate given by Eq. (6.16) is unbiased, it is reminded here that because of the remainder
of the Taylor series expansion Eξσ [Rn(Z)], there is still a bias in the proposed approach, as previously
mentioned. This bias decreases as the values of (σl)l=1,...,m decrease and with an increase of the degree
of the polynomial Pn, as illustrated in the toy example Section 6.2.2.3. Consequently, this bias can be
controlled, as it highly depends on the setting of the regression parameters, which are the regression
interval [σmin, σmax] and the polynomial degree n of Pn. The setting of the regression parameters is
further detailed in the next section as well as the control of the bias of the sensitivity estimate.

6.3.2 Settings of the regression parameters
The settings presented here result of several tests. However, as previously mentioned, polynomial
regression is not the main subject of this chapter, nor this thesis. Consequently, the parameter are set
in the simplest manner possible. Before presenting the settings, the scaling of the limit state function
is first addressed, as it greatly influences the evolution of the failure probability derivative functions
σ 7→ ∂Pf (s, σ)/∂sℓ.

6.3.2.1 Scaling of the limit state function

Depending on the limit state function, the order of magnitude of x 7→ g(s,x) and its derivatives
with respect to s can significantly vary, especially in the vicinity of the failure surface, as underlined
in [Lacaze et al., 2015] and [Papaioannou et al., 2018]. As a result, the behavior of the failure probability
derivative functions σ 7→ ∂Pf (s, σ)/∂sℓ can considerably vary as well. Here, general regression settings
are presented, which aim to be applied to various limit state functions. Consequently, the following
scaling is first performed.

Let
(
Y (j) = g

(
s,X(j)

))
j=1,...,N

be the lsf values vector obtained from the estimation of the failure
probability. The scaling proposed here is to divide the vector Y as well as the vector of derivatives(
∂g
(

s,X(j)
)
/∂sℓ

)
j=1,...,N

by the standard deviation δ obtained from the negative lsf values only of
Y

δ2 =
N∑

j=1
w̄(j)

(
Y (j) − µ

)2
with µ =

N∑
j=1

w̄(j)Y (j), (6.18)

where w̄(j) = w(j)/
∑N

i=1 w
(i) and w(j) = IY <0

(
Y (j)). Therefore, δ represents the order of magnitude

of the lsf in the failure domain.
This division does not affect the value of the failure probability nor the failure probability sensitivity.

Indeed provided δ > 0, we have Pf (s) = P (g(s,X) < 0) = P
(

g(s,X)
δ < 0

)
and the derivatives do not

change either. However, this division influences the value of the coefficients of order superior to zero in
the Taylor series expansion of T . Since these coefficients are not of interest in the proposed approach,
the consequences are negligible. Thanks to this scaling, the order of magnitude of the lsf is expected
to have little influence on the polynomial regression settings presented in the next paragraphs.

6.3.2.2 Choice of the regression interval and the polynomial degree

Definition of the regression interval [σmin, σmax]
After several tests, it appeared that the selection of the interval is crucial in the regression process,
as it greatly influences the quality of the sensitivity estimate. From the graphs shown in Figure 6.2,
it is obvious that if the interval is too close to zero, then the estimates (Vl)l=1,...,m will be very noisy
and their variance might be inaccurately estimated, as N is fixed. Consequently the WLS framework
might lead to erroneous results. However, if the regression interval is too far from zero, a higher degree
polynomial is needed to correctly approximate the Taylor series expansion as shown in Figure 6.1. The
polynomial regression is then harder to achieve and leads to a probability sensitivity of higher variance.
Therefore there is a trade-off between the accuracy of the estimates (Vl)l=1,...,m and

(
V̂ar (Vl)

)
l=1,...,m

and the variance of the sensitivity estimate obtained with the polynomial regression. In the proposed
approach, it was decided to define the interval bounds inside the interval σ ∈ [0.01, 1]. Thanks to the
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scaling process mentioned above, restricting the search for the regression bounds in this interval has
proven to be efficient for the various limit state functions tested.

Within this interval, the regression bounds are set depending on the theoretical CV estimate of the
MC estimate V1 of Eq. (6.11), whose theoretical variance is given by Eq. (6.13). This CV is thus a
function of σ. Choosing a CV criterion to set the interval bounds is inspired by [Papaioannou et al.,
2018] where the optimal σ̃ of the Weak approach framework is selected with a target CV technique;
see Chapter 4 Section 4.3.3.3. Here, the values of σmin and σmax are thus respectively the lowest and
the highest value of σ such as CV(σ) < CVtarget for all σ ∈ [σmin, σmax]. This CV criterion ensures the
regression is performed with estimates (Vl)l=1,...,m and

(
V̂ar (Vl)

)
l=1,...,m

that have reasonable noise.
For the choice of CVtarget, selecting an arbitrary value, e.g. CVtarget = 10% could lead to very

narrow intervals or in the contrary the whole restricted interval [0.01, 1]. It depends on N as well
as the evolution of σ 7→ ∂Pf (s, σ)/∂sℓ. While performing the polynomial regression in the whole
restricted interval [0.01, 1] does not affect the quality of the regression (thanks to the scaling previously
mentioned), if the interval is very small then the quality of the regression cannot be guaranteed. For
this reason, the CVtarget is set dependently on the minimum theoretical CV estimate of the V1 estimate
with

CVtarget = min
σ∈[0.01,1]

CVV1(σ) + 5%.

The additional 5% ensures a sufficiently large interval and is an arbitrary value. It has proven to be
efficient after several tests. This threshold is independent of the quality of the estimation of Pf , as it
has been underlined that Pf and its derivatives do not depend on the same quantities; cf Chapter 4,
section 4.3.3.2. Furthermore, this threshold changes for each deterministic inputs sℓ and allows the
regression interval to be specifically suited for the evolution of σ 7→ ∂Pf (s, σ)/∂sℓ.

Once this bounds are computed, the values of the vector (σl)l=1,...,m are set uniformly in the inter-
val [σmin, σmax].

Selection of the polynomial degree n and number of estimations m
The choice of the polynomial degree n influences the global bias of the proposed approach. The higher
the degree n is, the lower the bias, for a fixed regression interval. However, as previously mentioned,
a high degree n induces a more intricate polynomial regression, as the polynomial Pn is then more
complex, resulting in a sensitivity estimate with higher variance. Therefore, there is a trade-off between
the value of the theoretical bias of the sensitivity estimate and its variance.

The choice of n affects the number m of estimations Vl required for the regression, as there are n+1
coefficients that have to be estimated with the regression. For simplification purposes, the number m
of estimations of the failure probability derivatives Vl =

(
̂∂Pf (s, σl)/∂sℓ

)
l=1,...,m

is set to m = n+ 2,

as several tests showed that an increase in this number did not improve the quality of the sensitivity
estimates.

It is reminded here that these m estimations are obtained with bootstrap, therefore they do not
increase the simulation budget. Consequently, several tests can be performed to assess the minimal
degree n needed for a correct sensitivity estimate, without affecting the simulation budget. If, with a
higher degree polynomial, the resulting sensitivity estimate value no longer changes, we can assume
the estimate has reached the correct value and the bias is controlled since it has become negligible.
This control of the bias depends naturally on the level of accuracy wanted for the estimation of the
sensitivity.

6.3.2.3 Illustration with the toy example

It is recalled here that the selected indicator approximation function for the toy example is the cdf
of a centered normal variable of variance σ2, therefore the resulting polynomial Pn is even: n = 2k,
consequently m = k+ 2 as k+ 1 coefficients must be estimated. The toy example is tested for various
values of sample sizes N . As the scaling mentioned in Section 6.3.2.1 has been performed, the graphs
are not exactly similar to the ones shown in Figure 6.1.

Illustration with a large Monte Carlo sample
The settings of the different parameters are illustrated with the toy example, with N = 100000. The
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limit state function is evaluated N times and its derivatives with respect to sℓ are evaluated also N
times. The failure probability is equal to 6.21 × 10−3 with a = 2 and b = 5. The graphs of the
theoretical CV estimate of the MC estimate are shown in Figure 6.3 with the value of CVtarget and of
the regression interval [σmin, σmax], for the derivative with respect to a.

a) b)

Figure 6.3: Illustration of the regression bounds plotted in dashed magenta lines corresponding to the
values of σ such as the theoretical CV estimate of the MC estimate is below CVtarget. Here the CV
target is around 7.5% for the derivative with respect to a. Figure a) represents the evolution of the
MC estimate according to σ in navy blue as well as the evolution of σ 7→ ∂Pf (s, σ)/∂a in clear blue.
Figure b) shows the evolution of the theoretical CV estimate of the MC estimate and the value of
CVtarget.

From Figure 6.3 b), it appears that the CV criterion only shortly reduces the regression interval
from [0.01, 1], as the variance of the MC estimate is low, since the simulation budget is high. The
MC estimate is quite close to the function σ 7→ ∂Pf (s, σ)/∂a for large values of σ in Figure 6.3 a).
However as σ tends to zero the functions diverge, which is expected because of the increased variance.
Furthermore, we can observe for larger σ that the behavior of both functions is similar.

An illustration of the polynomial regression for n = 2 is shown in Figure 6.4 for a sample of size
N = 100000. From these curves, it appears that the polynomial regression has succeeded in smoothing
the noise of the MC estimates for small values of σ, resulting in a sensitivity estimate very close to the
real value. The evolutions of P2 and σ 7→ ∂Pf (s, σ)/∂a are very close in the entire regression interval.
Consequently, with this setting, it seems the MC estimates (Vl)l=1,2,3 allow to find a polynomial of
degree 2 quite similar to σ 7→ ∂Pf (s, σ)/∂a. It is reminded here that the MC estimates V1 is computed
directly from the original sample, with σ1 = σmin, while Vl is computed from a sample obtained with
bootstrap for l > 1.

The estimates of the proposed method over 500 independent simulations, for three polynomial
degrees 2k = 2, 2k = 4 and 2k = 6 are given in Table 6.1. The last column is the mean value and CV
obtained with the estimate V1, for which σ1 = σmin. Therefore, this last column displays the value
of the sensitivity estimate obtained with the Weak approach, by selecting σ̃ = σmin; cf Chapter 4
Section 4.3.3. The given CV is the empirical CV computed over the 500 independent simulations
while the number in parentheses is the mean value of the theoretical CV estimate obtained with the
theoretical variance estimate of the sensitivity, available in the WSL framework with Eq. (6.17).

From Table 6.1, the sensitivity estimates of both the proposed approach and the Weak approach
are very close to the real value of the failure probability sensitivities. For the three degrees selected
and the two derivatives, the value of the estimate is quite constant. Therefore, it seems that with
this particular setting, a polynomial of degree 2 is sufficient to correctly approximate the coefficient of
order zero of the Taylor series expansion of the functions σ 7→ ∂Pf (s, σ)/∂sℓ. The sensitivity estimate
obtained with 2k = 2 has the smallest variance, as expected. Furthermore, the estimates resulting
from the polynomial of degrees 2k = 2 and 2k = 4 both have a lower CV than the one of the Weak
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Figure 6.4: Illustration of the polynomial regression obtained from the estimates (Vl)l=1,2,3 displayed
with navy blue crosses. The resulting polynomial P̂2 is displayed in green along with the failure
probability sensitivity value plotted in a dotted green line. The clear blue line is the function σ 7→
∂Pf (s, σ)/∂a. The regression bounds are plotted in dashed magenta lines.

Table 6.1: Comparison of the result of the polynomial regression with 3 different degrees, for N =
100000. The failure probability is equal to 6.22 × 10−3 with an empirical CV of 3.8%. The reference
values of the sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.19 × 10−2 2.19 × 10−2 2.19 × 10−2 2.20 × 10−2

CV 5.4% CV 7.0% CV 7.5% CV 7.2%
(3.9%) (5.1%) (6.2%)

∂̂Pf

∂b −8.75 × 10−3 −8.78 × 10−3 −8.76 × 10−3 −8.82 × 10−3

CV 5.4% CV 7.0% CV 7.5% CV 7.1%
(3.9%) (5.1%) (6.2%)

approach, which validates the polynomial regression process: for no additional simulation budget, the
proposed polynomial regressions lead to a more precise sensitivity estimate. For the derivative with
respect to b, the value of the sensitivity estimates obtained with the proposed method is even slightly
less biased. However, when 2k = 6, the CV is then moderately larger than those of the Weak approach
estimate.

The theoretical CV estimate of the proposed method is a little underrated, however it gives an
accurate idea of the real CV of the sensitivity estimate. These CV estimates have small variations,
as their empirical CV, which are not displayed here, are all below 9%. Therefore the accuracy of the
proposed method can be correctly determined with only one simulation run.

Illustration with smaller Monte Carlo samples
The robustness of the proposed method is tested for smaller values of sample size: N = 50000 and
N = 10000. For these sample sizes, noisier MC estimates are expected. Figure 6.5 illustrates the
regression interval and the resulting polynomial regression for n = 2. Compared to the graphs in
Figure 6.3 a) of the crude MC estimates, the Figure 6.5 a) and d) diverge more of σ 7→ ∂Pf (s, σ)/∂a
in the entire interval, and especially for small values of σ, as expected. Once again, the resulting
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polynomials allow to smooth the noise of the MC estimates, however, they are not as close as before
to the function σ 7→ ∂Pf (s, σ)/∂a. This can be explained by the quality of the polynomial regression
procedure that has slightly decreased since the variance estimates are less accurate. It can also simply
be a result of the poor quality of each Vl, particularly V1.

a) b) c)

d) e) f)

Figure 6.5: Illustration of the proposed method with the toy example for two values of sample size N .
Figures a), b) and c) illustrate the method for N = 50000, while Figures d), e) and f) illustrate the
method for N = 10000. Figures a) and d) represent the evolution of the MC estimate according to σ
in navy blue as well as the evolution of σ 7→ ∂Pf (s, σ)/∂a in clear blue. Figures b) and e) show the
evolution of the theoretical CV estimate of the MC estimate and the value of CVtarget, close to 9%
for N = 50000 and close to 12% for N = 10000. Figures c) and f) represent the estimates (Vl)l=1,2,3

displayed with navy blue crosses obtained with bootstrap. The resulting polynomial P̂2 is displayed
in green along with the failure probability sensitivity value plotted in a dotted green line.

Compared to the large MC sample, the size of the regression interval has reduced, as the lower
bound σmin gets larger with smallerN . Only the less noisy part of the interval is kept for the polynomial
regression.

The results are presented in Table 6.2, where only the sensitivity estimates obtained from the poly-
nomial degree 2k = 2 are given. For both sample size values, the estimates obtained with polynomials
of higher degree are not displayed; they have equal mean value but higher CV, for both parameters a
and b, as in Table 6.1. Consequently, as in the previous study, a polynomial of degree 2 is still sufficient
to correctly approximate the coefficient of order zero of the Taylor series expansion of the functions
σ 7→ ∂Pf (s, σ)/∂sℓ for ℓ = 1, 2.

When N = 50000, the proposed method with 2k = 2 leads to a sensitivity estimate more precise
than the Weak approach and less biased for the derivative with respect to b. However, when N = 10000,
the proposed approach leads to an estimate of higher CV. Nevertheless, the resulting estimates are
then empirically less biased than the estimates obtained with Weak approach, for both derivatives.
The derivative with respect to b estimated with the Weak approach is particularly biased. This comes
from the setting of the value of σmin which leads to a σmin very large, thus σ̃ = σmin is very large as
well and the Weak approach estimates are no longer accurate.
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Table 6.2: Comparison of the result of the polynomial regression, for N = 50000 and N = 10000. The
failure probability is equal to 6.19 × 10−3 with an empirical CV of 5.7% for N = 50000. The failure
probability is equal to 6.23×10−3 with an empirical CV of 13.3% for N = 10000. The reference values
of the sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example
N = 50000 N = 10000
Regression
2k = 2

Weak approach
σ̃ = σmin

Regression
2k = 2

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.19 × 10−2 2.21 × 10−2 2.19 × 10−2 2.24 × 10−2

CV 7.1% CV 7.8% CV 14.1% CV 11.3%
(5.2%) (11.7%)

∂̂Pf

∂b −8.74 × 10−3 −8.85 × 10−3 −8.73 × 10−3 −9.12 × 10−3

CV 7.2% CV 7.7% CV 14.1% CV 10.8%
(5.3%) (11.9%)

Consequently, the polynomial regression procedure is still relevant, even for smaller sample sizes.
The resulting sensitivity estimates are empirically less biased than if the polynomial regressions were
not performed. Furthermore, the bias can be controlled: as the value of the estimate does not change
with higher polynomial degrees, then this value can be considered accurate. However, it appears that
the proposed method requires a certain simulation budget to provide estimates with small CVs. As in
the previous study, the theoretical CV estimate of the proposed approach gives a slightly underrated
value. The empirical CVs of these theoretical CV estimates, not displayed in Table 6.2, are below 11%
for N = 50000 but close to 18% for N = 10000 and 2k = 2. This is discussed below.

Discussion about the theoretical CV
The theoretical CV estimate available from the WSL framework seems to undervalue the actual CV,
independently of the sample size N . One reason for this could be the inverse covariance matrix W ,
which can be accurate enough to obtain a correct sensitivity estimate, but not precise enough for the
estimation of the variance, even with a large simulation budget as N = 100000. As the evolution of the
variance is only slightly decreasing in the regression interval, it is interesting to compare the results of
Table 6.1 and Table 6.2, with the sensitivity estimates obtained from an ordinary least square (OLS)
approach. The OLS framework is recalled in the Appendix E.1. In this framework, the variance is
supposed to be equal to a constant η2. Here this constant is taken as the maximum of the variance
estimates of the (Vl)l=1,...,m, thus η2 = max

l=1,...,m

(
V̂ar(Vl)

)
.

The sensitivity estimates with the OLS framework, using the same simulation samples as those of
Table 6.1 and Table 6.2 are given in the Appendix E.2 in Table E.1 and Table E.2. Performing the
polynomial regression in the OLS framework seems to lead to equivalent results for this toy example,
as the sensitivity estimates are also empirically unbiased and with an equivalent CV. However, the
theoretical CV estimates are then closer to the actual values, with slightly higher empirical CV.
Consequently, although the OLS framework is less theoretically correct, as the variance of the MC
estimates are not constant, it leads to a less biased variance estimation of the failure probability
sensitivity for this particular example.

6.3.3 Proposed approach with importance sampling methods

The crude Monte Carlo method is practical to study the framework of the proposed method. However,
this simulation method is inapplicable in the context of our manuscript, as the simulation budget
required is too large and we assume the lsf to be numerically expensive. Therefore, the proposed
method is adapted to the IS framework, with the following equations. The failure probability derivative
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function σ 7→ ∂Pf (s, σ)/∂sℓ is computed with the following estimate

∀σ ∈ R+\{0}
̂∂Pf (s, σ)
∂sℓ

IS

= − 1
N

N∑
j=1

∂g
(

s,X(j)
)

∂sℓ
ξσ

(
−g
(

s,X(j)
)) fX

(
X(j)

)
h
(

X(j)
) , (6.19)

where the observations X(j) are iid from h, the IS auxiliary density. The IS estimate is unbiased, and
its variance is written

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)
∂sℓ

IS = 1
N

Varh

(
∂g (s,X)
∂sℓ

ξσ (−g (s,X)) fX (X)
h (X)

)
. (6.20)

The scaling process of Section 6.3.2.1 is also adapted as the weights w(j) of Eq. (6.18) are set to
w(j) = IY <0

(
Y (j)) fX

(
X(j)

)
/h
(

X(j)
)

with the same notation as before. As the IS population is
more concentrated around the limit state surface than a classic MC population, some aspects of the
proposed method change, mainly the evolution of the variance function Eq. (6.20). These changes
and their consequences are first detailed, and an illustration is provided with the toy example, as we
combined the propose method with the NAIS algorithm described in Chapter 3 Section 3.3.3.1.

6.3.3.1 Change of behavior of the variance function

The population generated from h is assumed to be concentrated around the limit state surface g(s,x) =
0, therefore the values of g

(
s,X(j)

)
are expected to be close to zero and have a small magnitude. This

phenomenon does not occur when the population is generated from fX. The consequence of this
phenomenon is that the variance estimate of Eq. (6.20) is expected to have a smaller value than the
MC variance estimate, when σ is close to zero. Indeed, more observations are close to the limit state
surface. However, the variance estimate of Eq. (6.20) is also expected to be greater than the MC
variance estimate for larger σ. In fact, for larger values of σ, the indicator approximation function Ξσ

is then a lot smoother. This results in a density ξσ very wide, less concentrated around 0, with possibly
heavier tails. Therefore, the integral ∂Pf (s, σ)/∂sℓ is defined over a larger domain. The population
generated from h might not cover the whole domain, which results in a higher variance estimation,
and also a larger empirical bias of the IS estimate Eq. (6.19).

The consequences of this phenomenon on the proposed approach concern the definition of the
regression interval. Indeed, with crude Monte Carlo, as the variance estimate is a decreasing function
of σ, we have σmax = 1, and the CVtarget affects only σmin. With IS, we expect CVtarget to affect both
σmin and σmax. The value of σmin should be less shifted towards high values of σ than with crude
MC. The value σmax should no longer be equal to 1, reducing the regression interval on the higher
values of σ. Furthermore, the noisiest estimates Vl will be located at both bounds of the regression
interval, instead of only the lower bound. The global noise of the polynomial regression procedure is
thus expected to be higher.

6.3.3.2 Illustration with the toy example

This phenomenon is illustrated with the toy example. The NAIS algorithm presented in Chapter 3
Section 3.3.3.1 is employed to construct an optimal IS density h, with ρ = 20%. Let t be the number of
steps required for the algorithm to converge, with ht the last kernel density constructed, which serves
for the failure probability estimation. Using the last population generated from ht, we employ the
proposed method to compute the probability sensitivity. Therefore, the simulation budget is equal to
t×N evaluations of g to obtain the failure probability estimation and an additional N evaluations of
the derivatives of g with respect to sℓ, for ℓ = 1, 2 to obtain the failure probability sensitivity estimates.

Figure 6.6 illustrates the different graphs in the NAIS context, with 2k = 4. Compared to the
CV curves with crude MC, the regression interval is shifted towards the lower σ values, as both σmin
and σmax decrease, as expected. The value of the threshold CVtarget allows to perform the polynomial
regression where the IS estimates are the most precise. As there is a large noise at both bounds
of the interval, the performed polynomial regression differs from the one performed with crude MC
estimates. With a degree equal to 4, the polynomial regression succeeds in smoothing the noise of
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the first IS estimate V1, leading to a sensitivity estimate closer to the reference value. However the
general behavior of the polynomial P4 is quite distinct from the behavior of σ 7→ ∂Pf (s, σ)/∂a. The
two functions are not as similar as in Figure 6.4 with a large MC, nevertheless, the resulting sensitivity
estimate is still correct.

a) b) c)

Figure 6.6: Illustration of the proposed method combined with NAIS with the toy example for N =
2000. Figure a) represents the evolution of the IS estimate according to σ in navy blue as well as
the evolution of σ 7→ ∂Pf (s, σ)/∂a in clear blue. Figure b) shows the evolution of the theoretical CV
estimate of the IS estimate and the value of the CVtarget, close to 7%. Figure c) represents the estimates
(Vl)l=1,...,4 displayed with navy blue crosses obtained with bootstrap. The resulting polynomial P̂4 is
displayed in green along with the failure probability sensitivity value plotted in a dotted green line.

The proposed method combined with NAIS is tested with N = 2000. The results are given in
Table 6.3, for three different polynomial degrees, 2k = 2, 2k = 4 and 2k = 6. The estimates are
computed over 500 independent simulations, the given CV is the empirical CV while the number in
parentheses is the mean value of the theoretical CV estimate obtained with the theoretical variance
estimate of the sensitivity available in the WSL framework with Eq. (6.17). We compare the proposed
method with the Weak approach as in the previous studies.

Table 6.3: Comparison of the result of the polynomial regression with NAIS, with 3 different degrees,
for N = 2000. The failure probability is equal to 6.20 × 10−3 with an empirical CV of 4.8%. The
reference values of the sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example with NAIS
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.23 × 10−2 2.19 × 10−2 2.19 × 10−2 2.18 × 10−2

CV 5.4% CV 6.0% CV 6.8% CV 7.0%
(4.0%) (4.8%) (5.7%)

∂̂Pf

∂b −8.92 × 10−3 −8.75 × 10−3 −8.74 × 10−3 −8.74 × 10−3

CV 5.8% CV 6.1% CV 6.9% CV 7.0%
(4.1%) (4.9%) (5.8%)

From Table 6.3, it appears that for this example with the NAIS method, a polynomial of degree 2
is no longer sufficient to correctly estimate the coefficient of order zero of the Taylor series expansion of
the functions σ 7→ ∂Pf (s, σ)/∂sℓ. Indeed, for both derivatives, the resulting sensitivity estimates are
quite different from the ones obtained with a regression of degree 2k = 4 and 2k = 6. The difference
is particularly obvious for the derivative with respect to b. This difference implies that the degree 2 is
insufficient to obtain an accurate estimate with this particular setting. Since the sensitivity estimates
obtained with 2k = 4 and 2k = 6 are similar, we can conclude that 2k = 4 is the minimum degree
needed for an accurate approximation with this particular setting. This increase in the minimum degree
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required could be a consequence of the heavier noise at the lower bound of the regression interval.
For 2k ≥ 4, the sensitivity estimates obtained with the proposed method and the Weak approach

are very close to the reference values. The CV of the sensitivity estimate obtained with the Weak
approach is the highest. Consequently, the relevance of the polynomial regression procedure is once
more underlined: for no additional simulation budget, the proposed method leads to a more precise
sensitivity estimate. Compared to the results with crude MC, the estimates obtained with the Weak
approach are more accurate, particularly with respect to b. This is due to the value of σ̃ = σmin, which
is then smaller, as the IS population allows to have a better estimate V1.

Discussion about the theoretical CV in the IS context
The theoretical CV estimate is still slightly underrated, but the difference between the theoretical CV
estimate and the empirical CV is smaller than with crude MC; cf Table 6.1 and Table 6.2. However,
the empirical CVs of these estimates, not displayed in Table 6.3, are larger than with crude MC. They
are close to 40% for all degrees. Therefore the value of these theoretical CV estimates cannot be
considered as very accurate.

As in the previous study, the sensitivity estimates obtained with an OLS approach with η2 =
max

l=1,...,m

(
V̂ar(Vl)

)
were computed as well, and are given in the Appendix E.3 in Table E.3. Performing

the polynomial regression in the OLS framework leads to equivalent results in terms of empirical bias
and empirical CV. Nevertheless, in contrast to the studies in the OLS framework with crude MC, the
theoretical CV estimate is overrated and not particularly close to the actual value. And their resulting
empirical CV is also close to 40%. Consequently, for the numerical investigation detailed next, the
WSL framework is favored as it suits best the theoretical context.

6.4 Numerical investigation
The performance of the proposed approach is investigated with various numerical applications, taken
from the failure probability sensitivity literature. All the examples involve standard normal inputs.
It is reminded here that the inputs are supposed to follow a standard elliptical distribution in this
thesis. The first two examples focus on applications in a rather low-dimensional space, with a single
failure region: the cantilever beam [Papaioannou et al., 2013, Torii, 2020, Torii and Novotny, 2021,
Papaioannou et al., 2018] and the roof truss [Torii and Novotny, 2021,Papaioannou et al., 2018,Proppe,
2021, Song et al., 2009]. As they are very common examples in the sensitivity literature, they are
relevant to present the proposed approach. The last example is a Duffing oscillator [Zuev, 2009] in
high-dimensional space with two failure regions and is more related to the specific context of our
manuscript.

In the first and third examples the deterministic inputs s are design parameters while in the second
example, they are the distribution parameters of the original inputs denoted Z. It is recalled here that
an isoprobabilistic transformation allows to transform the original inputs Z into the standard normal
inputs X; Chapter 2 Section 2.2.2.2. The limit state function in the original space is denoted gZ while
the transformed limit state function is denoted g.

The proposed approach is combined with IS algorithms for the numerical investigation. The IS
method is employed to estimate the failure probability, as it results in a lower simulation budget than
crude MC. The NAIS algorithm and the iCE-AIS algorithm presented in Chapter 3 are employed
for the applications in small dimension. The proposed algorithm presented in Chapter 5 is employed
for the high-dimensional application. For the NAIS algorithm and the iCE-AIS algorithm, the last
generated sample of the adaptive procedure is used to compute the sensitivity with the new approach.
For the algorithm presented in Chapter 5, since the MIS framework is used, all the generated samples
of the adaptive procedure are used to compute the sensitivity with the new approach.

For all of these applications, the indicator approximation function Ξσ selected is the cdf of a centered
normal random variable of variance σ2. As previously detailed in Section 6.2.2.2, this particular choice
results in even polynomials Pn, therefore n = 2k and the number of Vl estimates is fixed to m = k+ 2.
The proposed approach is studied for three different polynomial degrees n = 2, n = 4 and n = 6. It is
compared to the Weak approach presented in Chapter 4 Section 4.3.3, when σ̃ = σmin, the lower bound
of the regression interval. For comparison purpose, 500 independent simulation runs are performed to
calculate the statistics of the probability estimates and the other quantities of interest.
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It should be noted that the mathematical statements needed in the theory of the proposed approach,
i.e. that FHs is Cn+2 in 0 and that all the different functions are differentiable with respect to sℓ,
ℓ ∈ [1, . . . , p], are difficult to verify in practice, as we suppose the lsf to be a black-box function with
no analytical expression. Therefore, these hypothesis are assumed to be validated in this section, even
if it might not be the case, in order to assess the performance of the proposed method in more realistic
scenarios.

6.4.1 Cantilever beam
6.4.1.1 Presentation of the application

The first example is a cantilever beam subject to biaxial bending as illustrated in Figure 6.7. This
example is quite popular in sensitivity analysis [Papaioannou et al., 2013,Torii, 2020,Torii and Novotny,
2021,Papaioannou et al., 2018] and was first studied in [Yang and Gu, 2004] in a RBDO context. Two

Figure 6.7: Illustration of a cantilever beam subject to biaxial bending.

different limit state functions are considered for this example, both defined in the original space Z
of dimension 4. The first one g(1)

Z represents yielding at the fixed end of the beam, with s = [w, t]
respectively the width and the height of the cross-section beam

g
(1)
Z (s,Z) = Z3 −

(
600
wt2

Z1 + 600
w2t

Z2

)
.

The second limit state function g(2)
Z restricts the maximum allowed displacement at the tip of the beam

to the value d0. Therefore, one has with s = [w, t, d0]

g
(2)
Z (s,Z) = d0 − 4L3

Z4wt
Z3

√(
Z1

t2

)2
+
(
Z2

w2

)2

where L = 100m. The random variables Z1 and Z2 represent the loads, Z3 is the yield strength of the
beam and Z4 is the Young’s modulus. We assume the vector Z to be an independent normal vector.
For comparison purpose, the distribution of each random variable is the same as in [Yang and Gu,
2004], therefore, denoting µZi the mean value and δZi the standard deviation, one has

(µZ1 , δZ1) = (1000, 100)
(µZ2 , δZ2) = (500, 100)
(µZ3 , δZ3) = (40000, 2000)
(µZ4 , δZ4) = (29 × 106, 1.45 × 106).

Nevertheless, it should be noted that the normal distribution is strictly not an appropriate choice
for modeling Z3 and Z4 as they represent physical variables of positive support. The isoprobabilistic
transformation is quite simple in this case, as the inputs are already independent. Therefore Xi =
(Zi − µZi

)/δZi
for i = 1, . . . , 4; this transformation is linear.

The design parameters are fixed as [w, t, d0] = [2.4, 3.9, 2.5] which corresponds to the optimal
reliability based design [Papaioannou et al., 2018].

6.4.1.2 Sensitivity analysis for the first failure of the system

As the first limit state function g(1)
Z is linear and the transformation from Z to X is linear as well, the

transformed lsf g(1) is also linear in the random variables X. Consequently, the failure probability as
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well as its sensitivities can be exactly determined with a FORM analysis; see Chapter 4 Section 4.3.1.1.
This FORM analysis gives the following reference values [Papaioannou et al., 2018]: P (1)

f = 3.03×10−3,
∂P

(1)
f /∂w = −5.76 × 10−2 and ∂P

(1)
f /∂t = −3.53 × 10−2.

For this first application, the NAIS algorithm is combined with the proposed method, with ρ = 20%
and N = 2000. The mean simulation budget required for the probability estimation is near 8000 (4
iterations in the NAIS algorithm). The results are presented in Table 6.4, with the empirical CVs
given, as well as the theoretical CV estimates of the proposed method in parentheses.

Table 6.4: Comparison of the result of the polynomial regression with 3 different degrees, for the
first lsf of the cantilever beam with NAIS. The failure probability is equal to 2.97 × 10−3 with an
empirical CV of 8.4%. The reference values of the sensitivities are ∂P (1)

f /∂w = −5.76 × 10−2 and
∂P

(1)
f /∂t = −3.53 × 10−2.

Cantilever Beam 1
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂w −5.76 × 10−2 −5.74 × 10−2 −5.76 × 10−2 −5.76 × 10−2

CV 5.1% CV 6.1% CV 7.1% CV 7.0%
(3.4%) (4.6%) (5.7%)

∂̂Pf

∂t −3.53 × 10−2 −3.52 × 10−2 −3.53 × 10−2 −3.53 × 10−3

CV 5.1% CV 6.1% CV 7.1% CV 7.0%
(3.4%) (4.6%) (5.7%)

From Table 6.4, the sensitivity estimates of both the proposed approach and the Weak approach
are very close to the reference values of the failure probability sensitivities. For the three degrees
selected and the two derivatives, the value of the estimate is quite constant. Therefore a polynomial
of degree 2 is sufficient to correctly approximate the coefficient of order zero of the Taylor series
expansion of the function σ 7→ ∂Pf (s, σ)/∂sℓ. The sensitivity estimate obtained with 2k = 2 has a
smaller CV than the one obtained with the Weak approach. Consequently, this application illustrates
how the proposed method is an improvement of the Weak approach; it allows to have a more precise
estimate, without any additional simulation budget. However, the theoretical CV estimates are still
slightly underrated. They have a large variation (above 45%, not displayed in Table 6.4), therefore
they cannot be considered accurately estimated.

6.4.1.3 Sensitivity analysis for the second failure of the system

The limit state function g(2)
Z is nonlinear in all the random variables therefore FORM cannot be applied

to compute accurately the failure probability and its sensitivities. The reference values used here are
thus the one given in [Papaioannou et al., 2018], which results of a large line sampling simulation;
see Chapter 4 Section 4.3.2.2. The LS simulation gives the following values: P

(2)
f = 2.54 × 10−4,

∂P
(2)
f /∂w = −8.84 × 10−3, ∂P (2)

f /∂t = −2.95 × 10−3 and ∂P
(2)
f /∂d0 = −3.27 × 10−3.

For this second application, the proposed approach is combined with the iCE-AIS presented in
Chapter 2 Section 3.3.3.4, with a single Gaussian density as auxiliary density, N = 1000 and a target
CV parameter equal to δ = 2.0. The mean simulation budget required for the probability estimation
is near 4000 (4 iterations in the iCE-SG algorithm). The results are presented in Table 6.5, with the
empirical CVs given, as well as the theoretical CV estimates of the proposed method in parentheses.

From Table 6.5, it is noticeable that the polynomial of degree 2k = 2 leads to sensitivities whose
values are slightly different than those obtained with higher degrees, for the three parameters. There-
fore it appears that a polynomial of degree 2 is not sufficient to accurately estimate the coefficient of
order zero of the Taylor series expansion of the functions σ 7→ ∂Pf (s, σ)/∂sℓ.

The estimate obtained with 2k = 2 shares then the same properties than the Weak approach
estimate. Their bias are quite similar along with their CVs. For 2k ≥ 4 the estimates obtained with
the proposed approach have a smaller bias than the estimate obtained with the Weak approach, but
they have a slightly higher CV. The theoretical CV estimates are still slightly underrated. They have



168 CHAPTER 6. SENSITIVITY ESTIMATION THROUGH POLYNOMIAL REGRESSION

Table 6.5: Comparison of the result of the polynomial regression with 3 different degrees, for the
second lsf of the cantilever beam with iCE-SG. The failure probability is equal to 2.51 × 10−3 with
an empirical CV of 4.5%. The reference values of the sensitivities are ∂P (2)

f /∂w = −8.84 × 10−4,
∂P

(2)
f /∂t = −2.95 × 10−3 and ∂P

(2)
f /∂d0 = −3.27 × 10−3.

Cantilever Beam 2
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂w −8.78 × 10−3 −8.82 × 10−3 −8.83 × 10−3 −8.93 × 10−3

CV 7.3% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

∂̂Pf

∂t −2.92 × 10−3 −2.94 × 10−3 −2.94 × 10−3 −2.98 × 10−3

CV 7.4% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

∂̂Pf

∂d0
−3.24 × 10−3 −3.26 × 10−3 −3.26 × 10−3 −3.29 × 10−3

CV 7.3% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

a moderate variation for 2k ≤ 4, with an empirical CV close to 25% (not displayed in Table 6.5). For
2k = 6 their variation is quite high (39%).

Consequently, for this application, the proposed approach brings improvement to the Weak ap-
proach framework as estimates with smaller bias can be obtained and the bias is globally controlled.
For 2k ≥ 4, since the values of the estimates no longer vary, it can be assumed that the estimates have
reached accurate values. Such analysis cannot be performed with the Weak approach, where the bias
is not properly managed.

6.4.2 Roof truss
6.4.2.1 Presentation of the application

The second example is a roof truss subject to random loading as illustrated in Figure 6.8. This
example is also very commonly used in sensitivity analysis [Torii and Novotny, 2021, Papaioannou
et al., 2018, Proppe, 2021, Song et al., 2009] and we keep the same framework as presented in [Song
et al., 2009]. The top boom and the compression bars are reinforced by concrete, the bottom boom
and the tension bars are made of steel. The perpendicular deflection of the peak of the structure must

Figure 6.8: Illustration of a roof truss subject to random loading.

not exceed 3cm [Song et al., 2009]. Consequently the limit state function is defined in the original
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space Z of dimension 6 with the following equation

g
(3)
Z (s,Z) = 0.03 − Z1Z

2
2

2

(
3.81
Z4Z6

+ 1.13
Z3Z5

)
where s = [µZ1 , δZ1 , . . . , µZ6 , δZ6 ] with δZi

denoting again the standard deviation of Zi. The random
variable Z1 represents the uniformly distributed load applied on the roof truss and Z2 is the roof
span. Z3 is the cross section area of the bottom boom and the tension bars made of steel, whose
Young’s modulus is Z5. Z4 is the cross section area of the top boom and compression bars reinforced
in concrete, whose Young’s modulus is Z6. We assume the vector Z to be an independent normal
vector. For comparison purpose, the distribution of each random variable is the same as in [Song
et al., 2009]. Therefore we have

(µZ1 , δZ1) = (20000, 1400)
(µZ2 , δZ2) = (12, 0.12)
(µZ3 , δZ3) = (9.82 × 10−4, 5.892 × 10−5)
(µZ4 , δZ4) = (0.04, 0.0048)
(µZ5 , δZ5) = (1 × 1011, 6 × 109)
(µZ6 , δZ6) = (2 × 1010, 1.2 × 109)

As for the previous application, it should be noted that the normal distribution is strictly not an
appropriate choice for modeling Z2, Z3, Z4, Z5 and Z6 as they represent physical variables of positive
support. Once more, the isoprobabilistic transformation is simple in this case, as the inputs are already
independent and it results in Xi = (Zi − µZi)/δZi for i = 1, . . . , 6; this transformation is linear.

6.4.2.2 Sensitivity analysis of the system

The reference values of the failure probability and its sensitivities are taken the same as in [Papaioannou
et al., 2018], obtained with the score function method combined with IS; see Chapter 4 Section 4.2.3.2.
The resulting failure probability is equal to 9.38 × 10−3 and the sensitivities are equal to

(∂Pf/∂µZ1 , ∂Pf/∂δZ1) =
(
1.11 × 10−5, 1.59 × 10−5)

(∂Pf/∂µZ2 , ∂Pf/∂δZ2) =
(
4.03 × 10−2, 1.80 × 10−2)

(∂Pf/∂µZ3 , ∂Pf/∂δZ3) =
(
−1.86 × 102, 2.05 × 102)

(∂Pf/∂µZ4 , ∂Pf/δZ4) = (−2.14, 2.56)
(∂Pf/∂µZ5 , ∂Pf/δZ5) =

(
−1.83 × 10−12, 2.00 × 10−12)

(∂Pf/∂µZ6 , ∂Pf/δZ6) =
(
−3.77 × 10−12, 2.03 × 10−12)

For this application, the NAIS algorithm is combined with the proposed method, with ρ = 20%
and N = 2000. The mean simulation budget required for the probability estimation is near 6000 (3
iterations in the NAIS algorithm). The results are presented in Table 6.6 and Table 6.7, with the
empirical CVs given, as well as the theoretical CV estimates of the proposed method in parentheses.

From Table 6.6 and Table 6.7, the sensitivity estimates of both the proposed approach (omitting
the estimates with respect to δZ2 and δZ6 in red) and the Weak approach are very close to the
reference values. For the three degrees selected, the value of the estimate is quite constant, except
for the derivatives with respect to δZ2 and δZ6 . Therefore a polynomial of degree 2 is sufficient
to correctly approximate the coefficient of order zero of the Taylor series expansion of the functions
σ 7→ ∂Pf (s, σ)/∂sℓ for sℓ ̸= δZ2 and sℓ ̸= δZ6 . The sensitivity estimates obtained with 2k = 2 have then
a smaller CV than the one obtained with the Weak approach, for an equivalent bias. Consequently,
for this application, the proposed method is an improvement of the Weak approach for 10 derivatives
out of 12.

6.4.2.3 Focus on the derivatives with respect to δZ2 and δZ6

The sensitivity estimates with respect to the distribution parameters δZ2 and δZ6 obtained with the
proposed approach have a larger CV than those obtained with the Weak approach, no matter the
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Table 6.6: Comparison of the result of the polynomial regression with 3 different degrees, for the
roof truss with NAIS. The failure probability is equal to 9.28 × 10−3 with an empirical CV of
12.5%. The reference values of the sensitivities are (∂Pf/∂µZ1 ,∂Pf/∂δZ1) = (1.11×10−5,1.59×10−5),
(∂Pf/∂µZ2 ,∂Pf/∂δZ2) = (4.03 × 10−2,1.80 × 10−2) and (∂Pf/∂µZ3 ,∂Pf/∂δZ3) = (−1.86 × 102,2.05 ×
102).

Roof Truss, Part 1
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂µZ1
1.10 × 10−5 1.10 × 10−5 1.10 × 10−5 1.11 × 10−5

CV 7.4% CV 9.0% CV 14.4% CV 8.2%
(5.2%) (7.2%) (9.2%)

∂̂Pf

∂δZ1
1.57 × 10−5 1.57 × 10−5 1.58 × 10−5 1.58 × 10−5

CV 8.2% CV 10.4% CV 15.6% CV 9.2%
(5.8%) (8.2%) (11.2%)

∂̂Pf

∂µZ2
4.01 × 10−2 4.03 × 10−2 4.00 × 10−2 4.05 × 10−2

CV 7.4% CV 9.0% CV 16.0% CV 8.3%
(5.2%) (7.2%) (9.2%)

∂̂Pf

∂δZ2
1.79 × 10−2 1.88 × 10−2 2.04 × 10−2 1.85 × 10−2

CV 18.7% CV 36.1% CV 375% CV 14.4%
(15.1%) (26.0%) (12.8%)

∂̂Pf

∂µZ3
−1.85 × 102 −1.85 × 102 −1.84 × 102 −1.86 × 102

CV 7.4% CV 9.1% CV 14.8% CV 8.3%
(5.2%) (7.2%) (9.2%)

∂̂Pf

∂δZ3
2.02 × 102 2.03 × 102 2.05 × 102 2.03 × 102

CV 10.0% CV 13.6% CV 26.1% CV 10.1%
(7.3%) (9.1%) (14.0%)

polynomial degree. For 2k ≤ 4 the estimates have a small bias and a moderate CV. However, when
2k = 6 the bias is higher and the CV considerably increases to reach values above 300%. It should also
be noted that the theoretical CV estimates are meaningless, as they all have an empirical CV above
100% (not displayed here), for the three degrees.

These poor results can be explained by the poor quality of the estimates Vl and their variance
estimates, but it is mostly due to the phenomenon of polynomial overfitting. As previously underlined,
polynomial regressions of higher degrees are harder to perform and the resulting polynomial is more
flexible than with smaller degrees. For these two distribution parameters, the noise of each Vl is quite
high and the regression interval can be particularly narrow, as illustrated in Figure 6.9.

The resulting polynomials shown in Figure 6.9 c) and f) have much more fluctuations in the
regression interval than the original IS estimates shown in Figure 6.9 a) and d). For these parameters,
the polynomial regression does not smooth the noise of the IS estimate Vl. The polynomials are too
flexible and they take excessively into account the noise of each IS estimate: it is the phenomenon of
overfitting. This phenomenon does not occur for lower degrees, as the polynomial are then less flexible.
Consequently, when 2k = 6, the polynomial regression can lead to sensitivity estimate very biased,
which explains the large CV.

It should be underlined that in other studies focusing on this roof truss application, these two
distribution parameters always lead to sensitivity estimates with significantly higher CVs compared to
the other distribution parameters [Proppe, 2021,Song et al., 2009,Papaioannou et al., 2018].
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Table 6.7: Comparison of the result of the polynomial regression with 3 different degrees, for the roof
truss with NAIS. The failure probability is equal to 9.28 × 10−3 with an empirical CV of 12.5%. The
reference values of the sensitivities are (∂Pf/∂µZ4 ,∂Pf/δZ4)=(−2.14, 2.56), (∂Pf/∂µZ5 ,∂Pf/δZ5) =
(−1.83 × 10−12,2.00 × 10−12) and (∂Pf/∂µZ6 ,∂Pf/δZ6)=(−3.77 × 10−12,2.03 × 10−12).

Roof Truss, Part 2
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂µZ4
−2.11 −2.11 −2.11 −2.13
CV 7.5% CV 9.0% CV 10.6% CV 8.3%

(5.4%) (7.4%) (9.6%)
∂̂Pf

∂δZ4
2.49 2.48 2.50 2.50
CV 10.7% CV 13.3% CV 19.1% CV 10.8%

(8.1%) (11.6%) (18.2%)
∂̂Pf

∂µZ5
−1.82×10−12 −1.82×10−12 −1.81×10−12 −1.83 × 10−12

CV 7.5% CV 9.1% CV 16.5% CV 8.3%
(5.2%) (7.2%) (9.6%)

∂̂Pf

∂δZ5
2.01 × 10−12 2.02 × 10−12 1.98 × 10−12 2.02 × 10−12

CV 10.2% CV 13.2% CV 48.5% CV 10.4%
(7.3%) (10.5%) (15.3%)

∂̂Pf

∂µZ6
−3.74×10−12 −3.75×10−12 −3.74×10−12 −3.77 × 10−12

CV 7.4% CV 9.3% CV 16.4% CV 8.2%
(5.3%) (7.3%) (9.2%)

∂̂Pf

∂δZ6
1.97 × 10−12 2.00 × 10−12 2.32 × 10−12 2.02 × 10−12

CV 15.2% CV 45.1% CV 320% CV 13.4%
(13.2%) (20.9%) (41.2%)

6.4.3 Duffing oscillator
6.4.3.1 Presentation of the application

This application is the same as the one presented in Chapter 5, Section 5.3.2, it is a nonlinear elastic
system as described in [Zuev, 2009]. We recall here that the Duffing oscillator is modeled by the
equation

mz̈(t) + cż(t) + k
{
z(t) + γz(t)3} = f(t),

where z(t), ż(t), and z̈(t) are the displacement, velocity, and acceleration of the oscillator at time
t, respectively, and the constants are taken as in [Zuev, 2009], with m = 1000 kg, c = 200π Ns/m,
k = 1000(2π)2 N/m and γ = 1 m−2. The oscillator is subjected to the random loading f(t,X),
discretized in the frequency domain as in [Papaioannou et al., 2019]

f(t,X) = −mσ
d/2∑
i=1

{
Xi cos(ωit) +Xd/2+i sin(ωit)

}
,

where ωi = i∆ω with ∆ω = 30π/d and σ =
√

2S∆ω, where S = 0.005 m2/s3 is the intensity of the
loading. Here, X are independent standard Gaussian random variables of dimension 100. The lsf g(4)

is the maximum displacement of the oscillator at t = 2 s defined as

g(4)(s,X) = min{zcrit,1 − z(2s), z(2s) − zcrit,2},

where zcrit,1 = 0.1 and zcrit,2 = −0.06 and s = [m, k] which represent respectively the mass and the
stiffness of the oscillator. The initial values are set to z(0) = 0 and ż(0) = 1.5. The limit state function
along with its gradient are computed with an Euler method. The reference value is computed with a
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a) b) c)

d) e) f)

Figure 6.9: Illustration of the proposed method with 2k = 6 for the roof truss application, with a NAIS
algorithm of size N = 2000, with ρ = 20. Figures a), b) and c) illustrate the method with respect
to the distribution parameter sℓ = δZ2 , while Figures d), e) and f) illustrate the method with respect
to the distribution parameter sℓ = δZ6 . Figures a) and d) represent the evolution of the IS estimate
according to σ in navy blue. Figures b) and e) show the evolution of the theoretical CV estimate of
the IS estimate and the value of the CVtarget. Figures c) and f) represent the estimates (Vl)l=1,...,5

displayed with navy blue crosses obtained with bootstrap. The resulting polynomial P̂6 is displayed
in green along with the failure probability sensitivity value plotted in a dotted green line.

Monte Carlo method and is equal to 4.28 × 10−4 with an empirical CV of 4.9% with a sample of size
of 106. This application allows to link the two algorithms presented in this manuscript.

6.4.3.2 Sensitivity analysis of the system

The reference value of the failure probability sensitivities are computed with finite difference schemes,
as there is no reference values available in the literature for this example; see Chapter 4 Section 4.3.4
for the finite difference schemes. The resulting sensitivities are equal to ∂Pf/∂m = −2.45 × 10−5 and
∂Pf/∂k = 6.83 × 10−7 with the Direct approach and the central formula.

For this application, the algorithm presented in Chapter 5 is combined with the proposed method
with N = 1000 and κ0 = 50. The final simulation budget Nsamp is near 6000 (3 iterations in the
CE-AMIS for each failure region). We suppose the dependence between the various samples generated
during the MIS procedure of the failure probability estimation to be negligible. All of these samples
are used in the proposed method to compute the sensitivity estimates. The derivatives of the lsf with
respect to m and k are thus evaluated for all samples. Therefore, the simulation budget is greater than
with other IS algorithms where only the last sample is used for the sensitivity process. The results
are presented in Table 6.8 with the empirical CVs given as well as the theoretical CV estimates of the
proposed method in parentheses.

All the sensitivity estimates displayed in Table 6.8 have a very large CV, which indicates that the
sensitivity analysis of this particular system is especially difficult to derive. The sensitivity estimates



6.5. CONCLUSION 173

Table 6.8: Comparison of the result of the polynomial regression with 3 different degrees, for the
Duffing oscillator. The failure probability is equal to 4.28 × 10−4 with an empirical CV of 4.4%. The
reference values of the sensitivities are ∂Pf/∂m = −2.45 × 10−5 and ∂Pf/∂k = 6.83 × 10−7.

Duffing Oscillator
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂m −2.43 × 10−5 −2.44 × 10−5 −2.42 × 10−5 −2.54 × 10−5

CV 18.2% CV 21.8% CV 46.1% CV 14.1%
(16.1%) (28.5%) (145%)

∂̂Pf

∂k 6.76 × 10−7 6.79 × 10−7 6.72 × 10−7 7.06 × 10−7

CV 17.4% CV 20.5% CV 39.3% CV 13.7%
(15.2%) (25.9%) (217%)

obtained with the Weak approach are quite biased, and their CVs are the smallest.
The sensitivity estimates obtained with the proposed method are all closer to the reference values,

for the three degrees selected, but they have a large CV. Since the regression estimates all have similar
value, it seems that a polynomial of degree 2 is sufficient to estimate the coefficient of order zero of
the Taylor series expansion of the functions σ 7→ ∂Pf (s, σ)/∂sℓ.

The empirical CVs of the theoretical CV estimates in parenthesis are equal to (25.8%, 71.8%, 183%)
for the sensitivity estimates with respect to m. They are equal to (24.8%, 62.4%, 152%) for the sensi-
tivity estimates with respect to k. Consequently, only for 2k = 2 can they be considered as moderately
accurate. For 2k ≥ 4 these estimates are meaningless and do not reflect the real variations of the
sensitivity estimates, especially for 2k = 6. Therefore, for this example, the theoretical variance is
particularly poorly estimated. It should be noted that the polynomial regressions were also performed
in the OLS framework for this particular example, and led to very poor variance estimates as well.

As in the application Section 6.4.1.3, the proposed method is still an improvement of the Weak
approach as the bias of the estimate is smaller and can be controlled. Since the value of the estimates,
for both parameters, is quite similar for the three degrees, one can assume that this value is correct.
However, the variation of the estimates is very large, especially for greater polynomial degrees. On
the other hand, the estimates obtained with the Weak approach have a smaller CV but their accuracy
cannot be assessed. A smaller CV cannot guarantee the quality of the estimate with regard to the
bias. Therefore, focusing on the bias, the proposed method allows to ameliorate the Weak approach.

It should be noted that compared to the other applications, as the estimates obtained with the
Weak approach have a large CV, it seems all Weak approach inspired methods struggle to perform the
sensitivity analysis of this particular system.

6.5 Conclusion
In this chapter a new method to compute the local sensitivity of the failure probability of a system
was presented, based on a heteroscedastic polynomial regression. The derivatives with regard to
deterministic inputs of the system are estimated. These deterministic inputs can either be design
parameters or distribution parameters. The method is suited for standard elliptical inputs. This
approach is inspired by the Weak approach framework and is presented as an improvement of the
latter. Here we discuss some final remarks and outlooks.

6.5.1 Discussion on the heteroscedastic polynomial regression

The main innovation of the proposed approach is to express the sensitivity estimate as the constant
coefficient of a Taylor series expansion, which can be recovered with a polynomial regression. However,
as previously mentioned, we underline here that the main subject of this chapter is not the study of
polynomial regressions, but the sensitivity analysis of the system with respect to deterministic inputs.
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6.5.1.1 Settings of the polynomial regression

The proposed method uses basic settings in order to perform a heteroscedastic polynomial regression.
This polynomial regression must keep the simulation budget constant, and therefore it cannot require
new evaluations of the limit state function or its derivatives, compared to the Weak approach. These
constraints led to the choices made to perform the regression as described. However, it is assumed
that this method could be further improved with a more detailed study on heteroscedastic polynomial
regressions, leading to better regression interval and other regression settings.

In particular, one of the main outlooks of the proposed method should be to improve the stability
of the resulting sensitivity estimate. Indeed, in several applications, the mean value of the estimates
is very close to the reference value but the CV is slightly too large for the method to be definitely an
upgrade of the Weak approach; see 6.4.1.3 and 6.4.3 for instance.

6.5.1.2 Theoretical variance of the regression estimate

In all the applications presented, including the toy example, the theoretical variance of the regression
estimate is biased in the heteroscedastic framework. The bias is not very large but it appears the
theoretical variance is always underestimated. This could be a consequence of the small inaccuracy
of the variance of each Vl which is evaluated with a MC or IS sample. The approximation of the
variances is not taken into account in the regression and could explain the resulting bias. The results
of the proposed method in the OLS framework, applied to the toy example with crude MC (in the
Appendix E.2), seem to validate the fact that the variance estimates might be the reason of such bias.

Therefore, another interesting outlook of the proposed approach is to obtain a better estimation of
the theoretical variance of the sensitivity estimate. Indeed, with the Weak approach, the theoretical
variance is already available with formulas Eq. (6.13) for crude MC and Eq. (6.20) for IS. Consequently,
since the proposed method is presented as an improvement of the Weak approach, the availability of
an accurate estimation of the theoretical variance is of great interest.

6.5.2 High-dimensional elliptical space with multiple failure regions
This method was tested in high-dimensional normal space with a system with two failure regions, as
it is the specific context of this manuscript. Although the results were not as precise as with other
numerical applications in terms of CV, we do not think that it is linked to the high-dimensional inputs
or the multiple failure regions of the failure domain. Indeed, the proposed method only focuses on the
one-dimensional response of the system Y = g(s,X). It is therefore independent of the input space
dimension and the shape of the failure domain. The results, less precise in terms of CV, could be a
consequence of the limit state function being more intricate and more complex than with the other
applications.

Furthermore, as the proposed approach focuses on the output of the limit state function, we assume
that the initial elliptical distribution of the inputs does not matter. Consequently, it could be interesting
to investigate the performance of the proposed algorithm in the context of high-dimensional systems
with multiple failure regions, with other elliptical distributions as well.

6.5.3 Generalization of the proposed approach
Here, it is assumed that the failure probability has first been estimated with a simulation method. As
underlined with the various examples throughout the chapter, the proposed approach can be combined
with different simulation method. In fact, the proposed approach only requires the vector value of the
limit state function outputs (with weights in the IS framework) and the vector value of its derivative
with respect to sℓ, for a specific sample. The density used to generate such a sample is not needed.

Therefore, we assume that the proposed approach can be applied to many other simulation methods
than MC and IS. As mentioned above, it is also assumed that the dimension of the system, the multiple
failure regions, as well as the distribution of the inputs do not matter for the proposed approach to be
efficient. Consequently, this approach can be adapted to a great number of systems.



Conclusion

La probabilité de défaillance du système et sa sensibilité locale sont des quantités d’intérêt importantes
en fiabilité. Si la dimension du système est particulièrement grande, c’est-à-dire plus grande que 50, et
que le domaine de défaillance des entrées possède plusieurs régions de défaillance, l’estimation de ces
quantités est plus complexe. Dans cette thèse, deux approches originales sont proposées pour estimer
dans l’espace standard elliptique la probabilité de défaillance d’une part et ses dérivées d’une autre
part. Les deux approches emploient le cadre de l’échantillonnage préférentiel, qui consiste à introduire
une densité auxiliaire dans le calcul des intégrales de la probabilité de défaillance et de ses dérivées.

L’algorithme d’estimation de probabilité de défaillance est détaillé au Chapitre 5 du manuscrit. Il
a été le fruit d’une collaboration avec le Professeur Christian Genest, suite à un stage de 5 mois à
l’Université McGill à Montréal sous sa supervision. Cet algorithme a été présenté à deux conférences,
ECCOMAS 2022 et ESREL 2022 et a donné lieu à la publication suivante

• Chiron M., Genest C., Morio, J. and Dubreuil S. (2023). Failure probability estimation through
high-dimensional elliptical distribution modeling with multiple importance sampling. Reliability
Engineering & System Safety, Vol. 235, 109238.

Le principe de l’algorithme consiste à chercher progressivement dans l’espace standard elliptique les
régions de défaillance. Pour chaque région de défaillance trouvée, une densité auxiliaire est constru-
ite et optimisée de manière adaptative. Cette densité tient compte de la représentation stochastique
des entrées elliptiques puisqu’elle s’écrit comme le produit d’une densité radiale et d’une densité di-
rectionnelle. La probabilité de défaillance finale est estimée grâce à un estimateur d’échantillonnage
préférentiel multiple, avec un mélange de toutes les densités auxiliaires précédemment construites.
Plusieurs perspectives intéressantes concernant cet algorithme sont brièvement mentionnées ici. Tout
d’abord, la densité auxiliaire radiale sélectionnée dans l’algorithme peut ne pas être optimale pour des
domaines de défaillance à symétrie sphérique. Ainsi, une autre densité auxiliaire radiale pourrait être
envisagée, comme une densité de noyau ou bien une loi de Nakagami comme présentée dans [Papaioan-
nou et al., 2019]. Une étape d’échantillonnage supplémentaire serait alors nécessaire pour paramétrer
ces densités. Ensuite, il pourrait être utile d’adapter l’algorithme proposé au cas où le gradient de
la fonction d’état limite n’est pas disponible pour la recherche des régions de défaillance. En effet,
dans ce cas, les optimisations nécessaires à cette recherche sont alors bien plus complexes à réaliser.
Récemment, plusieurs algorithmes ont été présentés dans la littérature [Zhong et al., 2020,Zhu et al.,
2022] permettant de localiser les points de conception d’un système dans un espace de grande dimen-
sion sans le gradient. Ces méthodes innovantes offrent donc de nouvelles possibilités à ce sujet. Enfin,
l’approche globale proposée ici, consistant à chercher chaque région de défaillance au fur et à mesure
et à optimiser une unique densité, pourrait être adaptée à d’autres algorithmes d’échantillonnage
préférentiel. En effet, la logique du ”diviser pour mieux régner” semble pertinente et pourrait aboutir
à des algorithmes d’échantillonnage préférentiel pour régions de défaillance multiples plus efficaces.

L’algorithme d’estimation de la sensibilité locale de la probabilité de défaillance par rapport aux
entrées déterministes du système est détaillé au Chapitre 6 du manuscrit. Il a été présenté au séminaire
ETICS 2020 ainsi qu’à la conférence RESIM 2021 avec un poster intitulé Rare event probability deriva-
tives of a parametric complex system. Un article est en cours de rédaction. Le principe de cette
nouvelle approche consiste à exprimer la dérivée de la probabilité comme le terme d’ordre zéro d’un
développement de Taylor. Une estimation de la dérivée est alors possible grâce à une régression
polynomiale hétéroscédastique, dont la base de données est obtenue par des méthodes de simulation.
L’estimateur est biaisé mais le biais est contrôlable grâce aux paramètres de la régression : le degré
du polynôme choisi et l’intervalle de régression. La régression polynomiale détaillée dans le Chapitre 6
résulte de choix simples. Ainsi, nous supposons que la méthode pourrait être améliorée après une
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étude plus approfondie sur les régressions polynomiales hétéroscédastiques dans le contexte spécifique
présenté. En particulier, il semble que les estimateurs de dérivées obtenus aient une variance trop
élevée par rapport à l’approche Faible. Ainsi, parvenir à stabiliser la valeur des estimateurs semble
un axe de recherche important. Il en est de même pour l’estimateur de la variance théorique, dont
le biais est de plus non négligeable. Dans le cadre de l’approche proposée, seul le terme constant du
polynôme identifié est examiné, puisqu’il s’agit de la quantité d’intérêt. Cependant, une étude des
autres coefficients du polynôme pourrait apporter une information supplémentaire quant à l’influence
des paramètres déterministes sur la probabilité de défaillance. Enfin, l’approximation de la fonction
indicatrice du domaine de défaillance est une pratique courante [Papaioannou et al., 2016]. L’analyse
mathématique de l’expression de la probabilité de défaillance approchée, qui a été conduite ici, pourrait
donner lieu à d’autres nouvelles expressions exploitables.

La combinaison des deux algorithmes a été examinée avec une application à la fin du Chapitre 6,
dont les variables aléatoires standards normales sont de dimension 100. Il semble que pour cet exemple,
l’algorithme de calcul de dérivée de probabilité ne soit pas aussi performant que pour d’autres applica-
tions, en termes de coefficient de variation. Nous ne pensons pas que cela soit dû à la grande dimension
des entrées du système, ou à la multitude de régions de défaillance. Ainsi, il serait intéressant de tester
la combinaison des deux algorithmes proposés avec d’autres exemples en grande dimension possédant
plusieurs zones de défaillance, dont les variables aléatoires sont modélisées par d’autres distributions
elliptiques standards que la loi normale.



Chapter 7

Conclusion

Summary of the main contributions
The failure probability and its local sensitivity are important quantities of interest when evaluating the
reliability of the system. If the dimension of the system is particularly high, say superior to fifty, and
the failure domain of the inputs is quite complex, encompassing several failure regions, the estimation
of these quantities becomes more demanding. In this thesis, two original approaches to estimate
respectively the failure probability and its derivatives are presented. Both approaches employ the
important sampling framework, which consist in introducing an auxiliary density in the computation
of both the failure probability integral and the sensitivity integral.

Estimation of the failure probability with elliptical modeling
This algorithm, specifically tailored for standard elliptical inputs, is described in detail in Chapter 5.
The search for the failure regions is performed with an optimization inspired by the FORM/SORM
framework. However, the constraint of searching for the failure region inside the important ring of
the standard elliptical inputs is added to the optimization. For each failure region, the stochastic
representation of the inputs is taken advantage of to propose an auxiliary density built as the product
of a parametric radial density and a parametric directional density. The parametric radial density is
a conditional density based on the original radial distribution of the elliptical inputs. The choice of
this radial density makes it possible to simplify the importance sampling weights. The parametric
directional density is a von Mises–Fisher density. The parameters of both densities are set thanks to
the coordinates of the closest failing point of the failure region, which belongs as well to the important
ring, along with a cross-entropy based optimization. Depending on the location of the failure region
inside the importance ring, the parameter setting changes. Therefore two distinct situations were
introduced.

This gradual search for the failure regions combined with adaptive importance sampling is quite
original, particularly in high-dimensional spaces. The failure probability of each failure region can be
computed along and allows a better understanding of the behavior of the inputs leading to the failure
of the system. The final global failure probability is computed with a mixture of all the auxiliary
densities previously constructed, as in the multiple importance sampling framework. All the samples
generated and evaluated with the costly limit state function in the cross-entropy based optimization
procedures are taken advantage of, as they are reused in the final failure probability estimation. It
should be underlined that the proposed algorithm presents a general method suitable for other elliptical
distributions than the standard normal distribution.

The algorithm is tested with four numerical applications in which the inputs follow a standard
normal distribution or a multivariate Student distribution. The dimension of the inputs goes from
100 to 1000 in these examples. The first three applications are inspired by the failure probability
literature while the last one is a realistic aerodynamic engineering application. These examples make
it possible to experiment the robustness of the proposed algorithm for various shapes of failure domains,
encompassing multiple regions. For all the numerical applications, the algorithm succeeds in finding all
the failure regions of the failure domain, without any prior information. The last example underlines
the performance of the proposed algorithm with a real numerically expensive black-box model.
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This contribution is the result of a collaboration with Professor Christian Genest, following a five-
month research internship at the University of McGill in Canada under his supervision. The algorithm
was presented at two conferences, ECCOMAS 2022 and ESREL 2022 and resulted in the following
journal publication

• Chiron M., Genest C., Morio, J. and Dubreuil S. (2023). Failure probability estimation through
high-dimensional elliptical distribution modeling with multiple importance sampling. Reliability
Engineering & System Safety, Vol. 235, 109238.

Estimation of the failure probability sensitivity with polynomial regression
This algorithm is described in detail in Chapter 6 and concerns any type of deterministic inputs; the
sensitivity analysis is performed in the standard elliptical space. The proposed approach is inspired by
the Weak approach, as an approximation of the failure domain indicator function is employed, namely
a cumulative distribution function. The originality of the proposed approach is to take into account
the nature of such an approximation, in order to write the approximated sensitivity integral with
another expression, whose Taylor series expansion is of interest. Indeed, the sensitivity appears as the
constant coefficient of a specific polynomial, and can be recovered with a polynomial regression. A toy
example allows to illustrate the main idea of the approach, where the coefficients of the polynomial are
analytically computed. As the Taylor series expansion has an infinite number of terms, the proposed
approach is theoretically biased since the polynomial used for the regression has necessarily a finite
degree. However, this bias can be controlled with the different settings of the polynomial regression
such as the regression interval and the chosen polynomial degree.

Using simulation methods to build the polynomial regression database, the variance of each estimate
of the polynomial evaluation is not constant, therefore the heteroscedastic framework of the linear least
squares method is necessary, and bootstrap is employed to decrease the correlation. This polynomial
regression does not require any additional evaluation of the limit state function or its gradient. The
method is first experiment with crude Monte Carlo estimates and is then adapted to the importance
sampling framework. With this adaptation, it is then possible to combined both algorithms developed
during the thesis to estimate the failure probability and its sensitivity with respect to deterministic
inputs.

The proposed approach is tested with three numerical applications, in which the inputs follow a
standard normal distribution, their dimension goes from 3 to 100. The first two examples are taken
from the failure probability sensitivity literature in small dimension and allow to validate the proposed
method, as it is quite original. The last example concerns one of the numerical applications used to
test the first algorithm described in Chapter 5, and allows to link the two algorithms presented in this
manuscript. The importance sampling algorithms employed for the different numerical applications
differ, which underlines the adaptability of the proposed method to compute the failure probability
sensitivities, no matter the initial failure probability estimation procedure selected. For most of the
numerical applications, the proposed algorithm is an improvement of the Weak approach as it results
in sensitivity estimates with smaller bias and smaller CV without any additional simulation budget.
Moreover, for all the applications, the bias of the estimate can be effectively controlled with the degree
of the polynomial used for the regression.

This contribution was presented at the ETICS 2020 seminar and the RESIM 2021 conference with
posters under the title Rare event probability derivatives of a parametric complex system. A paper is
soon to be sent to a scientific journal, in order to be published.

Perspectives
Several aspects of the two contributions could be enhanced and are presented here. Because of time
constraints, these outlooks could not be further studied during the thesis but they provide interesting
subjects for future work.

Outlooks concerning the first algorithm on failure probability estimation
In several numerical applications, the radial distribution selected as auxiliary density in the construc-
tion of the importance sampling density of a failure region is left unchanged. This situation occurs



179

when the failure region starts before the beginning of the importance ring and spreads across it. In
this situation, if the failure domain happens to have a spherical symmetry, the proposed algorithm
could then be quite inefficient. Therefore, another parametric radial density could be introduced in
the proposed algorithm. This other density would lead to more intricate multiple importance sampling
weights, since there would be no longer a simplification. However the resulting algorithm might be
more flexible to different shapes of failure domain.

For instance, kernel densities could be considered, as they are particularly efficient in one-dimensional
space. Another solution could be the Nakagami distribution employed in [Papaioannou et al., 2019].
It should be noted that a recent study [Leng et al., 2022] focused exclusively on finding an importance
sampling auxiliary density for the radial component of the standard normal inputs, leaving the direc-
tional density as the original uniform distribution over the unit hypersphere. Consequently, this subject
is already acknowledged by the scientific community and such studies could inspire improvements for
the proposed algorithm.

On another subject, it is assumed in this manuscript that the gradient of the limit state function
with respect to the random variables is available. When this gradient is not available, the optimizations
to search for the failure regions are very difficult to perform in high-dimensional space and the proposed
algorithm may be inefficient or inaccurate. However, many recent papers can be found in the literature
which make it possible to find the design points for the FORM in high-dimensional standard normal
space without employing the gradient [Zhong et al., 2020, Zhu et al., 2022]. These new optimization
schemes combined with the important ring constraint could be a promising gradient-free alternative,
in the proposed algorithm procedure.

On a more general note, it could be interesting to adapt the search for the failure regions presented
in the proposed algorithm to other failure probability estimation methods, as well as the divide and
conquer logic implemented here. Indeed, if the failure domain encompasses several failure regions,
most importance sampling algorithms in the literature rely on an auxiliary density built as a mixture
of densities optimized as a whole [Wang and Song, 2016, Papaioannou et al., 2019, Kurtz and Song,
2013,Zhang et al., 2022,Geyer et al., 2019]. The number K of densities in the mixture is then difficult
to set a priori and the optimization concerns a very large number of parameters, since it is proportional
to K. The method proposed here finds this number of failure region gradually, building the mixture of
densities at the end of the procedure. Furthermore, each optimization concerns then a smaller number
of parameter, as only one density is optimized. Therefore, adapting this logic to other importance
sampling methods could lead to improvements of the latter.

Outlooks concerning the second algorithm on failure probability sensitivity
estimation
The performance of the proposed algorithm described in Chapter 6 depends on the quality of the
polynomial regression procedure. The different settings of the proposed regression are the consequences
of straightforward simple choices. Consequently it is assumed that the proposed approach could be
further improved with a more detailed study on heteroscedastic polynomial regressions, leading to a
better regression interval and other regression settings.

In particular, one of the main outlooks of the proposed method should be to improve the stability
of the resulting sensitivity estimate. Indeed, in several applications, the mean value of the estimate
is very close to the reference but the coefficient of variation is slightly too large for the method to be
definitely considered as an improvement of the Weak approach.

Furthermore, in all the different applications displayed, including the toy example, the theoretical
variance estimate of the derivative is biased in the heteroscedastic framework. The bias is not very
large but it appears the theoretical variance is always underestimated. The variation of this theoretical
variance estimate is also quite large. Therefore, another interesting outlook of the proposed method
is to be able to have a better estimation of the theoretical variance of the sensitivity estimate. Since
a correct theoretical variance estimate is available in the Weak approach framework, the accessibility
of an accurate estimation of the theoretical variance in the proposed method is of great interest.

On another subject, in the proposed approach, only the constant term of the polynomial has
been studied and examined as it represents the failure probability sensitivity which is the quantity of
interest. However, it could be interesting to study the other coefficients of the polynomial obtained
with the regression. These coefficients might bring additional information concerning the influence of
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each parameter sℓ on the failure probability.
On a more general note, the approximation of the failure domain indicator function selected in

this approach is used in other methods, such as in the Sequential Importance Sampling (SIS) frame-
work [Papaioannou et al., 2016, Papaioannou et al., 2018] for instance. However, the nature of this
approximation, which is a cumulative distribution function, is not taken advantage of, as in the pro-
posed approach. Therefore, it could be appealing to examine if the mathematical study proposed here
of the approximated failure probability integral could lead to other innovative expressions.

Outlooks concerning the combination of both algorithms
The combination of both algorithms was tested in the last numerical application of Chapter 6, with a
high-dimensional system whose failure domain encompasses two failure regions. This numerical appli-
cation lead to failure probability sensitivity estimates of inferior quality regarding their coefficient of
variation, compared to the other applications presented in Chapter 6, with small-dimensional systems.

However, a direct link between the performance of the first algorithm and these results could not
be particularly underlined, as the failure probability is accurately estimated. Furthermore, the high-
dimensional space as well as the multiple regions of the failure domain should not play an important
role in the quality of the resulting sensitivity estimates as the polynomial regression is performed in
the one-dimensional space of the output of the limit state function.

Consequently, further studies should focus on understanding the slight decrease of the sensitivity
estimate quality for this particular numerical application. The combination of the algorithms developed
during the thesis should also be tested on other numerical applications in high-dimensional spaces.
For example, the performance of the combination of both algorithms could be addressed with the
application described in Chapter 5, modeling an airfoil in inviscid transonic flow, which is closer
to realistic engineering applications. Since the first algorithm has already proven to be relevant to
correctly estimate the failure probability of the system for this application, the estimation of the failure
probability sensitivity with respect to the design parameters as well as the distribution parameters
could be of interest to examine the performance of the second algorithm. The combination of both
algorithms should also be tested in other high-dimensional elliptical spaces than the standard normal
space.



Appendix A

MCMC algorithms

A.1 Original Metropolis algorithm
Let θ(1) be a current sample (one of the seeds) and let p∗(ζ|θ), called the proposal pdf, be a d-
dimensional pdf for ζ centered at θ with the symmetry property p∗(ζ|θ) = p∗(θ|ζ). The proposal pdf
depends on a spread parameter w. Generate a sequence of observations (θ(1),θ(2), . . .) starting from
the given sample θ(1) by computing θ(k+1) from θ(k) as follows

1. Generation of a candidate state θ̄. Simulate ζ according to p∗ (·|θ(k)) and compute the ratio
rt = fX(ζ)/fX

(
θ(k)). Set θ̄ = ζ with probability min(1, rt) or set θ̄ = θ(k) otherwise.

2. Acceptation/Rejection of θ̄. If θ̄ ∈ Fi accept it as the next step thus θ(k+1) = θ̄. Otherwise
reject it and take the current sample as the next sample, thus θ(k+1) = θ(k).

A.2 Modified Metropolis algorithm
Let θ(1) be a current sample (one of the seeds) and for every j = 1, . . . , d let p∗

j (ζj |θj), called the
proposal pdf, be a univariate pdf for ζj centered at θj with the symmetry property p∗

j (ζj |θj) =
p∗

j (θj |ζj). Each proposal pdf depends on a spread parameter wj . Generate a sequence of observa-
tions (θ(1),θ(2), . . .) starting from the given sample θ(1) by computing θ(k+1) from θ(k) as follows

1. Generation of a candidate state θ̄. For each component j = 1, . . . , d, simulate ζj according to
p∗

j

(
·|θ(k)

j

)
and compute the ratio rt,i = fXj

(ζj)/fXj

(
θ

(k)
j

)
. Set θ̄j = ζj with probability

min(1, rt,i) or set θ̄j = θ
(k)
j otherwise.

The second step of the algorithm is the same as the step 2. of the original Metropolis algorithm. For
a large d, the probability that the next state in the Markov Chain will be equal to the current state is
thus very small; it would mean that all the d components ζj are rejected candidate state components,
which is highly improbable.

A.3 MCMC algorithm developed by Katafygiotis et al.
Let θ(1) be a current sample (one of the seeds). Generate a sequence of observations (θ(1),θ(2), . . .)
starting from the given sample θ(1) by computing θ(k+1) from θ(k) as follows. Using the stochastic
representation of the current state θ(k) = rt

1. Generation of the first candidate state. Generate a candidate state with same radius as the cur-
rent state but a different direction θ̌ = rt̄.

2. Generation of the second candidate state. Starting from θ̌, generate another candidate state with
the same direction but a changed radius θ̄ = r̄t̄.

This final candidate θ̄ is accepted with a probability of one as it lays in the failure domain thus
θ(k+1) = θ̄, see [Katafygiotis and Cheung, 2007] for the full description of the algorithm
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A.4 Statistical properties of the Metropolis algorithms
Here we derive some properties of the Markov chains obtained with both the original and the modified
Metropolis algorithms.

Both Metropolis algorithms fail to generate iid observations. Indeed, the algorithms introduce
dependence between the observations as the next state θ(k+1) is located on the vicinity of the current
state θ(k). The dependence is controlled with the spread parameter of the proposal (univariate or
multivariate) pdfs. A small spread allows a high acceptance rate at step 2, as there are higher chances
that the next state is also in the intermediate failure domain, but it induces a high level of dependence
between the observations. A large spread may reduce the acceptance rate of step 2 and thus may
increase the number of repeated Markov chain observations which slows down the convergence of
the SS algorithm and induces even higher levels of dependence in the chain. A trade-off between
the acceptance rate and the dependence must then be studied in order to set the spread parameter
(see [Bourinet, 2018] for practical values of the spread).

Because of the dependence, the convergence rate of the intermediate failure probability estimate is
reduced compared to the case where the samples would be totally independent. However, this depen-
dence amongst the sample

(
X(j)

i+1

)
j=1,...,N

does not induce bias in the estimation of the intermediate
failure probability estimate P(Fi+1|Fi) [Au and Beck, 2001].



Appendix B

MSE for the IS estimate in the
score function method

Using the same arguments as in [Torii and Novotny, 2021] we want to derive an upper bound for EIS
mse

written

EIS
mse = 1

N

(
Eh

[
IDfZ

(Z)Qh(Z)2
]

−
(
∂Pf (θ)
∂θℓ

)2
)
,

where Qh(·) = (fZ/h) × (∂ln(fZ(·; θ))/∂θℓ). We notice that

Eh

[
IDfZ

(Z)Qh(Z)2
]

= Eh

[
IDfZ

(Z)
(
fZ(Z)
h(Z) Q(Z)

)2
]
,

where Q(·) = ∂ ln (fZ(·; θ))/∂θℓ. Using the Cauchy-Schwarz inequality, we have∣∣∣∣∣Eh

[
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(Z)
(
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since IDfZ
and

(
fZ
h Q

)2
are non-negative we can write
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[
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(Z)
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h(Z) Q(Z)
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Therefore, we have the following upper bound for EIS
mse

EIS
mse ≤ 1

N

√Pf

√√√√Eh

[(
fZ(Z)
h(Z)

)3
Q(Z)4

]
−
(
∂Pf (θ)
∂θℓ

)2
 .
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Appendix C

Discussion on the optimizations in
the important ring

In the case of high-dimensional standard normal inputs, the representative failing points could be
searched directly in the hypersphere of radius

√
d rather than LB in Eq. (5.2). The first optimization

of Eq. (5.1) could be skipped to save lsf evaluations. Indeed, since the design points in this space most
likely do not belong to the important ring [Katafygiotis and Zuev, 2008], and since the hypersphere of
radius

√
d maximizes the density fR of the radial component of X, this is where one should look for

important directions, especially for nonlinear limit state functions. Nevertheless, we explain here why
both optimizations were kept in the proposed method.

As the dimension increases, the difference between LB and
√
d decreases as the variance of R

converges to 1/2; cf Chapter 2 Section 2.2.2.1, therefore this difference is negligible in very high
dimensions. Furthermore, once the first optimization of Eq. (5.1) is performed, the failing point P ∗

is located in both Df and the important ring, as it is located in the lower bound of the important
ring. Consequently, performing the second optimization in the hypersphere of radius LB makes sense:
P ∗ is the starting point of this optimization and the result P̃ ∗ necessarily belongs to both Df and
the important ring as well, since such failing points exist. If the optimization of Eq. (5.2) is directly
performed in the hypersphere of radius

√
d, there is theoretically no proof that the optimization will

converge to a point in Df . There could be particular settings of the failure domain Df , where no
failing point is located in the hypersphere of radius

√
d. Moreover, in smaller dimensions, d < 50,

the important ring encompasses the whole space and the search for important failing directions in
the hypersphere of radius

√
d would not give any result (in the 4-branch system of dimension 2 for

instance, there is no failing point before the hypersphere of radius 3). Finally, the importance of the
hypersphere of radius

√
d is valid for standard normal inputs but not for the other standard elliptical

distributions; see Chapter 2 Section 2.2.2.1.
As we try to propose a general method fit for all standard elliptical distributions, that performs

particularly well in high-dimensional spaces without being irrelevant in small and moderate dimensions,
the optimization of Eq. (5.2) is thus performed on the lower bound of the important ring, if the first
optimization of Eq. (5.1) gave a failing point of norm LB. For nonlinear limit state functions, decreasing
the width of the important interval will most likely give better important directions. However, if the
important ring is too narrow, some failure regions could be missed, that are not necessarily negligible,
especially if the failure probability is very low.
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Appendix D

Calculus for the new sensitivity
estimate

D.1 Expression of the derivative in the Taylor series expansion
We derive here the expression of T (0), the derivative of the function z → FHs(−z) with respect to sℓ,
evaluated in 0. Recall that ∀z ∈ R, FHs(z) = P(Hs ≤ z), therefore

∀z ∈ R FHs(−z) =
∫ −z

−∞
fHs(h)dh,

where fHs is the unknown density of the univariate random variable Hs. Taking the derivatives of the
above equation with respect to sℓ gives

∀z ∈ R T (z) = ∂FHs(−z)
∂sℓ

=
∫ −z

−∞

∂fHs(h)
∂sℓ

dh thus T (0) =
∫ 0

−∞

∂fHs(h)
∂sℓ

dh.

Now recall that Pf (s) = P(g(s,X) ≤ 0) = P(Hs ≤ 0), thus

Pf (s) =
∫ 0

−∞
fHs(h)dh.

Taking the derivatives of the above equation with respect to sℓ gives
∂Pf (s)
∂sℓ

=
∫ 0

−∞

∂fHs(h)
∂sℓ

dh.

Consequently, one has the following equality

T (0) = ∂Pf (s)
∂sℓ

.

D.2 Expression of the failure probability derivative functions
We derive here the expression of the failure probability derivative functions σ → ∂Pf (s, σ)/∂a and
σ → ∂Pf (s, σ)/∂b defined on R+\{0}. The derivative with respect to b is first computed, with ϕ the
pdf of a univariate standard normal variable

∂Pf (s, σ)
∂b

=
∫
R

− 1
σ
ϕ

(
−ax+ b

σ

)
ϕ(x)dx = − 1

σ

∫
R

1√
2π

exp
(

− (ax+ b)2

2σ2

)
1√
2π

exp
(

−x2

2

)
dx

= − 1
σ

1√
2π

∫
R

1√
2π

exp
(

−1
2

(
a2x2

σ2 + 2abx
σ2 + b2

σ2 + x2
))

dx

= − 1
σ

1√
2π

∫
R

1√
2π

exp
(

−1
2

(
x2
(
a2

σ2 + 1
)

+ 2abx
σ2 + b2

σ2

))
dx

= − 1
σ

1√
2π

∫
R

1√
2π

exp
(

−1
2

(
x2U2 + 2xUV + V 2 − V 2 + b2

σ2

))
dx,
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where U =
√

a2

σ2 + 1 and V = ab
Uσ2 = ab

σ
√

a2+σ2 . Therefore

∂Pf (s, σ)
∂b

= − 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))∫

R

1√
2π

exp
(

−1
2 (Ux+ V )2

)
dx.

With the change of variable y = Ux, which is bijective on R as U is strictly positive, one gets

∂Pf (s, σ)
∂b

= − 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))∫

R

1√
2π

exp
(

−1
2 (y + V )2

)
dy
U

= − 1
Uσ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))

,

where the last equality comes from the fact that the integral represents a density of a normal random
variable of variance 1 and mean −V integrated over the whole domain of definition, thus it is equal to
1. Finally one has

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂b

= − 1√
a2 + σ2

1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
.

The derivative with respect to a is obtained as follows, with the same transformation than above

∂Pf (s, σ)
∂a

=
∫
R

−x

σ
ϕ

(
−ax+ b

σ

)
ϕ(x)dx

= − 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))∫

R

x√
2π

exp
(

−1
2 (Ux+ V )2

)
dx.

Therefore, with the same change of variable y = Ux, one has

∂Pf (s, σ)
∂a

= − 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))∫

R

y

U
√

2π
exp

(
−1

2 (y + V )2
)

dx
U

= − 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))

E[N (−V, 1)]
U2

= 1
σ

1√
2π

exp
(

−1
2

(
b2

σ2 − V 2
))

V

U2

= 1√
a2 + σ2

1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
V

U
= 1√

a2 + σ2
1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
ab

a2 + σ2 .

Consequently, the derivative is

∀σ ∈ R+\{0} ∂Pf (s, σ)
∂a

= 1√
a2 + σ2

1√
2π

exp
(

−1
2

(
b2

a2 + σ2

))
ab

a2 + σ2 .

D.3 Expression of the other Taylor coefficients of the toy ex-
ample

We derive here the computation of the Taylor coefficients of order 2 and 4 for parameters a and b
through the derivatives of the T function. It is recalled that ∀z ∈ R, FHs(−z) = Ψ

(−z−b
a

)
where Ψ

is the standard normal cdf. The functions Ta and Tb are fist defined as

Ta(z) = ∂FHs(−z)
∂a

= −−z − b

a2 ϕ

(
−z − b

a

)
= z + b

a2
1√
2π

exp
(

− (z + b)2

2a2

)
Tb(z) = ∂FHs(−z)

∂b
= −1

a
ϕ

(
−z − b

a

)
= −1

a

1√
2π

exp
(

− (z + b)2

2a2

)
,
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where ϕ is the standard normal pdf. Therefore, one has

T ′
a(z) = 1

a2ϕ

(
z + b

a

)(
1 − (z + b)2

a2

)
T ′′

a (z) = 1
a2ϕ

(
z + b

a

)(
−2(z − b)

a2 − (z + b)
a2

(
1 − (z + b)2

a2

))
T ′′

a (z) = 1
a2ϕ

(
z + b

a

)(
−3(z + b)

a2 + (z + b)3

a4

)
.

The evaluation in 0 results in

T ′′
a (0) = 1

a2ϕ

(
b

a

)(
−3 b

a2 + b3

a4

)
= b

a4ϕ

(
b

a

)(
−3 + b2

a2

)
.

Now for the coefficient of order 4,

T (3)
a (z) = 1

a2ϕ

(
z + b

a

)(
− 3
a2 + 3(z + b)2

a4 − (z + b)
a2

(
−3(z + b)

a2 + (z + b)3

a4

))
T (3)

a (z) = 1
a4ϕ

(
z + b

a

)(
−3 + 6(z + b)2

a2 − (z + b)4

a4

)
T (4)

a (z) = 1
a4ϕ

(
z + b

a

)(
12(z + b)

a2 − 4(z + b)3

a4 − (z + b)
a2

(
−3 + 6(z + b)2

a2 − (z + b)4

a4

))
T (4)

a (z) = 1
a6ϕ

(
z + b

a

)(
15(z + b) − 10(z + b)3

a2 + (z + b)5

a4

)
.

The evaluation in 0 results in

T (4)
a (0) = b

a6ϕ

(
b

a

)(
15 − 10 b

2

a2 + b4

a4

)
.

For the coefficient of the derivative with respect to b, one has

T ′
b(z) = z + b

a3 ϕ

(
z + b

a

)
T ′′

b (z) = 1
a3ϕ

(
z + b

a

)(
1 − (z + b)2

a2

)
.

Therefore the evaluation in 0 gives

T ′′
b (0) = 1

a3ϕ

(
b

a

)(
1 − b2

a2

)
and for the coefficient of order 4

T
(3)
b (z) = 1

a3ϕ

(
z + b

a

)(
−2(z + b)

a2 − (z + b)
a2

(
1 − (z + b)2

a2

))
T

(3)
b (z) = 1

a3ϕ

(
z + b

a

)(
−3(z + b)

a2 + (z + b)3

a4

)
= 1
a5ϕ

(
z + b

a

)(
−3(z + b) + (z + b)3

a2

)
T

(4)
b (z) = 1

a5ϕ

(
z + b

a

)(
−3 + 3(z + b)2

a2 − (z + b)
a2

(
−3(z + b) + (z + b)3

a2

))
T

(4)
b (z) = 1

a5ϕ

(
z + b

a

)(
−3 + 6(z + b)2

a2 − (z + b)4

a4

)
.

Finally

T
(4)
b (0) = 1

a5ϕ

(
b

a

)(
−3 + 6 b

2

a2 − b4

a4

)
.
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Appendix E

Polynomial regressions in the OLS
framework

E.1 Introduction of the Ordinary Least Squares (OLS) method
We briefly derive here the OLS framework. In the OLS framework, EfX [ϵ] = 0 and the covariance
matrix Σϵ is diagonal with constant components: Σϵ = η2Im where η2 is the constant variance of the
error ϵl, for l = 1, . . . ,m and Im is the identity matrix of dimension m. The OLS estimate is written

α̂O =
(
S⊤S

)−1 (S⊤V
)
,

and it is the best linear unbiased estimate according to the Gauss–Markov theorem, as it has the lowest
variance within the class of linear unbiased estimate [Theil, 1971]. The covariance matrix estimate of
α̂O is given by the following formula

V̂(β̂OLS) = η2 (S⊤S
)−1

.

The OLS framework is suited for homoscedastic uncorrelated data.

E.2 Toy example with various MC in the OLS framework
The results of Tables E.1 and E.2 are obtained with the same simulation samples used for Table 6.1
and Table 6.2, but the sensitivity estimates are computed in the OLS framework.

Table E.1: Comparison of the result of the polynomial regression with 3 different degrees, for N =
100000. The failure probability is equal to 6.22 × 10−3 with an empirical CV of 3.8%. The reference
values of the sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example with OLS
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.20 × 10−2 2.20 × 10−2 2.20 × 10−2 2.20 × 10−2

CV 6.0% CV 6.9% CV 7.4% CV 7.2%
(5.9%) (6.6%) (7.3%)

∂̂Pf

∂b −8.78 × 10−3 −8.79 × 10−3 −8.79 × 10−3 −8.82 × 10−3

CV 5.9% CV 6.9% CV 7.3% CV 7.1%
(5.9%) (6.5%) (7.2%)

The theoretical CV estimates have an empirical CV below 14% for N = 100000, below 15% for
N = 50000 and close to 20% for N = 10000 and 2k = 2.
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Table E.2: Comparison of the result of the polynomial regression, for N = 50000 and N = 10000. The
failure probability is equal to 6.19 × 10−3 with an empirical CV of 5.7% for N = 50000. The failure
probability is equal to 6.23×10−3 with an empirical CV of 13.3% for N = 10000. The reference values
of the sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example with OLS
N = 50000 N = 10000
Regression
2k = 2

Weak approach
σ̃ = σmin

Regression
2k = 2

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.20 × 10−2 2.21 × 10−2 2.20 × 10−2 2.24 × 10−2

CV 7.2% CV 7.8% CV 13.3% CV 11.3%
(6.9%) (12.9%)

∂̂Pf

∂b −8.77 × 10−3 −8.85 × 10−3 −8.76 × 10−3 −9.12 × 10−3

CV 7.2% CV 7.7% CV 13.3% CV 10.8%
(6.9%) (13.1%)

E.3 Toy example with NAIS in the OLS framework
The results in Table E.3 are obtained with the same simulation samples used for Table 6.3, but the
sensitivity estimates are computed in the OLS framework.

Table E.3: Comparison of the result of the polynomial regression with NAIS, for N = 2000. The
failure probability is equal to 6.20 × 10−3 with an empirical CV of 4.8%. The reference values of the
sensitivities are ∂Pf/∂a = 2.19 × 10−2 and ∂Pf/∂b = −8.76 × 10−3.

Toy example with NAIS and OLS
Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf

∂a 2.20 × 10−2 2.19 × 10−2 2.18 × 10−2 2.18 × 10−2

CV 5.5% CV 6.2% CV 6.7% CV 7.0%
(6.6%) (7.3%) (7.9%)

∂̂Pf

∂b −8.82 × 10−3 −8.74 × 10−3 −8.73 × 10−3 −8.74 × 10−3

CV 5.7% CV 6.3% CV 6.8% CV 7.0%
(6.7%) (7.5%) (8.1%)
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computed from observations generated from ĥ1 is already smaller than 0 thus the loop
stops as s1 = 0 and the failure probability is estimated with the observations in the
failure domain. The dark blue line is the limit state surface. The color map represents
the value of the limit state function g. The dashed white lines represent the intermediate
limit state surfaces. The dotted lines represent the isovalues of the densities fX and ĥ1.
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[Chan and Kroese, 2012] Chan, J. C. and Kroese, D. P. (2012). Improved cross-entropy method for
estimation. Statistics and Computing, 22(5):1031–1040.

[Cheng et al., 2023] Cheng, K., Papaioannou, I., Lu, Z., Zhang, X., and Wang, Y. (2023). Rare event
estimation with sequential directional importance sampling. Structural Safety, 100:102291.

[Cornuet et al., 2012] Cornuet, J.-M., Marin, J.-M., Mira, A., and Robert, C. P. (2012). Adaptive
multiple importance sampling. Scandinavian Journal of Statistics, 39(4):798–812.

[de Angelis et al., 2015] de Angelis, M., Patelli, E., and Beer, M. (2015). Advanced line sampling for
efficient robust reliability analysis. Structural safety, 52:170–182.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22.

[Der Kiureghian and Dakessian, 1998] Der Kiureghian, A. and Dakessian, T. (1998). Multiple design
points in first and second-order reliability. Structural Safety, 20(1):37–49.

[Ditlevsen and Madsen, 1996] Ditlevsen, O. and Madsen, H. O. (1996). Structural reliability methods,
volume 178. Wiley New York.

[Ditlevsen et al., 1990] Ditlevsen, O., Melchers, R. E., and Gluver, H. (1990). General multi-
dimensional probability integration by directional simulation. Computers & Structures, 36(2):355–
368.

[Ditlevsen et al., 1986] Ditlevsen, O., Olesen, R., and Mohr, G. (1986). Solution of a class of load
combination problems by directional simulation. Structural Safety, 4(2):95–109.

[Dong et al., 2014] Dong, Y.-g., Lu, H.-t., and Li, L.-l. (2014). Reliability sensitivity analysis based
on multi-hyperplane combination method. Defence Technology, 10(4):354–359.

[Douc et al., 2007] Douc, R., Guillin, A., Marin, J.-M., and Robert, C. P. (2007). Convergence of
adaptive mixtures of importance sampling schemes. The Annals of Statistics, 35(1):420–448.

[Dubourg and Sudret, 2014] Dubourg, V. and Sudret, B. (2014). Meta-model-based importance sam-
pling for reliability sensitivity analysis. Structural Safety, 49:27–36.

[Dubourg et al., 2011] Dubourg, V., Sudret, B., and Bourinet, J.-M. (2011). Reliability-based de-
sign optimization using Kriging surrogates and subset simulation. Structural and Multidisciplinary
Optimization, 44:673–690.

[Echard et al., 2011] Echard, B., Gayton, N., and Lemaire, M. (2011). AK-MCS: An active learning
reliability method combining Kriging and Monte Carlo simulation. Structural Safety, 33(2):145–154.



BIBLIOGRAPHY 205

[Economon et al., 2016] Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., and Alonso,
J. J. (2016). SU2: An open-source suite for multiphysics simulation and design. AIAA Journal,
54(3):828–846.

[El-Laham et al., 2019] El-Laham, Y., Martino, L., Elvira, V., and Bugallo, M. F. (2019). Efficient
adaptive multiple importance sampling. In 2019 27th European Signal Processing Conference (EU-
SIPCO), pages 1–5. IEEE.

[El Masri et al., 2021] El Masri, M., Morio, J., and Simatos, F. (2021). Improvement of the cross-
entropy method in high dimension for failure probability estimation through a one-dimensional
projection without gradient estimation. Reliability Engineering & System Safety, 216:107991.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231.

[Fang et al., 2002] Fang, H.-B., Fang, K.-T., and Kotz, S. (2002). The meta-elliptical distributions
with given marginals. Journal of multivariate analysis, 82(1):1–16.

[Fang et al., 2018] Fang, K.-T., Kotz, S., and Ng, K. W. (2018). Symmetric Multivariate and Related
Distributions. Chapman & Hall/CRC.

[Feng, 1990] Feng, Y. (1990). The computation of failure probability for nonlinear safety margin
equations. Reliability Engineering & System Safety, 27(3):323–331.

[Ferson and Ginzburg, 1996] Ferson, S. and Ginzburg, L. R. (1996). Different methods are needed to
propagate ignorance and variability. Reliability Engineering & System Safety, 54(2-3):133–144.

[Fujita and Rackwitz, 1988] Fujita, M. and Rackwitz, R. (1988). Updating first-and second-order
reliability estimates by importance sampling. Doboku Gakkai Ronbunshu, 1988(392):53–59.

[Galambos, 1978] Galambos, J. (1978). The asymptotic theory of extreme order statistics. Technical
report.

[Gebru et al., 2016] Gebru, I. D., Alameda-Pineda, X., Forbes, F., and Horaud, R. (2016). EM algo-
rithms for weighted-data clustering with application to audio-visual scene analysis. IEEE transac-
tions on pattern analysis and machine intelligence, 38(12):2402–2415.

[Genest et al., 2007] Genest, C., Favre, A.-C., Béliveau, J., and Jacques, C. (2007). Metaelliptical
copulas and their use in frequency analysis of multivariate hydrological data. Water Resources
Research, 43(9).
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Reliability-based optimization of stochastic systems using line search. Computer methods in applied
mechanics and engineering, 198(49-52):3915–3924.

[Jia and Taflanidis, 2014] Jia, G. and Taflanidis, A. A. (2014). Sample-based evaluation of global
probabilistic sensitivity measures. Computers & Structures, 144:103–118.

[Joe, 1996] Joe, H. (1996). Families of m-variate distributions with given margins and m(m − 1)/2
bivariate dependence parameters. Lecture notes-monograph series, pages 120–141.

[Joe, 1997] Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC press.

[Katafygiotis and Cheung, 2007] Katafygiotis, L. S. and Cheung, S. (2007). Application of spherical
subset simulation method and auxiliary domain method on a benchmark reliability study. Structural
Safety, 29(3):194–207.

[Katafygiotis and Zuev, 2008] Katafygiotis, L. S. and Zuev, K. M. (2008). Geometric insight into the
challenges of solving high-dimensional reliability problems. Probabilistic Engineering Mechanics,
23(2-3):208–218.

[Kenway et al., 2019] Kenway, G. K., Mader, C. A., He, P., and Martins, J. R. (2019). Effective adjoint
approaches for computational fluid dynamics. Progress in Aerospace Sciences, 110:100542.

[Khan, 2004] Khan, R. A. (2004). Approximation for the expectation of a function of the sample
mean. Statistics, 38(2):117–122.
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épistémiques introduites par les données d’apprentissage. PhD thesis, Toulouse, ISAE.

[Sbert and Havran, 2017] Sbert, M. and Havran, V. (2017). Adaptive multiple importance sampling
for general functions. The Visual Computer, 33(6):845–855.

[Sbert et al., 2018] Sbert, M., Havran, V., and Szirmay-Kalos, L. (2018). Multiple importance
sampling revisited: breaking the bounds. EURASIP Journal on Advances in Signal Processing,
2018(1):1–15.

[Schueller et al., 2004] Schueller, G. I., Pradlwarter, H. J., and Koutsourelakis, P.-S. (2004). A crit-
ical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering
Mechanics, 19(4):463–474.
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Résumé

Dans de nombreuses disciplines scientifiques, un système complexe est souvent modélisé avec une fonc-
tion M, supposée simuler le comportement du système. La sortie de cette fonction est la réponse
observée tandis que les entrées représentent les différentes variables qui influencent le comportement
du système. Le système étant soumis à des aléas, certaines de ses entrées sont des variables aléatoires.
Ainsi, la sortie de la fonction est également aléatoire. La défaillance du système correspond à une
réponse extrême de la fonction, dont les conséquences sont critiques. Dans un contexte où la fonction
M agit comme une bôıte noire, le calcul de la probabilité de défaillance et de sa sensibilité locale
est crucial pour l’analyse de fiabilité du système. L’estimation de la probabilité de défaillance et de
sa sensibilité locale est particulièrement difficile pour des systèmes de grande dimension, dont le do-
maine de défaillance des entrées possède plusieurs régions de défaillance. Les entrées aléatoires sont
modélisées ici avec des distributions elliptiques standards, comme la loi normale standard par exemple.
Le comportement de telles distributions en grande dimension doit être pris en compte dans le pro-
cessus d’estimation. Dans la littérature, de nombreux algorithmes d’échantillonnage préférentiel (EP)
ont été spécifiquement adaptés à l’estimation de la probabilité de défaillance de systèmes possédant
plusieurs régions de défaillance dans l’espace standard normal de grande dimension. Le but de l’EP est
de construire une densité auxiliaire qui génère plus d’observations dans le domaine de défaillance que
la densité de probabilité initiale des entrées aléatoires. Afin de prendre en compte la multiplicité des
régions de défaillance, la densité auxiliaire est alors construite comme un mélange de densités. Cepen-
dant, le nombre de densités dans le mélange, correspondant au nombre de régions de défaillance, doit
être fixé a priori et est difficile à paramétrer dans un contexte de bôıte noire. De plus, dans l’espace
standard elliptique, la sensibilité locale de la probabilité par rapport à une entrée déterministe s’écrit
nécessairement comme une intégrale surfacique, dont l’estimation est laborieuse. En conséquence, ces
sensibilités sont souvent approchées par un estimateur biaisé plus facile à obtenir, mais dont le biais
est difficilement évaluable. Le but de cette thèse est alors d’améliorer l’estimation de la probabilité
de défaillance et de sa sensibilité locale dans un tel contexte. L’algorithme proposé pour estimer la
probabilité de défaillance repose sur une recherche progressive des régions de défaillance dans l’espace
standard elliptique. Pour chaque région de défaillance identifiée, une densité auxiliaire est construite
et optimisée de manière adaptative. Cette densité prend en compte le comportement des entrées en
grande dimension puisque sa construction bénéficie de leur représentation stochastique. La probabilité
de défaillance finale est estimée avec un échantillonnage préférentiel multiple, en utilisant toutes les den-
sités auxiliaires précédemment construites. L’approche proposée pour estimer la sensibilité de la prob-
abilité par rapport aux entrées déterministes repose sur une régression polynomiale hétéroscédastique.
En effet, la sensibilité locale est identifiée comme le terme d’ordre zéro d’un développement de Tay-
lor. En utilisant les méthodes de simulation pour construire la base de données de la régression, un
nouvel estimateur de la sensibilité locale est ainsi obtenu. Cet estimateur est biaisé mais son biais
est contrôlable grâce aux paramètres de régression : le degré du polynôme ainsi que l’intervalle de
régression. Les deux algorithmes sont mis en pratique indépendamment avec différentes applications
pour démontrer leur robustesse. Une étude de la fiabilité d’un oscillateur de Duffing permet de tester
la combinaison des deux algorithmes pour un système de grande dimension possédant plusieurs régions
de défaillance.

Mots-clés: analyse de fiabilité, estimation de probabilité de défaillance, sensibilité locale de prob-
abilité de défaillance, échantillonnage préférentiel, régression polynomiale hétéroscédastique, loi stan-
dard elliptique, régions de défaillance multiples, système de grande dimension
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Abstract

In several scientific disciplines, a complex system is typically modeled with a function M, expected
to simulate the behavior of the system. The output of this function is the observed response while
the inputs represent the different variables that have an influence over the behavior of the system. As
the system is subject to uncertainty, some of the inputs are random variables. Hence, the output of
the function is random as well. The failure of the system corresponds to an extreme response of the
function which can have severe consequences. In a context where the function M is seen as a black-box
function, computing the probability of failure of the system, as well as its local sensitivity is crucial
for reliability analysis. The estimation of the failure probability and its local sensitivity is particularly
difficult for high-dimensional systems, whose input failure domain encompasses possibly several failure
regions. Assuming the random inputs can be modeled with standard elliptical variables, the behavior of
such distributions in high-dimensional spaces must be taken into account in the estimation process. In
the literature, several Importance Sampling (IS) algorithms have been specifically tailored to estimate
the failure probability of systems with several failure regions in the high-dimensional standard normal
space, a commonly used elliptical space. The goal of IS is to build an auxiliary density which generates
more observations in the failure domain than the original probability density function of the random
inputs. In order to take into account the multiple failure regions, the auxiliary density is then built as
a mixture of densities. However, the number of densities in the mixture, corresponding to the number
of failure regions, has to be set a priori and is arduous to derive in a black-box context. Furthermore,
in the standard elliptical space, the sensitivity of the failure probability with respect to a deterministic
input is necessarily written as a surface integral, which is burdensome to estimate. Consequently, the
local sensitivity is usually approximated with a biased estimate easier to obtain, whose bias is then
difficult to examine. The goal of this thesis is to improve the estimation of both the failure probability
and its local sensitivity in such a context. The algorithm proposed to estimate the failure probability
relies on a gradual search for the failure regions in the standard elliptical space. For each identified
failure region, an auxiliary density is built and adaptively optimized. This density takes into account
the behavior of the random inputs in the high-dimensional space as their stochastic representation is
taken advantage of. The final failure probability is then estimated with a multiple important sampling
scheme, using every auxiliary density previously built. The approach proposed to estimate the failure
probability sensitivity with respect to the deterministic inputs relies on a heteroscedastic polynomial
regression. Indeed, the local sensitivity is identified as the term of order zero of a Taylor series
expansion. Using simulation methods to build the regression database, a new sensitivity estimate is
obtained. This estimate is biased, but its bias can be controlled thanks to the parameters of the
regression: the polynomial degree and the regression interval. Both algorithms are applied to various
applications to test their robustness independently. A study on the reliability of a Duffing oscillator
allows to test the combination of both algorithms, for a high-dimensional system with several failure
regions.

Keywords: reliability analysis, failure probability estimation, failure probability sensitivity, im-
portance sampling, standard elliptical laws, heteroscedastic polynomial regression, multiple failure
regions, high-dimensional system
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